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Reversing Reserves

When setting rules for assessing applicants, managers and policy makers commonly face

a balancing act. On the one hand, selections are often made based on well-justified rules for

priority. As examples, jobs may be granted based on measures of merit, seats at schools may

be granted according to lotteries, and visas may be granted based on the order of applications.

On the other hand, both internal and external stakeholders may be concerned about the

distribution of characteristics held by successful applicants. Returning to our examples, one

might see particular value in hiring from historically underrepresented groups, in admitting

students from a local area, or in granting visas to individuals with special qualifications.

Resolving this tension is often a fraught process. In many cases, the decision-maker

must strike a compromise between constituencies advocating for reliance on the standard

measure of priority and constituencies advocating for greater distributional consideration. A

common approach to striking this compromise has been the adoption of a reserve system. In

a reserve system, some of the positions being allocated are reserved for the group targeted

for preferential treatment. When reserve slots are processed, the members of the targeted

group with the highest priority receive them. When unreserved slots are processed, only

priority is considered (regardless of group membership). Because such a system nests both a

respect for priority and a way to advance the targeted group, it may be viewed as a tolerable

middle ground.

To reach this middle ground, the designer has access to two levers that influence the

advantage given to targeted applicants. The first lever is the number of positions reserved.

All else equal, a member of the targeted group is better off if more seats are reserved for

people like him. The second lever is the order in which reserve positions are processed. As

documented in recent papers (see, e.g., Dur et al., 2018; Dur, Pathak and Sönmez, 2020;

Pathak, Rees-Jones and Sönmez, 2020), changing processing order dramatically changes

the degree of advantage conferred by a fixed number of reserved positions. When reserves

are processed first, the number of positions reserved serves as a minimum guarantee. A

member of the targeted group who would receive a position based on priority alone counts

towards the reserves, and thus reserves become relevant only if fewer than the reserved

number of positions would be filled by the targeted group absent reserves. By contrast,

when reserves are processed last, the number of positions reserved denotes the number of
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Reversing Reserves

additional positions to grant the targeted group over and above what would be determined

by priority over unreserved positions. This confers advantage to the target group regardless

of their initial allocation of unreserved positions and the benefits do not terminate once a

target number of positions have been attained.

Our study was motivated by our belief that the critical importance of processing order

may be misunderstood. While the importance of the number of reserved positions is relatively

obvious and salient, the importance of processing order can easily be overlooked or dismissed

as a technical detail. This misunderstanding can be consequential. Constituencies that do

not appreciate the importance of processing order could deploy reserve systems in a manner

that blunts the degree of affirmative action achieved by a reserve of a fixed size. Additionally,

they may view a proposed reserve system as a fair compromise when it does not significantly

advance their goals.

Recent papers have presented suggestive evidence of this type of misunderstanding in

several high-profile applications. In one focal example, Boston public schools enacted a

policy of reserving 50% of seats for walk-zone applicants explicitly as a compromise between

constituencies supporting local school assignment and constituencies supporting unrestricted

school choice (Dur et al., 2018). Processing order was not explicitly considered during this

compromise and was arbitrarily resolved with reserves processed first—a minimum guarantee.

Over a decade later, market designers uncovered how the reserve system had been enacted

and revealed that it did very little to advantage the applications of walk-zone students. This

led the reserve system to be abandoned due to its unpalatable, but previously unnoticed,

lack of compromise and its perceived lack of transparency. In another focal example, the

2004 reform of the U.S. H-1B visa system mandated a policy of reserving visas for advanced

degree applicants, but left processing order unspecified in the legislation. In the years since,

theoretically-important-but-unlegislated details have been modified on several occasions for

reasons purely of logistical convenience. These reforms led to large changes in the degree

of preference given to highly skilled immigrants. However, unlike typical changes in U.S.

immigration policy, these changes were typically not publicly noticed or debated, and indeed

may not have been intended (Pathak, Rees-Jones and Sönmez, 2020). While the knowledge

and motivations of all parties in these examples are not fully documented, we believe that

4



Reversing Reserves

cases like these suggest that misunderstanding of reserve systems may be both common and

consequential.1

Motivated by field applications like these, we sought to design a means to infer the un-

derstanding of reserve systems held by the populace. We deployed a preregistered online

experiment to 1,013 members of a nationwide survey panel that is approximately represen-

tative on a broad range of demographic variables. In this experiment, subjects faced simple

scenarios mirroring the two applications of reserve systems discussed above: allocation of

seats at a high school or allocation of work visas. In the scenarios, subjects are members of

a group that will have positions reserved. Subjects face financial incentives to maximize the

chance that their admission is attained in a simulation. They then choose how they would

like the reserve system to be administered, selecting from pairs of policies that differ in the

both the number of seats reserved and in the order that the reserve seats are processed.

Our experiment was designed to reveal the rate at which subjects adopt several competing

decision rules. In our empirical model, the population consists of individuals choosing from

a rich set of potential choice functions. These choice functions dictate which policy the

subject prefers given the number of seats assigned to both the “reserves-first” and “reserves-

last” policies. If subjects choose optimally, they switch to preferring the reserves-first policy

from preferring the reserves-last policy when the number of reserves-first seats surpasses a

known threshold. Optimal behavior then leads to a discontinuity in choice probability at

that threshold, and the size of the discontinuity identifies the fraction of decisions made

using that choice function. Similarly, if subjects understand that more seats are better

but treat processing order as irrelevant, they switch to preferring the reserves-first policy

from preferring the reserves-last policy when the number of reserves-first seats surpasses the

number of reserves-last seats. This näıve behavior then leads to a discontinuity in choice

probability at that different threshold, and again the size of the discontinuity identifies the

fraction of decisions made using that choice function.

Our results illustrate that the optimal decision rule is rarely applied and that subjects

often miss the importance of processing order. Our primary estimates suggest that 3%

(s.e. = 2pp) of decisions are made by applying the optimal decision rule; we are unable

1For a more detailed summary of the history of these reserve systems, see Appendix C.
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to reject the hypothesis that the optimal decision rule is never applied. We are further

able to rule out that more than 7% of decisions are made using decision rules that are

“close” to optimal. In contrast, we estimate that 40% (s.e. = 2pp) of decisions are made

using a decision rule that responds to reserve size but treats processing order as irrelevant,

reflecting widespread coordination on behavior that would be optimal if not for ignoring a

single important comparative static. We find evidence consistent with some of the remaining

decisions being made with decision rules that treat processing order as relevant but underes-

timate its effect size, although this behavior is less common than ignoring processing order

entirely. The widespread misunderstanding of processing order helps explain the frequency

of experimental decisions that are not payoff maximizing for subjects.

This paper builds on a long tradition of using lab-experimental methods to test for

understanding of matching mechanisms (see, e.g., Chen and Sönmez, 2006; Calsamiglia,

Haeringer and Kljin, 2010; Echenique, Wilson and Yariv, 2016; Rees-Jones and Skowronek,

2018).2 Within this literature, we make two primary contributions.

First, whereas most studies examine the preferences that participants express in a de-

signed market, this study probes participants’ preferences over the design of the market

itself. This alternative focus is important because the design of many markets is guided by

public approval and subject to public oversight. As a result, misunderstanding harbored by

the public can influence a market’s design. We return to a more detailed discussion of when

and how the public’s understanding becomes relevant in the conclusion of the paper.

Second, these findings reinforce a growing body of work showing large potential for mis-

understanding of matching-market incentives. While clear and transparent explanation of a

matching procedure is often thought to be sufficient for widespread understanding to arise,

our results suggest that this is insufficient in reserve systems. These findings mirror similar

results showing that misunderstanding of the deferred acceptance or top trading cycles al-

gorithms persist even in settings with substantial training and feedback (Ding and Schotter,

2017; Guillen and Hakimov, 2018; Rees-Jones and Skowronek, 2018). Several forces lead us

to worry that eliminating misunderstanding of processing order will be particularly challeng-

2For a recent review of experimental examinations of matching markets, see Hakimov and Kübler (2021).
For a recent review of the interaction between market design and behavioral economics, see Chen et al.
(2021).

6



Reversing Reserves

ing. We document that subjects with higher education, subjects with higher performance on

cognitive ability tests external to our survey, and subjects with a higher performance on com-

prehension tests within our survey all show a greater likelihood of adopting our misguided

decision rule of interest. These findings suggest that misunderstanding of processing order is

not simply resolved by greater attention, numeracy, or careful thinking. Training people out

of this mistake requires teaching them careful consideration of relatively subtle statistical se-

lection problems—a class of problems that remains challenging even for the highly educated.

Relatedly, the individuals who run the market may often not understand the importance of

these issues, or, worse yet, may be actively incentivized to foster misunderstanding. In such

cases, reliance on the internal provision of training and advice will clearly be insufficient to

ensure that the final policy adopted efficiently pursues the goals of the populace adopting it.

In addition to our contributions to the experimental market design literature, we also

make methodological contributions to the broader experimental literature concerned with

the classification of “behavioral types.” Lab or survey experiments are often interested in

partitioning experimental participants into groups according to features of the preferences

they reveal. This is challenging, since individuals must be classified according to only the de-

cisions available in the experiment—typically too few for individual-level estimation without

restrictive assumptions on the nature of measurement error and heterogeneity. The empirical

strategy that we describe in Section 2 provides a new approach to type estimation that relies

on points of discontinuity in individual choice rules. This approach ultimately allows for

estimation of the frequency of adoption of behavioral rules with relatively minimal structure

placed on the nature of measurement error or heterogeneity. We believe that this general

approach may be useful in other settings.

The paper proceeds as follows. In Section 1 we present a brief review of the theory of

reserve systems. In Section 2, we formally present our candidate models of decision rules

and our econometric strategy for identifying their rate of adoption. In Sections 3 and 4, we

describe the design and deployment of our experiment. In Section 5, we present results. In

Section 6, we conclude.
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1 A Review of the Theory of Reserve Systems

In this section, we briefly present existing theoretical results on the functioning of reserve

systems. This summary primarily draws upon the work of Kominers and Sönmez (2016) and

Dur et al. (2018).

1.1 Decision Environment

Consider a setting in which some number of objects must be allocated. For concreteness,

say the objects to be assigned are seats at a school. The school has q seats available. In

the absence of reserve considerations, a mechanism would assign these seats to applicants

according to a linear priority order (for example, outcomes of a standardized test or results

from a lottery). However, this school wishes to provide some advantage to a particular group

of applicants. Call this group the reserve applicants. Call those outside of this group the

general-category applicants.

To help advantage the reserve applicants, the school labels qr of their q seats as reserved

seats (with 0 < qr < q). The remaining q − qr seats are open seats.

To determine the assignment of seats at the school, the school fills seats sequentially and

one at a time. When processing an open seat, the school admits the student with the highest

priority among all those not yet admitted. Reserve-category status is not considered. When

processing a reserved seat, the school admits the reserve applicant with the highest priority

among all those not yet admitted. General-category applicants are ineligible for these seats.

To fully specify the assignment procedure, the sole remaining requirement is to describe

the processing order for reserved and open seats. Conceptually, any permutation is possible:

one could process one reserved seat, followed by seven open seats, followed by two reserved

seats, and so on. In practice, however, these systems are commonly administered in one of

two configurations: processing all reserve seats either prior to all open seats or after all open

seats. We will restrict attention to these two extremal policies.
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1.2 Comparative Statics of Interest

In a system like that just specified, two key comparative statics govern the degree of advan-

tage conferred to the reserve group.

Seat-number comparative static: Hold fixed the priority order and the processing

order. Increasing the number of reserved seats weakly increases the number of admitted

reserve students.

The seat-number comparative static captures an obvious and intuitive determinant of as-

signments: saving more seats for a group helps the group. A second more subtle comparative

static follows from the work in Dur et al. (2018).

Processing-order comparative static: Hold fixed the priority order and the number

of reserved seats. Switching from processing the reserved seats first to processing the

reserved seats last weakly increases the number of admitted reserve students.

1.3 Potential for Misunderstanding of Processing Order

Existing results from behavioral economics suggest that there are significant psychological

hurdles to comprehension of the processing-order comparative static. To summarize these

hurdles, we direct attention to two elements of reasoning that are essential for understanding

the importance of processing order.

First, note that the processing-order comparative static is partially attributable to a

selection effect. When reserved seats are processed last, reserve applicants are admitted in

the first-stage processing of open seats at a rate determined by their distribution of priorities

relative to general-category applicants. Except for differences in priorities, competition for

the open seats is effectively a level playing field between the two groups. In contrast, when

reserved seats are processed first, the highest-priority members of the reserve group are

removed from the applicant pool before the processing of the open seats. The competition

for open seats is therefore between all members of the general category and the comparatively

low-priority members of the reserve group, tilting admissions in favor of the general-category

applicants.
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Selection effects like these are known to pose problems to many decision makers. Enke

(2020) documents that experimental subjects have a tendency to treat selected samples as if

they were representative, with this error leading to failures of economic decision-making in

a signal-extraction task. These findings accord with literature in psychology that compares

human judgments to those of “näıve intuitive statisticians.” This literature emphasizes

humans’ ability to quickly and accurately forecast simple sample properties of presented data

(see, e.g., Spencer, 1961, 1963), but also points out humans’ systematic tendency to ignore

the ways in which the samples they are presented are non-representative (summarized in

Fiedler and Juslin, 2006; Juslin, Winman and Hansson, 2007). In short, substantial existing

research suggests that decision-makers may fail to attend to selection effects, and proper

consideration of selection effects is essential to understanding reserve systems.

Second, note that the processing-order comparative static is partially attributable to a

composition effect. To illustrate, notice that when reserve seats are processed last, compe-

tition for the open seats is between all general-category applicants and all reserve-category

applicants. In contrast, when reserve seats are processed first, competition for open seats is

between all general-category applicants and the reserve applicants with qr group members

already removed. In the latter situation, reserve applicants make up a smaller portion of the

total applicant pool. As a result, even without selection effects, admissions are again tilted

in favor of the general-category applicants.

Ability to appreciate this composition effect would naturally be influenced by base-rate

neglect, a foundational bias in probabilistic reasoning in the literature on judgment and

decision-making.3 Base-rate neglect refers to individuals’ tendency to ignore base rates

when forecasting the comparatively likelihood of outcomes. An individual affected by this

bias would fail to appreciate that the different proportions of reserve-group applicants that

enter the second round of processing would affect the likelihood of their admissions.

More broadly, misunderstanding of reserve systems can naturally be understood to arise

as a consequence of bounded rationality (Simon, 1990; Selten, 1990) and rational inattention

(Wiederholt, 2016). Matching systems may not be intuitive, and full understanding of them

3Appreciation of base-rate neglect as a systematic phenomenon traces back at least to Kahneman and
Tversky (1973). For a recent review of this literature, see Benjamin (2019).
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may be costly to develop. Because most individuals face reserve systems infrequently, the

incentive to invest in understanding them is comparatively low, especially if one’s initial

intuitive understanding suggests that they already know all that is relevant. The strong

intuitive appeal of believing that “more seats are better” could naturally lead a boundedly

rational agent to hold incorrect beliefs when first encountering reserve systems. And while

incorrect initial beliefs are often assumed to be corrected by repeated experiences and feed-

back, that disciplining force may be weak in this setting for two reasons. First, if priors

that processing order is irrelevant are strong enough, a rationally inattentive agent may fail

to mentally catalog processing order as experiences accumulate, thus preventing him from

noticing that this factor is relevant (as in Hanna, Mullainathan and Schwartzstein, 2014).

Second, and more simply, the infrequency with which most individuals face reserve systems

may result in too little feedback to correct wrong intuitions.

This past literature guided our belief that misunderstanding of processing order may be

widespread, motivating us to design an approach to testing this hypothesis.

2 Identifying Subjects’ Understanding of Reserve Sys-

tems

In this section we present our empirical model for inferring understanding of reserve systems.

The experiment that we present in the remainder of the paper was tailored for utilization of

this empirical model.

2.1 Model of Preferences for Reserve Systems

Consider an individual (i) facing an assignment problem like that described in Section 1.

This individual is a member of the group that qualifies for reserve seats. He is presented

with two potential policies that could be applied to determine admissions: a “reserves-first”

(RF) policy with sRF reserve seats and a “reserves-last” (RL) policy with sRL reserve seats.

Beyond seat numbers and processing order, all other features of the decision environment

are held fixed. The individual’s task is to choose between these two policies.
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In this environment, the primitives of our model are individuals’ choice functions, denoted

by C : (sRF , sRL) → [0, 1]. Given an assigned number of reserve seats for both the RF and

the RL policies ((sRF , sRL) ∈ R2
+), a choice function outputs the individual’s probability

of indicating a preference for the RF policy. When holding fixed all other elements of the

assignment problem, such a function completely characterizes an individual’s observable

preferences. At times we will consider a choice function adopted by a specific individual, in

which case it will be subscripted by i.

If the choice function were observed, it would provide a direct means of testing an indi-

vidual’s understanding of the theory described in Section 1. For any given number of RL

seats, there exists a threshold number of RF seats (T ∗(sRL)) such that the RF policy will

be most favorable to the individual if and only if its number of reserve seats exceeds the

threshold. An individual who correctly analyzes the environment and chooses the policy in

his best interest would therefore adopt the choice function

C∗(sRF , sRL) =

1 if sRF > T ∗(sRL)

0 if sRF ≤ T ∗(sRL)
.

Adopting this choice function would serve as strong evidence in support of a sophisticated

understanding of the decision problem.4

Just as observation of the choice function would allow for the identification of sophis-

tication, it is also useful for identification of the type of misunderstanding that we have

posited. Consider next the choice function that would be observed among individuals who

understand the seat-number comparative static but who are unaware of the processing-order

comparative static. Such individuals adopt the choice function

Cn(sRF , sRL) =

1 if sRF > sRL

0 if sRF ≤ sRL
.

This choice function dictates choosing the policy that offers more seats, regardless of order.

The superscript n denotes the fact that this choice function reflects a degree of näıveté in

4Note that at the point of indifference (sRF = T ∗(sRL)) any choice probability can be rationally sup-
ported. The choice functions written in this section resolve the indeterminacy at the point of indifference
arbitrarily. In our experimental design, we intentionally do not present such cases to respondents.
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his understanding of incentives.

In our framework, we allow for individuals to probabilistically apply different choice

functions at different times. Consider an individual’s average choice function:

C̄i(s
RF , sRL) = p∗iC

∗(sRF , sRL) +

pni C
n(sRF , sRL) +∑

k

pkiC
k(sRF , sRL).

In this equation, the term p∗i denotes the individual’s probability of using the optimal choice

function; pni denotes the probability of using the näıve choice function of interest; the pki

terms denote the probabilities of using a set of other arbitrary choice functions. This set of

other choice functions is included in the framework for two reasons. First, these other choice

functions can capture other heuristics. Second, their inclusion also provides a means of

modeling mistakes. For example, an individual who always tries to apply the optimal choice

rule but periodically fails to apply it correctly could be modeled as having, e.g., p∗i = 0.9

with the remaining 10% probability weight placed on choice function that assigns a 50-50

chance to each choice regardless of the seats assigned. As another example, an individual

who attempts to apply the optimal choice rule but assesses the optimal threshold T ∗(sRL)

with error could be modeled with a choice function that replaces the discontinuity in choice

probabilities at T ∗(sRL) with a smooth transition in choice probilities occuring in the vicinity

of T ∗(sRL). Because of the inclusion of these alternative choice functions, the interpretation

of p∗i and pni is the probability that the subject applies the exact choice function of interest,

as opposed to the choice function with standard notions of error allowed. Note, however,

that in our empirical analysis we will additionally examine the rate of adoption of choice

functions with discontinuities “close” to the optimal threshold.

This framework for modeling individual decisions is extremely general. This generality

comes at a cost. Estimating the parameters of average choice functions at the individual

level would require having individual subjects complete a very large number of scenarios.

Because attention and response quality decline precipitously as subjects are repeatedly asked

minor variants of the same question, we believe that this approach is infeasible. This consid-
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eration leads us to formulate our approach to testing based on the aggregate choice function

that would arise from a potentially heterogeneous population of individuals making these

decisions. This modeling decision allows us to derive tests that require a large sample size

achieved across subjects, rather than within subject.

Denote the aggregate choice function, C : (sRF , sRL) → [0, 1], as

C(sRF , sRL) = E[C̄i(s
RF , sRL)|sRF , sRL] = E[p∗i ]C∗(sRF , sRL) +

E[pni ]Cn(sRF , sRL) +∑
k

E[pki ]Ck(sRF , sRL).

(1)

In the equation above, E is used to denote the expectation taken over all individuals i,

with individuals applying potentially heterogeneous average choice functions C̄i. In this

formulation, the relative weight placed on each choice function is its average rate of use in

the population.

For the interested reader, Appendix D presents a simple numerical example of the appli-

cation of this approach and the interpretation of parameters in the aggregate choice function.

2.2 Approach to Estimating Rate of Choice-Function Adoption

The formulation of the aggregate choice function permits a regression-discontinuity based

approach to measuring the rate of use of our choice functions of primary interest. Under the

additional assumption that all auxiliary choice functions are continuous in the neighborhood

of the sets of (sRF , sRL) values satisfying sRF = sRL and sRF = T ∗(sRL), these average rates

may be isolated through the following relationships:

lim
δ→0

C(T ∗(sRL) + δ, sRL)− C(T ∗(sRL)− δ, sRL) = E[p∗i ] (2)

lim
δ→0

C(sRL + δ, sRL)− C(sRL − δ, sRL) = E[pni ]. (3)

To help understand these equations, consider the case where we hold sRL constant and

vary sRF . As sRF crosses the threshold T ∗(sRL), the optimal choice function dictates that

the probability of choosing the reserves-first policy changes discontinuously from zero to
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one. Note that for the näıve choice function, as well as all auxiliary choice functions (due

to the continuity assumption above), no such discontinuity exists. Thus, any discontinuity

observed at this point may be attributed to the rate of use of the optimal choice function.

Furthermore, the magnitude of the discontinuity will simply be the predicted change in choice

probability (known to be one) multiplied by the rate of use of the optimal choice function

(E[p∗i ]). This explains the reasoning behind equation (2) above; equation (3) holds by an

analogous argument applied at the point where sRF crosses the threshold sRL.

These equations imply that the average rate of use of these choice functions may be

estimated by standard regression-discontinuity techniques applied at the two thresholds of

interest. We designed our experiment to apply this empirical strategy.

3 Experimental Design

In this section, we present the details of our experiment. Complete text of the experiment,

along with details of all data collected, are available in the UAS Experimental Codebook.5

3.1 Overview of Design

The primary purpose of our experiment is to present subjects with incentivized scenarios

posing choices between RF and RL policies. In these scenarios, subjects are presented

with either a high-school admissions problem or a work-visa allocation problem. Seats are

assigned based on a randomly generated priority, but with some number of seats set aside

for the reserve group. The subjects know they are members of the reserve group, and are

given a series of choices between an RF and an RL policy with varying reserves. One of their

choices is used to determine the final policy that is applied, and if the subject is allocated a

school seat or visa as a result of this policy they are given a $5 bonus payment.

These data allow us to examine the probabilities of choosing the RF policy across a range

of (sRF , sRL) values, thus allowing us to deploy the empirical strategy described in Section

2.

5Available at https://uasdata.usc.edu/survey/UAS+210.
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On average, our study took 8 minutes to complete. Subjects received a baseline payment

of $5 and an average bonus of $3.91.

3.2 Walk-through of Survey Content

To illustrate the nature of our experimental task, we present the text associated with the

school-choice version of our experimental protocol. The visa version of this protocol is similar,

with differences primarily comprised of replacing references to “students” with references to

“workers” and references to “seats at a school” with references to “work visas.”

The study began with an overview:

In this study, we are interested in understanding how you think about school

admissions policies. Your bonus payment for taking this study will be affected

by a simulation of such policies. You will have the opportunity to choose some

features of the policy.

Followed by a further elaboration:

To begin, we will explain the type of school admissions policies we will be con-

sidering.

Imagine you are applying for a position at an elite high school. Only 100 students

will be admitted. The school considers two factors when deciding whom to admit.

First, it considers a randomly generated lottery number. Second, it considers

group composition.

There are two groups of people, the Blue students and the Green students. Due

to their historical underrepresentation, the school particularly values admitting

Blue students.

As is illustrated by this text, “Blue” and “Green” labeling dictated group membership.

We chose to avoid the usage of more standard racial, gender-based, or income-based group

definitions to avoid inviting the subject to rely on beliefs about the desirability of affirmative
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action for these groups. While the two groups are always labeled Blue and Green, we

randomly assign which of these groups is chosen to be favored.6

This introduction was followed by an initial presentation of possible reserve policies:

In order to meet its goal of admitting Blue students, the school is considering

two policies. In this example, both policies will involve reserving 30 seats for the

Blue students. When applying either policy, students will be admitted one at a

time.

Admissions will happen in two stages.

In one stage, seats are available to both Blue and Green students. When each

seat is assigned, it will be given to the student with the highest lottery number

who has not yet been admitted. Color will not be considered.

In the other stage, seats are reserved for Blue students only. When each seat is

assigned, it will be given to the Blue student with the highest lottery number

who has not yet been admitted.

The policies that the school is considering differ in the order of these stages.

Policy 1: Save the last 30 seats for the Blue students.

� Stage 1: The first 70 seats will be assigned to the 70 students who have the

highest lottery numbers, regardless of color.

� Stage 2: The remaining 30 seats will be assigned to the 30 Blue students

who have the highest lottery numbers of all Blue students not yet admitted.

Policy 2: Save the first 30 seats for the Blue students.

� Stage 1: The first 30 seats will be assigned to the 30 Blue students who

have the highest lottery numbers.

6Additionally note that we have simulated a scenario where priority (i.e., the lottery) is independent
of group membership. While this assumption holds in some applications of reserve systems, in others the
distribution of priority can differ across groups. Cross-group differences in the distribution of priority affects
the quantitative benefit of a reserve system. As a result, to the extent that misunderstanding is driven by
incorrectly assessing the effect size, our estimates of the rate of misunderstanding could be less externally
valid when applying them to situations where such cross-group differences are present. However, when
misunderstanding is driven by the incorrect belief that processing order has no effect, external validity
concerns regarding the interaction between processing order and group-specific priorities are less relevant.
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� Stage 2: The remaining 70 seats will be assigned to the 70 students who

have the highest lottery numbers of all students not yet admitted, regardless

of color.

The assignment of the RF and RL policies to policy 1 and policy 2 was randomized at

the subject level. After the initial randomization, these policy number assignments remained

constant throughout the survey.

To test for understanding of the policies presented, this screen contained four comprehension-

check questions following the text above. Across these four questions, the subject was asked

to consider several students and determine who among them would be selected for the first

seats assigned by policy 1 and 2 and the last seats assigned by policy 1 and 2. To moti-

vate careful thought, a $1 reward was given if all four comprehension-check quesitons were

answered correctly. After answers were submitted, a feedback screen reported the correct

answer for each question and highlighted where mistakes were made.

At this stage, subjects were introduced to our primary experimental task:

To better understand how you think about these policies, we will now present

you with a series of choices. Your choices will affect the bonus you earn in this

study.

In each choice, you will face a simulated school admissions process like the one

that we have been considering. You must choose between two policies describing

different ways of assisting the Blue students. In the simulation, you are one of the

Blue students, so you will benefit if you choose the policy that is most favorable

for this group.

Across these policies, we will vary both the order in which reserve seats are

processed and the number of seats that are reserved.

And, on the following page:

Simulation Details:

All six of the choices you face will have the same basic set-up.
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Consider a setting where 200 students are applying to the school. 100 students

are Blue and 100 students are Green. You are one of the Blue students.

As before, only 100 students can be admitted. Admissions decisions are still made

based on lottery numbers and on diversity considerations. Lottery numbers will

be simulated by assigning each student a random number between 1 and 100.

All students’ numbers, regardless of color, are randomly drawn from the same

uniform distribution, so there are no differences across groups in lottery numbers.

If two students have the same lottery number, ties will be broken randomly.

Compensation Details:

One of the six choices you make will be randomly selected to be the choice that

“counts.” After you answer all six questions, we will reveal the question that

“counts” and simulate the admissions decision in the scenario you chose. If you

are admitted based on this simulation, an additional $5 will be added to your

bonus.

Since you do not know which of the six choices will be chosen to “count,” it is in

your best interest to answer all six carefully.

Following these screens, subjects faced six screens presenting choices as described above.

On each screen, subjects must chose one of two policies. Because subjects do not know their

lottery number, admission under either policy is probabilistic. Based on financial incentives,

subjects should choose the policy most favorable to individuals of their group. Each screen

took the following format:

Consider the following two ways in which the school could implement its admis-

sions policy.

Policy 1: Save the last (sRL) seats for the Blue students.

� Stage 1: The first (100-sRL) seats will be assigned to the (100-sRL) students

who have the highest lottery numbers, regardless of color.
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� Stage 2: The remaining (sRL) seats will be assigned to the (sRL) Blue stu-

dents who have the highest lottery numbers of all Blue students not yet

admitted.

Policy 2: Save the first (sRF ) seats for the Blue students.

� Stage 1: The first (sRF ) seats will be assigned to the (sRF ) Blue students

who have the highest lottery numbers.

� Stage 2: The remaining (100-sRF ) seats will be assigned to the (100-sRF )

students who have the highest lottery numbers of all students not yet ad-

mitted, regardless of color.

As a Blue student, which policy would you prefer?

In text above, items in parentheses are placeholders for the seat numbers that were

randomly simulated—e.g., (sRF ) could be replaced with 60 and (100-sRF ) could be replaced

with 40.

As described in the prior section, our empirical strategy relies on observing choices be-

tween RF and RL policies for a range of (sRF , sRL) tuples. These values were randomly

generated for each choice the subject faced. The six decisions presented six values of sRL.

These were assigned deterministically but in random order: 40, 44, 48, 52, 56, and 60 seats.

For each of these scenarios, the required number of seats needed for the RF policy to be

optimal was 70, 72, 74, 76, 78, and 80, respectively. For each sRL value, sRF was uniformly

sampled from 13 potential values: -5, -3, -1, +1, +3, or +5 seats relative to both the op-

timal and näıve thresholds, as well as an additional point approximately between the two

thresholds. By sampling values in the vicinity of our two thresholds of interest, this design

ensures that we are well powered to deploy our proposed regression-discontinuity approach.

Following these choices, one of the six scenarios was randomly selected for simulation

as described above. Their chosen policy was implemented, their admissions decision was

simulated as specified, and the results of the simulation and the associated payoffs were

announced. The study concluded with a brief elicitation of their degree of interest in the

survey and an opportunity for free-response comments on the study.7

7The inclusion of these final two questions is standard practice in the Understanding America Study;
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3.3 Preregistration

Our experiment was preregistered on aspredicted.com. For reference, the preregistration

document is included in the Online Appendix. In this document, we specify our exact

hypotheses of interest and the details of our regression discontinuity approach. We also

commit to our sample size and exclusion restrictions. While we will also present some

exploratory analyses that were not preregistered, we do not deviate from this preregistration

in our presentation of primary results.

4 Experimental Deployment and Sample

We deployed our experiment in the Understanding America Study (UAS).8 The UAS is

an online panel of American Households. The advantage of this panel is its established

infrastructure for reaching a broad group of respondents and its substantial efforts to achieve

representative sampling. Additionally, by using this panel we can merge data from many

other surveys into our analyses, which gives us access to a variety of demographic variables

and external measures of cognitive ability.

Our survey was deployed to the UAS population in December 2019 and January 2020.

To achieve our targeted sample size of 1,000 responses, the UAS invited a random subsample

of 1,500 respondents from their full panel. The survey was closed shortly after the target

sample size was attained, resulting in 1,013 complete observations and a 67% response rate.

Table 1 summarizes basic demographics of our respondents. As is seen across panels

of this table, our sample is demographically diverse. However, due to the selection that

occurs in the process of recruitment to online panels, our sample differs from the general

U.S. population in several ways. Compared to the general adult population of the U.S.,

members of our sample are somewhat more likely to be female, married, and U.S. citizens.

Our sample also skews to be somewhat older and somewhat more likely to be white.

While there is some evidence of selection on observables influencing the general UAS

population, we find little evidence that such effects influence which UAS participants respond

these questions were not proposed by the researchers.
8For a detailed description of the UAS, see Alattar, Messel and Rogofsky (2018). In Appendix E we

summarize relevant details of the UAS’s sample procedure and its advantages for our purposes.
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to our survey. In the final column of this table, we present formal tests for differences in

the demographic variable across respondents who did and did not participate. Only two

of the nine tests conducted reach significance at traditional levels.9 First, participants are

slightly less likely to be employed (59.2% vs 66.1%; p = 0.01), consistent with the possibility

that those not working have more time to complete online studies. Second, participants

who completed our study have a notably different age distribution. On average, those who

completed our survey are 3.79 years older than those who did not (s.e. = 0.90; p = 0.00).

5 Experimental Results

5.1 Test of Misguided Policy Choices

In this subsection, we present the preregistered tests of our primary hypothesis: that a

substantial fraction of respondents mistakenly believe that processing order does not matter

in a reserve system.

To test this hypothesis, we estimate models of the form

Yij = α + βnNij + β∗Oij + f(sRF
ij , sRL

ij ) + ϵij. (4)

Subscripts i and j index the respondent and choice number, respectively. In this model, the

dependent variable Yij is an indicator for whether the RF policy was chosen by individual

i in a given binary choice j. Variables Nij and Oij provide the value of Yij dictated by

the näıve or optimal choice function. Formally, Nij = I(sRF
ij > sRL

ij ) and Oij = I(sRF
ij >

T ∗(sRL
ij )), where I() denotes the indicator function taking the value of 1 when the statement

in parentheses is true. (sRF
ij , sRL

ij ) denotes the number of seats assigned to each policy, as

before, and f(sRF
ij , sRL

ij ) denotes a function meant to control for the number of each type of

seats assigned. Across specifications, we will consider a variety of approaches to handling

this control, including modeling f as a local polynomial, a cubic spline, or a fifth-order

polynomial.10

9Relatedly, we find no evidence of differences in the geographic distributions of participants and non-
participants (see Appendix E.2).

10Note that the inclusion of these terms helps to avoid common worries about linear probability models.
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Interpreted in light of our model from Section 2, βn serves as an estimate of E[pni ] and β∗

serves as an estimate of E[p∗i ]. Despite this interpretation, the model above does not constrain

the sign of βn or β∗ to be positive. In principle, this means that these estimates could

yield invalid probabilities. We would interpret the detection of a (statistically significant)

negative value for these parameters as a rejection of our framework for type estimation.

The flexible term f(sRF
ij , sRL

ij ) is interpreted as a fit of all auxiliary choice functions that are

used beyond our two focal choice functions of interest (i.e., as an approximation of term∑
k E[pki ]Ck(sRF , sRL) in equation 1).

Table 2 presents our estimates of this model. In columns 1 and 2, we report estimates

of this model with the data restricted to sRF
ij values that are within 5 seats of the two

thresholds. This amounts to a simple difference in means of the rate of choosing the RF

policy when sRF
ij is immediately above versus immediately below each threshold. Formally,

no term controlling for f(sRF
ij , sRL

ij ) is included in the regression; instead, the influence of

this term is assumed to be nearly constant for a sufficiently narrow region of sRF
ij values, and

the estimation sample is correspondingly restricted to a narrow region near the threshold.

Interpreting the results from column 1, we see that on average, the RF policy is 40

percentage points (s.e. = 2pp) more likely be chosen when the number of RF seats is just

above (versus just below) the number of RL policy seats. This finding is consistent with

respondents using the näıve choice function for 40% of decisions.

In contrast, column 2 demonstrates that on average, the RF policy is only 3 percentage

points (s.e. = 2pp) more likely to be chosen when the number of RF seats is just above

(versus just below) the threshold from the optimal decision function. This coefficient is

statistically distinguishable from zero (p = 0.03), but quantitatively suggests that effectively

no respondents apply the optimal choice function.

In the remaining columns of the table, we report estimates with different methods for

controlling for f(sRF
ij , sRL

ij ). All approaches provide similar results. Varying our approach

to controlling for f(sRF
ij , sRL

ij ) with a local polynomial, a spline, or a high-order polynomial,

When they are included, the model allows for a flexible non-linear relationship between the number of seats
and the probability of choosing the RF policy. This approach is less restrictive than assuming a particular
functional form of this nonlinear relationship, as in a logit or a probit model, and thus allows us to better
approximate a broader class of aggregate choice functions.
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our estimates of the rate of utilization of the näıve choice functions range from 36 to 37%.

Across these specifications, the estimated rate of utilization of the optimal choice function

never exceeds 3% and is generally statistically indistinguishable from zero.

Figure 1 helps in visualizing these results. For a fixed number of RL seats, the number

of RF seats takes values of -5, -3, -1, +1, +3, or +5 seats relative to each of the thresholds

of interest. One additional point was sampled between the two thresholds. In this figure,

each dot illustrates the average rate of choosing the RF policy for the the number RF seats

illustrated on the x-axis, with the six dots above each point summarizing choices under the

six RL seat amounts. The solid line presents a fitted spline analogous to that in column 5

of Table 2. This figure illustrates a stark change in the rate of choosing RF at the näıve

threshold of interest. In contrast, there is no apparent discontinuity at the threshold where

it should occur among optimizing agents.

Figure 1 helps to assess the rate of several other choice-functions of interest. First,

consider individuals who use choice functions “near” our two choice functions of interest

(for example, attempting to apply the optimal choice function but assessing its threshold

with error). Subjects using these choice functions would change their choices in the vicinity

of either threshold. Notice, however, that the aggregate choice function is estimated to be

relatively flat near each discontinuity. Focusing specifically on the vicinity of the optimal

threshold, the 95% confidence interval allows us to reject the hypothesis that the probability

of choosing the RF policy increased by more than 7 percentage points in the range from 5

seats below the optimal threshold to 5 seats above the optimal threshold. This rules out

that choice functions applying a “nearly optimal” threshold (defined to be within 5 seats of

the optimal threshold) were applied in more than 7% of decisions.

Next consider individuals who understand that processing order matters but underesti-

mate its quantitative effect. Subjects using these choice functions would change their choices

between the two thresholds. Examining Figure 1, the rate of choosing the reserves-first pol-

icy ranges from 65% immediately over the näıve threshold to 79% immediately before the

optimal threshold, a change of 14 percentage points (s.e. = 3pp). Of course, other choice

functions could result in changing behavior in this region: this estimate does not identify the

rate of choice function adoption as cleanly as the discontinuity-based approaches described
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above. However, with the additional assumption that the rate of choosing the reserves-first

policy is monotone in the seat difference for all choice functions in use, this provides an up-

per bound on the rate of underestimation of reserve-order’s effect size. The 95% confidence

interval allows us to reject that more than 20% of respondents may understand processing

order while underestimating its effect size. While potentially present among a noticeable

fraction of respondents, this type of misunderstanding is substantially less prevalent than

mistakenly assuming that processing order has no effect.

In summary, we estimate that a large fraction of decisions (40% in our primary regression)

were made according to a choice function that reflects an understanding of the seat-number

comparative static while reflecting ignorance of the processing-order comparative static. Re-

spondents making these decisions understand that more seats are better, but do not see the

benefits of the reserves-last design.

5.2 Summary of Additional Results and Robustness Analyses

In Appendix F, we document a large battery of additional results, considerations, and ro-

bustness analyses. We summarize those findings briefly here, but direct an interested reader

to the appendix for full details.

Appendix F.1 documents an important correlate of use of the näıve choice function: cog-

nitive ability. Perhaps surprisingly, subjects with higher education, subjects with higher

performance on cognitive ability tests external to our survey, and subjects with a higher per-

formance on comprehension tests within our survey all show a greater likelihood of adopting

our misguided decision rule of interest. This contrasts with a common finding in the behav-

ioral market design literature that misreaction to matching-mechanisms’ incentives is more

prevalent among those of lower cognitive ability (see, e.g., Basteck and Mantovani, 2018;

Rees-Jones, 2018; Rees-Jones and Skowronek, 2018; Shorrer and Sóvágó, 2018; Rees-Jones,

Shorrer and Tergiman, 2020; Hassidim, Romm and Shorrer, 2021). In this instance, how-

ever, the finding may be rationalized by noting that adoption of this decision rule reflects a

general understanding of incentives in this procedure. Our decision rule of interest is almost

sophisticated, missing one subtle component of large ultimate importance.

Appendix F.2 documents two additional experiments supporting the claims presented in

25



Reversing Reserves

this paper. Prior to the deployment of our study, we ran two large-scale pilots on Amazon

Mechanical Turk. Both pilots examined the “school choice” version of the study. The

first pilot assessed the rate of optimal choice in a single scenario with non-randomized seat

numbers. The second pilot was nearly identical to the study deployed in the UAS, with the

exception of excluding the visa version of the scenarios. Across these two pilots, we find

extremely similar qualitative and quantitative results as reported in this paper. Due to the

larger incentives offered in our UAS study, along with the comparatively high quality of the

UAS panel’s recruitment procedures, we believe the results derived from this sample are the

most credible. However, we view the fact that closely analogous results are obtained on

other platforms reassuring.

The remainder of Appendix F provides analyses and discussions that inform robustness

considerations. In particular, we document that our estimates only minimally vary by sce-

nario (F.3) and only minimally change with the inclusion of survey weights that account for

sample selection (F.4). We additionally discuss considerations related to the stake size of

decisions in our experiment and analogous decisions in the field.

6 Discussion

In this paper, we have examined the general understanding of reserve systems held by the U.S.

populace. In experimental choices presented to participants in the Understanding America

Study, we found that very few choices were guided by a choice function that reflects a

fully sophisticated understanding of these systems. In contrast, a plurality of choices—

40% in our leading specification—were guided by a nearly sophisticated choice function,

demonstrating general understanding of the decision environment but misunderstanding of

the critical importance of processing order.

Having established that misunderstanding is prevalent, we return to the question of why

it matters. As discussed in the introduction, reserve systems are commonly deployed when

achieving compromise between competing stakeholders is a first-order design consideration.

Due to this usage, widespread understanding of these systems has clear importance: the

success of a compromise is always in jeopardy if the stakeholders who assess it do not
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understand it.

Moving beyond the specific setting of reserve systems, we believe that the beliefs and at-

titudes of the public about market design are more important than is commonly appreciated.

To some, the beliefs of the general public about how to design a market may appear irrele-

vant. Elaborate matching procedures are typically not designed and deployed by arbitrary

members of the public, but instead are ideally managed by benevolent dictators who are

well-versed in the market-design literature. While the understanding of the public would be

comparatively unimportant in such a situation, it can become significantly more important

when any of the elements of this ideal fail (as they commonly do).

The understanding of the public is relevant when the market organizer is not purely

benevolent. Consider a shrewd market organizer who wishes to convince a targeted group

that he is reforming the system for their advancement, but who does not sincerely value

such a reform. When proposing a new reserve system, this organizer can consider two

options: a reserves-last policy with a small fraction of all seats reserved (say, 5%), or a

reserves-first policy with a significantly larger fraction of all seats reserved (say, 30%). In

many situations, the former policy will be more effective at advancing the reserve group, and

indeed the latter policy may have no effect at all. This market organizer would face strong

incentives to propose and enact the less effective policy, and then subsequently enjoy the

public’s misguided appreciation of the proposal stemming from their incorrect belief that

reserving 30% of seats always grants more affirmative action than reserving 5% of seats.

The understanding of the public is relevant when the market organizer is not a dictator.

In many situations, the individual designing a market is formally tasked with enacting the

wishes of his constituency and is incentivized to enact those wishes through the threat of

removal. In cases where the workings of a proposed system are not apparent to the public,

the public may vote or lobby for ill-designed policies. They may additionally punish a

market organizer for enacting objectively desirable policy due to their misunderstandings,

for example by removing them from the decision-making position in an organization or voting

them out of office.

The understanding of the public is relevant when the market organizer is not well-versed

in the market-design literature. If, for example, the market organizer does not appreciate
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the importance of processing order and decides the order arbitrarily, that arbitrary decision

could stop the reserve system from achieving its desired or agreed-upon outcome. If the

system is presented transparently, an informed member of the public may notice this error

and pursue its correction. If, however, the public harbors the same misunderstanding as the

market organizer, correction of the error becomes substantially less likely.

The literature on market design is replete with examples of these types of considerations

arising as new markets were adopted. Further research on the role the public plays, and how

their potentially imperfect beliefs impact that role, may be important and productive. We

believe our study provides a template for pursuing this style of research.

Returning attention specifically to reserve systems, we believe these considerations have

been relevant in several of their high-profile applications, including the Boston Public School

and H-1B systems that served as our motivating examples. Furthermore, as both formalized

matching systems and reserve systems quickly proliferate, we expect the potential for these

problems to grow.11 Concretely, organizations are increasingly relying on formal systems

to reserve places for members of underrepresented groups. Our study sheds light on the

misunderstandings that a manager may hold when designing and implementing such systems,

and the misunderstandings that may be active when other members of the organization or

the general public assess the wisdom of the manager’s approach. Our hope is that our work

helps to foster the transparent implementation of reserve systems in such settings.

11To illustrate, the need for understanding of reserve systems became significantly more urgent in the
course of the COVID-19 pandemic. In light of the unequal impacts of the pandemic, the National Academies
of Sciences, Engineering, and Medicine (NASEM) advised that the procedure for vaccine allocation feature
a 10% reserve for disadvantaged communities. However, the Oct 2020 report (NASEM, 2020) proposing
this reserve did not describe how it should be processed. This omission is important: based on other design
parameters, processing order makes difference between a system that significantly favors the disadvantaged
and a system that does not.
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Table 1: Demographic Information and Sample Selection

(1) (2) (3) (4)
Survey Completion Status Test for Difference

Complete Incomplete All Recruits
Basic Demographics
Female 56.2 57.2 56.5 p = 0.71
Married 58.4 59.1 58.7 p = 0.80
Working 59.2 66.1 61.4 p = 0.01
U.S. Citizen 97.9 97.9 97.9 p = 0.98
Hispanic or Latino 10.8 13.6 11.7 p = 0.12
Race

White Only 82.2 77.1 80.5
Black Only 9.0 10.1 9.4
Am. Indian or Alaska Native Only 1.3 2.3 1.6 p = 0.11
Asian Only 2.8 2.7 2.7
Hawaiian/Pacific Islander Only 0.5 0.6 0.5
Multiple Races Indicated 4.3 7.2 5.2

Education
< 12th Grade 5.4 4.5 5.1
High School Grad. 19.3 19.9 19.5
Some College 20.0 25.1 21.7 p = 0.30
Assoc. Degree 13.6 13.3 13.5
Bachelor’s Degree 24.7 21.6 23.7
Master’s Degree + 16.9 15.6 16.5

Household Income
< $10,000 6.7 7.2 6.9
$10,000 - $24,999 12.9 13.8 13.2
$25,000 - $49,999 21.5 21.9 21.6 p = 0.87
$50,000 - $74,999 18.2 17.8 18.1
$75,000 - $99,999 14.3 12.0 13.6
≥ $100,000 26.4 27.3 26.7

Age
18-29 10.5 15.7 12.2
30-39 19.3 21.3 19.9
40-49 17.1 22.5 18.9 p = 0.00
50-59 19.3 17.4 18.6
60 + 33.9 23.1 30.4

Notes: This table presents summary statistics characterizing the demographic features of our sample. With
the exception of p-values, all numbers presented are the percentage of respondents with a given row’s
classification. The first panel characterizes a series of binary demographic variables. The panels that follow
present tabulations of individual categorical variables. The first column presents results for subjects
included in our primary analyses. To help assess selection into our study, the second and third columns
present results for the subjects who were contacted but did not complete the study and all contacted
subjects, respectively. The final column provides p-values for chi-squared tests for differences in the
distribution of the categorical variable by survey completion status.
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Table 2: Estimates of Choice Functions Governing Policy Preferences

(1) (2) (3) (4) (5) (6) (7) (8)
βn: Nij 0.40 0.39 0.36 0.37 0.36 0.36

(0.02) (0.04) (0.02) (0.04) (0.02) (0.04)

β∗: Oij 0.03 0.02 -0.01 0.03 -0.01 0.03
(0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

Control for sRF (f) Sample Restriction Local Poly Cubic Spline 5th-order Poly
sRL Fixed Effects No No Yes Yes
sRL FEs × f No No No No No Yes No Yes
Respondents 990 991 1013 1013 1013 1013 1013 1013
N 2865 2709 6078 6078 6078 6078 6078 6078
R2 0.163 0.002 0.198 0.200 0.198 0.200

Notes: This table reports regressions of an indicator for choosing the RF policy on controls for the number
of seats reserved. Variables Nij and Oij provide the value that Y should take if the respondent adopts the
näıve or optimal choice function defined in Section 2. Across columns, we present a variety of approaches
to estimating the model Yij = α+ βnNij + β∗Oij + f(sRF

ij , sRL
ij ) + ϵij , varying the means of controlling for

the number of seats assigned to the RF and RL policies through term f(sRF
ij , sRL

ij ). In columns 1 and 2, we
attempt to control for this term by assuming that it is approximately constant in a small enough window.
Each column restricts the data to observations in which the number of seats in the RF policy is within 5
seats of the relevant threshold. In columns 3 and 4, we present estimates arising from local polynomial
regressions, applying a rectangular kernel with a bandwidth of 3. In column 5, f(sRF

ij , sRL
ij ) is

approximated with a cubic spline over sRF
ij combined with fixed effects for the six possible values of sRL

ij . In

column 6, the spline is interacted with the fixed effects, effectively allowing for sRL
ij -value-specific splines

over sRF
ij . Columns 7 and 8 follow the same format as 5 and 6, replacing the splines with 5th order

polynomials. Standard errors, clustered by respondent, are reported in parentheses.
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Figure 1: Illustration of Regression Discontinuity Estimates
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Notes: This figure illustrates the discontinuities in choice probabilities that occur at the thresholds of
interest. In our experiment, subjects faced six scenarios containing choices between reserves-first and
reserves-last policies. The scenarios always contained the same six reserves-last policies. In each scenario,
the number of seats in the reserves-first policy was randomly drawn from 13 values spanning the the x-axis,
defined by their position relative to two thresholds. Vertical dashed lines demarcate these thresholds: the
point where the number of reserves-first seats comes to exceed the number of reserves-last seats (the näıve
threshold), and the point where the number of reserves-first seats comes to exceed the amount needed to
make choosing the reserves-first policy optimal (the optimal threshold). The six dots above each point on
the x-axis illustrate the average rate of choosing the reserves-first policy across the six reserves-last seat
numbers. As seen in this figure, subjects’ average propensity to choose the reserves-first policy increases
substantially when the näıve threshold is exceeded, but does not change substantially when the optimal
threshold is exceeded. The plotted line is a fitted cubic spline over these points with its associated 95%
confidence interval. Reported in the figure are the formal estimates of the discontinuity at these two points
arising from this spline, which closely matches the results from Table 2.
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