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Economists have long been puzzled by the substantial price fluctuations experienced in

housing markets. The recent U.S. housing cycle in the 2000s has renewed attention on

this important issue as it has proved diffi cult to provide fundamental-based explanations

for housing boom-bust cycles both in the aggregate and across regions (Glaeser, Gyourko,

Morales, and Nathanson 2014, Glaeser and Nathanson 2015). While a growing literature

has emphasized the role of expectations, such as extrapolative beliefs, in shaping housing

dynamics, e.g., Case and Shiller (2003), and Glaeser, Gyourko, and Saiz (2008), it remains

a challenge to link the formation of these expectations to the excessive volatility in housing

prices observed in recent housing boom and bust cycles.1

In this paper, we address this challenge by developing a model to analyze how infor-

mational frictions affect the learning and beliefs of households and capital producers about

a neighborhood, which, in turn, influence both local housing markets and investment de-

cisions. We extend the coordination problem with dispersed information to investigate its

role in amplifying the agglomeration effects that underpin the formation of neighborhoods

and cities. In contrast to conventional models of learning, in which noise often dampens real

activity, our model provides a novel amplification mechanism in which learning can amplify

and propagate noise in housing markets and local real investment. In addition, it is able

to generate rich non-monotonic patterns in housing cycles with respect to supply elasticity,

as well as the degree of local consumption complementarity, another dimension in which

neighborhoods differ.

Our model features a continuum of households, each of which has the choice of whether

to move into an open neighborhood, which can be viewed as a Metropolitan Statistical Area

(MSA) or city, by buying a house. To capture the idea that productive households prefer to

live with other productive households, we assume that each household has a Cobb-Douglas

utility function over consumption of its own good and goods produced by other households

in the neighborhood. This complementarity in households’ consumption motivates each

household to learn about an unobservable economic strength of the neighborhood, which

determines the common productivity of all households and which leads to complementarity

in their housing demand. To produce its good, each household requires both labor, which

1Intuitively, by amplifying housing price fluctuations, extrapolation makes housing cycles monotonic with
respect to the supply elasticity of land. This prediction, however, does not fully capture the cross-section of
the recent U.S. housing cycle. Many researchers, including Glaeser (2013), Davidoff (2013), and Nathanson
and Zwick (2018), have noted that the housing price boom and bust were most pronounced in areas that
were not particularly constrained by the supply of land, including Las Vegas and Phoenix.
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it supplies, and local capital, such as offi ce space and warehouse. Since the price of local

capital depends on its marginal product across households in the neighborhood, competitive

capital producers must also form expectations about the neighborhood’s economic strength

when determining how much local capital to develop, providing a channel to amplify the

economic effects of housing market noise.

Although previously unexplored in the housing literature, it is intuitive that local housing

markets provide a useful platform for aggregating private information about the economic

strength of a neighborhood. The traded housing price reflects the net effect of demand and

supply-side factors, in a similar spirit to the classic models of Grossman and Stiglitz (1980)

and Hellwig (1980) for information aggregation in asset markets. In contrast to conventional

security markets, in which who owns the asset does not affect asset cash flows, which house-

holds own houses determines the convenience yield of living in the neighborhood, through

the quality of services and social interactions the neighborhood provides, which, in turn,

determines the value of housing. Which households buy houses also guides the investment

decisions of capital producers, who must predict future neighborhood demographics when

deciding how much capital to supply. As a result of the complementarity and informational

frictions, noise in the housing market can impact the local economy because households and

capital producers use housing market signals when forecasting each other’s housing and real

investment decisions. This gives rise to a feedback loop, through which the extrapolative-like

behavior of households and capital producers, induced by learning, leads to not only a more

pronounced housing cycle but also an oversupply of new housing and local capital, consistent

with the empirical findings of Gao, Sockin, and Xiong (2019). Through this feedback loop,

learning can amplify housing price movements and contribute to excessive price volatility.

Our analysis illustrates how the transmission of noise in housing markets to real estate

and production outcomes varies across different neighborhoods by the elasticity of local

housing supply– in a hump-shaped pattern. At intermediate supply elasticities, the housing

price has balanced weights on the demand-side and supply-side fundamentals. In the pres-

ence of informational frictions, the balanced weights make learning from the housing price

particularly noisy. In contrast, at one extreme when housing supply is infinitely inelastic,

the housing price is fully determined by housing demand, and perfectly reveals the strength

of the neighborhood; at the other extreme, when housing supply is perfectly elastic, housing

prices are fully determined by housing supply. At both extremes, learning does not distort
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the housing price. As a result, the noise effects induced by informational frictions on housing

prices are strongest at intermediate supply elasticities.

Our analysis also examines this transmission across the degree of households’consump-

tion complementarity, which one can interpret as the share of consumption from local non-

tradable industries. The distortionary effects of learning on the housing market tend to

increase with complementarity, since greater complementarity makes learning about the

neighborhood strength a more important part of each household’s decisions. As such, our

analysis predicts a monotonically increasing pattern in the magnitudes of housing price boom

and bust with respect to the degree of complementarity.

To illustrate empirical relevance of our model, we sort the cross-section of MSAs in the

U.S. by their supply elasticity and the degree of complementarity. We systematically docu-

ment that the non—monotonic pattern with respect to supply elasticity was more ubiquitous

during the recent U.S. housing bubble than previously appreciated– in not only the mag-

nitude of the housing price cycle, which serves as a proxy of the volatility amplification

illustrated by our model, but also in new housing construction. Moreover, the magnitude

of the housing price cycle appears to be monotonically increasing across the degree of com-

plementarity. Taken together, these cross-sectional patterns of recent housing boom-bust

cycles confirm our model implications, further validating the necessity for our new economic

mechanism in which expectations interact with housing cycles beyond extrapolative beliefs.

Also different from the conventional linear equilibria in asset market models, each house-

hold’s neighborhood selection makes our model inherently nonlinear. Nevertheless, we are

able to derive the equilibrium analytically, building on and contributing to the growing litera-

ture that analyzes information aggregation in nonlinear settings. Goldstein, Ozdenoren, and

Yuan (2013) investigate the feedback to the investment decisions of a single firm when man-

agers, but not investors, learn from prices. Albagli, Hellwig, and Tsyvinski (2015, 2017) focus

on the role of asymmetry in security payoffs in distorting asset prices and firm investment

incentives when future shareholders learn from prices to determine their valuations. These

models commonly employ risk-neutral agents, normally distributed asset fundamentals, and

position limits to deliver tractable nonlinear equilibria. In contrast, we focus on the feedback

induced by learning from housing prices to households’moving and consumption decisions

and capital producers’investment decisions. By showing that the cutoff equilibrium frame-

work can be adopted to analyze these richer learning effects, our model substantially expands
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the scope of this framework to a general equilibrium real business cycle environment. In this

regard, our model also adds to the literature, e.g., Bond, Edmans and Goldstein (2012), on

the real effects of learning from trading prices.

While long appreciated as important explanation for housing market behavior, such as

in Garmaise and Moskowitz (2004), Kurlat and Stroebel (2014), Favara and Song (2014),

and Bailey et al. (2017), informational frictions have yet to be applied to understanding the

recent U.S. housing cycle and its real effects. The literature has instead focused on other

causes ranging from credit expansion and fraudulent lending practices to speculation and

optimistic, often extrapolative, expectations.2 By anchoring household expectations to local

economic conditions, our theory provides guidance as to where optimism and overreaction

had the most pronounced impact on housing and local economic outcomes during the boom,

and offers novel empirical predictions on non-monotonic patterns in housing cycles and new

construction with respect to supply elasticity and the degree of complementarity. In addi-

tion, our mechanism can rationalize the synchronized boom and bust cycles in commercial

real estate markets, in which prices and new construction rose across the U.S. despite the

bubble in housing (e.g., Gyourko (2009) and Levitin and Wachter (2013)). By impacting

the demand curve for housing, informational frictions complement the credit expansion and

fraud channels and, by facilitating heterogeneous beliefs, can give rise to speculative demand.

Our model adds to the literature on the theoretical modeling of housing cycles. Burnside,

Eichenbaum, and Rebelo (2016) offer a model of housing market booms and busts based on

the epidemic spreading of optimistic or pessimistic beliefs among home buyers through their

social interactions. Nathanson and Zwick (2018) study the hoarding of land by home builders

with heterogeneous beliefs in intermediate elastic areas as a mechanism to amplify price

volatility in the recent U.S. housing cycle. Piazzesi and Schneider (2009) investigate how

a small population of optimists can inflate housing prices by driving transaction volume.

Glaeser and Nathanson (2017) presents a model of biased learning in housing markets in

which the incorrect inference by home buyers gives rise to correlated errors in housing demand

forecasts over time, which, in turn, generate excess volatility, momentum, and mean-reversion

2For credit expansion, see, for instance, Mian and Sufi (2009, 2011) and Albanesi et al. (2017). For
fraudulent lending practices, see Keys et al. (2009) and Griffi n and Maturana (2015). For speculation, see
Chinco and Mayer (2015), Nathanson and Zwick (2018), DeFusco, Nathanson, and Zwick (2017), and Gao,
Sockin and Xiong (2019). For extrapolative expectations, see Case and Shiller (2003), Glaeser, Gyourko,
and Saiz (2008), Piazzesi and Schneider (2009), Cheng, Raina and Xiong (2014), and Glaeser and Nathanson
(2017).
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in housing prices. Guren (2016) develops a model of housing price momentum, building on

the incentive of individual sellers not to set a unilaterally high or low list price because

the demand curve they face is concave in the relative price. In contrast to these models,

informational frictions in our framework anchor on the interaction between the demand and

supply sides of the housing market (rather than treating them as mutually independent),

and feed back to both housing prices and real outcomes. This key feature is also distinct

from the amplification of price volatility induced by dispersed information and short-sale

constraints featured in Favara and Song (2014).

1 The Model

The model has two periods t ∈ {1, 2} and a single neighborhood.3 We interpret a neighbor-
hood conceptually as a physical location in which households locate close to each other to

benefit from their physical proximity, which could, in principle, be as broad as a Metropolitan

Statistical Area (MSA) or a city. There are three types of agents in the economy: households

looking to buy homes in the neighborhood, home builders, and capital producers. Suppose

that this neighborhood is new and that all households purchase houses from home builders

in a centralized market at t = 1 after choosing whether to live in it. Households choose

their labor supply and demand for capital, such as offi ce space and warehouses, to complete

production, and trade and consume consumption goods at t = 2. Our intention is to capture

the decision of a generation of home owners to move into a neighborhood. While static,

our two period setting can represent a long period in which they live together and share

amenities, as well as exchange their goods and services.

1.1 Households

We consider a pool of households, indexed by i ∈ [0, 1], each of which can choose either

to live in or outside the neighborhood. Similar to Glaeser, Gyourko, and Saiz (2008), we

consider only a single neighborhood and model this decision as a one-time option, with the

reservation utility of living outside the neighborhood normalized for all households to zero.

One can interpret the reservation utility as the expected value of paying a search cost to get

a draw of productivity from another potential neighborhood. We can divide the unit interval
3For simplicity and tractability, our model features only a single neighborhood with a fixed outside option.

In doing so, we abstract from the rich cross-sectional implications that arise in spatial equilibrium models
such as Rosen (1979), Roback (1982), and Van Nieuwerburgh and Weill (2010).
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into the partition {N ,O} , with N ∩O = ∅ and N ∪O = [0, 1] . Let Hi = 1 if household i

chooses to live in the neighborhood, i.e., i ∈ N , and Hi = 0 if it chooses to live elsewhere.

If household i at t = 1 chooses to live in the neighborhood, it must purchase one house at

price P. This reflects, in part, that housing is an indivisible asset and a discrete purchase,

consistent with the insights of Piazzesi and Schneider (2009).

A key feature of housing markets is that households who locate near each other benefit

from each other’s goods and services, for instance, by patronizing each other’s restaurants,

shopping at each other’s groceries, attending each other’s schools, and seeking each other’s

medical and legal services. These goods and services from "non-tradable" industries rely

on local demand and represent the social interactions underpinning the complementarity in

housing choice that leads households of similar income, ideology, and/or socioeconomic status

to live in the same neighborhood. Such complementarity also captures the agglomeration

and spillover effects from households and firms locating near each other.

To incorporate this complementarity, we adopt a particular structure for their goods

consumption and trading. Each household in the neighborhood produces a distinct good from

the other households. Household i has a Cobb-Douglas utility function over consumption of

its own good Ci(i) and its consumption of the goods produced by all other households in the

neighborhood {Cj (i)}j∈N/i:

U
(
{Cj (i)}j∈N ;N

)
=

(
Ci (i)

1− ηc

)1−ηc
(∫
N/iCj (i) dj

ηc

)ηc

. (1)

The parameter ηc ∈ (0, 1) measures the weights of different consumption components in the

utility function. A higher ηc indicates a stronger complementarity between household i
′s

consumption of its own good and its consumption of the composite good produced by the

other households in the neighborhood.4 This utility specification implies that each household

cares about the strength of the neighborhood, i.e., the productivity of other households in the

neighborhood. This assumption leads to strategic complementarity in households’housing

demand, an important feature emphasized by the empirical literature, such as in Ioannides

and Zabel (2003).5

4Alternatively, this complementarity could reflect that households and firms require each other’s inter-
mediate goods and services as inputs to their own production. Similar specifications of this utility function
are employed, for instance, in Dixit and Stiglitz (1977) and Long and Plosser (1987) to give rise to input and

output linkages in sectoral production. One can view
(

1
1−ηc

Ci (i)
)1−ηc ( 1

ηc

∫
N/i Cj (i) dj

)ηc
as a final good

produced by household i given intermediate goods {Cj (i)}i∈N .
5While our model builds on complementarity in household consumption, other types of social interac-
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The production function of household i is also Cobb-Douglas:

eAiKα
i l

1−α
i ,

where Ai is its productivity, li is the household’s labor choice, and Ki is its choice of capital

with a share of α ∈ (0, 1) in the production function. We broadly interpret capital as both

public and private investment in the neighborhood, which can include offi ce, warehouses,

and other equipment and infrastructure households can use for their productive activities.6

As we describe later, households buy capital from capital producers. When households are

more productive in the neighborhood, the marginal productivity of capital is higher, and

consequently capital producers are able to sell more capital at higher prices. Introducing

capital allows us to discuss how learning affects the price and supply of not only residential

housing, but also of local investment in the neighborhood.

Household i’s productivity Ai is comprised of a component A, common to all households

in the neighborhood, and an idiosyncratic component εi:

Ai = A+ εi,

where A ∼ N
(
Ā, τ−1

A

)
and εi ∼ N (0, τ−1

ε ) are both normally distributed and independent

of each other. Furthermore, we assume that
∫
εidΦ (εi) = 0 by the Strong Law of Large

Numbers. The common productivity, A, represents the strength of the neighborhood, as

a higher A implies a more productive neighborhood. As A determines the households’

aggregate demand for housing, it also represents the demand-side fundamental.

As a result of realistic informational frictions, A is not observable to households at t = 1

when they need to make the decision of whether to live in the neighborhood. Instead, each

household observes its own productivityAi, after examining what it can do if it chooses to live

in the neighborhood. Intuitively, Ai combines the strength of the neighborhood A and the

household’s own attribute εi. Thus, Ai also serves as a noisy private signal about A at t = 1,

as the household cannot fully separate its own attribute from the opportunity provided by the

neighborhood. The parameter τ ε governs both the household diversity in the neighborhood

and the precision of this private signal. As τ ε →∞, the households’signals become infinitely

tions between households in a neighborhood may also lead to complementarity in their housing demand, as
discussed in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2003).

6In the case that K is a public good, its price can be interpreted as the tax a local government that faces
a balanced budget can raise to offset the cost of construction. Our model then has implications for how
housing markets impact the fiscal policy of local governments.
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precise and the informational frictions about A vanish. Households care about the strength

of the neighborhood because of complementarity in their demand for consumption. While a

household may have a fairly good understanding of its own productivity when moving into

a neighborhood, complementarity in consumption demand motivates it to pay attention to

housing prices to learn about the average level of productivity A for the neighborhood.

We start with each household’s problem at t = 2 and then work backward to describe its

problem at t = 1. At t = 2, A is revealed to all agents and we assume that each household

experiences a disutility for supply labor l1+ψ
i / (1 + ψ) . A household in the neighborhood (i.e.,

i ∈ N ) maximizes its utility at t = 2 by choosing labor li, capital Ki, and its consumption

demand {Cj (i)}j∈N :

Ui = max
{{Cj(i)}j∈N ,li,Ki}

U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ
(2)

such that piCi (i) +

∫
N/i

pjCj (i) dj +RKi = pie
AiKα

i l
1−α
i ,

where pi is the price of the good it produces and R is the unit price of capital. Households

behave competitively and take the prices of their goods as given.

At t = 1, each household needs to decide whether to live in the neighborhood. In addition

to their private signals, all households and capital producers observe a noisy public signal Q

about the strength of the neighborhood A:

Q = A+ τ
−1/2
Q εQ,

where εQ ∼ N (0, 1) is independent of all other shocks. As τQ becomes arbitrarily large, A

becomes common knowledge to all agents. This public signal could, for instance, be news

reports or published statistics on local economic conditions.

In addition to the utility flow Ui at t = 2 from goods consumption and labor disutility, we

assume that households have quasi-linear expected utility at t = 1 and, similar to Glaeser,

Gyourko, and Saiz (2008), incur a linear utility penalty equal to the housing price P if they

choose to buy a house in the neighborhood.7 All housing units are homogenous and have the

same price. Given that households have Cobb-Douglas preferences over their consumption,

they are effectively risk-neutral at t = 1, and their utility flow is their expected payoff, or the

7For simplicity, our model does not incorporate resale of housing after t = 2. As a result, we do not
include the housing price P into the household’s budget constraint at t = 2. Instead, we treat the housing
as a separate linear utility cost at t = 1 following Glaeser, Gyourko, and Saiz (2008).
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value of their final consumption bundle less the cost of housing.8 Each household is subject

to a participation constraint that its expected utility from moving into the neighborhood

E [Ui|Ii]− P must (weakly) exceed its reservation utility, which we normalize to 0:

max {E [Ui|Ii]− P, 0} . (3)

The moving decision is made at t = 1 subject to each household’s information set Ii =

{Ai, P,Q} , which includes its private productivity signal Ai, the public signal Q, and the
housing price P.9

1.2 Capital Producers

In addition to households, there is a continuum of risk-neutral capital producers that de-

velop capital at t = 1, and sells this capital to households for their production at t = 2.

Similar to many macroeconomic models, such as Bernanke, Gertler, and Gilchrist (1999), we

model capital producers as a separate sector in the neighborhood, although we match their

population with households to simplify aggregation. This introduces a market-wide supply

curve for capital, and consequently a market-wide price, at t = 2, while avoiding introducing

a speculative retrade motive into households’capital accumulation decisions.

The representative producer cares about the price of capital at t = 2, R, which depends on

capital’s marginal productivity. This, in turn, depends on the strength of the neighborhood,

and which households choose to live in the neighborhood. As a consequence, the housing

price in the neighborhood serves as a useful signal to the producer when deciding how much

capital to develop at t = 1. We assume that each capital producer can develop K units of

capital by incurring a convex effort cost 1
λ
Kλ, where λ > 1.

While households buy capital from capital producers at t = 2, capital producers must

forecast this demand when choosing how much capital K to develop at t = 1, in order to

maximize its expected profit:

Πc = sup
K
E

[
RK − 1

λ
Kλ

∣∣∣∣ Ic] (4)

8While we focus on a static setting, introducing dynamics would reinforce our amplification mechanism
stemming from learning. Since future housing prices are related to aggregate productivity growth in the
neighborhood, households most optimistic about moving into the neighborhood because of trading opportu-
nities today would also be the most optimistic in speculating about the value of selling their house to other
households in the future.

9We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
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where Ic = {P,Q} is the public information set, which includes the housing price P and the
public signal Q. It then follows that the optimal choice of capital sets the marginal cost,

Kλ−1, equal to the expected price, E [R| Ic]:

K = E [R| Ic]
1

λ−1 .

The realized housing price affects the expectation of capital producers about the neighbor-

hood’s strength A, which, in turn, impacts their choice of how much capital to develop. As

a consequence, in addition to altering the moving decision of potential household entrants,

informational frictions in the housing market also distort investment in the neighborhood.

Introducing capital plays a key role in amplifying the effects of informational frictions

in the neighborhood. While, in principle, we could characterize learning in housing markets

without introducing capital (as the special case when α = 0), the inability of the capital

supply to adjust at t = 2, when the strength of the neighborhood A is publicly known,

introduces an important, persistent distortion to each household’s production decision. At

t = 2, while households can adjust their labor choice to mitigate the rational mistake that

either too many or too few households entered the neighborhood ex post, the inability for

capital to adjust nevertheless distorts the marginal product of labor for households as a

result of the informational frictions. Such overhang from the excessive production of capital

is important for understanding the recent U.S. housing boom and bust cycle, as areas such

as Las Vegas and Phoenix saw overbuilding of commercial real estate in addition to housing.

This capital misallocation also protracts the reversal after the bust: even if learning occurs

quickly, the limited reversibility of housing and capital delays the subsequent correction.10

1.3 Home Builders

There is a population of home builders, indexed on a continuum [0, 1] , in the neighborhood.

Builder i ∈ [0, 1] builds a single house subject to a disutility from labor

e−
1

1+k
ωiSi,

where Si ∈ {0, 1} is the builder’s decision to build and

ωi = ξ + ei

10Such reversals are also, in fact, likely to be asymmetric depending on whether the local economy over or
under-reacted to the true demand fundamental: it is likely easier to adjust upward the level of housing and
capital than to adjust downward since housing and capital often entail costly reversibility.
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is the builder’s productivity, which is correlated across builders in the neighborhood through

ξ. We assume that ξ = kζ, where k > 0 is a constant parameter, and ζ represents an

unobserved, common shock to building costs in the neighborhood. From the perspective of

households and builders, ζ ∼ N
(
ζ̄ , τ−1

ζ

)
. Then, ξ = kζ can be interpreted as a common

supply shock with normal distribution ξ ∼ N
(
ξ̄, k2τ−1

ζ

)
with ξ̄ = kζ̄. Furthermore, ei ∼

N (0, τ−1
e ) such that

∫
eidΦ (ei) = 0 by the Strong Law of Large Numbers.

At t = 1, each builder maximizes his profit

Πs (Si) = max
Si

(
P − e−

1
1+k

ωi
)
Si. (5)

Since builders are risk-neutral, each builder’s optimal supply curve is

Si =

{
1 if P ≥ e−

kζ+ei
1+k

0 if P < e−
kζ+ei
1+k

. (6)

The parameter k measures the supply elasticity of the neighborhood, which can arise, for

instance, from structural limitations to building or zoning regulation. In the housing market

equilibrium, the supply shock ξ not only affects the supply side of the housing market but

also demand, as it acts as informational noise in the price signal when households use the

price to learn about the common productivity A. The elasticity parameter k determines the

amount of this informational noise in the price signal.11

1.4 Noisy Rational Expectations Cutoff Equilibrium

Our model features a noisy rational expectations cutoffequilibrium, which requires clearing of

the real estate and capital markets that is consistent with the optimal behavior of households,

home builders, and capital producers:

• Household optimization: each household chooses Hi at t = 1 to solve its maximization

problem in (3), and then chooses
{
{Cj (i)}i∈N , li, Ki

}
at t = 2 to solve its maximization

problem in (2).

11Although convenient for tractability, our specification of the housing supply curve is not essential for
our key insight. We could instead have considered a setting with three neighborhoods: one with a perfectly
inelastic housing supply, one with a perfectly elastic housing supply, and one in which housing supply is
price-elastic and subject to noisy supply shocks. As supply is fixed in the perfectly inelastic area, housing
price reflects only demand fundamental, and fully reveals the neighborhood strength A. In the perfectly
elastic area, housing price always equals the marginal cost of building, and contains no information about
A. It is in the intermediate elasticity area, where housing price is driven by both demand and supply-side
factors, households and capital producers face the most severe filtering problem in inferring A from housing
price, a key feature captured by our more stylized model of housing supply.
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• Capital producer optimization: the representative producer choosesK at t = 1 to solve

its maximization problem in (4).

• Builder optimization: each builder chooses Si at t = 1 to solve his maximization

problem in (5).

• At t = 1, the housing price P clears the housing market:∫ ∞
−∞

Hi (Ai, P,Q) dΦ (εi) =

∫ ∞
−∞

Si (ωi, P,Q) dΦ (ei) ,

where each household’s housing demand Hi (Ai, P,Q) depends on its productivity

Ai, the housing price P, and the public signal Q, and each builder’s housing supply

Si (ωi, P,Q) depends on its productivity ωi, the housing price P, and the public sig-

nal Q. The demand from households and supply from builders are integrated over the

idiosyncratic components of their productivity {εi}i∈[0,1] and {ei}i∈[0,1] , respectively.

• At t = 2, the consumption good price clears the market for each household’s good:

Ci (i) +

∫
N/i

Ci (j) dj = eAiKα
i l

1−α
i , ∀ i ∈ N ,

and the capital price R clears the market for capital:∫
N
Kidi = K

∫
N
di, (7)

where
∫
N di represents the population of households that live in the neighborhood.

2 Equilibrium

In this section, we analyze the housing market equilibrium. We first analyze each household’s

optimization problem given in (2), by conjecturing that only households with productivity

higher than a cutoffA∗ enter the neighborhood. We then derive a unique equilibrium cutoff

A∗ that satisfies the clearing condition of the housing market. Finally, we verify at the

end of the section that the derived cutoff equilibrium is the unique rational expectations

equilibrium, in which the choice of each household to live in the neighborhood is monotonic

with respect to its own productivity Ai.
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2.1 Choices of Households and Capital Producers

We first analyze the choices of households living in the neighborhood at t = 2, after its

strength A has been revealed to the public and capital producers and home builders have

chosen their supply of capital and housing at t = 1. The following proposition describes

the household’s optimal consumption, labor, and capital choices at t = 1. All proofs are

relegated to the Appendix.

Proposition 1 Let ϕ = 1+ψ
(1−α)ψ+(1+αψ)ηc

, then at t = 2, households i’s optimal goods con-

sumption is

Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i , Cj (i) =

1

Φ
(√

τ ε (A− A∗)
)ηc (1− α) eAjKα

j l
1−α
j ,

and the price of its good is

pi = E
[
eϕ(Aj−Ai) | A,Aj ≥ A∗

]ηc .
Its optimal labor and capital choices are

log li = lAA+ lsAi + lR logR +
1

1− α
ηc
ψ

logE
[
eϕ(Aj−A) | A,Aj ≥ A∗

]
+ l0,

logKi = (1 + ψ) lAA+ (1 + ψ) lsAi +
ψ + α

α
lR logR

+ (1 + ψ) lΦ logE
[
eϕ(Aj−A) | A,Aj ≥ A∗

]
+ h0,

where lA, ls > 0 > lR and dlA
dηc

> 0 > dlA
dηc
, and all coeffi cients are given in the Appendix.

Furthermore, the expected utility of household i at t = 1 is given by

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

= (1− α)
ψ

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] .
Proposition 1 shows that each household spends a fraction 1−ηc of its wealth (excluding

housing wealth) on consuming its own good Ci (i) and a fraction ηc on goods produced by its

neighbors
∫
N/iCj (i) dj. Households value each other’s goods as a result of the complemen-

tarity in their utility functions, and the price of a household’s good is inversely determined

by the level of its output relative to that of the rest of the neighborhood. A household’s

good is thus more valuable when the rest of the neighborhood is more productive.

Proposition 1 also reveals that each household’s optimal choices of labor and capital are

both log-linear in the strength of the neighborhood, the household’s own productivity, and

13



the logarithm of the capital price. The final (nonconstant) term is the average idiosyncratic

productivity of households above the cutoffA∗, reflecting that only the households that are

most productive choose to live in the neighborhood. The optimal labor choice and demand

for capital are both increasing in the strength of the neighborhood, because a stronger

neighborhood represents improved trading opportunities with its neighbors, while they are

both decreasing in the price of capital.

We now discuss each household’s decision on whether to live in the neighborhood at t = 1

when it still faces uncertainty about A. As a result of its Cobb-Douglas utility, the household

is effectively risk-neutral over its aggregate consumption, and its optimal choice reflects the

difference between its expected utility from living in the neighborhood and the cost P of

buying a house in the neighborhood. Then, household i’s neighborhood decision is given by

Hi =

{
1 if (1− α) ψ

1+ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] ≥ P

0 if (1− α) ψ
1+ψ

E
[
pieAiKα

i l
1−α
i

∣∣ Ii] < P
.

This decision rule supports our conjecture to search for a cutoff strategy for each household,

in which only households with productivity above a critical level A∗ enter the neighborhood.

This cutoff is eventually solved as a fixed point in the equilibrium.

Given each household’s equilibrium cutoffA∗ at t = 1 and optimal choices at t = 2 from

Proposition 1, we impose market-clearing in the market for capital to derive its price R at

t = 2. Capital producers forecast this price to choose how much capital to develop at t = 1.

These observations are summarized in the following proposition.

Proposition 2 Given K units of capital developed by capital producers at t = 1, the price

of capital at t = 2 takes the log-linear form:

logR =
1 + ψ

ψ + α
A− ψ (1− α)

ψ + α
logK +

1 + ψ

ψ + α
ηc logE

[
eϕ(Aj−A) | A,Aj ≥ A∗

]
(8)

+
ψ (1− α)

ψ + α
logE

[
e(1−ηc)ϕ(Aj−A) | A,Aj ≥ A∗

]
+ logα +

1− α
ψ + α

log (1− α) .

The optimal supply of capital by capital producers at t = 1 is given by

logK =

logE

[
e

1+ψ
ψ+α

AE
[
eϕ(Aj−A) | A,Aj ≥ A∗

] 1+ψ
ψ+α

ηc E
[
e(1−ηc)ϕ(Aj−A) | A,Aj ≥ A∗

]ψ(1−α)
ψ+α

∣∣∣∣ Ic]
λ− α 1+ψ

ψ+α

+ logα +
1− α
ψ + α

log (1− α) , (9)

where λ− α 1+ψ
ψ+α

> 0.
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Proposition 2 reveals that the capital price at t = 2 is increasing in the strength of the

neighborhood and in the average idiosyncratic productivity of the households that choose to

live in the neighborhood, i.e., the last two (nonconstant) terms of (8). As one would expect,

it is also decreasing in the supply of capital chosen at t = 1. Importantly, equation (9) shows

that the optimal supply of capital at t = 1 reflects the expectations of capital builders not

only over the strength of the neighborhood, but also the impact on the pool of households

that select into the neighborhood. Intuitively, a higher productivity cutoff for households

to join the neighborhood raises both the price at which households charge each other for

their goods, pi, and the average marginal product of capital compared to that of the full

population.

2.2 Perfect-Information Benchmark

In this subsection, we characterize a positive benchmark. With perfect information, all

households, home builders, and capital producers observe the strength of the neighborhood A

at t = 1 when making their respective decisions.12 Households will sort into the neighborhood

according to a cutoffequilibrium determined by the net benefit of living in the neighborhood,

which trades off the opportunity of trading with other households in the neighborhood with

the price of housing. Despite the inherent nonlinearity of our framework, the following

proposition summarizes a tractable, unique rational expectations cutoff equilibrium that is

characterized by the solution to a fixed-point problem over the endogenous cutoff of entry

into the neighborhood, A∗.

Proposition 3 In the absence of informational frictions, there exists a unique rational ex-

pectations cutoff equilibrium, in which the following hold:

1. Given that other households follow a cutoff strategy, household i also follows a cutoff

strategy in its moving decision such that

Hi =

{
1 if Ai ≥ A∗ (A, ξ)

0 if Ai < A∗ (A, ξ)
,

where A∗ (A, ξ) solves equation (23) in the Appendix.

12This perfect-information setting may not be a normative benchmark. It is not obvious that the perfect-
information setting is the “first-best”outcome, since households may over or under-coordinate their actions,
e.g. Angeletos and Pavan (2007), or overreact to public signals, e.g. Angeletos and Pavan (2004), Amador
and Weill (2010), in the presence of strategic complementarity.
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2. The cutoff productivity A∗ (A, ξ) is monotonically decreasing in ξ, and is increasing

in A if ηc < η∗c and hump-shaped in A if ηc > η∗c, where η
∗
c is given in (24) in the

Appendix.

3. The population entering the neighborhood is monotonically increasing in both A and ξ.

4. The housing price takes the following log-linear form:

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)
. (10)

5. The housing price P and the utility of the household with the cutoff productivity A∗ are

increasing and convex in A.

Proposition 3 characterizes the unique rational expectations cutoff equilibrium in the

perfect-information benchmark, and confirms the optimality of a cutoff strategy for each

household’s moving decision when other households adopt a cutoff strategy. Households sort

based on their individual productivity into the neighborhood, with the more productive, who

expect more gains from living in the neighborhood, entering and participating in production

at t = 2. This determines the supply of labor at t = 2, and, through this channel, the price

of capital at t = 2.

The optimal cutoffA∗ (A, ξ) , determined by equation (23), represents the productivity of

the marginal household who is indifferent to entering the neighborhood. The benefit to the

marginal household, the expected utility gain from producing and trading with other house-

holds, should be equal to the cost, or the housing price. With Cobb-Douglas preferences, this

benefit is equal to the expected value of the marginal household’s output from production,

which is increasing in the marginal household’s productivity. The housing price, in contrast,

is decreasing in the marginal household’s productivity, since the price is increasing in the size

of the population flowing into the neighborhood. The upward sloping benefit and downward

sloping cost gives rise to a unique cutoff productivity, and consequently to a unique rational

expectations cutoff equilibrium.

The proposition also provides comparative statics of the equilibrium cutoffA∗ (A, ξ) and

the population that enters the neighborhood. This cutoff is decreasing in ξ, since a lower

housing price incentivizes more households to enter the neighborhood for a given neighbor-

hood strength A. As a result, a higher population enters the neighborhood as ξ increases.
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The relation between the cutoff and neighborhood strength A, in contrast, reflects two off-

setting forces. On the one hand, a higher A implies a higher housing price and a higher price

of capital, which raises the cutoff productivity since it is now more expensive to live in the

neighborhood; on the other, complementarity lowers the cutoff because the gains from trade

for high realizations of A partially offset the increase in prices. As a result, the cutoff is ei-

ther increasing in A when complementarity is low and hump-shaped when complementarity

is suffi ciently high. Regardless of whether the cutoff increases or is hump-shaped in A, the

population that enters the neighborhood increases with A because a higher A shifts right

the distribution of households more than it moves the cutoff.

Given a cutoffproductivity A∗ (A, ξ) , the housing price P positively loads on the strength

of the neighborhood A, since a higher A implies stronger demand for housing, and loads

negatively on the supply shock ξ. As one would expect, the cutoffA∗ enters negatively into

the price. The higher the cutoff, the fewer the households that enter the neighborhood, and

the lower housing demand. Despite its log-linear representation, the housing price is actually

a generalized linear function of
√

τε
τe
A− ξ, since A∗ is an implicit function of A and logP .

2.3 Equilibrium with Informational Frictions

Having characterized the perfect-information benchmark, we now turn to the equilibrium in

the presence of informational frictions. With informational frictions, at t = 1 households

and capital producers must now forecast the strength of the neighborhood A, and the price

of capital R at t = 2. Each household’s type Ai serves as a private signal about the strength

of the neighborhood A. The publicly observed housing price serves as a public signal. As

the equilibrium housing price is a nonlinear function of A, it poses a significant challenge

to our derivation of the learning of households and producers. Interestingly, the equilibrium

housing price maintains the same functional form as in (10) for the perfect-information

benchmark. As a result, the information content of the publicly observed housing price can

be summarized by a suffi cient statistic z (P ) that is linear in A and the supply shock ξ:

z (P ) = A−
√
τ e
τ ε
ξ. (11)

In our analysis, we shall first conjecture this linear suffi cient statistic, and then verify that it

indeed holds in the equilibrium. This conjectured linear statistic helps to ensure tractability

of the equilibrium, despite that the equilibrium housing price is highly nonlinear.
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By solving for the learning of households and capital producers based on the conjectured

suffi cient statistic from the housing price, and by clearing the aggregate housing demand

from the households with the supply from home builders, we derive the housing market

equilibrium. The following proposition summarizes this equilibrium.

Proposition 4 There exists a unique noisy rational expectations cutoff equilibrium in the

presence of informational frictions, in which the following hold:

1. The housing price takes a log-linear form:

logP =
1

1 + k

[√
τ ε
τ e

(A− A∗)− ξ
]

=
1

1 + k

[√
τ ε
τ e

(z − A∗)− ξ̄
]
. (12)

2. The posterior of household i after observing housing price P, the public signal Q, and

its productivity Ai is Gaussian with the conditional mean Âi and variance τ̂A given by

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξz + τ εAi

)
,

τ̂A = τA + τQ +
τ ε
τ e
τ ξ + τ ε,

and the posterior of capital producers, after observing housing price P and the public

signal Q, is also Gaussian with the conditional mean Âc and variance τ̂ cA given by

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξz

)
,

τ̂ cA = τA + τQ +
τ ε
τ e
τ ξ.

3. Given that other households follow a cutoff strategy, household i also follows a cutoff

strategy in its moving decision

Hi =

{
1 if Ai ≥ A∗ (z,Q)

0 if Ai < A∗ (z,Q)
,

where A∗ (z,Q) is the unique root to equation (26) in the Appendix.

4. The supply of capital takes the form:

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0,

where F
(
Âc − A∗, τ̂ cA

)
is given in the Appendix, and logK is increasing in the condi-

tional belief of capital producers Âc.
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5. The cutoff productivity A∗ is decreasing, while the population entering the neighborhood

and the housing price P are increasing, in the noise in the public signal εQ. These prop-

erties also hold with respect to z under a suffi cient, although not necessary, condition

that 13

1 + k

1 + τe
τετζ

(τA + τQ) k
≥
λ− α 1+ψ

ψ+α

α 1+ψ
ψ+α

ψ + α + (1− α) ηc
α (1− ηc) (1 + ψ)

√
τ ε
τ e
.

6. The equilibrium converges to the perfect-information benchmark in Proposition 3 as

τQ ↗∞.

Proposition 4 confirms that, in the presence of informational frictions, each household

will optimally adopt a cutoff strategy when other households adopt a cutoff strategy. Infor-

mational frictions make the household’s equilibrium cutoff A∗ (z,Q) a function of

z (P ) = (1 + k)

√
τ e
τ ε

logP + A∗,

which is the summary statistic of the publicly observed housing price P, and the public

signal Q, rather than A and ξ as in the perfect-information benchmark. This equilibrium

cutoff, determined by equation (26), is the key channel for informational frictions to affect

the housing price, as well as each capital producer’s decision to develop capital. We analyze

the economic consequences of informational frictions in the next section.

We conclude this section by establishing that the cutoff equilibria we have character-

ized, both with informational frictions and with perfect information, is the unique rational

expectations equilibria in the economy. Regardless of the housing policies of other house-

holds in the neighborhood, each household will follow a cutoff strategy, which establishes the

uniqueness of the cutoff equilibrium, as summarized in the following proposition.

Proposition 5 The unique rational expectations cutoff equilibrium is the unique rational

expectations equilibrium in the economy.

3 Model Implications

This section analyzes how informational frictions amplify noise through learning to affect

housing markets and local investment. We analyze these learning effects across neighbor-

hoods that differ in two dimensions: 1) supply elasticity k, and 2) the degree of consumption
13One may notice that a higher degree of complementarity, ηc, tightens the suffi cient condition, while much

of our analysis suggests that it amplifies the role of informational frictions. This is because the condition is
not necessary, and is derived by omitting terms for which ηc is relevant for amplifying the learning effect.
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complementarity in household utility ηc. As documented in Glaeser (2013), Davidoff (2013),

and Nathanson and Zwick (2018), housing price boom and bust were most pronounced in

areas that were not particularly constrained by the supply of land. In our model, supply

elasticity plays an important and nuanced role in the distortionary effects of learning. It

is instructive to consider two polar cases. When supply is infinitely inelastic (i.e., k → 0),

housing prices are only determined by the strength of the neighborhood A, and are thus

fully revealing. In this case, there is not any distortion from learning. When supply is in-

finitely elastic (i.e., k → ∞), prices converge to logP = −ζ, which is driven only by the
supply shock.14 In this case, prices contain no information about demand, and there is no

learning from price. These two polar cases determine that the distortions caused by learning

from housing prices are humped-shaped with respect to supply elasticity. We will further

characterize this pattern in this section.

In our model, households’consumption complementarity reinforces the effects of infor-

mational frictions. Without complementarity, a stronger neighborhood (i.e., higher A) leads

to higher prices of both housing and capital, and thus deter households from entering the

neighborhood. With complementarity, however, a stronger neighborhood can be more at-

tractive to households, because it means that other households in the neighborhood are more

productive and thus provide a better opportunity for trade. In the presence of informational

frictions, complementarity gives each household a stronger incentive to learn about A, and

thus amplifies the potential distortionary effects from such learning.

While we have analytical expressions for most equilibrium outcomes, the key equilibrium

cutoff A∗ needs to be solved numerically from the fixed-point condition in equation (26).

We therefore analyze the equilibrium properties of A∗ and other variables through a series

of numerical illustrations, by using the following benchmark parameters:

τA = 0.5, τ ς = 2.0, τ ε = 0.2, τQ = 1.0, ηc = 0.8,

ψ = 2.5, k = 0.5, λ = 1.1, Ā = 0, ζ̄ = 0.

For the Frisch elasticity of labor supply, we choose ψ = 2.5, which is within the typical range

found in the literature. We set τ ζ to be four-fold larger than τA to ensure that with perfect

information, the log housing price variance is monotonically declining in supply elasticity,

consistent with conventional wisdom. We set λ = 1.1 to have capital be in elastic supply,

and to avoid having strong convexity in its production function. Finally, we choose the
14Note from equation (26) that A∗ remains finite a.s. as k →∞, allowing us to take the limit.
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neighborhood fundamental and the supply-side shock A = ζ = −0.5, though the qualitative

patterns we show hold more generically for a wide range of values, and we set the baseline

noise in the public signal Q to 0.

In our analysis, we first examine the effects of learning when household’s production

does not require capital, α = 0, and there is no capital investment. In the latter part of our

analysis, we turn on the role of capital by selecting α = 0.33, a standard value for capital

share in the overall economy, to show that capital investment not only enriches our model’s

implications but also amplifies the learning effects in the housing market.

3.1 Equilibrium Cutoff

The equilibrium cutoff productivity A∗ (z,Q) is the key channel for informational frictions

and learning to affect the housing market, as it determines the population flow into the

neighborhood. We analyze this channel by showing how the two determinants z and Q

affects the equilibrium cutoff.

We first examine a noise shock to the public signal Q, which can be interpreted as noise

in public information, as in Morris and Shin (2002), or more broadly as housing market

optimism, as in Kaplan, Mitman, and Violante (2017) and Gao, Sockin and Xiong (2019).

In the perfect-information benchmark, the public signal Q has no impact on either the equi-

librium cutoffA∗ or the housing price because both the demand-side fundamental A and the

supply-side shock ξ are publicly observable. In the presence of informational frictions, how-

ever, Q affects the equilibrium as it shapes the beliefs of households and capital producers.

The equilibrium housing price in (12) demonstrates that

∂ logP

∂Q
= − 1

1 + k

√
τ ε
τ e

∂A∗

∂Q
.

By affecting the households’expectations of A, and consequently their cutoff productivity

to enter the neighborhood, the noise in the public signal Q affects the population that enters

the neighborhood and the equilibrium housing price logP : ∂A∗

∂Q
< 0 and ∂P

∂Q
> 0, as proved

in Proposition 4. Furthermore, Q also affects the price of capital, as well as each capital

producer’s optimal choice of how much capital to develop.

Figure 1 illustrates how the cutoff responds to a noise shock to the public signal Q.

The first row depicts ∂A∗

∂Q
across different values of supply elasticity k in the left panel

and degree of complementarity ηc in the right panel. A noise shock to Q has no impact
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Figure 1: The response of the equilibrium cutoff productivity to a noise shock Q (the first row)
and a fundamental shock z (the second row) across housing supply elasticity (left) and degree of
complementarity (right). The dotted line in each panel is for the perfect-information benchmark,
while the solid line is for the case with informational frictions.

on the equilibrium in the perfect-information benchmark. In the presence of informational

frictions, however, the shock makes households more optimistic aboutA, and lowers the cutoff

productivity A∗ for households to enter the neighborhood, as formally shown by Proposition

4, thus inducing a greater population flow into the neighborhood. Interestingly, this learning

effect is stronger when supply elasticity is greater, or when the households’ consumption

complementarity is greater. The former results from the fact that a greater supply elasticity

makes the housing price more dependent on supply-side factors, and therefore less informative

about the neighborhood’s strength A. Consequently, households place a greater weight on

the public signal Q in their learning about A, and this amplifies the effect of the noise

shock to Q. The latter result is driven by the greater role that household learning plays as

consumption complementarity increases, as a higher complementarity makes each household

more concerned about the neighborhood strength.

In the presence of informational frictions, the demand-side fundamental A and the supply-

side shock ξ are not directly observed by the public and, as a result, do not directly affect the

housing price and other equilibrium variables. Instead, their equilibrium effects are bundled

together in the housing price P through the specific functional form of the suffi cient statistic
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z. Consequently, a shock to z may reflect a shock to either A or ξ. The equilibrium housing

price in (12) directly implies that the impact of a price shock is determined by its impact on

the equilibrium cutoff A∗:

∂ logP

∂z
=

1

1 + k

√
τ ε
τ e

(
1− ∂A∗

∂z

)
.

That is, depending on the sign of ∂A
∗

∂z
, the equilibrium cutoffA∗ may amplify or dampen the

impact of the z shock on the housing price. Proposition 4 provides a suffi cient (although

not necessary) condition for ∂A∗

∂z
< 0. In this case, there is an amplification effect. This

amplification effect makes housing prices more volatile, as highlighted by Albagli, Hellwig,

and Tsyvinski (2015) in their analysis of the cutoff equilibrium in an asset market.15

The second row of Figure 1 depicts ∂A∗

∂z
across different values of supply elasticity k in

the left panel and degree of complementarity ηc in the right panel. Interestingly, the left

panel shows that ∂A∗

∂z
has a U-shape with respect to supply elasticity. It is particularly neg-

ative when supply elasticity is in an intermediate value around 0.5, and turns positive when

supply elasticity rises roughly above 1.4. This U-shape originates from the aforementioned,

non-monotonic learning effect of the housing price. Households use the housing price as a key

source of information in their learning about the neighborhood strength A, and this learning

effect is strongest when supply elasticity has an intermediate value, which makes the equilib-

rium cutoffparticularly sensitive to the z shock. The negative value of the effect implies that

the cutoff productivity falls in response to the better neighborhood fundamental, resulting

in more households entering the neighborhood despite the higher housing price. The right

panel further illustrates that ∂A∗

∂z
decreases monotonically with the degree of complemen-

tarity. Specifically, ∂A∗

∂z
is positive when complementarity is low, and becomes negative as

complementarity rises. This pattern confirms our earlier intuition that the learning effect

from housing price strengthens with complementarity.

One could, in principle, directly test the effects of learning on population flows across

different regions with properly designed measures of these non-fundamental shocks. Our

analysis would suggest that non-fundamental shocks, such as the noisy demand shock, have

a greater impact in inducing stronger population inflow to areas with greater degree of

15This interesting feature also differentiates our cutoff equilibrium from other type of nonlinear equilibrium
with dispersed information, such as the log-linear equilibrium developed by Sockin and Xiong (2015) to
analyze commodity markets. In their equilibrium, prices become less sensitive to their analogue of z in
the presence of informational frictions. This occurs because households, on aggregate, underreact to the
fundamental shock in their private signals because of noise.
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Figure 2: The responses of housing price P (top row) and housing stock S (bottom row) to a noise
shock to the public signal Q across supply elasticity (left) and degree of complementarity (right).
The dotted line in each panel is for the perfect-information benchmark, while the solid line for the
case with informational frictions.

complementarity and supply elasticity. Our model also implies that fundamental shocks,

stemming either from the demand side or the supply side of the local housing market, have

a greater impact on population flow to areas with greater degree of complementarity and

intermediate supply elasticities. The differences in the cross-sectional patterns between theQ

and z shocks can also help to distinguish between these two sources of optimism empirically.

3.2 Housing Market

We now analyze how informational frictions affect the housing market by examining the

reactions of the housing market to two different shocks, a noise shock to Q and a shock to

housing supply ζ. We interpret the deviations of the housing price in the presence of infor-

mation frictions from the perfect-information benchmark as a measure of the amplification

of noise because of learning.

Figure 2 illustrates the impacts of a noise shock to Q on the housing price P and housing

stock S =
∫
Sidi, by computing their partial derivatives with respect to Q across different
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values of supply elasticity k in the two left panels, and across different values of the degree

of consumption complementarity ηc in the two right panels. In the absence of informational

frictions, this shock has no effect on the housing market. In the presence of informational

frictions, the noise shock raises both the housing price and housing stock (Proposition 4)

because it boosts agents’expectations about the neighborhood’s strength A. Interestingly,

the upper-left panel shows that this effect on the housing price is hump-shaped with respect to

supply elasticity, and peaks at an intermediate value. This results from the non-monotonicity

of the distortionary effect of learning. When housing supply is infinitely inelastic, the noise

shock has a muted effect on households’expectations because the price is fully revealing.

When housing supply is infinitely elastic, however, the housing price is fully determined by

supply shock and is immune to households’learning about A. As a result, the price distortion

caused by household learning is strongest when supply elasticity is in an intermediate range.

The lower-left panel further shows that the impact of the noise shock on the housing stock

has a similar hump-shaped pattern with supply elasticity.

The upper-right panel of Figure 2 shows that the effect of the noise shock on the hous-

ing price is increasing with respect to consumption complementarity. As complementarity

rises, each household cares more about trading goods with other households, which makes

households’expectations of the neighborhood strength a more influential determinant of the

housing price. Consequently, the noise shock has a greater effect on the housing price. The

pattern in housing stock (lower-right panel) is hump-shaped, reflecting that near perfect

complementarity, almost all households choose to enter the neighborhood and the marginal

effect of the increase in the equilibrium cutoff on neighborhood population diminishes.

Next, we analyze the effects of a shock to the housing price, which, as we discussed earlier,

can be from either the demand side or the supply side. To avoid confusion in interpreting

the results, we specifically examine a negative shock to the building cost ζ (a negative

supply shock). Figure 3 displays the responses of housing price P and housing stock S to

this shock across different values of supply elasticity k in the two left panels, and across

different degrees of consumption complementarity ηc in the two right panels. In the perfect-

information benchmark, the housing price increases with the negative supply shock, and

the price increase rises with supply elasticity, as shown by the dashed line in the upper-left

panel. In contrast, the lower-left panel shows that the housing stock falls with the negative

supply shock since the higher housing price discourages more households from entering, and
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Figure 3: The responses of housing price P (top row) and housing stock S (bottom row) to a
negative supply shock across supply elasticity (left) and degree of complementarity (right). The
dotted line in each panel is for the perfect-information benchmark, while the solid line for the case
with informational frictions.

the supply drop is greater when supply elasticity is larger.

In the presence of informational frictions, however, the negative supply shock is, in part,

interpreted by households as a positive demand shock (i.e., stronger neighborhood A) when

they observe a higher housing price. This learning effect, in turn, pushes up the housing

price and the housing stock, relative to the perfect-information benchmark, as shown in the

left panels of Figure 3. Across supply elasticity, these distortions are hump-shaped because

the impact of learning from the housing price is most pronounced at intermediate supply

elasticities, and, consequently, the response of the housing price and housing stock also

peak at an intermediate range. As consumption complementarity increases, the learning

effect from the negative supply shock is amplified, since households put more weight on the

neighborhood’s strength when determining whether to enter the neighborhood. This is shown

in the upper-right panel of Figure 3. Similar to the Q shock in Figure 2, the impact on the

housing stock is hump-shaped, since most households are already entering the neighborhood

as ηc nears perfect complementarity.

Although our static model cannot deliver a boom-and-bust housing cycle across periods,
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one may intuitively interpret the deviation of the housing price induced by the positive Q

shock and the negative supply shock from its value in the perfect-information benchmark, as

illustrated in Figures 2 and 3, as a price boom, which would eventually reverse. Then, we have

testable cross-sectional implications for housing cycles– shocks, such as the noise shock and

the supply shock, can lead to more pronounced housing cycles in areas with intermediate

housing supply elasticities. Our model also implies that the magnitudes of housing price

boom and bust are monotonically increasing with the degree of complementarity, while new

housing supply has a hump-shaped relationship with the degree of complementarity.16

It is diffi cult in practice to directly measure volatility amplification and excessive volatility

in housing markets. Nevertheless, these cross-sectional implications of our model are testable,

and indirectly measure the excess volatility induced by learning. The non-monotonicity

in these cross-sectional implications is particularly sharp, which motivates us to further

explore the relationship of housing cycles with respect to supply elasticity and the degree of

complementarity during the recent U.S. housing cycle in Section 4.

In addition to analyzing housing cycles, one could, in principle, also examine the cross-

sectional patterns we uncover for home buyer sentiment. The literature has suggested several

empirical metrics of home buyer sentiment, such as the housing surveys in Case, Shiller, and

Thompson (2012), Google search volume indices from Google Trends, and textual analysis

of local media reports, as in Soo (2018). Whether informational frictions amplified noise

originating from the demand or supply side of the housing market can, in principle, be

disentangled by sorting these measures along the dimensions of supply elasticity and degree

of complementarity, similar to the tests we propose using economic outcomes.

3.3 Capital Investment

Our analysis until now has abstracted from capital by setting α = 0. We now introduce for a

role for capital by selecting α = 0.33, which allows us not only to extend the implications of

our model to local real investment, such as in commercial real estate, but more importantly to

show that capital investment can further amplify the impact of learning in housing markets.

16Since our model is not dynamic, however, we cannot speak to how informational frictions would impact
the length of the boom or the bust that arises because of these noise or supply shocks. However, even if
the informational frictions that give rise to a boom are short-lived, this does not necessarily imply that the
impact of such frictions on the local economy are also short-lived. Since imperfect learning in our setting
distorts the building of homes and the installation of capital, undoing this misallocation of resources can
take years, such as with the overbuilding of homes in Las Vegas and offi ce space in Phoenix during the recent
U.S. housing cycle, as empirically examined by Gao, Sockin and Xiong (2019).
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We illustrate these effects in Figure 4 by building on our earlier analysis of the housing

market’s reaction to a negative supply shock. Specifically, the two left panels in Figure 4

correspond to the two left panels in Figure 3 with an additional, dotted line in each panel.

This dotted line shows the reactions of the housing price and housing stock to the negative

supply shock in the presence of capital investment (i.e. when α = 0.33). Interestingly, in

the presence of capital investment, both the housing price and the housing stock react more

strongly to the supply shock, while maintaining the same overall humped shapes with respect

to supply elasticity. We also find a similar amplification of the reactions of the housing price

and housing stock to a shock to Q, which we omit for brevity. Capital investment amplifies

the housing market reactions to these shocks because capital producers make their investment

decisions at t = 1 when their expectations of the neighborhood strength are distorted by

informational frictions. Their capital investment overhangs on the local economy at t = 2,

even though the neighborhood strength A becomes observable to households and households

flexibly adjust their labor supply. This capital overhang implies that households have access

to cheap capital at t = 2 when the market’s expectations are overly optimistic at t = 1. The

anticipation of such access to capital motivates households to be even more aggressive in the

housing market, which further amplifies the response of the housing price and housing stock

to the shocks at t = 1.

Figure 4 also shows how the price and stock of capital at t = 1 react to the negative

housing supply shock across different values of supply elasticity k in the two right panels.

We denote R1 = E [R| Ic], the expectation of capital producers at t = 1 regarding R the

price of capital at t = 2. This expectation determines the stock of capital KS they produce

at t = 1. In the perfect-information benchmark, the negative supply shock only impacts the

housing price, and, through this channel, the cutoffproductivity of the households that enter

the neighborhood. This direct effect has only a modest impact on the market for capital.

In the presence of informational frictions, however, its impact on the market for capital is

substantially larger. This occurs because the negative supply shock is partially interpreted

by capital producers as a positive shock to the strength of the neighborhood. Consequently,

it distorts agents’expectations about A upward, leading to overoptimism about the local

economy. This results in both a higher capital price R1 and a larger supply of capital KS at

t = 1. The magnitudes of these effects are all hump-shaped with respect to housing supply

elasticity, as a result of the hump-shaped distortion to agents’expectations that arises from
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Figure 4: The responses of housing price P (upper-left panel), housing stock S (lower-left panel),
capital price R1 (upper-right panel), and capital stock K (lower-right panel) to a negative housing
supply shock ξ. In each panel, the dashed line is for the perfect-information benchmark, the solid
line for the case with informational frictions and α = 0, while the dotted line for the case with
informational frictions and α = 0.33.

their learning from the housing price.

Our analysis thus shows that shocks to the housing market can lead not only to a housing

cycle, but also to a boom and bust in local investment. This concurrent boom and bust is

consistent with Gyourko (2009) and Levitin and Wachter (2013), who highlight that the

recent U.S. housing cycle was accompanied by a similar boom and bust in commercial real

estate. It is diffi cult to simply attribute this commercial real estate boom to the subprime

credit expansion, which was mainly targeted at households. In addition, while a run-up in

the housing market can inflate commercial real estate prices if there is scarcity in developable

land, as in Rosen (1979) and Roback (1982), such a boom would crowd out commercial real

estate investment if it is driven by non-fundamental demand. In contrast, both the housing

and commercial real estate markets experienced an expansion in construction along with the

run-up in prices during the mid-2000s. Our model provides a coherent explanation for the

synchronized cycles in both housing and commercial real estate markets. Furthermore, our

analysis shows that these two cycles may amplify each other.
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4 Empirical Evidence

In this section, we provide several stylized facts to illustrate empirical relevance of our

model from the recent U.S. housing cycle of the 2000s. The national U.S. housing market

underwent a significant boom and bust cycle in the 2000s with the national home price

index increasing over 60 percent from 2000 to 2006, and then falling back to its 2000 level

by 2010. Many factors, such as the Clinton-era initiatives to broaden home ownership, the

low interest rate environment of the late 1990s and early 2000s, the inflow of foreign capital,

and the increase in securitization and sub-prime lending, contributed to the initial housing

boom. While a well-known phenomenon at the time, the magnitude of the housing cycle

experienced in the cross-section of U.S. regions reflected idiosyncratic uncertainty about

their underlying fundamentals, which is the focus of our analysis.17 We designate the boom

period of the recent U.S. housing cycle as 2001-2006, and the bust period as 2007-2010.18

In what follows, we examine how the magnitude of the housing price cycle, which serves

as a proxy for the amplification of volatility illustrated by our model, and the intensity of

new housing construction vary across MSAs with different values of supply elasticity and

degree of complementarity. The objective of our empirical analysis is not to formally test

our model, but rather to show that the key implications of our model are consistent with

cross-sectional patterns during the recent U.S. housing cycle.

Our MSA-level house price data come from the Federal Housing Finance Agency (FHFA)

House Price Index (HPI), which are constructed from repeat home sales. We employ the

commonly used housing supply elasticity measure constructed by Saiz (2010). This elasticity

measure focuses on geographic constraints by defining undevelopable land for construction

as terrain with a slope of 15 degrees or more and areas lost to bodies of water including seas,

lakes, and wetlands. This measure provides an exogenous measure of supply elasticity, with

a higher value if an area is less geographically restricted. Saiz’s measure is available for 269

Metropolitan Statistical Areas (MSAs).

To measure the supply-side activity in local U.S. housing markets, we use building permits

from the U.S. Census Bureau, which conducts a survey in permit-issuing places all over

17The regional uncertainty introduced by this national phenomenon is absent from the local boom and
bust episodes throughout the 1970s and 1980s. While there are other national housing cycles in history, such
as in the roaring 20’s, data limitations restrict our attention to the most recent U.S. housing cycle.
18See Gao, Sockin and Xiong (2019) for another study that uses a similar dating convention for the U.S.

housing cycle in the 2000s.
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Figure 5: The U.S. housing cycle in 2000s across MSAs with different supply elasticities. The solid
and cross dots represent MSAs outside and inside the sand states (Arizona, California, Florida and
Neveda), respectively. The solid line is the spline line for all MSAs, while the dashed is for MSAs
outside the sand states. 95% confidence intervals are displayed for the full sample. The standard
errors are clustered at the state level.

the U.S. Compared with other construction-related measures, including housing starts and

housing completions, building permits have detailed MSA-level information. In addition,

building permits are issued right before housing starts and therefore can predict price trends

in a timely manner.19 We measure new housing supply during the boom period by the

building permits issued in 2001-2006 relative to the existing housing units in 2000.

The first two panels of Figure 5 provide scatter plots of the housing price expansion and

contraction experienced by each MSA during the housing boom and bust periods, respec-

tively. To conveniently summarize the data, we include a spline line to fit each of the scatter

plots (the solid line in the plots), together with 95% confidence interval (the shaded area

around the spline line). These spline lines clearly indicate that the housing cycle was non-

monotonic with respect to supply elasticity– a hump-shaped pattern for the housing price

19Authorization to start is a largely irreversible process, with housing starts be-
ing only 2.5% lower than building permits at the aggregate level according to
https://www.census.gov/construction/nrc/nrcdatarelationships.html, the website of the Census Bu-
reau. Moreover, the delay between authorization and housing start is relatively short, on average less than
one month, according to https://www.census.gov/construction/nrc/lengthoftime.html. These facts suggest
that building permits are an appropriate measure of new housing supply.
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appreciation during the boom and a U-shaped pattern for the price drop during the bust.

In particular, the cycle was most pronounced for MSAs with intermediate, rather than the

lowest, supply elasticities.

One may be concerned that this non-monotonicity might be driven by the so-called

“sand states” (Arizona, California, Florida, and Nevada). These four states experienced

exceptional housing price booms and busts and, as several scholars including Davidoff (2013)

and Nathanson and Zwick (2018) have noted, were characterized by peculiar speculative

activities, such as land hoarding by real estate developers. In the scatter plots provided by

Figure 5, we differentiate the MSAs in the sand states by "+" and provide a separate spline

line (the dashed line in the plots) for observations excluding the sand-state MSAs. Indeed,

the MSAs in the sand states experienced relatively more pronounced price appreciations

during the boom and more severe price drops during the bust. Despite excluding these sand-

state observations, the hump-shaped pattern for the price appreciation during the boom and

the U-shaped pattern for the price drop during the bust remain significant, albeit with more

attenuated magnitudes.

In addition to the housing price cycle, the third panel of Figure 5 provides a scatter

plot of housing construction during the boom period, measured by new housing permits,

with respect to supply elasticity. There is noticeably also a hump-shaped pattern with

respect to supply elasticity, with MSAs in the intermediate elasticity range having the most

new construction, instead of areas with the most elastic housing supply. This hump-shaped

pattern is significant and robust to excluding the MSAs from the sand states. This surprising

pattern in new construction has received little attention in the literature, and nicely supports

our model implications.

Taken together, although common wisdom posits that supply elasticity attenuates hous-

ing cycles, we do not observe monotonic patterns across supply elasticity during the recent

U.S. housing cycle in either the magnitude of the housing price boom and bust or in new

construction. Instead, our analysis uncovers that MSAs with supply elasticities in an inter-

mediate range experienced not only the most dramatic price cycles, but also the most new

construction. While the number of MSAs in our sample is relatively small for a forceful test,

these patterns nevertheless lend support to our key model implication that in the presence

of informational frictions, volatility amplification induced by learning is most severe in areas

with intermediate supply elasticity.
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Existing models of housing cycles have diffi culty explaining these patterns. For example,

Glaeser, Gyourko, and Saiz (2008) shows that, in the presence of housing supply constraints

and extrapolative home buyer expectations, the overhang of housing supply developed during

the boom may cause areas with intermediate supply elasticities to suffer most dramatic

housing price drops during the subsequent bust. Their analysis, however, shows that housing

price appreciation is decreasing while new construction is increasing across supply elasticity

during the boom when the boom period is synchronized in the cross-section. Furthermore,

while Nathanson and Zwick (2018) identify land speculation by real estate developers as an

important mechanism driving the recent housing boom in intermediate elastic areas such

as Las Vegas, their analysis does not provide a systematic theory for the full spectrum of

housing cycles experienced across areas with different supply elasticities. In addition, the

hoarding of land by optimistic developers in intermediate elastic areas, while exacerbating

the housing price boom, has ambiguous implications about whether new construction is also

the most pronounced in those MSAs.

We next provide additional evidence with respect to the cross-MSA relation between

the housing cycle and a proxy for complementarity. Our model highlights complementarity

as another important characteristic that amplifies the learning effects in housing markets.

Specifically, Figures 2 and 3 show that, in the presence of informational frictions, there

are monotonically increasing patterns in the effects of the noise shock and the negative

supply shock on the magnitude of the housing price cycle with respect to complementarity,

and hump-shaped patterns in the effects of these shocks on new housing supply during the

boom. These patterns arise because complementarity, or the benefit from interacting with

other households, exacerbates the feedback from learning in the presence of informational

frictions.

We measure the degree of complementarity by non-tradable share of consumption in each

MSA, as non-tradables are driven by local demand and thus reflect the complementarity in

consumption of local residents.20 Specifically, we follow Mian and Sufi (2014) to identify

non-tradable industries. Because non-tradable consumption data are not generally available

across the U.S, we obtain the employment information across industries from County Busi-

ness Pattern (CBP) data in the Census Bureau, aggregate the information to the MSA level,

and calculate the share of employment in non-tradable industries as a proxy for consumption

20In unreported results, we have also used an alternative measure by the diversity of local industries, which
give very similar patterns as those reported in Figure 6.
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Figure 6: The U.S. housing cycle in 2000s across MSAs with different degrees of complementarity.
The solid and cross dots represent MSAs outside and inside the sand states (Arizona, California,
Florida and Neveda), respectively. The solid line is the spline line for all MSAs, while the dashed is
for MSAs outside the sand states. 95% confidence intervals are displayed for the full sample. The
standard errors are clustered at the state level.

complementarity. The higher is this ratio, local households rely more on local demand and

stronger complementarity from each other.

The three panels in Figure 6 provide scatter plots of the housing price change during the

boom period, the housing price change during the bust period, and new housing permits

during the boom, respectively, against our measure of complementarity in different MSAs.

The patterns match nicely with our model implications– the magnitudes of the price boom

and bust appear to be monotonically increasing across complementarity, while new construc-

tion is hump-shaped. To the extent that these patterns cannot occur in the benchmark case

with perfect information, Figure 6 confirms the empirical relevance of complementarity for

the impact of learning on housing markets.

5 Conclusion

We introduce a model of information aggregation in housing markets, and examine its conse-

quences for not only housing prices, but also for local economic outcomes such as new housing

construction and real investment in capital. Our framework provides a novel amplification
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mechanism through learning in housing markets, and offers rich empirical predictions for

the neighborhood’s response across supply elasticity and the degree of complementarity to

shocks originating from both demand and supply side factors in the presence of informational

frictions. Such predictions can help rationalize the puzzling non-monotonic patterns that we

uncover empirically across MSAs in the recent U.S. housing cycle.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The first order conditions of household i’s optimization problem in (2) respect to Ci (i) and
Cj (i) at an interior point are

Ci (i) :
1− ηc
Ci (i)

U
(
{Ck (i)}k∈N ;N

)
= θipi, (13)

Cj (i) :
ηc∫

N/iCjdj
U
(
{Ck (i)}k∈N ;N

)
= θipj, (14)

where θi is the Lagrange multiplier for the budget constraint. Rewriting (14) as

ηcCj∫
N/iCjdj

U
(
{Ck (i)}k∈N ;N

)
= θipjCj

and integrating over N , we arrive at

ηcU
(
{Ck (i)}k∈N ;N

)
= θi

∫
N/i

pjCjdj.

Dividing equations (13) by this expression leads to ηc
1−ηc

=
∫
N/i pjCj(i)dj

piCi(i)
, which in a symmetric

equilibrium implies pjCj (i) = 1
Φ(
√
τε(A−A∗))

ηc
1−ηc

piCi (i) . By substituting this equation back
to the household’s budget constraint in (2), we obtain

Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i .

The market-clearing for the household’s good requires that

Ci (i) +

∫
N/i

Ci (j) dj = (1− α) eAiKα
i l

1−α
i ,
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which implies that Ci (j) = 1
Φ(
√
τε(A−A∗))ηc (1− α) eAiKα

i l
1−α
i .

The first order condition in equation (13) also gives the price of the good produced by
household i. Since the household’s budget constraint in (2) is entirely in nominal terms, the
price system is only identified up to θi, the Lagrange multiplier. We therefore normalize θi
to 1. It follows that

pi =
1− ηc
Ci (i)

U
(
{Cj (i)}j∈N ;N

)
=
(
eAiKα

i l
1−α
i

)−ηc ( ∫N/i eAjKα
j l

1−α
j dj

Φ
(√

τ ε (A− A∗)
))ηc

. (15)

The first-order conditions for household i’s choice of li at an interior point is

lψi = (1− α) θipie
Ai

(
Ki

li

)α
. (16)

from equation (13). Substituting θi = 1 and pi with equation (15), it follows that

log li =
1

ψ + α + (1− α) ηc
log(1−α)+

1

ψ + α + (1− α) ηc
log

((
eAiKα

i

)(1−ηc)
( ∫

N/i e
AjKα

j l
1−α
j dj

Φ
(√

τ ε (A− A∗)
))ηc

)
.

(17)
The optimal labor choice of household i, consequently, represents a fixed point problem over
the optimal labor strategies of other households in the neighborhood.

Noting that Ki =
(
αpie

Ai l1−αi

R

) 1
1−α
from the first-order condition for Ki, we can substitute

in the price function pi to arrive at

logKi =
1

1− (1− ηc)α
log

((
eAil1−αi

)1−ηc

(
1

Φ
(√

τ ε (A− A∗)
) ∫
N/i

eAjKα
j l

1−α
j dj

)ηc
)

− 1

1− (1− ηc)α
logR +

1

1− (1− ηc)α
logα, (18)

which is a functional fixed-point problem for the optimal choice of capital. With some
manipulation, by adding a multiple 1−(1−ηc)α

ψ+α+(1−α)ηc
of equation (18) to equation (17), we have

logKi = (1 + ψ) log li − logα (1− α)− logR,

and substituting this back into equation (17), we arrive at the functional fixed-point equation

Ai + (1 + αψ) log li =
1 + ψ

(1− α)ψ + (1 + αψ) ηc
Ai −

(1 + αψ)α

(1− α)ψ + (1 + αψ) ηc
(logα(1− α) + logR)

+
1 + αψ

(1− α)ψ + (1 + αψ) ηc
(log(1− α)− ηc log Φ (

√
τ ε (A− A∗)))

+
(1 + αψ) ηc

(1− α)ψ + (1 + αψ) ηc
log

(∫
N/i

eAj l1+αψ
j dj

)
. (19)
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Given that household i’s optimal labor supply li satisfies the functional fixed-point equation
(19), let us conjecture for i for which Ai ≥ A∗, so that i ∈ N is in the neighborhood, that

log li = l0+lAA+lsAi+lR logR+lΦ log
e

1
2

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε Φ

(
(1 + (αhs + (1− α) ls)) τ

−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) ,

where R is the rental rate of capital. Substituting these conjectures into the fixed-point
recursion for labor, equation (17), we arrive, by the method of undetermined coeffi cients, at
the coeffi cient restrictions:

l0 =
1

2

1

1− α
ηc
ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε +

α

1− α
1

ψ
logα +

1

ψ
log (1− α) ,

lA =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
,

ls =
1− ηc

(1− α)ψ + (1 + αψ) ηc
,

lR = − α

1− α
1

ψ
,

lΦ =
1

1− α
ηc
ψ
,

which confirms the conjecture for Ai ≥ A∗. It is straightforward to verify from these expres-
sions that dlA

dηc
> 0 > dlA

dηc
. In addition, it follows that

logKi = (1 + ψ) lsAi + (1 + ψ) lAA+
ψ + α

α
lR logR

+ (1 + ψ) lΦ log e
1
2

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) + h0,

Substituting this functional form for the labor supply and capital demand of household i
into equation (15), the price of household i′s good then reduces to

pi = e
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc(A−Ai)+ 1

2
ηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

ηc

.

To arrive at the expressions in the statement of the proposition, we define ϕ = 1+ψ
(1−α)ψ+(1+αψ)ηc

and recognize that

e
1
2
ϕ2τ−1

ε

Φ
(
ϕτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) = E

[
eϕ(Aj−A) | A,Aj ≥ A∗

]
.

Furthermore, given equation (1), it follows since Ci (i) = (1− ηc) (1− α) eAiKα
i l

1−α
i , Cj (i) =

1
Φ(
√
τε(A−A∗))ηc (1− α) eAjKα

j l
1−α
j , and the optimal choice of li that

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

= (1− α)
ψ

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] ,
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from substituting with the household’s budget constraint at t = 2.

A.2 Proof of Proposition 2

Substituting the optimal demand for capital Ki into the market-clearing condition for the
capital in (7) reveals that the price R is given by

logR =
1 + ψ

ψ + α
A− (1− α)

ψ

ψ + α
logK + logα +

1− α
ψ + α

log (1− α)

+
1 + ψ

ψ + α
ηc log

e
1
2

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

+ (1− α)
ψ

ψ + α
log

e
1
2

(1−ηc)2
(

1+ψ
(1−α)ψ+(1+αψ)ηc

)2
τ−1
ε Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) ,

where K is the total amount of capital developed by capital producers at t = 1

Since market-clearing in the market for capital imposes that K
∫
i∈N di =

∫
i∈N Kidi, it

follows from equation (4) that the optimal choice of how much capital that capital producers
create is given by

logK =
1

λ− α 1+ψ
ψ+α

logE

e 1+ψ
ψ+α

A

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


1+ψ
ψ+α

ηc

·

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


ψ(1−α)
ψ+α

∣∣∣∣∣∣∣∣ I
c

+ k0,

with constant k0 is given by

k0 =
logα + 1−α

ψ+α
log (1− α) + 1

2

(
1+ψ
ψ+α

ηc + (1− α) ψ
ψ+α

(1− ηc)
2
)(

1+ψ
(1−α)ψ+(1+αψ)ηc

)2

τ−1
ε

λ− α 1+ψ
ψ+α

.

Defining ϕ = 1+ψ
(1−α)ψ+(1+αψ)ηc

and recognize that

e
1
2
ϕ2τ−1

ε

Φ
(
ϕτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) = E

[
eϕ(Aj−A) | A,Aj ≥ A∗

]
,

e
1
2

(1−ηc)2ϕ2τ−1
ε

Φ
(

(1− ηc)ϕτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
) = E

[
e(1−ηc)ϕ(Aj−A) | A,Aj ≥ A∗

]
.

we arrive at the expressions in the statement of the proposition.
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A.3 Proof of Proposition 3

We now derive household i’s optimal cutoff, given that other households all use an equilibrium
cutoffA∗. By substituting for prices, the optimal labor and capital choices of household i, the
realized capital price R, and capital demand Ki from Proposition 2, the utility of household
i at t = 1 from choosing to live in the neighborhood is

E [Ui|Ii] = (1− α)
ψ

1 + ψ
e
u0+uAA+

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

uΦ

×

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

(1−λ)
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

,

where

u0 =
1 + ψ

2 (1− α)ψ

(
ληc

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

− α (λ− 1)

λ− α 1+ψ
ψ+α

ψ (1− α)

ψ + α
(1− ηc)

2

)(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
ε

+
1

ψ

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

(
α

1− α (1 + ψ) logα + λ log (1− α)

)
,

uA =
1

1− α
1 + ψ

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − (λ− 1)

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,

uΦ =
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

ηc > 0.

Since the household with the critical productivity A∗ must be indifferent to its moving
decision at the cutoff, it follows that Ui − P = 0, which implies

e
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
Ai

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)

uΦ
Φ

(
(1+ψ)(1−ηc)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(√

τ ε (A− A∗)
)


(1−λ)α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

=
1 + ψ

ψ (1− α)
e−u0−uAAP, with Ai = A∗ (20)

which implies the benefit of living with more productive households is offset by the higher
cost of living in the neighborhood.
Fixing the critical value A∗ and price P, we see that the LHS of equation (20) is increasing

in monotonically in Ai, since
1+ψ

(1−α)ψ+(1+αψ)ηc
(1− ηc) > 0. This confirms the optimality of

the cutoff strategy that households with Ai ≥ A∗ enter the neighborhood, and households
with Ai < A∗ choose to live somewhere else. Since Ai = A+εi, it then follows that a fraction
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Φ
(
−√τ ε (A∗ − A)

)
enter the neighborhood, and a fraction Φ

(√
τ ε (A∗ − A)

)
choose to live

somewhere else. As one can see, it is the integral over the idiosyncratic productivity shocks
of households εi that determines the fraction of households in the neighborhood.
From the optimal supply of housing by builder i in the neighborhood (6), there exists a

critical value ω∗:
ω∗ = − (1 + k) logP, (21)

such that builders with productivity ωi ≥ ω∗ build houses. Thus, a fractionΦ
(
−√τ e (ω∗ − ξ)

)
build houses in the neighborhood. Imposing market-clearing, it must be the case that

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is monotonically increasing, we can invert the
above market-clearing conditions, and impose equation (21) to arrive at

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)
. (22)

By substituting for P in equation (20), we obtain an equation to determine the equilibrium
cutoff A∗ = A∗ (A, ξ)

e

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
+

√
τε/τe
1+k

)
A∗

Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)uΦ

Φ
(
A−A∗
τ
−1/2
ε

)uΦ

=
1 + ψ

ψ (1− α)
e

(√
τε/τe
1+k

−uA
)
A− 1

1+k
ξ−u0

. (23)

Taking the derivative of the log of the LHS of equation (23) with respect to A∗ gives

d logLHS

dA∗

= uΦ
1

τ
−1/2
ε

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
+

(1 + ψ) (1− ηc)
(1− α)ψ + (1 + αψ) ηc

+
1

1 + k

√
τ ε
τ e
− 1

τ
−1/2
ε

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
 .

The term in parentheses are nonnegative by the properties of the normal CDF. The last
term is nonpositive, since λ > 1, and attains its minimum at A∗ → ∞, from which follows,
substituting for uΦ, that

as A∗ →∞, d logLHS

dA∗
→ 1

1 + k

√
τ ε
τ e

+
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

> 0.
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Consequently, since d logLHS
dA∗ > 0 when the last term attains its (nonpositive) minimum,

it follows that d logLHS
dA∗ > 0. Therefore, logLHS, and consequently LHS, is monotonically

increasing in A∗. Since the RHS of equation (23) is independent of A∗, it follows that the
LHS and RHS of equation (23) intersect at most once. Therefore, the can be, at most, one
cutoff equilibrium. Furthermore, since the LHS of equation (23) tends to 0 as A∗ → −∞,
and the RHS is nonnegative, it follows that a cutoff equilibrium always exists. Therefore,
there exists a unique cutoff equilibrium in this economy.
It is straightforward to apply the Implicit Function Theorem to (23) to obtain

dA∗

dA
=

1
1+k

√
τε
τe
− d logLHS

dA
− uA

d logLHS
dA∗

dA∗

dξ
= − 1

1 + k

1
d logLHS
dA∗

< 0,

where

d logLHS

dA
= −uΦ

1

τ
−1/2
ε

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)


+
1

τ
−1/2
ε

(λ− 1)
α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ
(
A−A∗
τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) − φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)
 .

Note that the nonpositive term in d logLHS
dA

achieves its minimum at A→ −∞, at which

d logLHS

dA
→ ((λ− 1)α (1− ηc)− ληc)

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

1 + ψ

(1− α)ψ + (1 + αψ) ηc
.

Then, as A→ −∞, the numerator of dA∗
dA

converges to

1

1 + k

√
τ ε
τ e
− d logLHS

dA
− uA → A→−∞ −

(1 + ψ)

(
((λ−1)α(1−ηc)−ληc)

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+ 1
1−α

1+ψ
ψ
ηc

)
(1− α)ψ + (1 + αψ) ηc

+
1

1− α
1 + ψ

ψ

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

+
1

1 + k

√
τ ε
τ e
,

which is positive. Consequently dA∗

dA

∣∣
A∗=−∞ > 0. In contrast, as A∗ →∞, one has that

1

1 + k

√
τ ε
τ e
− d logLHS

dA
− uA

→ A→∞
1

1 + k

√
τ ε
τ e
− 1

1− α
1 + ψ

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − (λ− 1)

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,
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which is negative if

ηc > η∗c = (1− α)
ψ

1 + αψ

ψ
1+ψ

1−α
1+k

√
τε
τe

+ (λ− 1)
α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

1+ψ
1+αψ

− ψ
1+ψ

1−α
1+k

√
τε
τe
− (λ− 1)

α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

. (24)

We can rewrite equation (23) as

e
−
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

+ 1
1+k

√
τε
τe

)
s

Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
ε

)
Φ
(

s

τ
−1/2
ε

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
ε

)uΦ

Φ
(

s

τ
−1/2
ε

)uΦ

=
1 + ψ

ψ (1− α)
e
−λ 1

1−α
1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

A− 1
1+k

ξ−u0

,

where s = A−A∗ determines the population that enter the neighborhood. It is straightfor-
ward to show that

d logLHS

ds
= −d logLHS

dA∗
< 0.

Consequently, we have

ds

dξ
= −

1
1+k

d logLHS
ds

> 0,

ds

dA
= −

λ 1
1−α

1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

d logLHS
ds

> 0.

Thus, the population that enters, Φ
(√

τ εs
)
, is increasing in A and ξ. Furthermore, it follows

from (22) that
d logP

dA
=

1

1 + k

√
τ ε
τ e

ds

dA
> 0,

and therefore the log housing price is increasing in A.
Finally, we recognize that

d2P

dA2
=

(
ds

dA

)2

P +
d2s

dA2
P =

(
ds

dA

)2

P +
λ 1

1−α
1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α(

d logLHS
ds

)2

ds

dA

d2 logLHS

ds2
P,

where λ 1
1−α

1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

ds
dA

> 0 by the above arguments. It follows that from calculating

d2 logLHS
ds2

that

lim
s→−∞

d2 logLHS

ds2
= (λ (α− ηc)− α)

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

1

τ−1
ε

,
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and therefore, as P →∞, from the expression for d2P
dA2 one has that d2P

dA2 →∞. Furthermore,
as s→ −∞,

d logLHS

ds
→ −

(
1

1 + k

√
τ ε
τ e

+
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,

and

lim
s→∞

d2 logLHS

ds2
= 0,

and P → 0 at an exponential rate. Consequently, as s → −∞, d2P
dA2 → 0. Since d2P

dA2 is
continuous, it follows that d2P

dA2 ≥ 0. Consequently, P is convex in A. Since, in equilibrium,
the housing price is equal to the utility of the household with the cutoff productivity, it
follows that this utility is also convex and increasing in A.

A.4 Proof of Proposition 4

Given our assumption about the suffi cient statistic in housing price, each household’s pos-
terior about A is Gaussian A |Ii ∼ N

(
Âi, τ̂

−1
A

)
with conditional mean and variance of

Âi = Ā+ τ−1
A

[
1 1 1

]  τ−1
A + τ−1

Q τ−1
A τ−1

A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ τ−1
A

τ−1
A τ−1

A τ−1
A + τ−1

ε

−1  Q− Ā
z (P )− Ā
Ai − Ā


= τ̂−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P ) + τ εAi
)
,

τ̂A = τA + τQ + z2
ξ τ ξ + τ ε.

Note that the conditional estimate of Âi of household i is increasing in its own productivity
Ai. Similarly, the posterior for capital producers about A is Gaussian A |Ic ∼ N

(
Âc, τ̂ c−1

A

)
,

where

Âc = Ā+ τ−1
A

[
1 1

] [ τ−1
A + τ−1

Q τ−1
A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ

]−1 [
Q− Ā

z (P )− Ā

]
= τ̂ c−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P )
)
,

τ̂ cA = τA + τQ + z2
ξ τ ξ.

This completes our characterization of learning by households and capital producers.
We now turn to the optimal decision of capital producers. Since the posterior for A−A∗

of households is conditionally Gaussian, it follows that the expectations in the expression of
K in Proposition 2 is a function of the two conditional moments, Âc − A∗ and τ̂ cA. Let

F
(
Âc − A∗, τ̂ cA

)
= E


 e(A−A∗)Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
ε + A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc+ψ(1−α)
1+ψ

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + A−A∗

τ
−1/2
ε

)−ψ(1−α)
1+ψ


1+ψ
ψ+α

∣∣∣∣∣∣∣∣∣ I
c

 .
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Define z = A−A∗
τ
−1/2
ε

and the function f (z)

f (z) = eτ
−1/2
ε z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)ηc
Φ (z)ηc

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ (z)


ψ

1+ψ
(1−α)

,

which is the term inside the bracket in the expectation. Then, it follows that

1

f (z)

df (z)

dz
= τ−1/2

ε + ηc

φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − φ (z)

Φ (z)


+

ψ

1 + ψ
(1− α)

φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − φ (z)

Φ (z)

 .

Notice that
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

) − φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying

L’Hospital’s Rule, it follows that the minimum of 1
f(z)

df(z)
dz

is given by

lim
z→−∞

1

f (z)

df (z)

dz
= α

1 + ψ

ψ + α + (1− α) ηc
(1− ηc) τ−1/2

ε > 0

from which follows that 1
f(z)

df(z)
dz
≥ 0 for all z, and therefore df(z)

dz
≥ 0, since f (z) ≥ 0.

Consequently, since f (z)
1+ψ
ψ+α is a monotonic transformation of f (z) , it follows that dF

dx
(x, τ̂A)

≥ 0 since this holds for all realizations of A − A∗. This establishes that the optimal choice
of capital is increasing with Âc, since f (z) is increasing for each realization of z.
The optimal choice of K then takes the following form

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0.

By substituting the expressions for Ki and li into the utility of household i given in Propo-
sition 1, we obtain

E [Ui|Ii]

= (1− α)
ψ

1 + ψ
e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc−α

1+ψ
ψ+α

)
A∗+u0

·E


e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc−α
Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)α


1+ψ
ψ+α

∣∣∣∣∣∣∣∣ Ii
 ,

where u0 is given in the proof of Proposition 3. When Ai = A∗, this further reduces to
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E [Ui|Ii]

= (1− α)
ψ

1 + ψ
e

λ
1+ψ
ψ+α

λ−α 1+ψ
ψ+α

A∗+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

logF(Âc−A∗,τ̂cA)+u0

·E


e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc−α
Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)α


1+ψ
ψ+α

∣∣∣∣∣∣∣∣ Ii
 ,

Since the posterior for A − A∗ of household i is conditionally Gaussian, it follows that the
expectations in the expressions above are functions of the first two conditional moments
Âi − A∗ and τ̂A. Let

G
(
Âi − A∗, τ̂A

)
= E


e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ
(

(1+ψ)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)ηc
Φ
(
A−A∗
τ
−1/2
ε

)ηc−α
Φ
(

(1+ψ)(1−ηc)τ
−1/2
ε

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
ε

)α


1+ψ
ψ+α

∣∣∣∣∣∣∣∣ Ii


Define z = A−A∗
τ
−1/2
ε

, and

g (z) = e
1

1−α
ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
τ
−1/2
ε z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)ηc
Φ (z)ηc

·
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ (z)−α

−α

,

as the term inside the bracket. Then, it follows that

1

g (z)

dg (z)

dz
=

1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ−1/2
ε + (α− ηc)

φ (z)

Φ (z)

+ηc

φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − αφ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) .
Note

φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε +z

)− φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying L’Hospital’s

Rule, it follows, with some manipulation, that the minimum of 1
g(z)

dg(z)
dz

is given by

lim
z→−∞

1

g (z)

dg (z)

dz
= 0.

It follows that 1
g(z)

dg(z)
dz
≥ 0, and therefore dg(z)

dz
≥ 0, since g (z) ≥ 0. Consequently, since

g (z)
1+ψ
ψ+α is a monotonic transformation of g (z) , it follows that dG

dx
(x, τ̂A) ≥ 0, since this

holds for all realizations of A− A∗.
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Since the household with the critical productivity A∗ must be indifferent to its moving
decision at the cutoff, it follows that Ui − P = 0, which implies

e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
A∗+u0

·G
(
Âi − A∗, τ̂A

)
=

1 + ψ

ψ (1− α)
P, Ai = A∗ (25)

which does not depend on the unobservedA or the supply shock ξ.As such, A∗ = A∗ (logP,Q) .

Furthermore, since Â∗i is increasing in Ai and G
(
Â∗i − A∗, τA

)
is (weakly) increasing in Âi, it

follows that the LHS of equation (25) is (weakly) monotonically increasing in Ai, confirming
the cutoff strategy assumed for households is optimal. Those with the RHS being nonnega-
tive enter the neighborhood, and those with it being negative choose to live elsewhere.
It then follows from market-clearing that

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is monotonically increasing, we can invert the
above market-clearing condition, and impose equation (21) to arrive at

logP =
1

1 + k

(√
τ ε
τ e

(A− A∗)− ξ
)
,

from which follows that

z (P ) =

√
τ e
τ ε

(
(1 + k) logP + ξ̄

)
+ A∗ = A−

√
τ e
τ ε

(
ξ − ξ̄

)
,

and therefore zξ =
√

τε
τe
. This confirms our conjecture for the suffi cient statistic in housing

price and that learning by households is indeed a linear updating rule.
As a consequence, the conditional estimate of household i is

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξz + τ εAi

)
,

τ̂A = τA + τQ +
τ ε
τ e
τ ξ + τ ε,

and the conditional estimate of capital producers is

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ ε
τ e
τ ξz

)
,

τ̂ cA = τA + τQ +
τ ε
τ e
τ ξ.

Substituting for prices, and simplifying A∗ terms, we can express equation (25) as

e

(
λ

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+

√
τε/τe
1+k

)
A∗

G
(
Â∗ − A∗, τ̂A

)
F
(
Âc − A∗, τ̂ cA

) α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α =

1 + ψ

ψ (1− α)
e

1
1+k

√
τε
τe
z−ξ̄−u0 ,

(26)
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Notice that the LHS of equation (26) is continuous in A∗. As A∗ → −∞, the LHS of equation
(26) converges to

lim
A∗→−∞

LHS = 0.

Furthermore, by L’Hospital’s Rule and the Sandwich Theorem, one also has that

lim
A∗→∞

LHS =∞.

Since the RHS is independent of A∗, it follows that the LHS and RHS intersect once. There-
fore, a cutoff equilibrium in the economy with informational frictions exists.
Now consider the derivative of the log of the LHS of equation (26):

d logLHS

dA∗
=

λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

+

√
τ ε/τ e

1 + k
− τ̂ cA
τ̂A

G′
(
Â∗ − A∗, τ̂A

)
G
(
Â∗ − A∗, τ̂A

) − α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

F ′
(
Âc − A∗, τ̂ cA

)
F
(
Âc − A∗, τ̂ cA

) ,
where G′ (·, τ̂A) and F ′ (·, τ̂ cA) are understood to be first derivatives with respect to the first
argument. From our derivation of 1

f(z)
df(z)
dz

above, we recognize that

1

f (z)

df (z)

dz
≤ τ−1/2

ε ,

since the latter two terms are nonpositive. Furthermore, we can rewrite

F ′
(
Â∗ − A∗, τ̂A

)
F
(
Â∗ − A∗, τ̂A

) = E

 f (√τ ε (A− A∗)
)

F
(
Â∗ − A∗, τ̂A

) ( d log f (z)

dz z=
√
τε(A−A∗)

√
τ ε

)∣∣∣∣∣∣ Ic
 ,

where E
[
f(
√
τε(A−A∗))

F(Â∗−A∗,τ̂A)

∣∣∣∣ Ii] = 1, so that wfa =
f(
√
τε(a−A∗))

F(Â∗−A∗,τ̂A)
acts as a weighting function. We

can take the derivative inside the expectation because f (z) has a continuous first derivative.
It then follows that

F ′
(
Â∗ − A∗, τ̂A

)
F
(
Â∗ − A∗, τ̂A

) ≤ max
A

d log f (z)

dz z=
√
τε(A−A∗)

≤ 1.

Similarly, recognizing that

φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) − φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
ε + z

) ≥ 0.

we can bound 1
g(z)

dg(z)
dz

by

1

g (z)

dg (z)

dz
≤ 1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ−1/2
ε .
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If ηc ≥ α, since the latter two terms are always nonpositive, and

1

g (z)

dg (z)

dz
≤ 1 + ψ

(1− α)ψ + (1 + αψ) ηc
αηcτ

−1/2
ε ,

if ηc < α, since the second term then attains its maximum as z → −∞, and we have
truncated the third term. Consequently,

G′
(
Â∗ − A∗, τ̂A

)
G
(
Â∗ − A∗, τ̂A

) ≤ { 1
1−α

ψ+α
ψ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc − α 1+ψ

ψ+α

)
, if ηc ≥ α

1+ψ
(1−α)ψ+(1+αψ)ηc

αηc, if ηc < α
.

If ηc < α, then, since τ̂cA
τ̂A
≤ 1 and 1+ψ

ψ+α
> 1, so that λ−α

λ−α 1+ψ
ψ+α

1+ψ
ψ+α

> 1, we can bound d logLHS
dA∗

from below by

d logLHS

dA∗
≥ 1 +

√
τ ε/τ e

1 + k
− 1 + ψ

(1− α)ψ + (1 + αψ) ηc
αηc > 0,

since 1+ψ
(1−α)ψ+(1+αψ)ηc

αηc < 1. If ηc ≥ α, then, since τ̂
c
A

τ̂A
≤ 1 and 1+ψ

ψ+α
> 1, so that λ−α

λ−α 1+ψ
ψ+α

1+ψ
ψ+α

>

1, we can bound d logLHS
dA∗ from below by

d logLHS

dA∗
≥ 1 +

α

1− α
1 + ψ

ψ
+

√
τ ε/τ e

1 + k
− 1

1− α
ψ + α

ψ

1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc

=
(ψ + α) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
+

√
τ ε/τ e

1 + k
> 0.

Consequently, d logLHS
dA∗ ≥ 0, and therefore the LHS of equation (26) is (weakly) monotonically

increasing in A∗. Since the LHS of equation (26) is monotonically increasing in A∗, while
the RHS is fixed, it follows that the cutoff equilibrium is unique. Therefore, there exists a
unique cutoff equilibrium with informational frictions.
Since Âc and Â∗i are both increasing in the public signal Q, it follows by applying the

Implicit Function Theorem to equation (26) that

dA∗

dεQ
< 0,

where εQ is the noise in Q, since the LHS of equation (26) is nonnegative and (weakly)
monotonically increasing in A∗. Since the noise in the public signal is independent of A, it
follows that ds

dεQ
> 0, and more households enter the neighborhood in response to a more

positive noise shock. Similarly, it also follows that dP
dεQ

> 0, and the housing price increases
in response to the stronger housing demand.
By applying the Implicit Function Theorem to equation (26) with respect z, we see that

dA∗

dz
=

1
1+k

√
τε
τe
− G′(Â∗−A∗,τ̂A)

G(Â∗−A∗,τ̂A)

τε
τe
τξ

τA+τQ+ τε
τe
τξ+τε

− α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

F ′(Âc−A∗,τ̂cA)
F(Âc−A∗,τ̂cA)

τε
τe
τξ

τA+τQ+ τε
τe
τξ

d logLHS
dA∗

.
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Since
G′(Â∗−A∗,τ̂A)
G(Â∗−A∗,τ̂A)

,
F ′(Âc−A∗,τ̂cA)
F(Âc−A∗,τ̂cA)

> 0, we can find a suffi cient condition for the learning

effect to dominate the cost effect by truncating the
G′(Â∗−A∗,τ̂A)
G(Â∗−A∗,τ̂A)

term and recognizing

F ′(Âc−A∗,τ̂cA)
F(Âc−A∗,τ̂cA)

≥ α 1+ψ
ψ+α+(1−α)ηc

(1− ηc) , since 1
f(z)

df(z)
f(z)

achieves its minimum at this value. It

then suffi ces for the learning effect to dominate the cost effect that

1

1 + k

√
τ ε
τ e
−

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

α
1 + ψ

ψ + α + (1− α) ηc
(1− ηc)

τε
τe
τ ξ

τA + τQ + τε
τe
τ ξ
≤ 0,

from which follows that it is suffi cient, although not necessary, that

1 + k

1 + τe
τετζ

(τA + τQ) k
≥
λ− α 1+ψ

ψ+α

α 1+ψ
ψ+α

ψ + α + (1− α) ηc
α (1− ηc) (1 + ψ)

√
τ ε
τ e
,

for dA∗

dz
< 0. As a consequence, more households enter in response to the information in a

higher housing price, and this impact is in(de)creasing in k if τe
τετζ

(τA + τQ) ≤ (>) 1. It
then follows that, in addition, dP

dz
> 0 and more households also enter the neighborhood.

Finally, as τQ ↗ ∞, that Âc, Âi → a.s.A, since τ̂
c
A, τ̂

i
A ↗ ∞. Taking the limit along a

sequence of τQ, equation (25) converges to equation (23), and therefore A∗ converges to its
perfect-information benchmark value, as do the optimal labor and capital supply. There-
fore the noisy rational expectations cutoff equilibrium converges to the perfect-information
benchmark economy as τQ ↗∞.

A.5 Proof of Proposition 5

We begin with our analysis of the equilibrium at t = 2, after informational frictions have
dissipated after an arbitrary profile of housing policies by households. To see that this is the
unique equilibrium in the economy, define the operator T : Bφ (R) → Bφ (R) characterizing
the optimal household i’s optimal labor choice:

T (x (i)) =
(1 + αψ) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
Ai −

(1 + αψ)α

(1− α)ψ + (1 + αψ) ηc
(logα(1− α) + logR)

+
1 + αψ

(1− α)ψ + (1 + αψ) ηc
log(1− α)− (1 + αψ) ηc

(1− α)ψ + (1 + αψ) ηc
logE

[
1{Hj=1}

]
+

(1 + αψ) ηc
(1− α)ψ + (1 + αψ) ηc

logE
[
eAj+x(j)1{Hj=1}

]
, (27)

where Bφ (R) is the space of functions φ−bounded in the φ−norm ‖f‖φ = supz
|f(z)|
φ(z)

for
φ (z) > 0. When households follow a cutoff strategy, then E

[
1{Hj=1}

]
= Φ

(√
τ ε (A− A∗)

)
and E

[
eAj+x(j)1{Hj=1}

]
= E

[
eAj+x(j)1{ Aj≥A∗}

]
.We introduce the weighted norm since x (i)

is potentially unbounded. T (x (i)) is continuous across i, since the expectation operator is

52



bounded and preserves continuity for lognormal Aj. Furthermore, T (·) satisfies monotonicity
T (y (i)) ≥ T (x (i)) whenever y (i) ≥ x (i) (∀ i), and discounting since

T (x (i) + β) = T (x (i)) +
(1 + αψ) ηc

(1− α)ψ + (1 + αψ) ηc
β < T (x (i)) + βφ (x∗) ,

for x∗ = arg sup ‖f‖φ(·) and a constant β > 0. T is therefore a strict contraction map by
the Weighted Contraction Mapping Theorem of Boyd (1990). Since a contraction map has,
at most, one fixed point, if an equilibrium with a continuous x (i) exists, it is the unique
equilibrium, at least within the class of functions bounded in the φ− sup norm. Notice now
that the choice of φ (·) is arbitrary, as it does not impact the contractive properties of T (·) .21

We therefore conclude the x (i) that solves the fixed-point equation is unique.
Since x (i) = (1 + αψ) li is unique in the economy, it follows that the function for capital

Ki is also unique. As such, total capital demand in the economy is unique, and the market-
clearing rental rate R is therefore also unique. Consequently, the equilibrium we derived is
the unique equilibrium at t = 2 in the economy, given the household decision strategy at
t = 1, {Hi}i∈[0,1] .

In addition, we recognize from the functional fixed-point equation (27) that li is strictly
increasing in Ai, since one can take a sequence lki = T lk−1

i , for which lki is strictly increasing
in Ai along the sequence, and take the limit as k →∞. Furthermore, li conditional on Ai is
increasing in A from the functional fixed-point equation (27) by similar arguments, since li
is strictly increasing in eAj = eA+εj for any arbitrary housing policy.
We now turn our attention to t = 1. Consider the problem of household i when all

other households follow arbitrary strategy profiles. Solving for the household i′s optimal
consumption and production decisions at t = 2, it follows we can express Ki and pi as

Ki =
1

α (1− α)R
l1+ψ
i ,

pi =
(
eAil1+αψ

i

)−ηc (
E
[
1{Hj=1}

]−1
∫
N/i

eAj l1+αψ
j dj

)ηc
,

and, by imposing market-clearing in the market for capital, the price of capital is given by

R =
1

α (1− α)

1

E
[
1{Hj=1}

] 1

K

∫
N
l1+ψ
j dj.

Since household i is atomistic, it follows, by substituting for pi, Ki, and R, that

E [Ui |Ii] = (1− α)
ψ

1 + ψ
E

[(
eAil1+ψα

i

)1−ηc
E
[
eAj l1+ψα

j | j ∈ N
]ηc

E
[
l1+ψ
j | j ∈ N

]−α
Kα

∣∣∣∣ | Ii] .
(28)

21The choice of φ (·) is not entirely without loss, as existence depends on the space of φ−bounded functions
being a complete metric space.
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Now fix K as a parameter, since it is publicly observable to all households. Note that the
term eAil1+ψα

i is increasing in Ai, ignoring indirect effects through inference about A, and in
A conditional on Ai, since li is increasing in these arguments. Now suppose that A increases
to (1 + ε)A, holding fixed Ai, P, and K, and this increases lj to (1 + δ) lj for all j. Then

∆E [Ui |Ii]
E [Ui |Ii]

= (1 + ε) (1 + δ)1−α > 0,

and E [Ui |Ii] is also increasing in A.22 As all households share a common posterior about
A after observing the housing price, their private beliefs about A and their private type
Aj are perfectly positively correlated. Consequently, we can express the expected utility of
household i as

E [Ui |Ii] = h (Ai, P,Q)Kα,

with ∂h
∂Ai

> 0 since the argument in the expectation is increasing in Ai and A realization-by-
realization.
It then follows that household i will follow a cutoff strategy, and buy if

Ai ≥ h−1 (P/Kα, P,Q) ,

with the cutoff determined by the participation of other households in the neighborhood.
This confirms the optimality of their cutoff strategy in their private type. As this holds for
any P and K, the result follows for any P and K.
In the special case of perfect information, we can expressE [Ui |Ii] = (1− α) ψ

1+ψ
f (Ai) g (N ) ,

with f (Ai) =
(
eAil1+ψα

i

)1−ηc
is strictly increasing in Ai, while g (N ) is independent of Ai.

Household i will then follow a cutoff strategy, and buy if

Ai ≥ f−1 (P/g (N ))

with the cutoff determined by the participation of other households in the neighborhood.
Furthermore, we recognize that builders, regardless of their beliefs about demand fun-

damental, A, will follow cutoff strategies when choosing whether to supply a house. By
market-clearing and rational expectations, the functional form for the housing price and the
equilibrium beliefs of households follow.
Given that the housing price has the conjectured functional form, capital producers

form rational expectations about A, and their optimal supply of capital is unique from the
concavity of their optimization program. As such, the cutoff equilibrium we characterized
is the unique rational expectations equilibrium in the economy, both with informational
frictions and perfect-information.

22In the background, the utility of households, conditional on A, is supermodular in Ai and the actions of
the other households.
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