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1 Introduction

Financial constraints can affect a firm’s optimal capital investment, even when the constraints

are not binding. They can also affect the relationship between investment and average q,

without changing the relationship between investment and suitably-defined marginal q. We

develop a simple dynamic stochastic model of a firm that faces an explicit financial constraint

and we derive the optimal capital investment and payout decisions of the firm. We also

derive the value of the firm, which allows us to derive expressions for average q and marginal

q. We show that even when the financial constraint is not binding, it reduces the value of

the firm, thereby reducing average q, marginal q, and investment. More interesting is our

finding that the financial constraint derives a wedge between marginal q and its commonly-

used empirical proxy, average q, even if average q and marginal q would be identically equal

to each other in an otherwise-identical model without financial constraints. This wedge

has important implications for regressions of the investment-capital ratio on average q, with

or without cash flow as an additional regressor. Importantly, we demonstrate that the

estimated coefficient on cash flow in investment regressions conflates the impacts of financial

constraints and the impact of the expected present value of future profitability.

By design, the non-financial aspects of the firm’s decision problem are simple in order to

allow explicit solutions for various variables of interest. The firm’s operating profit at any

point in time is the product of an exogenous profitability parameter and the capital stock.

The exogenous profitability parameter alternates stochastically in continuous time between

a positive value and a negative value, according to a Markov regime-switching process. The

firm can change its capital stock by purchasing or selling capital at a price normalized to one

and incurring an adjustment cost. The adjustment cost function is linearly homogeneous

in the rate of investment and the level of the capital stock and is convex in the rate of

investment. Therefore, the non-financial environment satisfies the Hayashi conditions,1 so

average q would equal marginal q in the absence of financial constraints. Consistent with

much of the literature, the adjustment cost function is quadratic in the investment-capital

ratio, so the optimal investment-capital ratio is linear in marginal q.

To obtain closed-form expressions for various aspects of the firm’s valuation and optimal

behavior, we consider the limiting case in which the adjustment cost scale factor becomes

arbitrarily large. Rather than leading to very large adjustment costs when the firm im-

1The proportionality of profit to the capital stock and the linear homogeneity of the cost of investment
together satisfy the Hayashi conditions.
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plements its optimal investment policy, the total adjustment cost becomes negligible as the

adjustment cost scale factor becomes arbitrarily large. Nevertheless, as we show, the realized

marginal adjustment cost does not vanish, so optimal investment is given by the standard

equalization of marginal q and one plus the marginal adjustment cost.

We introduce financial constraints in a very stark form. We assume that once a firm

acquires and installs its initial capital stock, it cannot raise any external funds. The firm

cannot issue debt or equity, and it cannot pay negative dividends. When the favorable regime

prevails, the firm reaps positive profits from operations, which it can use to pay dividends,

undertake investment, or accumulate cash on hand. However, when the unfavorable regime

prevails, the firm has negative profits from operations. In order to be able to pay costs in

excess of revenues, the firm must use some of its accumulated cash on hand.2 If the firm

runs out of cash while profits are negative, it must terminate immediately and permanently,

thereby losing its claim on future cash flows from operations. If the anticipated foregone

cash flows are sufficiently large, the firm has an incentive to accumulate cash on hand in the

favorable regime in order to allow it to survive for at least a while when the next unfavorable

regime arrives. Shareholders balance this incentive to accumulate cash on hand against

their desire to receive dividends sooner rather than later.

In the presence of the financial constraints we analyze, cash on hand becomes a second

asset held by the firm in addition to its physical capital stock, so the firm’s overall opti-

mization problem has three state variables (profitability, capital, and cash on hand). The

firm manages its two assets, cash and capital, through its payout and investment decisions,

respectively. The payout decision determines how much of its cash flow net of investment

the firm pays out as dividends and how much it retains within the firm. Importantly, the

addition of cash on hand as a state variable destroys the equality of average q and marginal

q despite the fact that the non-financial aspects of the firm satisfy the Hayashi conditions.

Nevertheless, the value function of the firm is linearly homogeneous in capital and cash on

hand, and we exploit this homogeneity to obtain closed-form solutions for the value of the

firm as well as for optimal investment and dividends.3

With the quadratic specification of adjustment costs, the optimal investment-capital

2The adjustment function is scaled so that any proceeds from selling capital, net of adjustment costs, will
not be sufficient to pay the excess of operating costs over revenues.

3When the salvage value in the event of termination is zero, we can express the value of the firm per unit
of capital as a closed-form function of the primitive parameters of the firm’s problem. When the salvage
value is positive, such a closed-form expression is not available, but we can express the value of the firm
per unit of capital as a closed-form function of the primitive parameters of the firm’s problem and x∗, the
optimal target cash-to-capital ratio.
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ratio is a linear function of suitably-defined marginal q, which is unobservable. Typically,

empirical analyses relate the investment-capital ratio to average q, adjusted for holdings of

liquid assets. As a prelude to analyzing the relationship between the optimal investment-

capital ratio and average q, we first analyze the relationship between marginal q and average

q. In particular, we examine the coefficient on average q in a univariate regression of marginal

q on average q. If average q were simply marginal q plus classical measurement error, the

coefficient on average q would be smaller than one. However, the error in average q as a

measure of marginal q is not classical, and we show that the coefficient on average q is likely

to be greater than one. Remarkably, this effect tends to increase the apparent response of the

optimal investment-capital ratio to average q, contrary to the conventional argument based

on classical measurement error. As a result, the presence of financial constraints is unlikely

to be the source of the small regression coefficients obtained in empirical investment-average

q relations, since financial constraints would induce the opposite bias.

Our analysis then explores the role of cash flow in regressions of the investment-capital

ratio on both average q and cash flow. Consistent with typical empirical findings, our analysis

demonstrates that the introduction of cash flow as an additional regressor in investment

regressions reduces the OLS coefficient on average q. Also consistent with typical empirical

findings, the coefficient on cash flow is positive. The conventional interpretation is that

the positive coefficient on cash flow reflects a shortage of cash on hand relative to desired

investment expenditures. Our analysis points to a different interpretation. We demonstrate

analytically that marginal q is the sum of average q and a term that reflects the financial

constraint. The term reflecting the financial constraint is the product of an increasing

function of the shadow value of cash on hand (minus one) and the value of the firm per unit of

capital. The shadow value of cash on hand (minus one) is positive if and only if the financial

constraint is binding. The cash flow coefficient in a regression of the investment-capital

ratio on average q and cash flow captures the effect of the financial constraint. However,

the interpretation is not that the cash flow coefficient reflects a shortage of cash on hand

to undertake desired investment. Moreover, the estimated coefficient on cash flow also

contains a component reflecting a fraction of the impact of expected future profitability on

investment, effectively taking some of this impact away from the estimated coefficient on

average q.

We show that there is one situation in which average q and marginal q are equal in the

presence of financial constraints. When the financial constraint is not binding, that is when

dividends are positive, marginal q and average q are equal. In a sample of observations
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in which dividends are always positive, investment regressions have a coefficient on average

q that equals the inverse of the adjustment cost scale parameter and a coefficient on cash

flow that equals zero. This finding is consistent with Fazzari et al. (1988), hereafter FHP,

who argue that regressions of the investment-capital ratio on average q would perform best

when the sample is restricted to observations for which dividends are positive. However,

this is not to say that financial constraints don’t impact the firm’s investment when it is

paying dividends, since marginal q, and hence investment, is reduced by the presence of

a contemporaneously nonbinding financial constraint that will bind in the future at some

unknown time.

Section 1.1 reviews the literature on investment and q, including the impact of financial

constraints on the relationship among investment, q, and cash flow. Section 2 presents

the physical environment of the firm, which comprises profit from operations, capital accu-

mulation, and costs of adjusting the capital stock. Financial constraints are introduced in

Section 3. To serve as a baseline for assessing the impact of financial constraints, Section 3.1

analyzes the valuation of the firm in the absence of financial constraints. The valuation of

the firm and optimal investment in the presence of these constraints are analyzed in Section

3.2. Financial constraints drive a wedge between average q and marginal q, even under the

Hayashi conditions. Section 4 analyzes this wedge and its implications for regressions of the

investment-capital ratio on average q, with and without cash flow as an additional regressor.

Financial constraints introduce the possibility that the firm will be forced to terminate at

some point, but shareholders may receive some salvage value upon termination. Section

5 analyzes the impact of the salvage value on the firm’s valuation and optimal investment.

Concluding remarks are in Section 6.

1.1 Literature Review

The notion that a firm’s optimal rate of investment is linked to its valuation originated in

Keynes (1936). Brainard and Tobin (1968) gave empirical content to this link by defining

a ratio that Tobin (1969) called “q,” and the subsequent literature has dubbed Tobin’s q.

The numerator of this ratio is the market value of a firm and the denominator of this ratio

is the replacement cost of the firm’s capital stock. An appeal of Tobin’s q is that it relies

on financial markets to evaluate the firm’s current and future prospects, thereby relieving a

researcher from having to perform the appropriate calculation of the expected present value

of future marginal products of capital. Mussa (1977) and Abel (1983) provided formal
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underpinnings of the q-theory of investment in optimizing models that feature convex costs

of adjusting the capital stock. This formal analysis reflects the distinction between average

q, which is the ratio defined by Brainard and Tobin, and marginal q, which is the ratio

of the marginal valuation of an additional unit of capital to the cost of that additional

unit of capital. In the convex adjustment cost framework, the optimal rate of investment

equates the marginal cost of investment, consisting of the purchase price plus the marginal

adjustment cost, with marginal q. However, marginal q is not directly observable. Hayashi

(1982) provided conditions under which marginal q and average q are equal, thereby allowing

researchers to use average q, which is observable, as a proxy for marginal q, which is the

appropriate variable to be equated with the marginal cost of investment.

The Hayashi conditions are (1) current operating profits, after maximizing over any

variable factors of production, such as labor, are proportional to the capital stock; and (2)

the adjustment cost function is linearly homogeneous in investment and the capital stock.

The first of these two conditions would be satisfied by a perfectly competitive firm with

a production function that is linearly homogeneous in capital and the variable factors of

production. Implicit in most invocations of the Hayashi conditions is the assumption that

the firm does not face any financial constraints.

A powerful implication of the q-theory of investment derived in an adjustment cost frame-

work without financial constraints is that marginal q is a sufficient statistic for investment.

Under the Hayashi conditions, marginal q and average q are identically equal, so average q,

which is the observable construct used in much empirical work, is thus a sufficient statistic

for investment. FHP (1988) showed that, empirically, average q is not a sufficient statistic

for investment for firms that are likely to be financially constrained, such as firms that do not

pay dividends and firms that are growing rapidly. FHP found that for such firms, cash flow

has a positive effect on investment, even taking account of the supposedly-sufficient statistic,

average q. They interpret their finding as evidence that financial constraints impact capital

investment by these firms.

FHP’s interpretation of the positive coefficient on cash flow has faced three types of

challenges. Kaplan and Zingales (1997) challenged FHP’s reliance on dividend-payout ratios

to categorize firms into three classes. FHP Class I firms have the lowest dividend-payout

ratios and are regarded by FHP as likely to be financially constrained. Kaplan and Zingales

developed an alternative classification scheme based on various criteria gleaned from financial

statements and other documents. Contrary to FHP, they find evidence that cash-flow

sensitivities are highest for firms that are the least financially constrained.

6



A second type of challenge, that includes Gomes (2001), Cooper and Ejarque (2003),

Alti (2003) and Abel and Eberly (2011), has produced theoretical models for which an

investment regression on average q and cash flow would yield a positive coefficient on cash

flow, even though the models do not incorporate financial constraints. In these models,

none of which satisfy the Hayashi conditions, a positive coefficient on cash flow cannot be

viewed as evidence of financial constraints.

A third type of challenge is based on measurement error in q. In a published comment

that appears in the same volume as FHP, Poterba (1988) states “If for any of these reasons

the measured Q variable provides an error-ridden indicator of the firm’s true prospects, then

econometric results may find that current cash flow affects investment only because this

variable, just like measured Q, is correlated with the ’true’ marginal q variable that firms

consider in making investment decisions.” (p. 202) Whited (1992) developed an alternative

test for the impact of financial constraints based on estimating an Euler equation associated

with a firm’s investment decision. The Euler equation fits the data well for firms that

are not financially constrained but not for firms that are financially constrained, consistent

with investment being affected by financial constraints. She reiterated the point that a

positive coefficient on cash flow might arise from measurement error in q,4 and this point

was further echoed by Gilchrist and Himmelberg (1995)5 and in a survey article by Roberts

and Whited (2013)6. Erickson and Whited (2000) addressed the measurement error head on

by developing and applying consistent higher-order moment estimators. More recently, Abel

(2018) developed a dynamic model of the firm that satsifies the Hayashi conditions and does

not face financial constraints. For such a firm, average q is identically equal to marginal q.

Abel derived closed-form expressions for the plims of the estimated coefficients on q and cash

flow in investment regressions, and showed analytically that classical measurement error in q

will lead to a positive coefficient on cash flow, even though there are no financial constraints.

The equality of average q and marginal q is a crucial assumption for empirical analyses

that relate the investment-capital ratio to average q. However, even for perfectly competitive

4Whited (1992), p. 1426, observed “cash flow may not be picking up the desired liquidity effect but may
be proxying either for an accelerator effect or for information about future investment opportunities not
captured by q.”

5Gilchrist and Himmelberg (1995), p. 544, state ”More generally, anything that systematically reduces
the signal-to-noise ratio of Tobin’s Q (for example, measurement error or ‘excess volatility’ of stock prices)
will shift explanatory power away from Tobin’s Q toward cash flow, thus making such firms appear to be
financially constrained when in fact they are not.

6Roberts and Whited (2013), p. 498, state that because of the high positive correlation between Tobin’s
q and cash flow, “the coefficient on cash flow, βj , is biased upwards. Therefore, even if the true coefficient
on cash flow is zero, the biased OLS coefficient can be positive.”
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firms with constant returns to scale in their production and adjustment cost functions,

measured average q can differ from marginal q, which is equated to the marginal cost of

investment. Ideally, average q would measure the contribution to firm value of its physical

capital stock. However, the value of the firm, which is the numerator of average q, can

include the values of other assets, such as inventories, remaining depreciation tax shields on

existing capital, intangible assets, and financial assets, such as securities and cash on hand.

The values of these other assets are often subtracted from the total value of the firm in

constructing the numerator of average q. FHP, Whited (1992), and Peters and Taylor (2017)

subtract inventories from firm value in computing average q. In the seminal demonstration

of the equality of marginal q and average q, Hayashi (1982) subtracts the present value of

future tax savings due to depreciation deductions accruing to existing capital, and a similar

correction is employed by Summers (1981) and Hoshi and Kashyap (1990).

Hayashi and Inoue (1991) consider a firm with multiple capital goods. Under linear

homogeneity of the production and adjustment cost functions, the value of a perfectly com-

petitive firm, V (K1, ..., Kn), would be linearly homogeneous in the n types of capital, so that

V =
n∑
i=1

VKiKi, where VKi is the marginal valuation of type i capital. The replacement cost

of the total capital stock is RC ≡
n∑
i=1

piKi, where pi is the replacement cost of a unit of type

i capital. Marginal q for type i capital is
VKi
pi

. If it turns out that
VKi
pi

is equal for all types i,

then average q, V
RC

, would equal this common value of marginal q. Peters and Taylor (2017)

treat intangible capital (arising from R&D investment and a portion of selling, general and

administrative expense) as a second type of capital. They impose conditions that make

marginal q for physical capital and marginal q for intangible capital identically equal to each

other. Among these conditions is the assumption that physical capital and intangible capital

are perfect substitutes in production. While this assumption may be plausible for physical

capital and intangible capital, it would not be appropriate in the context of our analysis,

where the two types of capital are physical capital and cash on hand.

It might seem that it is straightforward to adjust the value of the firm for its holding

of cash on hand, since cash is easier to value than, say, inventories, or the present value of

future depreciation tax shields in an uncertain tax environment. Thus, for instance, Hoshi

and Kashyap (1990) and Peters and Taylor (2017) subtract cash from the market value of

the firm in the numerator of Tobin’s q. Reducing the firm’s value dollar-for-dollar for each

dollar of cash on hand is the correct adjustment in the absence of financial constraints.

However, in the presence of financial constraints, the value of a dollar of cash on hand can
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exceed one dollar. In this case, with the marginal value of a dollar of cash greater than

one, the correct adjustment to the firm’s value would be to subtract the amount of cash on

hand, multiplied by the marginal value of cash. However, the marginal value of cash is not

directly observable, except when the firm is paying dividends.

Bolton et al. (2011) emphasized the importance of the marginal value of cash in the

investment decision. They developed a continuous-time model to analyze the investment

and liquidity management decisions of a firm that has costly access to external finance. Since

the use of external finance is costly, the shadow value of a dollar of cash of hand can exceed a

dollar. Put differently, the use of a dollar of cash to purchase and install capital can have a

cost that exceeds one. They showed that the standard q-theoretic condition that equates the

marginal cost of investment and the marginal valuation of a unit of installed capital needs

to be adjusted for the additional cost reflected in the shadow price of cash. Our analysis

also highlights that financial constraints increase the marginal value of cash on hand and the

consequent implication for optimal investment. Bolton, Chen, and Wang included a rich set

of opportunities for external finance and characterized features of optimal investment and

financial policy, though they did not derive closed-form solutions, nor did they address the

wedge between average q and marginal q caused by financial constraints. In contrast, we do

not allow external finance, which allows us to derive analytic solutions for optimal investment

and dividend policy, even though, unlike in Bolton, Chen, and Wang, profitability is serially

correlated. These solutions allow us to analyze the wedge between average q and marginal

q and the consequent effects on investment regressions. In addition, an important difference

between their model and ours is that in their model marginal q is constant in the absence of

financial constraints because they assume that profitability is i.i.d. By assuming persistent

profitability, we can study investment regressions in a framework where marginal q varies

both because of exogenous profitability shocks and the time-varying tightness of financial

constraints. The dependence of marginal q on profitability shocks, as well as on the tightness

of financial constraints, becomes important in our analysis of investment regressions.

Abel and Panageas (2019) analyze the cash management problem of a firm that faces an

exogenous stochastic stream of cash flow from operations. In that framework, there is no

investment decision and the capital stock is assumed to be constant over time. Since there is

no investment, the cash management decision is simply a payout decision amounting to the

determination of how much cash to retain within the firm and how much cash to pay out as

dividends. Abel and Panageas assume that the salvage value of the firm is zero and derive a

closed-form solution to characterize optimal payout policy. The current paper goes beyond
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the analysis in Abel and Panageas in two ways. First, we introduce a capital investment

decision, so cash will have three potential uses: investment expenditures, dividends, and

accumulation of cash on hand, which allows us to analyze various investment regressions.

Second, we allow for a positive salvage value of the firm, which makes a closed-form solution

for the optimal target level of cash unavailable. Nevertheless, we derive analytic results

about the impact of salvage value on firm valuation and optimal investment.

2 Profitability and Capital

Consider a firm in continuous time. It is owned by risk-neutral shareholders with rate of

time preference ρ > 0. Profit from operations at time t is φtKt, where Kt > 0 is the capital

stock at time t and φt is profitability per unit of capital at time t. Profitability, φt, is

governed by a Markov regime-switching process with two regimes, H and L. In Regime H,

φt = φH > ρ > 0. In Regime L, φt = φL < 0. The negative profitability in Regime L could

arise from some unavoidable cost of maintaining each unit of capital.7 When Regime H

prevails, there is an instantaneous hazard rate µL > 0 that the regime switches to Regime

L. When Regime L prevails, there is an instantaneous hazard rate µH > 0 that the regime

switches to Regime H.

The firm can change its capital stock over time by undertaking gross investment at rate

It, which can be positive, negative, or zero. For simplicity, we assume that capital does not

depreciate, so net investment is

K̇t = itKt, (1)

where it ≡ It
Kt
≥ 0. The total expenditure on gross investment has two components. The

first component is It, which is the cost of purchasing uninstalled capital at a price normalized

to one. If gross investment is negative, then −It = −itKt > 0 represents the gross proceeds

from selling It units of capital. The second component is the adjustment cost, c (it)Kt,

which is a linearly homogeneous function of It and Kt. To be consistent with much of the

7For instance, instantaneous profit could be maxL pF (K,L)−wL−mK, where p is the exogenous price
of the firm’s output, L is labor, w is the exogenous wage rate of labor, m is the exogenous maintenance
cost per unit of capital, and the function F (K,L) is linearly homogenous in K and L, with F (K, 0) = 0.
Profit can be rewritten as (maxl [pf (l)− wl]−m)K, where l ≡ L/K and f (0) = 0. Equivalently, profit
is φK, where φ ≡ maxl [pf (l)− wl] −m, which will be negative for sufficiently small p > 0, even though
maxl [pf (l)− wl] ≥ 0 for any p > 0.
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literature on investment and q, we assume that the adjustment cost function is quadratic in

i. Specifically,

c (i) =
1

2
θi2, (2)

where θ > 0 is the adjustment cost scale factor. Note that the adjustment cost is positive

for any nonzero rate of investment. Therefore, if gross investment is negative, that is, if the

firm sells −itKt > 0 units of capital, its net proceeds from the sale of capital are reduced by

the amount of the adjustment cost 1
2
θi2tKt.

We impose the restriction

θ >
1

−2φL
> 0, (3)

which implies that the net proceeds from selling capital, −
(
i+ 1

2
θi2
)
K, must be less than∣∣φL∣∣. That is, the firm cannot meet its required payments of −φLK > 0 by selling capital.8

This restriction on θ does not imply that negative gross investment is never optimal. Indeed,

as we will show, in the presence of financial constraints, optimal gross investment will be

negative in Regime L when the firm’s cash on hand is very low.

We allow for the possibility that the firm terminates at some date, either because future

prospects are so unfavorable that the firm chooses to terminate or because financial con-

straints force the firm to terminate in a way we discuss in Section 3. Upon termination for

whatever reason, the shareholders of the firm receive a salvage value αK, where 0 ≤ α < 1.

The firm operates in continuous time but it is convenient to treat each episode in which

Regime H or Regime L continuously prevails as a single period in a quasi-discrete-time

framework. The lengths of the time periods are random and are generated by the Markov

regime-switching process for profitability. We define three terms below to represent the

expected present value of cash flow, φt, over a single regime and over the entire sequence of

future regimes.

Definition 1 Define

1. ΦH ≡ φH

ρ+µL
> 0 (Myopic value of Regime H)

8The net flow of proceeds from selling capital is ψ (i)K, where ψ (i) ≡ −
(
i+ 1

2θi
2
)
. Use ψ′ (i) =

− (1 + θi), and ψ′′ (i) = −θ < 0 to obtain arg maxi ψ (i) = − 1
θ and maxi ψ (i) = −

(
− 1
θ + 1

2θ
(
− 1
θ

)2)
= 1

2θ .

Therefore, if θ > 1
−2φL > 0, then the proceeds from selling capital, ψ (i)K, are smaller than −φLK > 0, the

required payment in Regime L.
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2. ΦL ≡ φL

ρ+µH
< 0 (Myopic value of Regime L)

3. Γ ≡ µL

ρ+µL
µH

ρ+µH
< 1 (Roundtrip discount factor)

The myopic value of Regime H, ΦH ≡ φH

ρ+µL
, is the expected present value of profitability

φt over the duration of a single Regime H. We refer to this valuation as myopic because

it ignores any profitability after the particular Regime H ends. Similarly, the myopic value

of Regime L, ΦL ≡ φL

ρ+µH
, is the expected present value of profitability φt over the duration

of a single Regime L. The roundtrip discount factor Γ ≡ µL

ρ+µL
µH

ρ+µH
is the expected present

value of a dollar to be received upon the first return to the currently-prevailing regime after

the first occurrence of the other regime.9

Definition 1 is useful in obtaining simple expressions for conditional expected present

values of profitability over the infinite future. Specifically,

χH ≡ 1

1− Γ

[
ΦH +

µL

ρ+ µL
ΦL

]
= E

{∫ ∞
t

φse
−ρ(s−t)ds|φt = φH

}
(4)

and

χL ≡ 1

1− Γ

[
ΦL +

µH

ρ+ µH
ΦH

]
= E

{∫ ∞
t

φse
−ρ(s−t)ds|φt = φL

}
. (5)

Observe that χH − χL = 1
1−Γ

(
ρ

ρ+µH
ΦH − ρ

ρ+µL
ΦL
)
> 0. The present values χH and χL

are useful in Section 3.1 in characterizing the value of the firm in the absence of financial

constraints.

3 A Financially Constrained Firm

In this section we introduce financial constraints and analyze their impact on optimal invest-

ment and payout policy. To make the financial constraints as stark as possible, we assume

that an ongoing firm cannot raise any external funds. That is, the firm cannot borrow,

issue new equity, or pay negative dividends. When the firm is in Regime L, it must make

required payments, −φLK > 0, and can use previously accumulated cash on hand and any

proceeds, net of adjustment costs, from uninstalling and selling some of its capital. The

9Suppose that Regime H, say, prevails at time t and continues to prevail until time t1 > t when Regime L
arrives. Regime L prevails until time t2 > t1, when a new Regime H arrives. The roundtrip discount factor
is the expected present value as of time t of a dollar to be received at time t2. Formally, Γ = E

{
e−ρ(t2−t)

}
= E

{
e−ρ(t2−t1)

}
E
{
e−ρ(t1−t)

}
= µH

ρ+µH
µL

ρ+µL .
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restriction on the adjustment cost scale parameter θ in equation (3) implies that the flow

of net proceeds from selling capital cannot be large enough to pay the entire −φLK > 0.

Therefore, the firm must use some cash on hand to make this required payment. If the firm

has zero cash on hand, it will not be able to make the required payment and will have to

terminate permanently.10 In the event of termination, shareholders lose their claim on any

future positive cash flows but receive the salvage value αK ≥ 0. The prospect of forced

termination provides an incentive for the firm to accumulate cash. However, the preference

of shareholders to receive dividends earlier rather than later limits the amount of cash that

the firm wants to carry on hand.

Let Xt be the amount of cash on hand at time t. The equality of sources and uses of

cash can be written as

φtKt = Ẋt +Dt + (it + c (it))Kt. (6)

The source of cash on the left hand side of equation (6) is net profits from operations, φtKt.

The uses of cash on the right hand side of equation are (1) accumulation of cash on hand,

Ẋt; (2) payment of dividends, Dt; and (3) expenditure on investment, (it + c (it))Kt, which

includes both the purchase price of capital and the adjustment cost. A negative value of X

would be equivalent to interest-free debt owed by the firm, and a negative value of D would

be equivalent to issuing equity. Since we do not allow the firm to issue debt or equity, the

financial constraints can be written as Xt ≥ 0 and Dt ≥ 0.

With the financial constraints facing the firm, the stock of cash on hand, Xt, becomes an

additional state variable. The value function of the firm in Regime H, V H (K,X), satisfies

ρV H (K,X) = max
D,i

D+V H
X (K,X) Ẋ+V H

K (K,X) K̇+µL
(
V L (K,X)− V H (K,X)

)
.(7)

The maximand on the right hand side of equation (7) is the dividend, D, plus the capital

gain, 1
dt
E {dV }, which reflects the change in cash, Ẋ, the change in the capital stock, K̇,

and the expected change in value associated with a change in regime.

Lemma 1 V j
X (X,K) ≥ 1, for j ∈ {H,L}.

Lemma 1 simply states that increasing a firm’s cash on hand, X, by one dollar will

increase the firm’s value by at least one dollar because that additional dollar can be paid

10As shown in footnote 8, the maximal flow of net proceeds from negative gross investment is 1
2θK. In

this section we introduce the assumption that θ is arbitrarily large, so the maximal flow of net proceeds from
selling capital is arbitrarily small.
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immediately to shareholders and leave the value of the firm unchanged from its initial value

before receiving the dollar.

Lemma 1 and the constraint D ≥ 0 imply maxD (1− VX (K,X))D = 0 so the ODE in

equation (7), using equations (1) and (6), becomes

ρV H (K,X) = max
i
V H
X (K,X)

(
φH − (i+ c (i))

)
K + V H

K (K,X) iK (8)

+µL
(
V L (K,X)− V H (K,X)

)
.

The value function V H (K,X) is linearly homogeneous in K and X, so it is convenient

to write the value function as

V H (K,X) = vH (x)K, (9)

where xt ≡ Xt
Kt
≥ 0 is the cash-to-capital ratio. The marginal values of cash and capital are,

respectively,

V H
X (K,X) = vHx (x) (10)

and

V H
K (K,X) = vH (x)− xvHx (x) . (11)

Divide the ODE in equation (8) by K and use equations (9)−(11) to obtain

ρvH (x) = max
i
vHx (x)

(
φH − (i+ c (i))

)
+
(
vH (x)− xvHx (x)

)
i (12)

+µL
(
vL (x)− vH (x)

)
.

To solve the maximization on the right hand side of equation (12), differentiate the right

hand side of this equation with respect to i, and set this derivative equal to zero to obtain

the following first-order condition for investment

1 + c′ (i) =
vH (x)

vHx (x)
− x. (13)

The right hand side of equation (13) is the ratio of the marginal value of capital, V H
K , to the

marginal value of cash on hand, V H
X , which is marginal q,11

qHM (x) ≡ vH (x)

vHx (x)
− x. (14)

11The first-order condition in equation (13) can be written as 1+c′
(
iH
)

=
V H
K (K,X)

V H
X (K,X)

. Bolton et al. (2011),

p. 1546, express this first-order condition as “marginal cost of investment = (marginal q)/(marginal cost of
financing),” where their marginal q is VK (K,X). Our definition of marginal q in equation (14) incorporates
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Use the definition of qHM (x) from equation (14) in the first-order condition in equation (13)

and the specification of the quadratic adjustment cost function in equation (2) to obtain the

optimal investment-capital ratio in Regime H

iH (x) =
qHM (x)− 1

θ
. (15)

Equation (15) is the standard q theory of investment with quadratic adjustment costs.

The optimal investment-capital ratio, i, is a linear function of marginal q with slope 1
θ
. As

shown in equation (25) below, marginal q is an increasing function of x. Therefore, equation

(15) implies that the optimal investment-capital ratio is an increasing function of cash on

hand, x. It is noteworthy that the impact of x on the optimal investment-capital ratio iH (x)

operates entirely through qHM (x). Given the value of qHM , the amount of cash on hand, x,

has no independent effect on optimal investment, that is, marginal q is a sufficient statistic

for optimal investment. However, marginal q, qHM (x), is not directly observable because

VK (K,X), VX (K,X), and VK(K,X)
VX(K,X)

are all unobservable. In Section 4, we analyze the

relationship between average q, which is observable, and marginal q, which is not observable.

In order to obtain closed-form solutions for the value of the firm in both regimes, we

focus on a limiting case of the adjustment cost function c (i)K = 1
2
θi2K in which the scale

parameter θ approaches infinity. Thus, for a given value of qHM (x), equation (15) implies

that limθ→∞ i
H (x) = 0 and limθ→∞ c

(
iH (x)

)
= limθ→∞

1
2
θ
(
qHM (x)−1

θ

)2

= 0. Remarkably, as

the adjustment cost scale factor θ becomes arbitarily large, the adjustment cost evaluated at

the optimal investment-capital ratio, c
(
iH (x)

)
, approaches zero and hence the total cost of

investment
[
iH (x) + c

(
iH (x)

)]
K also approaches zero. Nevertheless, the marginal adjust-

ment cost, c′
(
iH (x)

)
= θi, approaches the given value qHM (x)−1, which is finite and, except

when qHM (x) = 1, nonzero. That is, for a given value qHM (x) − 1, i approaches zero at the

same rate that θ approaches infinity, so that the product θi approaches a constant. The op-

timal value of θi is an increasing linear function of qHM (x), and hence for a sufficiently large,

but fixed, value of θ, the optimal investment-capital ratio i is an increasing linear function

of qHM (x) . The main benefit of focusing on the limiting case where θ becomes large is that

we can ignore the impact of adjustment costs on marginal q. This simplification allows us

to solve for marginal q explicitly, as we show next.

VX (K,X) into the denominator, so that the first-order condition in equation (13) is 1 + c′
(
iH
)

= qHM (x),
which simplifies the equation for optimal investment in equation (15). It is a definitional matter whether to

define marginal q as VK (K,X) or VK(K,X)
VX(K,X) , neither of which is directly observable. With either definition,

average q is generally not equal to marginal q in the presence of financial constraints, as discussed in Section
4.
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For suffciently large θ, the terms iH (x) and c
(
iH (x)

)
are vanishingly small so that the

ODE in equation (12) approaches ρvH (x) = vHx (x)φH + µL
(
vL (x)− vH (x)

)
, which, after

dividing both sides by ρ+ µL, becomes

vH (x) = vHx (x) ΦH +
µL

ρ+ µL
vL (x) . (16)

Similarly, in Regime L

vL (x) = vLx (x) ΦL +
µH

ρ+ µH
vH (x) . (17)

The ODEs in equations (16) and (17) hold for non-negative values of the cash-to-capital

ratio x that are small enough that it is optimal not to pay dividends. If Regime H prevails

long enough, then eventually cash on hand reaches a level x∗ at which the marginal value

of a dollar of cash, vx (x), equals one. When cash on hand reaches x∗, the firm maintains

x = x∗ in Regime H by paying out positive cash flow (net of investment expenditures, which

are arbitrarily small) as dividends.

Lemma 2 x∗ > 0 if and only if vL (x∗) > α.

The only reason for the firm to hold cash is to be able to survive, for at least a while,

when the next Regime L arrives. Lemma 2 states that this opportunity to survive when

Regime L arrives is worthwhile only if the value of the firm when it holds x∗K exceeds the

salvage value aK when Regime L arrives.

The critical value x∗ is characterized by the following two boundary conditions

vHx (x∗) = 1 (18)

and

vHxx (x∗) = 0. (19)

In Regime L, the firm uses cash on hand to make required cash outflows. However, if

Regime L prevails long enough, cash on hand eventually falls to zero. When that happens,

the firm is forced to terminate immediately and permanently and shareholders receive the

salvage value αK, as reflected in the following boundary condition

vL (0) = α. (20)
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The boundary conditions in equations (18) and (19) imply that a firm will never choose

to accumulate cash to a level higher than X = x∗K.12 Therefore, we confine attention to

x ∈ [0, x∗]. We present the distribution of the endogenous variable x in Section 4.1.

Appendix B solves the ODEs in equations (16) and (17) along with the boundary con-

ditions conditions in equations (18), (19), and (20) in the case in which vL (x∗) ≥ α so that

the firm chooses to continue operating when Regime L arrives, at least for some values of x.

This appendix presents expressions for vH (x) and vL (x) that are closed-form functions of

the fundamental parameters (ρ, φH , φL, µH , µL and the resulting ΦH , ΦL, and Γ) and x∗.

It also presents x∗ as the root of a nonlinear equation; in the special case with zero salvage

value, i.e., α = 0, this appendix presents a closed-form solution for x∗. Appendix B also

shows that vH (x) and vL (x) are both concave on [0, x∗].

3.1 The Valuation of the Firm in the Absence of Financial Con-

straints

Consider a firm that does not face any financial constraint. Let ṽj be the value of this firm

per unit of capital in Regime j when it has zero cash on hand. More generally, when cash

on hand can be positive, the value of the firm per unit of capital is ṽj + x. Therefore, the

analogue of vjx (x) in equations (16) and (17) is identically equal to one so evaluating these

equations at x = 0 yields

ṽH = ΦH +
µL

ρ+ µL
ṽL

and

ṽL = ΦL +
µH

ρ+ µH
ṽH .

This two-equation linear system has the solution ṽj = χj for j ∈ {H,L}, where χj is the

expected present value of the infinite stream of profitability conditional on currently being

in Regime j (see equations (4) and (5)). However, the value of the firm must obey ṽL ≥ α,

which is analogous to the boundary condition in equation (22). The following proposition

summarizes the valuation of firm in the absence of financial constraints.

12If the firm started its existence in Regime H with X > x∗K, it would immediately pay a dividend of
X − x∗K. Once the value of x is less than or equal to x∗, it will remain less than or equal to x∗ for the
remainder of the firm’s life.
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Proposition 1 In the absence of financial constraints, the value of the firm per unit of

capital in each regime is

ṽH = max

{
χH ,ΦH +

µL

ρ+ µL
α

}
= max

{
1

1− Γ

[
ΦH +

µL

ρ+ µL
ΦL

]
,ΦH +

µL

ρ+ µL
α

}
(21)

ṽL = max
{
χL, α

}
= max

{
1

1− Γ

[
ΦL +

µH

ρ+ µH
ΦH

]
, α

}
. (22)

Consider two cases. Case I: χL < α. If χL < α, then the firm would choose to terminate

as soon as Regime L arrives and the shareholders would receive αK upon termination of

the firm. In this case, the firm would remain alive for only a single Regime H so ṽL = α

and ṽH = ΦH + µL

ρ+µL
α.13 Case II: χL ≥ α. In this case, the firm would not choose to

terminate in Regime L. In Regime L, the firm’s value per unit of capital would be χL and

the firm would operate forever (it would not terminate in Regime H, since χH > χL). Since

the firm would operate forever, ṽL = χL and ṽH = χH .

3.2 Optimal Investment and Marginal q

In this model with quadratic adjustment costs, the optimal investment-capital ratio is a

linear function of marginal q, with slope 1
θ
> 0, as shown for Regime H in equation (15). A

similar expression holds in Regime L, so that the optimal investment-capital ratio in each

regime is

ij (x) =
qjM (x)− 1

θ
, for j ∈ {H,L} (23)

where

qjM (x) ≡ vj (x)

vjx (x)
− x, for j ∈ {H,L} . (24)

Differentiating qjM (x) in equation (24) with respect to x yields

dqjM (x)

dx
= − vj (x)[

vjx (x)
]2vjxx (x) > 0, for 0 ≤ x < x∗ and j ∈ {H,L} . (25)

Therefore, in both regimes, marginal q is strictly increasing in x on the domain [0, x∗).

13The firm would not choose to terminate in Regime H because ṽH − α = ΦH + µL

ρ+µLα − α =
1

ρ+µL

(
φH − ρα

)
> 0, where the inequality follows from the assumptions that φH > ρ > 0 and α < 1.
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Now evaluate vj (x) and qjM (x) at x = 0 and x = x∗, where these functions attain their

minimum and maximum values, respectively, in each regime. Propositions 2 and 3, which

present these values at x = 0 and x = x∗, respectively, will be useful in Section 4 when we

compare average q and marginal q.

First consider vj (0) and qjM (0) for j ∈ {H,L}.

Proposition 2 Suppose that x∗ > 0. Then

1. vH (0) = vHx (0) ΦH + µL

ρ+µL
α > ΦH

2. qHM (0) = ΦH + µL

ρ+µL
α

vHx (0)
≥ ΦH

3. vL (0) = α

4. qLM (0) = α
vLx (0)

≤ α

Equation (23) implies that optimal investment when x = 0 will be positive if and only

if marginal q, qjM (0) > 1. Statement 2 of Proposition 2 implies that if ΦH > 1, then the

optimal investment-capital ratio, iH (0), is positive. If ΦH > 1, then even if the firm were

to terminate at the end of the current Regime H, the expected present value of operating

profits accruing to a unit of new capital, ΦH , would be larger than the cost of adding that

unit of capital. Thus, optimal investment in Regime H is positive if ΦH > 1.

Since the salvage value per unit of capital, α, is less than one, Statement 4 of Proposition

2 implies that qLM (0) < 1, so equation (23) implies that in Regime L optimal investment

is negative when x = 0. Negative gross investment involves selling capital. However, the

restriction in equation (3) implies that the proceeds, net of adjustment costs, from selling

capital will not be sufficient to pay the required outflow per unit of capital in Regime L,

−φL > 0. Therefore, when Regime L prevails, the ratio of cash to the capital stock, x,

will be declining14 and as soon as x reaches zero, the firm will be forced to terminate. The

shareholders receive the salvage value αK when the firm terminates.

Now consider the situation in which the firm is holding its maximal ratio of cash to capital,

that is, when x = x∗. As a preliminary step, it is useful to evaluate vj (x) and vjx (x) in both

regimes (j = H and j = L) when x = x∗ > 0. The boundary condition in equation (18)

provides one of these values, namely, vHx (x∗) = 1. To evaluate the corresponding derivative

14Even though K will be declining, x ≡ X
K will be declining because ẋ

x = Ẋ
X −

K̇
K = Ẋ

X − i where Ẋ
X < 0

and i is arbitrarily small.
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in Regime L, differentiate the ODE in equation (16) with respect to x and evaluate the

resulting equation at x = x∗ to obtain

vHx (x∗) = vHxx (x∗) ΦH +
µL

ρ+ µL
vLx (x∗) , for x∗ > 0. (26)

Now use the boundary conditions vHx (x∗) = 1 and vHxx (x∗) = 0 from equations (18) and (19),

respectively, in equation (26) and rearrange to obtain

vLx (x∗) =
ρ+ µL

µL
> 1, for x∗ > 0. (27)

Equation (27) states that the marginal value of a dollar of cash on hand in Regime L

exceeds one dollar when x = x∗. Therefore, when x = x∗ in Regime L, it is optimal for

the firm to retain all of its cash rather than pay dividends. Of course, the firm will have

to use some of its cash in this situation to make the required payments −φLK > 0, but

it is not optimal to use any of the cash to pay dividends. Since vL (x) is concave on the

domain [0, x∗], vLx (x) > 1 for all x in [0, x∗]. Therefore, it is never optimal for the firm to

pay dividends in Regime L.

Next calculate vL (x∗) and vH (x∗) for x∗ > 0. Evaluate the HJB for Regime H from

equation (16) at x = x∗ and use the boundary condition vHx (x∗) = 1 from equation (18) to

obtain

vH (x∗) = ΦH +
µL

ρ+ µL
vL (x∗) . (28)

Evaluate the HJB for Regime L from equation (17) at x = x∗ and use vLx (x∗) = ρ+µL

µL
from

equation (27) to obtain

vL (x∗) =
ρ+ µL

µL
ΦL +

µH

ρ+ µH
vH (x∗) . (29)

Equations (28) and (29) are two linear equations in vH (x∗) and vL (x∗).

Proposition 3 If x∗ > 0, then

1. vH (x∗) = ΦH+ΦL

1−Γ
< ṽH

2. qHM (x∗) = ΦH+ΦL

1−Γ
− x∗ < ṽH

3. vL (x∗) = ρ+µL

µL
ΦL+ΓΦH

1−Γ
< ṽL

4. qLM (x∗) = ΦL+ΓΦH

1−Γ
− x∗ < ṽL

20



Remarkably, the values of vj (x∗) and qjM (x∗) are invariant to the salvage value α. We

explain this invariance in Section 5.

Statement 3 of Proposition 3 and Lemma 2 together imply the following proposition.

Proposition 4 x∗ > 0⇐⇒ ΦL+ΓΦH

1−Γ
> µL

ρ+µL
α⇐⇒ vH (x∗) > ΦH + µL

ρ+µL
α.

Proposition 4 provides two alternative, but equivalent, necessary and sufficient conditions

for x∗ > 0. The first necessary and sufficient condition, ΦL+ΓΦH

1−Γ
> µL

ρ+µL
α, is expressed in

terms of the primitive parameters of the firm’s decision problem. The second necessary and

sufficient condition, vH (x∗) > ΦH + µL

ρ+µL
α, is a simple comparison of the value of the firm

in Regime H when x = x∗ and the value of the firm in Regime H if it never holds any cash

on hand. If the firm never holds any cash on hand, its value per unit of capital in Regime

H has two additive components: (1) ΦH , which is the expected present value of the flow

of profits per unit of capital over the remainder of the current Regime H; and (2) µL

ρ+µL
α,

which is the expected present value of the salvage value of a unit of capital that accrues to

the shareholders of the firm at the end of the current Regime H, when the firm is forced to

terminate because it cannot make the required payment −φLK > 0 in Regime L.

The firm will eventually, in finite time, experience a Regime L that lasts long enough to

completely exhaust its cash on hand and force it to terminate. Despite the finite lifetime

of the firm, the values of vH (x∗) and vL (x∗) can be expressed as expected present values of

weighted profitability over an infinite horizon,15

vj (x∗) ≡ E

{∫ ∞
0

vl(t)x (x∗)φte
−ρtdt|φ0 = φj

}
, j ∈ {H,L} . (30)

In equation (30) the value of the firm per unit of capital is the expected present value of

profitability at each point in time t, weighted by v
l(t)
x (x∗), the marginal value of cash at x = x∗

in the prevailing Regime l (t) at time t. Since vHx (x∗) = 1 and vLx (x∗) = ρ+µL

µL
> 1, the

expected present values on the right hand side of equation (30) place a greater weight on φL <

0 in Regime L than on φH > 0 in Regime H. The additional weight on the losses in Regime

L takes account of the reduction in firm value associated with the eventual termination of

the firm when it runs out of cash in Regime L. The greater weight on negative profitabilities

15Use vHx (x∗) = 1 and vLx (x∗) = ρ+µL

µL > 1 to calculate E
{∫∞

0
v
l(t)
x (x∗)φte

−ρtdt|φ0 = φH
}

= 1
1−Γ

[
ΦH + µL

ρ+µL v
L
x (x∗) ΦL

]
= 1

1−Γ

[
ΦH + ΦL

]
and E

{∫∞
0
v
l(t)
x (x∗)φte

−ρtdt|φ0 = φL
}

=

1
1−Γ

[
vLx (x∗) ΦL + µH

ρ+µH ΦH
]

= 1
1−Γ

ρ+µL

µL

[
ΦL + ΓΦH

]
.
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than on positive profitabilities resembles Bernanke’s Bad News Principle, though in a weaker

form.

The following Corollary to Proposition 3 shows how the presence of financial constraints

affects marginal q and the optimal investment-capital ratio.

Corollary 1 If x∗ > 0, then for Regime j ∈ {H,L} and 0 ≤ x ≤ x∗,

1. qjM (x) < ṽj, where ṽj is the value of q (both marginal and average) in the absence of

financial constraints.

2. ij (x) < ĩj, where ĩj is the optimal value of the investment-capital ratio in the absence

of financial constraints.

Statement 2 in Corollary 1 highlights the impact of financial constraints on optimal

investment. Specifically, in both regimes, financial constraints reduce the optimal value

of the investment-capital ratio relative to the optimal value of the investment-capital ratio

in the absence of financial constraints, regardless of whether the financial constraints are

currently binding. The channel by which financial constraints reduce optimal investment

is through a reduction in marginal q. The relationship between the optimal investment-

capital ratio and marginal q is not affected by the introduction of financial constraints,

consistent with Chirinko (1993) who states “Even though financial market frictions impinge

on the firm, q is a forward-looking variable capturing the ramifications of these constraints

on all the firm’s decisions.” (p. 1903) Chirinko’s statement does not specify whether q is

average q or marginal q. If we interpret Chirinko’s statment to be about marginal q, then

his statement applies to our analysis. However, marginal q is not directly observable, so

empirical analyses typically use average q as a proxy for marginal q. As we show in Section

4, financial constraints drive a wedge between average q and marginal q, and thereby affect

the relationship between the investment-capital ratio and average q.

4 Average q vs. Marginal q

With quadratic adjustment costs, the optimal investment-capital ratio, i, is a linear function

of marginal q, as shown in equation (23). A challenge for empirical analysis is that marginal

q is not directly observable. However, average q, which is the value of the firm divided by its

capital stock, is observable. In the absence of financing constraints, average q and marginal
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q are equal to each other under the Hayashi (1982) conditions that profits are proportional to

the capital stock and the adjustment cost function is linearly homogeneous in investment and

the capital stock. Empirical studies typically appeal to the Hayashi conditions to justify

using average q as a proxy for marginal q in investment regressions. However, financing

constraints drive a wedge between average q and marginal q even if the Hayashi conditions

hold. Therefore, using average q as a proxy for marginal q in an investment regression

introduces a form of measurement error in the regressor. Unlike classical measurement

error, which biases an estimated coefficient toward zero, the measurement error in average q

is non-classical and, as we will show, biases the estimated coefficient on average q upward.

In computing average q, empirical studies typically adjust the value of the firm by sub-

tracting the value of liquid assets from the overall value of the firm. In our model, liquid

assets are cash on hand, X, so the adjusted value of the firm in Regime j is V j (K,X)−X.

The replacement cost of the capital stock is typically the cost of purchasing capital, not in-

cluding adjustment costs, which is simply K in our model. Therefore, average q in Regime

j is

qjA (x) ≡ V j (K,X)−X
K

= vj (x)− x, for j ∈ {H,L} . (31)

Subtract the value of marginal q in equation (24) from the value of average q in equation

(31) to obtain

qjA (x)− qjM (x) =

(
1− 1

vjx (x)

)
vj (x) ≥ 0, for 0 ≤ x ≤ x∗, (32)

where the inequality follows from vj (x) ≥ 0 and vjx (x) ≥ 1. Therefore, average q is greater

than or equal to marginal q.

The boundary condition vHx (x∗) = 1 in equation (18) implies

qHM (x∗) = vH (x∗)− x∗ = qHA (x∗) , (33)

so average q and marginal q are equal to each other in Regime H when x = x∗.

In the case in which the salvage value of the firm is zero, i.e., α = 0, the boundary

condition vL (0) = α in equation (20) implies

qLA (0) = 0 = qLM (0) , when α = 0 (34)

so average q and marginal q are equal to each other in Regime L when x = 0 and α = 0.

Except for the two cases in equations (33) and (34), average q is strictly greater than marginal

q.
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Figure 1: Marginal and Average q when salvage value, α, equals zero.

Figure 1 illustrates the relationship between average q on the horizontal axis and marginal

q on the vertical axis for the case in which the salvage value α equals zero. In this case,

there is a closed-form solution for x∗, as shown in equation (B.7) in Appendix B. (We

analyze the impact of positive α in Section 5.) Underlying this figure is the assumption

that ΦL + ΓΦH > 0, which is equivalent to x∗ > 0 and vHx (0) > 1. The origin, Point O,

represents equation (34) in Regime L when the firm has no cash on hand. In this case, the

value of the firm is zero, so average q and marginal q are both zero. The curve connecting

Point O and Point B represents average q and marginal q in Regime L for values of x up

to and including x = x∗. At the origin, where x = 0,
dqLM
dx

= 0 and
dqLA
dx

> 0 so the slope

of the curve is zero at the origin.16 For x > 0, both average q and marginal q increase as

x increases, so this curve slopes upward, reaching its maximum at Point B where x = x∗.

Importantly, except at the origin, this curve lies everywhere below the solid line through the

origin with slope equal to one.

The values of average q and marginal q in Regime H are shown along the curve connecting

Point C and Point A. Again, since both average q and marginal q increase as x increases,

16Differentiating equation (31) with respect to x yields
dqjA(x)

dx = vjx (x) − 1 ≥ 0, with strict inequality

everywhere except in Regime H at x = x∗. Differentiating equation (24) with respect to x yields
dqjM (x)

dx =

− vj(x)

[vjx(x)]
2 vjxx (x) ≥ 0, with strict inequality everywhere except in Regime L when x = 0 (where vL (0) = α =

0) and Regime H when x = x∗ (where vHxx (x∗) = 0).
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Figure 2: An illustration of F (x,H), F (x, L).

the slope of this curve is positive for all x. As x gets arbitrarily close to x∗, that is, in the

neighborhood of Point A, the curve becomes vertical.17 Equation (33) states that Point A

lies on the line through the origin with slope equal to one. However, all other points on this

curve lie below the this line.

4.1 The Distribution of Cash on Hand

Continue to assume that ΦL + ΓΦH > 0 so that x∗ > 0. Consider a set of sample paths

generated by optimal payout and investment behavior. Specifically, each sample path is

generated by a firm that begins operation in Regime H with x = 0 and follows optimal

investment and payout policy. Eventually, the firm will terminate in some Regime L when

x = 0. Along any such realized continuous-time path of xt, xt equals zero at precisely

two points in time—when the firm is born and when the firm dies. The distribution of the

continuous variable x in Regime H has a discrete mass at x = x∗ because once x reaches x∗ in

17Evaluate the derivatives in footnote 16 at x = x∗, and use the boundary conditions in equations (18)

and (19), to obtain
dqHA (x∗)
dx = vHx (x∗)−1 = 0 and

dqHM (x∗)
dx = − vH(x∗)

[vHx (x∗)]2
vHxx (x∗) = 0. Therefore, to calculate

the slope
dqHM (x)

dqHA (x)
|x=x∗ =

dqHM (x∗)
dx /

dqHM (x∗)
dx requires L’Hopital’s Rule. Calculating derivatives of the numerator

and denominator of
dqHM (x)

dqHA (x)
and evaluating them at x = x∗ yields

d2qHM (x)
dx2 |x=x∗ = − vH(x∗)

[vHx (x∗)]2
vHxxx (x) < 0 and

d2qHA (x∗)
dx2 = vHxx (x∗) = 0, so

dqHM (x)

dqHA (x)
approaches infinity as x approaches x∗.
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Regime H, x remains equal to x∗ for the remainder of that regime. Though the distribution

of x in Regime L does not have a mass at x = x∗, much of the mass of that distribution

is near x = x∗ because there will be many transitions from Regime H into Regime L when

x = x∗.

To describe the distribution of x more fully, let F (x, j) be the probability, in a large

set of sample paths, of the joint event that Regime j prevails and cash on hand, xt < x.

Appendix C derives

F (x, j) =
1

|φ(j)|
a
(
ebx − 1

)
for j ∈ {H,L} and 0 ≤ x ≤ x∗, (35)

where a > 0 and b > 0 are defined in equations (C.46) and (C.36), respectively. The distri-

bution of x has a mass equal to 1
µL
abebx

∗
> 0 at x = x∗ in Regime H. The regime-specific

distribution functions are proportional to each other. Specifically, F (x,H) = −φL
φH

F (x, L).

The density is Fx (x, j) = ab

|φ(j)|e
bx. Figure 2 illustrates the functions F (x, L) and F (x,H)

for the following configuration of parameters: α = 0, ρ = 0.04, φH = 0.25, φL = −0.15,

µH = 0.25, and µL = 0.10. With these parameter values, x∗ = 0.92.

4.2 Regressions on Average q

In this section we analyze various regressions in which average q is a regressor, either by itself

or along with cash flow as an additional regressor. We consider three scenarios of regressions

that are defined by the sample of observations (either Regimes H and L or Regime L only)

and the set of regressors (either average q only or both average q and cash flow). In order

to distinguish the coefficients in the various regressions, Table 4.2 presents the notation for

the various regression coefficients in the three scenarios. In both Scenarios I and II, the

sample consists of both Regime H and Regime L. Scenarios I and II are distinguished from

each other by the number of regressors: in Scenario I, average q is the lone regressor, and

in Scenario II both average q and cash flow are regressors. Scenario III is distinguished by

its sample, which consists only of observations in Regime L.18

Within each of the three scenarios, there are two regressions: one regression uses marginal

q as the dependent variable and the other regression uses the investment-capital ratio i as the

dependent variable. Within each scenario, the regression coefficients (except the intercept)

in the regression with i as the dependent variable are 1
θ

times the corresponding coefficients

18Cash flow, φ, cannot be a regressor when the sample is limited to a single regime because there is no
within-regime variation in φ.
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Regressions with Marginal q as Dependent Variable

Scenario Sample Regressor(s) Coefficients

I Regimes H and L qA βIq
II Regimes H and L qA and φ βIIq and βφ
III Regime L qA βIIIq

Table 1: Three different regression scenarios

in the regression with marginal q as the dependent variable because the optimal investment-

capital ratio i is a deterministic linear function of marginal q with slope 1
θ
. The regressions

with marginal q as the dependent variable are necessarily theoretical regressions because

marginal q is not directly observable when vjx (x) > 1. However, these theoretical regressions

are useful to examine because the magnitudes of the regression coefficients do not depend

on θ, provided that θ is sufficiently large. We begin by analyzing regressions with marginal

q as the dependent value in all three scenarios and then we examine regressions with the

investment-capital ratio as the dependent variable.

4.2.1 Regressions of Marginal q on Average q

Before analyzing regressions of the investment-capital ratio on average q, we start by exam-

ining theoretical regressions of marginal q on average q. Since financing costs drive a wedge

between average q and marginal q, the regression coefficient can differ from one, even when

the Hayashi conditions hold.

Figure 3 uses the density function of Figure 2 to illustrate the joint distribution of

marginal q and average q in the same two-dimensional diagram as in Figure 1 . The thickness

of the curve OB increases from the origin O to Point B, indicating the increasing density of

observations in Regime L as x increases from 0 at the origin to x∗ at Point B. Similarly,

the curve extending from Point C to Point A represents observations in Regime H, with

increasing density as x increases from 0 at Point C to x∗ at Point A. In addition, there is a

mass at Point A.

Now consider the population regression of marginal q on average q using the full sample

of observations from both Regime L and Regime H (Scenario I). As indicated in Table 4.2,

βIq is the population regression coefficient on average q. The fitted line of this regression is

the steeply upward sloping line that passes a bit below Point A in the upper right portion

of Figure 3. Since there is a mass of observations at Point A, and the density Fx (x,H)
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Figure 3: Regression of Marginal q on Average q.

= ab

|φ(j)|e
bx is increasing in x, much of the mass of observations in Regime H is located at

or near Point A. Also, in Regime L, much of the mass of the distribution is near Point B

(though there is not a mass at Point B). Thus, most of the mass of the points in Figure

3 is located near Points A and B. Therefore, the fitted line passes close to these points,

as shown by the regression line in Figure 3. The slope of this fitted line, βIq , exceeds one

because Point A pulls the regression line upward toward the 45-degree line for high values of

average q and Point B pulls the regression line away from the 45-degree line for low values of

average q. In this specific example, the slope is βIq = 1.33. Empirical analyses of investment

and q typically appeal to the Hayashi conditions to use average q as a proxy for marginal

q. Under the Hayashi conditions, and in the absence of financial constraints, any difference

between average q and marginal q is regarded as measurement error in average q. If the

measurement error is classical measurement error—that is, has zero mean and is uncorrelated

with marginal q—then a regression of marginal q on average q would have a positive slope

smaller than one. Remarkably, we have shown that in the presence of financial constraints,

the slope of the fitted line from the regression of marginal q on average q is greater than one.

Evidently, the measurement error associated with using average q as a proxy for marginal q

in the presence of financial constraints is not classical measurement error.19

19Equation (32) provides an expression for this measurement error. Not only does this measurement error
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In the context of the model presented here, there is a simple way to create a sample of

observations that is free of non-classical measurement error in average q induced by financial

constraints. A sample that includes only observations at times when optimal dividends are

positive will not contain this measurement error. In the model presented here, the firm will

pay dividends only if the marginal value of cash on hand, vjx (x), equals one. Substituting

vjx (x) = 1 into the expression for measurement error in equation (32) reveals that the

measurement error in average q is zero when vjx (x) = 1. In this model, the firm pays

dividends only in Regime H and only at a single value of x, namely, x∗. Because the

distribution of x has a potentially large mass at x = x∗ in Regime H, a substantial fraction

of any set of observations on investment and average q will be associated with positive

dividends.

If one constructs a sample from a set of ex ante identical firms (that is, firms with identical

values of α, ρ, φH , φL, µH , and µL, but idiosyncratic realizations of regimes) and includes

only observations for which dividends are positive, then all observations in the sample have

the same value of average q. In such a sample, all observations have average q equal to

qHA (x∗), so there is no variation in the independent variable in a regression of marginal q on

average q. To get variation in the independent variable, we could generate observations from

sample paths of different firms with different values of the parameters20. Alternatively, one

might consider one or more ex ante identical firms that face multiple profitability regimes

and pay dividends in different regimes at different values of average q in each regime. While

the quantitative methods of this paper could be extended to analyze such a model, we do

not pursue this extension in the current paper.

4.2.2 Regressions of Marginal q on Average q and Cash Flow

Now consider the population regression of marginal q on average q and cash flow φ (Scenario

II). The impact of adding cash flow as a second regressor is that Points A and B continue to

assert a strong influence on the fitted line, but do so without steepening the fitted line. In a

two-regime stochastic framework, there are only two values of cash flow, φH > 0 and φL < 0,

so cash flow is simply a binary variable that indicates the regime. Figure 4 exploits the

fact that cash flow is a binary variable to represent the 3-dimensional relationship among

have a positive mean, it is not independent of marginal q.
20If the dependent variable is the investment-capital ratio i rather than marginal q, then the firms must

have identical values of θ so that the slope of the population regression of i on average q will equal 1
θ if all

of the observations have positive dividends.
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Figure 4: Regression of Marginal q on Average q and Cash Flow.

marginal q, average q, and cash flow in a 2-dimensional diagram. The common slope

of the two parallel dashed lines equals βIIq , the regression coefficient on average q in this

regression. The solid segment of the lower of the two lines is the fitted line of the regression

for observations in Regime L, when cash flow is φL. The short solid segment of the higher of

the two lines is the fitted line of the regression for observations in Regime H, when cash flow

is φH . The impact of cash flow is shown in Figure 4 as the vertical distance between the

two upward-sloping dashed lines, which is
(
φH − φL

)
βφ > 0, where βφ > 0 is the coefficient

on cash flow in a full-sample regression of marginal q on average q and cash flow φ.

The distribution function in Figure 2 shows that most of the observations in Regime H

are located at or near Point A, which is a mass point. Figure 4 shows that within Regime

H there is very little variation in average q compared to the variation in average q in Regime

L. With so little variation in average q in Regime H, the within-regime variation in average

q has very little impact on the estimated coefficient of average q. To exaggerate for the sake

of expositional clarity, OLS recognizes that variation in average q within Regime H is nearly

worthless in estimating the coefficient on average q in a multiple regression; therefore, OLS

essentially treats all observations in Regime H as being located at Point A.

The estimated coefficients in the multiple regression on average q and cash flow (Scenario
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Figure 5: Regression of Marginal q on Average q and Cash Flow and approximate two-step
procedure.

II) can be approximated by a 2-stage procedure. Stage 1 provides an alternative estimate

of the coefficient on average q using a univariate regression in Regime L (Scenario III) and

Stage 2 provides an alternative calculation of the coefficient on cash flow.

Stage 1 : Using only the observations in Regime L, run a univariate regression of marginal

q on average q (Scenario III) to obtain the coefficient on average q, denoted βIIIq , and the

constant, β0. Define and calculate

ζ ≡ qLM (x∗)−
[
β0 + βIIIq qLA (x∗)

]
, (36)

which is the value of the approximation error when average q equals qLA (x∗).

Stage 2 : Find the point (call it Point D) on the fitted regression line from Stage 1 that

is vertically below Point A. Calculate Θ, which is the distance from point D to point A,

and equate Θ with the impact of cash flow
(
φH − φL

)
β̂φ, to obtain an alternative measure
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Scenario coefficent on average q cash flow coefficient

I βIq = 1.33 −−−
II βIIq = 0.55 βφ = 3.16

III βIIIq = 0.52 β̂φ = 3.35

Table 2: A summary of the regression coefficients

of the coefficient on cash flow as

β̂φ =
Θ

φH − φL
. (37)

Appendix D presents the details of the implementation of this 2-step procedure for the

parameter values underling the quantitative example in Figure 4. In the final row of Table

2, labelled Scenario III, are the values of βIIIq , the coefficient on average q obtained in Stage

1, and the value of β̂φ, the coefficient on cash flow deduced in Stage 2. These coefficients in

Scenario III are each about 5% different than the coefficients in the full-sample regression,

Scenario II, of the investment-capital ratio on average q and cash flow. Figure 5 illustrates

how well the 2-stage procedure approximates the multiple regression of marginal q on average

q and cash flow.

4.2.3 Investment Regressions

Now consider regressions in which the investment-capital ratio, i, is the dependent variable.

As discussed earlier, replacing marginal q with i as the dependent variable in the regressions

in Scenarios I, II, and III simply multiplies all of the regression coefficients (except for the

intercept) by 1
θ
.

First consider the investment version of Scenario I, which is a univariate regression of the

investment-capital ratio (rather than marginal q) on average q. The regression coefficient

is 1
θ
βIq >

1
θ
, where the inequality follows from our finding that non-classical measurement

error in average q causes βIq to exceed one. Therefore, an OLS regression of the investment-

capital ratio on average q is likely to overstate 1
θ
, equivalently, understate the adjustment cost

parameter θ. This finding is the opposite of the typical argument, which says that because

of classical measurement error, the estimated coefficient 1
θ
βIq is likely to understate 1

θ and

hence overstate the adjustment cost parameter θ. Our finding implies that measurement

error arising from financial constraints cannot be the explanation for estimates of 1
θ
βIq that

are typically regarded as too low.
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The conventional wisdom is that in regressions of the investment-capital ratio on average

q and cash flow (Scenario II), the coefficient on average q measures the sensitivity of the

investment-capital ratio to the expectations of future marginal profits of capital and the

coefficient on cash flow reflects the impact of financing constraints on investment. The

two-stage procedure discussed above leads to a different interpretation. To analyze the

interpretation suggested by the 2-stage procedure, consider the impact on the investment-

capital ratio of a switch from Regime L to Regime H, when x = x∗. First, we analyze

this impact, which is iH (x∗)− iL (x∗), within our model and then we analyze the impact on

iH (x∗)− iL (x∗) calculated from the coefficients of the 2-stage procedure.

To calculate the impact within our model, use iH (x∗) − iL (x∗) = 1
θ

(
qHM (x∗)− qLM (x∗)

)
and the definitions of average q and marginal q to obtain21

iH (x∗)− iL (x∗) =
1

θ

[
qHA (x∗)− qLA (x∗)

]︸ ︷︷ ︸
impact of expected future profitability

+
1

θ

[
vLx (x∗)− 1

] vL (x∗)

vLx (x∗)︸ ︷︷ ︸
scaled shadow price of constraint

. (38)

The right hand side of equation (38) expresses the difference in the investment-capital ratio

when x = x∗ in the two regimes as the sum of two components. The first component equals

the difference in average q when x = x∗ in the two regimes–which is equal to the difference in

valuation, vH (x∗)− vL (x∗)–multiplied by 1
θ
. This component, which is proportional to the

difference in valuation across the two regimes, captures the response of the investment-capital

ratio to the change in the present value of future profitability when the regime switches to

Regime H from Regime L.22 The second component is the product of (1) 1
θ
, (2) vLx (x∗)− 1,

which is the shadow price of the constraint x ≥ 0, and (3) vL(x∗)
vLx (x∗)

, which is the value of

the firm in Regime L when x = x∗, normalized by the marginal valuation of cash on hand,

vLx (x∗). This component reflects the impact of the financial constraint x ≥ 0.

21The definition of average q, qjA (x) ≡ vj (x)−x, implies qHA (x)−qLA (x) = vH (x)−vL (x). The definition of

marginal q, qjM (x) ≡ vj(x)

vjx(x)
−x, along with vHx (x∗) = 1 implies qHM (x∗)−qLM (x∗) = vH (x∗)− vL(x∗)

vLx (x∗)
. There-

fore, qHM (x∗)− qLM (x∗) =
[
vH (x∗)− vL (x∗)

]
+ vL (x∗)− vL(x∗)

vLx (x∗)
=
[
qHA (x)− qLA (x)

]
+
[
vLx (x∗)− 1

] vL(x∗)
vLx (x∗)

.
22Since a regime is defined by the value of cash flow, φ, there is no within-regime variation in φ. Therefore,

all of the within-regime variation in average q arises from variation in cash on hand x, which affects the
expected present of cash flows over the lifetime of the firm by affecting the expected lifetime of the firm. For
instance, an increase in x allows the firm to live a longer period of time before it is forced to terminate in
some Regime L when it runs out of cash. This increase in the firm’s projected longevity increases the value
of the firm vj (x) and increases qjA (x) = vj (x)− x since vjx (x) > 1 for 0 ≤ x < x∗. Thus, βIIIq reflects the
variation in average q that arises from within-Regime L variation in cash on hand x, but it does not reflect
the variation in average q that arises from a change in regime. Nevetheless, as we show, the value of βIIIq

is close to βIIq .
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Now consider the impact on iH (x∗)−iL (x∗) implied by the 2-stage procedure. As shown

in Appendix D

iH (x∗)− iL (x∗) = βIIIq

1

θ

[
qHA (x∗)− qLA (x∗)

]︸ ︷︷ ︸
regression impact of average q

+
(
φH − φL

) 1

θ
β̂φ︸ ︷︷ ︸

regression impact of cash flow

− 1

θ
ζ. (39)

The sum of the first two terms on the right hand side of equation (39) is the fitted value

of iH (x∗) minus the fitted value of iL (x∗), where the fitted values in Regime j are calculated

as a constant plus 1
θ
βIIIq qjA (x∗) + 1

θ
β̂φφ

j, and the coefficients βIIIq and β̂φ are obtained from

the 2-stage procedure. The third term in equation (39) is proportional to the approximation

error ζ defined in equation (36).

To compare the impacts of expected future profitability and the scaled impact of the

financial constraint within the model in equation (38) with the regression impacts of average

q and cash flow in the 2-stage procedure as shown in equation (39), rewrite equation (38) as

iH (x∗)− iL (x∗) = βIIIq

1

θ

[
qHA (x∗)− qLA (x∗)

]︸ ︷︷ ︸
Term 1

+
(
1− βIIIq

) 1

θ

[
qHA (x∗)− qLA (x∗)

]︸ ︷︷ ︸
Term 2

+
1

θ

[
vLx (x∗)− 1

] vL (x∗)

vLx (x∗)︸ ︷︷ ︸
Term 3

(40)

Terms 1 and 2 in equation (40) simply split the first term in equation (38), which is the

impact of expected future profitability, into two components, and Term 3 is the impact of

the scaled shadow price of the constraint, which is the second term in equation (38). The

mapping between equations (38) and (40) is shown by the first two columns of Table 3. The

regression impacts of average q and cash flow, based on equation (39), are shown in the third

column of Table 3.

The regression impact of average q is simply equal to Term 1 in equation (40). The

regression impact of cash flow in equation (39) is approximately equal to the sum of Term

2 and Term 3 in equation (40).23 Finally, a comparison of column 1 and column 3 in Table

3 shows that the regression impact of average q in column 3 captures only a fraction βIIIq of

the impact of expected future profitability in column 1. Also the regression impact of cash

23The regression impact of cash flow in equation (39) differs from the sum of Term 2 and Term 3 in
equation (40) by the approximation error ζ multiplied by 1

θ .
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Table 3: Impacts of expected future profitability and shadow price of the financial constraint
in the model and regression impacts of average q and cash flow in investment regressions.

flow in column 3 combines the scaled shadow price of the financial constraint and a fraction

1− βIIIq of the impact of expected future profitability in column 1.

5 Impact of Salvage Value

Proposition 3 implies that vj (x∗) and qjM (x∗) are invariant to the salvage value α if x∗ > 0.

This result may be surprising since the value of the firm when x = x∗ equals the sum of (1)

cash on hand, x∗K, (2) the expected present value of the stream of operating profits, net

of investment costs, over the lifetime of the firm; and (3) the expected present value of the

salvage value received upon termination of the firm. It might seem that an increase in the

salvage value of capital would increase vj (x∗) and qjM (x∗). In this section, we analyze the

impact of salvage value and resolve what might seem like a contradiction.

In equations (B.1) and (B.2) in Appendix B, we present closed-form expressions for vH (x)
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and vL (x), given the optimal value of x∗, that can be rewritten, respectively, as

vH (x) ≡ gH (u) (41)

where u ≡ x− x∗ and gH (u) ≡ c1e
ω1u + c2e

ω2u and

vL (x) ≡ gL (u) (42)

where gL (u) ≡ ρ+µL

µL

[
c1

(
1− ω1ΦH

)
eω1u + c2

(
1− ω2ΦH

)
eω2u

]
. Notably, the functions

gj (u), j ∈ {H,L} are invariant to the salvage value α. We exploit this invariance to

prove Propositions 5 and 6 below.

Proposition 5 If x∗ > 0, then dx∗

dα
= − 1

vLx (0)
< 0.

An increase in the salvage value α reduces x∗ because an increase in salvage value reduces

the costliness of termination and thus reduces the incentive to hold cash on hand, x, as a

means to forestall termination. Indeed, the consequent reduction in x∗ leads to an earlier

termination of the firm along every realization path of profitability φt.
24 Thus, for given

values of the parameters φH , φL, µH , and µL of the stochastic process for φt, an increase in

the salvage value α reduces the expected lifetime of the firm.

The definitions of gH (u) and gL (u) in equations (41) and (42), respectively imply

vj (x, α) ≡ gj (x− x∗ (α)) , j ∈ {H,L} . (43)

The following proposition exploits equation (43) to calculate the impacts of salvage value,

α, on vj (x), vjx (x) and qjM (x).

Proposition 6 Define qjM (x, α) ≡ vj(x,α)

vjx(x,α)
− x, for j ∈ {H,L}. Then for 0 ≤ x ≤ x∗,

1. vja (x, α) > 0

2. vjxa (x, α) < 0

3.
∂qjM (x,α)

∂α
> 0.

24More precisely, along every realization path of φt, a firm with a higher value of α will terminate earlier
than or at the same time as an otherwise-identical firm with a lower value of α.
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Figure 6: Impact of positive salvage value on the value function and optimal x∗.

Proposition 6 states that for any given value of x, an increase in the salvage value α

increases marginal q, which implies that optimal investment increases also. It may seem

obvious that increasing the salvage value of capital will effectively reduce the user cost of

capital and thus stimulate investment, but there are actually two channels that increase

investment. The first is the seemingly obvious channel, which increases the value of a unit

of capital, vj (x, α), in the numerator of vj(x,α)

vjx(x,α)
; the second channel is that an increase in

α reduces the shadow price of cash on hand, vjx (x, α), which is the denominator of vj(x,α)

vjx(x,α)
.

This reduction in the denominator further increases marginal q in addition to the increase

in marginal q resulting from the increase in the numerator.

Figure 6 illustrates that an increase in the salvage value α increases the value of a unit of

capital for any given value of cash on hand, x, and yet the value of a unit of capital evaluated

at x = x∗ is invariant to α. The upward-sloping solid curve that passes through point A

shows the value of a unit of capital in Regime H on the vertical axis as a function of cash

on hand, x, on the horizontal axis. This curve is drawn for the case in which α = 0, that

is, for the case with zero salvage value. At point A, with α = 0, x = x∗α=0 so the value of a

unit of capital is vH (x∗) = ΦH+ΦL

1−Γ
(Statement 1 of Proposition 3). At point A, the marginal
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of cash on hand, vHx (x), equals one according the boundary condition in equation (18). At

points on the solid curve that are to the left of point A, the marginal value of cash on hand

is greater than one, and at points on the solid curve that are to the right of point A, the

marginal value of cash on hand is identically equal to one.

The upward-sloping dashed line that passes through point B shows the value of a unit of

capital in Regime H when the salvage value α = α1 > 0. As stated in Proposition 5, the

increase in α reduces x∗ from its initial value x∗α=0 to the lower value x∗α=α1
shown on the

horizontal axis. As indicated by Statement 1 in Proposition 6, the increase in α from zero

to a positive value increases vH (x) for every value of x. As indicated by Statement 2 in

Proposition 6, the increase in α from zero to a positive value reduces the marginal value of

cash, vHx (x), for every value of x ∈ [0, x∗α=0). At point B, where x = x∗α=α1
, the value of a

unit of capital is vH
(
x∗α=α1

)
= ΦH+ΦL

1−Γ
, just as it is point A when the salvage value is zero.

In simple economic terms, the introduction of a positive salvage value reduces the cost-

liness of termination, so the incentive to forestall termination is reduced. Thus, the firm

chooses a lower value of x∗. But the lower value of x∗ means that the firm will run out of

cash at an earlier date than it would if x∗ remained equal to x∗α=0. Thus, the firm earns

operating profits over a shorter duration of time. So, the introduction of a positive salvage

value has three impacts on vH (x∗). First, the introduction of a positive salvage value di-

rectly reduces cash on hand, x∗K. Second, the reduction in x∗ shortens the firm’s life and

reduces the expected present value of operating profits, net of investment costs, over its life-

time. Third, the introduction of a positive salvage value means that the firm collects some

positive amount α when it terminates, which tends to increase the value of the firm. Taken

together, these three effects add up to precisely zero and there is no impact on vH (x∗).

The introduction of a positive salvage value seems to strengthen our finding that financial

constraints bias upward the coefficient in a univariate regression of marginal q (equivalently,

the optimal investment-capital ratio) on average q. To see why, observe that in Figure 3,

in which the salvage value α equals zero, all points lie below the 45 degree line along which

marginal q equals average q, with two exceptions: qHM (x∗) = qHA (x∗) as shown by Point

A and qLM (0) = qLA (0) = 0 as shown by Point O. However, with a positive salvage value,

α > 0, qLM (0) = vL(0)
vLx (0)

= α
vLx (0)

< α = qLA (0) > 0. Therefore, if Figure 3 were redrawn for the

case in which the salvage value α is positive, the point on the lower curve where x = 0 in

Regime L would lie to the northeast of Point O, but below the 45 degree line, which tends

to steepen the regression line further.
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6 Conclusion

Financial constraints affect the real decisions of firms, such as the capital investment decision.

To examine the impact of financial constraints, we introduced a stark financial constraint

that prevents an ongoing firm from using any form of external finance. Formally, this

constraint is written as two constraints that prevent both cash on hand and dividends from

being negative. If the firm faces negative cash flow from operations when it has zero cash

on hand, then it must terminate immediately and permanently. The risk of such a liquidity

shortfall provides an incentive to accumulate cash on hand, but this incentive is tempered

by shareholders’ preference to receive dividends sooner rather than later.

Financial constraints reduce the value of the firm, thereby reducing marginal q and

reducing optimal investment. Notably, the reduction in the optimal rate of investment occurs

even when the financial constraints are not currently binding, but the financial constraints

would not be reflected by the regression coefficient on cash flow.

The q-theory of investment is easily derived for a neoclassical firm that faces convex costs

of adjusting its capital stock and is free of any financial constraints. A powerful implication

of that theory is that marginal q is a sufficient statistic for optimal investment. Marginal q

is not directly observable, but average q, which is observable, is identically equal to marginal

q if the Hayashi conditions hold. Thus empirical analyses appeal to the Hayashi conditions

and use average q as a proxy for marginal q in investment regressions. When cash flow

is included as a second regressor in those regressions, the coefficient on cash flow is often

positive. A positive coefficient on cash flow is interpreted by many researchers as evidence of

financial constraints, though other researchers interpret the positive coefficient as an artifact

of classical measurement error in average q.

In this paper, we use the convex adjustment cost framework to examine optimal invest-

ment for a firm that satisfies the Hayashi conditions and faces the stark financial constraint

described above. Though the financial constraint reduces the optimal rate of investment, it

does not affect the relationship between the optimal investment-capital ratio and marginal

q. In particular, the financial constraint does not affect marginal q’s status as a sufficient

statistic for investment. However, the financial constraint drives a wedge between marginal

q and average q, which has an impact on investment regressions that use average q as a re-

gressor. For univariate regressions of the investment-capital ratio on average q, the financial

constraint biases the coefficient on average q upward, rather than downward as would be

the case with classical measurement error. The addition of cash flow as a second regressor
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in such investment regressions reduces the coefficient on average q; and, importantly, the

coefficient on cash flow is positive. The positive coefficient on cash flow is evidence of a

financial constraint since it is a consequence of the wedge between average q and marginal q

induced by financial constraints of the sort we have modeled. The coefficient on cash flow

comprises two components. One component reflects the financial constraint as an increasing

function of the marginal valuation of cash on hand multplied by the value of the firm per

unit of capital. The other component is a portion of the impact of expected future prof-

itability on investment, which diminishes the contribution of this impact to the coefficient

on average q. The cash flow coefficient is not simply a reflection of a liquidity shortfall that

limits investment.

If the sample were to include only observations for which D > 0, so that the financial

constraint is not binding, the wedge between average q and marginal q would disappear. In

that case, in the absence of any other source of measurement error, average q would be a

sufficient statistic for investment in the sample, and the coefficient on cash flow would be

zero. However, one must use caution in concluding that the zero coefficient is evidence

against the relevance of financial constraints. In this situation, the financial constraint is

not binding, but optimal investment is, neverthess, smaller than it would be in the complete

absence of financial constraints.
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Appendix

A Proofs

Proof of Lemma 1. For any ∆ > 0, X ≥ 0, and K > 0, V j (X + ∆, K) ≥ V j (X,K)+∆,

so lim∆→0
V j(X+∆,K)−V j(X,K)

∆
≥ lim∆→0

∆
∆

= 1.

Proof of Lemma 2. Since vL (x) is strictly increasing (Lemma 1 and equation (10)),

x∗ > 0 if and only if vL (x∗) > vL (0). Then the boundary condition in equation (20),

vL (0) = α, implies that x∗ > 0 if and only if vL (x∗) > α.

Proof of Proposition 1. See paragraph immediately following Proposition 1.

Proof of Proposition 2. In Regime H, the HJB equation in equation (16) and the

boundary condition in equation (20), vL (0) = α, together imply (Statement 1) vH (0) =

vHx (0) ΦH + µL

ρ+µL
α > ΦH , where the inequality follows from α ≥ 0 and vHx (0) > 1 when

x∗ > 0. Substituting this expression for vH (0) into the definition qHM (x) ≡ vH(x)
vHx (x)

− x and

setting x = 0 yields (Statement 2) qHM (0) = ΦH + µL

ρ+µL
α

vLx (0)
≥ ΦH .

Now consider Regime L. Statement 3 is simply the boundary condition in equation

(20), vL (0) = α, which together with vLx (0) > 1 (from Lemma 1 and equation(10)), implies

qLM (0) = α
vLx (0)

< α.

Proof of Proposition 3. Substitute equation (29) into equation (28) to obtain vH (x∗) =

ΦH+ µL

ρ+µL

[
ρ+µL

µL
ΦL + µH

ρ+µH
vH (x∗)

]
= ΦH+ΦL+ΓvH (x∗), where Γ ≡ µH

ρ+µH
µL

ρ+µL
. Therefore,

(Statement 1) vH (x∗) = 1
1−Γ

[
ΦH + ΦL

]
< 1

1−Γ

[
ΦH + µL

ρ+µL
ΦL
]

= ṽH , where the inequality

follows from Γ < 1, µL

ρ+µL
< 1, and ΦL < 0. Use the boundary condition vHx (x∗) = 1 from

equation (18) and the definition qHM (x) ≡ vH(x)
vHx (x)

−x from equation (14) to obtain (Statement 2)

qHM (x) = vH (x∗)−x∗ = ΦH+ΦL

1−Γ
−x∗ < ṽH , where the second equality and the inequality follow

from Statement 1. Substitute equation (28) into equation (29) to obtain vL (x∗) = ρ+µL

µL
ΦL+[

µH

ρ+µH
ΦH + µH

ρ+µH
µL

ρ+µL
vL (x∗)

]
= ρ+µL

µL

[
ΦL + ΓΦH

]
+ ΓvL (x∗). Therefore, (Statement 3)

vL (x∗) = 1
1−Γ

ρ+µL

µL

[
ΦL + ΓΦH

]
< 1

1−Γ

[
ΦL + µH

ρ+µH
ΦH
]

= ṽL, where the inequality follows

from ρ+µL

µL
> 1, ΦL < 0, and ρ+µL

µL
Γ = µH

ρ+µH
. Use vLx (x∗) = ρ+µL

µL
from equation (27) and

qLM (x) ≡ vL(x)
vLx (x)

−x to obtain (Statement 4) qLM (x∗) = vL(x∗)
vLx (x∗)

−x∗ = ΦL+ΓΦH

1−Γ
−x∗ < ṽL, where

the second equality and the inequality follow from Statement 3.

Proof of Corollary 1. Assume that x∗ > 0 and consider 0 ≤ x ≤ x∗. Then qjM (x) ≤
qjM (x∗) = vj(x∗)

vjx(x∗)
− x∗ < vj (x∗) < ṽj where the first inequality follows from the fact that

43



qjM (x) is increasing in x for 0 ≤ x ≤ x∗, the equality is simply the definition of qjM (x)

evaluated at x = x∗, the second inequality follows from vjx (x∗) ≥ 1 and x∗ > 0 and the final

inequality follows from Statements 1 and 3 of Proposition 3.

Proof of Proposition 4. Lemma 2 and Statement 3 of Proposition 3 imply x∗ > 0 ⇐⇒
ρ+µL

µL
ΦL+ΓΦH

1−Γ
> α ⇐⇒ ΦL+ΓΦH

1−Γ
> µL

ρ+µL
α. Observe that ΦL+ΓΦH

1−Γ
= ΦL+ΦH

1−Γ
−ΦH = vH (x∗)−

ΦH , where the second equality follows from Statement 1 of Proposition 3. Therefore,

x∗ > 0⇐⇒ vH (x∗)− ΦH > µL

ρ+µL
α, or equivalently, vH (x∗) > ΦH + µL

ρ+µL
α.

Proof of Proposition 5.

Since u ≡ x − x∗, vL (0) = gL (−x∗). Therefore, the boundary condition vL (0) = α

(equation 20) can be written as g (−x∗) = α, which can be implicitly differentiated to obtain
dx∗

dα
= − 1

g′(−x∗) = − 1
vLx (0)

< 0.

Proof of Proposition 6. Differentiate equation (43) with respect to x obtain vjx (x, α) =

gj′ (x− x∗ (α)) > 0, where the inequality follows from Lemma 1. Differentiate equation (43)

with respect to α to obtain vjα (x, α) = −gj′ (x− x∗ (α))x∗′ (α) > 0, where the inequality

follows from Proposition 5 and vjx (x, α) = gj′ (x− x∗ (α)) > 0. Therefore, an increase in α

increases the value of a unit capital, vj (x, α), at any given level of cash on hand in either

regime.

To determine the impact of α on the marginal valuation of cash in Regime j, vjx, first differ-

entiate vjx (x, α) = gj′ (x− x∗ (α)) with respect to x to obtain vjxx (x, α) = gj′′ (x− x∗ (α)) ≤
0, for 0 ≤ x ≤ x∗, where the inequality follows from the concavity of vj (x) for 0 ≤ x ≤ x∗

and is strict for 0 ≤ x < x∗. Now differentiate vjx (x, α) = gj′ (x− x∗ (α)) with respect to

α to obtain vjxα (x, α) = −gj′′ (x− x∗ (α))x∗′ (α) ≤ 0, for 0 ≤ x ≤ x∗, where the inequality

follows from Proposition 5 and vjxx (x, α) = gj′′ (x− x∗ (α)) ≤ 0. Therefore, an increase in

α reduces the marginal valuation of cash, vjx (x, α), at any given value of x.

Differentiate qjM (x, α) ≡ vj(x,α)

vjx(x,α)
− x with respect to α to obtain

∂qjM (x,α)

∂α
= vja(x,α)

vjx(x,α)
−

vj(x,α)

[vjx(x,α)]
2vjxα (x, α) > 0 for 0 ≤ x ≤ x∗.
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B Solution of the ODEs in Equations (16) and (17) and

boundary conditions conditions in equations (18),

(19), and (20)

This appendix first presents, and then verifies, the solutions to the ODEs in equations

(16) and (17) and boundary conditions conditions in equations (18), (19), and (20). The

solutions for the value of the firm in Regime H and Regime L are in equations (B.1) and

(B.2), respectively. The solution for x∗ is the root of h (u) = 0 where h (u) is defined in

equation (B.6), provided that ΦL+ΓΦH

1−Γ
> µL

ρ+µL
α so that (from Proposition 4) x∗ > 0.

vH (x) = c1e
ω1(x−x∗) + c2e

ω2(x−x∗) (B.1)

and

vL (x) = c1
ρ+ µL

µL
(
1− ω1ΦH

)
eω1(x−x∗) + c2

ρ+ µL

µL
(
1− ω2ΦH

)
eω2(x−x∗) (B.2)

where ω1 < 0 < ω2 <
1

ΦH
are the roots of the characteristic equation25

q (ω) ≡ ω2 −
(

1

ΦH
+

1

ΦL

)
ω +

1

ΦH

1

ΦL
(1− Γ) = 0, i = 1, 2 (B.3)

and

c1 =
1

ω2 − ω1

ω2

ω1

< 0, (B.4)

and

c2 =
1

ω1 − ω2

ω1

ω2

> 0. (B.5)

If ΦL+ΓΦH

1−Γ
> µL

ρ+µL
α, then x∗ is the unique positive root of h (u) = 0, where26

h (u) ≡ c1

(
1− ω1ΦH

)
e−ω1u + c2

(
1− ω2ΦH

)
e−ω2u − µL

ρ+ µL
α. (B.6)

25Since q′′ (ω) > 0 and q (0) = 1
ΦH

1
ΦL (1− Γ) < 0, ω1 < 0 < ω2. In addition, since q

(
1

ΦH

)
= − 1

ΦH
1

ΦL Γ > 0,
ω2 <

1
ΦH .

26Since ω1 + ω2 = 1
ΦH + 1

ΦL and ω1ω2 = 1
ΦH

1
ΦL (1− Γ), it follows that c1 + c2 = 1

ω2−ω1

(
ω2

ω1
− ω1

ω2

)
=

ω2
2−ω

2
1

ω2−ω1

1
ω1ω2

= ω1+ω2

ω1ω2
=

1

ΦH + 1

ΦL
1

ΦH
1

ΦL (1−Γ)
= ΦH+ΦL

1−Γ . Use this expression for c1 +c2 and the fact that c1ω1 +c2ω2 =

1 to obtain h (0) = c1
(
1− ω1ΦH

)
+ c2

(
1− ω2ΦH

)
− µL

ρ+µLα = c1 + c2 − (c1ω1 + c2ω2) ΦH − µL

ρ+µLα =

ΦH+ΦL

1−Γ − ΦH − µL

ρ+µLα = ΦL+ΓΦH

1−Γ − µL

ρ+µLα will be positive if and only if ΦL+ΓΦH

1−Γ − µL

ρ+µLα > 0 which is

the case if and only if x∗ > 0. Differentiate the expression for h (u) in equation (B.6) to obtain h′ (u) =

−c1ω1

(
1− ω1ΦH

)
e−ω1u − c2ω2

(
1− ω2ΦH

)
e−ω2u < 0. Since we are assuming that ΦL+ΓΦH

1−Γ − µL

ρ+µLα > 0,

we have h (0) > 0 and h′ (u) < 0, so h (u) = 0 has a unique positive root.
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In the special case in which the salvage value, α, equals zero, there is a closed-form

expression for x∗.

x∗ = max

[
1

ω2 − ω1

ln (1 + Ω) , 0

]
, if α = 0 (B.7)

where

Ω ≡ ΦL + ΓΦH

1− Γ− (ΦL + ΓΦH)ω2

(ω2 − ω1) . (B.8)

To verify the solutions in equations (B.1) and (B.2), first differentiate each of these

equations with respect to x to obtain

vHx (x) = ω1c1e
ω1(x−x∗) + ω2c2e

ω2(x−x∗) (B.9)

and

vLx (x) = ω1c1
ρ+ µL

µL
(
1− ω1ΦH

)
eω1(x−x∗) + ω2c2

ρ+ µL

µL
(
1− ω2ΦH

)
eω2(x−x∗). (B.10)

Use equations (B.2) and (B.9) to write the right hand side of equation (16) as

vHx (x) ΦH +
µL

ρ+ µL
vL (x) =

[
ω1c1e

ω1(x−x∗) + ω2c2e
ω2(x−x∗)]ΦH

+
µL

ρ+ µL

[
c1
ρ+µL

µL

(
1− ω1ΦH

)
eω1(x−x∗)

+c2
ρ+µL

µL

(
1− ω2ΦH

)
eω2(x−x∗)

]

which simplifies to

vHx (x) ΦH +
µL

ρ+ µL
vL (x) = c1e

ω1(x−x∗) + c2e
ω2(x−x∗). (B.11)

Note that the right hand side equation (B.11) equals the expression for vH (x) in equation

(B.1).

Use equations (B.1) and (B.10) to write the right hand side of equation (17) as

vLx (x) ΦL +
µH

ρ+ µH
vH (x) =

[
ω1c1

ρ+µL

µL

(
1− ω1ΦH

)
eω1(x−x∗)

+ω2c2
ρ+µL

µL

(
1− ω2ΦH

)
eω2(x−x∗)

]
ΦL

+
µH

ρ+ µH
[
c1e

ω1(x−x∗) + c2e
ω2(x−x∗)]
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which, using Γ ≡ µL

ρ+µL
µH

ρ+µH
, simplifies to

vLx (x) ΦL +
µH

ρ+ µH
vH (x) =

ρ+ µL

µL

[ [
ω1ΦL

(
1− ω1ΦH

)
+ Γ

]
c1e

ω1(x−x∗)

+
[
ω2ΦL

(
1− ω2ΦH

)
+ Γ

]
c2e

ω2(x−x∗)

]
. (B.12)

Evaluating the characteristic function in equation (B.3) at the roots ωi, i = 1, 2, yields

ΦHΦLω2
i −

(
ΦL + ΦH

)
ωi + 1 − Γ = 0, which implies Γ + ΦLωi − ΦHΦLω2

i = 1 − ΦHωi,

equivalently,

ωiΦ
L
(
1− ωiΦH

)
+ Γ = 1− ΦHωi, i = 1, 2. (B.13)

Use equation (B.13) to rewrite equation (B.12) as

vLx (x) ΦL +
µH

ρ+ µH
vH (x) =

ρ+ µL

µL

[ (
1− ΦHω1

)
c1e

ω1(x−x∗)

+
[
1− ΦHω2

]
c2e

ω2(x−x∗)

]
. (B.14)

Note that the right hand side equation (B.14) equals the expression for vL (x) in equation

(B.2). Thus, we have verified that the expressions for vH (x) and vL (x) in equations (B.1)

and (B.2) satisfy the ODEs in equations (16) and (17), respectively.

Next we verify the boundary conditions. Differentiate vH (x) in equation (B.1) twice

with respect to x, evaluate vHx (x) and vHxx (x) at x = x∗, and use the definitions of c1 and c2

in equations (B.4) and (B.5) to obtain

vHx (x∗) = c1ω1 + c2ω2 = 1 (B.15)

and

vHxx (x∗) = c1ω
2
1 + c2ω

2
2 = 0, (B.16)

which are the boundary conditions in equations (18) and (19), respectively.

Evaluate vL (x) in equation (B.2) at x = 0, to obtain

vL (0) = c1
ρ+ µL

µL
(
1− ω1ΦH

)
e−ω1x∗ + c2

ρ+ µL

µL
(
1− ω2ΦH

)
e−ω2x∗ , (B.17)

which can be rewritten as

vL (0) =
ρ+ µL

µL

[
h (x∗) +

µL

ρ+ µL
α

]
= α, (B.18)

where the second equality follows from h (x∗) = 0. Equation (B.18) is equivalent to the

boundary condition in equation (20).
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For the special case in which α = 0, rearrange equation (B.17) using c1
c2

= −ω2
2

ω2
1
, which is

implied by equations (B.4) and (B.5), to obtain

e(ω2−ω1)x∗ = Z ≡ ω2
1

ω2
2

1− ω2ΦH

1− ω1ΦH
> 0, if α = 0. (B.19)

The fact that Z > 0 in equation (B.19) follows from ω1 < 0 < ω2 <
1

ΦH
. Take the ln of both

sides of equation (B.19) to obtain

x∗ =
1

ω2 − ω1

lnZ, if Z ≥ 1 and α = 0. (B.20)

Evaluate the characteristic polynominal at the roots ωi and ωj, i 6= j, to obtain27

ω2
1

(
1− ω2ΦH

)
=
−1

ΦHΦL

[
1− Γ−

(
ΦL + ΓΦH

)
ω1

]
(B.21)

and

ω2
2

(
1− ω1ΦH

)
=
−1

ΦHΦL

[
1− Γ−

(
ΦL + ΓΦH

)
ω2

]
. (B.22)

Use equations (B.21) and (B.22) to rewrite the definition of Z in equation (B.19) as

Z ≡
1− Γ−

(
ΦL + ΓΦH

)
ω1

1− Γ− (ΦL + ΓΦH)ω2

. (B.23)

Add and subtract
(
ΦL + ΓΦH

)
ω2 in the numerator of Z in equation (B.23) and rearrange

to obtain

Z = 1 +

(
ΦL + ΓΦH

)
(ω2 − ω1)

1− Γ− (ΦL + ΓΦH)ω2

= 1 + Ω, (B.24)

where the second equality uses the definition of Ω in equation (B.8). Observe that if α = 0,

then x∗ > 0 if and only if Z > 1, which is the case if and only if ΦL + ΓΦH > 0.28

Repeated differentiation of equations (B.1) and (B.2) with respect to x leads to the

following expressions for vH(j) (x) and vL(j) (x), which are the j-th order derivatives of vH (x)

and vL (x), respectively, with respect to x.

vH(j) (x) = c1ω
j
1e
ω1(x−x∗) + c2ω

j
2e
ω2(x−x∗) (B.25)

27ω2
i

(
1− ωjΦH

)
= ω2

i − ω2
i ωjΦ

H . Equation (B.3) implies ω2
i =

(
1

ΦH + 1
ΦL

)
ωi − 1

ΦH
1

ΦL (1− Γ) and ωiωj
= 1

ΦH
1

ΦL (1− Γ), i 6= j, so ω2
i

(
1− ωjΦH

)
=
[(

1
ΦH + 1

ΦL

)
ωi − 1

ΦH
1

ΦL (1− Γ)
]
− ωiΦ

H 1
ΦH

1
ΦL (1− Γ)

= 1
ΦH

1
ΦL

[(
ΦL + ΦH

)
ωi − (1− Γ)− ωiΦH (1− Γ)

]
= 1

ΦH
1

ΦL

[(
ΦL + ΓΦH

)
ωi − (1− Γ)

]
=

− 1
ΦH

1
ΦL

[
1− Γ−

(
ΦL + ΓΦH

)
ωi
]
.

28This statement requires 1−Γ−
(
ΦL + ΓΦH

)
ω2 > 0. Since ω1 < 0 < ω2 and ΦH > 0, the left hand side

of equation (B.22) is positive. In addition, since ΦL < 0, the right hand side of equation (B.22) is positive
if and only if 1− Γ−

(
ΦL + ΓΦH

)
ω2 > 0.
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vL(j) (x) =
ρ+ µL

µL
(
1− ω1ΦH

)
c1ω

j
1e
ω1(x−x∗) +

ρ+ µL

µL
(
1− ω2ΦH

)
c2ω

j
2e
ω2(x−x∗). (B.26)

Since c1 < 0, c2 > 0 (equations B.4 and B.5) and ω1 < 0 < ω2 <
1

ΦH
, it follows that

vH(j) (x) > 0 and vL(j) (x) > 0 for j = 1, 3, 5, .... In particular, the third derivatives of the

value functions vH (x) and vL (x) both positive.

Since vHxxx (x) > 0, it follows that vHxx (x) < vHxx (x∗) = 0 for 0 ≤ x < x∗. Therefore,

vH (x) is strictly concave for 0 ≤ x < x∗. Use equations (B.25) and (B.26) to obtain

vL(j) (x) =
ρ+ µL

µL
[
vH(j) (x)− ω1ΦHc1ω

j
1e
ω1(x−x∗) − ω2ΦHc2ω

j
2e
ω2(x−x∗)] . (B.27)

Evaluate equation (B.27) for j = 2 at x = x∗, and use vHxx (x∗) = 0 to obtain

vLxx (x∗) = −ΦH ρ+ µL

µL
(
ω3

1c1 + ω3
2c2

)
< 0. (B.28)

Since vLxxx (x) > 0, we have vLxx (x) < vLxx (x∗) < 0 for 0 ≤ x ≤ x∗. Therefore, vL (x) is

strictly concave for 0 ≤ x ≤ x∗.

C The Cumulative Distribution Function of x

The endogenous level of cash on hand, xt, does not have a stationary distribution because

the firm eventually will encounter a Regime L that lasts long enough to deplete cash on

hand and force termination of the firm. Instead of stationary distribution, we focus on the

distribution of xt over the time interval extending from the firm’s birth during a Regime H

at a time normalized to be 0 until the firm’s death at time τ ≡ min {t > 0 : xt = 0}. To

derive the distribution function F (x, j), j ∈ {H,L}, we use indicator functions to indicate

at each t ∈ [0, τ ] which regime prevails and whether xt < ∆ for 0 ≤ ∆ ≤ x∗.

Let gH (x) denote an arbitrary indicator function and define

yH (xt) ≡ Et

{∫ τ

t

gH (z) dz

}
, (C.1)

which is the measure of time that the indicator function gH (z) = 1 during the interval of

time from t to τ given that Regime H prevails at time t when cash on hand is xt. Similarly,

define

yL (xt) ≡ Et

{∫ τ

t

gL (z) dz

}
. (C.2)
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Setting the expected change of the left hand side of equation (C.1) equal to the expected

change of the right hand side of equation (C.1) yields

yHx (xt)φ
H + µL

(
yL (xt)− yH (xt)

)
= −gH (xt) . (C.3)

Similarly,

yLx (xt)φ
L + µH

(
yH (xt)− yL (xt)

)
= −gL (xt) . (C.4)

Rearranging equations (C.3) and (C.4), and stacking them together yields(
yHx (x)

yLx (x)

)
=

(
µL

φH
− µL

φH

−µH

φL
µH

φL

)(
yH (x)

yL (x)

)
+

(
− 1
φH
gH (x)

− 1
φL
gL (x)

)
. (C.5)

Associated with the system of ODEs are the boundary conditions

yHx (x∗) = 0 (C.6)

and

yL (0) = 0. (C.7)

The boundary condition in equation (C.6), yHx (x∗) = 0, reflects the fact that an optimiz-

ing firm will not accumulate cash greater than x∗. If for some reason, it were to find itself

with xt > x∗, it would pay an immediate dividend of xt − x∗. Thus, having xt > x∗ would

not extend the firm’s liftetime, and would leave τ unchanged. Therefore, yHx (x∗) = 0. The

boundary condition in equation (C.7), yL (0) = 0, simply reflects the fact that if the firm

has zero cash on hand while Regime L prevails, it will terminate immediately.

Define mH ≡ µL

φH
> 0 and mL ≡ µH

φL
< 0. Assume that the unconditional mean of

φ is positive, which implies that µHφH + µLφL > 0. Therefore, since φHφL < 0 and

mH +mL = 1
φHφL

(
µLφL + µHφH

)
, it follows that

mH +mL < 0. (C.8)

Rewrite equation (C.5) as

Yx (x) = MY (x) +G (x) (C.9)

where

Y (x) ≡

(
yH (x)

yL (x)

)
(C.10)
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M ≡

(
mH −mH

−mL mL

)
(C.11)

and

G (x) ≡

(
− 1
φH
gH (x)

− 1
φL
gL (x)

)
. (C.12)

Let λ1 ≤ λ2 be the eigenvalues of M . Since λ1 + λ2 = trM = mH + mL and λ1λ2 =

detM = 0, we have

λ1 = mH +mL < 0 (C.13)

and

λ2 = 0. (C.14)(
mH

−mL

)
is an eigenvector of M with eigenvalue λ1 = mH+mL and

(
1

1

)
is an eigenvector

of M with eigenvalue λ2 = 0.

Diagonalize M using

Λ ≡

(
mH +mL 0

0 0

)
(C.15)

and

P ≡

(
mH 1

−mL 1

)
(C.16)

so

P−1 =
1

mH +mL

(
1 −1

mL mH

)
. (C.17)

It is straightforward to verify that

M = PΛP−1 (C.18)

and

Λ = P−1MP. (C.19)
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Pre-multiply equation (C.9) by P−1 to obtain

P−1Yx (x) = P−1MPP−1Y (x) + P−1G (x) (C.20)

which implies the diagonalized system

Wx (x) = ΛW (x) +H (x) (C.21)

where

W (x) ≡ P−1Y (x) (C.22)

and

H (x) ≡ P−1G (x) . (C.23)

Therefore,

H (x) =
1

mH +mL

(
− 1
φH
gH (x) + 1

φL
gL (x)

−mL 1
φH
gH (x)−mH 1

φL
gL (x)

)
. (C.24)

The diagonalized system is(
dw1 (x) /dx

dw2 (x) /dx

)
=

(
mH +mL 0

0 0

)(
w1 (x)

w2 (x)

)
+

1

mH +mL

(
− 1
φH
gH (x) + 1

φL
gL (x)

−mL 1
φH
gH (x)−mH 1

φL
gL (x)

)
(C.25)

Because the equation for dwi (x) /dx is a first-order linear constant coefficient nonhomo-

geneous ODE in wi (x), but is independent of wj (x), j 6= i, the general solution is

W (x) =

 e(m
H+mL)x

[
c1 + 1

mH+mL

∫ x
0
e−(mH+mL)z

(
− 1
φH
gH (z) + 1

φL
gL (z)

)
dz
]

c2 − 1
mH+mL

∫ x
0

(
mL 1

φH
gH (z) +mH 1

φL
gL (z)

)
dz

 .(C.26)

Note that

W (0) =

(
w1 (0)

w2 (0)

)
=

(
c1

c2

)
. (C.27)

Use Y (x) = PW (x) so that(
yH (x)

yL (x)

)
=

(
mH 1

−mL 1

)(
w1 (x)

w2 (x)

)
(C.28)

which implies(
yH (x)

yL (x)

)
=

(
mHw1 (x) + w2 (x)

−mLw1 (x) + w2 (x)

)
(C.29)
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and hence

yH (x)− yL (x) =
(
mH +mL

)
w1 (x) . (C.30)

Substitute the boundary condition yL (0) = 0 from equation (C.7) into equation (C.30)

and use w1 (0) = c1 from equation (C.27) to obtain

yH (0) =
(
mH +mL

)
c1. (C.31)

To determine the value of the constant c1, apply the boundary condition yHx (x∗) = 0

from equation (C.6). Observe that equation (C.5) implies yHx (x) = mH
(
yH (x)− yL (x)

)
−

1
φH
gH (x) and then use equation (C.30) to obtain

yHx (x) = mH
(
mH +mL

)
w1 (x)− 1

φH
gH (x) . (C.32)

Evaluate equation (C.32) at x = x∗, set the right hand side of the resulting equation equal

to zero and rearrange to obtain

mH
(
mH +mL

)
w1 (x∗) =

1

φH
gH (x∗) (C.33)

Evaluate the first element of the right hand side of equation (C.26) at x = x∗ and

substitute the resulting expression for w1 (x∗) into equation (C.33) to obtain

c1 =
1

mH (mH +mL)

1

φH
gH (x∗) e−(mH+mL)x∗ (C.34)

− 1

mH +mL

∫ x∗

0

e−(mH+mL)z
(
− 1

φH
gH (z) +

1

φL
gL (z)

)
dz.

Substitute the value for c1 from equation (C.34) into equation (C.31) and use mHφH = µL

to obtain

yH (0) =
1

µL
gH (x∗) e−(mH+mL)x∗−

∫ x∗

0

e−(mH+mL)z
(
− 1

φH
gH (z) +

1

φL
gL (z)

)
dz.(C.35)

To make following expressions more compact, define

b ≡ −
(
mH +mL

)
= −

(
µL

φH
+
µH

φL

)
> 0, (C.36)

so equation (C.35) can be rewritten as

yH (0) =
1

µL
gH (x∗) ebx

∗ −
∫ x∗

0

ebz
(
− 1

φH
gH (z) +

1

φL
gL (z)

)
dz. (C.37)

We are particularly interested in yH (0) in the three cases below, which have different

specifications of the pair of indicator functions gH (x) and gL (x).
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Case 1 gH,1 (x) = gL,1 (x) = 1 for 0 ≤ x ≤ x∗, so that

yH,1 (0) = E0

{∫ τ

0

dt

}
= E0 {τ} > 0. (C.38)

In this case, the expression for yH (0) in equation (C.37) becomes

yH,1 (0) =
1

µL
ebx
∗

+

(
1

φH
− 1

φL

)
1

b

(
ebx
∗ − 1

)
> 0. (C.39)

Case 2 gH,2 (x) = 0, gL,2 (x) = 1{xt<∆,s=L} for 0 ≤ x ≤ x∗, so that

yH,2 (0,∆) = E0

{∫ τ

0

1{xt<∆,s=L}dt

}
= F (∆, L)E0 {τ} > 0. (C.40)

In this case, the expression for yH (0) in equation (C.37) becomes

yH,2 (0,∆) = − 1

φL
1

b

(
eb∆ − 1

)
. (C.41)

Case 3 gH,3 (x) = 1{xt<∆,s=H}, g
L,3 (x) = 0 for 0 ≤ x ≤ x∗, so that

yH,3 (0,∆) = E0

{∫ τ

0

1{xt<∆,s=H}dt

}
= F (∆, H)E0 {τ} > 0. (C.42)

In this case, gH,3 (x) = 1 for 0 ≤ x < ∆ ≤ x∗, but gH,3 (x∗) = 0, so the expression for yH (0)

in equation (C.37) becomes

yH,3 (0,∆) =
1

φH
1

b

(
eb∆ − 1

)
> 0. (C.43)

Equations (C.38) and (C.40) imply that F (∆, L) = yH,2(0,∆)
yH,1(0)

so that equations (C.39)

and (C.41) imply

F (∆, L) =
−1

φL
1

b
µL
ebx∗ +

(
1
φH
− 1

φL

)
(ebx∗ − 1)

(
eb∆ − 1

)
> 0, for 0 ≤ ∆ ≤ x∗. (C.44)

Similarly, equations (C.38) and (C.42) imply that F (∆, H) = yH,3(0,∆)
yH,1(0)

so that equations

(C.39) and (C.43) imply

F (∆, H) =
1

φH
1

b
µL
ebx∗ +

(
1
φH
− 1

φL

)
(ebx∗ − 1)

(
eb∆ − 1

)
> 0, for 0 ≤ ∆ < x∗. (C.45)

Finally, to express the distribution even more compactly, define

a ≡ 1

b
µL
ebx∗ +

(
1
φH
− 1

φL

)
(ebx∗ − 1)

> 0 (C.46)
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and use the definition of a to rewrite equations (C.44) and (C.45) as

F (x, L) =
−1

φL
a
(
ebx − 1

)
> 0, for 0 ≤ x ≤ x∗ (C.47)

F (x,H) =
1

φH
a
(
ebx − 1

)
> 0, for 0 ≤ x ≤ x∗ (C.48)

and hence

1− F (x∗, L)− F (x∗, H) =
1

µL
abebx

∗
> 0. (C.49)

Finally, equations (C.47) and (C.48) can be represented as

F (x, j) =
1

|φ(j)|
a
(
ebx − 1

)
> 0, for j ∈ {H,L} and 0 ≤ x ≤ x∗ (C.50)

D Implementing the Two-Stage Procedure

This appendix provides additional details for the two-stage procedure. Stage 1 of the 2-

stage procedure is simply an OLS regression within Regime L. Stage 2 uses the distance

Θ between points A and D. The coordinates of point A are (qA, qM) =
(
qHA (x∗) , qHA (x∗)

)
because qHM (x∗) = qHA (x∗). Point D is the point on the fitted regression line from Stage 1,

β0 +βIIIq qA, that is vertically below Point A, where qA = qHA (x∗). Therefore, the coordinates

of Point D are (qA, qM) =
(
qHA (x∗) , β0 + βIIIq qHA (x∗)

)
, so Θ, the vertical distance between

Points A and D, is

Θ =
(
1− βIIIq

)
qHA (x∗)− β0. (D.1)

Use the definition of the approximation error ζ in equation (36) to eliminate β0 from equation

(D.1) and obtain

Θ =
(
1− βIIIq

)
qHA (x∗) + ζ − qLM (x∗) + βIIIq qLA (x∗) . (D.2)

Next use the definitions qjA (x) ≡ vj (x)− x and qLM (x) ≡ vL(x)
vLx (x)

− x in equation (D.2) to

obtain

Θ =
(
1− βIIIq

)
vH (x∗) + ζ − vL (x∗)

vLx (x∗)
+ βIIIq vL (x∗) . (D.3)

Use the facts from equation (27) and Proposition 3 that vH (x∗) = ΦH+ΦL

1−Γ
, vLx (x∗) = ρ+µL

µL
,

and vL (x∗) = vLx (x∗) ΦL+ΓΦH

1−Γ
to rearrange equation (D.3) to obtain an expression for Θ in
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terms of the parameters of the firm’s problem and the estimated values of βIIIq and the

approximation error ζ,

Θ =
(
1− βIIIq

)
ΦH + βIIIq

ρ

µL
ΦL + ΓΦH

1− Γ
+ ζ. (D.4)

Remarkably, the expression for Θ in equation (D.4) does not include x∗, so Θ is easily

calculated from the fundamental parameters and the results of the univariate regression in

Stage 1, without having to compute x∗.

Use qHA (x∗)− qLA (x∗) = vH (x∗)− vL (x∗) and the expression for the distance Θ shown in

equation (D.3), along with Term 2 and Term 3 from equation (40), to obtain

Term 2 + Term 3 =
1

θ
(Θ− ζ) =

1

θ

(
φH − φL

)
β̂φ −

1

θ
ζ. (D.5)

After the second equals sign in equation (D.5), the first term is the regression impact of cash

flow in equation (39) and the second term is proportional to the approximation error ζ.
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