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ABSTRACT

In science, self-citation is often interpreted as an act of self-promotion that (artificially) boosts the 
visibility of one’s prior work in the short term, which could then inflate professional authority in 
the long term. Recently, in light of research on the gender gap in self-promotion, two, large-scale 
studies of publications examine if women self-cite less than men. But they arrive at conflicting 
conclusions; one concludes yes whereas the other, no. We join the debate with an original study 
of 36 cohorts of life scientists (1970–2005) followed through 2015 (or death or retirement). We 
track not only the rate of self-citation per unit of past productivity, but also the likelihood of self-
citing intellectually distant material and the rate of return on self-citations with respect to a host 
of major career outcomes, including grants, future citations, and job changes. With 
comprehensive, longitudinal data, we find no evidence whatsoever of a gender gap in self-citation 
practices or returns. Men may very well be more aggressive self-promoters than women, but this 
dynamic does not manifest in our sample with respect to self-citation practices. Implications of 
our null findings are discussed, particularly with respect to gender inequality in scientific careers 
more broadly.
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Introduction 
Scientists thrive in their disciplines when they produce work that is widely read. But like any other 
competitive market, producers must vie for attention from consumers overwhelmed with options. 
That scientists engage in self-promotion to sell their goods has long been acknowledged (e.g., 
Nelkin 1987; Garfield 1987a; Azoulay et al. 2019b) and is viewed by some as part and parcel of 
‘getting ahead’ in the business (e.g., Reis 1999; Fiske 2018). For example, self-citing—whether 
intellectually relevant or not—is often interpreted as a strategy that authors use to boost the 
visibility of their prior work, which could in turn build professional authority (Fowler and Asknes 
2007; but see Medoff 2006). 

One strand of research on self-citation focuses specifically on whether this promotional practice 
varies by gender (see King et al. 2017; Mishra et al. 2018). A growing area of research on gender, 
self-assessment, and self-promotion gives reason to believe that women may be less likely to 
pounce on the opportunity to self-cite (Exley and Kessler 2019; Lerchenmueller, Sorenson, and Jena 
2019). First, researchers show that women evaluate their performances more critically than men 
even when they perform objectively as well (Correll 2001, 2004; Exley and Kessler 2019). For 
example, Reuben and colleagues (2012, 2014) find that, in the context of mathematics 
performance, women tend to retrospectively characterize themselves as having performed worse 
than their actual score whereas men tend to remember themselves as having performed better than 
their actual score.  

Second, women are more likely to be sanctioned for engaging in behaviors interpreted as self-
promotion. Prescriptive gender norms are dominant role expectations (i.e., cultural beliefs) 
regarding what men and women ‘should’ or ‘should not’ be (Eagly and Karau 2002), and a long 
line of research shows that men are expected to behave in an agentic manner (assertive and self-
reliant) whereas women are expected to behave in a communal manner (caring and other-
oriented) (see Auster and Ohm 2000). Self-promotion for women is thus considered counter-
stereotypical behavior, which can lead to backlash. For example, in an experimental hiring study, 
Rudman (1998) shows that women who highlight their accomplishments are penalized in terms of 
their likability and hireability. 

King et al. (2017) argue that these same socialization processes may result in men self-citing 
publications at a greater rate than women (see p. 2 and p. 15), which in turn could partially explain 
why women on average lose out to men in the career ‘game’ in science (see pp. 2-3). This argument 
could be distilled into three related but distinct empirical questions: (1) are men compared to 
women, ceteris paribus, more likely to engage in self-citation per unit of past productivity, (2) are 
men compared to women, ceteris paribus, more likely to engage in self-citation as a means of 
gratuitous self-promotion, and (3) do men’s self-citations relative to women’s generate greater 
returns with respect to future citations? That is, do the self-promotional efforts of men pay off 
more for men than for women authors? 



2 
 

The purpose of this study is to provide an empirical test of each of these arguments using a novel, 
longitudinal dataset of life scientists and their career trajectories. Currently, there are two large-
scale studies (King et al. 2017, Mishra et al. 2018) that address the first hypothesis regarding gender 
and (direct) self-citation patterns but neither one addresses the second and third hypotheses. Yet 
all three, we argue, are needed to understand the role of self-citation in producing career inequality 
in science. Furthermore, although our sample includes only a select group of researchers from one 
domain in science, the comprehensive career data employed in this study provide an important 
contrast to the publication samples employed by both King et al. (2017) and Mishra et al. (2018). 
Their samples contain a large number of articles published in multiple decades but these 
publications are analyzed in light of very limited information (or none in the case of King et al. 
2017) regarding the scientist, such as career age. For example, if 50% publications in the sample 
belong to young women scientists with nothing to self-cite and 50% of publications in the sample 
belong to elderly men with many publications to self-cite, the rate of self-citation will appear to be 
higher for men even if gender has zero correlation with self-citation rate. We sidestep these 
potential composition effects by instead comparing men and women (and some transgendered 
individuals) at specific points in their career course. 

 

Background 
Self-Citation in Science. Self-citations can be construed from different perspectives. The focus of 
this study are direct self-citations, which occur when an author publishes a paper that references 
one of their past publications or working papers. Self-citations can also occur through 
collaborators. For example, when one subset of a large group of collaborators references papers 
produced by another non-overlapping subset of collaborators from the same umbrella project, this 
constitutes a team-based form of self-citation even though there are no direct, individual-level self-
citations (Ioannidis 2014). Finally, self-citation can come in the form of “coercive induced 
citation,” wherein author A pressures author B to cite publications authored by A (Ioannidis 2014). 
This pressure can come, for example, from reviewers and editors during the peer review process 
(Thombs et al. 2015).1 

Overall, the practice of direct self-citation is quite common. A large-scale analysis of synchronous 
(outgoing) citations suggests that roughly 9% of all citations are direct self-citations (King et al. 
2017), although the percentage is higher in some disciplines (e.g., physical sciences) than others 
(e.g., humanities) (see Mishra et al. 2018; Synder and Bonzi 1998; Lawani 1982; Tagliacozzo 1977). 
Diachronous (incoming) self-citation rates are generally even higher if using a short observation 
window, such as the first three or five years after publication. For example, for a large sample of 
papers published in the natural sciences, Asknes (2003) finds 36% of incoming citations to be direct 

                                                            
1 See also Franck (1999) on ‘citation cartels’.  



3 
 

self-citations using a three-year citation window, and that multi-authored papers have more self-
citations.  

While self-citations can indeed be intellectually relevant (Hyland 2003, see also Bonzi and Synder 
1991) and hence appropriate and “even necessary” (Ioannidis 2015), the practice of self-citing on 
balance is still construed in a negative light and as a practice that requires correction (Fowler and 
Asknes 2007; MacRoberts and MacRoberts 1989). The disdain comes from the fact that at least 
some self-citations can be interpreted as gratuitous acts of self-promotion, which is antithetical to 
the deeply rooted assumption that science is supposed to be governed by the norms of universalism 
and disinterestedness (Merton 1942, Garfield 1987b). Not surprisingly, it is recommended that 
self-citations be removed from the calculation of career citation metrics as a way of discounting 
self-promotional efforts (e.g., Fowler and Asknes 2007). Of course, such a fix only addresses the 
direct effect of self-citations and cannot magically reveal scientists “true” career citation trajectory 
had self-citations never entered the trajectory. Perhaps because of the difficulty of estimating the 
true causal effect of self-citations on career citation accumulation, the practice of self-citing 
continues to be associated with “gaming the system” (Ioannidis 2015):  

So, here is a recipe for ‘success’: co‐author more papers (salami slicing, elimination of 
quality checks, undeserved co‐authorship and acceptance of gifts from ghosts can all 
help); ignore unfavourable reviewer comments; keep submitting until you find a hole 
in the peer‐review system; self‐cite; and expect random citations. While the recipe will 
probably not earn its practitioners a Nobel Prize, it can still open many doors 
unfortunately (Ioannidis et al. 2010: p. 286). 

Gender and Self-Citation Rate. King et al. (2017) make a compelling argument for why gender 
patterns in self-citation need to be examined. Because self-citation can “seriously affect the 
appearance of scholarly influence” (2017: p. 2), a gender difference in self-citation aggressiveness 
could lead to a “non-merit” based gender gap in scholarly influence over the career course, which 
could in turn, generate other forms of career inequality. The underlying concern is that men could 
potentially be ‘getting ahead’ faster than women because they are (consciously or not) more 
comfortable puffing themselves up and are more aggressive about selling their work relative to 
women, who may anticipate backlash from self-promotional efforts and hence not engage. In 
addition, as we argue in more depth below, men who engage in self-citation might see greater 
returns to self-promotional efforts compared to women.  

To date, two major studies have been conducted on gender and rate of direct self-citation. In a 
large-scale study of 1.5 million papers from the JSTOR corpus, King et al. (2017) find that men 
self-cite at a much higher than women. For example, they calculate that the rate of self-citation for 
their 1970-2011 sample to be 70% higher for men than women. The magnitude of this aggregate 
difference is shocking. They title their paper, “Men set their own cites high.”  
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While such evidence is consistent at face value with the conjecture that men are more aggressive 
salesman than women, King et al. (2017) are careful to note that multiple mechanisms could 
produce such a finding. On the one hand, their finding could reflect that men, ceteris paribus, are 
more aggressive about promoting their work through self-citation (perhaps because they evaluate 
themselves more positively than women), and this difference in salesmanship is what leads directly 
to the marked gender gap in self-citation they observe in their sample. On the other, the observed 
difference in self-promotion could be a simple artifact of some authors having a greater number of 
previous publications (or working papers) to self-cite (see King et al. 2017: pp. 15-16).2  

Following their lead, Mishra et al. (2018) examine a large corpus of biomedical papers in PubMed 
and similarly unpack gender patterns of outgoing self-citations. They find that once the number 
of past publications is accounted for, men and women self-cite at the same rate. That is, women 
and men with the same opportunity to self-cite appear to self-cite as the same rate. They title their 
study: “Self-citation is the hallmark of productive authors, of any gender.” 

Together, these two studies significantly advance our empirical understanding of one of the three 
main questions at stake. Are men compared to women more likely to engage in self-citation per 
unit of past productivity? The answer appears to be “No”; when accounting for the number of 
articles published prior to the focal article, there is strong evidence to suggest that men and women 
self-cite at the same rate (Mishra et al. 2018, see also King et al. 2017: p. 17). We can thus deduce 
that the large gender gap in self-citations observed by King et al. (2017) is most likely the byproduct 
of past productivity; men publish a notably larger number of more articles than women (West et 
al. 2013) and thus have far greater opportunity to self-cite. 

Gender and Self-Citation Type. But even if men tend to self-cite at the same rate as women after 
adjusting for opportunity, it remains possible that men and women self-cite in a qualitatively 
different manner. For example, in line with past research showing that women are more self-
critical than men about their performances (e.g., Correll 2001, Reuben et al. 2014), it could be that 
men might use more boastful or authoritative language when citing their past work. In a similar 
vein, women might have higher standards than men in terms of what constitutes intellectual 
relevance when self-citing past work. For example, men might feel more comfortable drawing on 
their authority derived in one area of research when attempting to branch out to new areas of 
research,3 which could further career development in the long-term. In contrast, it could be that 
women only self-cite when intellectual relevance is very high. Bottom line: the average self-citation 
rate between men and women could be similar but the nature or intent of self-citation could differ. 

                                                            
2 To this point, in a supplementary analysis of a sample of over 400,000 SSRN papers, King et al. (2017: p. 17) find no gender gap 
in self-citation when controlling for an author’s total number of SSRN research papers. In other words, women and men authors 
in the SSRN self-cite at the same once accounting for past productivity.  
3 That said, empirical studies of research specialization suggest that men may be more likely than women to specialize (Leahy 2006, 
2007). 
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Gender and the Long-term Impact of Self-Citations. Moreover, what if men and women self-cite at 
the same rate but the downstream impact of each self-citation varies by gender? As King et al. 
(2017: p. 2) remind us, the importance of studying self-citations is rooted in their potential to shape 
the long game:  

“Certainly, a scholar must write a reasonable number of papers for self-citation to have an effect 
early in his or her career; but in fields such as a biology, self-citations can have an effect on career 
outcomes as early as first job search, and certainly by tenure stage. The cumulative record of 
citations (or lack thereof) from other scholars’ citations that results from an authors’ self-citation 
patterns can seriously affect the appearance of scholarly influence.” 

Fowler and Aksnes (2007: p. 433), for example, find that every additional self-citation nets an 
author an additional 3.65 other-citations within ten years, leading them to conclude that “self-
citation advertises not only the article in question, but the authors in question.” 

What is unclear, however, is if all authors benefit equally when self-citing. Marketing efforts, after 
all, can vary in their effectiveness and sometimes even backfire. A self-citation is a successful sales 
pitch to the extent that it persuades readers of the author’s authority and expertise and compels 
the reader to pay attention to or track down the self-cited work. In contrast, a self-citation would 
be (1) ineffective if it mobilizes no interest in the referenced work, or worse, (2) potentially harmful 
if negatively interpreted as boastful or gratuitous.  

Past research makes a case for why men’s self-citations relative to women’s might have a more 
positive impact on career growth. First, there are still strong normative prescriptions that men are 
supposed to be assertive and women communal (Auster and Ohm 2000, Koenig 2018). Second, 
men continue to be judged as more competent than women (see Ridgeway 2011; Moss-Rascusin 
et al. 2012; Thébaud 2015, Leslie et al. 2015; Bian et al. 2017), and third, research demonstrates that 
women face backlash for highlighting accomplishments (Rudman 1998; Moss-Racusin and 
Rudman 2010). Taken together, past research suggests that readers will respond differently to self-
citations made by men versus women. If women’s self-citations are more likely to fall on deaf ears 
or be viewed in a negative light, early self-citations for women would not convert to gains in 
scholarly influence or career achievement in the same way as it would for men.  

 
Career and Research Productivity Data for 3,667 Life Scientists 
We address all three questions regarding rate, type, and impact of self-citation by conducting a 
longitudinal study of the winners of postdoctoral fellowships awarded by four US-based private 
philanthropic foundations: the Damon Runyon Cancer Research Foundation (1970-2005), the 
Jane Coffin Childs Memorial Fund for Medical Research (1970-2005), the Helen Hay Whitney 
Foundation (1970-2005), and the Life Sciences Research Foundation (1983-2005)—a total of 3,667 
life scientists. 
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These fellowships confer on their winners an early marker of success, and are prestigious accolades 
ambitious graduate students in the life sciences can receive as they contemplate the next phase of 
their careers—a postdoctoral experience. Of note, these four foundations select their recipients 
from identical pools in very similar ways: a dossier that includes papers published, letters of 
recommendation, and the outline of an independent research agenda, followed by an evaluation 
by a panel of distinguished scientists, typically composed of former recipients. In summary, our 
sample is composed of “star” graduate students. Of course, at such an early career stage, these 
individuals have not stepped out of the shadow cast by their graduate school mentor, and as a result 
there is no guarantee that this early success will endure. 

We track the careers of each individual from the receipt of their MD or PhD degree forward until 
retirement, death, or 2015.4 Through CVs, NIH biosketches, web searches, and publicly-available 
databases, we collect and disambiguate publications, references, citations, NIH grants, and patents. 
In addition, we record the year in which each scientist exits science, exits academia, or in the 
subsample of academics, exits from a “stable” to a “marginal” position—i.e., one where they can 
no longer control the direction of their investigations. 

Although this group of scientists is not a random sample of the postdoctoral population, these 
cohort data provide an important counterpoint to the JSTOR and PubMed samples used by King 
et al. (2017) and Mishra et al. (2018), respectively. These samples contained an impressively large 
number of articles but little to no background information on the men and women scientists 
themselves. In contrast, our cohort sample consists of graduate students similarly poised to succeed 
in their field with all the major components of their careers tracked across several stages. 

This approach, we argue, is critical to producing interpretable results with respect to our three 
research questions. This is particularly a challenge for our third question, which pertains to how 
self-citation behavior may or may not convert to other career rewards over time. The difficulty 
with studying cumulative advantage is being able to confidently locate it in a sea of unobserved 
heterogeneity (DiPrete and Eirich 2006). We argue that this type of rich, longitudinal cohort data 
may be the best method of isolating supply-side factors short of running an actual experiment. In 
sum, we cannot make generalizations about self-referencing behavior that apply to the universe of 
scientists, but we can at least draw crisp conclusions for some. 

 

Data 
Our data collection starts with 3,713 fellowship winners between 1970 and 2005 for the four private 
foundations mentioned above. Despite exhaustive efforts to track their career history, we lose 28 
scientists (0.75%) to follow up, yielding a sample of 3,685 scientists for whom we have complete 
                                                            
4 For a handful of fellows in the most recent cohorts who had not started an independent career as of 2015, we track their 
institutional affiliations again in early 2020. By that time, every individual in the sample had either completed training or exited 
science. 
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information. We lose a further six individuals who died during training, two who exited science 
the year after starting their fellowship, and ten who have either no original publications, or no 
citations at all. The final analytic sample contains information about 3,667 scientists (98.76% of 
the original sample, 2,546 [69.4%] men scientists vs. 1,014 women scientists [27.6%]). 

Scientific careers can be fragile, especially for novices (Hill 2018). Only a small fraction of all 
scientists who complete a postdoctoral fellowship secure a full-time academic position (McGinnnis 
et al. 1982; Mantovani et al. 2006; Levitt 2010; Silva et al. 2016). The biomedical research setting is 
interesting since the biopharmaceutical industry is a reliable employer for the scientists we study, 
and individuals who transition to industry often conduct scientific investigations using methods, 
techniques, and materials similar to those used by academic scientists (Zucker et al. 2002).  

Even though members of each cohort are starting their careers in very similar positions because of 
our research design, career pathways within cohorts can diverge considerably over time. The 
unique strength of our longitudinal dataset is that we account for every career transition for the 
scientists in the data. A full 73.0% of the scientists in the sample begins their career as principal 
investigators in traditional academic positions within a university, academic medical center, or 
research institute (67.6% end their career in such a position, or at least remain in one at the end of 
the observation period). This prevalence of traditional tenure-track positions underscores the 
extent to which scientists enter our sample only if they show extraordinary promise in graduate 
school. 

Table 1 provides descriptive statistics at the individual level, broken down by gender. Women 
scientists are almost three years younger on average, relative to men, reflecting a doubling of 
women’s share of fellowships between the early part of the sample (15.5%, 1970-1974) and the later 
part (32.0%, 2001-2005). Large gender disparities are evident in these univariate comparisons. On 
average, women scientists in the sample publish less (34 vs. 56), receive less citations (2,032 vs. 
3,819), and receive less NIH funding ($4.3 million vs. $8.0 million) than men in the sample. They 
spend a year longer in training on average, and are less likely to begin their career as PI in academia 
(64.7% vs. 76.4%), and more likely to find themselves in a “marginal” scientific position (e.g., 
employed as a technician in someone else’s laboratory, adjunct teaching position, etc.). They also 
appear less prone to self-reference5 their work when they do publish—their self-reference share is 
5.2%, vs. 7.0% for men scientists, which dovetails with the raw comparisons provided by King et 
al. (2017) and Mishra et al. (2018). Univariate comparisons can only go so far, however. Since the 
proportion of fellowships awarded to women increases over time, it is possible that gender gaps in 
productivity merely reflect compositional changes, with women scientists having fewer career 
years on average to accumulate publications, citations, and funding. Our statistical models will 

                                                            
5 Throughout the data and results sections, we use the term self-reference rather than self-citation to underscore that our analyses 
pertain to reference lists within publications (backward or outgoing references to previously published works) and not citations 
accruing to publications (incoming references), which we were refer to below as forward citations.  
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fully account for compositional shifts including a full suite of calendar year effects in all 
specifications. 

Figure 1 depicts the gender gap in publication rates graphically by first decomposing every 
scientist’s career in nine distinct temporal sequences: graduate school, postdoctoral training, the 
first five years of the “independent” (i.e., post-training) career, years 5 through 10, years 10 through 
15,…, and a residual category corresponding to those in their 30th career year or later (Panel A). A 
disparity in publication rates is apparent at every career stage, even graduate school—the period 
that directly led each individual in the sample to be selected for one of these four elite fellowships.6 
Panel B displays the same information by individual career year, with the career clock starting in 
the year of PhD receipt. These decompositions hint that gender disparities in publication rates in 
this sample are not a mere artefact of composition effects. 7 

Figure 2 unpacks the self-reference share further. Panel A displays the histogram for its 
distribution. Women scientists are more represented than men scientists below the median (0.05). 
In the top two quartiles, the gender differences are less pronounced. Panel 1B displays the average 
self-reference share by year of career (year zero corresponds to the year of PhD receipt) for men 
and women scientists. It grows monotonically for the first 20 years of the career, with the gap 
between men and women remaining quite stable until at least 20 years post-PhD. Thereafter, we 
find some evidence of convergence, with women scientists “catching up” in their propensity to 
reference their own work. Panel C performs a similar exercise, but breaks down the career into 
distinct sequences: graduate school, postdoctoral fellowship, and the independent career in five 
year increments. Our first observation is that the gender differences, though clearly noticeable, are 
not especially stark, and certainly smaller in magnitude than those documented by King et al. 
(2017) and Mishra et al. (2018). Second, the gap is present “at birth” (in graduate school) even 
though these individuals have presumably little work to self-reference at that stage, and 
subsequently grows until mid-career. After that point, the gap appears to shrink, and even 
seemingly reverses after 30 or more years of active career. This last result needs to be interpreted 
with caution, since only those in the early fellowship years get observed for thirty years or more, 
and this portion of the sample is dominated by men. 

Table 2 displays descriptive statistics for the individual articles published by Men (N=144,185) and 
Women (N=35,131) scientists. Gender differences at this level of analysis are much less apparent 
than at the individual level. On average, articles written by men receive 68.96 citations versus 62.1 
for those authored by women, but the medians are closer (26 vs. 27, respectively). The self-
reference share continues to be lower for women’s articles (8.9%), relative to men’s (10.8%). 

                                                            
6 T-tests reveal that the gaps are statistically significant in each stage, though the magnitude varies: initially small, the gap grows in 
the early- and mid-independent career, before leveling of somewhat after year 25 (relatively few observations identify the spike at 
career age 30 or later). 
7 The longitudinal structure of the data will allow us to attend to calendar time effects separately from cohort effects below (this is 
true in general, but for publication rates in particular, see Table A4 in the Appendix). 
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Appendix Tables A1 and A2 provide a detailed breakdown of position “type” at the start of the 
career (i.e., immediately after the end of scientific training) and at the end of the observation 
period.8 

Publication and citation information. The source of our publication data is PubMed, an online 
resource from the National Library of Medicine that provides fast, free, and reliable access to the 
biomedical research literature, with more than 40,000 journals indexed. We match PubMed 
records with those contained in the Web of Science, whose coverage is slightly less deep but 
provides comprehensive citation information.9 

To distinguish between intellectually related and unrelated citations, we leverage the PubMed 
Related Citations Algorithm [PMRA] (Lin and Wilbur 2007) which relies on Medical Subject 
Headings (MeSH), but not in any way on citation or collaboration linkages. MeSH terms constitute 
a controlled vocabulary maintained by the National Library of Medicine that provides a very fine-
grained partition of the intellectual space spanned by the biomedical research literature. 
Importantly for our purposes, MeSH keywords are assigned to each publication by professional 
indexers who focus solely on their scientific content. 

We rely on PMRA to tag every reference to each of the source articles in the data as related (i.e., 
the article is one of the intellectual neighbors associated with the source according to PMRA) or 
unrelated.10 Turning back to Table 2, it appears that men and women scientists are as likely to cite 
“within field” as “outside the field.” 

 

Methodological Considerations 
Mishra et al. (2018) studied the population of articles indexed by PubMed between 2002 and 2005 
with algorithmically disambiguated publication. The essence of the exercise they performed was 
predicting the likelihood that a given reference corresponds to a previous article by at least one of 
the authors on a focal article, using a large set of covariates and machine learning techniques. Their 
work inspired our analysis, but our data and methodological approach differ in several ways. 

                                                            
8 The “Other industry” category denotes positions in a variety of pursuits unrelated to education or research in the life sciences, 
typically in industrial firms, but also including two individuals serving time in a federal penitentiary, a paramedic fireman, a 
cheesemaker, as well as a “shamanic practitioner and sacred artist.” 
9 This means that we will only capture a reference if it appears in PubMed, which will exclude books as well as articles appearing in 
important journals in fields adjacent to the life sciences, but not indexed by PubMed (inorganic chemistry and materials science 
come to mind as examples of such domains). In practice, this is not a large concern, as the correlation between citations with and 
without the PubMed restriction in Web of Science is 0.99. 
10 To facilitate the harvesting of intellectually related records on a large scale, we have developed an open-source software tool that 
queries PubMed and PMRA and stores the retrieved data in a MySQL database. The software is available for download at 
http://www.stellman-greene.com/FindRelated/. Appendix C in Azoulay et al. (2019a) provides much more detail on the algorithm 
and its use. 
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First, the scientist populations differ. An obvious limitation of our dataset, relative to theirs, is that 
it pertains to a narrower population along two dimensions. As prestigious fellowship recipients, 
they are on average, more accomplished at baseline than would be the case for a random sample 
of PhD graduates, or even the population of academic scientists. The content of their research is 
also more restricted—molecular and cell biology and its applications to biomedicine—whereas 
Mishra et al. (2018) include all authors regardless of biomedical subfield. This narrow focus can be 
thought of as a threat to external validity, but it is more than compensated in our mind by our 
ability to follow scientists over-time regardless of output (as opposed to sampling scientists on the 
basis of productivity in a narrow window of time) and to capture individual-level characteristics 
which maybe important to understand the phenomenon of interest, but require an intimate 
knowledge of scientists’ career trajectories. Such covariates include degree received (i.e., MD in 
addition to PhD), year of PhD degree receipt (which starts the career clock in our empirical 
specifications), length of post-graduate training period, and position “type” (e.g., tenure-track 
academic vs. “marginal” academic vs. industry, etc.). 

Second, our measure of self-reference is more specific, as it pertains to a particular author on the 
authorship list of each of the 179,316 source articles in our sample. The mean level of self-reference 
in our data (10.4%) is therefore lower than in their work, or that a broad measure of self-reference 
based on any overlap in author, as opposed to a focal author. We likely measure self-reference with 
less error since our disambiguation of each author’s bibliome is based an individual dossier for 
each fellow, whereas theirs relies on a large-scale disambiguation effort (Torvik and Smalheiser 
2009) which necessarily performs less well for frequent names. 

Third, whereas their measure of gender is imputed algorithmically based on first name, we measure 
gender based on a host of contextual cues—including name, photographs, and pronoun usage, all 
of which are embedded in the rich information compiled for each scientist.11 This is preferable 
because our sample includes a high proportion of foreign-born scientists for whom gender 
imputation might perform less well. 

Fourth, because our objective is not prediction, but an assessment of the magnitudes of gender 
disparities in self-reference behavior, we saturate our models with a battery of control covariates 
that help us provide an “apples-to-apples” comparison between the behavior of men and women 
scientists while preserving our ability to interpret the empirical magnitude of the effect. These 
include a full suite of journal indicator variables, authorship length effects, author position effects, 
indicator variables for different reference vintages and age, as well indicator variables for each 

                                                            
11 The value of rich contextual information about the identities of these scientists allow us to detect that three of them had changed 
gender mid-career. In the analyses below, these trans-identified individuals are coded as their sex assigned at birth. In addition, 
because our dataset is based on detailed dossiers of individual scientists, we also identified 89 individuals in the sample (2.42%) 
who change their names or publish under different names over the course of their careers. The majority of name changers are 
women (86.52%).  
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source article’s forward citation impact. In other words, the estimates we present below correspond 
to the following notional experiment: 

Consider two articles that appeared in the same journal, in the same year, with the same 
number of authors, and that will go on to be equally well-cited (excluding self-citations) in 
the future, but differ in the gender of the fellowship recipient that appears on the authorship 
roster (although the men and women authors of interest appear on the same position on the 
list, i.e., first, middle, or last position). Consider now the backward references in each article 
(with the additional proviso that only references of the same vintage are being compared). 
What is the expected probability that such a reference corresponds to a self-reference if the 
article is authored by a man versus woman? 

In practice, in a dataset composed of all citation linkages between a focal article and their 
references, we estimate specifications of the following type: 

 
For each paper i published by fellow k(i) in year t(i) and referencing article j, we use a linear 
probability model to specify the conditional mean of the probability of self-reference selfij as a 
function of the focal author’s gender (WOMANk(i)), an intellectual relatedness indicator variable 
(RELATEDNESSij defined in more detail below), the log of the number of citable items for author 
k(i) in year t(i), and δφ(i) (respectively γψ(j)), a high-dimensional vector of fixed effects corresponding 
to characteristics of articles i (respectively j)—e.g., the journal in which i appeared, the age of article 
j in year t(i), the number of authors for i, etc. Xij is a vector of predetermined covariate (e.g., 
fellowship sponsor and fellowship award year for each scientist i). 

Our choice of a linear probability model (LPM) deserves mention given its lack of popularity in 
empirical sociological research. Since LPM may generate fitted values outside of the interval [0;1], 
its use would not be appropriate for a predictive type of analysis. However, our objective here is 
not prediction, but the estimation of the marginal effects from the conditional expectation 
function. For this purpose, the LPM is typically more appropriate (Angrist and Pischke 2008: pp. 
94-106). Moreover, non-linear models such as the probit and logit are not well-suited to the use of 
fixed effects because of the incidental parameter problem (Neyman and Scott 1948). 

An additional analysis explores whether the rate of self-reference changes over the career course, 
something neither King et al. nor Mishra et al. attended to in their analyses. For example, there 
could be no aggregate difference between men and women scientists in the rate of self-referencing 
controlling for past productivity, and yet men could be much more likely to self-reference at early 
career stages while women’s self-references disproportionately occur in later career stages. In a 
similar vein, as suggested by King et al. (2017), the rate of self-reference (as well as the gender 
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differential in self-reference) possibly changes over time. Therefore, we will also examine whether 
self-reference patterns differ between earlier and later cohorts.  

From self-reference to self-promotion. Across multiple domains, there has been an accumulation 
of empirical evidence that self-promotional behavior is more frequent among men than women 
(e.g., Correll 2001, 2004; Reuben 2012; Exley and Kessler 2019; Lerchenmueller, Sorenson, and Jena 
2019). But a case can be made that self-reference is a relatively crude proxy for self-promotion in 
the context of scientific research, since reasons to reference one’s past work exist even in the 
absence of a self-aggrandizing motivation.12 We argue that a citation is more likely to reflect self-
promotional behavior when the intellectual connection between the citing and cited items is more 
tenuous. In contrast, citation linkages between intellectually related articles are more likely to 
denote that one article builds on the ideas of the other. To capture relatedness, we make use of the 
PubMed Related Citation Algorithm (PMRA), which helps distinguish between references coming 
from within the same narrow subfield, as opposed to outside this subfield. An interaction term 
between the woman scientist indicator variable and the relatedness indicator will shed light on 
whether men are more likely than women scientists to engage in self-reference as a means of 
gratuitous self-promotion, ceteris paribus. 

Returns to self-references. Finally, we use individual-level panel data models to examine whether 
men and women differ in the career- and productivity-returns to self-references. This type of 
analysis cannot tease out the underlying mechanism that might cause self-references to be more 
impactful, but at the very least we can estimate if a gender gap exists with respect to the conversion 
of self-references into publications, future citations, research grants, and career stability. We 
estimate the following OLS specifications: 

 
Where yit is a suitably-transformed13 outcome variable (such as publications, or forward citations, 
or NIH R01 grants) for scientist i in year t, WOMAN is a gender indicator variable, STOCK_PUBS 

                                                            
12 For instance, cumulativeness is important in science, and one would expect researchers who specialize and consolidate lines of 
research, which we refer to as “hedgehog” researchers (Berlin 1953) will self-reference more often relative to “fox” researchers who 
have more diverse interests (Leahey 2006, 2007). 
13 In most cases, we transform the outcome using the inverse hyperbolic sine transformation to accommodate the large number of 
zero observations (Burbidge et al. 1988), while maintaining the ability to interpret the magnitude of coefficient estimates as 
elasticities (Bellemare and Wichman 2020). 



13 
 

is the cumulative number of publications for scientist i up to year t-1, and FRACSELF is the 
proportion of all references in the articles published by scientist i up to year t-1 that are self-
references, X corresponds to a vector of control covariates (degree, investigator age and its squared, 
etc.), and δt denotes a full suite of year effects. Specification (2b) includes scientist-level fixed effects 
γi , which will absorb the main effect of gender. 

We also want to shed light on whether self-reference behavior shapes scientific careers at the 
extensive margin, i.e., whether it influences the decision to exit science, or patterns of transition 
from stable careers (where scientists control the direction of their investigations) to marginal 
positions (where they have much less autonomy). Estimating the determinants of exit requires a 
statistical framework that accommodates the discrete nature of the event. Using the cross-section 
of 3,667 scientists (with covariates set at their terminal value—the year of exit or the year of 
censoring, whichever comes earlier), we employ discrete-time hazard rate models (Myers et al., 
1973; Allison 1982). The use of discrete-time models (as opposed to continuous-time models such 
as the Cox) is motivated by the lumpiness of the failure time information in our data: we observe 
exit only at an annual frequency, which results in the heaping of failure times. We use a logistic 
regression function to link the hazard rate with time and the explanatory covariates. In practice, 
we estimate a simple logit of the “decision” to transition out of academia or stable employment, 
where the observations corresponding to years subsequent to the mobility event have been 
dropped from the estimation sample (see Azoulay et al. (2017) for an example of the same 
technique used to analyze mobility patterns in a sample of elite scientists).14 

 

Results 
Table 3 presents the results of the analysis of self-reference at the citing/cited article pair level. 
Columns 1, 2, and 3 include only one effect of interest, that of the gender indicator variable. 
Column 1 includes a relatively parsimonious set of fixed effects (e.g., publication years for citing 
and cited articles, etc.); column 2 adds a comprehensive set of fixed effects for 3,031 journals; and 
column 3 corresponds to our most saturated model, also including 99 dummies corresponding to 
the percentile of the distribution of long-run forward citations for the citing articles,15 implicitly 
comparing self-reference behavior holding “scientific fertility” constant.16 

Across columns, the gender effect is negative and statistically significant, consistent with prior 
research. Its magnitude is rather tiny, however, corresponding to between 3 and 4% of the standard 

                                                            
14 We use quotes around the word decision because, although some of these transitions might be voluntary (such as leaving 
academia for industry in quest of a new challenge or more tangible “impact”), many will not be (such as falling out of the tenure 
track after losing in NIH funding competition). Our coding of stable versus marginal positions is motivated in part by this 
distinction, since few scientists would prefer them over less precarious (and more prestigious) positions. 
15 These distributions are vintage-specific (allowing us to compare the citation impact of articles published in different years), and 
are based on citation counts that exclude (forward) self-citations.  
16 Specifically, columns 3 through 7 include a total of 107,726 indicator variables to estimate the gap in self-citation behavior. 
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deviation of the outcome. Column 4 adds to the covariates included in column 3 our indicator of 
intellectual relatedness between citing and cited articles (i.e., the two articles are intellectual 
neighbors according to PMRA). The effect is both large in magnitude and precisely estimated, but 
interestingly does not affect the coefficient estimate for the gender effect. 

Column 5 adds to the specification with the count of citable items published to date by the focal 
scientist, in logged form. As in the results presented by Mishra et al. (2018), the effect of gender 
disappears in these specifications—a precisely estimated zero. Column 6 augments the 
specification with an interaction term between gender and the stock of citable items. The gender 
effect remains very small in magnitude, and is only marginally significant. Across their entire 
career, men and women scientists in our sample do not differ much in their relative propensity to 
reference their own work; and they appear not to differ at all after one adjusts the effect for the 
opportunity to self-cite. 

Figure 3 and Table 4 leverage the longitudinal structure of our dataset to explore the stability of 
the gender effect over calendar time, career stage, and career type. We begin by estimating the 
specification in Table 5, column 5 on 26 subsamples corresponding to all the publication years for 
citing articles between 1970 and 2005. We then graph each coefficient estimate for the gender effect 
in Figure 3, Panel A. Although the effects in the early years appear less precisely estimated (recall 
that relatively few scientists contribute articles during these years), the picture that emerges is one 
of “precisely estimated zeros” throughout the period: the “gender non-effect” is stable over time. 

The next step is to break down the overall dataset into subsample corresponding to different career 
stages: graduate school, postdoctoral phase, the first five years of the “independent” (i.e., post-
training) career, years 5 through 10, 10 through 15, and so on in five year increments, with a last 
category absorbing career years 30 and above for the scientists who reached this “advanced” career 
age. Figure 3, Panel B displays the coefficient estimates for the gender effect (the underlying 
specification corresponds as above to that displayed in column 5 of Table 3). We find evidence of 
a negative and statistically significant gender effect in the very early career, which becomes 
undistinguishable from zero at the five year post-training mark. Though more precisely estimated 
early on, the effect’s magnitude is trivial. 

Finally, Table 4 breaks apart the sample by initial post-training sorting patterns into different types 
of jobs: fellows who start in a standard tenure-track type academic position, fellows who join a 
biopharmaceutical firm after completion of their training, and fellows who convert their training 
into a “marginal” academic position, i.e., full-time “research associate” in an another scientist’s lab, 
adjunct teaching, etc. A final category includes all scientists who pursue research after training, 
regardless of setting (academia or industry). For each type of initial position, we compare two sets 
of estimates, the first based on the specification in Table 3, column 4—which does not control for 
the stock of citable items—the second based on the specification in Table 3, column 5—which does. 
As in Table 3, we typically find precisely estimated, negative gender effects of very modest 
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magnitudes without controlling for citing opportunities, which completely disappear once these 
opportunities are controlled for.  

From all these analyses at the citing-cited article pair level, we conclude that men and women 
scientists do not appear to differ much in their propensity to self-cite, especially when focusing on 
self-references per unit of past productivity. Moreover, these equal propensities exhibit striking 
stability across time, type of initial position, and career stage. 

From self-citation to self-promotion. The above exercise is informative with respect to the debate 
regarding disparities in self-promotional behavior across genders only to the extent that self-
reference is accepted as a proxy for self-aggrandizement. Although a natural first step, below we 
seek to distinguish between “gratuitous” and “legitimate” self-referencing behavior by attending 
to the intellectual closeness between each citing and cited article. Recall that from columns (4), (5), 
and (6) in Table 3, we already established that the scientists in our sample are more likely to self-
reference an intellectually related article than an unrelated one. In column (7) of Table 3, we 
augment the specification with an interaction term between relatedness and gender. A positive 
coefficient for this covariate would support the claim that, although men and women scientists 
self-cite at similar rates, men scientists are less reluctant to do so in situations where the connection 
between the two pieces of research is intellectually tenuous. 

We do not find evidence for this claim. If anything, we find that women scientists appear slightly 
more likely to self-reference unrelated work than men. However, the magnitude of the effect is 
extremely modest (about 5% of the magnitude for the main effect of relatedness). Figure 4 pushes 
this analysis further. Intellectual relatedness exists on a spectrum, a fact recognized by the PubMed 
Related Citations Algorithm (PMRA). For any source article, PMRA returns a ranked list of 
intellectual neighbors (the cut-off rules for PMRA are explored at length in Azoulay et al. (2019a), 
Appendix C). Every citation link in our dataset can correspond to a particular relatedness rank, 
from completely unrelated (80.0% of the sample), to relatedness rank 1, 2, 3… until about 10,000. 
We create 111 gender by relatedness rank interaction effects, which we include in the specification 
(the main effects of gender and the relatedness dummies are of course included as well). Figure 4 
displays the coefficient estimates for these interaction terms. Although the majority have a negative 
sign, they are invariably small in magnitude, and it is hard to discern any monotonic trend in the 
effect. From these analyses, we conclude that men and women do not differ in their propensity to 
self-cite gratuitously, any more than they differ in their overall self-reference propensity.17 

Returns to self-references. We conclude the study by examining whether scientists can parlay self-
references into future productivity and career rewards, and whether the returns to self-reference 
differ across genders. To do so, we shift the level of analysis away from the citing/cited article pair 

                                                            
17 In the present manuscript, the number of self-references by the male coauthor is three, versus only one for the female coauthor. 
We leave it as an exercise for the reader to figure out whether this disparity reflects self-aggrandizement on the part of one member 
of our mixed-gender team, a tragic lack of self-awareness on the part of both coauthors, or something more benign. 
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to the individual scientist. A necessary note of caution is that we do not have at our disposal 
exogenous shifters of the propensity to self-cite. As such, the effects we estimate below could suffer 
from omitted variable bias—they correspond to conditional correlations, not causal effects. 

Table 5 focuses on the forward citation returns to self-referencing behavior. The dependent 
variable in all specifications is the inverse hyperbolic sine of the flow of citations received to the 
articles published up to the current year by each scientist, purged of self-citations. All independent 
variables are lagged one year. As seen in equation (2a) and (2b) above, all specifications include a 
full suite of calendar year effects. The models are estimated by OLS, and standard errors are 
clustered at the level of the scientist in all cases. 

The first model (column 1) estimates the gender gap in forward citations (purged of self-citations) 
in the sample, net of cohort effects (eight indicator variables corresponding to years of highest 
degree, in five year increments), a full suite of calendar year effects, and age effects (the 
investigator’s career age and its square). The results imply that women scientists accumulate about 
5% less citations than men every year, on average. 

The remaining specifications are presented in pairs, the first corresponding to the pooled cross-
section, while the second includes scientist fixed effects, which cause the main effect of gender to 
drop out. 

From column 2a, after controlling for the stock of publications (lagged one year), the evidence of 
gender disparity in citations vanishes. An additional publication is associated with about 1.5 
forward citations on average, or slightly lower (1.3) in the within-scientist dimension of the data 
(in column 2b). Columns 3a and 3b also demonstrate the absence of gender disparities in the ability 
to covert publications into future citations. Columns 4a and 4b include the proportion of self-
references in the body of work of the investigator to date. Interestingly, scientists appear to suffer 
a penalty, not a discount, for self-promotional behavior, although it is of small magnitude. At the 
mean of the data, the estimate in column 4a implies that an additional 1% in the fraction of self-
references (roughly a 20% increase) is associated with a 0.08% decrease in the number of forward 
citations. The estimate is twice as large in column 4b—the implied elasticity is 0.145—but this 
remains a relatively modest effect. Finally, columns 5a and 5b introduce an interaction effect 
between gender and the proportion of self-references in past work. The estimate in column 5a is 
positive in statistically significant, indicating that relative to men, women earn a citation return on 
self-referencing behavior. However, computing the implied elasticities using the delta method 
leads to the conclusion that this differential effect is small: while men lose one forward citation on 
average for a 1% increase in the fraction of self-references, women scientists lose “only” 0.8 



17 
 

citations. Further, the differences between men and women vanish altogether when adding 
scientist fixed effects to the specification (column 5b).18 

Table 6 provides an analysis in the same spirit, but focusing on career transitions rather that 
scientific output. We do not discuss these results in the same amount of detail, because they paint 
a similar picture. The first batch of columns reports discrete-time hazard estimates (with a logit 
link function) in the cross-section corresponding to the last year before exit from academia or 
2015, whichever comes earlier. Here we do find evidence of a small gender gap, with women 
scientists about 5% more likely than men to leave academia (column 1a). But the effect’s sign is 
reversed after controlling for the publication stock (column 1b): women scientists are now 5% less 
likely than men to leave academia. Unsurprisingly, lower amounts of publications contribute to an 
elevated risk of transitioning out, but this appears equally true for men and women (column 1c). 
Self-referencing behavior appears associated with a slightly higher probability of exit (column 1d), 
but not differentially so for men and women (column 1e). 

The second batch of four columns defines career exit differently, by focusing on the “marginality” 
of the position. This is somewhat arbitrary, but our coding attempts to capture the timing of entry 
into a phase of the career where the scientist would lose her scientific autonomy. In practice, a 
tenure-track academic, a venture capitalist, a patent lawyer, and an industry scientist all have a 
stable position using this coding, whereas a lab technician, an adjunct faculty member, a medical 
professional (with purely clinical duties), or a high-school science teacher all have marginal 
positions. Here we do find evidence that women scientists are more likely to exit (column 2a), but 
the effect is quite small in magnitude once past publication output is added as a covariate (column 
2b). We also find evidence of a positive association between rates of self-referencing and exit, but 
again it does not differ along gender lines (columns 2c and 2d). 

To summarize, we find no support for the notion that the long-term impact of self-referencing is 
more positive for men than for women. In fact, we find that aggressive self-referencing, as 
operationalized by fraction of total backward references to self, is not even positively correlated 
with ‘good’ career outcomes, such as future citations and career stability. The lesson here is that, 
contrary to initial expectations, neither Pierre nor Pierrette should expect their self-referencing 
behavior to generate a boost to their long-term visibility. 

 

  

                                                            
18 Appendix Tables A3 and A4 reproduce this analysis using two additional outcomes: receipt of an R01 grant from the National 
Institute of Health, and number of publications. The magnitudes differ, but the qualitative conclusions of the analysis above remain 
unchanged. 
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Discussion 

Considering the results in their totality, we feel confident in stating that, in our sample at least, 
men and women scientists do not meaningfully differ in their propensity to self-reference once the 
stock of citable publications is taken into account. This aligns with Mishra et al. (2018) declaration 
that self-references are simply the “hallmark of productive authors.” Importantly, our analyses can 
further show that this conclusion holds even when focusing on self-citations of intellectually 
unrelated articles—the type of self-citation most likely to reflect self-aggrandizement instead of 
cumulativeness. Finally, we find no evidence of a differential ability to convert self-citations into 
favorable outcomes across men and women. In fact, contrary to the popular view that self-citations 
are an important self-marketing tool, both genders—in the long game—appear to be penalized 
rather than rewarded for self-referencing behavior, although the magnitude of the penalty is 
modest. 

Of course, we had expected, extrapolating from previous literature on gender and self-promotion 
and self-assessment, that women scientists compared to men would self-reference less, self-
reference less gratuitously, and net less for their promotional efforts. Our evidence, therefore, 
support none of these hypotheses. Instead, we find no systematic gap—statistical or practical—
between men and women in our sample with respect to self-reference practices or returns. So, 
where does this leave us? 

First, it is important to note that while our results do contradict our expectations regarding self-
referencing behavior, they cannot be used to adjudicate whether men and women differentially 
self-promote, which is clearly a much broader statement about human agency. We were motivated 
to study self-citation because of the literature on gender and self-promotion, but our empirical 
study only assesses the behavioral act of self-referencing. For example, it could be that men are 
indeed more aggressive self-promoters than women in science (see Lerchenmueller, Sorenson, and 
Jena 2019), but that the act of self-citing is not interpreted by most scientists as particularly 
promotional. Researchers often regard self-referencing as a form of bragging, but it could be that 
self-referencing “on the ground” is merely the byproduct of satisficing, such as when authors 
search their own personal “garbage cans” (Cohen, March, Olsen 1972) for a passable or plausible 
reference in an effort to work efficiently. In a similar vein, it could be that self-citing is broadly 
understood as promotional work, but that doing so is hardly sanctioned in practice because (1) the 
behavior is so common and/or (2) the opportunities to sanction are few.  

Second, a likely and fair response to this study is to question whether a sample of only life 
scientists—all of whom received a prestigious post-doctoral award—is too narrow to draw broad 
conclusions about how gender operates in science. We agree that that this sample has clear limits 
in terms of its generalizability to all fields and to all strata of authors. At the same time, our sample 
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and results offer an important building block with regard to empirical knowledge. That is, our 
sample may be limited in its generalizability, but the results themselves can be clearly interpreted 
because we have controlled extensively for supply-side factors. We are confident that each cohort 
of young scholars in our dataset is viewed by their discipline as having a great deal of potential to 
contribute to the field. So, within this controlled group of scholars, to what extent does gender 
matter for how careers unfold over time?19 Another building block then would be replicating this 
study with, say, the group of scientists who applied for but did not receive a post-doctoral award, 
or perhaps with a group of newly minted PhDs from a particular field but from institutions in the 
lower- versus upper-half of area-specific rankings.  

The beauty of this type of research design, as Delecourt and Ng (2020) illustrate well, is the clarity 
that comes from controlling supply-side factors and hence, isolating demand-side factors. While 
we cannot completely “fix” supply-side factors as Delecourt and Ng (2020) are able to do with a 
field experiment, we come far closer to doing so compared to the many publication “snapshot” 
studies devoid of (or with very limited) data on career context. More specifically, we come far 
closer to being able to claim that women and men are rewarded differentially (or not) when they 
do the same thing. In this way, our conclusions not only spotlight—by way of replicability—
previous findings based on publication-based samples, including Mishra et al. (2018) on the null 
gender gap in self-citations, Lynn et al. (2019) on the null gender gap in citations per publication, 
and West et al. (2013) on the major gender gap in publications, but go one step further and clarify 
that these conclusions hold when subjected to an even stronger apples-to-apples test. 20    

With this in mind, we see our null gender results as making an important contribution to the 
current conversation around gender inequality in science. To recap, our objective was to examine 
self-referencing in the context of scientific careers, which is why we analyzed the co-evolution of 
publications, self-references, forward citations, grants, and employment type. In doing so, our 
results easily reveal the arc of scientific careers: regardless of gender, scientists who publish more 

                                                            
19 We note that a recent study (Ginther and Heggeness 2020) raises the issue of administrative discretion in allocating supposedly 
merit-based awards in science. They find that discretion is widely used by program officers when allocating the NIH NSRA F32 
award, a grant given to “high-potential, early-career scientists” in the biomedical sciences. While the award is undoubtedly still a 
selective prize, Ginther and Heggeness (2020) show that award winners include more applicants ‘reached for’ through discretionary 
decisions compared to applicants funded based on high peer review scores alone. That said, we speculate that heterogeneity in 
potential is likely much smaller with respect to the recipients of the private, post-doctoral fellowships on which our sample is based. 
Our confidence in this assertation, of course, would be much higher if we could directly examine the reward allocation process of 
these private fellowships à la Ginther and Heggeness (2020).   
20 In analyses not shown but available upon request, we also partially replicated Lerchenmueller and Sorenson’s (2018) analysis of 
the gender gap in the timing of the first R01 grant, which is based on a sample of roughly 6,300 life scientists who won an NIH 
NRSA F32 award and produced at least one publication during the award period. They find that women F32 winners take 12% 
longer before winning an R01, and this gap cannot be explained away by accounting for publications. In our sample, we, too, find 
a statistically significant gap (N=55,741 person-years) in R01 timing but the magnitude of our gap is miniscule. Moreover, as shown 
in Table A3, we find no gender gap in receipt of R01 funding after accounting for stock of previous publications.  
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papers earlier are more likely later to self-reference, attract citations from others, produce future 
publications, win grants, persist in academia, and persist in jobs with scientific autonomy. Put 
differently, self-citation is indeed a hallmark of productivity, but so is every reward in science.  

What is noteworthy then about these results is that, even though the conversion of earlier 
publications into later rewards is not gendered, there is an inexplicable gender gap in publications 
that begins in the very first career period for which scientists are tracked (graduate school) and 
persists through every career stage thereafter (see Figure 1). Observation one is thus the unusually 
good news that women and men’s careers tend to unfold in highly similar ways when they publish 
at the same rate. Observation two, however, is that even among a sample of the most competitive 
graduate students in life sciences, women and men are not publishing at the same rate, and so 
amass fewer rewards over the career course. In sum, for this sample of scientists, the publication 
process is the single source of fuel for gender divergence in career trajectories.  

While some might interpret this as arriving back at square one, i.e., the “old puzzle” that is the 
gender gap in publications (Xie and Shauman 1998), we find our results provocative because of the 
sample of elite graduate students on which they are based. Again, this is because supply-side 
explanations have been effectively ruled out with this sample. For example, variation in human 
capital and training experience is tightly controlled in our data given that we selected only high-
achieving graduate students recognized by field leaders for their potential to contribute. Regarding 
individual tastes and preferences, we know that all in our sample were motivated enough to apply 
for prestigious post-doctoral positions and that all chose to throw their proverbial hat in the ring 
by accepting. We also know that scientists in the sample worked primarily in academic research 
jobs. Thus, the persistent gender gap in publications we observe here cannot be a byproduct of the 
job requirements associated with teaching versus research track positions, which has been shown 
to explain the publication gender gap in datasets based on broader samples of scholars (Xie and 
Shauman 2003). 

Being able to reasonably set aside these major explanations means that we can approach the 
productivity gap with renewed focus. Not only is the productivity gap the puzzle to solve, we now 
know that (1) a publication gap can persist between men and women even in the absence of any 
major differences in human capital, motivation, or job requirements, and (2) whatever 
mechanism(s) creating the gender gap in publications are somehow muted when it comes to 
publications being converted into future rewards. For example, in order to assert that demand-side 
discrimination (e.g., the brilliance penalty) is the key reason why women publish less than men, 
one would also have to explain why this mechanism has a negligible effect on how women and 
men accrue citations and grants controlling for the publications they produce.  
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One promising line of work digs into the beast that is the journal peer review process, a specific 
type of multi-staged, gatekeeping system that applies to the process of publishing articles (and 
sometimes books). While there is little evidence to suggest that editors are more likely to accept 
manuscripts written by men compared to women (e.g., Borsuk et al. 2009; Blank 1991), there is 
compelling evidence to suggest that women on average generate higher quality work during the 
peer review process (Hengel 2017), in part because reviewers and editors appear to impose higher 
standards on women (Card et al. 2020).21 Ultimately, this process could push women to “spend too 
much time rewriting old papers and not enough time writing new papers” (Hengel 2017: p. 3). 
While our own data unfortunately cannot be leveraged to investigate this proposition or peer 
review experiences more generally, we can perhaps motivate women scientists, as well as future 
research on the gendered costs of publishing, by showing that on the other side of this bottleneck, 
women and men earn roughly the same recognition per publication.  

                                                            
21 Hengel’s (2017) analyses, too, suggest that women engage in more work in the peer review process more so because editors and 
reviewers implicitly set the bar higher for women and less so because of supply-side differences in say, how authors respond to 
negative reviews. 
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Table 1: Summary Statistics—Scientist Level 

 Men Scientists 
(N=2,546) 

 
Women Scientists 

(N=1,014) 

 Mean Median Std. Dev. Min. Max.  Mean Median Std. Dev. Min. Max. 

MD 0.03 0 0.16 0 1  0.01 0 0.11 0 1 
PhD 0.91 1 0.28 0 1  0.95 1 0.22 0 1 
MD/PhD 0.06 0 0.24 0 1  0.04 0 0.20 0 1 
Highest Degree Year 1986.52 1986 10.32 1962 2005  1989.29 1990 9.43 1963 2005 
Year of Independent Career Start 1991.30 1991 10.82 1971 2018  1994.55 1996 9.99 1972 2015 
Year of Exit from Academia 2007.80 2014 11.04 1972 2019  2007.43 2014 10.41 1972 2019 
Exit/Censoring Year 2013.09 2015 5.55 1972 2019  2012.93 2015 5.96 1972 2019 
Postdoctoral Training Length 4.78 4 2.22 1 15  5.26 5 2.45 1 20 
Academic Career Length 16.50 15 12.66 0 43  12.88 11 11.56 0 43 
Independent Career Length 21.79 22 10.60 0 43  18.38 17 9.88 0 43 
Begins Career in Science 0.96 1 0.20 0 1  0.90 1 0.30 0 1 
Ends Career in Science 0.89 1 0.32 0 1  0.79 1 0.41 0 1 
Begins Career in Industry 0.16 0 0.36 0 1  0.18 0 0.39 0 1 
Ends Career in Industry 0.20 0 0.40 0 1  0.18 0 0.39 0 1 
Begins Career in Marginal Position 0.08 0 0.27 0 1  0.17 0 0.37 0 1 
Ends Career in Marginal Position 0.09 0 0.29 0 1  0.21 0 0.41 0 1 
Begins Career as P.I. 0.76 1 0.42 0 1  0.65 1 0.48 0 1 
Ends Career as P.I. 0.70 1 0.46 0 1  0.60 1 0.49 0 1 
Career Nb. of Publications 55.18 36 57.71 1 717  33.33 21 36.56 1 293 
Career NIH Funding 8,026,756 1,847,540 16,572,517 0 211,812,528  4,323,344 280,573 8,954,504 0 107,133,976 
NAS/NAM Membership 0.02 0 0.14 0 1  0.02 0 0.13 0 1 
Career Nb. of References 2,006 1,314 2,145 6 25,411  1,276 781 1,399 18 10,698 
Career Forward Citations (excl. self-cites) 3,819 1,934 5,805 1 64,081  2,032 1,151 2,856 0 38,710 
Career Nb. of Self-references 197 79 314 0 3,692  104 32 190 0 1,735 
Career Self-citation Share 0.07 0 0.05 0 0.36  0.05 0 0.04 0 0.24 
Note: The sample comprises 3,667 winners of postdoctoral fellowships awarded by four US-based private philanthropic foundations between 1970 and 2005, whose careers are tracked 

until retirement/exit, death, or 2015, whichever comes earlier. 
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Table 2: Summary Statistics—Article Level 

 Men Scientists 
(N=144,185) 

 
Women Scientists 

(N=35,131) 

 Mean Median Std. Dev. Min. Max.  Mean Median Std. Dev. Min. Max. 

Article Year of Publication 1999.17 2001 10.52 1962 2015  2000.08 2001 10.11 1963 2015 
Article Nb. of Authors 5.76 5 3.88 1 30  5.62 5 3.82 1 30 
Fellow Authorship Position 4.43 4 3.39 1 30  4.04 3 3.20 1 30 
Fellow is First Author 0.13 0 0.34 0 1  0.18 0 0.38 0 1 
Fellow is Middle Author 0.42 0 0.49 0 1  0.41 0 0.49 0 1 
Fellow is Last Author 0.44 0 0.50 0 1  0.42 0 0.49 0 1 
Article Nb. of Forward Citations 68.96 27 206.96 0 34,460  62.06 26 132.79 0 5,590 
Article Citation Percentile 73.50 82 25.75 0 100  73.49 82 25.31 0 100 
Article Nb. of References 36.05 34 18.22 1 500  37.99 36 18.56 1 351 
Article Nb. of Self-references 3.56 2 3.73 0 47  3.12 2 3.46 0 36 
Article Self-reference Share 0.11 0 0.11 0 1  0.09 0 0.10 0 1 
Article Nb. of In-field References 7.16 6 6.00 0 64  7.70 6 6.23 0 62 
Article In-field Reference Share 0.21 0 0.15 0 1  0.21 0 0.15 0 1 
Note: The count of forward citations count excludes self-citations. The citation percentile corresponds to position of the source article in the vintage-specific empirical distribution 

of citations at the article level. The universe of publications considered includes 17,312,059 publications between 1950 and 2015 indexed both by PubMed and the Web of 
Science. In-field references comprise the subset of all references which the PubMed Related Citation Algorithm indicates are intellectually related to the source article. 
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Figure 1 

Publication Rates—Scientist-level 
A. By Career Sequence B. By Career Year 

   
Note: Publication rates by gender over the career by career sequence (Panel A) and individual year (Panel B). In Panel A, t-tests indicate that the difference between publication 

rates for men and women is statistically significant at the 1% level at every career stage. In Panel B, year 0 corresponds to the year of PhD receipt. In both panels, but especially 
Panel B, recall that the number of scientists in the cells corresponding to the most advanced stage of the career is relatively small (for example, in year 35, we observe only 
452 scientists—372 men and 80 women). The remainder of the sample has either exited already, or is not yet “of age” as they entered in the sample after 1980 and the last 
year of observation is 2015). 
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Figure 2 
Self-Reference Rates—Scientist-level 

 
 

A. Over the whole career B. Over time C. By career sequence 

  
Note: Panel A displays the histogram for the proportion of self-citations at the scientist level, taking into account publications published over the entire career, separately for men and women 

(seven outliers with a self-reference share higher than 0.25% are excluded). Panel B displays the evolution of the average self-citation rate over the whole career, separately for men and 
women. The clock starts in the year of PhD receipt (or MD for 84 of the scientists in the sample). Because the length of training differs across scientists (median and mean of five years, 
and a standard deviation of 2.3 years), Panel C breaks down careers into nine distinct intervals: graduate school, postdoctoral fellowship(s), first five years post training, years 5-10,…, 
years 25-20, and finally beyond the 30th year of career. 
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Figure 3 

Gender Effect Magnitudes 
 
 

A. Calendar Year Splits B. Career Sequence Splits 

   
Note: Panel A displays coefficient estimates (and associated 95% confidence intervals) for the gender effects in 26 distinct regressions modeled after the specification in Table 4, column 

5. Each regression is run on a subsample that only includes source publications which appeared during a specific year, from 1970 to 2015. Panel B proceeds in the same spirit, but 
breaks down the data into 9 subsamples corresponding to natural career intervals: graduate school, postdoctoral fellowship(s), first five years post training, years 5-10,…, years 25-
20, and finally beyond the 30th year of career. 
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Figure 4 

Gender × Relatedness Rank Interactions 

 
Note: Figure 3 displays the coefficient estimates (and associated 95% confidence intervals) for the interaction effects between gender and relatedness rank in an expanded version of 

the specification appearing in Table 3, column 7. In these specifications, relatedness is broken down into 112 dummies: PMRA-unrelated (the omitted category), PMRA-related 
of rank 1, PMRA-related of rank 2, …, PMRA-related of rank 100, 100-110, 110-120, 120-130, 130-140, 140-150, 150-200, 201-250, 251-300, 301-400, 401-500, and finally 501-
10,000. These main effects of intellectual relatedness are further interacted with gender. 
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Table 3: Determinants of self-citation (OLS) 
 (1) (2) (3) (4) (5) (6) (7) 

Women scientist -0.010** -0.009** -0.011** -0.011** -0.000 -0.005† -0.003 
(0.002) (0.002) (0.002) (0.002) (0.001) (0.003) (0.003) 

Citing & cited articles are related 
   0.139** 0.139** 0.139** 0.141** 
   (0.002) (0.002) (0.002) (0.002) 

Ln(nb. of citable publications)     0.037** 0.037** 0.037** 
    (0.001) (0.001) (0.001) 

Ln(nb. of citable publications) × Woman scientist      0.001 0.001 
     (0.001) (0.001) 

Citing & cited articles are related × Woman scientist 
      -0.009* 
      (0.004) 

Number of authors indicator variables (source article) Included Included Included Included Included Included Included 
Authorship position indicator variable (source article) Included Included Included Included Included Included Included 
Cited article age indicator variables Included Included Included Included Included Included Included 
Source article publication year indicator variables Included Included Included Included Included Included Included 
Cited Article publication year indicator variables Included Included Included Included Included Included Included 
Journal indicator variables (source article) — Included Included Included Included Included Included 
Long-run citation quantile (source article) — — Included Included Included Included Included 
Mean of Dependent Variable 0.095 0.095 0.095 0.095 0.095 0.095 0.095 
Std. Dev. of Dependent Variable 0.294 0.294 0.294 0.294 0.294 0.294 0.294 
Gender effect, in s.d. units 0.028 0.038 0.041 0.047 0.005 0.005 0.005 
Adjusted R2 0.034 0.038 0.073 0.105 0.107 0.107 0.107 
Nb. of Investigators 3,667 3,667 3,667 3,667 3,667 3,667 3,667 
Nb. of Source Articles 165,123 165,114 164,878 164,878 164,878 164,878 164,878 
Nb. of Unique Cited Articles 1,534,667 1,534,661 1,534,564 1,534,564 1,534,564 1,534,564 1,534,564 
Nb. of Source/Cited Article Pairs 6,532,016 6,532,007 6,531,766 6,531,766 6,531,766 6,531,766 6,531,766 
Note: Linear probability model estimates. An observation corresponds to a citing/cited article pair. The response variable is an indicator variable equal to one if the fellowship recipient 

author of the citing article is also on the authorship roster of the cited article. Also included as right-hand side covariates are degree indicator variables (MD and MD/PhD, PhD is 
the omitted category), fellowship award year indicator variables, and fellowship type (DRCF, LSRF, HHWF, or JCCF). The number of citable publications for each fellowship 
recipient is measured in the year prior to the citing article’s year of publication. The citing and cited articles are considered related if they are neighbors according to the PubMed 
Related Citations Algorithm [PMRA]. Standard errors in parentheses, triple clustered on investigator, cited article, & citing article. † p < 0.10, * p < 0.05, ** p < 0.01. 
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Table 4: Determinants of self-citation behavior (OLS), by initial position “type” 

 Start in Academia Start in Industry Start in a 
Marginal Position Starts in Research 

 w/o Pubs 
Ctrl. 

w/ Pubs 
Ctrl. 

w/o Pubs 
Ctrl. 

w/ Pubs 
Ctrl. 

w/o Pubs 
Ctrl. 

w/ Pubs 
Ctrl. 

w/o Pubs 
Ctrl. 

w/ Pubs 
Ctrl. 

Women scientist -0.011** 0.001 -0.013* -0.002 0.004 -0.001 -0.014** 0.001 
(0.002) (0.002) (0.006) (0.006) (0.017) (0.017) (0.002) (0.002) 

Citing & cited articles are intellectually related 0.152** 0.152** 0.106** 0.106** 0.119** 0.120** 0.149** 0.149** 
(0.002) (0.002) (0.006) (0.006) (0.010) (0.010) (0.002) (0.002) 

Ln(Nb. of citable publications) 
 0.041**  0.034**  0.036**  0.039** 
 (0.002)  (0.004)  (0.008)  (0.001) 

Mean of Dependent Variable 0.107 0.107 0.075 0.075 0.082 0.082 0.105 0.105 
Std. Dev. of Dependent Variable 0.310 0.310 0.263 0.263 0.274 0.274 0.307 0.307 
Gender effect, in s.d. units 0.041 -0.003 0.207 0.134 0.609 0.695 -0.047 0.002 
Adjusted R2 0.102 0.104 0.121 0.121 0.138 0.138 0.100 0.104 
Nb. of Investigators 2,650 2,650 531 531 279 279 3,354 3,354 
Nb. of Source Articles 128,516 128,516 9,333 9,333 5,288 5,288 141,091 141,091 
Nb. of Unique Cited Articles 1,343,942 1,343,942 184,473 184,473 115,995 115,995 1,439,154 1,439,154 
Nb. of Source/Cited Article Pairs 5,101,818 5,101,818 313,726 313,726 177,866 177,866 5,561,105 5,561,105 
Note: Linear probability model estimates. An observation corresponds to a citing/cited article pair. The response variable is an indicator variable equal to one if the 

fellowship recipient author of the citing article is also on the authorship roster of the cited article. The specification includes the series of indicator variables 
also included in Table 2, column 5. Also included as right-hand side covariates are degree indicator variables (MD and MD/PhD, PhD is the omitted category), 
fellowship award year indicator variables, and fellowship type (DRCF, LSRF, HHWF, or JCCF). The number of citable publications for each fellowship 
recipient is measured in the year prior to the citing article’s year of publication. The citing and cited articles are considered related if they are neighbors 
according to the PubMed Related Citations Algorithm [PMRA]. Standard errors in parentheses, triple clustered on investigator, cited article, & citing article. 
† p < 0.10, * p < 0.05, ** p < 0.01. 
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Table 5: The effect of self-references on the flow of forward citations (OLS) 
 (1) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

Woman Scientist 
-0.48** -0.01  0.05  -0.01  0.12†  
(0.05) (0.03)  (0.06)  (0.03)  (0.07)  

Ln(Publications)  1.50** 1.56** 1.50** 1.56** 1.54** 1.63** 1.56** 1.63** 
 (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Ln(Publications)×Woman 
   -0.02 0.01   -0.06* 0.01 
   (0.02) (0.02)   (0.03) (0.03) 

Fraction Self-References 
     -1.47** -2.53** -1.76** -2.48** 
     (0.36) (0.34) (0.39) (0.37) 

Fraction Self-References ×Woman        1.55† -0.27 
       (0.88) (0.88) 

Scientist Fixed Effects Excluded Excluded Included Excluded Included Excluded Included Excluded Included 
Mean of Dependent Variable 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 
Adjusted R2 0.17 0.71 0.87 0.71 0.87 0.72 0.88 0.72 0.88 
Nb. of Scientists 3,667 3,667 3,661 3,667 3,661 3,667 3,661 3,667 3,661 
Nb. of Scientist-Year Obs. 94,315 94,315 94,308 94,315 94,308 94,315 94,308 94,315 94,308 
Note: OLS estimates. The dependent variable is the flow of forward citations accruing in year t to all the publications of the focal scientist up to and including year t-1, 

transformed using the inverse hyperbolic sine transformation, so that coefficient estimates are approximately interpretable as elasticities. An observation corresponds to 
a scientist-year, with the first observation being the year following the receipt of highest degree, and the last observation the year of exit from science, retirement, death 
or 2015, whichever comes earlier. The time-varying covariates are lagged one year. The specifications also include degree indicator variables (MD and MD/PhD, PhD is 
the omitted category), scientist career age and its square, a full suite of calendar year indicator variables, and eight indicator variables corresponding to years of highest 
degree (in five year increments). Standard errors in parentheses, triple clustered at the investigator level. † p < 0.10, * p < 0.05, ** p < 0.01. 
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Table 6: The effect of self-references on the risk of career exit (Logit) 
  Exit from Academia   Exit from Stable Position 
 (1a) (1b) (1c) (1d) (1e)  (2a) (2b) (2c) (2d) (2e) 

Woman Investigator 
0.05** -0.05** -0.03 -0.04** -0.04  0.10** 0.02* 0.01 0.02* 0.00 
(0.02) (0.01) (0.05) (0.01) (0.05)  (0.01) (0.01) (0.03) (0.01) (0.03) 

Ln(Publications)  -0.21** -0.21** -0.22** -0.22**   -0.13** -0.13** -0.14** -0.15** 
 (0.00) (0.01) (0.01) (0.01)   (0.00) (0.01) (0.01) (0.01) 

Ln(Publications) × Woman   -0.01  0.01    0.00  0.02 
  (0.02)  (0.02)    (0.01)  (0.02) 

Fraction Self-References 
   0.45* 0.60*     0.46* 0.59** 
   (0.21) (0.23)     (0.18) (0.21) 

Fraction Self-References × Woman     -0.78      -0.50 
    (0.48)      (0.36) 

Pseudo-R2 0.01 0.44 0.44 0.44 0.44  0.03 0.41 0.41 0.41 0.41 
Nb. of Scientists 3,667 3,667 3,667 3,667 3,667  3,667 3,667 3,667 3,667 3,667 
Note: Discrete-time hazard estimates using a logit link function—one career spell per scientist. Covariates take on the value in the year of exit or 2015, whichever comes 

earlier. The dependent variable is binary variable that takes on the value one in the year we observe the scientist exit academia (first set of four columns) or exist to a 
“marginal” position (second set of four columns). The specifications also include degree indicator variables (MD and MD/PhD, PhD is the omitted category), and eight 
indicator variables corresponding to years of highest degree (in five year increments). Standard errors in parentheses. † p < 0.10, * p < 0.05, ** p < 0.01.
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Appendix Tables & Figures 
 
 
Figure A1: Distribution of relatedness rank for 1,303,113 related citing/cited pairs 
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Table A1: Scientists’ Initial Positions 

 Men Women Total 

Tenure-track Academic 1,996 682 2,678 
(76.39) (64.71) (73.03) 

Staff Scientist/Research Associate 
124 91 215 

(4.75) (8.63) (5.86) 

Academic Administration 7 7 14 
(0.27) (0.66) (0.38) 

Science/Health Policy 5 5 10 
(0.19) (0.47) (0.27) 

Higher Ed Adjunct Teaching 
10 15 25 

(0.38) (1.42) (0.68) 

Clinical Medicine 28 11 39 
(1.07) (1.04) (1.06) 

High-school Science Teaching 2 6 8 
(0.08) (0.57) (0.22) 

Big Pharma 
176 77 253 

(6.74) (7.31) (6.90) 

Biotech 205 100 305 
(7.85) (9.49) (8.32) 

Patent Law 7 10 17 
(0.27) (0.95) (0.46) 

Venture Capital 
11 1 12 

(0.42) (0.09) (0.33) 

Biopharma Consulting 9 3 12 
(0.34) (0.28) (0.33) 

Scientific Writing/Editing 4 10 14 
(0.15) (0.95) (0.38) 

Other Industry 
12 10 22 

(0.46) (0.95) (0.60) 

Unknown 17 26 43 
(0.65) (2.47) (1.17) 

Total 2,613 1,054 3,667 
(100.00) (100.00) (100.00) 

Note: Column Percentages in Parentheses. Observations with “unknown” position type are not lost to follow up. These are 
individuals who not only exited science (as ascertained by the complete absence of any publication or patent), but have also 
seemingly dropped out of the labor force. 
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Table A2: Scientists’ Last Positions 

 Men  Women  Total 

Tenure-track Academic 1,842 635 2,477 
(70.49) (60.25) (67.55) 

Staff Scientist/Research Associate 52 58 110 
(1.99) (5.50) (3.00) 

Academic Administration 
59 45 104 

(2.26) (4.27) (2.84) 

Science/Health Policy 12 7 19 
(0.46) (0.66) (0.52) 

Higher Ed Adjunct Teaching 17 22 39 
(0.65) (2.09) (1.06) 

Clinical Medicine 
38 20 58 

(1.45) (1.90) (1.58) 

High-school Science Teaching 7 13 20 
(0.27) (1.23) (0.55) 

Big Pharma 192 80 272 
(7.35) (7.59) (7.42) 

Biotech 
227 63 290 

(8.69) (5.98) (7.91) 

Patent Law 19 19 38 
(0.73) (1.80) (1.04) 

Venture Capital 15 3 18 
(0.57) (0.28) (0.49) 

Biopharma Consulting 
60 28 88 

(2.30) (2.66) (2.40) 

Scientific Writing/Editing 15 14 29 
(0.57) (1.33) (0.79) 

Other Industry 34 24 58 
(1.30) (2.28) (1.58) 

Unknown 
24 23 47 

(0.92) (2.18) (1.28) 

Total 
2,613 1,054 3,667 

(100.00) (100.00) (100.00) 
Note: Column Percentages in Parentheses. Observations with “unknown” position type are not lost to follow up. These are 

individuals who not only exited science (as ascertained by the complete absence of any publication or patent), but have also 
seemingly dropped out of the labor force. 
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Table A3: The effect of self-references on receipt of NIH R01 funding (OLS) 
 (1) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

Woman Scientist 
-0.02** 0.01  0.00  0.01  0.01  
(0.01) (0.01)  (0.02)  (0.01)  (0.02)  

Ln(Publications)  0.11** 0.06** 0.11** 0.06** 0.10** 0.07** 0.10** 0.07** 
 (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) 

Ln(Publications) × Woman 
   0.00 -0.00   -0.00 -0.01 
   (0.01) (0.01)   (0.01) (0.01) 

Fraction Self-References 
     0.44** -0.16† 0.42** -0.22* 
     (0.09) (0.09) (0.09) (0.10) 

Fraction Self-References × Woman        0.10 0.38 
       (0.20) (0.27) 

Scientist Fixed Effects Included Excluded Included Excluded Included Excluded Included Excluded Included 
Mean of Dependent Variable 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
Adjusted R2 0.01 0.05 0.14 0.05 0.14 0.05 0.14 0.05 0.14 
Nb. of Scientists 2,678 2,678 2,673 2,678 2,673 2,678 2,673 2,678 2,673 
Nb. of Scientist-Year Obs. 61,151 61,151 61,146 61,151 61,146 61,151 61,146 61,151 61,146 
Note: Linear Probability Model (OLS) estimates. An observation corresponds to a scientist-year. The dependent variable is an indicator variable equal to one if a scientist is 

awarded an R01 grant from the NIH in the focal year, zero otherwise (it is exceedingly rare for a scientist to receive more than one such grant in a given year). Since scientists 
are only at risk of receiving an R01 grant if they are principal investigators in academic positions, we restrict the sample to scientists who begin their career in academia, 
from the start of their independent career, with the last observation corresponding to the year of exit from science, retirement, death, or 2015, whichever comes earlier. The 
time-varying covariates are lagged one year. The specifications also include degree indicator variables (MD and MD/PhD, PhD is the omitted category), scientist career age 
and its square, a full suite of calendar year indicator variables, and eight indicator variables corresponding to years of highest degree (in five year increments). Standard 
errors in parentheses, triple clustered at the investigator level. † p < 0.10, * p < 0.05, ** p < 0.01. 
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Table A4: The effect of self-references on the flow of publications (OLS) 
 (1) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

Woman Scientist 
-0.24** -0.05**  0.10**  -0.05**  0.14**  
(0.02) (0.01)  (0.04)  (0.01)  (0.04)  

Ln(Publications)  0.60** 0.31** 0.62** 0.32** 0.56** 0.32** 0.58** 0.33** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Ln(Publications) × Woman    -0.05** -0.04**   -0.08** -0.06** 
   (0.01) (0.01)   (0.02) (0.02) 

Fraction Self-References 
     1.43** -0.16 1.14** -0.37 
     (0.22) (0.26) (0.24) (0.29) 

Fraction Self-References × Woman        1.47** 1.09† 
       (0.52) (0.60) 

Scientist Fixed Effects Included Excluded Included Excluded Included Excluded Included Excluded Included 
Mean of Dependent Variable 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
Adjusted R2 0.05 0.33 0.46 0.33 0.46 0.33 0.46 0.33 0.46 
Nb. of Scientists 3,667 3,667 3,661 3,667 3,661 3,667 3,661 3,667 3,661 
Nb. of Scientist-Year Obs. 94,315 94,315 94,308 94,315 94,308 94,315 94,308 94,315 94,308 

Note: OLS estimates. The dependent variable is the flow of original articles published in year t by the focal scientist, transformed using the inverse hyperbolic sine transformation, 
so that coefficient estimates are approximately interpretable as elasticities. An observation corresponds to a scientist-year, with the first observation being the year following 
the receipt of highest degree, and the last observation the year of exit from science, retirement, death or 2015, whichever comes earlier. The time-varying covariates are 
lagged one year. The specifications also include degree indicator variables (MD and MD/PhD, PhD is the omitted category), scientist career age and its square, a full suite of 
calendar year indicator variables, and eight indicator variables corresponding to years of highest degree (in five year increments). Standard errors in parentheses, triple 
clustered at the investigator level. † p < 0.10, * p < 0.05, ** p < 0.01. 




