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1 Introduction

The Frontiers of Business Cycle Research volume (Cooley, 1995) synthesized a body of fron-

tier research that ushered in a new era in business cycle research. The research agenda that

it laid out had several defining characteristics. One was the insistence on general equilib-

rium. A second was the insistence on micro-foundations, i.e., an explicit delineation of which

parameters were primitives of preferences and technology and hence invariant to policy. The

third was the insistence on studying business cycle fluctuations as deviations from trend

growth. All three of these criteria remain strongly reflected in business cycle research today.

But the Cooley volume was not just about the methodology of studying business cycles;

it also employed this methodology to address substantive issues. Given that labor market

fluctuations have been a long-standing focus within the business cycle literature, it is not

surprising that several of the chapters in the Cooley volume focused on aspects of labor

market fluctuations. The goal was simple: heeding the three “axioms” described above, to

deliver a version of the growth model that could account for the magnitude of employment

fluctuations.

Our goal in this paper is to offer an updated perspective on modelling labor market

fluctuations. The need for an update reflects two important developments since the writing

of the Cooley volume, one methodological and one substantive.

A key methodological development in macroeconomic research more broadly over the last

twenty-five years concerns the threshold for what it means for a model to have adequate micro

foundations. Recent research in almost all areas of macroeconomic stresses the desire to build

models that can not only address aggregate time series, but also the rich cross-sectional and

panel variation found in large micro data sets.1 This trend is witnessed in studies that focus

1As Krueger et al. (2010) wrote in their introduction to the special issue of the Review of Economic Dynam-

ics, “. . . restricting heterogeneous agent macro models so that the equilibrium distributions of hours worked,

income, consumption and wealth line up well with their empirical counterparts is crucial for a convincing

policy analysis.”
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on aggregate consumption, aggregate investment, and price-setting.2

The second and substantively important change since the publication of the Cooley vol-

ume has been the development of general equilibrium models featuring labor market frictions.

These allow us to rigorously connect theory with data on unemployment.

At the time of the Cooley volume, the leading account of labor market fluctuations

was Hansen (1985). Notably, Hansen’s model only distinguished between the employed and

the non-employed; it made no attempt to distinguish the two different categories of non-

employment–unemployment and out of the labor force. And although his model featured

individuals moving between employment and non-employment, it made no attempt to connect

these flows to the flows in micro-data. Our goal in this paper is to understand aggregate

movements in employment, unemployment, and non-participation, while at the same time

accounting for the underlying movements of individuals between these three labor market

states.

In the first part of this paper, we document the key features of the relevant data. In

particular, we use the Current Population Survey (CPS) data to document both the average

values for gross worker flows among labor market states as well the cyclical fluctuations in

these gross flows.

The second part of the paper presents a version of the growth model with heterogeneous

agents that in steady state matches both the aggregate distribution of workers across the three

labor market states and the average flows of workers between these states. This model can

be understood as bringing labor market frictions as modeled in the island economy of Lucas

and Prescott (1974) into the heterogeneous agent-incomplete markets model of Chang and

Kim (2006). The Lucas-Prescott formulation amounts to treating the frictions as exogenous;

in the conclusion of our paper we emphasize that it would be valuable to study how the

2See for example, Kaplan and Violante (2014) for work on consumption, Thomas (2002) and Veracierto

(2002) for investment, and Golosov and Lucas (2007) for prices.
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frictions are determined.3

Having developed a model that can account for the behavior of gross worker flows in steady

state, we then subject this economy to shocks to assess its implications for movements in both

the levels of employment, unemployment, and non-participation and the movements in gross

worker flows among these three states. Our first exercise is a traditional Real Business Cycle

(RBC) exercise in which we consider aggregate shocks to Total Factor Productivity (TFP)

as the sole aggregate shock. A striking result emerges: Even if TFP shocks are sufficiently

large to generate employment fluctuations like those found in the data, they have strongly

counterfactual predictions for not only for the movements in gross worker flows but also for

movements in the aggregate stocks of unemployment and participation.

Our second exercise considers shocks to both aggregate TFP and the model parameters

that characterize frictions in the labor market, which consist of three job-finding rates and

a job-separation rate. Our main finding is that empirically reasonable values for shocks to

these frictional parameters in addition to shocks to aggregate TFP provide a good account

not only for the cyclical movements in employment, unemployment, and non-participation

but also for the cyclical movements in gross worker flows.

A decomposition exercise shows that shocks to the frictional parameters play a dominant

role. In the traditional RBC literature, employment fluctuations were generated as labor

supply responses to TFP-induced changes in prices. In our model, this mechanism is present

but plays a secondary role. This has important implications for our understanding of labor

market fluctuations. If TFP shocks are the dominant primitive source of labor market fluctu-

ations, it is essential to include a channel through which they impact labor market frictions.

More generally, our analysis shows that understanding the movements in frictions is central

to understanding labor market fluctuations.

Our analysis in this paper draws heavily on the material in Krusell et al. (2017). But

3Alvarez and Veracierto (2000) and Alvarez and Shimer (2011) also study the Lucas-Prescott island econ-

omy.
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importantly, whereas the analysis in Krusell et al. (2017) was partial equilibrium, taking all

prices as constant over time, our analysis here is general equilibrium in the sense that we

have prices responding endogenously to the aggregate shocks.4 These general-equilibrium

interactions are quantitatively significant and have an important effect on our conclusions.

Second, Krusell et al. (2017) did not study TFP shocks, which are an important part of the

focus here. Third, to simplify exposition, the model studied here is somewhat simpler than

the one in Krusell et al. (2017): it abstracts from the presence of the unemployment insurance

(UI). While the presence of a UI system does have a small impact on some quantitative aspects

of the model, modeling UI in an empirically reasonable way increases the size of the model’s

state space and our results here suggest that the quantitative effects are not of first order.

We also want to highlight the method that we use to solve for the business cycle properties

of our model. Whereas previous papers in the heterogeneous agent business cycle literature

have largely relied on the method of Krusell and Smith (1998), we compute business cycle

properties by adopting the method developed by Boppart et al. (2018). This method de-

livers equilibria for models with aggregate shocks based on perfect-foresight equilibria given

unexpected shocks away from steady state: so-called MIT shocks. The latter are straightfor-

ward to compute even in models that are highly nonlinear on the microeconomic level, hence

allowing heterogeneous agent general equilibrium models with aggregate fluctuations to be

coded up and solved rather handily. The benefit is particularly large for a relatively complex

economy like ours.5 An important contribution of the original Cooley volume was to provide

researchers with a tool-kit, and we think that (the application of) this new computational

method is a valuable innovation in this regard.

Our analysis builds on four strands of literature. The first is a large literature on gross

4An earlier working paper version (Krusell et al., 2012) also contains general-equilibrium analysis, although

there are various differences in the model setting.
5The general equilibrium model of Krusell et al. (2012) is computed by directly extending Krusell and

Smith’s (1998) computational method.
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worker flows.6 A second is the literature on individual labor supply in the presence of

frictions. Ham (1982) rigorously considered unemployment in the context of optimal labor

supply, and argued that unemployment spells should not be interpreted as a component of

optimal labor supply responses. Our model is consistent with this finding; it features both an

operative labor supply margin and unemployment, and unemployment in our model reflects a

departure from desired labor supply. Low et al. (2010) is also concerned with labor supply in

the presence of frictions. But whereas we focus on business cycle fluctuations, their analysis

focused on life cycle variation.

A third strand is a recent literature that extends business cycle models of employment

and unemployment to consider movements in participation.7 The key distinguishing feature

of our analysis relative to these is that we study gross worker flows and not just labor market

stocks.

The fourth strand of literature is heterogeneous agent models of aggregate labor supply, as

in Krusell and Smith (1998, Appendix B) and Chang and Kim (2006). Our model contributes

to this literature by introducing a labor market with realistic frictions.

An outline of the paper follows. In the next section we document the key business cycle

facts for gross worker flows among the three labor market states for the US over the period

1978–2012. Section 3 describes our theoretical framework and Section 4 calibrates the model

so that in steady state it matches both the distribution of workers across labor market states

as well as the average flows of workers between states. Section 5 carries out our main business

cycle exercises and shows that our model can account for the key facts laid out in Section 2.

Section 6 presents the decomposition results to assess the relative importance of the three

different shocks in our model. Section 7 documents the importance of general equilibrium

6This includes, for example, Abowd and Zellner (1985), Poterba and Summers (1986), Blanchard and

Diamond (1990), Davis and Haltiwanger (1992), Fujita and Ramey (2009), Shimer (2012), and Elsby et al.

(2015).
7These include Tripier (2004), Veracierto (2008), Christiano et al. (2010), Gaĺı et al. (2011), Ebell (2011),

Haefke and Reiter (2011), and Shimer (2013).
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effects. Section 8 concludes.

2 Worker Flows over the Business Cycle

In this section, we document the business-cycle facts for gross worker flows. The information

reported in this section is reproduced from Krusell et al. (2017), and we refer the reader to

that paper for more detail on the construction of the data and related details. Our data

source is the monthly CPS microdata for the period 1978–2012.8

We let E, U , and N denote the levels of employment, unemployment and not in the

labor force, respectively, and let Y denote the level of real GDP. We use u to denote the

unemployment rate (U/(E+U)) and lfpr to denote the labor-force participation rate ((E+

U)/(E + U +N)). Table 1 presents summary statistics from the data for the business-cycle

properties for the labor-market stocks.9

Table 1

Cyclical Properties of Stocks: 1978Q1-2012Q3

u lfpr E

std(x) 0.1170 0.0026 0.0099

corrcoef(x, Y ) −0.84 0.21 0.83

corrcoef(x, x−1) 0.93 0.69 0.92

Source: Krusell et al. (2017)

Table 1 confirms some well known facts: unemployment has the highest volatility and

is strongly countercyclical; employment is the second most volatile and is strongly procycli-

cal; and the labor force participation rate is the least volatile and is modestly procyclical.

Note that because we measure percent deviations from trend, the much higher volatility of

unemployment at least partly reflects the fact that the stock of unemployed workers is more

than an order of magnitude smaller than the stock of employed workers. All three series are

highly autocorrelated, but the participation rate displays the smallest autocorrelation. We

8We restrict attention to the period 1978Q1-2012Q3 since that is the period for which we have consistent

data on adjusted gross flows.
9The cyclical components are isolated using an HP filter with the smoothing parameter of 1600, applied to

quarterly averages of monthly data. In addition to Krusell et al. (2017), see Blanchard and Diamond (1990),

Fujita and Ramey (2009), Shimer (2012), and Elsby et al. (2015) for the algorithms of computing gross flows.
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show below that the relatively lower level of fluctuations in the participation rate should not

be interpreted to suggest that movements into and out of the labor force are not quantita-

tively important. A key point is that changes in the labor force participation rate reflect net

rather than gross flows; small changes in net flows are consistent with large changes in gross

flows if the gross flows are partly offsetting.

Next we turn to the behavior of gross flows. We focus on the behavior of the transition

rates between the three labor market states and, accordingly, define fij to be the number of

workers that move from state i in the previous period to state j in the current period, divided

by the number of workers in state i in the previous period. An important consideration when

studying gross flows is the possibility of classification error. Whereas classification error

might largely average out when computing labor market stocks, this is not the case with

the gross flows between labor market states. Earlier work on this issue concludes that these

errors are substantial, especially for flows between unemployment and non-participation.10

Following the approach in Krusell et al. (2017) we control for classification error us-

ing two different approaches. The first approach adjusts the gross flows data using Abowd

and Zellner’s (1985) estimates of misclassification probabilities. This method uses infor-

mation from the CPS reinterview surveys. The second approach adjusts the gross flows

using the “deNUN ification” procedure introduced by Elsby et al. (2015). This reclassifica-

tion procedure focuses on high frequency reversals of transitions between unemployment and

non-participation. For example, if an individual’s survey responses produce the sequence

NUN , this is recoded as NNN . Importantly, the deNUN ification procedure only addresses

potential misclassification in the context of these flows.

10See, for example, Abowd and Zellner (1985), Poterba and Summers (1986), Chua and Fuller (1987), and

Elsby et al. (2015).
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Table 2

Gross Worker Flows 1978Q1–2012Q3

Unadjusted Data Abowd-Zellner Correction DeNUN ified Data

FROM TO FROM TO FROM TO

E U N E U N E U N

E 0.957 0.015 0.028 E 0.972 0.014 0.014 E 0.957 0.015 0.028

U 0.254 0.535 0.211 U 0.228 0.637 0.135 U 0.263 0.591 0.146

N 0.047 0.028 0.925 N 0.022 0.021 0.957 N 0.048 0.019 0.933

Source: Krusell et al. (2017)

Table 2 presents the unadjusted average values of monthly transition rates for the 1978Q1–

2012Q3 period, as well as the values based on each of the two adjustment procedures that

we use.11 Comparing the first and second panels we see that applying the Abowd-Zellner

correction increases the persistence for each state, i.e., the three diagonal terms. Although all

entries are affected by the Abowd-Zellner adjustment, the largest absolute impact is on fUU

and fUN , which is consistent with the notion that the single most common misclassification

is between U and N . (The implied adjustments for fNU and fNN are much smaller in

magnitude because the stock of workers in N is much larger than the stock of workers in U .)

By design, the “deNUN ification” procedure has no impact on the flows for individuals in

the employment state, but all of the other flows are affected by the reclassification of workers

between U and N . Interestingly, both procedures have a similar impact on the values of fUN

and fNU .

In what follows we use the Abowd-Zellner corrected measures as our benchmark values

for calibration. There are two reasons for this. First, the AZ adjustment is broader in scope,

since it also directly affects transitions involving employment. For those components that

are directly affected by both adjustments, the extent of the adjustment is similar. Second,

the AZ adjustment is much less demanding to implement, and so will likely be used much

more heavily. Nonetheless, in Appendix D we report results from an exercise in which we

11We do not make any correction for time aggregation. Because our model will allow for some time aggre-

gation, the statistics in Table 2 are the relevant ones. In any case, time aggregation corrections do not alter

any of the qualitative patterns that we comment on below. Shimer (2013) and Elsby et al. (2015) examine

these flows using the time-aggregation corrected data and find the same cyclical properties as we do.
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use the statistics from the deNUN ification adjustment to calibrate the model and find that

the results are broadly similar. Because the two procedures differ and there is likely to be

some noise when computing changes in gross flows over the business cycle, we will refer to

both measures when evaluating the model’s ability to account for cyclical fluctuations in the

gross flows.

Next we turn to the cyclical behavior of the gross flows. Table 3 presents summary statis-

tics for the business-cycle properties of the gross flows based on unadjusted data, Abowd-

Zellner adjusted data, and deNUN ified data. We produce quarterly data by computing the

quarterly average of the monthly series, (i.e., we average the three monthly values for each

fij within a quarter), and then log and HP-filter each quarterly series with the smoothing

parameter of 1600.

Table 3

Cyclical Properties of Gross Worker Flows 1978Q1–2012Q3

Unadjusted Data

fEU fEN fUE fUN fNE fNU
std(x) 0.075 0.033 0.077 0.053 0.041 0.064

corrcoef(x, Y ) −0.70 0.35 0.79 0.66 0.61 −0.70

corrcoef(x, x−1) 0.69 0.22 0.82 0.71 0.52 0.78

Abowd-Zellner (AZ) Correction

fEU fEN fUE fUN fNE fNU
std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

DeNUN ified Data

fEU fEN fUE fUN fNE fNU
std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

Source: Krusell et al. (2017)

In Krusell et al. (2017) we noted some significant features from this table that we think

are important to repeat here. First, the flows of individuals between participation and non-

participation display large cyclical fluctuations. For example, looking at the AZ corrected

flows, the volatility in the flows that involve out of the labor force are all similar in magnitude
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to the volatility of the flows between E and U . That is, the gross flows data do not suggest

that movements between participation and non-participation are of second order importance.

Second, some of the qualitative patterns in Table 3 do not seem intuitive. For example,

we previously showed that the participation rate is modestly procyclical. This might lead

one to intuitively expect that the two flows out of participation (fEN and fUN ) would be

countercyclical. But Table 3 indicates that both of these flows are procyclical. Related to

this, it is often suggested as intuitive that fUN would be countercyclical, on the grounds

that unemployed workers are more likely to become discouraged and leave the labor force

during recessions. Importantly, the behavior of fUN is not inconsistent with the fact that

the stock of discouraged workers is countercyclical: the higher stock of unemployed workers

in recessions can lead to a higher stock of discouraged workers even with a lower transition

rate.

3 A Model of Gross Worker Flows in Steady State

Motivated by the desire to connect with the previous facts, we build a model of worker flows

in general equilibrium. We follow the now standard approach in the business cycle literature:

first we develop a model that is consistent with steady state or average behavior, and then

we subject it to shocks to study business cycle fluctuations. The objective of this section is

to accomplish the first goal: to present a model whose steady state equilibrium can account

for the salient facts about the average behavior of gross worker flows that we presented in

the previous section.

Our model effectively merges a version of the Bewley-Huggett-Aiyagari heterogeneous-

agent incomplete markets model with a search model in the spirit of the Lucas-Prescott

island economy.12 A large part of the model overlaps with Krusell et al. (2017), with the key

distinction being that the current presentation is in general equilibrium whereas Krusell et

12Mortensen and Pissarides (1994) is an important contribution. See Rogerson et al. (2005) for an overview

and additional references.
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al. (2017) treated prices and government transfers as exogenous. However, some elements are

simplified compared to the Krusell et al. (2017) model, favoring transparency over realism.

The economy is populated by a unit mass of ex-ante identical individuals, each with

preferences given by

Et

∞∑
t=0

βt[log(ct)− αet − γst]

where ct ≥ 0 is consumption in period t, et ∈ {0, 1} is employment status in period t, and

st ∈ {0, 1} is a discrete variable that reflects whether the individual engages in active job

search in period t. We will refer to st = 1 as reflecting active search and st = 0 as reflecting

passive search. The parameters α > 0 and γ > 0 are the disutilities of work and active

search, respectively, and 0 < β < 1 is the discount factor.

A notable feature of the gross worker flows data is that the flow of individuals between

U and N remains substantial even after attempting to clean the data of spurious moves.

Intuitively, generating these flows requires shocks that lead to transitory fluctuations in an

individual’s desire to seek work. These shocks could potentially take a few different forms.

We choose to introduce purely transitory shocks to γ, the disutility of active search. In

particular, in our calibrated model we assume that draws are iid over time and distributed

according to a five-point uniform distribution with mean γ̄ and support [γmin, γmax].

A second key source of exogenous idiosyncratic heterogeneity is that individuals face

idiosyncratic shocks to their productivity in market work. We denote this idiosyncratic

productivity by zt and assume it follows an AR(1) process in logs:

log zt+1 = ρz log zt + εt+1,

where the innovation εt is a mean zero, normally distributed random variable with standard

deviation σε.

In reality, persistent differences in the desire to work might also reflect different valuations

of non-market time, which in our framework would be captured by differences in α, the

12



disutility of market work. We abstract from this dimension of heterogeneity in order to

economize on the dimension of the state space. From a conceptual perspective, what is key

in our analysis is that cross-sectional heterogeneity in z induces cross-sectional heterogeneity

in the desire to work. This heterogeneity could be generated by heterogeneity in either the

reward to market work or the costs of market work, and we do not think that the underlying

source is important for our main results.13

To capture labor market frictions, we assume an island structure in the spirit of Lucas and

Prescott (1974). We assume that there are two islands, one of which we label the production

island, and the other of which we label as the leisure island. An individual can be on the

production island or on the leisure island, whereas all firms operate on the production island.

As in Krusell et al. (2017), this structure is sufficient for modeling flows into and out of

employment.

To allow for job-to-job flows, we additionally assume that the production island consists

of a continuum of districts. The significance of a district is that each individual has a time-

invariant idiosyncratic productivity component that is district specific. We will denote this

component by qij for individual i in district j. If an individual with idiosyncratic productivity

zit works in district j, they provide zitqij efficiency units of labor. For each individual the

qij are drawn from a lognormal distribution with mean 0 and standard deviation σq; when

an individual receives an opportunity to work in a new district he or she will observe the

realization of the qij for that district. Realizations are iid across individuals and across

districts.

Each district j possesses a district level production function:

Yjt = ZKθ
jtL

1−θ
jt ,

where Kjt is district-level input of capital services, Ljt is district-level input of labor services

13Because the two sources of heterogeneity differ in terms of implications for productivity in market work,

the source of heterogeneity can matter for the cyclical behavior of wages or productivity.
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in efficiency units, Z is the aggregate TFP level (common to all districts and constant over

time in the steady state model), and 0 < θ < 1. Output is homogeneous across districts and

can be used either as consumption or investment, and capital depreciates at rate δ > 0.

Capital is freely mobile across districts, but movement of labor across islands and districts

is subject to frictions. The labor market frictions are captured with four parameters—

λu, λn, λe, and φ. The interpretation of these parameters is described below.

At the beginning of each period, a given individual finds themselves on one of the two

islands, and if on the production island, in one of the districts. At this point the individual

realizes new draws for their idiosyncratic productivity zit and search cost γit.

Consider first the situation faced by an individual who begins the period on the leisure

island. This individual makes a discrete choice over search effort. An individual who chooses

active search will move to the production island at the beginning of next period with proba-

bility λu, in a randomly assigned district. An individual who chooses to search passively will

move to the production island at the beginning of next period with probability λn, again to

a randomly assigned district. The subscripts u and n are chosen because the search intensity

choice will determine how workers who begin a period on the leisure island are classified

between unemployment and non-participation. If a worker who begins the period on the

leisure island does not get relocated to the production island at the beginning of next period,

they once again begin the following period on the leisure island.

Now consider an individual who begins the period in a particular district on the pro-

duction island. We assume that one of three mutually exclusive events can occur. With

probability 1 − φ − λe, nothing new happens and the individual remains on the production

island in the same district. With probability λe, the individual gets the opportunity to move

to a different randomly drawn district j′ and observes the value of qij′ . In equilibrium, the

worker will move whenever qij′ is larger than qij .

With probability φ, the individual is separated from their district on the production

14



island. But in the event that this happens, with probability λu the individual immediately

gets relocated to another randomly drawn district on the production island.14

And with probability 1−λu the individual is relocated to the leisure island and will then

be in the same position as an individual who began the period on the leisure island. Once the

randomness associated with these three potential events has been resolved, any individual

who remains on the production island has the option to move to the leisure island. This

voluntary movement to the leisure island typically occurs either when zit becomes small or

when the individual has accumulated a large amount of assets.

We are now in a position to describe more fully the sequence of events that unfold during

a given time period. We assume that at the beginning of each period, each individual

observes the new realization of their idiosyncratic shocks zit and γit before making any

decisions. After the realization of new zit values, individuals who began on the production

island (including those who newly arrived after being successful in search the previous period)

see the realization of their frictional shocks and make labor supply (i.e., mobility) decisions.

Individuals on the leisure island make search effort decisions. Then all individuals make

consumption/savings decisions. The random outcomes of search for those on the leisure

island are realized after the consumption/saving decision has been made.

Within a district we assume that the market for labor is competitive. Because of restric-

tions on labor mobility, this could lead to differences in the wage rate per efficiency unit

of labor across districts. However, because we assume that capital is freely mobile across

districts, it follows that the marginal product of capital will be equalized. With each district

using the same constant returns to scale production function, this implies that the ratio of

capital to efficiency units of labor will be the same across all districts, which in turn implies

that the marginal product of an efficiency unit of labor will also be equalized. For this reason

there will be a single wage rate per efficiency unit of labor.

14This captures the notion that employed individuals may have a network that makes it easier for them to

locate alternative employment. It also allows for job to job moves that involve wage losses.
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In connecting with the data, we assume that individuals do not change jobs within a

district, given that in equilibrium there is no gain from switching jobs within a district.15

Therefore, a job-to-job transition occurs only when the individual receives an opportunity to

move to another district and the new draw of qij is better than the current one.

For the capital market, we assume a market structure that is standard in much of the

incomplete markets literature. There are no markets for insuring idiosyncratic risk, and

the individual cannot borrow, but can self-insure by accumulating capital. We normalize

the price of output to equal unity in each period and let r and w denote the rental rate of

capital and the wage per efficiency unit of labor in steady state. To capture the presence of

various transfer programs that implicitly provide some insurance, we assume that there is a

proportional tax τ on labor earnings and a lump sum transfer T . Combining these features,

the individual’s period budget equation is given by:

ct + kt+1 = (1 + r − δ)kt + (1− τ)wztqtet + T,

where, as above, et ∈ {0, 1} is the employment indicator.16

Textbook treatments of labor supply assume that prices (here, w and r) are the key

market conditions that an individual faces. Our analysis views the four frictional parameters

as additional market conditions that individuals take as given. We collect all of the mar-

ket conditions variables into a vector, Λ ≡ (w, r, λu, λn, λe, φ). Importantly, prices will be

endogenously determined in equilibrium, but the four frictional parameters will be taken as

exogenous.

We represent equilibrium for this economy recursively. We define value functions at the

point where all new shocks have been realized, so that the individual knows the current value

15If we assumed an infinitesimal cost of changing jobs then workers would strictly prefer not to change jobs

within a district, and the impact on moving across districts would not be affected to first order.
16One difference from the specification in Krusell et al. (2017) is that here we abstract from the UI system.

This is done largely to facilitate exposition as this increases the size of the state space and introduces quite a

bit of additional notation. The presence of an empirically reasonable UI system does affect some of the model

properties.
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of z, the current value of γ, whether they have an employment opportunity and if so the value

of the match quality, and the capital brought into the period. Because we focus on a steady

state equilibrium in this section, for now we suppress the dependence of value functions on

the variables that describe market conditions, as these will be constant in steady state.

Define U(k, z, γ) to be the optimal value for an individual who is on the leisure island and

chooses to search actively this period, and N(k, z, γ) to be the optimal value for an individual

who is on the leisure island and chooses to search passively this period. The optimal value

for an individual on the leisure island, prior to deciding on search activity, which we denote

by J(k, z, γ), will just be the maximum of these two values:

J(k, z, γ) = max{U(k, z, γ), N(k, z, γ)}. (1)

Denote the value from working on the production island for an individual with assets k,

idiosyncratic productivity z, and idiosyncratic district-specific match quality q by W (k, z, q).

Note that the value of γ does not appear as an argument of this value function since search

costs are irrelevant for employed individuals.

Denote the optimal value for an individual who is on the production island, with individual

state vector (k, z, q, γ) as V (k, z, q, γ). This value reflects the optimal choice between working

and not working, i.e., returning to the leisure island:

V (k, z, q, γ) = max{W (k, z, q), J(k, z, γ)}. (2)

With this notation presented we can now write down each of the individual Bellman

equations. For the value of active search we have:

U(k, z, γ) = max
c≥0,k′≥0

{ln c− γ + βEz′,q′,γ′ [λuV (k′, z′, q′, γ′) + (1− λu)J(k′, z′, γ′)]} (3)

subject to

c+ k′ = (1 + r − δ)k + T.
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For the value of passive search we have:

N(k, z, γ) = max
c≥0,k′≥0

{ln c+ βEz′,q′,γ′ [λnV (k′, z′, q′, γ′) + (1− λn)J(k′, z′, γ′)]} (4)

subject to

c+ k′ = (1 + r − δ)k + T.

Both of these Bellman equations are very easy to follow as the right hand sides reflect the

two possible outcomes for next period depending upon whether search is successful or not.

The Bellman equation for W (k, z, q) is a bit more complicated and reads:

W (k, z, q)

= max
c≥0,k′≥0

{ln c− α+ βEz′,q′,γ′ [(1− φ− λe)V (k′, z′, q, γ′) + λe{V (k′, z′,max{q, q′}, γ′)

+φ{(1− λu)J(k′, z′, γ′) + λuV (k′, z′, q′, γ′}]}
(5)

subject to

c+ k′ = (1 + r − δ)k + (1− τ)wzq + T.

Note that the right hand side of the Bellman equation reflects the three different events

that may happen to this worker. If the worker is not displaced and does not receive a new

opportunity in a different district, then next period they will decide between working in the

same district and leaving for the leisure island. If the individual is not displaced and receives

a draw from another district, then they will move to the new district if and only if the new

district offers a higher value of q, and at that point will face the decision of working versus

moving to the leisure island. The final possibility is that the individual receives a separation

shock. With probability λu they immediately move to another randomly drawn district, but

with probability 1− λu they move to the leisure island.

Let µ(Ie, k, z, q, γ) denote the measure of individuals across idiosyncratic states at the

beginning of the period, where Ie is an indicator function equalling 1 if the individual begins

on the production island and 0 otherwise. A steady state equilibrium is a list of value functions

(U,N, V, J,W ), decision rules c, k′, s, e, a measure µ∗, aggregates (K∗, L∗, T ∗) and prices

(r∗, w∗) such that:
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(1) The value functions satisfy (1), (2), (3), (4), and (5) and the decision rules are the

corresponding optimal decisions.

(2) Given µ∗, optimal household decisions imply aggregate outcomes for supply of capital

and labor of K∗ and L∗.

(3) K∗ and L∗ are solutions to:

max
K,L

ZKθL1−θ − r∗K − w∗L.

(4) The government budget constraint is satisfied:

T ∗ = τw∗
∫
ei=1

ziqidi.

(5) Optimal decisions by workers starting from the distribution µ∗ results in the same distri-

bution over individual states next period.

We note that condition (3) implies that prices will satisfy:

r∗ = Z

(
K∗

L∗

)θ−1
and

w∗ = Z

(
K∗

L∗

)θ
.

The government budget equation implies that all government revenues are rebated back to

households as a lump sum transfer. Because we have a one good model, there is no distinction

between the government transferring purchasing power to households and the government

providing consumption directly to households. But some government spending, such as

national defense, might best be viewed as spending that does not yield utility to households.17

In Appendix C we consider a specification in which a fixed amount of government revenue is

spent on activities that do not contribute to individual utility and find that it has virtually

no effect on our findings.

17Or, equivalently for our purposes, it could be viewed as providing utility that is separable from the utility

from private consumption.
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4 Steady State Calibration

This section describes our procedure for calibrating the parameters of our model to match

steady state observations. Because data on labor-market transitions are available monthly,

we set the length of a period to be one month. Although we solve the model at monthly

frequency, when we study business cycles we will generate data at quarterly frequency by

computing three month averages for the relevant statistics.

Several parameters are set without solving the model. We set Z = 1 as this reflects a

choice of units. We set θ, the capital share in the production function, equal to 0.30. We

calibrate the idiosyncratic shock process z to estimates of idiosyncratic wage shocks, and so

assume an AR(1) process, with the monthly persistence parameter ρz = 0.996 and the stan-

dard deviation of shocks σz = 0.096. Aggregated to an annual level, this would correspond

to persistence of 0.955 and a standard deviation of 0.20, which we take as representative

values from this literature.18 In line with various studies, we set τ = 0.30.19 The lump-sum

transfer T will be determined by the requirement that the government budget balances in

steady-state equilibrium.

The remaining parameters are chosen so that the steady-state equilibrium matches specific

targets. Although this amounts to a large set of nonlinear equations which is solved jointly,

we think it is informative to describe the calibration as a few distinct steps. Because this part

of the calibration mirrors that in Krusell et al. (2017) we refer the reader there for additional

discussion.

We begin with the five parameters α, γ̄, φ, λu, and λn. We fix the value of γ̄ relative to

the value of α based on measures of search versus work time. Using data from the American

Time Use Survey (ATUS), Mukoyama et al. (2018) report that unemployed workers devote

18See for example, estimates in Card (1994), Floden and Linde (2001), and French (2005). We convert the

annual value into the monthly value using the approximation method of Chang and Kim (2006).
19Following the work of Mendoza et al. (1994) there are several papers which produce estimates of the

average effective tax rate on labor income across countries. Minor variations in methods across these studies

produce small differences in the estimates, but 0.30 is representative of these estimates.
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approximately 3.5 hours per week to search on average, whereas employed individuals work

approximately 40 hours. Based on this we set γ̄ = 3.5
40 α. The values of α, φ, λu, and λn are

set to match the labor force participation rate (0.66), the unemployment rate (0.068), the

E-to-U flow rate (0.014), and the N -to-E flow rate (0.022).20

The values of λe and σq are set to match two statistics related to job-to-job transitions.

The first is a job-to-job transition rate of 2.2% per month (from the CPS, using the tabulation

of Fallick and Fleischman (2004) for 1994Q1 to 2012Q3), and the second is the average wage

gain of 3.3% (from Tjaden and Wellschmied (2014)) for an individual that experiences a

job-to-job transition.

The final preference parameter to be determined is the dispersion of the shock to γ:

ζγ ≡ γ̄−γmin = γmax− γ̄, which governs the variation in the disutility associated with active

search. As noted earlier, we set ζγ so as to match the flow from U to N .

We set the depreciation rate to correspond to an annual rate of 0.067. β is set so that

1 + r − δ is equal to 1.00327 (1.04 when measured annually). This leads us to β = 0.9946.

In the steady state equilibrium we have w = 2.48 and T = 1.36.

Table 4

Calibrated Parameter Values

β ρz σz α λu λn λe φ σq γ̄ γmin γmax
0.9946 0.996 0.096 0.478 0.276 0.157 0.079 0.0235 0.0375 0.042 0.015 0.068

Table 5 shows the implications of our calibrated model for steady state gross worker

flows. For completeness we include the corresponding values from the AZ-Adjusted data

with bootstrapped confidence intervals. The computational method for the steady state

model is detailed in Appendix A.

20All these values are averages from 1978Q1 to 2012Q3.
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Table 5

Gross Worker Flows in the Data and the Model

AZ-Adjusted Data Model

FROM TO FROM TO

E U N E U N

E 0.972 0.014 0.014 E 0.968 0.014 0.018

95% CI (0.970, 0.974) (0.013, 0.015) (0.012, 0.015)

U 0.228 0.637 0.135 U 0.270 0.618 0.111

95% CI (0.211, 0.246) (0.616, 0.657) (0.119, 0.152)

N 0.022 0.021 0.957 N 0.022 0.025 0.953

95% CI (0.019, 0.025) (0.018, 0.023) (0.954, 0.960)

While our calibration does not yield gross flows that lie within each of the 95% confidence

intervals, the match is quite close overall and does not yield any large gaps between the model

and the data.21 It is of particular note that we are able to do a very good job of replicating the

flows between U and N , as this has proven very difficult for past efforts. (See, for example,

Garibaldi and Wasmer (2005) and Krusell et al. (2011).)

5 Business Cycle Analysis

Having developed and calibrated a model that can replicate the salient facts about steady

state or average outcomes, in this section we expose our calibrated economy to aggregate

shocks and examine the properties of business cycles. We proceed in two steps. In the first

subsection, we carry out a “traditional” RBC exercise and consider aggregate TFP shocks to

be the sole source of shocks to the economy. In the following subsection, we consider shocks

to the frictional parameters: λu, λn, λe, and φ.

The computation of the model follows the methodology of Boppart et al. (2018). Details

on computation of the business cycle model are included in Appendix B.

21We note that in Krusell et al. (2017) our specification generated values that were all within the 95%

confidence intervals. This reflects the fact that a UI system does have some impact on the model’s implications

for flows. In particular, the UI system helps to increase the persistence of the U state. Nonetheless, given the

close match of the current calibration it seems reasonable to view these impacts as second order.
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5.1 TFP Shocks

In this subsection we subject our economy to aggregate TFP (Z) shocks. Absent labor

market frictions, our model closely resembles the incomplete-market/heterogeneous-agent

model of Chang and Kim (2006) that extended the indivisible-labor model of Hansen (1985)

and Rogerson (1988). Those models were viewed as successfully generating an important

share of aggregate fluctuations in employment via intertemporal substitution effects in the

presence of aggregate TFP shocks.

Importantly, those earlier RBC analyses focused only on movements in aggregate employ-

ment. That is, they abstracted from the division of non-employment into unemployment and

non-participation, and did not study the behavior of gross worker flows. Our model allows

us to study these additional implications.

As is described in Appendix B, the computational method of Boppart et al. (2018) in-

volves choosing the baseline deviation (denoted εZ for the TFP shock) in the deterministic

simulation and the scale parameter (denoted by ωZ) in the stochastic simulation. The com-

bination of these two determines the size (dispersion) of the shock. We choose εZ = 0.01.

The value of ωZ is chosen so that the resulting model generates the same fluctuations in

employment as found in the data when the cyclical component is defined using an HP filter.

This procedure yields ωZ = 2.53, which means that the size of the shocks (σZ in the notation

of Appendix B) corresponds to a standard deviation of 0.0253 in the context of an AR(1)

specification. The persistence parameter (denoted as ρ in Appendix B) is set at 0.983, as in

Krusell et al. (2017).

Because we calibrate the size of the aggregate shocks so as to perfectly match the volatility

of employment fluctuations, we are obviously not addressing the issue of whether our model

can generate the size of employment fluctuations in the data, a question that the earlier papers

in the literature tended to focus on. Rather, the question we ask here is whether, conditional

on being able to explain the size of fluctuations in employment, this framework would pass
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the higher threshold of accounting for the behavior of unemployment, participation, and the

gross flows.

Table 6

Cyclical Behavior of Stocks With Only TFP Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.030 0.0157 0.0099

corrcoef(x, Y ) −0.84 0.21 0.83 0.11 0.96 0.94

corrcoef(x, x−1) 0.93 0.69 0.92 0.52 0.85 0.87

Tables 6 and 7 show the key results, with Table 6 reporting the cyclical behavior of the

stocks and Table 7 reporting the cyclical behavior of the gross flows. We begin by examining

the results in Table 6. As just noted, by design the model accounts for the magnitude of

fluctuations in employment. As the table indicates, it also closely matches the persistence

and cyclicality of employment fluctuations, though neither of these is at all surprising in this

context. Although the model therefore does a good job of accounting for the key features of

cyclical fluctuations in employment, it has decidedly counterfactual predictions with regard

to both unemployment and participation.

Consider first the properties of the participation rate. In the data, the participation rate

fluctuates about one fourth as much as the employment rate. In the model with only TFP

shocks, the participation rate fluctuates more than 1.5 times as much as employment. And

whereas in the data the participation rate is only mildly procyclical, in the model it is as

procyclical as employment.

The behavior of unemployment is also strongly counterfactual. In the data the unem-

ployment rate fluctuates more than employment, but in the model it fluctuates only 30% as

much. And whereas the unemployment rate is strongly countercyclical in the data, in the

model with only TFP shocks it is mildly procyclical. The unemployment rate also exhibits

much less persistence in the model than in the data.

In terms of broad characterizations, the following patterns emerge. In the data, em-

ployment fluctuations are to first approximation balanced out by offsetting fluctuations in
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unemployment with relatively small adjustments in participation. But in the model with only

TFP shocks, employment fluctuations are basically matched by fluctuations in participation,

with minor adjustments in unemployment.

What is the intuition for the qualitative features of fluctuations in this model? The basic

economics behind these patterns is effectively the economics of employment fluctuations in

standard RBC models without frictions. Fluctuations in aggregate TFP lead to fluctuations

in wages, and individuals respond by trying to work more when wages are high. When

aggregate TFP increases, this causes more non-employed individuals to search actively since

this increases their chances of having the opportunity to work. This leads to an immediate

increase in participation and unemployment. Although the shock is persistent, the increase

in unemployment is not persistent because active searchers make their way into employment,

thus leaving unemployment.

This basic mechanism means that participation and employment move closely together

and that relatively transient procyclical movements in unemployment are just a by-product of

workers choosing to coordinate periods of work with periods of high wages. Loosely speaking,

one might view the indivisible labor models of Hansen (1985) and Chang and Kim (2006)

as models of participation, since in those models any individual who desires to be employed

will be employed.
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Table 7

Cyclical Behavior of Gross Worker Flows With Only TFP Shocks

A. AZ-Adjusted Data

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

B. DeNUN ified Data

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

C. Model

fEU fEN fUE fUN fNE fNU

std(x) 0.014 0.108 0.004 0.070 0.059 0.083

corr(x, Y ) 0.88 −0.46 0.49 −0.69 0.43 0.05

corr(x, x−1) 0.68 0.24 0.68 0.66 0.51 0.34

We now turn to the results for the cyclical behavior of gross flows, presented in Table

7. Given that the model fails quite substantially to replicate the key features of the stocks

it must necessarily fail to match some of the patterns in the gross flow data, and Table 7

clearly illustrates this. In particular, four of the six flows have the wrong cyclicality, and in

the model, each of the flows between employment and unemployment move very little relative

to the data. The somewhat surprising and counterfactual procyclical movement in fEU in

the model is driven by the behavior of employed individuals who experience a separation

shock and are displaced from the production island. During good times, these individuals

are more likely to want to return to the production island to take advantage of the higher

wages, making it more likely that they will choose to search actively.

The key message that we take away from this exercise is the following. Although tradi-

tional RBC models are capable of generating empirically reasonable fluctuations in employ-

ment in the presence of aggregate TFP shocks, when one extends these models to include

labor market frictions (so as to distinguish between unemployment and non-participation),

they are not able to capture the richer set of patterns found in the data holding frictional

parameters fixed. That is, labor supply responses due purely to TFP-induced price changes
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cannot account for a richer set of facts about labor market fluctuations. In the next subsec-

tion we consider shocks to the frictional parameters as well and show that in this case we are

able to capture many of the salient features of the data.

5.2 Shocks to Frictions

In the previous section, we considered the case in which a shock to aggregate TFP was the

only shock. Here we generalize this by assuming that each aggregate state corresponds to a

realization for aggregate TFP and the four frictional parameters. That is, Z, λu, λn, λe, and

φ move together.

As in the case with only TFP shocks, the method of Boppart et al. (2018) requires us to

set the baseline log-deviations εZ , ελ, and εφ, as well as the scale parameters for shocks ωZ ,

ωλ, and ωφ. The resulting standard deviation of the shock, denoted by σk, is determined by

σk = ωkεk for k = Z, λ, and φ. We first set εZ = 0.01, ελ = 0.2, and εφ = 0.1. As in the

previous experiment, we assume the persistence parameter ρ = 0.983. Note that Z, λu, λn,

and λe are perfectly positively correlated with each other, whereas φ is perfectly negatively

correlated with the other four. Below, we call the situations with high Z “good times” and

the situations with low Z “bad times”. Expansions occur when a positive shock to Z arrives,

and recessions occur when a negative shock to Z arrives.

The values of the scale parameters ωZ , ωλ, and ωφ are set so that the model statistics

match the following targets. In our model, both the level and fluctuations in fUE closely

mimic the level and fluctuations in λu. For this reason we choose the value of ωλ so that the

fluctuations in fUE in the simulated model match the standard deviation of the fluctuations

in fUE found in US data. This leads to ωλ = 0.21, implying σλ = 0.042. Given values for

the λi’s, which influence the impact of time aggregation on measured fEU , the level and

fluctuations in fEU closely follow the level and fluctuations in φ, so we choose ωφ = 0.30 so

as to match the fluctuations in fEU . This value of ωφ implies σφ = 0.030. We match the

above volatility values based on the Abowd-Zellner correction procedure. Similar to what
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we did in the previous subsection, we set ωZ so as to generate fluctuations in E that match

those in the data. This leads to ωZ = 0.67, implying σZ = 0.0067. Table 8 summarizes the

calibration of the magnitudes of the shocks that we consider.

Table 8

Calibration of Shocks

σZ σλ σφ
0.0067 0.042 0.030

Table 9

Cyclical Behavior of Stocks With TFP and Friction Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.138 0.0024 0.0099

corrcoef(x, Y ) −0.84 0.21 0.83 −0.89 0.78 0.96

corrcoef(x, x−1) 0.93 0.69 0.92 0.89 0.80 0.89

The key results for cyclical fluctuations are presented in Tables 9 and 10, with Table

9 presenting properties of the fluctuations in labor market stocks, and Table 10 reporting

properties of fluctuations in gross worker flows. We begin with the results in Table 9. In sharp

contrast to the results in Table 6 when TFP shocks were the only shocks, we see that the

model with a richer set of shocks is much more successful in capturing the key qualitative and

quantitative patterns in the data. As in the previous subsection, the calibration effectively

ensures that employment fluctuations in the model will closely resemble those in the data.

But importantly, the model is now able to capture the fact that employment fluctuations

are largely offset by fluctuations in unemployment, with small and somewhat less procyclical

movements in the participation rate. To a first order, the model captures not only the

relative magnitudes of fluctuations of the three stocks, but also the cyclicality and persistence

properties.

While the model is largely successful, we do want to highlight two outcomes. First, the

model delivers a correlation between employment and output that is too high relative to the

data. We believe that this is largely an artifact of our assumed shock structure. In particular,

we assume that all of the shocks move together, and we do not have any purely temporary
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shocks that might move output independently of employment. Second, although the model

implies that the participation rate is less correlated with output than is employment, it does

not generate as large a gap between them as is found in the data. As we show in more detail

in the next section, TFP shocks generate a high positive correlation between participation

and output, so this gap is sensitive to the relative importance of TFP shocks. In this exercise

we have imposed that TFP shocks account for all employment fluctuations not accounted for

by our measured changes in frictions. An important area for future work is to consider how

additional shocks and propagation mechanisms might affect the properties of fluctuations.

Although the model does a reasonably good job of empirically accounting for the cyclical

fluctuations of the three labor market stocks, it does not follow that it will necessarily do a

good job of accounting for the cyclical properties of the gross flows. To examine this we now

turn to the results in Table 10.

Table 10

Cyclical Behavior of Gross Worker Flows With TFP and Friction Shocks

A. AZ-Adjusted Data

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

B. DeNUN ified Data

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

C. Model

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.038 0.088 0.031 0.056 0.095

corr(x, Y ) −0.97 0.20 0.96 0.37 0.76 −0.95

corr(x, x−1) 0.81 −0.15 0.80 0.59 0.66 0.87

Overall, the results in Table 10 support the view that the model is not only able to

capture the qualitative properties of fluctuations in gross worker flows, but is also broadly

successful quantitatively. In particular, the model is able to capture the cyclicality of all six

flows, including those that might seem counterintuitive.

To be clear, there are some discrepancies between the data and the model in terms of the
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magnitudes of fluctuations for some of the flows, but on this point we think it is important

to note that the alternative method for correcting for classification error (what we refer to as

“deNUN ification”) implies levels of volatility that are in some cases more in line with those

predicted by our model. In view of this, we feel that less weight should be attached to the

discrepancies in volatility levels in Table 10.

Some of the properties revealed in Table 10 are easily understood. For example, the

procyclicality of fUE is driven by the procyclical shocks to λu, and the countercyclicality

of fEU is mechanically driven by the countercyclical shocks to φ. What is more interesting

is that the model is able to replicate two flows that at first pass appear to be somewhat

counterintuitive. Specifically, fEN and fUN are both procyclical despite the fact that the

stock of workers in N is countercyclical. In what follows we therefore focus on describing the

economics behind these patterns. Our discussion will focus on how these patterns are shaped

by shocks to the frictional parameters, since the model without TFP shocks is not able to

capture the cyclicality of these flows.

As noted in Krusell et al. (2017), the key to understanding the procyclical flow from U to

N lies in understanding the role that time-varying frictions play in shaping the composition of

the unemployment pool. At any point in time, non-employed individuals vary with regard to

their individual state vectors, as denoted by (k, z, γ). Variation in these values leads some to

search actively and some to search passively. This two-way classification creates a boundary

in the space of individual characteristics for these individuals. Importantly, some of these

individuals will be close to the boundary and others will be far away from the boundary. An

individual who chooses to search actively and is far away from the boundary is much less

likely to transition to N than is an individual who chooses to search actively and is close

to the boundary. It follows that the rate at which individuals transition from U to N will

depend on the distribution of distance from the boundary.

With this in mind, we describe two factors that make it more likely that active searchers
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are close to the boundary in good times. Note that there are two ways that an individual

transitions into the U state: either from E or from N . Individuals who enter from N are

inherently more likely to be close to the U −N boundary given that they are coming from

N . In good times, φ is lower, implying fewer separations out of employment, and as a

result, a smaller flow of individuals into U from E. At the same time, because λu is higher,

active searchers are more likely to leave U for E. This implies that a greater fraction of

the individuals in U are individuals that have just recently entered into U . Workers who

have transitioned from N into U are more likely to be very close to the boundary right after

having crossed the boundary.

For these two reasons, the composition of the unemployed pool in good times is more

likely to disproportionately contain individuals who are close to the U − N boundary, and

therefore exhibit a higher propensity for movements back into N . These composition effects

are consistent with the empirical findings of Elsby et al. (2015), who show that in the CPS

data, the composition of the unemployed pool shifts towards more “attached” workers during

recessions, where the most important dimension of attachment is prior employment status.

They show that this mechanism accounts for around 75 percent of the decline in the UN flow

rate during recessions. The importance of composition effects in generating the procyclical

movement in fUN underscores the importance of modeling heterogeneity in order to account

for the empirical patterns in gross worker flows.22

The procyclicality of fEN reflects the option value of employment in a frictional labor

market. When it is relatively difficult to find employment, an employed individual may

be reluctant to move out of employment even if it is optimal not to work from a static

perspective. This is because the individual realizes that if they leave employment this period,

they cannot immediately re-enter employment in the future if their circumstances change. In

22Appendix D examines the case where we target the fEU and fUE fluctuations in the deNUN ified data in

determining the magnitude of λ and φ shocks. The magnitude of these shocks are considerably smaller in that

calibration, because fEU and fUE fluctuations are smaller in deNUN ified data. Consistent with the above

argument, fUN becomes countercyclical in that case, because the composition effect is significantly weaker.
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the limit as frictions disappear, this option value would disappear. Because frictions are lower

in good times, this option value lessens in good times and so good times generate a flow of

individuals into N . Once again, matching this feature of the data emphasizes the importance

of modeling heterogeneity; it is exactly those individuals who are currently employed but who

do not benefit from employment in a static sense that are responsible for this property of the

model. Another effect is the wealth effect, originating from the change in the lifetime income

due to the changes in the frictions and prices. In contrast to the fUN case, the above effects

mostly work on impact of the shock, and therefore the autocorrelation of fEN tends to be

close to zero.

Lastly, we consider the N -to-U and N -to-E flows. In the model (and the data), fNU

is countercyclical and fNE is procyclical. In the model, the primary source of flows from

N into either U or E is those individuals who are close to the boundary but on the N

side, since individuals who are far from this boundary are those who are relatively far from

finding employment desirable. A small shock to individual state variables can push such an

individual across the boundary and into the U or E regions. For an individual to flow into

U , the individual must not simultaneously receive an acceptable employment opportunity,

since this will take them from N into E instead of from N into U . But during good times

the increase in job opportunity arrival rates implies that marginal N workers are more likely

to receive offers that take them into E, thus decreasing the rate at which these workers flow

into U and increasing the rate at which these workers flow into E.

6 The Relative Importance of the Three Shocks

The previous section showed that a model that features shocks to both aggregate TFP and

frictions can do a good job of accounting for business cycle fluctuations in the labor market,

not only in terms of the behavior of the stocks, but also in terms of the gross flows. In this

section we assess the relative importance of the three key shocks in our model.
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6.1 Decomposition Results

Because the three λj ’s all move proportionately over the business cycle in our calibration, we

decompose the fluctuations into three sources: those due to fluctuations in aggregate TFP

(Z), those due to fluctuations in the job-separation rate (φ), and those due to fluctuations

in the vector of employment arrival rates (the three λj ’s). In each case we recompute the

equilibrium assuming that only one of the shock variances is positive, with the other two set

to zero. Table 11 presents results for the cyclical properties of the stocks.

Table 11

Cyclical Behavior of Stocks: Shock Decomposition

TFP Shocks Job-Finding Rate Shocks Separation Rate Shocks

u lfpr E u lfpr E u lfpr E

std(x) 0.008 0.0042 0.0026 0.099 0.0020 0.0053 0.037 0.0006 0.0023

corrcoef(x, Y ) 0.11 0.96 0.94 −0.96 −0.43 0.99 −0.95 −0.75 0.97

corrcoef(x, x−1) 0.52 0.85 0.87 0.89 0.61 0.88 0.89 0.77 0.89

A few messages emerge. We begin with the fluctuations in employment. While all three

shocks generate highly procyclical and persistent fluctuations in employment, the most im-

portant shock is the shock to the job-finding rate; it generates fluctuations that are about

twice as large as those due to fluctuations in either TFP or the separation rate. Shocks

to TFP and to the separation rate are about equally important in generating fluctuations

in employment. Put somewhat differently, although TFP shocks are a significant source of

fluctuations in aggregate employment, they are not the dominant source of those fluctuations.

Next consider the fluctuations in the unemployment rate. Both the job finding rate shocks

and the separation rate shocks generate persistent countercyclical fluctuations in the unem-

ployment rate, with the job-finding rate shocks generating fluctuations in u that are almost

three times as large. Consistent with the results from earlier, TFP shocks alone generate

fluctuations in u that are relatively small, relatively acyclical, and moderately persistent. Put

somewhat differently, fluctuations in the unemployment rate are driven almost exclusively

by shocks to the frictional parameters.
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Lastly, we turn to the fluctuations in the labor force participation rate. The role of shocks

to frictions largely mimics the results for fluctuations in the unemployment rate. Shocks to

both the job-finding rate and the separation rate generate fluctuations in the participation

rate that are countercyclical and relatively persistent, and shocks to the job-finding rate

generate fluctuations that are roughly three times as large as those due to shocks to the job-

separation rate. And again consistent with earlier results, shocks to TFP generate persistent

procyclical movements in the participation rate, and quantitatively, the fluctuations due to

TFP shocks are roughly twice as large as those due to fluctuations in the job-finding rate.

Table 12 repeats the previous analysis, but this time reporting the statistics for the

fluctuations in the gross flows. For ease of comparison the top two panels also include the

counterparts from the data.

Table 12

Cyclical Behavior of Gross Worker Flows: Shock Decomposition

A. AZ-Adjusted Data

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

B. DeNUN ified Data

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

C. TFP Shocks

fEU fEN fUE fUN fNE fNU

std(x) 0.004 0.028 0.001 0.019 0.016 0.022

corr(x, Y ) 0.88 −0.46 0.49 −0.69 0.43 −0.05

corr(x, x−1) 0.68 0.24 0.68 0.66 0.51 0.34

D. Job-Finding Rate Shocks

fEU fEN fUE fUN fNE fNU

std(x) 0.029 0.055 0.089 0.028 0.050 0.085

corr(x, Y ) −0.80 0.09 0.78 0.02 0.64 −0.92

corr(x, x−1) 0.81 0.09 0.80 0.57 0.72 0.88

E. Job-Separation Rate Shocks

fEU fEN fUE fUN fNE fNU

std(x) 0.063 0.010 0.001 0.031 0.007 0.005

corr(x, Y ) −0.80 −0.73 −0.92 0.98 −0.74 −0.85

corr(x, x−1) 0.80 0.23 0.87 0.89 0.75 0.83
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There is a lot of information in this table, and here we highlight just a few patterns

of interest. First, we have previously assessed the ability of TFP shocks to generate the

observed cyclical patterns in the gross flows and noted that they generate counterfactual

cyclicality for four of the six flows. In particular, TFP shocks do not account for the somewhat

counterintuitive cyclicality of fEN and fUN . Moreover, in our calibrated model, we see that

TFP shocks contribute virtually nothing to explaining the volatility of flows between E and

U .

Shocks to the job-finding rate generate fluctuations in the gross flows that replicate the

cyclicality patterns in the data, though the two flows into non-participation—fEN and fUN—

are effectively acyclical in the model. Moreover, the magnitude of the fluctuations in each

of the gross flows is significant in comparison to the values in the data. Note that even

though φ is held constant in this exercise, shocks to the job-finding rate generate sizeable

countercyclical fluctuations in fEU . This is explained by time aggregation: when job-finding

rates are high, it is more likely that an employed worker who suffers a separation shock will

immediately find employment and so not show up in the data as a flow from E to U . This

same element of time aggregation is implicit in the CPS, and as we noted earlier, we did

not correct the data for time aggregation on account of the fact that our model implicitly

features time aggregation.

Shocks to the job-separation rate tend to have significant impacts on only a few flows. Not

surprisingly, they have a very large impact on the behavior of fEU by directly impacting the

separation rate. We also see that these shocks are particularly important for the behavior of

fUN , one of the flows that we have identified as displaying counterintuitive cyclical patterns.

This is related to our earlier discussion of composition effects: when φ is small, fewer employed

people experience separations, so both employment and output tend to be higher. Because

fewer employed individuals experience separations, fewer individuals in the unemployment

pool are there because of separations from employment. Those in the unemployment pool
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are therefore more likely to be marginally attached to the labor force and hence are more

likely to transition to out of the labor force.

6.2 Discussion

Summarizing the previous analysis of the labor market stocks, our decomposition exercise

leads to a simple picture of labor market fluctuations. As noted earlier, fluctuations in

the labor market are to a first approximation largely accounted for by equal and opposite

movements in employment and unemployment. In our model, this dynamic is driven solely

by shocks to frictions. Moreover, shocks to the job-finding rate are about three times as

important as shocks to the job-separation rate. However, if one abstracts from TFP shocks,

the resulting fluctuations in employment will be only about three quarters as large as in the

data, and this TFP driven component of employment fluctuations is driven by procyclical

movements in participation. Absent shocks to TFP, the labor force participation rate would

be markedly countercyclical, in contrast to the data. As we detail more in the next section,

this is the result of general equilibrium forces.

We close this section by highlighting a more subtle interpretation of our results concerning

the importance of TFP shocks. In the preceding decomposition analysis, we have treated

shocks to frictions and TFP as separate exogenous shocks. But labor market models in the

tradition of Mortensen and Pissarides (1994) have the implication that shocks to TFP will

generate fluctuations in the job-finding rate and the job separation rate endogenously. An

open question in the literature is what primitive shocks can account for the fluctuations in

these values that summarize labor market frictions. To the extent that fluctuations in labor

market frictions are due to fluctuations in TFP, our results do not imply that TFP shocks

are not an important source of labor market fluctuations.

However, even if this is the case, our results still have an important message regarding

the mechanisms through which TFP shocks affect labor market outcomes. In particular,

traditional RBC analyses focused on TFP shocks as the sole driving force and also assumed
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that the sole mechanism through which TFP shocks lead to labor market fluctuations is by

affecting prices that in turn generate labor supply responses. In particular, in our calibrated

economy that closely matches the salient quantitative features of labor market fluctuations,

labor supply effects generated by TFP induced price changes alone account for only about

one quarter of employment fluctuations. That is, even if TFP shocks are responsible for all

of employment fluctuations, the mechanism that traditional RBC studies focused on is not

the dominant mechanism at work.

7 Partial vs General Equilibrium

A important cornerstone of the original RBC literature was the insistence on analyzing

business cycles in the context of general equilibrium. One of the contributions of our analysis

in this paper relative to that in Krusell et al. (2017) is to extend it to general equilibrium.

In this section we highlight how the extension to general equilibrium matters for some of the

results.

A key finding from the partial equilibrium analysis of Krusell et al. (2017) was that a

model that featured only shocks to frictions could do a good job of accounting for the cyclical

behavior of labor market stocks and gross flows. Importantly, this analysis held w and r fixed.

In the previous sections of this paper we have noted that a model without TFP shocks, i.e.,

a model with only shocks to frictions, could not account for all of the salient features of the

data. In particular, as noted at the end of the previous section, a key dimension along which

a model with only shocks to frictions fails to match the data is that of the procyclicality of

the participation rate. Absent shocks to TFP, our model predicts strongly countercyclical

movements in the participation rate.

General equilibrium effects are completely responsible for this different finding. To see

why, we note that in Krusell et al. (2017), the reason that shocks to frictions could generate

procyclical movements in participation was that higher job-finding rates (also the rate of
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receiving job offers while on the job) and lower job-separation rates implied that workers

could find employment and climb the job ladder more quickly, effectively increasing the

return to market work even if the wage per efficiency unit of labor (w) was fixed. However,

general equilibrium effects work to offset this effect. If higher job-finding rates and lower

job-separation rates lead to an increase in participation, they will also lead to an increase in

employment.

Holding TFP constant, and realizing that the capital stock will only respond slowly, the

increase in employment will decrease the effective capital to labor ratio, thereby decreasing

the marginal product of a unit of labor and, in general equilibrium, decreasing the wage.

This wage in turn will decrease the incentive for individuals to participate. In our calibrated

economy, this general equilibrium effect dominates, and shocks to frictions alone lead to

strongly countercyclical movements in participation.

To shed additional light on this, we now present the results that would emerge from a

partial equilibrium analysis of our model in which there are only shocks to frictions. In

particular, we keep the values of r, w, and T fixed at their steady state levels and calibrate

the friction shocks using the same procedure as earlier. That is, we target the fluctuations

in fEU and fUE .

Table 13 shows the implied magnitudes for the shocks. While calibrating the shocks in

partial equilibrium yields slightly different values, the differences are quite small relative to

those reported in Table 8.

Table 13

Calibration of Shocks

σλ σφ
0.044 0.029
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Table 14

Cyclical Behavior of Stocks: Partial Equilibrium With Friction Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.131 0.0024 0.0095

corrcoef(x, Y ) −0.84 0.21 0.83 −0.97 0.32 0.999

corrcoef(x, x−1) 0.93 0.69 0.92 0.89 0.66 0.90

Table 14 shows the results for the cyclical behavior of the stocks.23 In contrast to our

earlier findings, a model with only shocks to frictions is seen to do a very good job of capturing

the properties of fluctuations in all three stocks. In particular, despite the fact that there are

no shocks to TFP, we see that the magnitude of fluctuations in employment are very close

to those in the data, and that both the volatility and cyclicality of the participation rate are

closely in line with those in the data.

Table 15

Cyclical Behavior of Gross Worker Flows: Partial Equilibrium With Friction Shocks

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.043 0.088 0.054 0.041 0.044

corr(x, Y ) −0.85 −0.17 0.81 0.97 0.71 −0.98

corr(x, x−1) 0.82 −0.13 0.79 0.81 0.73 0.91

Table 15 shows the results for the fluctuations in the gross flows. The main message from

this table is that the partial equilibrium analysis with only shocks to frictions can also match

the key features of the fluctuations in the gross flows. The model generates the incorrect sign

for the cyclicality of fEN , but the extent of the mismatch seems relatively minor: in the data

this flow is very modestly procyclical, while in the model it is very modestly countercyclical.

The above calculations indicate that general equilibrium considerations play an important

role in inference regarding the importance of different shocks and the impact of particular

shocks. To better highlight this, we now repeat the analysis that assumes only shocks to

frictions, but this time the analysis is carried out in general equilibrium. Calibrating the

magnitude of the frictions shocks to target fluctuations in fEU and fUE as before, we obtain

23Because this analysis is partial equilibrium it does not actually generate a series for output. In order to

report a value for the correlation with output we impute output using the Cobb Douglas production function

used to calibrate the steady state and vary L according to the model holding K and Z fixed. This makes

movements in employment very highly correlated with output, as seen in the results below.
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shock magnitudes as indicated in Table 16. Once again we see that calibrating them in

general equilibrium has a small effect.24

Table 16

Calibration of Shocks

σλ σφ
0.042 0.029

Table 17

Cyclical Behavior of Stocks: General Equilibrium With Only Friction Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.134 0.0025 0.0075

corrcoef(x, Y ) −0.84 0.21 0.83 −0.96 −0.52 0.99

corrcoef(x, x−1) 0.93 0.69 0.92 0.89 0.65 0.89

Table 17 shows the implications for the fluctuations in the stocks. Consistent with our

earlier analysis, we see that this specification misses an important fraction of fluctuations

in employment, and that it generates a strong countercylical pattern for the participation

rate. For completeness, Table 18 shows the results for the gross flows. The impact of general

equilibrium on the flows is somewhat more subtle, but we would highlight the fact that the

volatility of fNU is much higher in the general equilibrium exercise, and that since this flow

is countercyclical it serves to make participation countercyclical.

Table 18

Cyclical Behavior of Gross Worker Flows: General Equilibrium With Only Friction Shocks

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.059 0.088 0.032 0.044 0.089

corr(x, Y ) −0.80 −0.02 0.78 0.92 0.62 −0.92

corr(x, x−1) 0.81 0.02 0.80 0.80 0.72 0.88

8 Conclusion

An important challenge in the early RBC literature was to develop a model in which TFP-

induced changes in prices would lead to sufficiently large fluctuations in labor supply to

account for the large fluctuations in employment that we observe in the data. Hansen (1985)

24A general equilibrium model with rigid real wages could also be considered; we conjecture that its prop-

erties would be similar to those in the partial equilibrium setting studied above.
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was an early example of a paper that made substantial progress toward this goal. In this

paper we offer an updated perspective on the issue of accounting for labor market fluctuations.

Our perspective stresses two features relative to the early RBC literature. First, a good

model should account not only for the fluctuations in aggregate employment, but also for the

fluctuations in unemployment and participation. Second, in addition to accounting for the

fluctuations in these aggregate statistics, a good model of labor market fluctuations should

also account for the movements of individuals that generate these movements in aggregate

stocks.

We have developed a version of the growth model that can successfully account for these

features of the data when subjected to shocks in TFP and labor market frictions. A key

finding from our analysis is that while TFP-induced price changes are a significant part of

the overall story, they are not the dominant mechanism. Instead, shocks to the parameters

that characterize labor market frictions and the effects that these generate are the dominant

mechanism at work. We also find that general equilibrium effects are important for our

conclusions about the driving forces behind labor market fluctuations.

We close by highlighting two broad directions for future work. First, while our model is

successful in accounting for many qualitative and quantitative features of the data, there is

still scope for improvement along some dimensions. For example, in our benchmark calibra-

tion the labor force participation rate displays more cyclicality than is found in the data. As

noted earlier, the relative importance of TFP shocks is a key source of this discrepancy. We

conjecture that considering additional shocks (e.g., cyclical variation in UI or other social in-

surance programs) or additional propagation mechanisms (e.g., sticky wages) may help with

this.

Second, in this paper we have viewed the frictional labor market parameters as techno-

logical features of the environment. One possibility is that the movements in labor market

frictions that our model requires to match the data can be understood as the endogenous
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response to the movements in TFP that our model requires. A large literature has worked in

this issue in the context of somewhat simpler models; see, for example the early contributions

of Shimer (2005), Hall (2005), and Hagedorn and Manovskii (2008). Extending these earlier

analyses that abstracted from participation decisions to our setting seems an important issue

for future research in this area.
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Appendix

A Steady State Computation

The computation of the steady state model is conducted in the following steps.

1. Guess the steady state level of K/L (which determines w and r), T , and the average

wage.

2. Perform the optimization of the workers.

3. Compute the invariant distribution of the workers over the individual state variables.

4. Compute K/L, T , and the average wage that are implied by the invariant distribution,

and compare with the earlier guess. If they do not coincide, revise the guess and repeat

from Step 2 until convergence.

For the worker optimization (Step 2), we set 50 uneven grids (more grids closer to zero)

over individual capital stock (from a = 0 to a = 5000), 20 grids on z, and 7 grids on q.

Stochastic processes for both z and q are discretized using Tauchen’s (1986) method (the

ranges of the grids are set at two unconditional standard deviations). We have converted the

annual AR(1) process into a monthly AR(1) process using the formula analogous to the ones

in Chang and Kim’s (2006) Appendix A.2. In the optimization, we have allowed for choosing

off-grid values of at+1 by linearly interpolating the value functions across the grids.

For the computation of the invariant distribution, we represent the distribution of workers

in terms of the “density” (i.e., how many people are at each state) over the state variables

(a, z) in addition to employment status. For employed workers, q is an additional state

variable. We iterate on the density using the decision rules that were derived in Step 2 and

the Markov transition matrices for the stochastic processes until it converges to an invariant

density. In the a dimension, we have used a finer set of grids (300 grids) instead of the

original 50 grids in calculating the density. (The decision rules are linearly interpolated.)
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B Business Cycle Computation

The method developed by Boppart et al. (2018) consists of two key components. First,

the response of the economy to an unanticipated deviation (Boppart et al. (2018) call it an

“MIT shock”) of one parameter and its gradual transition back to the original steady state is

computed as a deterministic transition path. Note that only one parameter (in the case of λ,

(λu, λn, λe) together) is changed in computing this transition path. We assume, for example,

Zt follows

log(Zt+1) = ρ log(Zt),

where ρ ∈ (0, 1) is the persistence parameter and t = 0, 1, 2, .... The initial deviation Z0 is

set at

Z0 = exp(εZ),

where εZ is the size of deviation. Similarly, the transition path from the deviation of λu is

computed assuming

log(λu,t+1)− log(λ̄u) = ρ(log(λu,t)− log(λ̄u))

for t = 0, 1, 2, ..., where λ̄u is the steady state value. This equation implies

λu,t+1 = λρu,tλ̄
1−ρ
u .

The initial deviation for λu is

λu,0 = λ̄u exp(ελ).

We assume that λn and λe always move together with λu:

λn,t
λu,t

=
λ̄n
λ̄u

and

λe,t
λu,t

=
λ̄e
λ̄u
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for t = 0, 1, 2, .... For φ, similarly

φt+1 = φρt φ̄
1−ρ

and the initial value for φ is

φ0 = φ̄ exp(−εφ).

The concrete steps of this first component are as follows.

1. Compute the steady state model. Store the value functions and the stationary distri-

bution.

2. Compute the series of Zt, λu,t, λn,t, λe,t, and φt for time 0, ..., S, where S = 1000, under

the above assumption.

3. Guess Kt/Lt and Tt for time 0, ..., S, where S = 1000.

4. With Kt/Lt, the factor prices rt and wt can be derived.

5. Based on the factor prices and Tt, perform the dynamic optimization of workers, as-

suming that at time S + 1 the economy is in the steady state and moving backwards.

6. Simulate the economy from time 0 to S. Compute Kt/Lt and Tt from the simulation.

7. Update the guess, repeat.

Once the above is computed for three cases, we have time series for all of the outcome

variables of interest (such as E, u, lfpr, and flow rates) for each “MIT shock”. Represent one

of these variables by X. Denote the time series of the log-deviation of Xτ for τ = 0, 1, ..., S

(that is, τ is periods after the shock) in the case when the parameter k experiences a shock

(that is, k = Z, λ, or φ) by x̄k,τ . Then, the business cycle statistics of the outcome variable

x can be computed, using Monte-Carlo simulations, as follows.

1. Set the three scale parameters ωZ , ωλ, and ωφ.
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2. Draw the baseline shock, {ηt} that follows N(0, 1).

3. Compute the log-deviation of Xt (call it x) as

xt =
∑

k=Z,λ,φ

∞∑
m=0

x̄k,mωkηt−m.

In practice, m cannot go to infinity, so we can stop the summation at S.

4. The value of Xt is computed as

Xt = X̄ exp(xt),

where X̄ is the steady state value of X. Various statistics of interest can then be

computed from the simulated Xt.

The baseline shocks in the simulation are multiplied by the scale parameters, ωZ , ωλ, and

ωφ, which means that these scale parameters determine the magnitude of fluctuations. We

determine the appropriate values of ωZ , ωλ, and ωφ by targeting statistics as described in

the main text. Combining with the first step, The value of σk ≡ ωkεk determines the size of

the shock to variable k, where k ≡ Z, λ, and φ.

C A Case with Positive Government Expenditure

Here, we consider the case where a part of the tax revenue is used for exogenous government

spending. In the consumer’s budget constraint (for the employed consumer here, but similar

for nonemployed consumers)

ct + kt+1 = (1 + r − δ)kt + (1− τ)wztqtet + T,

We assume that T is now defined as

T = τw

∫
ziqidi−G,

where we set G = 0.7 in the steady state. Given that T = 1.36 was the equilibrium value

in the benchmark, the transfer is about the half of the tax revenue. (In equilibrium, the tax
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revenue changes endogenously, and the value of T in the new equilibrium is 1.32−0.7 = 0.62.)

The steady state results are:

Table A1

Calibrated Parameter Values

β ρz σz α λu λn λe φ σq γ̄ γmin γmax
0.99398 0.996 0.096 0.67 0.340 0.147 0.074 0.024 0.040 0.059 0.029 0.088

Table A2 shows the implications of our calibrated model for steady state gross worker

flows. For completeness we include the corresponding values from the AZ-Adjusted data with

bootstrapped confidence intervals.

Table A2

Gross Worker Flows in the Data and the Model

AZ-Adjusted Data Model

FROM TO FROM TO

E U N E U N

E 0.972 0.014 0.014 E 0.965 0.014 0.021

95% CI (0.970, 0.974) (0.013, 0.015) (0.012, 0.015)

U 0.228 0.637 0.135 U 0.209 0.558 0.122

95% CI (0.211, 0.246) (0.616, 0.657) (0.119, 0.152)

N 0.022 0.021 0.957 N 0.022 0.033 0.945

95% CI (0.019, 0.025) (0.018, 0.023) (0.954, 0.960)

For the business cycle exercise, we keep the value of T the constant at its steady state

value. Shocks are calibrated as in the main text, and the parameters of the shock processes

are shown in Table A3.

Table A3

Magnitude of Shocks

σZ σλ σφ
0.0019 0.050 0.037

Table A4 and A5 show the main results.

Table A4

Cyclical Behavior of Stocks With TFP and Friction Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.120 0.0027 0.0099

corrcoef(x, Y ) −0.84 0.21 0.83 −0.996 0.48 0.972

corrcoef(x, x−1) 0.93 0.69 0.92 0.89 0.67 0.90
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Table A5

Cyclical Behavior of Gross Worker Flows With TFP and Friction Shocks

A. AZ-Adjusted Data

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

B. DeNUN ified Data

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

C. Model

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.044 0.088 0.054 0.056 0.027

corr(x, Y ) −0.99 0.09 0.89 0.93 0.72 −0.88

corr(x, x−1) 0.87 −0.07 0.79 0.72 0.70 0.90

Overall, the results are in line with the results in the main text.

D Targeting the DeNUN ified Data

Here, we target the fluctuations in fEU and fUE in the deNUN ified data in determining the

magnitude of λ and φ shocks. As is summarized in Table A6, σλ and σφ are significantly

smaller than the calibration in the main text.

Table A6

Magnitude of Shocks

σZ σλ σφ
0.0101 0.036 0.023

Tables A7 and A8 present the main results of the business cycle exercise.

Table A7

Cyclical Behavior of Stocks With TFP and Friction Shocks

Data Model

u lfpr E u lfpr E

std(x) 0.117 0.0026 0.0099 0.116 0.0046 0.0099

corrcoef(x, Y ) −0.84 0.21 0.83 −0.96 0.91 0.96

corrcoef(x, x−1) 0.93 0.69 0.92 0.89 0.87 0.89

In this alternative calibration the participation rate is both more volatile and more pro-

cyclical than in the main text. This reflects the fact that the TFP shock is significantly larger

in this specification, due to the fact that the frictional shocks are now smaller.
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Table A8

Cyclical Behavior of Gross Worker Flows With TFP and Friction Shocks

A. AZ-Adjusted Data

fEU fEN fUE fUN fNE fNU

std(x) 0.089 0.083 0.088 0.106 0.103 0.072

corrcoef(x, Y ) −0.63 0.43 0.76 0.61 0.52 −0.23

corrcoef(x, x−1) 0.59 0.29 0.75 0.62 0.38 0.30

B. DeNUN ified Data

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.036 0.076 0.066 0.042 0.063

corrcoef(x, Y ) −0.66 0.29 0.81 0.55 0.57 −0.56

corrcoef(x, x−1) 0.70 0.22 0.85 0.58 0.48 0.57

C. Model

fEU fEN fUE fUN fNE fNU

std(x) 0.069 0.026 0.076 0.031 0.057 0.088

corr(x, Y ) −0.98 0.05 0.97 −0.07 0.74 −0.88

corr(x, x−1) 0.81 −0.18 0.80 0.48 0.63 0.83

Here, fUN is countercyclical. As is discussed in the main text, this is because the com-

position effect that drives the procyclicality of fUN in our baseline case is now weaker.
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