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1 Introduction

In modern financial markets, many financial instruments trade simultaneously on multiple

exchanges (Budish, Lee, and Shim, 2019; Gresse et al., 2012; Pagnotta and Philippon, 2018).

Market fragmentation raises concerns over market depth. One might therefore anticipate

that fragmentation worsens allocative efficiency through the strategic avoidance of price

impact, which inhibits beneficial gains from trade (Vayanos, 1999; Du and Zhu, 2017). Less

aggressive trade could in turn impair price informativeness, relative to a centralized market

in which all trade flows are consolidated. Perhaps surprisingly, we offer a simple model

of how fragmentation of trade across multiple exchanges, despite reducing market depth,

actually improves allocative efficiency and price informativeness.

In the equilibrium of our market setting, the option to split orders across different ex-

changes reduces the inhibiting effect of price-impact avoidance on total order submission.

Though market depth on each exchange decreases with fragmentation, the common practice

of order splitting allows traders to shield orders submitted to a given exchange from the

price impact of orders submitted to other exchanges. This effect is sufficiently strong that

fragmentation increases overall order aggressiveness. This in turn can result in a more effi-

cient redistribution of unwanted positions across traders and cause prices, collectively across

all exchanges, to better reflect traders’ private information. Once fragmentation is suffi-

ciently severe, however, any additional fragmentation causes trade to become too aggressive,

from a welfare perspective. However, in our model setting, any degree of fragmentation is

welfare-superior to a centralized market.

Our simple model abstracts from some important aspects of functioning financial markets.

We do not consider the impact of fragmentation on exchange competition or transaction fees.1

We also abstract from trader inferences related to cross-exchange cross-time order submission

and the associated adverse impact of sniping by fast traders (Budish, Cramton, and Shim,

2015; Malinova and Park, 2019; Pagnotta and Philippon, 2018). Given these and other

limitations of our model, we avoid taking a normative or policy stance on fragmentation.

Our primary marginal contribution is to identify a potentially important new economic

channel for the welfare implications of market fragmentation.

We now briefly summarize our model and the main results. A single asset is traded in a

single period by N strategic traders participating on E exchanges. Prior to trade, strategic

trader i is endowed with a quantity Xi of the asset that is privately observed by trader

i. Each trader submits a package of limit orders (forming a demand function) to each of

the exchanges, simultaneously. As in common practice (Wittwer, 2020), orders to a given

1As shown by Budish, Lee, and Shim (2019), transaction fees are economically small.
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exchange cannot be made contingent on clearing prices at other exchanges. The objective of

each strategic trader, given the conjectured order submission strategies of the other traders,

is to maximize the total expected cash compensation received for executed orders, net of

a holding cost that is quadratic in the trader’s final asset position, as in the one-exchange

model of Du and Zhu (2017).

At each exchange, “liquidity traders” submit non-discretionary market orders. The ag-

gregate quantities of market orders submitted by liquidity traders to the various exchanges

are exogenous random variables, independently and identically distributed across exchanges.

We also consider a version of the model with no liquidity traders, and a version in which

liquidity traders are replaced by a “competitive fringe” of traders that are strategic with

respect to order quantities. In any version of the model, because agents’ preferences are

quasilinear in cash and because total cash payments net to zero by market clearing, an un-

ambiguous measure of allocative efficiency is the expected sum of strategic traders’ quadratic

holding costs.

Price impact is increased by market fragmentation because of cross-exchange price in-

ference, by which traders choose order submissions in light of the positive equilibrium cor-

relation between exchange prices. For example, conditional on a clearing price on a given

exchange that is lower than expected, a buyer expects to be assigned higher quantities on

all exchanges. This effect dampens the aggressiveness of order submissions, which reduces

market depth and heightens market impact, relative to a single-exchange setting. Despite

this reduction in market depth, the ability to split orders across exchanges ensures that, in

equilibrium, the total order submission of each strategic trader is more aggressive. This nat-

ural implication of fragmentation is novel to this paper, as far as we know. As the number of

exchanges increases, the equilibrium allocation becomes more efficient until a point at which

trade becomes “too aggressive.” We find that the socially optimal number of exchanges de-

pends only on (a) the number of strategic traders and (b) the ratio of the variance of the

endowments of strategic traders to the variance of liquidity trade. We show that when there

are more exchanges, the price on any individual exchange is less informative of the aggregate

endowment of strategic traders, the key “state variable” of our model, yet the exchange

prices taken together are more informative.

The remainder of the paper is organized as follows. Section 2 provides additional back-

ground on exchange market fragmentation and related research. Section 3 gives the setup of

the most basic version of our model. Section 4 characterizes properties of the equilibrium.

Section 5 presents the implications of fragmentation on price impact, allocative efficiency,

and price informativeness. Section 6 studies a formulation of the model in which traders

observe the aggregate asset endowment before order submission. Section 7 summarizes the
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results of various model extensions. Section 8 offers some concluding remarks, including

some important effects that are not captured by our model. Appendices contain proofs and

model extensions.

2 Background

We focus in this paper on “visible fragmentation,” that is, fragmentation across different

lit exchanges (meaning trade venues at which market-clearing prices are set), rather than

fragmentation between lit exchanges and size-discovery venues, which cross buy and sell

orders at prices that are set on lit exchanges (Körber, Linton, and Vogt, 2013; Zhu, 2014;

Degryse, De Jong, and van Kervel, 2015; Duffie and Zhu, 2017; Antill and Duffie, 2019).

In Europe and the U.S., exchange trading is highly fragmented. Budish, Lee, and Shim

(2019) document that in the U.S., as of early 2019, annual trade of about one trillion shares

is split across 13 U.S. exchanges, and that cross-exchange shares of total exchange-traded

volume are stable over time, with 5 exchanges each handling over 10 percent of total ex-

change volume. Essentially all equities trade on every exchange, with significant volumes of

each equity executed on multiple exchanges.2 Broadly speaking, similar patterns apply to

European financial markets (Gresse et al., 2012; Degryse, De Jong, and van Kervel, 2015;

Foucault and Menkveld, 2008). This high degree of trade fragmentation is in part a con-

sequence of regulations such as Regulation NMS in the US and MiFid II in Europe, which

encourage exchange entry and competition.

There has been a lonstanding debate (Stoll, 2001) over whether fragmenting trade across

exchanges harms market efficiency, in various respects. Empirical findings have been mixed

(O’Hara and Ye, 2011; Gomber et al., 2017). Some researchers find that fragmentation has

generally been beneficial. For example, O’Hara and Ye (2011), using data from U.S. trade

reporting facilities, find that execution speeds are faster, transaction costs are lower, and

prices are more efficient when the market is more fragmented. Degryse, De Jong, and van

Kervel (2015) analyze a sample of Dutch stocks and measure the degree of visible fragmen-

tation. They find that liquidity, when aggregated over all lit trading venues, improves with

fragmentation. Foucault and Menkveld (2008) analyze Dutch stocks and arrive at a simi-

lar conclusion. Boehmer and Boehmer (2003) find evidence of improved liquidity when the

NYSE began trading ETFs that are also listed on the American Stock Exchange. Gresse

(2017), De Fontnouvelle, Fishe, and Harris (2003), Aitken, Chen, and Foley (2017), Hen-

gelbrock and Theissen (2009), Félez-Viñas (2017), and Spankowski, Wagener, and Burghof

(2012) generally find that visible fragmentation reduces bid-ask spreads.

2Pagnotta and Philippon (2018) and Budish, Lee, and Shim (2019) display the striking facts graphically.
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Other research, however, suggests less beneficial effects of fragmentation. For exam-

ple, Bennett and Wei (2006) find that when equity trading migratesd from Nasdaq to the

NYSE, where trade is more consolidated, there was a decrease in execution costs and an

improvement in price efficiency. Chung and Chuwonganant (2012) show that price impact

increased following the introduction of Regulation NMS. (In our model, as we have noted,

fragmentation indeed reduces market depth, yet increases allocative efficiency and overall

price informativeness.) Gentile and Fioravanti (2011) find that MiFID-induced fragmenta-

tion “does not have negative effects on liquidity, but it reduces price information efficiency.

Moreover, in some cases it leads primary stock exchanges to lose their leadership in the

price discovery process.” For small-firm equities, Gresse et al. (2012), Gresse (2017), and

Degryse, De Jong, and van Kervel (2015) find that market depth declines with sufficient

fragmentation, consistent with our theoretical results. Bernales et al. (2018) find that the

2009 consolidation of Euronext’s two distinct order books for the same equities was followed

by a reduction in bid-offer spreads. Haslag and Ringgenberg (2016) find causal evidence that

although fragmentation reduces bid-offer spreads for the equities of large firms, the opposite

applies to small firms.

While the empirical evidence regarding the implications of fragmentation are mixed, most

of the theoretical literature has shown that visible fragmentation is harmful. For example,

Mendelson (1987) shows that fragmentation may isolate individuals for whom there are

mutually beneficial trades, because they are located at different venues. Chowdhry and

Nanda (1991) show that adverse selection caused by asymmetric information worsens as

markets fragment. Baldauf and Mollner (2020) find that welfare is harmed by the ability of

fast traders to snipe across fragmented markets.

Of the few theory papers showing that fragmentation may be beneficial, perhaps the

closest to ours is Malamud and Rostek (2017). As in our model, they consider a multi-

exchange demand submission game in which each exchange operates a double auction. They

show that, in certain settings, when agents’ risk preferences are sufficiently heterogeneous,

fragmented markets can produce outcomes that are welfare superior to centralized markets.

Crucially, however, they assume that agents are able to submit demand schedules to each

exchange that are contingent on the realization of prices on all exchanges. The channel by

which fragmentation is beneficial in our model is not related to that of Malamud and Rostek

(2017), and does not rely on heterogeneous risk aversion or cross-exchange contingent order

mechanisms, which are extremely rare in practice (Wittwer, 2020).

Of the theoretical papers mentioned, the majority assume that traders are restricted to

trade on a strict subset of all trading venues. For example, Pagano (1989) shows that frag-

mented markets are less stable, in that traders tend to concentrate at a single market venue,
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at which liquidity is greatest. However, regulations promoting exchange competition may

foster fragmentation. If traders are strategic about their price impacts it seems natural to

assume they are aware of the option to trade on multiple exchanges simultaneously. The

costs of order splitting are economically small (Budish, Lee, and Shim, 2019). So-called

Smart Order Routing Technology makes order splitting convenient and practical (Gomber

et al., 2016). In our model, strategic traders frictionlessly trade on all exchanges. Empiri-

cal research (Malinova and Park, 2019; Menkveld, 2008; Chakravarty et al., 2012; Gomber

et al., 2016) finds evidence that some investors strategically split their orders across multiple

exchanges, and also split orders between exchanges and size-discovery venues such as dark

pools.

Methodologically, our model relates to the literature on multi-auction demand submission

games (Wilson, 1979; Klemperer and Meyer, 1989; Malamud and Rostek, 2017; Wittwer,

2020). Within this literature, our model is closest to that of Wittwer (2020), which studies

a demand-function submission game that is based on two exchanges, and which examines

the welfare implications of connecting the two exchanges through the ability to submit

orders contingent on cross-exchange prices. We consider only the common case in practice

of “disconnected markets.” As opposed to Wittwer (2020), we focus on properties of the

equilibrium as the number of exchanges is increased.

Since the work of Hamilton (1979), the literature has explored the key tension between

the benefit of fragmentation associated with increased competition between exchanges and

between specialists, which drives down bid-offer spreads and trading fees, as suggested by the

theory of Hall and Rust (2003), versus the cost of fragmentation associated with decreased

market depth.3 Although fragmentation does indeed reduce market depth in our model,

consistent with earlier work, we believe that we are the first to point out the benefit of

fragmentation associated with increased order aggressiveness, arising from the ability of

strategic traders to shield orders on a given exchange from price impacts incurred on other

exchanges.

3 Setup

This section presents the setup of the most basic version of our model. All primitive random

variables are defined on a complete probability space, (Ω,F ,P). There is a single asset with

a payoff, denoted π, that is a finite-variance random variable.

We model a market whose agents, called “traders,” are of two types: “liquidity” and

“strategic.” For notational simplicity, we let N denote both the finite set of strategic traders

3For a recent empirical contribution exploring this tradeoff, see Haslag and Ringgenberg (2016).
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and its cardinality, which is assumed to be at least 3. The only primitive information

available to strategic trader i is the trader’s own endowment of the asset, Xi, which is a

finite-variance random variable.

Trade of the asset takes place in a single period on each of a finite number of identical

exchanges. For notational simplicity, we let E denote both the set and number of exchanges.

Each exchange runs a double auction mechanism. Strategic trader i submits a measurable

demand schedule fie : R2 → R to exchange e specifying the quantity fie(Xi, p) of the asset

demanded by trader i at any given price p ∈ R on exchange e. We emphasize that the demand

schedule submitted to a given exchange cannot depend on prices or any other information

emanating from the other exchanges. A demand schedule can be viewed as a package of

limit orders, each of which is an offer to purchase or sell a given amount of the asset at a

given price.4 Liquidity traders collectively submit an exogenously given quantity of market

orders to exchange e given by a finite variance random variable Qe.

Given a collection f = {fie | i ∈ N, e ∈ E} of demand schedules, the price on exchange e,

if it exists, is a solution5 pfe to the market-clearing condition∑
i∈N

fie(Xi, p
f
e ) = Qe. (1)

If there does not exist a unique market clearing price we assume that no trades are executed.

We restrict attention to equilibria consisting of demand schedules with the property that pfe

is uniquely determined.6 Based on (1), trader i is able to determine the impact of his or

her own demand on the market-clearing price given the conjectured demand schedules of the

other traders.

The preferences of the strategic traders are quasi-linear in cash compensation with a

quadratic holding cost. Specifically, given a collection f = {fie | i ∈ N, e ∈ E} of demand

schedules the associated payoff of trader i is

Ui(f) =

(
Xi +

∑
e

fie(Xi, p
f
e )

)
π − b

(
Xi +

∑
e

fie(Xi, p
f
e )

)2

−
∑
e

pfefie,

for some b > 0. The quadratic term represents a cost for bearing the risk or other costs

4In this sense, f(Xi, p), if positive, is the aggregate quantity of the limit orders to buy at a price of p
or higher, and if negative is the aggregate quantity of the limit orders to sell at price of p or lower. The
space of linear combinations of limit orders is dense, in the sense of Brown and Ross (1991), in the space of
monotone demand functions.

5That is, pfe is a random variable such that for each state ω ∈ Ω,
∑

i∈N fie(p
f
e (ω), Xi(ω)) = Qe(ω).

6For this, it suffices that, for each x ∈ RN , the aggregate demand function p 7→
∑

i fie(p, xi), which is
monotone, is strictly monotone, continuous, and unbounded below and above.
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associated with holding a post-trade position in the asset. Preferences of this form, although

they have not been micro-founded, are popular in the market microstructure literature,

including Vives (2011), Rostek and Weretka (2012), Du and Zhu (2017), and Sannikov and

Skrzypacz (2016).

An equilibrium is defined as a collection f = {fie | i ∈ N, e ∈ E} of demand schedules

with the property that for each strategic trader i the demand schedules fi = {fie | e ∈ E}
solve

supf̂ E[Ui(f̂ , f−i)],

where as usual f−i denotes the collection {fj | j 6= i} of other traders’ demand schedules.

The model we have specified is a typical demand-function submission game in the sense of

Wilson (1979) and Klemperer and Meyer (1989), extended to allow for multiple exchanges.

Multi-exchange demand function submission games were earlier analyzed by Malamud and

Rostek (2017) and Wittwer (2020).

We conclude this section with an interpretation of the distinction between strategic and

liquidity traders. A strategic trader may be viewed as an agent who is sophisticated, in-

ternalizes price impact, is able to easily split orders across multiple trading venues, has

a relatively low aversion to owning assets, and has a relatively large initial endowment of

the asset. A liquidity trader, on the other hand, may be viewed as an agent who is not

sophisticated about price impacts, has high aversion to holding assets (thus exercising no

discretion in the liquidation of the assets), and has a small initial asset holding, and who

therefore submits market orders with no price sensitivity. Liquidity traders are a typical

modeling device for settings such as ours in which one wishes to avoid perfect inference of

fundamental information from price observations. In our case, the fundamental information

to be inferred does not concern asset payoffs but rather the aggregate endowment of strate-

gic traders. Traders have payoff relevant private information about their own endowments

but no private information about asset payoffs. We will show that our main results are not

driven by the effect of “donations” from liquidity traders to strategic traders.

4 A Simple Equilibrium

We assume that the {Xi | i ∈ N} are iid and normally distributed with mean µX and variance

σ2
X . We also assume that the {Qe | e ∈ E} are iid normal with mean µQ/E and variance

σ2
Q/E. Finally, we assume that {Xi | i ∈ N}, {Qe | e ∈ E}, and Z are independent. We relax

these distributional assumptions in Section 6 and in extensions considered in the Appendix.

A useful interpretation of the above assumptions on liquidity trade is that there is a large
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number of liquidity traders, independent of the number of exchanges in operation, who are

spread evenly across exchanges and trade independently of one another.

Under the above assumptions, following the approach of Du and Zhu (2017), we can prove

the existence and uniqueness of a symmetric affine equilibrium defined by demand schedules

of the form

fie(p,Xi) = ∆E − αEXi − ζEp, (2)

for constants ∆E, αE, and ζE that do not depend on the trader or particular exchange, but

do depend on the number E of exchanges.

Using (1) it can be shown that the slope of the inverse residual supply curve facing each

agent in each exchange is equal to

ΛE ≡
1

(N − 1)ζE
(3)

which we refer to as inverse market depth, or simply as “price impact.” Each strategic

trader is aware that by deviating from the equilibrium demand schedule and demanding

an additional unit on a given exchange, the trader will increase the market-clearing price

on that exchange by ΛE. Price impact is a perceived cost to each strategic trader, but is

not a social cost because the payment incurred by any trader is received by another. As

emphasized by Vayanos (1999), Rostek and Weretka (2015), and Du and Zhu (2017), the

strategic avoidance of price impact through the “shading” of demand schedules is socially

costly because it reduces the total gains from the beneficial reallocation of the asset.

By using the form of the demand schedules in (2) we can compute that the final asset

position of strategic trader i is

(1− EαE)Xi + EαE

∑
j∈N Xj

N
+
Q

N
. (4)

Generically in the parameters of the model, the equilibrium allocation is inefficient. Given

the non-discretionary liquidation Qe by liquidity traders, the efficient allocation is one in

which each strategic trader receives an equal share of the aggregate supply of the asset,

which is

q̄ =
1

N

(
Qe +

∑
i

Xi

)
.

Inspecting (4), this efficient sharing rule corresponds to the case of EαE = 1. By Jensen’s

Inequality, this produces the efficient allocation because traders have symmetric convex

holding costs. Since preferences are quasi-linear in cash compensation, this is also the welfare-

maximizing allocation, in that any other allocation would be strictly Pareto dominated by

8



this efficient sharing rule, after allowing voluntary initial side payments.

The equilibrium allocation defined by (4) becomes less efficient the farther is EαE from

1. This is because replacing EαE in (4) with a number farther from 1 results in a mean-

preserving spread in the cross-sectional distribution of the asset to strategic traders, state

by state. Jensen’s Inequality, applied cross-sectionally in each state ω ∈ Ω, then implies an

increase in the sum across traders of quadratic holding costs.

The following theorem collects several properties of symmetric affine equilibria. Of pri-

mary interest is the property that in the presence of non-trivial liquidity trade, the alloca-

tion becomes more efficient as market fragmentation E increases, up to the point at which

EαE = 1, and then becomes increasingly less efficient. We will explore this issue in more

depth in section 5. Our proof of the theorem, found in the appendix, applies the calculus

of variations to verify that a particular set of candidate equilibrium demand coefficients

(∆E, αE, ζE) does in fact uniquely correspond to an equilibrium.

Theorem 1. For each positive integer number E of exchanges, there exists a unique equi-

librium in symmetric affine demand functions. The associated demand-function coefficients

(∆E, αE, ζE) form the unique solution to appendix equations (21), (22), and (23). Moreover:

1. The market-clearing price on exchange e is

p∗e =
N − 1

N
ΛE

[
N∆E −Qe − αE

∑
i∈N

Xi

]
. (5)

2. The associated price-impact coefficient is

ΛE =
2b(1 + γE(E − 1))

N − 2
, (6)

where

γE =
Eα2

Eσ
2
X(N − 1)

Eα2
Eσ

2
X(N − 1) + σ2

Q

(7)

is the conditional correlation between prices in any two distinct exchanges e and e′ from

the perspective of any strategic trader i, given Xi.

3. The final asset position of strategic trader i is given by (4).

4. If there is no liquidity trading, in that σ2
Q = 0, then the equilibrium allocation does not

depend on the number E of exchanges.
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5. If E = 1 or σ2
Q = 0, then the final asset position of strategic trader i is

Λ1

Λ1 + 2b
Xi +

2b

Λ1 + 2b

1

N

∑
j∈N

Xj +
Q

N
,

where Λ1 = 2b/(N − 2).

6. If σ2
Q > 0, then EαE is strictly monotone increasing in E and converges to N/(N − 1).

It follows in this case that a market with only one exchange is strictly dominated, from

the viewpoint of allocative efficiency, by a market with any larger number of exchanges.

Part 5 of Theorem 1 implies that with a single exchange, the fraction of the endowment

retained by a trader is increasing in price impact, Λ1. In a centralized market, price impact

avoidance is the only source of allocative inefficiency. As we have described and will later

elaborate, the effect of price impact avoidance on allocative efficiency can be mitigated by

increasing the degree of market fragmentation. In the next section, we analyze the forces

behind this and other effects of market fragmentation. But, as stated in part 6 of Theorem

1, any degree of fragmentation is socially preferred to concentrating all trade on a single

exchange.

5 The Effects of Fragmentation

We present several predictions of our model, beginning first with the effects of fragmentation

on price impact.

5.1 Price impact

Part 2 of Theorem 1 provides the equilibrium relationship between price impact and the

correlation between exchange prices. This relationship reflects the effect on trade demand

of cross-exchange inference from prices. The quantity purchased by trader i on exchange e

at a given pe, fie(Xi, pe), depends in part on the expectation of the quantities that trader i

will execute on the other exchanges, conditional on Xi and pe.

To illustrate, suppose for example that in state ω ∈ Ω trader i is a buyer of the asset at

the equilibrium price in exchange e. If the observed price outcome pe(ω) was lowered, trader

i would assign a higher conditional likelihood to lower prices on the other exchanges because

strategic traders’ demands are positively correlated on any two exchanges which implies a

positive cross-exchange price correlation, γE. But trader i submits demands to the other

exchanges before observing pe. Thus, the lower is pe(ω) the higher is the conditional expected
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quantity executed by trader i on the other exchanges. If pe(ω) is lowered, the marginal

utility of trader i for purchasing a unit on exchange e would decline. Due to cross-exchange

inference, the quantity trader i optimally purchases on exchange e in response to a decrease

in price pe(ω) is smaller relative to if there was no cross-exchange correlation. Analogous

reasoning can be applied to show that due to cross-exchange inference, the quantity trader

i optimally purchases on exchange e in response to an increase in price pe(ω) decreases

relative to if there was no cross-exchange correlation. Overall, the cross-exchange price

inference channel reduces the steepness (absolute slope) of the demand schedule of trader

on each exchange with respect to price. The result, by (3), is that price impact rises. Since

this channel is not present when there is a single exchange, price impact is always higher in

a fragmented market than in a centralized market.

We now discuss comparative static results describing the effects of changes in the vari-

ance σ2
Q of liquidity trade demand and the number E of exchanges on price impact. As

σ2
Q increases, prices in different exchanges becomes less correlated, so price impact declines,

eventually converging to that of a single exchange market as σ2
Q tends to infinity. Thus, price

impact is lower in markets with noisier liquidity trader supply because the cross-exchange in-

ference channel is weaker. The following proposition characterizes how price impact changes

as the number of exchanges increases holding fixed all other model parameters.

Proposition 1. The price-impact coefficient ΛE is strictly monotone increasing in the num-

ber E of exchanges. If the variance σ2
Q of liquidity trade demand is zero, then limE→∞ ΛE =

∞. If σ2
Q > 0, then

lim
E→∞

ΛE =
2b

N − 2

(
1 +

N2σ2
X

(N − 1)σ2
Q

)
,

and γE declines strictly monotonically to zero as E →∞.

Proposition 1 states that, with greater market fragmentation, price impact is higher and

(in the presence of nontrivial liquidity trade), prices are less correlated. Without liquidity

trade (σ2
Q = 0), price impact diverges as the number of exchanges diverges, because γE is

equal to one. But with liquidity trade (σ2
Q > 0) price impact converges to a finite value.

Because price impact depends on γE(E − 1), this follows from the fact that γE declines at

a rate proportional to 1
E

. The intuition is that as the number of exchanges increases, the

expected quantity traded on a given exchange decays at rate 1
E

, which in turn causes the

variability in prices due to strategic traders’ orders to decay at a rate proportional to 1
E2 .

Since the variability in prices due to exchange-specific liquidity trade is σ2
Q/E, this implies

that γE must decline at the rate 1
E

, so that price impact converges.

Figure 1 illustrates the relationship between price impact and the number of exchanges,
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for different cases of the number N of strategic traders. As illustrated, price impact converges

faster when there are more strategic traders. For instance, consider the case of b = 1/2 and

E = 100 exchanges. Without liquidity trade, the price impact is ΛE = 33. However, with

σ2
Q > 0, and just N = 5 strategic traders whose endowments are 10 times more uncertain

(in terms of variance) than aggregate liquidity trader supply (in that σ2
X/σ

2
Q = 10), price

impact drops to approximately 10. As σ2
X/σ

2
Q falls below 10, γE is reduced and, because of

this, price impact is further reduced.

Figure 1: Variation of price impact ΛE with the number E of exchanges, for various cases of N , the
number of strategic traders. In all cases, the variance-aversion coefficient is b = 1/2 and a ratio σ2

X/σ
2
Q of

strategic-trader asset endowment to total liquidity trade quantity of 10.

5.2 Allocative Efficiency

We have just shown that price impact is higher in more fragmented markets. However, by

Theorem 1, when there is no liquidity trade (σ2
Q = 0), even though price impact diverges

as E tends to infinity, total trade aggressiveness is unaffected and the equilibrium alloca-

tion remains constant. Moreover, when σ2
Q > 0, even though price impact increases with

fragmentation, total trade aggressiveness actually increases. One might have expected that

the rise in price impact would lead to a reduction in trade aggressiveness and thus lower

allocative efficiency, but this is not the case. We turn now to a resolution of this superficial

paradox.

As fragmentation rises, price impact increases, but traders can better evade the overall

cost of price impact by shredding their orders across exchanges. This is because traders bear
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the cost of price impact on a given exchange only to the extent of the trades executed on

that exchange. By order splitting, a trader can shield an order on a given exchange from

the price impact of units executed on the other exchanges. When there are more exchanges,

the purchase of an additional unit on a given exchange affects a smaller fraction of the

total quantity traded. When there is no liquidity trade (σ2
Q = 0) this effect exactly offsets

the rise in price impact, leaving the overall agressiveness of a trader’s demand invariant

to the number of exchanges. When σ2
Q > 0 price impact does not rise quickly enough

to offset the effect of increased aggressiveness through order splitting. At low levels of

fragmentation, this increase in trade aggressiveness is beneficial for allocative efficiency. But

when markets become sufficiently fragmented, the incremental aggressiveness is inefficient,

in that EαE increases past the point of efficiency, at which EαE = 1 (up to N
N−1

). We

emphasize, however, that trade never becomes so aggressive that fragmentation leads to a

loss of allocative efficiency relative to that of a market with a single exchange.

By equation (4), the number of exchanges that maximizes allocative efficiency is that for

which EαE is closest to 1.

Proposition 2. Suppose σ2
Q > 0. Let

E∗ = 2 +
2

N − 2
+
N − 1

N − 2

Nσ2
X

σ2
Q

.

If E∗ is an integer, the unique symmetric affine equilibrium for a market with E∗ exchanges

achieves an efficient allocation of the asset, by allocating an equal amount q̄ of the asset to

each strategic trader. In general, the number of exchanges that maximizes allocative efficiency

is either bE∗c or dE∗e.

By Proposition 2, the optimal number of exchanges is finite, is at least 2, and depends

crucially on the ratio of the variance of the endowment of strategic traders to the variance

of the total amount of liquidity trade, σ2
X/σ

2
Q. This ratio determines γE, as seen in equation

(7), which in turn determines price impact. As σ2
X/σ

2
Q rises, price impact is higher and more

fragmentation is needed to offset the adverse effect of price impact with the beneficial effect

of increasing the number of exchanges over which strategic traders can split their orders.

It is perhaps surprising that the socially optimal number of exchanges is finite. The

intuition associated with order splitting might suggest that inefficiency due to price impact

avoidance should only disappear in the limit as the number of exchanges tends to infinity.

Only as this limit is approached do agents trade a negligible quantity on any one exchange,

so that the marginal unit traded affects the price only negligibly. It turns out, however,

that fragmentation introduces a different inefficiency. At the point in time at which traders

13



submit demands to a given exchange, they are unaware of the quantities they will ultimately

purchase on other exchanges. Moreover, traders are asymmetrically informed about trading

opportunities on the other exchanges because they have different endowments, and equilib-

rium prices depend on the aggregate endowment. This is a force leading agents to trade

more aggressively in fragmented markets that is eventually adverse to efficiency, and that

has no counterpart in a centralized market.

Figure 2 illustrates the intuition of the results of this section. As shown, EαE is strictly

increasing in fragmentation and can exceed the socially efficient level. The socially efficient

number of exchanges increases with
σ2
X

σ2
Q

.

Figure 2: We plot equilibrium allocative inefficiency as measured by | 1 − EαE | against the number of
exchanges for different values of the ratio σ2

X/σ
2
Q of the variance of the endowment of a strategic trader to

the variance of the total amount of liquidity trade. In all cases, the number N of strategic traders is 10.
Allocative inefficiency, |1− EαE |, does not depend on the variance-aversion coefficient b.

5.3 Price Informativeness

Our finding that trade aggressiveness increases with market fragmentation has natural im-

plications for price informativeness. By price informativeness, we mean the degree to which

prices reveal information about the average endowment X =
∑

i∈N Xi/N of strategic traders.

This notion is especially relevant when viewing our model as though a snapshot of a dynamic

market in which liquidity trade is serially uncorrelated and the aggregate strategic endow-

ment is a persistent markov process. In such a setting, the aggregate endowment of strategic

traders is a sufficient statistic for inference regarding future prices and future aggregate

endowments.
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Because of the joint normality of prices and endowments in our model, the conditional

variance of X given exchange prices is an unambiguous metric for price informativeness. Our

results are summarized in Proposition 3.

Proposition 3. Suppose that the variance σ2
Q of liquidity trade is not zero. Then:

1. For any exchange e, var(X̄ | p∗e) is strictly monotone increasing in the number E of

exchanges and converges to var(X̄) as E goes to ∞.

2. var(X̄ | {p∗e : e ∈ E}) is strictly monotone decreasing in E.

In words, Proposition 3 shows that the informativeness of the price on any individual

exchange worsens with fragmentation but overall price informativeness, taking into consid-

eration information from all exchange prices, improves.

6 The Case of Observable Aggregate Endowment

In this section we present a simplified version of the model in which the aggregate endowment

of strategic traders is publicly observable. In this setting, because the equilibrium price of

a given exchange is a linear combination of the aggregate endowment and of exchange-

specific liquidity trade, traders do not need to make cross-exchange price inferences. That

is, conditional on X, prices in any two exchanges are uncorrelated. With no cross-exchange

price inference, we can demonstrate the welfare benefits of fragmentation in a setting that

does not require liquidity traders or Gaussian Xe and Qe.

To this end, we retain the model setup of section 3 with the exceptions that, for any

exchange e and any trader i, (a) neither Qe nor Xi is necessarily normally distributed, (b)

Qe has zero mean, and (c) trader i observes7 the private endowment Xi and the average

endowment X. The following theorem characterizes the equilibrium of this model.

Theorem 2. For each number E of exchanges, there exists a symmetric affine equilibrium.

If, in addition, for each e, Qe has full support R, then the equilibrium is unique in the class

of symmetric affine equilibria and has the following properties.

1. The price-impact coefficient ΛE = 2b/(N − 2) does not depend on the number E of

exchanges.

7That is, the demand submitted by trader i on exchange e is a measurable function fie : R3 → R that,
at any price p, determines the demand fie(Xi,

∑
j∈N Xj , p).
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2. The price on exchange e is

p∗e = −2b

(
X̄ +

Qe

N − 2

N − 1

N

)
.

3. The final asset position of trader i is

ΛE

ΛE + 2bE
Xi +

2bE

ΛE + 2bE
X̄ +

Q

N
.

4. The total expected equilibrium payment E
(∑

e∈E p
∗
eQe

)
of liquidity traders is invariant

to the number E of exchanges and equal to

var(Q)

N − 2

N − 1

N
.

5. Allocative efficiency is increasing in the number E of exchanges. As E diverges, the

allocation converges to the efficient allocation, q̄ to each strategic trader.

In this setting, price impact is a constant that does not depend on the level of fragmen-

tation because there is no cross-exchange inference effect. Thus, by Part 3 of the theorem,

more fragmentation is unambiguously beneficial in this setting. In the limit as E tends to

infinity, the fully efficient allocation obtains. The benefits of fragmentation arise entirely

from the beneficial effects of increased order aggressiveness associated with order splitting.

The above equilibrium exists even when there is no liquidity trade, though the presence

of liquidity trade is needed for equilibrium uniqueness. Even in the presence of liquidity

traders, the expected payment of liquidity traders to strategic traders is invariant to market

fragmentation. Thus the beneficial effect of fragmentation is not related to the exploitation

of liquidity traders by strategic traders.8 In the model of section 3, the liquidity traders were

only a convenient modeling device for breaking the perfect correlation in exchange prices.

Budish, Cramton, and Shim (2015) note that, at a sufficiently high sampling frequency, the

prices of similar assets on different exchanges are virtually uncorrelated, empirically.

8In the setting of section 5, our results are not driven by donations from liquidity traders, but liquidity
traders do pay more in expectation as fragmentation increases. In the model of section 3, the total expected
payment to strategic traders is

E

(∑
e∈E

p∗eQe

)
=
N − 1

N
ΛEσ

2
Q. (8)

which is strictly increasing in E since ΛE is strictly increasing.
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7 Discussion of Model Extensions

In this section we summarize the results of three extensions of the main model that are

provided in the appendices.

7.1 Endogenous Liquidity Trade, Exchange by Exchange

In our first model extension, found in Appendix D, liquidity traders, who are local to each

exchange and conduct no cross-exchange trade, choose the sizes of their trades. Liquidity

traders are assumed to have the same preferences as strategic traders, but may have a

different quadratic holding cost parameter, c, and may also be endowed with some quantity

of the asset prior to trade. Thus, the baseline model is equivalent to the case in which

c = ∞, in that liquidity traders liquidate their entire endowed positions as though without

discretion. Relaxing this baseline extreme assumption to the case of finite c, we find that,

provided c is sufficiently high, fragmentation always improves allocative efficiency, relative

to a centralized market, in that the expected sum of all agents’ holding costs is lower with

E > 1 than with E = 1.

7.2 Private information about asset payoff

In a second extension, found in Appendix E, agents have differing private information about

the asset’s final payoff. In this case, allocative efficiency is not necessarily improved by

fragmenting a centralized market. This is so because fragmentation leads agents to trade

more aggressively for two reasons: not only to mitigate holding costs, but also to exploit

payoff-relevant private information. While the former motive leads fragmentation to improve

allocative efficiency, as we demonstrated in section 5, the latter effect can cause fragmentation

to reduce allocative efficiency. This is because the efficient allocation of the asset does not

depend’s on agents’ payoff-relevant private information. Whether fragmentation is beneficial

or harmful is shown to depend on the relative magnitudes of these two effects.

7.3 Correlated trade motives

In a third extension, found in Appendix F, we relax the assumption that the underlying

random variables (X1, . . . , XN , Q1 . . . , QE) are jointly independent. We retain the assump-

tion that these random variables are jointly Gaussian, but allow for an essentially arbitrary

covariance matrix, subject to the condition that the traders’ endowments X1, . . . , XN are

symmetrically distributed and that the liquidity-trade quantities Q1, . . . , QE are symmetri-

cally distributed.
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If a strategic trader’s endowment Xi does not covary more negatively with aggregate

liquidity trader supply
∑

eQe than it covaries positively with the aggregate endowment∑
j Xj, there is an interior optimal level of fragmentation which, up to the integer constraint

on E, achieves the efficient allocation.9

In this setting, however, an arbitrary level of market fragmentation need not, however,

coincide with an unambiguous improvement in allocative efficiency over a centralized market.

Whether this is so depends on the covariances of endowments. Under certain parameters,

agents may trade even more aggressively than they do in the baseline model, which we

have shown has the property that trade already becomes “too aggressive” for sufficiently

large E. Moreover, if a strategic trader’s endowment covaries more negatively with the

aggregate liquidity trader supply than it covaries positively with the aggregate endowment,

fragmentation is harmful. This is because the inefficiency associated with the inferior trading

technology associated with disconnected fragmented markets dominates the beneficial effect

of lowering the effect of strategic avoidance of price impact. This follows from the fact that,

ex ante, with this correlation structure, traders expect that residual supply on each exchange

is on average relatively favorable for offsetting their positions. This, however, leads to less

aggressive trade than is socially efficient since agents are less willing to trade large quantities

at unfavorable prices on any given exchange because they expect that prices on the other

exchanges will be more favorable.

8 Concluding Discussion

We have presented a simple market setting in which fragmentation of trade across multi-

ple exchanges improves allocative efficiency and price informativeness. Our main marginal

contributions are (a) a newly identified channel by which cross-exchange price inference ex-

acerbates price impact, and (b) a demonstration of the beneficial effects of cross-exchange

order-splitting on allocative efficiency and price informativeness. We find that although frag-

mentation reduces market depth on any given exchange, this is not a sign of worsening overall

liquidity or market efficiency. We characterize the welfare-optimal number of exchanges in

closed form.

Our stylized model abstracts from many important practical considerations. We do not

consider some of the direct frictional costs of trade and order splitting, including the effects of

trading fees and subsidies, minimum tick sizes, and bid-offer spreads, which are endogenous

to market structure, particularly through the role of competition among exchange operators,

9Positive definiteness of the covariance matrix ensures that, for each i, Xi is positively correlated with∑
j∈N Xj .
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specialists, and market makers (Baldauf and Mollner, 2019; Chao, Yao, and Ye, 2018; Colliard

and Foucault, 2012; Malinova and Park, 2019; Foucault and Menkveld, 2008; Chlistalla and

Lutat, 2011; Clapham et al., 2019; Hengelbrock and Theissen, 2009; Parlour and Seppi,

2003).

We also do not consider the endogenous entry of exchanges, a common theme in the

literature, as reviewed by Pagnotta and Philippon (2018). We have also not captured the

effect of high-frequency traders that can take advantage of slight discrepancies in order

execution times across different exchanges (Budish, Lee, and Shim, 2019; Gresse et al., 2012;

Pagnotta and Philippon, 2018). We also ignore the role of trade-through rules such as

Regulation NMS, which effectively forces all U.S. lit exchanges to recognize the best bid

or offer available across all order books in the market. While Reg NMS has the effect of

consolidating markets for small trades, trade-through rules do not play a significant role in

price-impact costs, which are only pertinent for large trades. The inefficiencies associated

with price-impact cost avoidance through order splitting are the main concern in this paper.

Because we have abstracted from these and other potentially important realistic effects,10

we make no normative claims or policy recommendations. The mechanisms that we identify

do, however, appear to have a natural basis and to be worthy of serious consideration in

policy discussions.

Our model also has implications for the welfare impact of innovation of trading technolo-

gies. For example, the beneficial welfare effects of order splitting that we have described rely

crucially on the realistic assumption that orders submitted to one exchange cannot condition

on prices at other exchanges. If, instead, trading technology were to improve so that orders

could condition on cross-exchange prices, then trades on a given exchange would have impact

on prices at other exchanges, which could eliminate the beneficial effect of order-splitting in

fragmented markets, an issue considered by Wittwer (2020).

10Babus and Parlatore (2017) focus on the role of divergent beliefs and the incentives of investors to trade
on a venue mainly with dealers or on different venue facing other investors.
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A Verification Theorem

In this section we prove a theorem which will be repeatedly used to verify that a candi-

date symmetric affine equilibrium is indeed an equilibrium. Before stating the theorem, we

first clarify our notation. We denote a candidate symmetric affine equilibrium by a triple

corresponding to the coefficients of strategic agents’ demand schedules, (α, ζ,∆), and the

information set of agent i by Fi. For example, in the baseline model, Fi is the σ-algebra gen-

erated by Xi while in the model of section 6, it is the σ-algebra jointly generated by Xi and∑
j∈N Xj. Given a candidate equilibrium, for each i ∈ N and e ∈ E, we let qcie : Ω×R→ R

denote the corresponding measurable demand schedule, q∗ie the random variable correspond-

ing to the quantity purchased, and pce the random variable corresponding to the market

clearing price.

Theorem 3. Let (α, ζ,∆) be a candidate symmetric affine equilibrium with y > 0 such that

α, ζ, and ∆ are each ∩i∈NFi-measurable random variables. For each e ∈ E and i ∈ N define

rie :=
∑

{j∈N | j 6=i}

−αXj + (N − 1)∆−Qe.

If for each i ∈ N and e ∈ E, rie has finite variance and

µπ − E[2b(Xi + qcie(·, pce) +
∑

{e′∈E | e′ 6=e}

q∗ie′) | Fi, rie] = pce + Λqcie(·, pce)

holds almost surely, then (α, ζ,∆) is a symmetric affine equilibrium.

Proof. For each i ∈ N , let Mi be the set of all maps, f , from Ω × R into R such that for

each p ∈ R, f(·, p) is a Fi-measurable map from Ω into R. Let M̃i be the subset of Mi

of all maps f such that f(·, rie(·)) is a finite variance random variable. Given a candidate

symmetric affine equilibrium, (α, y,m) we have shown in the main body of the text that the

market clearing price in e is

pe =
rie + qie
ζ(N − 1)

(9)

if agent i purchases qie units and all other agents submit the candidate equilibrium demand

schedules. It is clear that any demand schedule submitted by agent i to exchange e which

conditions on the market clearing price can be implemented by a demand schedule which

instead conditions on rie. It is therefore convenient to reformulate agent i’s optimization

problem as maximizing
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E[π
∑
e∈E

qie(ω, r
i
e)− b(Xi +

∑
e∈E

qie(ω, r
i
e))

2 −
∑
e∈E

rie + qie(ω, r
i
e)

ζ(N − 1)
qie(ω, r

i
e)] (10)

over (qi1, ..., qiE) ∈ME. Above, ω ∈ Ω. We have for convenience suppressed the dependence

of each rie on ω. We will first derive a necessary and sufficient condition of the form given

in the statement of the theorem for a profile of demand schedules to be optimal in M̃E and

then argue that restricting attention to M̃E is without loss of generality.

Take arbitrary (h1, ..., hE) ∈ M̃E and consider

E

[
π
∑
e∈E

(qie(ω, r
i
e) + νhe(ω, r

i
e))− b(Xi +

∑
e∈E

qie(ω, r
i
e) + νhe(ω, r

i
e))

2

]

− E

[∑
e∈E

rie + qie(ω, r
i
e) + νhe(ω, r

i
e)

ζ(N − 1)
(qie(ω, r

i
e) + νhe(ω, r

i
e))

]
, (11)

which is a function of ν, an argument taking values in R. Differentiating (11) with respect

to ν and evaluating at ν = 0 gives:

E

[
π
∑
e∈E

he(ω, r
i
e)− 2b(Xi +

∑
e∈E

qie(ω, r
i
e))
∑
e∈E

he(ω, r
i
e)

]

− E

[∑
e∈E

(
qie(ω, r

i
e)

ζ(N − 1)
+
rie + qie(ω, r

i
e)

ζ(N − 1)
)he(ω, r

i
e)

]
= 0.

This is a necessary condition for optimality. It holds if

E

[
−2b(Xi +

∑
e′∈E

qie′(ω, r
i
e′)) | Fi, rie

]
=
qie(ω, r

i
e)

ζ(N − 1)
+
rie + qie(ω, r

i
e)

ζ(N − 1)
− µπ. (12)

for each e ∈ E.

We now show that (12) is a sufficient condition for optimality within M̃E. Differentiating

(11) with respect to ν twice we derive

E

[
−2b(

∑
e∈E

hie(ω, re))
2 − 2

ζ(N − 1)

∑
e∈E

hie(ω, re)
2

]
, (13)

which is less than or equal to 0 for all (h1, ..., hE) ∈ M̃E. Note that this expression does

not depend on ν. Moreover, it is strictly less than 0 if one of h1, ..., hN is not equal to 0 on

a set of positive P-measure. Suppose (qi1, ..., qiE) satisfies (12). Suppose for contradiction
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that there exists (h∗1, ..., h
∗
E) ∈ M̃E which achieves a strictly higher value of (10) than does

(qi1, ..., qiE). Set (h1, ..., hE) ≡ (h∗1−qi1, ..., h∗E−qiE) ∈ M̃E. Then the function (11) achieves

a higher value at ν = 1 than at ν = 0. However, by earlier analysis, (11) is a strictly concave

function of ν and has global maximum at ν = 0. This is a contradiction.

We now argue that it is without loss of generality to restrict attention to M̃E. Consider,

for arbitrary e ∈ E,

E
[
−πqie(ω, rie) +

rieqie(ω, r
i
e) + qie(ω, r

i
e)

2

(N − 1)ζ

]
=∫

{ω: | re |> 1
2
| qie(ω,rie) | }

[
−πqie(ω, rie) +

reqie(ω, r
i
e) + qie(ω, r

i
e)

2

ζ(N − 1)

]
P{dω}

+

∫
{ω: | re | ≤ 1

2
| qie(ω,rie) | }

[
−πqie(ω, rie) +

reqie(ω, r
i
e) + qie(ω, r

i
e)

2

ζ(N − 1)

]
P{dω}. (14)

Suppose that qie(·, rie(·)) is not a finite variance random variable. The first integral is by

construction finite since rie is a finite variance random variable. The second integral by

construction must exceed∫
{ω: | re | ≤ 1

2
| qie(ω,rie) | }

[
−πqie(ω, rie) +

1

2ζ(N − 1)
qie(ω, r

i
e)

2

]
P{dω}.

However, this second integral must be infinite since qie(·, rie) is not a finite variance random

variable (this can be seen by using the fact that π is assumed to be of finite variance and

partitioning the integral to separately consider the cases when | qie | > 3y(N − 1) | π | and

| qie | ≤ 3y(N−1) | π | ). Thus, (14) is∞ which, by inspecting (10), implies that the objective

is −∞. It is therefore without loss of generality to only consider optimality within M̃E.

Finally, putting together (12) with (9) we see that the condition in the statement of the

theorem is a sufficient condition for each agent to optimize by submitting {qcie}e∈E if each of

the other agents act analogously.

B Proofs for Section 4

We give proofs for all results in section 4. First we formally define what it means for an

allocation to be “more efficient” and then prove Proposition 4 which will be used in the proof

of Theorem 1.

Definition 1. We say that an allocation, is more efficient than another allocation if the

sum of strategic agents’ holding costs is weakly lower at that allocation than at the other
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allocation for each ω ∈ Ω and strictly lower almost surely. We say that two allocations are

equally efficient if the sum of strategic agents’ holding costs are equal at both allocations for

each ω ∈ Ω.

Proposition 4. Fix E and E ′ in N and let (αE, ζE,∆E) and (αE′ , ζE′ ,∆E′) be symmetric

affine equilibria corresponding to E and E ′ respectively. If

| 1− EαE | > | 1− E ′αE′ |

then the allocation corresponding to (αE′ , ζE′ ,∆E′) is more efficient than the allocation corre-

sponding to (αE, ζE,∆E). The allocations corresponding to (αE, ζE,∆E) and (αE′ , ζE′ ,∆E′)

are equally efficient if and only if

| 1− EαE | = | 1− E ′αE′ | .

Proof. The sum of strategic agents’ holding costs at the equilibrium allocation corresponding

to (αE, ζE,∆E) is

b
∑
i∈N

(
(1− EαE)Xi + EαE

1

N

∑
j∈N

Xj +
Q

N

)2

.

Expanding, rearranging, and combining like terms we obtain

b
∑
i∈N

(1− EαE)2X2
i − [(1− EαE)2 − 1]

1

N

(∑
j∈N

Xj

)2

+
Q2

N
+ 2

Q

N

∑
j∈N

Xj

 .
The result is an implication of the above expression and Jensen’s inequality.

Proof of Theorem 1. The proof proceeds in three steps. In step one, we derive equations

(21), (22), and (23) and show that a necessary and sufficient condition for a symmetric

affine equilibrium is that αE, ζE and ∆E solve these three equations. In step two we prove

that there is a unique solution to establish existencess and uniqueness of a symmetric affine

equilibrium. This completes a proof of the preamble of the theorem. In the final third step,

we prove parts 1 through 6.

Step 1. Conjecture that there exists a symmetric affine equilibrium (αE, ζE,∆E). Under

this conjecture, each agent i ∈ N submits

qeqie = −αEXi − ζEpe + ∆E (15)
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to each e ∈ E and i ∈ N , where αE, ζE, and ∆E are constants. Market clearing in exchange

e implies that the equilibrium market clearing price is

p∗e =
−αE(

∑
iXi) + ∆EN −Qe

ζEN
. (16)

Price impact can also be determined from the market clearing condition. If agent i purchases

qie units at the market clearing price when all other agents submit the conjectured equilibrium

demand schedules, then

−αE

 ∑
{j∈N | j 6=i}

Xj

− ζE(N − 1)pe + ∆E(N − 1) + qie = Qe

which implies that

pe =
−αE(

∑
j 6=iXi) + qie + ∆E(N − 1)−Qe

ζE(N − 1)
. (17)

That is, the price impact agent i faces in exchange e is Λ := 1
ζE(N−1)

, which by symmetry, is

the price impact each agent faces in all exchanges. In determining his or her optimal demand

schedule for exchange e, agent i equates his or her expected marginal utility conditional on

pe − qie
ζE(N−1)

and Xi, with his marginal cost. The optimality condition is

− 2b

(
Xi + qie + (E − 1)E

[
q∗ik | pe −

qie
ζE(N − 1)

, Xi

])
= pe + ΛEqie − µπ. (18)

Here above, k is an arbitrary exchange in E, distinct from e and q∗ik is the quantity agent

i purchases in exchange k if all agents submit their equilibrium demand schedules to k. In

(18), we have used symmetry of the exchanges. Our next step is to compute

E
[
q∗ik

∣∣∣∣ pe − qie
ζE(N − 1)

, Xi

]
using the projection theorem. We obtain

E
[
q∗ik | pe −

qie
ζE(N − 1)

, Xi

]
= −αEXi

N − 1

N
−
(

1− N − 1

N
γ

)
(−αEµX + ∆E)

− N − 1

N
γζEpe + γ

qie
N

+ ∆E, (19)
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where

γE = corrXi(p
∗
e, p
∗
k) =

Eα2
E(N − 1)σ2

X

Eα2
E(N − 1)σ2

X + σ2
Q

. (20)

We substitute the expression for γE and (15) into (18) and match coefficients to derive a

system of three equations which characterize the three unknowns, αE, ζE, and ∆E. We do

not explicitly list the algebraic steps here. We obtain

ζE =
1

2b((E − 1)γE + 1)

N − 2

N − 1
(21)

αE =
1

1 + γ(E−1)
N

+ (E−1)γ+1
N−2

+ (E − 1)N−1
N

, (22)

and

∆E = −
(E − 1)(1− N−1

N
γ)αEµX − µπ

2b

1 + γ(E−1)
N

+ (γ(E−1)+1)
N−2

+ (E − 1)(N−1
N
γ)
. (23)

It is clear that any symmetric affine equilibrium must solve equations (21), (22), and (23)

since (18) must be satisfied for all but possibly a measure zero set of prices for optimality.

We now argue that this is sufficient. Suppose there exists a solution (αE, ζE,∆E) to the

system of equations (21), (22), and (23). From (18), we see that this solution satisfies the

conditions of Theorem 3 so it is indeed a symmetric affine equilibrium.

Step 2. We now prove existence of a symmetric affine equilibrium. It is straightforward

to substitute (20) into (22) and derive a cubic equation that characterizes αE. Since the

equation is cubic, there exists at least one real root. Take this to be the value of αE and

compute ζE and ∆E using equations (20), (21), and (23). Thus a symmetric affine equilibrium

exists.

We now prove there is a unique symmetric affine equilibrium. Fix E ∈ N and define the

function g as follows

g(a) := a− 1

Eγ( 1
N

+ 1
N−2

) + (1− γ)( 1
N

+ 1
N−2

) + EN−1
N

where γ is a function of a such that γ(a) is equal to (20) but with a in place of αE. Since

we have already shown existence there is an a ∈ R such that g(a) = 0. We observe that the

second term in the above expression is strictly monotone decreasing in γ. By (20) we see

that γ is strictly monotone increasing in a. Thus g(a) is strictly monotone increasing in a.

Hence there can exist at most one value of a ∈ R such that g(a) = 0.
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Step 3. Part 1 follows immediately from (16) and the fact that ΛE = 1
(N−1)ζE

. Part 2

follows immediately from (21). Part 3 follows by substituting (16) into (15). Part 4 can be

seen from the fact that when σ2
Q = 0, γE is equal to 1 so that inspecting equations (21),

(22), and (23) we have closed form solutions for ζE, αE, and ∆E. Using these closed form

solutions we find that EαE, by (22), is equal to N−1
N−2

which is independent of E and also

equal to 2b
2b+Λ1

. To prove part 5, we combine part 3 with part 4.

Finally, we prove part 6. We first prove that EαE → N
N−1

. By Proposition 1, γ → 0—

note that the proof of Proposition 1 does not rely on Part 6 of Theorem 1 so the logic is not

circular. Using (22) with some rearrangement we write

EαE =
1

γE( 1
N

+ 1
N−2

) + (1− γE) 1
E

( 1
N

+ 1
N−2

) + N−1
N

.

Taking limits we see that EαE → N
N−1

. We now prove that EαE is strictly monotone

increasing in E. Suppose for contradiction that there exists E ∈ N such that (E+ 1)αE+1 <

EαE. Then by inspection it must be that γE+1 > γE. But, inspecting (20), this implies that

(E + 1)α2
E+1 > Eα2

E which in turn implies that (E + 1)αE+1 > EαE a contradiction.

We now prove that the equilibrium allocation in a fragmented market (E > 1) is more

efficient than the equilibrium allocation in a centralized market (E = 1). When E is equal

to 1, EαE is equal to N−2
N−1

by Part 5. When E →∞, EαE converges strictly monotonically

to N
N−1

. Thus for any E > 1 we have

1

N − 1
= | 1− α1 | > | 1− EαE | .

The result follows from Proposition 4.

Proof of Proposition 1. That ΛE is strictly monotone increasing and diverges to ∞ when

σ2
Q = 0 is immediate from Theorem 1, where we showed that, in this case, ΛE = 2bE

N−2
. For

the remainder of this proof assume that σ2
Q > 0.

We now prove that ΛE is strictly monotone increasing. By Theorem 1 we have ΛE =
2b(1+γE(E−1))

N−2
. It therefore suffices to show that (E−1)γE is strictly monotone increasing. Fix

an arbitrary E ∈ N. If γE+1 > γE, then it must be that EγE+1 > (E−1)γE. Suppose γE+1 <

γE. Then to prove that EγE+1 > (E − 1)γE it suffices to prove that (E + 1)γE+1 > EγE.

Consider the equation for γn derived in the proof of Theorem 1 which holds for arbitrary

n ∈ N:
nα2

n(N − 1)σ2
X

nα2
n(N − 1)σ2

X + σ2
Q

.
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Denote the numerator, numn so that

γn =
numn

numn + σ2
Q

.

By Theorem 1, (E + 1)αE+1 > EαE which implies that

(E + 1)numE+1

(E + 1)numE+1 + σ2
ξ

>
EnumE

EnumE + σ2
ξ

,

which in turn implies that

(E + 1)γE+1 =
(E + 1)numE+1

numE+1 + σ2
ξ

>
EnumE

numE + σ2
ξ

= EγE.

Thus we have shown that (E − 1)γE is strictly monotone increasing so that ΛE is strictly

monotone increasing.

We now prove that ΛE converges and give an explicit expression for the limit point. We

can, using the expression for γE, write ΛE as

2b

N − 2
(1+(E−1)

Eα2
E(N − 1)σ2

X

Eα2
E(N − 1)σ2

X + σ2
Q

) =
2b

N − 2

(
1 +

E2α2
E(N − 1)σ2

X − Eα2
E(N − 1)σ2

X

Eα2
E(N − 1)σ2

X + σ2
Q

)
.

By Theorem 1, we have an explicit expression for the limit point of EαE which implies also

that Eα2
E → 0. Thus, we can directly take limits of the right-hand side of the above equation

to obtain ΛE → 2b
N−2

(1 +
N2σ2

X

(N−1)σ2
Q

).

We next prove that γE → 0. By inspecting (22), we see that

1

E(N−1
N

+ 1
N

+ 1
N−2

)
< αE <

1

EN−1
N

for all E sufficiently large. Inspecting the equation (20), we see that for large E, the numer-

ator of γE is O( 1
E

) since by Theorem 1 we know that EαE converges. The denominator is

roughly equal to σ2
Q for large E so it must be that γE → 0.

Finally, we prove that γE is strictly monotone decreasing. By inspecting (20) it suffices

to prove that Eα2
E is strictly monotone decreasing. Suppose for the moment that (E− 1)γE

is constant. If we treat E as potentially taking non-integer values in R using (22) we can

compute
d(Eα2

E)

dE
= α2

E − 2αE
dαE
dE

E < 0

⇔
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1− 2αE
N − 1

N
E < 0.

In the last inequality, we have used the fact that−EαE = −N−2
N−1

when E = 1 and is monotone

decreasing by Theorem 1. The computation above is assuming (E − 1)γE is constant. We

showed earlier that it is in fact increasing. But that it increases only serves to ensure that

αE decreases at a higher rate so it must be that Eα2
E is strictly monotone decreasing as

aglklain seen by inspecting (22). Thus γE is strictly monotone decreasing.

Proof of proposition 2. Substituting (20) into (22) and rearranging we obtain the following

cubic equation which defines EαE.

(EαE)3(σ2
X(N−1)(1+

1

N − 2
))−(EαE)2(N−1)σ2

X+EαEσ
2
Q(E−E

N
+

1

N
+

1

N − 2
)−Eσ2

Q = 0.

The efficient allocation is acheived at E∗ such that E∗αE∗ = 1 provided E∗ is in N. Thus

(σ2
X(N − 1)(1 +

1

N − 2
))− (N − 1)σ2

X + σ2
Q(E∗ − E∗

N
+

1

N
+

1

N − 2
)− E∗σ2

Q = 0.

Solving for E∗ yields

E∗ = 2 +
2

N − 2
+
N − 1

N − 2

Nσ2
X

σ2
Q

.

That the E ∈ N whose symmetric affine equilibrium allocation is most efficient is either

bE∗c or dE∗e follows from the proof of Part 6 of Theorem 1 which shows that EαE is strictly

monotone increasing. By inspection, the proof did not rely upon E taking values in N—

the same method of proof can be adapted to show that if we increase E continuously, the

corresponding αE which simultaneously solves (20) and (22) is such that EαE is strictly

monotone increasing. Combining this observation with Proposition 4 gives the result.

Proof of Proposition 3. We first prove Part 1. Recall that

p∗e =
N − 1

N
ΛE[
∑
i∈N

Xi +N∆E −Qe].

We therefore have

V ar[p∗e] = (
N − 1

N
ΛE)2[α2

EV ar[
∑
i∈N

Xi] +
σ2
Q

E
]

and

cov(
∑
i∈N

Xi, p
∗
e) =

N − 1

N
ΛEα

2
EV ar[

∑
i∈N

Xi].
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By the rules of conditional Gaussians

V ar[
∑
i∈N

Xi | p∗
E

e ] = (1−
α2
EV ar[

∑
i∈N Xi

α2
EV ar[

∑
i∈N Xi] +

σ2
Q

E

)V ar[
∑
i∈N

Xi]

By an argument eactly analogous to the argument that γE is strictly monotone decreasing

to zero used in Proposition 1, we can show that
α2
EV ar[

∑
i∈N Xi]

α2
EV ar[

∑
i∈N Xi]+

σ2
Q
E

converges to 0 strictly

monotonically as E diverges. This proves part 1.

We now prove part 2. Since the price in each exchange consists of a common signal

component and independent noise, the sum of the prices is a sufficient statistic for inference

so that V ar[
∑

i∈N Xi |
∑

e∈E p
∗E
e ] = V ar[

∑
i∈N Xi | p∗

E

1 , ..., p∗
E

E ]. We have

∑
e∈E

p∗
E

e =
N − 1

N
ΛE[−EαE

∑
i∈N

Xi −Q+ EN∆E]

so that

V ar[
∑
e∈E

p∗
E

e ] = Λ2
E(
N − 1

N
)2[(EαE)2V ar[

∑
i∈N

Xi] + σ2
Q].

Next we have,

cov(
∑
i∈N

Xi,
∑
e∈E

p∗
E

e ) =
N − 1

N
ΛEEαEV ar[

∑
i∈N

Xi].

By the rules of conditional Gaussians,

V ar[
∑
i∈N

Xi |
∑
e∈E

p∗
E

e ] = V ar[
∑
i∈N

Xi]−
(EαE)2V ar[

∑
i∈N Xi]

(EαE)2V ar[
∑

i∈N Xi] + σ2
Q

V ar[
∑
i∈N

Xi]

The result follows since
(EαE)2V ar[

∑
i∈N Xi]

(EαE)2V ar[
∑
i∈N Xi]+σ2

Q
increases strictly monotonically because EαE

increases strictly monotonically as seen from part 6 of Theorem 1.

Proposition 5. The expected payment of liquidity traders is N−1
N

ΛEσ
2
Q and if σ2

Q > 0 is

strictly monotone increasing.

Proof.

−E[
∑
e∈E

peQe] = −N − 1

N
ΛEE[(−

∑
e∈E

(αE
∑
i∈N

Xi +N∆E +Qe)Qe] =
N − 1

N
ΛEσ

2
Q.

That the expected payment is strictly monotone increasing follows from the fact that ΛE is

strictly monotone increasing as proven in Proposition 1.
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C Proofs for Section 5

Proof of Theorem 2. The proof proceeds in three steps. In the first step we derive a candi-

date equilibrium. In the second step we verify that the candidate equilibrium is in fact an

equilibrium, and then establish that it is the unique symmetric affine equilibrium if for each

e ∈ E, Qe has full support over the real line. In the third step we show that the derived

equilibrium has properties 1 through 5 given in the statement of the theorem.

Step 1. To begin the first step, we conjecture that there exists a symmetric affine equilib-

rium, denoted (α, ζ,∆). We consider agent i’s optimal choice of demand schedule to submit

to exchange e ∈ E assuming he submits the conjectured equilibrium demand schedule to all

other exchanges and all other agents submit the conjectured equilibrium demand schedule

to all exchanges. Under this conjecture, the market clearing condition in exchange e is∑
j 6=i∈N

(−αXj − ζpe + ∆ + qie) = Qe

which implies that

pe =
(
∑

j 6=i∈N −αXj) + (N − 1)∆ + qie −Qe

(N − 1)ζ

if agent i purchases qie units on exchange e. The market clearing price in exchange k ∈ E
where k 6= e is, by analogous steps,

p∗k =
(
∑

j∈N −αXj) +N∆−Qk

Nζ
. (24)

If agent i purchases qie units on exchange e he can infer the realization of Qe. Agent i

therefore seeks to maximize

E[πqie + π
∑

{j∈N | j 6=i}

q∗ij − b(Xi +
∑

{j∈N | j 6=i}

q∗ij + qie)
2 − peqie |Qe,Fi]− E[

∑
{j∈N | j 6=i}

p∗jq
∗
ij | Fi]

by choosing qie for each realization of Qe. Above q∗ij is the equilibrium quantity agent i

purchases on exchange j. The expectation on the right hand side does not condition on Qe

because it is is independent of q∗ij and p∗j for each {j ∈ N | j 6= i}. The first order condition

is

− 2b(Xi + qie + (E − 1)E[q∗ik | Fi]) = pe + qieΛ− µπ (25)
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where Λ ≡ 1
(N−1)y

and we have used symmetry. Rearranging, we have

qie =
−2bXi − 2b(E − 1)E[q∗ik | Fi]− pe + µπ

Λ + 2b
.

Substituting the equilibrium price p∗k into the equilibrium demand schedule, we have

q∗ik = −αXi +
(
∑

j∈N αXj) +Qk

N

so that

E[q∗ik | Fi] = −αXi +
(
∑

j∈N αXj)

N
+

µQ
EN

.

We therefore have

qie =
(−2b+ 2b(E − 1)α)Xi − 2b(E − 1)[

(
∑
j∈N αXj)

N
+

µQ
EN

]− pe + µπ
1

(N−1)ζ
+ 2b

.

We now match coefficients with our conjecture that qeqie = −αXi−ype+m to determine that

ζ =
N − 2

N − 1

1

2b
, (26)

Λ =
2b

N − 2
, (27)

α =
2b

Λ + 2bE
, (28)

and

∆ =
−2b(E − 1)[ 2b

Λ+2bE

∑
i∈N Xi
N

+
µQ
EN

] + µπ

2b+ Λ
. (29)

Step 2. To complete step two we appeal to Theorem 3. By construction the condition

in the theorem is satisfied (see (25)). To see that the symmetric affine equilibrium is unique

when each Qe has full support over the real line suppose that there exists a symmetric affine

equilibrium such that at least one of the equations (26), (28), and (29) are not satisfied. Then

equation (25) is violated for some realization of the price in some exchange k ∈ E for some

agent j ∈ N . Continuity implies that the condition (25) must be violated for realizations

of pe in an open neighborhood of positive Lebesgue measure, denoted B. Note that it is a

necessary condition that (25) holds almost surely. Since each Qe has full support over the

real line and is independent of Fi, agent i can not be maximizing his expected utility by
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submitting the affine demand schedule, −αXi − ζpe + ∆ to exchange e.

Step 3. Part 1. was shown in equation (27). Part 2. follows from substituting equations

(26), (28), and (29) into (24). Part 3 follows from substituting the equation for price in

part 2. in to the equilibrium demand schedule and adding Xi. Part 4 follows from direct

computation:

−E[
∑
e∈E

peQe] = −N − 1

N

2b

N − 2
E[
∑
e∈E

(
∑
i∈N

−αXi +N∆−Qe)Qe] =
2b(N − 1)

N(N − 2)
V ar[Q].

Part 5 follows from part 3 and taking the limit as E tends to infinity.

D Extension: Endogenous Liquidity Trade

This appendix offers an extension in which liquidity traders, who are local to each exchange

and conduct no cross-exchange trade, choose the sizes of their trades.

D.1 Setup

In this section we extend the baseline model by allowing liquidity traders to endogenously

choose the quantity of market orders that they supply. There are M liquidity traders who

are each restricted to trade on a single exchange. We assume that M is divisible by E and

that a fraction 1/E of them trade on any given exchange. Liquidity trader j has endowment

Hj ∼ N(0,
1

M
σ2
H)

where the {Hj} are mutually independent. Suppose further that each liquidity trader j has

preferences of the same form that we have assumed for the strategic traders. If liquidity

trader j is restricted to trade on exchange e, his or her ex-ante expected utility of purchasing

hj units via a market order is

E[πhj − c(Hj + hj)
2 − hjp∗e |Hj, hj].

Above c ∈ R+ is the holding cost parameter of the liquidity traders. It is useful to think

of c being high relative to b, the holding cost parameter of strategic agents. Finally, for

simplicity, for this section only, we assume that µX = 0 and µπ = 0.
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D.2 Analysis

Theorem 4. There exists a symmetric affine equilibrium. In any symmetric affine equilib-

rium the following are true.

1. The quantity of market orders submitted by agent j is

hj =
−cHj

c+ ΛE
N−1
N

.

2. For each e, e′ ∈ E distinct, the correlation between prices in the two exchanges from

the perspective of a strategic trader is

γE =
(Eα)2σ2

X(N − 1)

(Eα)2σ2
X(N − 1) + ( c

c+Λe
N−1
N

)2σ2
HE

(30)

3. A strategic trader’s price impact satisfies

ΛE =
2b((E − 1)γE + 1)

N − 2
(31)

while the price impact of a liquidity trader is

N − 1

N
ΛE. (32)

4. EαE satisfies

EαE =
1

γE( 1
N

+ 1
N−2

) + (1− γE) 1
E

( 1
N

+ 1
N−2

) + N−1
N

. (33)

Proof. We conjecture that there exists a symmetric affine equilibrium in which each strategic

trader i ∈ N submits a demand schedule of the form −αEXi− ζEp and each liquidity trader

j submits a market order of the form −α̃EHj. We study the best response problem of trader

j ∈M . Via market clearing, we can compute the market clearing price in exchange e in the

equilibrium is ∑
i∈N −αEXi −

∑
{k∈M | k 6=j} α̃Ehk + hj

NζE

if all agents i ∈ and k ∈ M such that k 6= j behave as conjectured and agent j purchases

hj units on the exchange. Retaining the notation that ΛE = 1
(N−1)ζE

the price impact of
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liquidity trader j is ΛE
N−1
N

. He or she seeks to maximize

E[πhj − c(Hj + hj)
2 − hjp∗e |Hj, hj] = −c(Hj + hj)

2 − ΛE
N − 1

N
h2
j

by choosing hj ∈ R. Taking a first order condition with respect to hj we have

−2c(Hj + hj)− 2hjΛE
N − 1

N
= 0,

which implies that

hj =
−cHj

c+ ΛE
N−1
N

.

Thus

α̃E =
c

c+ ΛE
N−1
N

.

If strategic traders take the variance of aggregate liquidity trade to be

σ2
Q =

(
c

c+ Λe
N−1
N

)2

σ2
H ,

we see that the analysis of the baseline model applies. That is, strategic traders maximize

by submitting affine demand schedules such that equations (30), (31) and (33) are satisfied.

Then the analysis of the baseline model therefore ensures that provided there exists αE

and γE which satisfies (30), (31), and (33), there exists a symmetric affine equilibrium with

the four properties given in the statement of the theorem. To show existence it suffices

to recognize that substituting expressions (31) and (33) into (30) and re-arranging yields a

cubic equation in γE. Since the equation is cubic there always exists at least one real root.

Thus there always exists a solution to the system of equations.

The above theorem has characterized a symmetric affine equilibrium of the model with

endogenous liquidity traders. The following proposition states some results relevant for

assessing the allocative efficiency of the symmetric affine eqiulibrium.

Proposition 6. The following are true of any symmetric affine equilibrium.

1. EαE ∈ [N−2
N−1

, N
N−1

] is always higher in fragmented markets than in centralized markets.

2. Fixing arbitrary E, in the limit as c tends to infinity, the expected sum of liquidity

traders’ holding costs tends to zero.

3. Fixing arbitrary E > 1, for all c sufficiently large, the symmetric affine equilibrium

allocation is more efficient than that of the symmetric affine equilibrium when there
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is a single exchange in the sense that the expected sum of all agents’ holding costs is

lower.

Proof. Centralized markets correspond to the case when γE is one and E is one. To prove

Part 1, it is clear by inspecting (33) that EαE ∈ [N−2
N−1

, N
N−1

]. Next recognize that in frag-

mented markets E > 1 and γE < 1 so that again by inspection, EαE is always higher in

fragmented markets.

To prove the Part 2 recognize that, using part 1 of Theorem 4, the expected sum of

liquidity agents’ holding costs is

c

(
ΛE

N−1
N

c+ ΛE
N−1
N

)2

σ2
H ,

which decays to 0 as c diverges.

To prove Part 3, fix E > 1 and inspect equation (30). Since EαE ∈ [N−2
N−1

, N
N−1

] there

exists a, b ∈ R such that 1 > b > a > 0 and γE ∈ [a, b] for all c sufficiently large. This

implies that | 1 − EαE | is bounded above by a constant strictly less than 1
N−1

whenever c

is sufficiently large. In the limit as c→∞ the aggregate quantity of liquidity trader supply

absorbed by strategic traders when there is a single exchange as well as when there are E

exchanges becomes arbitrarily close to
∑

j∈M Hj. Therefore, by Proposition 4, in the limit

as c → ∞, the expected sum of holding costs is strictly lower when there are E exchanges

than when there is a single exchange since | 1− αE | < | 1− α1 | = 1
N−1

. However, the sum

of liquidity traders’ holding costs converges to 0 as c→∞. This implies the claim asserted

in Part 3 of the theorem.

We now prove the following proposition which implies that EαE must be strictly mono-

tone increasing in E at least until a certain cutoff point. As c increases the range that we

can prove that EαE is strictly monotone increasing in is larger.

Proposition 7. Fix E∗ ∈ N. If c is sufficiently large such that(
c

c+ 2bE∗

N−2
N−1
N

)2

>
E∗

E∗ + 1
,

then EαE is strictly monotone increasing for all E < E∗.

Proof. We begin by proving that (
c

c+ ΛE
N−1
N

)2

E
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is strictly monotone increasing in E for all E < E∗. Since ΛE is bounded above by 2bE∗

N−2
we

have that (
c

c+ ΛE
N−1
N

)2

E >
E∗

E∗ + 1
E

for each E < E∗. Thus we have(
c

c+ ΛE+1
N−1
N

)2

(E + 1)−

(
c

c+ ΛE
N−1
N

)2

E >
E∗

E∗ + 1
(E + 1)− E

for each E < E∗. But the right hand side is equal to(
E∗

E∗ + 1
− 1

)
E +

E∗

E∗ + 1
>

(
E∗

E∗ + 1
− 1

)
E∗ +

E∗

E∗ + 1
= 0.

Now we prove that EαE is strictly monotone increasing at each E < E∗. Inspect the equation

(33). Suppose EαE is decreasing in E then it must be that γE is increasing. Consider now

(30). Since ( c
c+ΛE

N−1
N

)2E is strictly monotone increasing and EαE is decreasing it must be

that γE is decreasing, a contradiction.

E Extension: Private Information about Asset Payoff

This appendix addresses an extension of the model in which strategic traders are asymmet-

rically informed about the asset payoff.

E.1 Setup

We alter the baseline model so that each agent has private information about the asset’s final

payoff, π ∼ N(µπ, σ
2
π). We assume that the aggregate endowment of strategic traders, Z ≡∑

iXi, is public information. As before, liquidity traders supply a quantity Qe ∼ N(0,
σ2
Q

E
)

to each exchange, independent across exchanges. Strategic traders receive private signals of

π:

Si = π + εi

where εi ∼ N(0, σ2
ε ) is i.i.d across individuals.

E.2 Analysis

Theorem 5. In any symmetric affine equilibrium
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1. Each strategic trader i submits a demand schedule to each exchange e of the form

qie = −αXi − ype + wSi +m.

where α, y, w, and m are defined by the system of equations (35)—(42).

2. Price impact is

ΛE =
(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)

N − 2

where γ̃1 and γ̃3 are defined by equations (35) and (37).

3. The final inventory of strategic trader i is

Xi +
∑
e∈E

qie = (1− Eα)Xi + Eα
1

N

∑
j∈N

Xj + Ew

(
Si −

1

N

∑
j∈N

Sj

)
+

∑
e∈E Qe

N
.

Proof. Conjecture a symmetric affine equilibrium in which agent i submits demand schedule

qie = −αXi − ype + wSi +m

to exchange e ∈ E for each i ∈ N and e ∈ E where α, y, w, andm are each ∩i∈Nσ(Xi,
∑

j∈N Xj, Si)-

measurable random variables. If agent i purchases qie units at the market clearing price while

all other individuals submit the conjectured demand schedule, then the market clearing price

is

pe =
1

(N − 1)y

[∑
j 6=i

(−αXj + wSj +m)−Qe + qie

]
.

The equilibrium price is

p∗e =
1

Ny

[∑
j∈N

(−αXj + wSj +m)−Qe

]
.

Let us study an agent i’s optimal choice of demand schedule to submit to exchange 1. He

or she must equate marginal utility with marginal cost for every realization of the price:

−2b(Xi+qi1 +(E−1)E[qi2 | p1−
1

(N − 1)y
qi1, Xi, Si]) = p1−E[π | p1−

1

(N − 1)y
qi1, Xi, Si]

+
1

(N − 1)y
qi1. (34)

The above condition is a necessary condition since it is easy to see that the second order
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condition is satisfied provided y > 0 (which is a condition a symmetric affine equilibrium

must satisfy by definition). We now compute the two conditional moments E[qi2 | p1 −
1

(N−1)y
qi1, Si, Xi] and E[π | p1 − 1

(N−1)y
qi1, Si, Xi] by using the projection theorem. We begin

with the former. We can, using the projection theorem, express

E

 ∑
{j∈N | j 6=}

Si | p1 −
qi1

(N − 1)y
, Si


= µπ(N − 1) + γ1(p1 −

qi1
(N − 1)y

− wµπ
y

+ α
Z −Xi

(N − 1)y
− m

y
) + γ2(Si − µπ).

Here, γ1 and γ2 are derived as follows. The variables,
∑

j 6=i Sj,Si, p1 − 1
(N−1)y

are jointly

Gaussian with variance matrix

Σ =


(N − 1)2σ2

π + σ2
ε (N − 1) (N − 1)σ2

π
w
y

(σ2
π(N − 1) + σ2

ε )

(N − 1)σ2
π σ2

π + σ2
ε

w
y
σ2
π

w
y

(σ2
π(N − 1) + σ2

ε )
w
y
σ2
π

1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

 .
Define

Σ ≡

[
σ2
π + σ2

ε
w
y
σ2
π

w
y
σ2
π

1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ],

]
with

Σ
−1

= [(σ2
π + σ2

ε )
1

y2
[w2(σ2

π +
σ2
ε

(N − 1)
) +

σ2
Q

E(N − 1)2
]− w2

y2
σ4
π]−1

×[
1
y2 [w2(σ2

π + σ2
ε

N−1
) +

σ2
Q

E(N−1)2 ] −w
y
σ2
π

− 1
y
wσ2

π σ2
π + σ2

ε

]
.

Define

Σ12 ≡
[
(N − 1)σ2

π
w
y

(σ2
π(N − 1) + σ2

ε )
]

By the rules of conditional normals[
γ2 γ1

]
= Σ12Σ

−1
.

This yields,

γ2 =

σ2
πσ

2
Q

E(N−1)

(σ2
π + σ2

ε )[w
2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2σ4
π

.
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Note that 1
N−1

γ2 ∈ [0, 1]. Next, we have

γ1 = y
wσ2

πσ
2
ε (N − 1) + wσ2

ε (σ
2
π + σ2

ε )

(σ2
π + σ2

ε )[w
2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2σ4
π

Note that w
y(N−1)

γ1 ∈ [0, 1]. We have

E[qi2 | p1 −
1

(N − 1)y
qi1, Si] = −αXi + wSi +m+

αZ

N
− wSi

N
−m

− w

N
[µπ(N − 1) + γ1(p1 −

1

(N − 1)y
qi1 −

wµπ
y

+ α
Z −Xi

(N − 1)y
− m

y
) + γ2(Si − µπ)].

Next, we move on to compute, E[π | p1 − 1
(N−1)y

qi1, Si, Xi]. We can, using the rules of condi-

tional normals, express

E[π | p1 −
qi1

(N − 1)y
, Si] = µπ + γ3(p1 −

qi1
(N − 1)y

− wµπ
y

+ α
Z −Xi

(N − 1)y
− m

y
) + γ4(Si − µπ).

The variables, π,Si, p1 − qi1
(N−1)y

are jointly Gaussian with variance matrix

Σ =


σ2
π σ2

π
w
y
σ2
π

σ2
π σ2

π + σ2
ε

w
y
σ2
π

w
y
σ2
π

w
y
σ2
π

1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

 .
Define

Σ ≡

[
σ2
π + σ2

ε
w
y
σ2
π

w
y
σ2
π

1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

]
Denote

Σ12 ≡
[
σ2
π

w
y
σ2
π

]
Then [

γ4 γ3

]
= Σ12Σ

−1
.

We obtain,

γ4 =
σ2
π

1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

y2 σ
4
π

(σ2
π + σ2

ε )
1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

y2 σ4
π

,

and

γ3 =

w
y
σ2
πσ

2
ε

(σ2
π + σ2

ε )
1
y2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

y2 σ4
π

.
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Note that γ3
w

y(N−1)
∈ [0, 1] and γ4 ∈ [0, 1]. It is useful, for the analysis to follow, to redefine

the inference coefficients so that they all lie in the interval [0, 1]. Specifically, define γ̃1 =
w

y(N−1)
γ1, γ̃2 = 1

N−1
γ2, γ̃3 ≡ w

y(N−1)
γ3, and γ̃4 = γ4. Then

γ̃1 =
w2σ2

πσ
2
ε + w2σ2

ε (σ2
π+σ2

ε )
N−1

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
(35)

γ̃2 =

σ2
πσ

2
Q

E(N−1)2

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (36)

γ̃3 =
w2σ2

π
σ2
ε

N−1

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (37)

γ̃4 =
σ2
π[w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

(E(N−1)2 ]− w2σ4
π

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (38)

We can now use the equation (34) together with the conditional moments we just computed,

to match coefficients and pin down α, y, w, and m. The coefficient of qi1 gathered on to the

LHS is

−2b− 1

(N − 1)y
− 2b(E − 1)

1

N
γ̃1 −

γ̃3

w
.

The coefficient of p1 gathered on to the RHS is

1− 2b(E − 1)
1

N
γ̃1(N − 1)y − y (N − 1)γ̃3

w
.

The coefficient of Si gathered on to the RHS is

2b(E − 1)w(
N − 1

N
)(1− γ̃2)− γ4.

The coefficient of Xi gathered on to the RHS is

2b+ 2b(E − 1)[−α + α
γ̃1

N
] +

γ̃3

w
α.

The constant coefficient gathered on to the RHS is

2b(E − 1)[
αZ

N
− w

N
(µπ(N − 1) +

γ̃1αZ

w
− mγ̃1(N − 1)

w
− γ̃2(N − 1)µπ − γ̃1(N − 1)µπ)]
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−µπ + γ̃3µπ(N − 1)− γ̃3αZ

w
+ γ̃3

(N − 1)m

w
+ γ̃4µπ

We now match coefficients to compute y as a function of γ̃1 and γ̃3:

y =
N − 2

N − 1

1

(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)
.

Price impact is therefore

1

(N − 1)y
=

(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)

N − 2
. (39)

Notice that compared with the model without private information about asset payoffs, there

is now a Nγ̃3

w
term which is a result of using the price in an exchange to do inference on the

asset’s payoff, π. We now match coefficients to derive a cubic equation which characterizes

w:

− 2b(E − 1)w
N − 1

N
(1− γ̃2) + γ4 =

w[2b+
(2b[(E − 1)γ̃1 + 1] + N

w
γ̃3)

N − 2
+ 2b(E − 1)

1

N
γ̃1 +

γ̃3

w
] (40)

We now match coefficients to compute α as a function of the inference coefficients:

α =
2b

2b+
(2b[(E−1)γ̃1+1]+N

γ̃3
w

)

N−2
+ 2b(E − 1) 1

N
γ̃1 + 2b(E − 1)(1− γ̃1

N
)
. (41)

We now match coefficients to compute m as a function of the inference coefficients:

m = −[
2b(E − 1)[αZ

N
− w

N
(µπ(N − 1) + γ̃1αZ

w
− γ̃2(N − 1)µπ − γ̃1(N − 1)µπ)]

2b+ 1
(N−1)y

+ 2b(E−1)γ̃1

N
+ γ̃3

w
+ 2b(E−1)γ̃1(N−1)

N
+ γ̃3(N−1)

w

+
−µπ + γ̃3µπ(N − 1)− γ̃3αZ

w
+ γ̃4µπ

2b+ 1
(N−1)y

+ 2b(E−1)γ̃1

N
+ γ̃3

w
+ 2b(E−1)γ̃1(N−1)

N
+ γ̃3(N−1)

w

] (42)

Thus equations (41), (39), (40), (42), (35), (36), (37), and (38) are necessary conditions that

any symmetric affine equilibrium must satisfy. An argument analogous to that of Theorem

3 can be used to show that a solution to these equations constitute a symmetric affine

equilibrium provided that y is positive. Part 2 follows from equation (39). This completes

the proof of Parts 1 and 2. We omit the proof of Part 3 since it is a straightforward

computation.
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Proposition 8. For any value of E, if there exists a symmetric affine equilibrium w must

be positive.

Proof. Recall that a requirement of a symmetric affine equilibrium is that y is positive. The

cubic equation characterizing w is

γ̃4 − γ̃3 = w[2b+
1

y(N − 1)
+ 2b(E − 1)

1

N
γ̃1 + 2b(E − 1)(

N − 1

N
)(1− γ̃2)].

The left hand side is positive as seen by inspecting the equations defining the inference

coefficients. The bracketed term on the right hand side is also always positive if the demand

schedules are downward sloping since the inference coefficients are in the unit interval. Thus

the only way for the cubic equation to be satisfied is if w is positive.

We now focus on characterizing how Ew and Eα change as E varies. In this model, the

efficient allocation is the same as that of the baseline model. Thus by Part 3 of Theorem 5,

perfect allocative efficiency is acheived if Ew = 0 and Eα = 1.

Proposition 9. The following are true.

1. There exists a unique symmetric affine equilibrium when E = 1.

2. When there is just a single exchange,

0 < w1 <
1

2b

σ2
π

σ2
π + σ2

ε

where w1 corresponds to the unique symmetric affine equilibrium.

3. There exist at least one and at most three symmetric affine equilibria for all E suffi-

ciently large.

4. For any sequence {EwE} corresponding to symmetric affine equilibria,

EwE →
1

2b

N

N − 1

σ2
π

σ2
ε

>
1

2b

σ2
π

σ2
π + σ2

ε

as E →∞.

5. For any sequence {EαE} corresponding to symmetric affine equilibria EαE → 1 which

is strictly greater than α1.
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Proof. Part 1. When there is a single exchange,

w1 =
γ̃4 − (1 + N

N−2
)γ̃3

2b(1 + 1
N−2

)
. (43)

Rearranging (43), we derive

2b(1 +
1

N − 2
)w3[(σ2

π + σ2
ε )(σ

2
π +

σ2
ε

N − 1
)− σ4

π] + w2b(1 +
1

N − 2
)

σ2
Q

E(N − 1)2
(σ2

π + σ2
ε )

= σ2
π[w2(σ2

π +
σ2
ε

(N − 1)
) +

σ2
Q

E(N − 1)2
]− w2σ4

π − (1 +
N

N − 2
)w2σ2

π

σ2
ε

N − 1

Thus, when E is 1, w satisfies a cubic equation with coefficients:

[w3] : 2b(1 +
1

N − 2
)[(σ2

π + σ2
ε )(σ

2
π +

σ2
ε

N − 1
)− σ4

π]

[w2] :
N

N − 2
σ2
π

σ2
ε

N − 1

[w] : 2b(1 +
1

N − 2
)

σ2
Q

E(N − 1)2
(σ2

π + σ2
ε )

[constant] : −
σ2
πσ

2
Q

E(N − 1)2
.

Since the coefficient of w2 is positive, the coefficient of w3 is positive, and the constant is

negative, there always exists exactly one positive real root. Let p, q, and r denote the roots

of the cubic equation. Then pqr = − constant coefficient
coefficient of w3 > 0. Thus if there is one real root

and 2 complex roots, the real root must be positive. If there are are three real roots, at

least one must be positive. Next, p + q + r = − coefficient of w2

coefficient of w3 < 0 so if there are three

real roots, two must be negative and one must be positive. There always exists a unique

positive real root. Take this positive real root. For this value of w, by (39), y is positive. A

theorem analogous to Theorem 3 can then be used to verify that there is a symmetric affine

equilibrium corresponding to this value of w. Since it is the unique positive real root, the

equilibrium must be unique since (43) is a necessary condition which must be satisfied in

any symmetric affine equilibrium.

Part 2. We rearrange (38) to derive

γ̃4 =
σ2
π(w2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π

(σ2
π + σ2

ε )(w
2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π
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<

σ2
π

σ2
π+σ2

ε
[(σ2

π + σ2
ε )(w

2(σ2
π + σ2

ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π]

(σ2
π + σ2

ε )(w
2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π

=
σ2π

σ2
π + σ2

ε

.

Inspecting (43) together with the above inequality gives the result.

Parts 3 and 4. Rearranging equation (40), we derive

wE =
γ̃4 − (1 + N

N−2
)γ̃3

2b+ 2b
N−2

+ 2b(E − 1)( 1
N

+ 1
N−2

)γ̃1 + 2b(E − 1)(N−1
N

)(1− γ̃2)
.

we observe that |w | is less than C
E

for large E for some constant C since γ̃2 is by inspection

bounded away from 1 (we can derive a bound which holds for all E) and the numerator

is bounded above by 2 + N
N−2

. Thus, it must be the case that γ̃4 → σ2
π

σ2
π+σ2

ε
in the limit as

E →∞. By inspection γ̃1 and γ̃3 converges to 0 while γ̃2 → σ2
π

σ2
π+σ2

ε
. We can express

EwE =
γ̃4 − (1 + N

N−2
)γ̃3

2b+ 2b
N−2

E
+ 2b (E−1)

E
( 1
N

+ 1
N−2

)γ̃1 + 2b (E−1)
E

(N−1
N

)(1− γ̃2)
.

Thus in the limit as E →∞,

EwE →
1

2b

1
N−1
N

σ2
ε

σ2
π+σ2

ε

σ2
π

σ2
ε + σ2

π

=
1

2b

N

N − 1

σ2
π

σ2
ε

.

Note that this implies that for large enough E, any real root of the cubic equation for w

must be positive, which by (39) implies that y is positive for any real root. An argument

analogous to Theorem 3 can then be used to verify that there is a symmetric affine equilibrium

corresponding to any positive root of the cubic equation for w. Since a cubic equation always

has at least one real root and at most three, there always exists at least one and at most

three symmetric affine equilibrium for E sufficiently large.

Part 5. Using earlier results we can write

EαE =
2bE

2b+
(2b[(E−1)γ̃1+1]+ N

N−1
γ̃3)

N−2
+ 2b(E − 1) 1

N
γ̃1 + γ̃3

1
(N−1)

+ 2b(E − 1)(1− γ̃1

N
)
.

Thus, if σ2
Q > 0, as E →∞,

EαE → 1.
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When E = 1,

α1 =
2b

2b+
2b+

γ̃3
w

N−2
+ γ̃3

w(N−1)

< 1.

Thus, an increase in fragmentation means a more efficient redistribution of endowments, at

least in the limit.

Next, we give a coarse analysis of welfare which compares the expected holding costs of

strategic agents as E tends infinity with the case of centralized exchange when E = 1.

Proposition 10. If σ4
π

σ2
ε

is sufficiently small, then in the limit as E → ∞, the allocation of

any symmetric affine equilibrium is more efficient than the allocation of the unique symmetric

affine equilibrium when E is one.

Proof. By symmetry it suffices to study the expected holding cost of an individual agent.

Recall, in what follows, that we have assumed for simplicity that the mean of the liuqidity

trader supply is zero. The expected holding cost of an agent is

E[b((1− EαE)Xi + EαE
Z

N
+ Ew(Si −

1

N

∑
j∈N

Sj) +

∑
e∈E Qe

N
)2] =

b(((1− EαE)Xi + EαE
Z

N
)2 + (Ew)2((

N − 1

N
)2 +

N − 1

N2
)σ2

ε +
σ2
Q

N2
]

Consider taking a limit as E →∞ of the above expression. Then we obtain

b
Z2

N2
+
σ2
Q

N2
+ (

1

2b

N

N − 1
)2σ

4
π

σ2
ε

((
N − 1

N
)2 +

N − 1

N2
)

The only difference between this expected holding cost and the expected holding cost at

the efficient allocation is the last term. Thus when σ4
π

σ2
ε

is small large amounts of fragmentation

is preferred to centralized exchange.

F Extension: Arbitrary Covariance Matrix

In this appendix, we extend the baseline model to allow for correlation among the primitive

asset quantities {X1, . . . , XN , Q1, . . . , QE} setting the sizes of trading interests. This model

variant nests the baseline model. Consequently, many of the proofs are quite similar.
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F.1 Setup

We retain the same model setup as in the baseline but alter the assumptions about the

joint distribution of (X1, . . . , XN , Q1, . . . , QE). We assume that Q = C +
∑

e∈E ξe and

Qe = C
E

+ξe for each e ∈ E, where C and {ξe}e∈E are random variables in L2(Ω,F ,P). Here,

C is the component of liquidity trader supply which is common across exchanges and ξe is

the component idiosyncratic to exchange e. We assume that the distribution of C does not

depend on E and that {ξe}e∈E is a collection of i.i.d, Gaussian distributed random variables

with a mean of 0 and variance of
σ2
ξ

E
that are independent of X1, . . . , XN , and C. Under

these assumptions, the distribution of Q does not depend on E. Next, we assume that

X1, . . . , XN , C are jointly Gaussian with E[C] = µQ, V ar[C] = ρ, cov(Xi, Xj) = Σ for all

i, j ∈ N such that i 6= j, and cov(Xi, C) = η, E[Xi] = µX , and V ar[Xi] = σ2
X for all i ∈ N .

For the distribution to be well defined, ρ, Σ, η, and σ2
X are such that the covariance matrix

of X1, . . . , XN , C is positive definite.

G Analysis

Lemma 6. The condition, σ2
X + (N − 1)Σ > 0, holds.

Proof of Lemma 6. The covariance matrix of (X1, . . . , XN) is positive definite. Denote the

covariance matrix VX . Each element of the diagonal of VX is σ2
X while all other elements are

Σ. This implies that 1TVX1 = N [σ2
X +(N−1)Σ] > 0 where 1 is an N×1 vector of ones.

Theorem 7. For each E ∈ N, there exists at least one and up to three symmetric affine

equilibria. If either η ≥ 0 or σ2
ξ = 0, there is a unique symmetric affine equilibrium. Given an

arbitrary E ∈ N let (αE, ζE,∆E) be an arbitrary corresponding symmetric affine equilibrium.

Then αE, ζE, and ∆E satisfy equations (58), (59), and (60) given in the Appendix. Moreover:

1. For each e ∈ E,

ΛE =
2b(1 + γE(E − 1))

N − 2

where

γE ≡ corrXi(p
∗
e, p
∗
e′)

for e′ 6= e s.t e′ ∈ E.

2. Price in exchange e ∈ E is

p∗e =
N − 1

N
ΛE[
∑
i∈N

−αEXi −Qe +N∆E].
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3. The final inventory of agent i ∈ N is

Xi +
∑
e∈E

q∗ie = (1− EαE)Xi + EαE

∑
i∈N Xj

N
+
Q

N
.

4. If σ2
ξ = 0 or E = 1, for each E ∈ N, the equilibrium allocation corresponds with that

of the centralized benchmark.

5. If σ2
ξ > 0, given an arbitrary sequence of symmetric affine equilibria, {(αE, ζE,∆E)}E∈N,

we have

EαE →
N

N − 1

1 + η
Nσ2

X

1− Σ
σ2
X

.

Proof of Theorem 7. We first conjecture that there exists a symmetric affine equilibrium

(αE, ζE, ∆E) and derive conditions of the equilibrium in two steps. We then show the

various claims in the statement of the theorem hold. In the first step we compute E[q∗ie′ | pe−
qie

ζE(N−1)
, Xi] corresponding to a symmetric affine equilibrium, (αE, ζE,∆E), which will be

used in the second step. In the second step, we substitute the derived moment from step one

into the optimality condition and match coefficients to derive a system of three equations

for αE, ζE, and ∆E.

Step 1: To begin we conjecture an arbitrary symmetric affine equilibrium (αE, ζE,∆E)

and first compute the following unconditional moments.

E[
−αE(

∑
iXi) +mN −Qe′

yN
] =
−αEµX + ∆E

ζE
− µQ
EζEN

(44)

E[

∑
j 6=i−αEXj

ζE(N − 1)
− Qe

ζE(N − 1)
+

∆E

ζE
] =
−αEµX + ∆E

ζE
− µQ
EζE(N − 1)

(45)

V ar[
∑
i

Xi] = Nσ2
X + 2Σ

N∑
i=1

(i− 1) = Nσ2
X + Σ(N − 1)N (46)

Using the above moments we can then compute the following moments, conditional on

Xi, using the projection theorem.
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E[
−αE(

∑
iXi) + ∆EN −Qe′

ζEN
|Xi] =

−αEµX + ∆E

ζE
− µQ
EζEN

+

1
ζEN

(−αE(N − 1)Σ− αEσ2
X −

η
E

)

σ2
X

(Xi − µX) (47)

E[
(
∑

j 6=i−αEXj)−Qe + ∆E(N − 1)

ζE(N − 1)
|Xi] =

−αEµX + ∆E

ζE
− µQ
EζE(N − 1)

+

1
ζE(N−1)

(−αEΣ(N − 1)− η
E

)

σ2
X

(Xi − µX) (48)

V ar[−αE(
∑
j 6=i

Xj) + ∆E(N − 1)−Qe′ |Xi] =

α2
E(N − 1)σ2

X + α2
EΣ(N − 2)(N − 1) +

ρ

E2
+
σ2
ξ

E
+

2ηαE(N − 1)

E
−

[(−αEΣ(N − 1)− η
E

)]2

σ2
X

(49)

covXi(
∑
j

−αEXj −Qe′ ,
∑
j 6=i

−αEXj −Qe) =

V ar[
∑
j 6=i

−αEXj |Xi]− 2covXi(Qe′ ,
∑
j 6=i

−αEXj) + covXi(Q
′
e, Qe) (50)

Using the above moments, we compute the following moments, conditional on Xi and

pe − Λqie, (the portion of price in exchange e which is unknown to agent i—see equation

(56)) by using the projection theorem. The equations below depend on γE, which we will

define later.

E[p∗ie′ | pe −
qie

y(N − 1)
, Xi] =

(1− N − 1

N
γE)
−αEµX + ∆E

ζE
− (1− γE)

µQ
EζEN

+ (1− γE)

1
ζEN

(−αE(N − 1)Σ− η
E

)

σ2
X

(Xi−µX)

+
−αEXi

ζEN
+
N − 1

N
γEpe − γE

qie
ζEN

(51)
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E[q∗ie′ | pe −
qie

ζE(N − 1)
, Xi] =

− αEXi
N − 1

N
− (1− N − 1

N
γE)(−αEµX + ∆E) + (1− γE)

µQ
EN

− (1− γE)
1
N

(−αE(N − 1)Σ− η
E

)

σ2
X

(Xi − µX)− N − 1

N
γEζEpe + γE

qie
N

+ ∆E (52)

Above, γE denotes

covXi(
∑

i−αEXi −Qe,
∑

j 6=i−αEXj −Qe′)

V ar[
∑

j 6=i−αEXj −Qe |Xi]
. (53)

Of course, E[q∗ie′ | pe −
qie

y(N−1)
, Xi] could have been computed in one step by just a single

application of the projection theorem, but we found it less algebraicly taxing to apply the

projection theorem twice. To finish deriving E[q∗ie′ | pe −
qie

y(N−1)
, Xi], we must compute an

expression for γE. The denominator was computed earlier in equation (6). To compute the

numerator, we make use of the decomposition in equation (50). The terms
∑

j 6=iXj, Q
′
e, Qe,

and Xi are jointly normally distributed with covariance matrix

Σ =


(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

Σ(N − 1)
η(N−1)

E
ρ
E2 +

σ2
ξ

E
ρ
E2

η
E

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E
η
E

Σ(N − 1) η
E

η
E

σ2
X

 .

The goal is to derive the covariance matrix of
∑

j 6=iXj, Q
′
e, Qe conditional on Xi, which

we denote Σ̃. To do this we can apply the projection theorem. Then

Σ̃ =
(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

η(N−1)
E

ρ
E2 +

σ2
ξ

E
ρ
E2

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E

−
Σ(N − 1)

η
E
η
E

 1

σ2
X

[
Σ(N − 1) η

E
η
E

]
⇔

Σ̃ =
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(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

η(N−1)
E

ρ
E2 +

σ2
ξ

E
ρ
E2

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E

− 1

σ2
X

Σ2(N − 1)2 Ση(N−1)
E

Ση(N−1)
E

Ση(N−1)
E

η2

E2
η2

E2

Ση(N−1)
E

η2

E2
η2

E2


From above, we have

covXi(−αEXi +
∑
j 6=i

−αEXj −Qe′ ,
∑
j 6=i

−αEXj −Qe)

= α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N − 1)2

σ2
X

) +
2αEη(N − 1)

E
(1− Σ

σ2
X

) +
ρ

E2
− η2

E2σ2
X

.

We finally derive that

γE =

α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2αE
η
E

(N − 1)(1− Σ
σ2
X

) + ρ
E2 − η2

E2σ2
X

α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)) + ρ
E2 +

σ2
ξ

E
+ 2 η

E
αE(N − 1)− [(−αEΣ(N−1)− η

E
)]2

σ2
X

.

(54)

This concludes step one.

Step 2. Conjecture that there exists a symmetric affine equilibrium, (αE, ζE,∆E). Under

this conjecture, each agent i ∈ N submits

qeqie = −αEXi − ζEpe + ∆E

to each e ∈ E and i ∈ N , where αE, ζE, and ∆E are constants. Market clearing in exchange

e implies that

−αE(
∑
i

Xi)− ζENpe + ∆EN = Qe.

Solving for pe yields

pe =
−αE(

∑
iXi) + ∆EN −Qe

ζEN
. (55)

Price impact can also be determined from the market clearing condition as well:

−αE(
∑
j 6=i

Xj)− ζE(N − 1)pe + ∆E(N − 1) + qie = Qe
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Solving for pe yields

pe =
−αE(

∑
j 6=iXi) + qie + ∆E(N − 1)−Qe

ζE(N − 1)
. (56)

This implies that the price impact agent i faces in exchange e is Λ := 1
ζE(N−1)

, which by

symmetry, is the price impact each agent faces in all exchanges. Let p∗e denote the market

clearing price on exchange e when all agents submit their equilibrium demand schedules—

that is, the price in equation (55). Let pe denote the market clearing price in exchange e

when agent i submits a demand schedule such that he purchases quantity qie at the market

clearing price as in (56). In determining his optimal demand schedule for exchange e, agent

i equates his expected marginal utility conditional on pe− qie
ζE(N−1)

and Xi, with his marginal

cost. Thus, he must compute E[q∗ik | pe −
qie

ζE(N−1)
, Xi] where k 6= e and q∗ik denotes the

equilibrium quantity purchased in exchange k when agent i follows his equilibrium strategy.

The optimality condition is

µπ − 2b(Xi + qie + (E − 1)E[q∗i2 | pe −
qie

ζE(N − 1)
, Xi]) = pe + Λqie. (57)

Applying equation (52) and matching coefficients we can obtain a system of three equa-

tions which characterize the three unknowns, αE, ζE, and ∆E. We do not explicitly list the

algebraic steps here. Matching the coefficients on price, we obtain

ζE =
1

2b((E − 1)γE + 1)

N − 2

N − 1
. (58)

Matching the coefficients on Xi we obtain

αE =
1 + (E − 1)

(1−γE) η
E

Nσ2
X

1 + γE(E−1)
N

+ (E−1)γE+1
N−2

+ (E − 1)N−1
N
− (1− γE)(E − 1)N−1

N
Σ
σ2
X

. (59)

Matching the constant coefficients, we obtain

∆E =
N − 2

N − 1

µπ − 2b(E − 1)µX(
(1−γE)µQ

EN
− (1−γE) 1

N
(αE(N−1)Σ+ η

E
)

σ2
X

+ αE(1− N−1
N
γE))

2b(1 + γE(E − 1))
(60)

Above, γE, as we saw in equation (54) is dependent on αE, so we have not derived a

closed form solution for a candidate equilibrium. By inspecting (59) and (54) we see that

αE satisfies a cubic equation. It is clear that a neccessary condition for (αE, ζE,∆E) to be

a symmetric affine equilibrium is that αE, ζE, and ∆E satisfy the above equations (since
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otherwise the distributional assumptions ensure that the condition (57) is violated on a set

of strictly positive P-measure). This concludes step 2.

To prove that the derived necessary conditions are in fact sufficient we appeal to Theorem

3 since, by construction, the symmetric affine equilibria we derived satisfies the condition

in Theorem 3. To prove existence of at least one and up to three such symmetric affine

equilibria, it suffices to observe from (59) and (54) that αE satisfies a cubic equation which

must have at least one real root and up to three real roots. We now prove uniqueness of the

equilibrium when η ≥ 0. Fix E ≥ 1, denote y ≡ αE, and define

g(y) ≡ y −
1 + E−1

E
(1−γE)η

Nσ2
X

EγE( 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

) + (1− γE)( 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

) + EN−1
N

(1− Σ
σ2
X

)
.

There exists a symmetric affine equilibrium for each y positive such that g(y) = 0. Using

the assumption that η ≥ 0, the second term in the above expression is strictly monotone

decreasing in γE. By multiplying the numerator and denominator in equation (54) by E2 we

see that γE is strictly monotone increasing in y. Thus g(y) is strictly monotone increasing

in y. Hence there can exist at most one value of y ∈ R such that g(y) = 0.

We now prove the remaining parts of the theorem. Part 1 follows immediately from (58).

Part 2 follows immediately from (56). Part 3 of the Theorem is true of any symmetric affine

equilibrium independent of the joint distribution of the random variables and the proof is

exactly analogous to that of Theorem 1. Part 4 follows from Part 3 and (59) when substi-

tuting in γE = 1 which is the value γE takes on when σ2
Q = 0. To prove Part 5, observe that

using Proposition 12, γE → 0. By equation (59),

EαE =
1 + (E−1)

E
(1−γE)η

Nσ2
X

1
E

+ γE(E−1)
EN

+ (E−1)γE+1
E(N−2)

+ (E − 1)N−1
EN
− (1− γE)(E − 1)N−1

EN
Σ
σ2
X

.

Since γE → 0, EαE →
1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
.

Corollary 7.1. Let {EαE}E∈N be defined as in Theorem 7. Then −ElE converges to a

constant that exceeds 1 if and only if σ2
ξ > 0 and η > −[σ2

X+(N−1)Σ], where, by the positive

definiteness of the covariance matrix of X1,...,XN , we have σ2
X+(N−1)Σ ≥ 0. Further, EαE

converges to a constant that exceeds N−1
N−2

if and only if σ2
ξ > 0 and η > −[σ2

X + (N − 1)Σ].

Proof of corollary 7.1. Theorem 7 supplies a closed form expression for the limiting value of
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EαE as E →∞. The rest of the proof follows from some simple computations.

Proposition 11. Let

E∗ ≡
−

(N−1)σ2
X+Σ(N−2)(N−1)−Σ2(N−1)2

σ2
X

+2η(N−1)(1− Σ

σ2
X

)+ρ− η2

σ2
X

N−2
− σ2

ξ (
1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

)− σ2
ξ

η
Nσ2

X

σ2
ξ
N−1
N

(1− Σ
σ2
X

)− σ2
ξ (1 + η

Nσ2
X

)
.

If E∗ is in N, there is a unique symmetric affine equilibrium when E = E∗ whose allocation

is the efficient allocation. If η ≥ 0, by Theorem 7, there is a unique symmetric affine

equilibrium allocation associated with each E ∈ N. The E ∈ N whose symmetric affine

equilibrium is most efficient (more efficient than that of any E ′ ∈ N with E ′ 6= E) is either

bE∗c or dE∗e.

Proof of proposition 11. Let (αE, ζE,∆E) denote an arbitrary symmetric affine equilibrium.

Define gE ≡ EαE. Substituting equation (54) into (59) and rearranging yields a cubic

equation in gE with coefficients

[g3
E] : A(1 +

1

N − 2
)

[g2
E] : B(1 +

1

N − 2
)− A

[gE] : F (1 +
1

N − 2
) + σ2

ξ (
1

N
+

1

N − 2
+
N − 1

N

Σ

σ2
X

) + σ2
ξE

N − 1

N
(1− Σ

σ2
X

)−B

[constant] : −F − Eσ2
ξ (1 +

η

Nσ2
X

) + σ2
ξ

η

Nσ2
X

where

A ≡ ((N − 1)σ2
X + Σ(N − 2)(N − 1)− Σ2(N − 1)2

σ2
X

),

B ≡ 2η(N − 1)(1− Σ

σ2
X

)

and

F ≡ ρ− η2

σ2
X

.

By definition, at E∗, gE∗ = 1. Therefore, we have

A(1 +
1

N − 2
) +B(1 +

1

N − 2
)− A+ F (1 +

1

N − 2
)

+σ2
ξ (

1

N
+

1

N − 2
+
N − 1

N

Σ

σ2
X

)+σ2
ξE
∗N − 1

N
(1− Σ

σ2
X

)−B−F−E∗σ2
ξ (1+

η

Nσ2
X

)+σ2
ξ

η

Nσ2
X

= 0.
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Solving for E∗ we obtain,

E∗ =
−A+B+F

N−2
− σ2

ξ (
1
N

+ 1
N−2

N−1
N

Σ
σ2
X

)− σ2
ξ

η
Nσ2

X

σ2
ξ
N−1
N

(1− Σ
σ2
X

)− σ2
ξ (1 + η

Nσ2
X

)
.

That the E ∈ N whose symmetric affine equilibrium allocation is most efficient is either bE∗c
or dE∗e when η ≥ 0 follows from proposition 15.

Proposition 12. For each E ∈ N denote an arbitrary corresponding symmetric affine equi-

libria, {(lE, ζE,∆E)}e∈E. Let ΛE be the corresponding equilibrium price impact and γE the

equilibrium inference coefficient. Then, if σ2
ξ = 0, {ΛE}E∈N diverges to ∞ and {γE}E∈N is

the constant sequence of ones. If σ2
ξ > 0, {ΛE}E∈N converges to

2b+ 1
σ2
ξ
[(

1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
)2((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2N(1 + η
Nσ2

X
)η + ρ− η2

σ2
X

]

N − 2

while {γE}E∈N converges to 0.

Proof of propostion 12. The claims when σ2
ξ = 0 are obvious in light of Theorem 7. We

prove the claims when σ2
ξ > 0. By inspecting equation (59), and recognizing that Lemma 6

implies that 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X
> 0, we see that

| 1 + E−1
E

(1−γE)η

Nσ2
X
|

E(N−1
N

(1− Σ
σ2
X

) + 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

)
< |αE | <

1 + E−1
E

(1−γE) | η |
Nσ2

X

EN−1
N

(1− Σ
σ2
X

)
.

Inspecting the equation (54), we see that for large E, the numerator of γE is O( 1
E2 ) while the

denominator, because of the
σ2
ξ

E
term, is ω( 1

E2 ) so that γE → 0. To prove that ΛE converges

to a positive constant, we can express EγE as

E
E2α2

E((N − 2)σ2
X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2EαEη(N − 1)(1− Σ
σ2
X

) + ρ− η2

σ2
X

E2α2
E + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2EαEη(N − 1)(1− Σ
σ2
X

) + ρ− η2

σ2
X

+ Eσ2
ξ

.

By Theorem 7, −ElE converges so by inspection it is clear that EγE must converge. Since

both E − 1 and γE are always weakly positive, and ΛE = 2b(1+γE(E−1))
N−2

, it must converge to

a strictly positive constant. We can directly compute this constant using Part 5 of Theorem
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7 to be:

2b+ 1
σ2
ξ
[(

1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
)2((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2N(1 + η
Nσ2

X
)η + ρ− η2

σ2
X

]

N − 2
.

Proposition 13. Suppose η ≥ 0. For each E ∈ N, let ΛE denote the equilibrium price

impact in the unique symmetric affine equilibrium. The sequence, {−ΛE}E∈N, is strictly

monotone increasing.

Proof of proposition 13. The proof is analogous to that of Proposition 1 so we omit it.

Proposition 14. The total expected payment of liquidity traders is

N − 1

N
ΛE(−µQN∆E + σ2

ξ +
ρ+ µ2

Q

E
− αEN(η + µXµQ)).

Proof of propostion 14. We compute

−E[
∑
e∈E

peQe] = −N − 1

N
ΛEE[

∑
e∈E

(
∑
i∈N

−αEXi +N∆E −Qe)Qe]

=
N − 1

N
ΛE(−µQN∆E + σ2

ξ +
ρ+ µ2

Q

E
+ αEN(η + µXµQ)).

Proposition 15. Suppose σ2
ξ > 0 and η ≥ 0. For each, E ∈ N, denote the unique symmetric

affine equilibrium, (αE, ζE,∆E). The sequence, {EαE}E∈N, is strictly monotone increasing.

Proof of proposition 15. The proof is analogous to that of part 6 of Theorem 1.
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