
NBER WORKING PAPER SERIES

RISKS TO HUMAN CAPITAL

Mehran Ebrahimian
Jessica Wachter

Working Paper 26823
http://www.nber.org/papers/w26823

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2020

We are grateful to Will Diamond, Joao Gomes, Urban Jermann, Patrick Kehoe, Tim Landvoigt, 
Daniel Neuhann, Nick Roussanov, and seminar participants at the RAPS Winter Finance 
Conference, at Temple University and at Wharton for helpful comments. The views expressed 
herein are those of the authors and do not necessarily reflect the views of the National Bureau of 
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Mehran Ebrahimian and Jessica Wachter. All rights reserved. Short sections of text, 
not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Risks to Human Capital
Mehran Ebrahimian and Jessica Wachter
NBER Working Paper No. 26823
March 2020
JEL No. G12,G32

ABSTRACT

What is the connection between financing constraints and the equity premium? To answer this 
question, we build a model with inalienable human capital, in which investors finance individuals 
who can potentially become skilled. Though investment in skill is always optimal, it does not take 
place in some states of the world, due to moral hazard. In other states of the world, individuals 
acquire skill; however outside investors and individuals inefficiently share risk. We show that this 
simple moral hazard problem and the resultant financing friction leads to a realistic equity 
premium, a low riskfree rate, and severe negative consequences for distribution of wealth and for 
welfare. When investment fails to take place, the economy enters an endogenous disaster state. 
We show that the possibility of these disaster states distorts risk prices, even under calibrations in 
which they never occur in equilibrium.

Mehran Ebrahimian
The Wharton School 
University of Pennsylvania
3620 Locust Walk
Philadelphia,PA 19104
ebrm@wharton.upenn.edu

Jessica Wachter
Department of Finance
2300 SH-DH
The Wharton School
University of Pennsylvania
3620 Locust Walk
Philadelphia, PA 19104
and NBER
jwachter@wharton.upenn.edu



1 Introduction

The 2008–2009 financial crisis directed the attention of economists and policymakers

to links between intermediary balance sheets, asset pricing fluctuations and economic

variability (He and Krishnamurthy, 2012; Brunnermeier and Sannikov, 2014). One

hypothesis is that deterioration in intermediary balance sheets was the cause of these

fluctuations. However, for intermediary balance sheets to matter quantitatively, there

must be some underlying friction that prevents capital from flowing, either directly

or through intermediaries, in times of financial distress. Given the innovations and

technological advances over the last century, the question remains: what is the friction

that can survive the powerful incentives to move capital to where it is most productive?

The answer seems likely to be independent of specific institutional arrangements.

A second hypothesis is that institutional factors are of minor significance, and the

fluctuations in balance sheets are a symptom and not a cause. According to this view,

underlying fluctuations in productivity drive asset prices in a nearly frictionless way

and an economic crisis is simply a large productivity decline. A line of literature fo-

cuses on the quantitative implications of such rare disasters for asset prices (Barro,

2006; Gabaix, 2012; Gourio, 2012; Wachter, 2013) assuming complete markets. How-

ever, other than world-wide conflicts, the source of these large, rare macroeconomic

fluctuations is unknown.

In this paper, we build a model in which financial frictions arise from risk to human

capital. In so doing, we provide a foundation for rare output-related disasters. We

consider an individual’s decision to finance a non-convex human capital investment. A

substantial empirical literature shows, for example, that the decision to go to college is

non-convex. A little bit of college does not produce a little bit of the benefits of going

to college; rather it produces nothing.1 We assume markets are incomplete: we take as

1See e.g. Hungerford and Solon (1987); Altonji (1993); Jaeger and Page (1996); Card (1999);
Heckman et al. (2006)
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given individuals cannot sell claims to their human capital. However, individuals can

pledge some of the resultant cash flows. Because pledgeability is limited, individuals

cannot receive outside funding in every state of the world. This friction amplifies

negative shocks to equityholders, reducing the riskfree rate to zero and generating an

equity premium that is close to the historical average, even under log utility.

To summarize, the model explains the following empirical results:

1. A high equity premium under low risk aversion

2. A low riskfree rate (in fact, a riskfree rate that is at the zero lower bound).

3. Non-participation in the stock market.

4. Procyclical dividends (and wages that are relatively unresponsive to the business

cycle).

We explain these facts through a methodological advance: we extend the basic moral

hazard framework of Holmstrom and Tirole (1997) and Aghion and Bolton (1997) to

the case of aggregate risk. The solution has quantitatively realistic implications, but

does not rely on complicated dynamics and has an analytical characterization.

Our paper relates to a literature using nonconvexities to explain variations in em-

ployment over the business cycle. For example, Hansen (1985), Rogerson (1988), and

Christiano and Eichenbaum (1992) argue that a nonconvex employed/unemployed dis-

tinction lies behind the volatility of unemployment relative to output, whereas Prescott

(1992) argues that nonconvexities explain differential rates of unemployment among de-

veloped countries. The debate on the significance and form of non-convexity continues:

Chetty et al. (2011) argue that indivisibilities are insufficient to reconcile the macro

and micro evidence, while Kehoe et al. (2019) derive non-convexities from on-the-job

learning, and show that the resultant model explains unemployment volatility given
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variation in discount rates. This literature assumes that unemployment risk is per-

fectly shared and thus that markets are complete. We depart from this literature in

that markets are realistically incomplete in our model, and imperfect risk sharing plays

an important role in our results.

While the above literature focuses on explaining unemployment assuming complete

markets, a second literature uses market incompleteness generated by unemployment

to explain asset prices. Early work focused on how countercyclical labor income risk

together with incomplete markets offered a solution to the equity premium puzzle

(Constantinides and Duffie, 1996; Storesletten et al., 2007). More recent work has

focused on the role of negative skewness (Schmidt, 2016; Constantinides and Ghosh,

2017; Catherine, 2019). Guvenen et al. (2014) show that labor income of those on the

low end of the income scale displays greater countercyclicality relative to the labor

income of those at the top. Our model endogenously generates this outcome through

financial contracting frictions, while also generating an increased equity premium as in

Constantinides and Duffie (1996).

Our paper also relates to a literature on the consequences of imperfect financial

markets for economic development. In this literature, financing frictions hinder some

individuals from making positive net present value investments in human capital. In-

dividuals remain poor, and continue to face the same financing problem; thus the

economy stagnates into a “poverty trap” (Banerjee and Newman, 1993; Ljungqvist,

1993; Levine, 2005). To this framework, we add aggregate risk. We show how aggre-

gate risk makes these frictions more severe, and can lead, endogenously, to economic

disasters.

Finally, our paper relates to a substantial and growing literature on financing fric-

tions and the macroeconomy. Classic references include Kiyotaki and Moore (1997) and

Bernanke et al. (1999). These papers assume a class of risk neutral individuals (“ex-

perts”) who have special access to investment technologies. More recent work (Gertler
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and Kiyotaki, 2010) allows for risk aversion, but assumes, in effect, complete mar-

kets. Given cash flows, asset prices are the same as in a standard endowment economy

without experts and financing frictions. Our model departs from these along several

dimensions. At the core of our model is an investment decision in human capital—after

which individuals become analogous to experts. Also, in our model, in which markets

are endogenously incomplete, financing frictions deepen negative shocks as they occur

(as opposed to responding to a sequence of negative shocks; an effect not observed in

the data).2 Non-convexities further amplify the effects of incomplete contracts, leading

to risky aggregate cash flows, volatile state prices, and a greater equity premium.

Our work is closer to the more recent papers of He and Krishnamurthy (2012, 2013)

and Brunnermeier and Sannikov (2014) in that we focus on non-participation and mar-

ket incompleteness. However, our moral hazard problem is of a quite different nature,

leading to very different results. As discussed above, in our model financing frictions

deepen negative shocks as they occur. The reason is that our agent can (realistically)

divert cash flows subsequent to the aggregate shock. This gives rise to three regions,

determined by the outcome of an aggregate productivity shock. When productivity is

sufficiently high, risk is perfectly shared, and outcomes are as in the frictionless case.

There are two inefficient regions. In the lowest region, financing constraints are locally

non-binding. However, investment is inefficient. For intermediate values of productiv-

ity, investment is efficient, but risk sharing is not. The existence of the lowest region

distorts savings (because agents attempt to stay out of it), leading to low interest rates,

whereas the second region is the main driver of the equity premium. The lowest region

corresponds to disaster states. Intriguingly even when this region (endogenously) dis-

appears, the potential occurrence of this region off-equilibrium drives results. In our

model, unlike others, disasters can exert a substantial influence over asset prices, even

when they never occur in equilibrium.

2In this sense, the model is similar to the fire-sales model of Shleifer and Vishny (2011).
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2 Model

We present a three-period model in which individuals and investors face a financial

contracting friction due to moral hazard and limited liability, similar to Holmstrom

and Tirole (1997) and Aghion and Bolton (1997). As in Hart and Moore (1994), the

individual cannot sell claims to his or her human capital. To this standard framework,

we add aggregate risk and risk averse agents.

2.1 Setup

Environment. There is one non-perishable investment/consumption good and there

are three types of agents: i) a unit mass of outside investors with aggregate initial en-

dowment eI ; ii) a mass mh of high-cash-on-hand individuals, henceforth h-individuals,

with initial endowment eh; iii) a mass mℓ of low-cash-on-hand individuals, henceforth ℓ-

individuals, with initial endowment eℓ ≪ eh.3 There are three periods in the model. In

period 0 agents write financial contracts and trade Arrow-Debreu securities. The state

of the world—aggregate total factor productivity (TFP) —is realized in period 1. Let

δ ∈ ∆ denote TFP; it is drawn from cumulative distribution function F : ∆ → [0, 1].

Afterwards an individual chooses her occupation and (potentially) calls for funds from

outside investors based on securities traded in period 0 to pay for the investment costs.

Production takes place in period 2. An individual either shirks or puts forth effort.

Output depends on the choice of effort, occupational choice, and aggregate TFP. Fi-

nally, all payments are settled, everyone consumes her endowment.

Technology. The occupational choice set is nonconvex. An individual may either

work in the traditional sector to generate H0 ≥ 0 units of the consumption good,

where H0 is independent of the state of the world; or invest in her human capital,

3We use the terminology individual rather than the more common entrepreneur to emphasize the
fact that the model is one of human rather than physical capital.
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which returns δH units of goods in the production period (period 2) if the individual

puts forth effort, whereH is a constant parameter governing the return to investment in

human capital. If the individual shirks, the return to investment is zero. Let f denote

the investment cost. We assume investment in human capital is first-best optimal in

any state of the world:

∀δ : δH − f > H0 ≥ 0. (1)

Finally, we assume everyone is endowed with an inventory technology which delivers a

zero net return across periods.

Preferences. All agents have log utility with time discount factor β:

u(c0, c2) = (1− β) log c0 + β log c2

Here, c0 and c2 denote consumption in period 0 and period 2, respectively. For sim-

plicity, we abstract from consumption in the intermediate period. Given the weights

β and 1− β, we can interpret utility at time 2 as representing continuation value into

the infinite future. Note that, in our model, all agents have the same risk aversion.

This distinguishes our setting from those such as Kihlstrom and Laffont (1979), and,

more recently Berk et al. (2010) in which outside investors have lower risk aversion, or

are risk neutral. In our model, both agents have the same patience, differentiating it

from settings such as those of DeMarzo et al. (2012) and Kiyotaki and Moore (1997)

in which a patient investor funds an impatient entrepreneur.

Financing Friction. If an individual shirks, she receives a nonpecuniary private

benefit equal to αf in units of the consumption good. Namely, α is the fraction of

investment funds than an individual can divert. The action of an individual is not

observable, and we assume all agents are protected by limited liability. A contract that
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prevents shirking will take the form that, should production be zero, the individual re-

ceives zero (the individual cannot receive less than zero because of limited liability), and

should production be positive, the individual receives something at least as large as αf .

That is, the payoff to an individual should meet the following incentive-compatibility

constraint:

c2 ≥ αf. (IC)

This lack of commitment on the part of the individual limits the payoff that can be

pledged to the outside investor. The outside investor receives the payoff δH − c2 ≤

δH−αf . The outside investor cannot receive any more than δH−αf without violating

the incentive compatibility constraint.

Note that α governs the severity of the financing friction. We assume α ≤ 1, hence,

shirking is socially inefficient. In equilibrium, individuals will not shirk; shirking is an

off-equilibrium-path credible threat. In a frictionless world α = 0. The greater returns

to human capital imply that, if the individual puts forth effort, there are sufficient

funds to meet the IC constraint: δH − αf ≥ δH − f > H0 ≥ 0.

It is useful to contrast the nature of the financing friction in this model with the

standard financing friction in macro-finance. In macro-finance, the standard friction

is a collateral constraint: the entrepreneur can finance operations with debt up to a

fraction of physical capital stock (Kiyotaki and Moore, 1997). Should the entrepreneur

default, the lenders can seize part of the capital and sell it at market value. Often in

these models, default can occur because the investment is sub-optimal in certain states

of the world.

In this setting, however, we tie our hands by assuming that the investment is always

first-best optimal. Default is endogenous in that the agent cannot commit to put forth

effort. In the case where shirking occurs, there is no collateral to be seized and sold on

the market (given modern institutions). The incentivizing device is weaker (because
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no penalty is paid for default) and thus the financing friction is more severe. Rather

than being able to borrow up to a specific fraction of human capital, the agent must

commit to a specific cash flow pattern. This is what we mean by inalienability.

This concept of inalienability is essentially the same as the concept introduced by

Hart and Moore (1994). In our model as well as in theirs, the agent will no longer choose

the efficient action if his or her payoff falls below a threshold. The “capital stock” H,

which is what the agent brings to the production process, cannot be transfered or

seized. Therefore, the production opportunity is gone when the agent decides not

to participate. In the absence of an incentive to shirk (α = 0), we would still have

inalienable human capital; however, the outcome would be the same as if capital could

be sold, because as a practical matter, the agent would choose the efficient action.

Table 1 summarizes the timing in the model.

Financial Contracting We assume that, at t = 0, investors and individuals can

write all forms of long-term contingent contracts, subject to (IC). We assume investors

trade contingent claims in a competitive financial market.

Note that we assume full commitment on the part of outside investors. Appendix C

solves for the case with limited commitment from outside investors.

2.2 Agents’ Optimization

Let π : ∆ → R+ denote the state-price density. In the following sections, we specify

the optimization problem of investors and individuals.
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2.2.1 Outside Investors

We assume a perfectly competitive market for investment in human capital.4 Investors

thus solve a standard consumption and portfolio choice problem in which they trade

Arrow securities indexed by δ:

V I(eI) = max
{cI0 ,cI2 (.)}

(1− β) log cI0 + β

∫
log cI2 (δ) dF (δ)

such that: cI0 +

∫
π(δ)cI2 (δ) dF (δ) ≤ eI .

The optimal consumption plan is simply

cI0 = (1− β) eI

cI2 (δ) =
β

π(δ)
eI .

2.2.2 Individuals

Individuals face perfectly competitive markets. They solve a consumption, portfolio

choice, and occupational choice problem. Let o : ∆ → {0, 1} denote the optimal

state-contingent occupational plan, where o = 1 implies investment in human capital.

Namely, individuals solve the following long-term financial contracting problem:

V (e) = max
{c0,c2(·)>0,o(·)∈{0,1}}

(1− β) log c0 + β

∫
log c2(δ) dF (δ),

subject to

c0 + f − e ≤
∫

π(δ){o(δ) δH + [1− o(δ)](H0 + f)− c2(δ)} dF (δ) (BC)

4Namely, for investors, the returns to investing in human capital equal to the returns to investing
in the contingent claim market.
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and

∀δ | o(δ) = 1 : c2(δ) ≥ αf (IC)

where e ∈ {eℓ, eh} represents the initial endowment of an individual.

Included in the right-hand side of (BC) is the individual’s payoff from either in-

vesting or not investing in human capital. If o(δ) = 1, the individual produces δH.

If o(δ) = 0, the individual pays back the fixed investment cost f , and works in the

traditional sector, producing H0. The individual’s budget constraint implies that the

market value of the individual’s state-contingent consumption plan must not exceed

her endowment plus the value of her human capital. However, (BC) is not the only con-

straint that the individual faces: for the individual’s plan to be incentive-compatible,

the plan must meet (IC). The incentive-compatibility constraint is the source of market

incompleteness.

Note that (BC) has a flow-of-funds interpretation. The left-hand side of (BC) is

the (net) amount an individual raises at time 0 in the capital market; she needs funds

to cover the investment cost f and to pay for early consumption. The right-hand side

of (BC) is the time-0 value of the resources that she can promise to repay in period 2;

if she invests in human capital (o = 1) she produces δH and if not (o = 0) she would

return the investment fund and also the labor income of traditional sector; period 2

consumption is deducted from what she can produce.

Ultimately (BC) and (IC) form the optimal contract between the investor and the

individual. The investor commits to provide funds f in states of the world in which

(IC) is satisfied. Equation BC is a participation constraint for the outside investor.

By definition, the individual consumes c0 and c2(·). Thus the outside investor pays

f − e− c0 and receives o(δ) δH +[1− o(δ)](H0+ f)− c2(δ) in state of the world δ. The

budget constraint (BC) implies that the net present value to the investor is greater

than or equal to zero.
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Equation BC implies that setting aside f at time 0 is a prerequisite to investment

at time 1. An alternative modeling choice would be to allow f to be paid out of

production. If this were the case, f would not appear on the left-hand side of (BC),

but rather it would be subtracted from δH on the right hand side. The requirement

that f be set aside at time 0 implies, realistically, that there is a gap between investment

and production, namely that time to build is required.

Solution to the individual’s problem. Let λ be the shadow price of (BC). Ap-

pendix A.1 shows that, given an occupational choice plan o(·), the optimal consumption

plan satisfies

c0 =
1− β

λ

c2(δ) =


c⋆2(δ) ≡

β
λ

1
π(δ)

if o(δ) = 0

max{c⋆2(δ) , αf} if o(δ) = 1

Here, c⋆2(δ) is the optimal consumption plan in the absence of (IC).5 The second-best

allocation requires the individual to consume at least αf , assuming o(δ) = 1, in order

to keep incentives aligned. For h-individuals, endowment e is high, and thus λ is

relatively low. For these individuals, c⋆2(δ) ≥ αf for all δ. The incentive compatibility

constraint (IC) does not bind, and the first-best allocation holds: o(δ) = 1 for all δ.

For ℓ-individuals, e is low and λ is relatively high. There are states of the world

in which, in the absence of (IC), the individual would prefer to consume less than αf :

c⋆2(δ) < αf . Supposing that o(δ) = 1 (we discuss o(δ) below), (IC) requires that the

individual consumes more than she would under the first-best allocation. Utility in

these states is higher than it would be under the first-best, but the budget constraint

5That is, c∗2 is the optimal consumption plan for the agent, taking λ and π as given. This is not to
be confused with this agents’ consumption in a frictionless economy, which will take the same form,
but for which the numerical values of λ and π will change.
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tightens (it is more difficult to meet the participation constraint of outside investors).

The optimal occupational choice o(δ) is based on the tradeoff between the added

gains from efficient investment, and inefficient over-consumption. As Appendix A.1

shows, the optimal occupational choice satisfies:

i) αf ≤ c⋆2(δ) =⇒ o(δ) = 1

ii) αf > c⋆2(δ) : o(δ) = 1, ⇐⇒

λπ(δ)[δH − f −H0]︸ ︷︷ ︸
efficiency gain

−
(
λπ(δ)[αf − c⋆2(δ)]− β log

(
αf

c⋆2(δ)

))
︸ ︷︷ ︸

cost of over-consumption

≥ 0. (2)

If the unconstrained solution (what the agent would consume in the absence of incentive

compatibility) lies above αf , the individual always invests in human capital, because

it is more efficient then the alternative. This is statement (i). If the unconstrained

solution lies below αf , the individual faces a tradeoff, captured by (2). Equation 2

shows the difference in indirect utility between investing (o(δ) = 1), and not investing

(o(δ) = 0), in the region where the agent is constrained (states δ where c⋆2 > αf).6

Thus (ii) simply states that o(δ) = 1 when the utility from investment is higher.

We see that the decision to invest trades off between the gain in efficiency from

investing (the first term) and the cost of inefficient consumption (the second). Efficiency

gain is (δH − f −H0), multiplied by its value today (π(δ)), and the benefit of relaxing

(BC), λ. When the individual invests she must consume more to meet (IC). The cost of

over-consumption incorporates the utility difference between constrained consumption

αf and unconstrained consumption c⋆2, as well as the cost of greater-consumption,

state-by-state, multiplied by the cost of tightening (BC).

We conclude this subsection by discussing the role of commitment on the part of

6In this exercise we consider a deviation from optimal o(δ) in each state of the world, so that λ
remains fixed. See Appendix A for detail.
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outside investors. Consider states of the world δ such that

δH − c2(δ) < f (3)

(the left hand side is the payoff to the investor and the right hand side denotes the

funds she provides). In these states, the outside investor would prefer not to invest

in human capital.7 Thus the outside investor has an incentive to violate the contract

when (3) holds. Note that (3) also implies

δH − αf ≤ f =⇒ δ ≤ (1 + α)f

H

because c2(δ) ≥ αf . Thus δ ≤ (1+α)f
H

, is a sufficient condition for the outside investor

to wish to renege on her investment.

Under the benchmark calibration, there is a region of outcomes δ for which invest-

ment is part of the optimal contract but the outside investor would prefer to renege.

We assume a legal environment in which there is always such commitment on the

investor’s side, but we also solve for the limited commitment case in Appendix C.

2.3 Equilibrium

We define equilibrium as

- a state-price density: π(·),

- a set of consumption plans and occupational choices for investors, ℓ- and h-

individuals: cI0 , c
I
2 (·), oℓ(·), cℓ0, cℓ2(·), oh(·), ch0 , ch2(·),

such that

1. given prices, allocations maximize optimization problems specified above, and

7This argument assumes that if the investors reneges, she does not get to claim H0. However, if
she does get to claim H0, the same argument goes through, as we show in the Appendix.
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2. markets clear at time 2:

cI2 (δ)+mℓcℓ2(δ)+mhch2(δ) =
∑
j=ℓ,h

mj{oj(δ) δH+(1− oj(δ))(H0+f)}+ I, (MC)

where I ≥ 0 stands for the amount of resources that agents might keep in inven-

tory.

3. Storage is costless: if
∫
π(δ) dF (δ) < 1, then I = 0. Otherwise, I is such that∫

π(δ) dF (δ) = 1.

Appendix A.2 shows that the cut-off rule described in the previous section is an

equilibrium result. We jointly solve for δc and π(δ) as a function of λℓ and I. We then

solve for λℓ and λh.

3 Frictionless Case: α = 0

The case without frictions offers a useful point of comparison. In this case, all in-

dividuals set o(·) = 1 as the (IC) constraint does not bind. Optimal consumption

equals

cj0 =
1− β

λj
(4)

cj2(δ) =
β

π(δ)λj
(5)

for all types of agents: j ∈ {ℓ, h, I}.

The Lagrange multipliers λj satisfy the budget constraints. For investors,

λI = 1/eI , (6)
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while for individuals,

λj =

(
ej +

∫
π(δ) δH dF (δ)− f

)−1

, j ∈ {ℓ, h}. (7)

We can interpret
∫
π(δ) δH dF (δ) − f as the time-0 value of the individual’s human

capital. In the frictionless case, human capital becomes a traded asset. Because human

capital is the same across individuals, only the initial endowment determines differences

in consumption. This is in sharp contrast to the case with frictions, in which the payoffs

to human capital positively correlates with initial cash-on-hand.

Market clearing (MC) determines the state-price density. Assume parameters are

such that the equilibrium riskfree rate is non-negative, i.e.
∫
π(·) dF (δ) ≤ 1 (this will

be the case in our calibration, assuming no frictions). Then inventory I = 0. Noting

that all individuals invest in human capital (o(·) = 1), and substituting in from (5),

we have the following simplified version of the market clearing condition (MC):

β

π(δ)

(
1

λI +
mℓ

λℓ
+

mh

λh

)
= δH.

Define

wH ≡
∫

π(δ) δH dF (δ)− f

as the time-0 value of total human capital in the economy (note that mℓ +mh = 1).

Substituting in from (6) and (7), we have

β[eI +mℓeℓ +mheh + wH ] = π(δ) δH. (8)

Integrating over δ implies that wH must satisfy

β[eI +mℓeℓ +mheh + wH ] = wH + f. (9)
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Therefore,

wH =
β[eI +mℓeℓ +mheh]− f

1− β

Substituting into (8) and solving for π(·) implies:

π(δ) =
β[eI +mℓeℓ +mheh − f ]

(1− β) δH
. (10)

Thus π(δ) ∝ δ−1. This is the standard representative agent result with log utility.

Market clearing implies that aggregate consumption at time 0 equals eI + mℓeℓ +

mheh − f and aggregate consumption at time 2 equals δH, pinning down the constant

of proportionality.

4 Results

4.1 Calibration

As an illustrative calibration, we assume a time-discount rate of 0.95 and zero payoff in

the traditional sector (H0 = 0). We normalize f to 1. We calibrate H so that 5% of the

time, low cash-on-hand (ℓ) individuals do not invest in human capital. We interpret this

lowest 5% of the the TFP distribution as corresponding (endogenously) to economic

disaster states. We assume that 50% of individuals have low cash on hand and 50%

have high cash on hand. We assume aggregate TFP δ is approximately lognormal such

that log δ ∼ N(0, 0.10). We censor draws of δ so that (1) obtains.8 We set endowments

so that the riskfree rate is equal to 1/β in the frictionless economy, in effect calibrating

the economy so that the final period represents a stream of consumption flow into the

future.

8Censoring occurs with probability less than 0.0001 in our benchmark calibration. Thus δ is very
close to lognormal.
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4.2 Occupational choice

Under our assumptions, the individual with high cash-on-hand will choose to invest in

human capital in any state of the world. However, the low-cash-on-hand individual’s

occupation choice displays state-dependence. For values of δ sufficiently low, it is

not optimal for the investor to pay the individual a sufficiently high wage to satisfy

incentive compatibility (IC). Without incentive compatibility, the individual cannot

commit to not shirk. This problem, endogenously, does not exist for the high cash-on-

hand individuals, who invest using their own funds and receive both the dividend and

the wage.

Figure 1 shows the occupation choice of the low cash-on-hand individual as a func-

tion of the state of the world δ.9 This choice is always 1 for δ sufficiently high. There is

a region in which equilibrium determines the fraction of agents who invest and who do

not. The region for which this fraction is not 1 or zero is very small. For δ sufficiently

small, occupational choice is zero. The case with a convex technology (which we solve

for in Appendix B) also features state-dependence, but is a smooth function at lower

levels of δ.

4.3 Consumption, dividends, and asset prices

Figure 2 shows aggregate consumption as a function of δ. In the frictionless case, all

agents consume in proportion to TFP. In the case with frictions, aggregate output (and

hence consumption) is equal to that of the frictionless case, as long as individuals make

the efficient occupational choice. . In the lowest states, agents no longer make efficient

occupational choices, and aggregate consumption is sharply lower at the point in the

distribution where agents stop investing in human capital. In the case of a convex

occupational choice, aggregate consumption is lower, but the effect is smooth over the

9In this and in subsequent figures, policy functions and equilibrium outcomes are shows as func-
tions of the cumulative distribution function of δ rather than δ itself.
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outcomes of δ. Namely, disasters are more rare in the non-convex case, but they are

also more severe.

The similarity between consumption in the frictionless case and in the case with

frictions masks sharp distributional differences. These distributional differences turn

out to be important for asset pricing. Figure 3, Panel A shows the dividend to investors:

D2(δ) = ((1− oℓ(δ))[H0 + f ] + oℓ(δ)δH − cℓ2(δ))m
ℓ, (11)

where oℓ is the fraction of ℓ-individuals who invest in human capital. Figure 3, Panel B

shows the payoff to low cash-on-hand individuals. These two payoffs show how investors

and low cash-on-hand individuals share aggregate risk. For most of the range of TFP,

investors bear nearly all of the risk. Again, this effect is present for a convex opportunity

set, but is amplified in the non-convex case. The consumption of low cash-on-hand

investors is flat over this range, whereas, relative to the frictionless case, the dividend

displays excess sensitivity to the aggregate state. Note that excess dividend sensitivity

is a endogenous outcome of the contracting problem. The investor “overcompensates”

the individual in certain states of the world because otherwise the individual cannot

commit to work.

The state-price density reflects imperfect risk sharing, as Figure 4 shows. In the

frictionless case, the state-price density is proportional to the inverse of consumption,

which in turn is proportional to the inverse of TFP. Bad states receive higher prices,

as in the standard Lucas (1978) economy. As compared to the case with no frictions,

frictions imply a state-price density that is weakly higher at every level of δ. At very

high values of δ, the state-price densities are the same (the economy is close to the

frictionless case, because all individuals consume enough to make effort optimal). At

the lowest values, they are also nearly the same (investment in human capital is not

optimal in the world with frictions and barely efficient in the frictionless world). For
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most of the state space, state prices are quite different.

The increase in the state-price density relative to the frictionless case reflects an

intertemporal distortion. Consider the decision of the low cash-on-hand investors. In

the frictionless case, the value of human capital becomes a traded asset, and the in-

dividual’s consumption and savings decision is determined only by the standard Euler

equation. In the case with frictions, however, human capital is not traded, because

the individual cannot commit to provide effort unless he or she receives sufficient com-

pensation.10 This compensation amounts to a claim on the project. By self-financing

(consuming less today, in return for earnings from the project in the future), the agent

shrinks the region in which efficient investment fails to take place. Self-financing the

project, is, of course, a form of savings, in that it shifts consumption from the time 0

to time 2. This savings raises the prices of all future states relative to the current state

(because investors need to buy the claims to these states), lowering the equilibrium

interest rate.

There is a second channel leading to a lower interest rate. In equilibrium, outside

investors must bear more of the risk relative to the frictionless case. Besides leading

to a more volatile state-price density, it also leads to a greater precautionary motive,

and thus higher state-price densities overall.

It is also of interest to compare the state-price density under the convex and non-

convex technologies. One might think that the convex case would be a smoothed

version of the non-convex case. For many outcomes, this is correct: it is a smoothed

version of occupational choice (Figure 1), aggregate consumption (Figure 2), and even

ℓ-individual per-capita consumption in period 2 (Figure 2).11 However, the state-price

density under the convex case is qualitatively different than that under the non-convex

10The higher the consumption in the second period, the smaller the distortion from having to
over-consume in low-δ states. See (2) and the subsequent discussion.

11Note that even here, the welfare consequences for ℓ-individuals are quite different, as will be
discussed below.
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case. When the technology is not convex, the state-price density is non-monotonic

in TFP: there is a level of δ at which it spikes upward and then declines. In con-

trast, the convex technology (like the frictionless case) implies state-price density that

monotonically declines in the state. This upward spike is purely due to imperfect risk

sharing. In Figures 1–4, the convex and non-convex case differ when δ falls below 20th

percentile value. At this value, all individuals invest in human capital when opportu-

nities are non-convex. Under the case of convex technology, all individuals invest, but

they do not invest the full amount. While aggregate consumption is higher for some

outcomes in the nonconvex case, risk sharing is less efficient, as seen in the sharply

higher state-price density and in the lower dividend to outside investors.12 For aggre-

gate consumption, it does not matter much if some investors are partially employed,

versus some fully employed and some not employed. However, for individual outcomes,

and for the equity premium, it clearly matters.

These figures highlight the differences between our economy and complete-market

endowment and production economies, and even economies with financial frictions such

as Gertler and Kiyotaki (2010). First, aggregate consumption exhibits a disaster state

relative to TFP (Figure 2). Second, Individuals of differing levels of endowments have

quite different consumption profiles. Specifically, the low cash-on-hand individuals is a

non-participant in the equity market, explaining the non-participation puzzle (Guve-

nen, 2009) among individuals with low financial wealth —Campbell (2016) shows that

these agents are much more likely to be non-participants.13 Third, dividends are pro-

cyclical, a fact that matches the data, but which endowment economies take as a given.

Production economies, on the other hand, struggle to match this result (Kaltenbrunner

and Lochstoer, 2010). In a standard production setting with time-varying investment

12On average, individuals need to be paid more under the non-convex case because they can divert
the full amount.

13Berk and Walden (2013) also link non-participation to the optimal wage contract between in-
vestors and workers.
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opportunities, dividends counterfactually fall in good economic states. In our model,

however, dividends rise more than consumption in good economic states. Finally, rela-

tive to Gertler and Kiyotaki (2010), markets are incomplete, leading to a more volatile

state price density, relative to what would be implied by aggregate consumption.

The dividend and consumption dynamics also speak to puzzles in macroeconomics.

The flat consumption profile of the low-cash-on-hand investor indicates a wage that

is insensitive to the economic state, without the need to assume complicated wage-

setting procedures.14 The model speaks to why economic growth (multiple realizations

of a good economic state) might lead to a declining labor share, a well-known em-

pirical finding (Karabarbounis and Neiman, 2013). Figure 3 shows that, relative to

TFP, ℓ-individuals give up some consumption (wages) in high states, in order to meet

the pledgeability constraint (combined with investors’ participation constraint) in less

good states of the world. Thus, when times are good, investors benefit more than

proportionally (Figure 3).

Figure 3 also highlights an important tradeoff in matching the data that will be

ubiquitous in models with a moral hazard friction. The high and volatile state-price

density occurs because of imperfect risk-sharing, a problem that grows worse as pro-

ductivity falls. However, for very low values of TFP δ (the states agents attempt to

avoid), it is the low cash-on-hand individuals, not the investors who bear all of the

risk. In these states, investors cease supplying external capital. Their dividends rise.

Because consumption for investors is higher in these states, the state-price density

jumps downward – a non-monotonicity reflected in Figure 4. This effect will hurt the

model’s ability to match the equity premium puzzle. That said, the existence of this

14A large literature in macroeconomics focuses on wage setting mechanisms that might lead wages
to be sticky (Christiano et al., 2016). Favilukis and Lin (2014) show that a model with exogenous
sticky wage, together with long run risk and recursive utility can explain the equity premium. Kilic
and Wachter (2018) show that partially sticky wages can account for excess volatility and the equity
premium in a model with rare disasters. Ai and Bhanderi (2019) endogenize sticky wages through a
contracting problem. However, unlike us, they assume that workers cannot invest in the stock market.
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state determines the equity premium in the model in the first place.

4.4 Quantitative implications

Table 3 describes the quantitative implications of our model. As we assume log util-

ity and normally distributed log TFP in a static setting, the model does not have

the mechanisms that explain the equity premium in the existing literature (high risk

aversion, exogenous disasters, long run risk). Nonetheless, the model generates some

quantitatively significant results. In the frictionless case, the equity premium is 1%,

with an unrealistically high riskfree rate of 5%. In the cases with frictions, the riskfree

rate falls to 0%, and, in the case of the non-convex technology, the equity premium

doubles to more than 2%. Meanwhile, the volatility of log dividends (equal in this case

to the volatility of log returns), rises from 10% per annum to almost 20%. As Figure 3

shows, this higher volatility reflects greater sensitivity to the economic state. The

higher volatility of dividends (endogenous leverage) is only part of the reason for the

higher equity premium. The state-price density is also more volatile than in the fric-

tionless case, as Figure 4 shows. This greater volatility, which comes from endogenous

market incompleteness, generates a higher equity premium.15

Does our assumption of a non-convex choice set matter for our results? Quantitative

results for aggregate consumption, the state-price density, and the equity premium are

indeed smaller in the case of the convex occupational choice, as compared with our

benchmark case. Non-convexities amplify the effects of financial frictions on these

variables. There are, moreover, some results that are qualitatively different when the

occupational choice is non-convex. These are the results pertaining to the ℓ-individual.

Consumption for the ℓ-individual has a bimodal distribution in the non-convex case,

but not in the convex case. The ℓ-individual is more likely to find herself in a very low

15The aggregate consumption claim also has a higher equity premium than in the frictionless case.
This arises from higher volatility of the state-price density (from imperfect risk sharing) and the fall
in consumption in poor economic states. By definition there is no leverage on the consumption claim.
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state in this case than when occupational choices are convex. These states represent

large shifts to the left relative to better economic times. This is reflected in consumption

that is more than twice as volatile in the non-convex case than the convex case (see

Table 3). In our model, consumption and wages are the same for ℓ-individuals. The

extreme sensitivity of wages at the low end to aggregate market conditions (Guvenen

et al., 2014) suggests that non-convexities are an important aspect of the return to

human capital.

Table 3 also shows the effect of raising the return to human capital H, and the

effect of increasing the mass of low-cash-on-hand individuals to one (so that there are

no high cash-on-hand individuals from the economy). Increasing H increases the equity

premium from 2.2% to 2.8%.16 Both increasing H and setting mℓ = 1 increases the

equity premium to 4%, explaining the majority of the equity premium in the data,

even despite the assumption of log utility.

4.5 Comparative statics

In this section, we explore the effects of changing the mass of low-cash-on-hand indi-

viduals (higher mℓ) and the return to human capital investment (H). In each case we

recalibrate endowments so that, in the frictionless economy, the riskfree rate stays the

same and is equal to β−1.

We first consider the effect of raising mℓ. Comparing the left and right panels of

Figure 5 shows that raising mℓ leads fewer low cash-on-hand individuals to choose to

invest in human capital (the red line shifts to the right). It is not obvious that this

should be the case, as this figure shows occupational choice per individual (it does not

simply reflect the fact that the total number of individuals investing in human capital is

smaller). The larger number of individuals failing to make the efficient investment leads

16As we explain below, we recalibrate endowments so that the riskfree rate in the frictionless
benchmark remains the same.
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to more severe consumption disasters, that occur slightly more frequently (Figure 6).

Changing mℓ affects per-capita consumption of the ℓ-individual (Figure 8), as well

as the per-share dividend (Figure 7), in a second-order way. Mainly, it affects the

state-price density (Figure 9).

We can conclude from Figures 5–9 that the most important affect of a change in

mℓ is on risk sharing (through the state-price density). The state-price density, is both

higher and more volatile (except in the very worst states) if more individuals require

outside financing. When mℓ equals to 1, these individuals are the sole producers of the

time-2 consumption good. Moderately low states, in which they consume too much,

relative to their marginal product, are thus extremely costly.

It may seem surprising that increasing the return to human capital increases the

equity premium and the quantity of risk in the economy. To further investigate this

effect, we show display various quantities as a function of the excess return to hu-

man capital (H −H0 − f)/f . Note that these are comparative statics results, and in

each case we recalibrate the economy so that, in the frictionless case, the riskfree rate

equals β−1 (thus eliminating any effects stemming purely from a higher growth rate of

consumption). The benchmark case in Table 3 corresponds to (H−H0−f)/f = 0.965.

Figure 10, Panel A shows the disaster probability, where a disaster state is one in

which individuals do not fully invest in human capital. The higher is H, the lower

is the disaster probability. This makes sense: a higher value of H makes it easier to

persuade outside investors to participate, given the need to compensate individuals. It

is therefore not surprising that expected aggregate consumption in the second period

is also, for the most part, increasing in H (Panel B). In both cases, there is a value of

H sufficiently large for which all individuals invest in human capital across all states

(so that the disaster probability equals zero), and for which aggregate consumption

is equal in expectation to the frictionless case. Note that these values are slightly

different. For H implying a probability equal to zero, but close to the boundary at
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which the probability exceeds zero, second period aggregate consumption is above the

frictionless benchmark. In this economy, an econometrician would not see any disasters.

This is an endogenous outcome; the disasters still matter, and agents save in order to

(successfully) avoid them.

Panel C shows the riskfree rate as a function of (H − H0 − f)/f . The riskfree

rate figure has a very different pattern than the disaster probability and aggregate

consumption. For values of H far above those that generate observed disasters, and

for which aggregate consumption appears identical to the frictionless case, distortions

caused by the financial friction still matter. Agents still have a greater precautionary

motive, and the interest rate is still depressed toward its zero lower bound, for virtually

the entire region we consider. This figure emphasizes the result that the disaster

probability of zero in Panel A and well-behaved aggregate consumption, are endogenous

outcomes. Avoiding disasters has a strong effect on asset prices.

Panel D shows the equity premium. The equity premium is non-monotonic in

(H − H0 − f)/f , illustrating the tradeoff we described in Section 4.3. Lower values

of (H − H0 − f)/f clearly worsen the friction. They raise the probability that some

individuals fail to invest (the disaster probability in Panel A), and they lower the

riskfree rate in Panel B. However, they lead to a lower equity premium because outside

investors offload the risk onto the low cash-on-hand individuals. In low states of the

world, investment is suboptimal, leading to higher values of dividends. To summarize,

the lower is (H −H0 − f)/f , the greater the friction, and the less risky the dividend.

Thus, the equity premium increases in (H−H0−f)/f , even as the probability of disaster

falls, and the riskfree rate rises. However, for sufficiently high values of (H−H0−f)/f ,

the friction becomes sufficiently unimportant and risk comes closer to being perfectly

shared. The equity premium still is far above the frictionless benchmark, but it declines

in H, because, over this range, higher H implies that there is sufficient funds to meet

the incentive compatibility constraint without too much distortion in risk sharing.

26



4.6 Wealth distribution and welfare

Our model has surprising implications for the wealth distribution, and for the welfare

of agents.

Table 4 reports the marginal utility of wealth (the Lagrange multiplier on the budget

constraint λ), total wealth, and human capital for the three types of agents, for the

economy with non-convex choice set, convex choice set, and with no frictions. We

define human capital wealth for individual j, j = ℓ, h as the time-0 value of cash flows

generated, less the investment cost:

∫
π(δ)

(
oj(δ) δH + (1− oj(δ))(H0 + f)

)
dF (δ)− f.

Total wealth for individual j is simply human capital plus the time-0 endowment ej.

Because of the log utility assumption, the marginal utility of wealth for the investor

is simply equal to the inverse of the initial endowment, and does not vary across

economies. This is not the case for individuals endowed with human capital. For the

ℓ-individual, marginal utility of wealth (λℓ) is sharply higher in the non-convex case, as

compared with the convex case, and is sharply higher in the convex case as compared

with the frictionless case. Because marginal utility of wealth is proportional to marginal

utility of time-0 consumption at the optimum, this indicates that the individual cuts

her time-0 consumption to rely on internal funds to cover investment cost as much as

possible.17 Interestingly, the marginal utility of the h-individual’s wealth is slightly

lower in the economies with friction (though the magnitude is not large). Below, we

explain why this occurs.

Panel B of Table 4 reports total wealth (in units of time-0 consumption), which

includes both cash-on-hand and human capital. For investors, this does not vary across

17Note that reduced time-0 consumption helps the individual meet the participation constraint for
investors, given incentive compatibility. This agent saves more than in the case without frictions.
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economies, as the value of total wealth is simply cash-on-hand (the time-0 endowment).

Wealth is very slightly higher for the ℓ-individual, and moderately higher for the h-

individual. This implies aggregate wealth that is higher in the case of the economies

with frictions.

This result seems surprising. Why is aggregate wealth higher, when, as Table 3

reports, the equity premium attached to wealth rises, while aggregate cash flows fall?

Moreover, why is aggregate wealth higher, even for the ℓ-individual when the marginal

utility of wealth is also higher? The reason is that the value of wealth masks the state-

dependence of the payoffs at time 2, which is what matters for utility. This wealth is

not something that the agent is capable of selling, and turning into consumption in any

manner that he or she pleases. For the ℓ-individual, moral hazard constraints dictate

that wealth must be consumed in a largely suboptimal state-independent way, except

in the worst economic states, in which case consumption falls sharply. Moreover, the

fact that state prices are higher overall hurts this investor, whose wealth has not risen

with the state prices to the same degree that the h-individual’s wealth has. One can

understand this result in terms of a Campbell and Shiller (1988) decomposition: higher

state prices overall imply a lower riskfree rate: the lower riskfree rate overwhelms the

equity premium and cash flow effects.

The h-individuals are unconstrained, and in their case, wealth is proportional to the

inverse of the marginal utility of wealth. The fact that their wealth is higher, and the

marginal utility lower, in cases with frictions, indicates that they are able to sell their

human capital at a higher value because state prices are higher. On the other hand,

consuming is more expensive, which implies (due to log utility) that their certainty

equivalent is the same. Note however, that the financial interests of h-individuals are

to some extent opposed to those of the ℓ-individuals. Type h-individuals are not hurt

by the presence of financial frictions, and in fact, their wealth is substantially higher.

By comparison, ℓ-individuals suffer a substantial utility loss due to financial frictions.
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Figure 11 considers comparative statics for welfare. We show welfare (in consumption-

equivalent terms) as a function of (H−H0− f)/f . In the frictionless economy, welfare

for all individuals increases linearly in the quantity of goods (solid black line). For

the high cash-on-hand individual, welfare equals the value in the frictionless case. The

higher value of their human capital, but the requirement to consume at higher state

prices cancel out, and their welfare exactly equals the frictionless value. This is not so

for either the investor or for the low cash-on-hand individual. As long as there is some

probability of failure to invest in human capital, the ℓ-individual suffers a welfare loss

relative to the frictionless case. The magnitude of this loss increases sharply with the

disaster probability. When the probability of a disaster is zero, the ℓ-individual enjoys

a small welfare gain, due to the fact that she must be compensated at a greater wage.

Investors, on the other hand, suffer a (small) welfare loss that is positive at any point.

For these investors, decreased risk sharing means that they are worse off. Unlike the

h-individuals, they have no human capital to sell at a higher price to compensate.

Importantly, the inalienability of human capital and the financing friction is not

per-se consequential for welfare. What matters is the interaction between the finan-

cial friction and aggregate risk. Table 5 reports welfare with pre-determined TFP

(σ(log δ) = 0), and compares this with our benchmark case. In the economy without

risk, the presence of the friction slightly raises the welfare of the ℓ-individuals (compare

the second and the fourth column, Panel D). Frictions lead the ℓ-individual to require a

high reservation wage; without uncertainty, this reservation wage is guaranteed. There

is a pure redistribution of consumption goods from investors to ℓ-individuals in the

case with frictions as compared to the case without, assuming no risk.

Moreover, risk per-se is also not consequential for welfare. In a model without

frictions, welfare loss due to uncertain productivity is negligible (compare the third

and fourth columns, Panel D). This is the standard business-cycle cost result (Lucas,
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2003).18 However, risk in TFP considerably lowers the welfare of a ℓ-individual in a

model with frictions (see columns one and two). As explained before this is due to the

endogenous left-tail risk and imperfect risk sharing in the economy.

5 Conclusion

We have introduced a model of inalienable human capital that we show can explain

a number of macroeconomic and asset pricing facts. First, inalienable human capi-

tal exacerbates downturns, as it is no longer possible to compensate individuals for

putting forth unobservable effort. This leads to a thick left tail in consumption, even

if productivity is normally distributed. It leads to countercyclical labor income risk, as

some agents no longer can finance human capital investments in low economic states.

It also leads to dividends that are more volatile than consumption, and wages that are

fixed. All of these are consistent with the data. Most importantly, financing frictions

imply a low riskfree rate, and an equity premium that is between 2 and 4 times what

it would be in the frictionless case.

While not explored here, our model is also consistent with a dynamic role of finance

in asset prices. We have kept various elements of the economic environment fixed,

such as financing frictions and the ability of outside investors to make commitments.

Comparative statics in our model show that an increase in financial frictions leads to

a greater equity premium, lower cash flows, and a “flight to quality” – a much lower

riskfree rate. A change in the ability to form commitments also has similar affects. A

generalized model has the potential to explain financial market fluctuations in terms

of changes in the institutional environment.

18Unlike in earlier comparative statics, we do not change endowments so that the risk/no risk case
has the same riskfree rate. This is appropriate given that our aim is welfare comparison.
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A Non-Convex Technology

This Appendix solves the model for the benchmark case of a non-convex technology.

Section A.1 characterizes the solution to the individual’s optimization problem. Sec-

tion A.2 solves for equilibrium for a given level of Lagrange multipliers and inventory.

Section A.3 then describes the algorithm for computing the full solution.

A.1 Individual’s Problem

In this section, we take the state price density π(·) as given and solve the problem

of an individual with access to a non-convex investment technology. We suppress the

superscript l, h. For a given time-0 endowment e, define the value function

V (e) = max
{0≤c0, 0≤c2(·), o(·)∈{0,1}}

(1− β) log(c0) + β

∫
log(c2(δ)) dF (δ)

such that: c0 + f − e ≤
∫

π(δ){o(δ) δH + [1− o(δ)](H0 + f)− c2(δ)} dF (δ) (BC)

∀δ | o(δ) = 1 : c2(δ) ≥ αf (IC)

Let λ and µ(·) denote the Lagrange multipliers for (BC) and (IC) respectively. For

now, we take these, and o(·) as given, and solve for for optimal consumption plans

c0(λ, µ(·), o(·)) and c2(δ;λ, µ(·), o(·)).

Because log is an increasing function, λ > 0. Furthermore, µ(·) ≥ 0, and µ > 0 if

and only if c2 = αf . Differentiating the Lagrangian associated with the individual’s

problem above leads to the following first-order conditions:

c0 =
1− β

λ
(A.1)

c2(δ) =
β

λπ(δ)− µ(δ)
(A.2)

If o(δ) = 0, the IC constraint does not bind, and thus µ(δ) = 0. It follows that
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c2(δ) = β/(λπ(δ)). If o(δ) = 1, there are two cases:

1. µ(δ) > 0 and c2(δ) = αf .

2. µ(δ) = 0 and c2(δ) = β/(λπ) ≥ αf

Therefore, c2(δ) = max{β/(λπ), αf} and µ(δ) = max{λπ−β/(αf), 0}. We have shown

the following Lemma:

Lemma 1. Given a value for the Lagrange multiplier on (BC) λ and a state-price

density π, the following equations summarize the optimal consumption plan:

c0 =
1− β

λ
(A.3)

c2(δ) =


c∗2(δ) ≡

β
λπ(δ)

if o(δ) = 0

max
{

β
λπ(δ)

, αf
}

if o(δ) = 1

(A.4)

Having characterized the optimal consumption plans and the shadow price of (IC),

we now characterize the optimal occupational choice o(δ;λ). In each state of the world

δ we consider a deviation in optimal o(δ). A necessary condition for an occupational

plan to be optimal is that the alternative occupation in each δ delivers a lower indirect

utility. Assuming a continuum of states, a deviation in a single o(δ) should not affect

λ. In what follows, we treat λ as fixed.

The objective function in terms of o is

U(o(·)) = β log c2(o(·)) + λπ[o(·)(δH − f −H0)− c2(o(·))] + const. (A.5)

where the constant term is not a function of o(·). Define

x ≡ αfλπ

β
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Note that x is the ratio of αf to c∗2, the optimal frictionless consumption (taking λ and

π as given). This dimensionless quantity, which summarizes the effects of the agent’s

choices on the budget constraint through λ, and the effect of prices π, is the focus of

our analysis.

First consider x ≤ 1, corresponding to c∗2 > αf . Optimal consumption simply equals

c2 = c∗2 = β/(λπ) and is independent of occupational choice o. Because δH > f +H0,

the individual loses nothing by investment, and in fact gains because of the greater

productivity. To summarize, when x ≤ 1, U(o(·)) is a strictly increasing function of

o(·), and thus o(·) = 1.

The interesting case is x > 1. Define scaled gain to investment:

γ(δ) ≡ δH − f −H0

αf

Define

u(x; γ) ≡ log x+ (γ − 1)x+ 1, x > 1. (A.6)

It follows from the definition of u that

βu = U |o=1 − U |o=0 x > 1, (A.7)

where we note that the utility difference on the right-hand side depends only on x,

holding γ constant.

Recall the economic tradeoffs that (A.6 –A.7) represent: when the individual invests

in human capital, she consumes a greater amount αf (x > 1 implies αf > c∗2). That

is better in terms of utility (as represented by the log term). The choice to invest also

leads to more resources, as indicated by γx. However, consumption is expensive, as

captured by −x.

Observation 1. Suppose γ ≥ 1. Then o = 1.
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For x ≤ 1, o = 1 as we observe previously. For x > 1, Observation 1 follows from the

fact that u > 0 when γ ≥ 1. Intuitively, when production is very successful, there are

plenty of resources to satisfy the IC constraint.

Observation 2. Suppose γ = 0. Then (for x > 1), o(0) = 0.

Observation 2 follows from the fact that u(1) = γ. Because u′ < 0 over the relevant

range, u < 0 when x > 1. When production is unsuccessful, the extra compensation

required by agents when x > 1 is a waste of resources.

Observations 1 and 2 serve as boundary conditions. The main case of interest is the

following:

Observation 3. Suppose γ ∈ (0, 1). Then u takes its unique global maximum at

x∗ = 1/(1− γ).

Observation 3 follows from the fact that u′(x∗) = 0, and that u′′ < 0.

Observation 4. Suppose γ ∈ (0, 1). Then there is a unique value xc > x∗ such that

u(xc) = 0. Moreover, o = 0 if and only if x > xc.

For x∗ defined in Observation 3, u(x∗) > 0. Moreover, limx→∞ u(x) < 0. The existence

of xc such that u(xc) = 0 follows from the continuity of u. Note also that u′ < 0 for

x > x∗; hence, xc is unique. Thus u > 0 for x < xc and u < 0 for x > xc. Observation 4

follows.

Intuitively, the log of consumption grows more slowly than the linear term in con-

sumption. When the difference between optimal frictionless consumption and con-

sumption required by the IC constraint grows sufficiently large, the cost of supporting

this consumption (linear in x) must dominate the utility gain (log in x). The cut-off

point xc is the point at which the linear term starts to dominate the log term.

We combine these results into the following proposition:
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Proposition 1. The optimal labor choice o = 1 if x < xc, o = 0 if x > xc. If x = xc,

the agent is indifferent between o = 0, 1. The cut-off point xc satisfies

xc =


∞ γ ≥ 1

> 1 γ ∈ (0, 1)

1 γ = 0

For γ ∈ (0, 1), xc uniquely solves the fixed point problem:

x = 1 + γx+ log x. (A.8)

Finally, xc is increasing in γ.

Proof. It suffices to consider the case γ ∈ (0, 1) Define

F (x; γ) ≡ 1 + γx+ log x.

First note that for

xc = F (xc; γ),

u(xc) = 0. Thus, if xc solves the fixed-point problem, it is the cut-off point defined in

Observation 4. Moreover, manipulating (A.8) implies xc > 1/(1 − γ) > 1. The result

that xc is increasing in γ follows from taking a total derivative of u with respect to

γ.

A.2 Market Clearing

Proposition 1 of the previous section characterized o(·) in terms of x (ratio of αf to

c∗2), for a given γ (gain from investment). Note that x is a positive scalar multiple of

the state-price density π, whereas γ is a linear function of TFP δ. In equilibrium, of
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course, there will be a one-to-one mapping between π and δ, but for now, it is useful

to think of them separately. The economic content of Proposition 1 is that (provided

productivity is in an intermediate range), there are state prices that are sufficiently

high for which it no longer is optimal to supply human capital.

Thus the previous section solves for o(·) as a function of π(·). Now we solve for π(·)

as a function of occupational choice o(·) using the market clearing condition (MC) and

the relative population of ℓ- and h-individuals, taking as given the resources stored in

inventory I and marginal utility of wealth for ℓ- and for h-individuals λℓ and λh. We

make the following assumptions on the parameters.

Assumption 1. The endowment of the h-individual, eh is sufficiently large that oh(δ) =

1 for all δ.

Assumption 1 requires that eh be high enough so that, in equilibrium, λh is small, and

thus c∗2(δ) is sufficiently high across all states so that (IC) does not bind.

Assumption 2. There exists a δ such that, for all ℓ-individuals, o(δ) = 1.

Assumption 2 states that all low cash-on-hand individuals invest in human capital in

some states of the world.

We make an assumption on the type of equilibrium permitted.

Assumption 3. Equilibrium does not permit endogenous inequality. Namely, λ is the

same across otherwise homogenous agents.

Assumption 3 allows us to restrict attention to symmetric equilibria.

At the optimum, market clearing conditions are (piecewise) linear functions of the

inverses of Lagrange multipliers and of state prices. It is convenient to define the
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following notation for these inverses:

λ̂j ≡ 1/λj j = ℓ, h, I

π̂(·) ≡ 1/π(·)

x̂c(γ) ≡ 1/xc(γ)

Also define:

e ≡ eI +mheh +mℓeℓ, total endowment

ê ≡ β(e− I − f)

(1− β)αf

y ≡ I +mhδH +mℓ(f +H0)

αf

z ≡ λ̂ℓβ

αf
.

Here, z is the per-capita consumption of ℓ-individuals, scaled by αf . Note that

zπ̂ = x

from the previous section. Finally, y equals “base” output (namely, output if no ℓ-

individuals invest), scaled by αf . Like γ (scaled gain from investment), y is increasing

in TFP δ.

With this new notation, we can restate Proposition 1:

oℓ(δ) =


1 if zπ̂(δ) > x̂c

0 ≤ · ≤ 1 if zπ̂(δ) = x̂c

0 if zπ̂(δ) < x̂c

(A.9)
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Recall that x̂c(γ) = 1/xc(γ) is strictly decreasing with γ ∈ [0, 1], x̂c = 0 if γ ≥ 1 and

x̂c = 1 if γ = 0. Also, x̂c ≤ 1− γ.

We now use the market-clearing conditions to characterize π as a function of optimal

occupational choice o. We will show that π and o solve a system of two equations in

two unknowns. Proposition 2 describes the solutions as functions of δ:

Proposition 2. Given λℓ and I, there exist three cut-off points, δ0, δc, and δf such

that the equilibrium occupational plan and state-price density satisfy

δ ≤ δ0 :


oℓ = 0

π̂ = y/ê

(A.10)

δ0 ≤ δ ≤ δc :


oℓ = (y − x̂cê/z)/[mℓ(1− γ − x̂c)]

π̂ = x̂c/z

(A.11)

δc ≤ δ ≤ δf :


oℓ = 1

π̂ = [y +mℓ(γ − 1)]/(ê−mℓz)

(A.12)

δf ≤ δ :


oℓ = 1

π̂ = (y +mℓγ)/ê

(A.13)

Proposition 2 describes four regions of the state space. For δ sufficiently low (below

δ0), no ℓ-individual invests in human capital. The state-price density equals its value in

a frictionless economy (given a values for λℓ and I). For δ ∈ [δ0, δc], some ℓ-individuals

invest. Those that invest consume at a constrained level. In this region, an additional

unit of investment leads to lower resources and higher state prices, because individuals

must be compensated at rates greater than their productivity. For δ ∈ [δc, δf ], all ℓ-

individuals invest, and consume at the constrained level. At some point in this region,

state prices become independent of occupational choice, as ℓ-types consume exactly
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what they produce. Finally, for δ ≥ δf , all individuals invest, and consumption is once

again unconstrained. State prices are what they would be in a frictionless economy.

Proof. We normalize mℓ +mh = 1. Recall that mI = 1. The time-0 market clearing

condition is:

(1− β)[eI +mhλ̂h +mℓλ̂ℓ] = eI +mheh +mℓeℓ︸ ︷︷ ︸
≡e

−f − I (MC-0)

where we replace the optimal consumption choices by the outcome of agents’ maxi-

mization problems. Assumptions 1 and 2 imply that the economy must set aside the

full cost f at time 0 for potential use at time 1, because there are some states of the

world in which all individuals will invest in human capital.

The time-2 market clearing condition is

β[eI π̂ +mhλ̂hπ̂ +mℓ(1− oℓ)λ̂ℓπ̂] +mℓoℓ max{βλ̂ℓπ̂, αf} =

I + (mh +mℓoℓ)δH +mℓ(1− oℓ)(f +H0). (MC-2)

where oℓ ∈ [0, 1] is the fraction of ℓ-individuals investing in human capital at time 1.

Because we are interested in π̂ as a function of oℓ, for now, we treat this value as fixed.

The left-hand side of (MC-2) is a piecewise linear function of π̂. It follows that:

π̂ = min{π̂f , π̂∗}, (A.14)

where π̂f and π̂∗ solve (MC-2) over the relevant range:

π̂∗ ≡ I +mhδH +mℓ(f +H0) +mℓoℓ(δH − f −H0)

β[eI +mhλ̂h +mℓλ̂ℓ]
(A.15)

π̂f ≡ I +mhδH +mℓ(f +H0) +mℓoℓ(δH − f −H0)−mℓoℓαf

β[eI +mhλ̂h +mℓ(1− oℓ)λ̂ℓ]
(A.16)
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(see Figure A.1).

We use (MC-0) and the notation defined above to substitute out λ̂h and to simplify

(A.15) and (A.16):

π̂∗ =
y +mℓγoℓ

ê
(A.17)

π̂f =
y +mℓ(γ − 1)oℓ

ê−mℓzoℓ
(A.18)

Note that π̂∗ is the state-price density in the frictionless economy. Equations A.17

and A.18 imply that π̂∗ = π̂f when mℓoℓ = (ê− yz)/γz. The left-hand side of (MC-2)

indicates that this must occur when exactly when the frictionless consumption equals

αf .

We now consider two cases, zy < ê(1− γ) and zy ≥ ê(1− γ).

Case 1: zy < ê(1− γ)

It follows from (A.18) that π̂f is decreasing in oℓ, and also π̂f < π̂∗, for oℓ > 0, with

π̂f = π̂∗ for oℓ = 0.

Define δ0 such that

y(δ0)

ê
=

x̂c(δ0)

z
(A.19)

The left-hand side of (A.19) is π̂ from (A.18), assuming oℓ = 0. The right-hand side is π̂

from (A.9), also assuming oℓ = 0. Therefore, oℓ = 0, together with state prices defined

by (A.19) represents an equilibrium. Moreover, for all values of δ < δ0, π̂ < x̂c(δ)
z

. Thus

oℓ = 0, again combined with π̂ given by y(δ0)
ê

represents an equilibrium.

Figure A.2 Panel A illustrates the equilibrium. The blue line is π̂ = π̂f as a

function of oℓ and δ, from (A.18). The red line is oℓ as a function of π̂ and δ, from

(A.9). Equilibrium is at the intersection point. Increasing δ shifts the π̂ curve to the

right and the oℓ curve to the left. At δ = δ0 is the maximal value of δ at which oℓ = 0
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represents an equilibrium.

The economic content is as follows: we know from Proposition 1 that there are state

prices high enough at which ℓ-individuals cannot invest. Provided that δ is sufficiently

low, this is consistent with equilibrium, because δ and state prices are inversely related

(this is in spite of the fact that, for low δ, investment on the part of ℓ-individuals raises

state prices).

Now define δc as

y(δc)−mℓ(1− γ(δc))

ê−mℓz
=

x̂c(δc)

z

Because the left hand side is again π̂f (for oℓ = 1), this represents an equilibrium.

For δ ∈ (δ0, δc), the unique equilibrium (for a given λℓ and I) occurs when (A.18) and

π̂f = x̂c/z is satisfied – this pins down oℓ ∈ (0, 1).

Case 2: zy ≥ ê(1− γ)

It follows from (A.18) that π̂f is increasing in oℓ. By assumption, in this case

y

ê
≥ 1− γ

z
≥ x̂c

z
,

where the last inequality follows from Proposition 1. Note that y/ê equals π̂ when

oℓ = 0. Because π̂f is increasing in oℓ over this range, it follows that equilibrium is

reached when oℓ = 1 (see Panel B of figure Figure A.2, Panel B).

The question of whether π̂ = π∗ or πf depends on the value of δ. Note that for

finite δf satisfying

ê/z − y(δf )

mℓγ(δf )
= 1 (A.20)

π̂f = π̂∗ from (A.17) and (A.18) (note that we have used oℓ = 1). For δ < δf , π̂ = π̂f <

π̂∗: state prices are high enough that the individual consumes at the constrained level.

46



For δ > δf the (IC) is satisfied even for unconstrained consumption. To summarize:

π̂ =


π̂∗ =

y +mℓγ

ê
if δ ≥ δf ,

π̂f =
y −mℓ(1− γ)

ê−mℓz
if δ ≤ δf .

We then need to solve for λℓ and I, using budget constraint for a ℓ-individual, and

the optimal decision by the investors to invest in the inventory: I = 0 if
∫
πdF < 1;

otherwise, I > 0 and
∫
πdF = 1.

A.3 Numerical Algorithm and Equilibrium Selection

In principle, we have not ruled out multiple equilibria. We select the equilibrium with

the lowest level of inventory I (as it is the inferior technology), and the lowest value of

λℓ.19

We conjecture inventory I = 0. Given this I, we solve for λℓ; to do so, we start

with the lowest possible value of λℓ, solved from frictionless-world with α = 0, then we

solve for oℓ and π using analytical expressions above and see if budget constraint for

a ℓ-individual holds; if not, we incrementally increase λℓ and solve for a new partial

equilibrium at time 2. After solving for a λℓ, given I = 0, we check if
∫
πdF ≤ 1. If yes,

we are done; otherwise, we incrementally increase I, solving for λℓ as just described.

We iterate on these two loops (the inner loop in which we solve for λℓ and the outer

loop in which we solve for I) until
∫
πdF = 1.

19Could equilibria exist with higher λℓ? Conjecture that such an equilibrium existed. Because
frictionless time-2 consumption would be lower, the financing constraint might start to bind at a
lower value of the state-prices. This would confirm the lower wealth consistent with higher λℓ. For
simplicity, we rule out these (potential) equilibria.
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B Convex technology

B.1 Individual’s Problem

In this section, we take the state price density π(·) as given and solve the problem of

an individual with access to a convex technology. We suppress the superscript ℓ, h. For

a given time-0 endowment e, define the value function

V c(e) = max
{0≤c0, 0≤c2(·),0≤o(·)≤1}

(1− β) log(c0) + β

∫
log(c2(δ)) dF (δ)

such that: c0 + f − e ≤
∫

π(δ){o(δ) δH + [1− o(δ)](H0 + f)− c2(δ)} dF (δ)

∀δ : c2(δ) ≥ o(δ)αf (IC')

Proposition 3. Given a set of equilibrium prices, V c(e) ≥ V (e).

Proof. The optimal solution to the contracting problem in the benchmark model with

nonconvex technology meets the feasibility and incentive compatibility constraint in

the program with convex technology.

Define the shadow price of budget constraint by λ and the shadow price of incentive

compatibility constraint (IC') after scaling by risk neutral probabilities with µ(·) ≥ 0.

Given λ and µ(·), the optimal consumption plan follows

c0 =
(1− β)

λ
(B.1)

c2 =
β

λ− µ(δ)

1

π(δ)
(B.2)

We now jointly solve for µ(·) and o(·). Suppose β
λ

1
π(δ)

≥ αf . In this case the scale

of operation would be the maximal first-best level: o = 1 as (IC') does not bind. Also

µ = 0.

Now consider the case β
λ

1
π(δ)

< αf . The Lagrangian is linear with o. Therefore, the
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FOC for occupational choice is independent of o:

λ[δH −H0 − f ] = µ(δ)αf ⇔ µ(δ) = λγ(δ) (B.3)

where as defined before γ(δ) := (δH − f −H0)/αf . The optimal o follows

o(δ) =


0 if µ(δ) > λγ(δ)

0 ≤ . ≤ 1 if µ(δ) = λγ(δ)

1 if µ(δ) < λγ(δ)

(B.4)

Note that µ > λγ is impossible, as it implies o = 0 for which eq. (IC') doesn’t bind; a

contradiction to µ > 0. In the intermediate case µ(δ) = λγ(δ), however, the optimal

scale o(δ) is pinned down from (IC') which holds with equality (since µ > 0) jointly

with eq (B.2). This is the case if such solution to o(δ) indeed satisfies o(δ) ≤ 1. In

case the individual reaches to the full capacity o = 1, µ(δ) < λγ(δ) and (IC') with

o = 1 together with eq (B.2) solves µ(δ). This is the case if such solution to µ(δ)

indeed satisfies µ(δ) < λγ(δ). Straightforward calculation delivers the condition for

which each of these cases happens.

Here is the compact form of expressing optimal consumption and occupational

choice followed from different cases above.
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µ(δ) = min { max { λ− β

αfπ
, 0 } , λγ } (B.5)

o =


1 if λ(1− γ) ≤ β

αfπ
β

αfπλ(1− γ)
otherwise

(B.6)

c2 =



β

λπ
if λ ≤ β

αfπ

αf if
β

αfπ
≤ λ , λ(1− γ) ≤ β

αfπ
β

λ(1− γ)π
if

β

αfπ
≤ λ(1− γ)

(B.7)

c0 =
(1− β)

λ
(B.8)

Observation 5. If γ(δ) ≥ 1 Then o = 1.

This result is similar to Observation 1 in the non-convex technology case.

Observation 6. The optimal scale of option is always positive: o > 0.

As long as either e or H0 is positive, the individual would have a finite λ and

positive time-2 consumption. Then there would exist small enough, but positive scale

of operation to satisfy eq. (IC'). This contradict the results of non-convex technology,

for which the optimal choice might be to not invest in human capital for positive

measure states of the world.

Observation 7. There are some states of the world, for which the individual with

access to non-convex technology would invest: o = 1, but the with convex technology

would invest not at the full scale: o < 1.

To see why, consider some γ < 1. The condition to operate at scales less than one

from above is if zπ̂ is less than (1 − γ). However, from our discussion of non-convex
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technology we know individual invests as long as zπ̂ is greater than x̂c, where x̂c < 1−γ

as is discussed before. Therefore, in this non-empty range: x̂c < zπ̂ < 1− γ the scale

of operation with convex technology is less than the one with non-convex technology.

Intuitively, with convex technology the individual is not forced to go all the way up to

the full scale and pay a high shadow price of meeting incentive compatibility constraint.

B.2 Market Clearing

Having characterized the optimal scale of investment o(·) given π(·) at each state,

we now characterize π(δ) given o(δ) using the market clearing equation. This will

determine equilibrium outcomes for a given the Lagrange multiplier λℓ and inventory

I,

The market clearing condition for time 0 is still (MC-0). However, there is an

important difference in market clearing at time 2 between the convex and non-convex

cases. Instead of having a fraction oℓ of individuals investing at full scale, now all the

ℓ-individuals run at potentially less than full scale. This is reflected in time-2 aggregate

consumption.

βeI π̂ +mhβλ̂hπ̂ +mℓmax{βλ̂ℓπ̂, oℓαf} =

I + (mh +mℓoℓ)δH +mℓ(1− oℓ)(f +H0) (MC-2)

We can solve for π as a function of δ, at a given oℓ. Using the notations we defined

before: ê := β(e− I − f)/[(1 − β)αf ], y := [I + mhδH + mℓ(f + H0)]/(αf) and
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z := λ̂ℓβ/αf , we have

π̂∗ =
y +mℓoℓγ

ê
(B.9)

π̂F =
y +mℓoℓ(γ − 1)

ê−mℓz
(B.10)

π̂ = min{π̂∗, π̂F} (B.11)

Note that oℓ is no longer in the denominator of the “distorted” state-price density (π̂F ).

As a result π̂F > π̂f for any given oℓ < 1 (namely the distorted state price is higher in

the economy with non-convex investment).

We now characterize equilibrium outcomes.

Proposition 4. Time 2 equilibrium objects π and o as functions of δ, given I and λℓ,

are specified by

δ ≤ δC :


oℓ = yz/[ê(1− γ)]

π̂ = y/ê

(B.12)

δC ≤ δ ≤ δF :


oℓ = 1

π̂ = [y +mℓ(γ − 1)]/(ê−mℓz)

(B.13)

δF ≤ δ :


oℓ = 1

π̂ = (y +mℓγ)/ê

(B.14)

where the cutoff thresholds δC and δF solve

1− γ(δC)

z
=

y(δC)

ê
(B.15)

1 =
y(δF )z

ê−mℓγ(δF )z
(B.16)
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Proof. Recall from the individual’s problem that if oℓ < 1, the ℓ-individual consumes at

the constrained level c2 = oαf ; hence, the market clearing condition delivers π̂ = π̂F .

This is a key property, as we can claim that by increasing δ, first, the operation scale

becomes one, and then the state price switches from constrained to unconstrained

version. We can define two cut-off thresholds for δ, called δC and δF , similar to what

we did with non-convex technology, such that the equilibrium at time 2 features oℓ < 1

and π̂ = π̂F if δ is small enough: δ < δC , o
ℓ = 1 and π̂ = π̂F in an intermediate range

of δ: δC ≤ δ < δF , and finally oℓ = 1 and π̂ = π̂∗ if δ is large enough: δF ≤ δ.

C Non-Convex Technology, No Commitment

The optimal contract between a ℓ-individual and investors now should satisfy ex-post

incentive of investors to fund an individual, in any state of the world with ex-ante

planned investment in human capital. Given π(·), define the value function as a func-

tion of e by

V m(e) = max
{0≤c0, 0≤c2(·), o(·)∈{0,1}}

(1− β) log(c0) + β

∫
log(c2(δ)) dF (δ)

such that: c0 + f − e ≤
∫

π(δ){o(δ) δH + [1− o(δ)](H0 + f)− c2(δ)} dF (δ) (BC)

∀δ | o(δ) = 1 : c2(δ) ≥ αf (IC-1)

∀δ | o(δ) = 1 : δH − c2(δ) ≥ f (IC-2)

The left hand side of (IC-2) shows the gross return to investors which is project’s return

minus consumption of the individual, and the left hand side shows the investment cost.

First, we take the shadow price of budget constraint λ and occupational choice

o(·) as given and solve for the optimal consumption. Note that o(δ) = 1 requires
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δH − f ≥ αf in order to have a nonempty feasible set for c2(δ).

c0 =
(1−β)

λ

c2(δ) =


c⋆2(δ) :=

β
λ

1
π(δ)

if o(δ) = 0

min{ max{ c⋆2(δ) , αf} , δH − f} if o(δ) = 1

Now we take one step back to solve for the optimal o(δ), and the market clearing

price π(δ). Two cases should be considered separately.

Case 1: δH − f < αf .

We have oℓ(δ) = 0 for sure as the feasible set for cℓ2(δ) given oℓ = 1 is empty. Total

output in this state of the world is I + mhδH + mℓ(f + H0) and just obtained in

the benchmark economy with commitment and δ ≤ δ0 the state price is derived by

π = (1−β)[I+mhδH+mℓ(f+H0)]
β(e−I−f)

.

Case 2: δH − f ≥ αf .

In this case, oℓ = 1 could be the case; however, by switching from oℓ = 0 to oℓ = 1 the

constrained consumption c2(δ) may be distorted from the frictionless choice c⋆2(δ). We

need to consider three possible outcomes separately.

− Case 2.a. αf ≤ c⋆2(δ) ≤ δH − f . The optimal occupation is oℓ = 1, as c2 = c⋆2

is not distorted by switching from oℓ = 0 to oℓ = 1; meanwhile, oℓ = 1 expands the

budget constraint; hence, it is preferred.

− Case 2.b. c⋆2(δ) < αf . In this case c2 = c⋆2 = β/(λπ) if oℓ = 0 and c2 = αf >

β/(λπ) if oℓ = 1. Similar to the benchmark environment with commitment, oℓ = 1 if
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and only if u ≥ 0, where

u(x) = log x+ (γ − 1)x+ 1

Recall that x := αfλπ(δ)/β and γ(δ) := (δH − f −H0)/αf . This results in the same

condition oℓ = 1 if and only if x ≤ xc where xc as in the benchmark case is the solution

to u(x) = 0.

− Case 2.c. c⋆2(δ) > δH − f . In this case c2|o=1 = δH − f < c⋆2. Therefore, if the

individual decides to invest: oℓ = 1 then (IC-1) would not bind. However, investing is

not necessary the optimal choice. If the individual invests, she will expand her budget,

but at the same time she is forced to consume less (δH−f) than the amount she would

be allowed to consume at oℓ = 0 (i.e. c⋆2).

Define η := (δH − f)/αf . We can simplify trade-offs to conclude that the optimal

occupation follows oℓ = 1 if and only if v ≥ 0, where

v(x) := log x− (η − γ)x+ 1 + log η

Proposition 5. There exits a unique xi < η−1 as the solution to v = 0; we have v > 0

for any x > xi and v < 0 for any x < xi. We know xi is decreasing with γ and η. The

optimal occupational choice follows oℓ = 1 if and only if xi ≤ x. □

Proof. As by assumption αf ≤ δH − f < β/(λπ), we have 1 ≤ η < x−1; therefore,

x < η−1. Also, as H0 ≥ 0, we have η ≥ γ. In the limit x → η−1, v converges to a

positive number, which is v → γ/η. In the limit x → 0, v converges to minus infinity.

v takes its maximum at x−1
m = η − γ which is outside of the permissible range for x

(recall that η < x−1); for any x below xm, v is strictly increasing with x. Therefore,

there is a unique solution to v = 0.
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Summary

We can summarize the result of all cases specified above as follows in order to solve for

the optimal oℓ(δ) for a given π(δ).

If δH − f < αf , i.e. η < 1, then oℓ = 0, for any π. The market clearing condition

solves π as in the case δ < δc in the benchmark case with commitment.

Now consider the interesting cases in which δH − f ≥ αf . As before, we define

z := β
αfλℓ , x := π/z, π̂ := π−1, x̂c := x−1

c and x̂i := x−1
i . Note that x̂c < 1− γ < η < x̂i

based on the proposition above and the arguments of the benchmark section.

The blue curves show market clearing relationship between π̂ = min{π̂f , π̂∗} and oℓ

in the two cases 2.a and 2.b analyzed above as it is derived in the benchmark section.

Arrows show the shift in curves and cut-offs as a result of an increase in δ.

The right vertical section of oℓ(·) is the impact of no-commitment friction. As

δ increases the time-2 equilibrium shifts from oℓ = 0 toward oℓ = 1 since the blue

curve π̂f starts to cross the left vertical part of oℓ. Once δ passes δc (see definition in

previous section) the blue curve π̂f crosses the left-top corner of the red curve oℓ(·) and

the economy sets at oℓ = 1; further increase in δ increases π̂ just as in the benchmark

economy. However, since both the blue curves π̂f and π̂∗ are increasing with δ the

equilibrium may switch back to oℓ < 1 as the blue curves might cross the right vertical

part of oℓ(·). I show below that this never happens; because, the right vertical part of

oℓ(·) also shift to the right by increasing δ and it shifts at a faster pace. See the technical

details at the end of this section. We have established the following proposition.

Proposition 6. The time-2 equilibrium of the economy (π(δ), oℓ(δ)) with no commit-

ment on the investors side is the same as the benchmark economy with commitment,

as long as αf ≤ δH − f . Otherwise, the equilibrium simply features oℓ = 0 and π̂ = y
ê
.

Having characterized time-2 equilibrium outcomes: oℓ(·), π(·) at each δ, we turn to

numerically solve for λℓ and I. We follow the same algorithm and equilibrium selection
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approach as in the benchmark economy with commitment.

We solve for this economy and report results in Table C.1 and Figure A.3). The

overall economy is much poorer and less stable in this case, but the outside investors

take less risk (reflected in a lower volatility of dividends). As a result, the equity

premium is slightly lower in this case. This is not to say that investors are insulated

from the negative affects of inability to enforce financial contracts. They still bear part

of the cost of lower aggregate consumption, in the form of lower dividends. Thus a

decline in financial sophistication would, through a cash flow channel, be expected to

lead to a decline in stock prices.
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Table 1: Model Summary

t = 0 t = 1 t = 2

- Individuals trade Arrow
securities with investors.
- investors may put resources
into inventory.

- State of the world is realized.
- Individuals choose an
occupation.
- Investment costs are financed.

- Individuals choose to work or
shirk.
- Returns are realized and
security payments are settled.
- Everyone consumes her wealth
and dies.
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Table 2: Parameter values

Panel A: Technology, Preferences

Time-discount rate β 0.95

Return on investment in the traditional sector H0 0

Fixed cost of investment in the non-traditional sector f 1

Average return on investment in the non-traditional sector H 1.965

Average TFP, E(δ) 1

Volatility of the log of TFP, σ(log(δ)) 0.1

Panel B: Population, Endowments

Mass of ℓ-individuals mℓ 0.5

Mass of h-individuals mh 0.5

Mass of outside investors mI 1

Endowment of ℓ-individuals eℓ 0.049

Endowment of h-individuals eh 1.049

Endowment of outside investors eI 0.549

Panel C: Financing friction

Private benefit (as fraction of f), α 1

Notes: The table reports parameter values for the benchmark calibration. We set the
initial endowments to eh = f + ϵ, eℓ = ϵ and eI = ϵ + mℓ

mI f , and calibrate the single
free parameter ϵ so that the risk-free rate in the frictionless economy equals β−1. This
implies ϵ = .049. In effect we assume that the high cash-on-hand individuals are able
to pay the investment cost (f) out-of-pocket, whereas low cash-on-hand individuals
are not. We calibrate H so that economic disasters (periods when low-cash-on-hand
individuals are not fully employed) occur 5% of the time.
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Table 3: Asset prices and cash flow volatility

Economic Environment Non-Convex Convex Frictionless

Panel A: Benchmark Specification

Risk free rate (%) 0.00 0.00 5.26

Equity premium, Dividend claim (%) 2.17 2.02 1.06

Equity premium, Aggregate consumption claim (%) 1.32 1.35 1.06

σ(R), Dividend claim 0.19 0.18 0.11

σ(R), Aggregate consumption claim 0.12 0.12 0.11

σ(logD), Dividend 0.18 0.17 0.10

σ(logC), Aggregate consumption 0.12 0.12 0.10

σ(logC), ℓ-individual consumption 0.44 0.18 0.10

Panel B: High H

Risk free rate (%) 0.00 0.00 5.26

Equity premium, Dividend claim (%) 2.72 2.61 1.06

Equity premium, Aggregate consumption claim (%) 1.33 1.33 1.06

σ(R), Dividend claim 0.21 0.20 0.11

σ(R), Aggregate consumption claim 0.10 0.10 0.11

σ(logD), Dividend 0.20 0.20 0.10

σ(logC), Aggregate consumption 0.10 0.10 0.10

σ(logC), ℓ-individual consumption 0.00 0.03 0.10

Panel C: High H and mℓ

Risk free rate (%) 0.00 0.00 5.26

Equity premium, Dividend claim (%) 3.91 3.51 1.06

Equity premium, Aggregate consumption claim (%) 1.94 1.93 1.06

σ(R), Dividend claim 0.21 0.20 0.11

σ(R), Aggregate consumption claim 0.10 0.11 0.11

σ(logD), Dividend 0.20 0.19 0.10

σ(logC), Aggregate consumption 0.10 0.11 0.10

σ(logC), ℓ-individual consumption 0.07 0.07 0.10

Notes: We consider three types of economies (non-convex technology, convex technol-
ogy, frictionless), and three parameterizations. In the non-convex economy, individuals’
occupational choice is in the set {0,1}, as Section 2 describes. Appendix B describes
the economy with the convex technology. Section 3 describes the economy without
frictions. Table 2 describes the parameters for the benchmark case. For the case with
a higher payout of the technology (high H), H = 2. For the case with a greater per-
centage of low cash-on-hand individuals high mℓ, mℓ = 1 and mh = 0. In each panel,
endowments are adjusted so that the riskfree rate in the frictionless case equals β−1

(see Table 2). The dividend claim equals the payout to outside investors of investing
in the low cash-on-hand individuals.
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Table 4: Wealth across agents

Economic Environment Non-Convex Convex Frictionless

Panel A: Marginal Utility of Wealth

λℓ 7.37 3.96 1.12

λh 0.50 0.50 0.53

λI 1.82 1.82 1.82

Panel B: Wealth

ℓ-individuals 0.96 0.95 0.90

h-individuals 1.99 1.99 1.90

Investors 0.55 0.55 0.55

Aggregate 3.50 3.49 3.34

Panel C: Value of Human Capital

ℓ-individuals 0.91 0.90 0.85

h-individuals 0.94 0.94 0.85

Investors 0.00 0.00 0.00

Aggregate 1.85 1.84 1.70

Panel D: Utility, Consumption Equivalent Value

ℓ-individuals 0.71 0.75 0.78

h-individuals 1.64 1.64 1.64

Investors 0.45 0.45 0.47

Notes: We report the Lagrange multipliers λ, total wealth (both cash-on-hand and
human capital), human capital wealth, and the consumption equivalent of indirect
utility (the consumption level for which the log equals indirect utility V ). Values are
reported for the three types of agents: ℓ and h-individuals, and investors (I). We
report wealth in units of time-0 consumption in each economy. Wealth includes time-0
consumption. Non-convex refers to the benchmark case of a non-convex choice set for
human capital investment. Convex refers to the case of the convex choice set. Both
cases imply financial frictions. The last column reports values for the frictionless case.
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Table 5: Welfare implications of risk and frictions

Non-convex technology Frictionless economy

With risk Without risk With risk Without risk

Panel A: Marginal Utility of Wealth

λℓ 7.37 3.67 1.12 1.12

λh 0.50 0.50 0.53 0.53

λI 1.82 1.82 1.82 1.82

Panel B: Wealth

ℓ-individuals 0.96 1.01 0.90 0.90

h-individuals 1.99 2.01 1.90 1.90

Investors 0.55 0.55 0.55 0.55

Aggregate 3.50 3.58 3.34 3.34

Panel C: Value of Human Capital

ℓ-individuals 0.91 0.96 0.85 0.85

h-individuals 0.94 0.96 0.85 0.85

Investors 0.00 0.00 0.00 0.00

Aggregate 1.85 1.93 1.70 1.70

Panel D: Utility, Consumption Equivalent Value

ℓ-individuals 0.71 0.81 0.78 0.78

h-individuals 1.64 1.65 1.64 1.65

Investors 0.45 0.45 0.47 0.48

Notes: We report economic outcomes as in Table 4 for the economy with a nonconvex
technology in absence of risk: σ(log(δ)) = 0 (second and fourth columns) and compare
it to the benchmark case with risk: σ(log(δ)) = 0.1 (first and third columns). The
third and fourth columns assume no frictions (α = 1). The first column corresponds
to the benchmark case (and column 1 in Table 4).
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Table C.1: Asset prices and cash flow volatility: The role of commitment

Economic Environment Non-Convex Convex No Commit. Frictionless

Risk free rate (%) 0.00 0.00 0.00 5.26

Equity premium, Dividend claim (%) 2.17 2.02 1.79 1.06

Equity premium, Aggregate consumption claim (%) 1.32 1.35 2.34 1.06

σ(R), Dividend claim 0.19 0.18 0.17 0.11

σ(R), Aggregate consumption claim 0.12 0.12 0.22 0.11

σ(logD), Dividend 0.18 0.17 0.16 0.10

σ(logC), Aggregate consumption 0.12 0.12 0.21 0.10

σ(logC), ℓ-individual consumption 0.44 0.18 0.95 0.10

Notes: We compare the economy with no-commitment, which we describe in Ap-
pendix C, with the three other types of economies, under the benchmark calibration.
See Table 3 for further detail. We report the riskfree rate, the average return on vari-
ous risky assets less the riskfree rate (Equity premium), and the standard deviation of
various quantities and log quantities.
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Figure 1: Occupational choice for the low-cash-on hand agent

0 0.2 0.4 0.6 0.8 1

0

1

Notes: The figure shows the occupational choice for the constrained agent as a function
of TFP δ, where the x-axis reports the value of the cumulative distribution function
CDF(δ). For example, an x-value of 0.4 represents δ at the bottom 40% of the dis-
tribution. oℓ(δ) is the occupational choice for the low cash-on-hand individual. The
solid line represents the frictionless case, the dashed line the case with the non-convex
technology (with frictions), and the dashed-dotted line the case with the convex tech-
nology.
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Figure 2: Aggregate consumption
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Notes: The figure shows aggregate consumption in the final period as a function of
TFP δ, where the x-axis shows CDF(δ). For example, an x-value of 0.4 represents δ
at the bottom 40% of the distribution. C2(δ) is aggregate consumption in the second
period. The solid line represents the frictionless case, the dashed line the case with
the non-convex technology (with frictions), and the dashed-dotted line the case with
the convex technology.
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Figure 3: Payouts to investors and to individuals

Panel A: Dividend to investors
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Panel B: Consumption of ℓ-individuals
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Notes: The figure shows the dividend payout to outside investors (Panel A) and the
per-capita consumption of the low cash-on-hand individual (Panel B) as a function of
TFP δ, where the x-axis shows CDF(δ). For example, an x-value of 0.4 represents δ
at the bottom 40% of the distribution. The solid line represents the frictionless case,
the dashed line the case with the non-convex technology (with frictions), and the
dashed-dotted line the case with the convex technology.
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Figure 4: State-price density
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Notes: The figure shows the state-price density as a function of TFP δ, where the x-axis
shows CDF(δ). For example, an x-value of 0.4 represents δ at the bottom 40% of the
distribution. π(δ) is the state-price density. The solid line represents the frictionless
case, the dashed line the case with the non-convex technology (with frictions), and the
dashed-dotted line the case with the convex technology.
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Figure 5: Comparative statics for occupational choice

Panel A: Benchmark
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Panel D: high H, high mℓ
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Notes: The figure shows comparative statics on the occupational choice for the low
cash-on-hand individual. See Figure 1 and Table 3 for more detail.
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Figure 6: Comparative statics for second-period aggregate consumption

Panel A: Benchmark
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Panel B: high mℓ
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Panel C: high H
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Panel D: high H, high mℓ
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Notes: The figure shows comparative statics on the state-price density See Figure 2
and Table 3 for more detail.
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Figure 7: Comparative statics for dividends

Panel A: Benchmark
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Panel B: high H
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Panel C: high mℓ

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Panel D: high H, high mℓ
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Notes: The figure shows comparative statics on the dividend to investors. See Figure 3
and Table 3 for more detail.
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Figure 8: Comparative statics for consumption of the low-cash-on-hand agent
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Notes: The figure shows comparative statics for consumption of the ℓ-individual in the
second period. See Figure 3 and Table 3 for more detail.
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Figure 9: Comparative statics for the state-price density
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Panel C: high H
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Panel D: high H, high mℓ
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Notes: The figure shows comparative statics on the state-price density See Figure 4
and Table 3 for more detail.
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Figure 10: Comparative statics for cash flows and asset prices over a wide range of H

Panel A: Disaster probability
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Notes: The figure reports comparative statics on asset prices resulting from varying
the productivity H. As H varies, we change the endowment parameter ϵ so that the
risk-free rate in the frictionless economy equals β−1. All other parameters are as in
the benchmark specification (Table 2). The equity premium and return volatility are
calculated based on the dividend claim.
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Figure 11: Comparative statics for welfare over a wide range of H

Panel A: Disaster probability
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Panel C: Welfare of an ℓ-individual
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Notes: The figure reports comparative statics on consumption and on welfare resulting
from varying the productivityH. AsH varies, we recalibrate the endowment parameter
ϵ so that the risk-free rate in the frictionless economy equals β−1. All other parameters
are as in the benchmark specification (Table 2). Welfare is measured in consumption
terms (see Panel D of Table 4).
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Figure A.1: Market clearing at time 2 (non-convex economy)

Notes: The figure illustrates market clearing. Along the x-axis is π̂, the inverse of the
state-price density. The solid line illustrates the left-hand side of the market clearing
condition:

β[eI π̂ +mhλ̂hπ̂ +mℓ(1− oℓ)λ̂ℓπ̂] +mℓoℓ max{βλ̂ℓπ̂, αf} =

I + (mh +mℓoℓ)δH +mℓ(1− oℓ)(f +H0).

(where oℓ ∈ [0, 1] is the fraction of ℓ-individuals investing in human capital at time
1) as a function of π̂. The dashed and dashed-dotted lines represent the left hand
side when the maximization operator is replaced by its first argument and its second
argument respectively. The dotted lines represent the right-hand side, namely output
(determined by TFP δ), for two potential values of δ. The figure illustrates that

π̂ = min{π̂f , π̂∗},

where π̂f is the solution when αf < βλ̂ℓπ̂ and π̂∗ is the solution when the opposite is
true.
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Figure A.2: Equilibrium in the non-convex economy

Panel A: Equilibrium when no ℓ-individuals invest
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Panel B: Equilibrium when ℓ-individuals all invest
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ê/z−y
mℓγ

⊛

Notes: The figure illustrates the equilibrium in the economy with non-convex invest-
ment. The blue curve shows the inverse state-price density π̂ as a function of oℓ and δ;
the red curve is the fraction of ℓ-type individuals investing, oℓ, as a function of π̂ and
δ. Equilibrium, shown as ⊛, is the point at which the curves intersect.
Panel A illustrates the the low δ case (Case 1 in Appendix A.2), at which oℓ = 0
represents an equilibrium. Panel B illustrates the high δ case (Case 2) in which oℓ = 1
represents an equilibrium.
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Figure A.3: Real outcomes and state price density; the role of commitment

Panel A: occupational choice of the ℓ-
individual.
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Panel C: dividend to investors
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Panel D: second period aggregate consump-
tion.
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Notes: The figures shows asset prices and real outcomes in the case of no commit-
ment. These are shows a function of TFP δ, where the x-axis reports the value of the
cumulative distribution function CDF(δ). For example, an x-value of 0.4 represents
δ at the bottom 40% of the distribution. oℓ(δ) is the occupational choice of the low
cash-on-hand individual, π(δ) is the state-price density, C2(δ) is final-period aggregate
consumption, and D2(δ) is the dividend (output of low cash-on-hand investors, minus
consumption).
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