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Contingent Linear Financial Networks

Abstract

In this paper, we develop a methodology to estimate hidden linear networks when

only an aggregate outcome is observed. The aggregate observable variable is a linear

mixture of the different networks and it is assumed that each network corresponds

to the transmission mechanism of different shocks. We implement the methodology

to estimate financial networks among US financial institutions. Credit Default Swap

rates are the observable variable and we show that more than one network is needed to

understand the dynamic behavior exhibited in the data.

Keywords: Financial Network, Identification through Heteroskedasticity, Mixture Model,

EM Algorithm

JEL Codes: C13, C61, E00, G21, G28

1 Introduction

The 2008 world financial crisis started in what was supposed to be a relatively small, and

segmented market. At that time the outstanding value of Sub-Prime debt was a tad below a

trillion dollars, while the market value of credits in both the formal and shadow US financial

sectors was higher than 23 trillion dollars. So, a default on 4 percent of an isolated market

(the high-risk mortgages) was expected to have an equal minuscule effect. Not surprisingly,

the Obama administration only requested 800+ billion dollars for the rescue package. It is

obvious, today, that the systemic consequences of the sub-prime crisis were unexpectedly

larger. The shock propagated to other financial sectors and countries. The world total losses

reached several trillion. This has spurred research on systemic risk, and in particular on the
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estimation of the underlying financial networks governing the propagation of shocks - or as

it is sometimes known as financial contagion.

The estimation of systemic risk has been closely linked to the estimation of financial

networks. Banks can be interconnected through many different channels. One type of link

is related to the exposure banks have to similar microeconomic or industry shocks. For

example, two bank’s balance sheets can be interconnected because both are lending to the

same firm or sector and it suffers a shock. The second type of channel is related to interbank

contracts. Two banks can be interrelated because one bank lends to the other, or they hold

each other’s liabilities. Therefore, a deterioration in the balance sheet of the borrowing bank

affects the quality of the assets of the lending bank. Finally, banks can be exposed to similar

macroeconomic shocks such as exchange rate, inflation rate, interest rates, economic activity,

real estate, etc. In sum, there are many possible ways in which banks are linked to each

other.1 The objective of the empirical literature has been to estimate the “average” linkage

among banks, and to determine the contribution each bank has to the overall risk in the

economy — a measure of systemic risk.

Observing and understanding the contracts underlying the links between banks is some-

times challenging, however. Direct lending from one bank to the other of course is simple

to document. The relationship across other contracts — sometimes complex and through

indirect channels — implies that the information required to estimate the financial networks

is daunting. First, some trivial aspects, such as the currency of denomination of a contract,

is unclear. For example, a financial contract can specify all its flows and payments in US
1See Allen and Gale (2000), Freixas et al. (2000) for earlier contributions, and Acemoglu et al. (2015),

Allen et al. (2012), Caballero and Simsek (2013), Cabrales et al. (2014), Elliott et al. (2014), Gai and Kapadia

(2010), and Gai et al. (2011) for recent theoretical papers. Empirical papers that estimate financial networks

include Billio et al. (2010), Merton et al. (2013), Adrian and Brunnermeier (2016), and Girardi and Ergün

(2013).
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Dollars, but its return can be perfectly correlated with the Euro-Dollar rate. So, even though

this is a contract denominated in the local currency, it is actually a de-facto foreign exchange

contract. Contracts such as default swaps with tranches, or contracts that are indexed to

macroeconomic variables are complex and fully understanding the type of connection that

they generate across two financial institutions might be impossible. Second, most of the

times the contagion path is outside the regulatory or country jurisprudence. For example,

interconnections can occur through firms that might not even reside in the country of anal-

ysis. For instance, assume a bank lends to Intel, who sells to a South Korean firm, that

manufactures a monitor sold to a California firm, who gets a loan from a different bank.

In this setting, the two banks are related through the South Korean firm. However, the

requirements on reporting to be able to uncover such relationship are impossible — i.e. the

US regulator can’t force the South Korean company to reveal its clients and suppliers. The

complexity, number, and variety of contracts that can be used among financial institutions

have several implications in the estimation of networks. In principle, if every contract is

fully disclosed and documented the relation between banks could be described precisely. In

practice, however, the granularity and detail of the required information are unfeasible, even

to regulators and central banks. For this reason, the financial network literature tends to

simplify the information demands by approximating the underlying network using aggregate

data.

In the literature, two main approaches have been taken. The first one uses information-

theoretic principles to fill in the blanks of pairwise data using aggregate data.2 For example,

one can read the total inter-bank debt from Form 10-Ks. After that, the worst-case scenario

can be evaluated by inferring the pair-wise debt structure using a maximum entropy principle.

Those methods, while used in some stress tests, only give a rough estimate of the debt
2See Upper (2011); Elsinger et al. (2013) for maximum entropy and Anand et al. (2015) for minimal

density
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structures and do not fully utilize the information from time-varying data.

The second approach uses the correlation of prices of financial contracts (Onnela et al.,

2004) to construct interbank financial networks. The estimates based on correlations can be

biased in the presence of heteroskedastic shocks.3 Furthermore, both of these approaches,

do not take into account the possibility that the network between banks is asymmetric,

non-linear, and that there might be more than one network at play.

First, for any given network, it is likely that the transmission of shocks between banks

is asymmetric and non-linear. In other words, the impact on the balance sheet of two

banks depends on the size of the shock — a small shock might imply a small propagation,

but a large shock might produce a large propagation. The reason is that larger shocks

might trigger clauses in the financial contracts that smaller shocks do not cause.4 More

importantly, regulation of financial institutions is inherently non-linear — bankruptcy for

instance, where the bank is allowed to operate freely within a capital requirement range,

but quite restrictively outside of it. This implies that the nature of the network might be

different depending on the size of the shock. In fact, the average correlation might severely

underestimate the transmission of shocks when a larger shock hits the system.

Second, and equally importantly, it is likely that there is more than a single network

describing the system. Each type of shock is likely to be transmitted through different

contracts and the propagation would be conditional on the shock. For example, imagine

that there are three banks, and two are negatively exposed to real estate movements while

the third one is positively exposed to real estate, but all three banks are negatively exposed

to interest rate increases. If in the economy there is an increase in interest rates, all three

banks move together, but if there is a decline in the price of real estate, only two are affected.

The correlation structure, and therefore the network, changes with the shock.
3See Forbes and Rigobon (2002) for the bias in assessing financial contagion when using correlations.
4As in Acemoglu et al. (2015)
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Third, both of the previous mechanisms imply that the propagation of shocks between

banks is asymmetric. For example, assume there are two banks, a large national bank (such

as CitiBank) and a small regional bank such as (Watertown Savings Bank). A shock that

decreases the value of the large bank’s assets by 10 percent might have an impact on the

small one that is very different from a shock that reduces the small bank’s assets by the same

proportion. The shock to the large bank might be more meaningful to the small one than

vice-versa. When the measurement of systemic risk uses either stock market prices, or credit

default swaps, these interactions are contemporaneous. Therefore, the estimation of even a

single network is complicated by endogenous variable biases. A correlation is incapable of

capturing these differences.

Consequently, the estimation of systemic risk in the financial system is complicated by

asymmetries, contemporaneous endogenous biases, and parameter instability. Our method-

ology makes several assumptions and simplifications to be able to solve the identification

problem. First, the underlying networks are unobservable, but the outcome of their in-

teractions is observable. In other words, the changes in bank balance sheets and financial

conditions are the outcomes that can be observed and it is the result of many interactions

acting jointly. Therefore, the estimation of the contingent financial networks is not only an

identification problem but also a computational challenge.

The second assumption is the realization that non-linearity and multi-networks are empir-

ically intertwined. In fact, the non-linearity is tantamount to the network being contingent

to the size of shock: larger shocks imply different transmission mechanisms than smaller

ones. There are a number of papers modeling financial networks demonstrating the cause

of potential shifts in the transmission mechanism. Some insist on the change of risk trans-

mission mechanism is induced by monetary policies (Altunbas et al., 2010). That is because

monetary policy has a significant effect on company financial decisions, which in turn could

change the structure of financial contracts and result in discontinuities in risk transmission
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mechanisms. Others believe market volatility could result in a phase transition of non-linear

financial networks, which incurs new risk transmissions mechanism (Acemoglu et al., 2015).

Multiple networks can be a piecewise approximation of the non-linearity underlying these

papers. Therefore, we make two important assumptions about the structure of the network:

First, we estimate a collection of linear networks. In other words, in the case of non-linearity,

we approximate a non-linear network as a set of linear ones. In the case of different networks

for each type of shock, we approximate each one as a linear network. Second, we assume

that the overall outcome is a mixture of multiple underlying unobservable networks and the

shocks.

Our model specification is flexible enough that allows for two possible interpretations.

The first interpretation is one in which idiosyncratic shocks hit each node, and propagate

through the different networks. This interpretation is akin to a structure where the shocks

are independent and specific to each firm, and the propagation occurs throughout the in-

terrelationships among them. The second interpretation assumes that all the shocks that

affect the network are aggregate shocks, but the effect on each firm is idiosyncratic. In other

words, firms are exposed to aggregate shocks in different degrees. Once the aggregate shock

occurs, all firms are affected. In this interpretation, we still allow the network to play a role

in the transmission of the shocks. There is an initial correlation, however, across firms that

comes from the exposure to the aggregate shock. This interpretation captures macroeco-

nomic circumstances where firms are exposed to interest rates, exchange rates, real estate,

inflation, etc. Their exposure to each of the shocks might be different. Once the shock

occurs, it will be propagated by a different network. The underlying assumption is that the

linkages between firms once an inflation shock occurs, might be different from the linkages

that exist once a real estate shock occurs. Our flexible interpretation, however, cannot dis-

tinguish between these two interpretations. We can estimate the underlying structure, but

which interpretation is the relevant one depends on the application. In our model, they are
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isomorphic.

The identification problem is solved using the heteroskedasticity observed in the data.

The estimation imposes a maximum number of parameters that can be recovered from the

data; therefore, we limit the number of networks that can be estimated. This implies that

it is likely that in many circumstances we are still not capturing the full complexity in

the financial system. In this case, however, our estimation procedure captures the most

“dissimilar” networks describing the data. Furthermore, we can evaluate and discuss the

informational value gained by allowing an additional network. We implement the estimation

procedure through an intuitive EM algorithm. We derive identification assumptions for each

one of the network interpretations, either purely idiosyncratic or purely aggregate shocks.

The main contribution of the paper is the estimation of a mixture model of multiple

endogenous asymmetric linear networks.5 The intuition behind the estimation comes from

the fact that in a linear network the correlation structure across banks is the result of a

linear mixture of the covariance implied by each network - where the weights are the relative

variances of each shock. When the variance of those shocks changes through the sample,

the weights change, leading to variation in the covariances. From that variation of the

second moment, the underlying structure of the networks can be recovered. Therefore, the

identification requires finding periods where the shocks experience different volatilities. There

are two ways to do so: first, statistical identification where the changes in the variance in the

observed data determine the regimes. This procedure is very similar to the one developed

by Sentana and Fiorentini (2001). The advantage of this methodology is that it allows

estimating the asymmetry of large versus small shocks - where the statistical identification

truly captures the differences in the propagation mechanisms. The second alternative is to

find periods where macroeconomic shocks experience different variances and use those as

heteroskedastic sources. The advantage of this procedure is that the identification is closer
5The procedure follows Rigobon (2003).
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to economic events rather than statistical events. So, if the relationships are contingent

to the shocks this procedure allows us to estimate the networks that closely capture such

linkages.

We apply our methodology to estimate the US financial network among the 10 largest

financial institutions in the country. The data collected are their credit default swaps (CDSs).

In this paper, a first pass to the problem, we concentrate on estimating a small network.

The CDSs have been used widely in the literature studying risk contagion. Most notably,

the CDSs of sovereign debt has been examined by various papers to understand international

risk propagation. E.g., Kalbaska and Gątkowski (2012) investigates the eurozone contagion

via a regression on CDS spread changes. In general, if a risk contagion mechanism exists

among certain countries, their CDS spread will co-move. From the trend of CDS spread,

the author reaches a conclusion that Sovereign debt risk is mainly limited to EU countries.

Similarly, Caporin et al. (2018) also studies European debt crisis by examines the CDS

spread. Through a Bayesian quantile regression that incorporates shock heteroskedasticity,

they conclude that the increases in the correlation of CDS come from heteroskedasticity

instead of structural changes of risk propagation mechanism.

The CDSs of banks have also been widely used in studying interbank risk propagation.

As pointed out by Eichengreen et al. (2012), the CDS spreads of major banks co-move

and reflects market economic prospects. Furthermore, during the Subprime Crisis and the

following crisis of Lehman Brothers, the common factor is more dominant, i.e., the absorption

ratio (as defined in (Kritzman et al., 2010)) is higher. The fact that major financial crises

are reflected by CDS regime changes is the exact characteristic we want to study. In our

contingent linear financial network model, a significant regime shift is required for unique

identification. As shown in (Eichengreen et al., 2012), the common factor accounted for 62%

of the variance of major bank CDSs before the 2007 breakout of Subprime Crisis and raised
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to 77% during the crisis, signaling a major regime shift. Apart from stronger co-movements,

we also want to discover whether the change of regime is a sole result of heteroskedasticity

of shocks, or a result of both the heteroskedasticity of shocks and the structural change of

risk propagation mechanisms.

We study 9 different macroeconomic variables that try to capture different aggregate

shocks that typically afflict economies: (1) commodity price shocks (WTI Oil Prices), (2)

Inflation (PriceStats daily inflation index), (3) Economic Activity (Non-farm payroll), (4)

Stock Market Prices (S&P), (5) Risk (VIX), (6) Housing Prices (Case & Shiller index), (7)

liquidity provision (short term interest rates), (8) exchange rates (nominal trade-weighted

exchange rate), and (9) the yield curve (the difference between the long and short interest

rates). Of course in a finite sample, it is not clear that all shocks occur - for instance high

inflation has not happened in a long time in the US. This implies that not all networks can

be identified.

In the case of a single network, the solution is established through GMM. On the other

hand, in the case of multiple networks, the expectation-maximization (EM) algorithm, which

is commonly used for estimating mixture models, is adopted. The EM algorithm alternates

between an expectation (E) step, which updates the probability of a network dominating a

regime, and a maximization (M) step, which estimate each network through heteroskedas-

ticity based on the probability updated in the E step. A Wishart distribution is assumed

for sample variance-covairance matrices so that the log-likelihood function used in the EM

algorithm is well-defined.

The paper is organized as follows: In Section 2, a problem of the financial network is for-

mulated and the problem of identification is discussed. The section starts with a well-studied

two-bank case to provide some intuition of the identification problem, and then provides a

proof of solution uniqueness in the single network case. It also discusses the identification
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problem when the data generating process is explained by multiple networks. Section 3

discusses the case when a single network is estimated. We present both the statistical and

the macroeconomic strategies of identification. Section 4 presents a test for the number of

networks. In the 10 banks case, 3 networks is required to explain the data. The results of

the estimated networks is then discussed in this section. Finally, Section 5 concludes.

2 Modeling Financial Networks

The estimation of financial networks is not new. A significant proportion of papers, however,

concentrate on the estimation of symmetric single networks — non-directional, and non-

contingent graphs. In this section, we present first, some preliminary evidence based on

correlations. We then introduce a linear financial network model, and show: 1. how the

network model can be uniquely identified with variance-covariance data; 2. together with

heteroskedastic shocks, how it can explain the volatility in correlation models, and 3. how

the heteroskedasticity of shocks can be identified through macroeconomic indices.

2.1 The Time-Varying Correlations

It is desired to find out how and why banks are related to each other, and which banks

are “crucial” in the risk transmission mechanisms, and which ones are less relevant. One

natural measure for those purposes is the correlation coefficients. In modern portfolio theory

(MPT), correlation coefficients also play an essential role. MPT quantitatively formalizes

the concept of diversification via the statistical notion of covariance, or correlation.

However, most of those applications of linear correlation models make an oversimplified

assumption, that the correlation coefficients of any two given financial instruments are time-
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invariant, or at least time-invariant in the period of analysis.6 In practice, there are numerous

examples where such assumption does not apply. In this paper, we are concerned with the

systemic financial risks which primarily propagate through large banks, so we use the Credit

Default Swap (CDS) data of the top 10 US banks as an example.7 8

6Although most of the literature estimates the strength of the network transmission by using simple

correlations, there are notable exceptions that are worth highlighting. Adrian and Brunnermeier (2016)

proposes a new measure of comovement called CoVar — which is defined as the value at risk conditional on

the bank being in distress. Girardi and Ergün (2013) extend that measurement to expand the definition of

distress. These types of measures are consistent with networks being contingent.
7It is important to highlight that CDS might exhibit excessive comovement due to the presence of a

government guarantee. (Merton et al., 2013) uses a different approach to measure the credit risk of the banks.

They use contingent claims analysis instead of CDS. The CDS are partially guaranteed by government policy

— for instance, deposit insurance. Future research should evaluate the robustness of the results presented

in this paper when different measures of financial performance are used.
8See Appendix for details of the CDS data used.
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Figure 1: The 45 pairwise correlation coefficients of CDS of the top 10 US banks. The stock

exchange id numbers of the 10 banks are JPM, BAC, WFC, C, GS, MS, COF, HSBC, AXP,

and CSGN.

The change of volatility could due to either time-varying linear regression coefficients

(a.k.a. linear financial networks, as we will define later in the paper), or heteroskedestistic

shocks. Figure 1 shows the 45 pairwise correlation coefficients of CDS of the top 10 US banks

calculated using a 200 days moving window. It is immediately notable that the correlation

cannot be considered time-invariant. At an extreme, the correlation coefficient rises from -0.1

to 0.8 within 100 days. Up to this point, it is unclear whether the time-varying correlation is a
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result of heteroskedasticity of shocks, or a result of the structural change of risk propagation

mechanisms, or both. The two-banks illustrative example we give in Section 2.3.1 shows

that all three cases are possible. To distinguish the three cases, we need to develop a linear

network model.

2.2 A Linear Network Model

Suppose there are N financial institutions (indexed by n = 1, 2, · · · , N) in a contingent

financial network with M possible networks, which denoted by the directed graphs Gm =

{V , Em} for m ∈ {1, 2, · · · ,M}. V is the set of common nodes in all the graphs and each

node vn ∈ V corresponds to a financial institution n. Furthermore, each edge eijm ∈ Em
denotes the risk spillover through mth network between node i and node j.

There are two possible — simple — assumptions on how to implement the contingent

networks. One in which the shocks are idiosyncratic and hit each bank individually and

then they are propagated in the network, or the second one where the shocks are hitting the

system as a whole. The first assumption is one in which the systemic risk of an individual

shock affects is determined by the propagation between one bank and the other, while in

the second assumption the relative importance of the aggregate shocks is what makes them

systemic.

We assume that the system is affected by shocks denoted as εt, a N -by-1 vector repre-

senting N shocks at time t. A simple framework when a market is hit by a shock as follows:

Assume that at each time instance t, each node in the contingent financial network receives

a shock. When a shock εt transmits through network m, it has an impact on financial

institutions in the network, both directly and indirectly.

The direct impact is due to the fact that institution i has some direct exposure in this
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market, and it is denoted by θmεt. Here θm is a N -by-N matrix, where each entry i, j

represents the exposure of bank i to shock j in networkm. We assume that θm are invertable.

Note the structure of the exposure matrix θm reflects on the nature of the shock: idiosyncratic

or aggregate. We will discuss those two cases in detail later this section.

Assume that the impact of shocks propagating through network m is not observable but

the total risk measure, defined as the mixture of impact of different networks

Xt =
M∑
m=1

wmhFm,t

is observable, where Fm,t is the impact of shocks propagating through network m, and wmt

is an indicator random variable. wmt = 1 if network m dominates at time t, and wmt = 0

otherwise. Let h indicate different heteroskydastic regimes. Assume that the indicator

random variable wmh is 1 with probability pm. Note this pm is a fixed prior distribution in

the mixture model that does not depend on h.

Suppose the impact of shocks propagating through network m satisfies

Fm,t = fm(Fm,t) + θmεt. (1)

where fm : RN → RN is a vector valued function capturing the risk propagation mechanism.

A first order Taylor expansion gives

Fm,t = αm + ΞmFm,t + θmεt. (2)

In equation (2) we can see the direct and indirect effects of the shock — regardless if the

shock is aggregate or idiosyncratic. The indirect impact of εt is through Ξm; which represents

the network on how financial institutions have exposure through the balance sheet of the

other financial institutions. We define Ξm, m ∈ {1, 2, · · · ,M} as the weighted-directed

adjacency matrix of network m. We assume there cannot be self-loops in the network hence

all diagonal entries of Ξm are zero.
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For the rest of this paper, we assume that our data is demeaned, hence

Fm,t = ΞmFm,t + θmεt. (3)

This is a decomposition of any shock to the system as the exogenous part (θmεt) and the

indigenous network part (Ξm). In this model, the time subscript is the same on both sides of

the equation, assuming we are at the equilibrium. This is a recursive assumption that was

first posed by Christiano et al. (1999).

Note that rearranging (3) we obtain

Fm,t = [I − Ξm]−1 θmεt. (4)

Hence we observe

Xt =
M∑
m=1

wmt [I − Ξm]−1 θmεt, (5)

This describes the observed variable (Xt) as a linear mixture of different unobservable

networks (Ξm) and different shocks (θmεt).

This representation allows for two different interpretations. One is where all the shocks

affect every bank individually and then the effect is transmitted through the networks, and

θm is identity matrix, while the second one assumes the shocks to be entirely aggregate and

each bank has a different exposure, and θm is unconstrained. Column j of θm represent the

exposure of banks to shock j.

The estimation problem is to uncover the unobserved networks from the moments of the

observed variables.
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2.2.1 Idiosyncratic Shocks’ Network

This subsection first discusses the case where a network is hit only by idiosyncratic shock.

In this interpretation any correlation in the risk factors is purely explained by the structure

of the network. i.e., every financial institution is hit by an idiosyncratic shock, and all the

correlation comes from the network.

Like before, we consider shocks propagate through a constant network (4). In this scenario

we assume that the each shock n in the shock vector εt (an N -by-1 vector), is a idiosyncratic

shock that only affects financial institutions n, and those idiosyncratic shocks, as the name

suggested are independent of each other. In other words, the overall model can be described

as follows:

Fm,t = (1− Ξm)−1θmεt (6)

E[εt[i]εt[j]] = 0 (7)

θm = I (8)

where i and j represent the index of shocks. In this case, θm is always an identity matrix,

so we define observed networks

Γm = Ξm

2.2.2 Aggregate Shocks’ Network

The second representation assumes that the shocks continue to be independent, but that

they affect all financial institutions through a constant propagation. Here all those shocks

are aggregate. The banks are all exposed to those shocks, and in addition, there are additional

indirect effects through the network. For each network m, the representation is similar to
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the previous one

Fm,t = (1− Ξm)−1θmεt (9)

E[εt[i]εt[j]] = 0 (10)

Define

Γm = I − ((I − Ξm)−1θm)−1 (11)

Then

Fm,t = (I − Γm)−1εt (12)

Here, the second interpretation has exactly the same observed network with the first one.

The difference is that the observed network does not directly equals the model network, as

it also encodes exposure information. However, understanding the observed network in the

second representation is as important as the first one, because the effect of a large exposure

to aggregate risk for banks with high centrality is more devastating.

In the identification process, we cannot differentiate between these two models. The two

models are equivalent, that θm is an over parametrization and for each network Ξ hit by

aggregate shocks, we can always find a corresponding Γ9. Klein and Vella (2009) used the

second interpretation, while ours uses the first interpretation. We use bank CDS data and

assumes that shock are idiosyncratic. For details of the two above interpretations, see the

summary in (Lewbel, 2012).

As will become clear in the next section, the model as currently specified cannot be

estimated using standard methods. We rely on an method called identification through

heteroskedasticity to solve the problem of estimation.10 Next subsection discusses the so-
9This is true as we assume that θm is invertable.

10See Rigobon (2003), Sentana and Fiorentini (2001). For the description of the original procedure see

Wright (1928). For further developments see Lewbel (2012), Lewbel (2018a), and Lewbel (2018b). For

applications on crises see Caporin et al. (2018) and for applications on monetary policy see Nakamura and

Steinsson (2018), Rigobon and Sack (2003), Rigobon and Sack (2004), and Rigobon and Sack (2008).
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lution to the identification problem. A crucial ingredient is the presence of heteroskedas-

ticity. Therefore, we assume that there are regimes of economic environments, denoted by

h ∈ {1, 2, · · · , H}. Let Rh be the set of time instances t that belongs to heteroskedastic

regime h. Furthermore, define nh = |Rh| as the number of samples in regime h. If time

t ∈ Rh, then the shock at that time instance is distributed εt ∼ N (0,Σh).

2.3 The identification problem

The identification procedure we use in this paper is related to the identification through

heteroskedasticity developed in Rigobon (2003). The intuition of the identification can be

developed in a two by two endogenous system of equations, see Appendix A. In this section,

we focus on the identification of a multi-bank financial network.

Suppose there are N banks and M types of shock (or networks). Suppose further that

the networks Γ1,Γ2, · · · ,ΓM are constant over time, but assume the variance of shock ε is

time-varying, i.e., there is heteroskedasticity in the time series data. Let Σh, a diagonal

matrix, be the variance of shock ε in regime h ∈ {1, 2, · · · , H}, be unknown constants.

The model parameters we need to identify are

ψ =

 {Γm}Mm=1

{Σh}Hh=1

 ,
and the number of parameters for each network m is N(N − 1) + N

∑
hwmh. The first

term comes from the networks. There are N (N − 1) elements in each network (diagonal are

ones). The second tem comes from the variance of the structural shocks. The shock affects

N banks for each regime — and there are
∑

hwmh regimes in which the specific network

dominates.

In this section, we will start by assuming wmh is known. Later, we will show how it can
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be estimated. Then, observed moments (moment constraints) are given by the variance-

covariance matrix of Xi in each regime h. Without loss of generality, we can assume that

∀m, E [Fm,t] = 0. The following constraints are obtained

Et∈Rh
XtX

>
t −

M∑
m=1

wmh

(
(I − Γm)−1 Σh (I − Γm)−>

)
= 0,

where Et∈Rh
XtX

>
t denotes the expected value of the matrix XtX

>
t given that t belongs to

regime h. Because wmh ∈ {0, 1} and
∑

mwmh = 1, the above constraints can be written as

Et∈Rh
XtX

>
t −

(
(I − Γm)−1 Σh (I − Γm)−>

)
= 0, ∀wwh = 1. (13)

In the above, each matrix Et∈Rh
XtX

>
t −

∑M
m=1

(
(I − Γm)−1 Σh (I − Γm)−>

)
is a N -by-N

symmetric matrix, therefore each regime h provides N(N+1)
2

moment constraints. In total,∑
hwmh regimes implies N(N+1)

2

∑
hwmh moment constraints.

The condition for an exact or over-identified model is

N(N − 1) +N
∑
h

wmh ≤
N(N + 1)

2

∑
h

wmh (14)

which implies that the data must have at least∑
h

wmh ≥ 2 (15)

for just-identification and ∑
h

wmh ≥ 3 (16)

for over-identification. i.e., we need each network to dominate in at least 3 regimes to achieve

over-identification. This identification is the order condition: how many equations are needed

for the system to have less unknowns than knowns. In the single network case, this is simple:

the single network will dominate all regimes, hence H =
∑

hwmh. In the multiple network
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case, we need to figure out how many different mixture of networks (M) present in the data,

and which network dominate which regimes. Those two questions are fundamental questions

for the identification of many mixture models, and we will discuss them in more detail later

in Section 4

2.4 Solution Uniqueness

When there is a single network, parameters in the above model can be estimated via the

Generalized Method of Moments (GMM). We define the score as a vector function

g(Γ,Σh) =
{
XtX

>
t −

(
(I − Γ)−1 Σh (I − Γ)−>

)}
t∈Rh,h=1,··· ,H

(17)

where {·}h=1,··· ,H denote the H-column vector whose entry are evaluated at h = 1, · · ·H.

Estimation is achieved by solving the optimization problem11

min
A,Σh

Et∈Rh
g(Γ,Σh)

>V −1Et∈Rh
g(Γ,Σh)

s.t. g(Γ,Σh) =
{
XtX

>
t −

(
(I − Γ)−1 Σh (I − Γ)−>

)}
t∈Rh,h=1,··· ,H

Σh are diagonal.

(18)

GMM requires that the score function is zero iff the system parameters are correct. We

can prove that this requirement is satisfied when there is only one network, i.e. M = 1. To

prepare for the proof, we define Σ =
[
diag(Σ1) diag(Σ2) · · · diag(ΣH)

]
, where diag(·)

denotes the diagonal entries of the matrix in the form of a column vector. In addition, define

Ωh = Et∈Rh
XtX

>
t

Definition 1. Kruskal rank (Stegeman and Sidiropoulos, 2007) Kruskal rank k of a matrix

A is the maximum value of k such that ANY k columns and rows of the matrix A are linearly

independent.
11V is a weighting matrix in the GMM. The GMM is valid as long as V is positive definite, but an optimal

V is propotional to the variance-covariance matrix of the score.
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Lemma 1. If (i). M = 1, (ii). I − Γ has full rank and (iii). The Kruskal rank of Σ is 2 or

higher, then Ωh −
(

(I − Γ)−1 Σh (I − Γ)−>
)

= 0 has a unique solution.

Note unlike regular matrix rank, which requires it exists K columns or rows that are

linearly independent, the Kruskal rank requires ANY k columns and rows are linearly inde-

pendent. In the context of our identification problem, this means that the variance of shocks

need to present enough heteroskedasticity to obtain a unique solution.

Intuition of the proof:

The identification problem is equivalent to a tensor decomposition problem (for details

of this equivalence, refer to the Appendix). According to the Kruskal’s rank condition, if

Krank(ar) +Krank(ar) +Krank(σr) ≥ 2R + 2

where Krank(·) stands for Kruskal rank, then the tensor decomposition problem has a

unique solution. In the above equation, given assumption (ii), we have Krank(ar) = N .

Furthermore, R is the rank of the tensor in (36), which equals MN . Inserting the numbers

into the Kruskal’s rank condition and considering assumption (i) and (iii), we obtain the

solution uniqueness.

3 Results: Single Network Estimation under Endogene-

ity

Throughout this paper we use Credit Default Swap (CDS) as a measure of the risk of bank

bonds. The mechanism of CDS can partly justify the additivity assumption (5): suppose

Fm,t is a CDS that only covers one specific type of shocks (e.g. interest rate). Then to cover

all types of shocks (interest rate, GDP, stock index, etc.), one has to purchase multiple CDS
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for all those types of shocks, and the overall cost is the addition of each individual CDS, i.e.,

Xt =
∑M

m=1 Fm,t.

Suppose there is a set of shocks that we are interested in. A question arises whether

or not we can measure them directly rather than model them as exogenous variables. E.g.,

suppose we are interested in the risk propagation caused by the fluctuation of interest rate,

then we may use the time series of interest rates to fit the model. However, one should

note that it is not the interest rate at each time instant that affects CDS, but rather, it

is the expectation of interest rate over future time instances that does. Furthermore, it

is the change of expectation, rather than the change of interest rate itself, that acts as a

shock. Therefore, in the lack of a model for such expectation, it is better to model them as

exogenous shocks and obtain their variance through the identification process.

Figure 2 shows the 100-day moving volatility of the 10 banks of interest. The first thing to

notice is that they exhibit a significant regime shift of heteroskedasticity over time. Around

the time of Nov. 2009, the volatilities of CDS of all 10 banks are high, while the volatilities

are significantly lower in mid-2010. In addition, their volatility co-move most of the time,

despite regime shifts. The fact that they co-move, allow us to identify a network that is

well connected. Apart from similarities in the overall trend, the CDS volatilities exhibit a

certain level of bank-specific movements. For example, in early-2016, the CDS of Capital One

Financial Corporation has very high volatility that is comparable with that around late 2009.

In contrast, the CDS of Morgen Stanley is at a relatively low historical level. That kind of

bank-specific characteristic could allow as explore the different risk propagation mechanisms

among different banks.
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Figure 2: 100 days moving volatility of the 10 banks of interest. CDS data of 10 largest

banks in US are collected from Sep. 1, 2009 to June. 20 2017. The stock exchange id tickers

of the 10 banks are JPM, BAC, WFC, C, GS, MS, COF, HSBC, AXP, and CSGN.
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3.1 Selection of Regimes

As mentioned in previous sections, our model is not uniquely identifiable if the variance of

shock is constant. When the variance of shock is not constant, we can divide our data into

different heteroskedastic regimes. Because the network parameters are constant over regimes,

additional regimes could offer more additional constraints than additional unknowns. With

enough heteroskedastic regimes, our model can be uniquely identified (Rigobon, 2003). In

practice, however, dividing data into heteroskedastic regimes is not trivial. An effective

regime division method should achieve heteroskedasticity among regimes and maintaining

homogeneity within regimes. In addition, the divided regimes should have some reasonable

interpretations in macroeconomics. There are two broad categories of methods to identify

heteroskedastic regimes: regimes divided by statistical properties of the data itself, and

regimes divided by other exogenous variables (in our case, it makes sense to use macroe-

conomic factors). An identification process using regimes defined by statistical properties

is named statistical identification, and an identification process using regimes defined by

macroeconomic factors is named macroeconomic identification. In this section, we will intro-

duce those two categories of regime divisions in detail, and then apply both to our problem

of identifying contingent linear financial networks.

The first category of regime dividing methods is by statistical properties of the data itself.

Because we want to separate the variance of shock, it makes sense to look at the quantile

level of CDS data volatility. To maximize the separation of unobserved networks, one could

use the quantile level of volatility of CDS to define regimes. For example, if there are two

banks A and B in the network, one can define four regimes: bank A’s volatility is at top

20% quantile level while B is not; bank B’s volatility is at top 20% quantile level while A

is not; both banks’ volatility is at top 20% quantile level, and neither banks’ volatility is

at top 20% quantile level. Regimes with insufficient number of samples are not used in the
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identification process. It is clear that the overall financial network cannot be the same in

different regimes.

However, regimes divided by a fixed quantile level is usually very unbalanced, i.e., the

low volatility regimes have far more data points than the high volatility regimes. From an

economic perspective, this is fine because exceptionally high volatility only occurs during

crises. For identification purposes, however, this is not optimal, and many regimes have so

few data points to be used in the identification. Alternatively, we could use unsupervised

learning techniques, such as K-mean and Gaussian Mixture Model to divide data into groups

according to their volatility levels. Intuitively, a clustering algorithm group data points at

different time instances into subsets, and maximize the similarities of the volatility vector in

each subset. Due to the inherent limitation of most clustering algorithms, the global optimal

grouping is usually very difficult to find, and the algorithm is sometimes trapped at local

optimal solutions. If the dimension of the volatility vector is very high, i.e., we are identifying

the network for a large number of banks, then it is even harder for the algorithm to find the

global optimal solutions. In this case, we can reduce the dimension of the volatility vector

by applying PCA prior to clustering.

The second category of regime dividing methods is by macroeconomic factors. While the

above selection of regimes could maximize the separation of unobserved networks, it does not

have any economic interpretation. To draw a connection with the macroeconomic environ-

ment, one could use the quantile level of macroeconomic factors instead of quantile levels of

CDS volatility. The macroeconomic factors we choose include inflation rate, oil/commodity

index, security index, market volatility indicators, currency index, and interest rate/yield.

Because the CDS data is available daily, ideally we would like all the above macroeconomic

factors to be daily as well. Daily inflation data, in particular, is available through the MIT

Billion Price Project (Cavallo and Rigobon, 2016) and the PriceStats data platform.
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3.2 Estimates: Statistical Identification

JPM BAC WFC C GS MS COF HSBC AXP CSGN

JPM -0.01 0.14 -0.08 0.26 0.03 -0.03 0.07 -0.02 0.04

(0.03) (0.05) (0.02) (0.04) (0.02) (0.02) (0.04) (0.02) (0.02)

BAC 0.36 0.99 -0.11 0.53 0.06 0.11 0.09 0.04 0.02

(0.18) (0.05) (0.04) (0.1) (0.07) (0.06) (0.1) (0.03) (0.07)

WFC 0.2 0.13 0.08 -0.01 0.01 0.37 -0.02 0.03 -0.09

(0.05) (0.02) (0.03) (0.03) (0.02) (0.04) (0.03) (0.01) (0.02)

C 0.03 0.17 0.22 0.11 0.18 0.09 0.1 0.04 -0.06

(0.16) (0.04) (0.25) (0.14) (0.09) (0.1) (0.08) (0.04) (0.03)

GS 0.61 0.05 -0.03 0.01 0.47 0.02 0.1 -0.06 -0.03

(0.08) (0.03) (0.08) (0.03) (0.04) (0.04) (0.04) (0.02) (0.03)

MS 0.25 0.04 -0.11 0.2 1.0 -0.03 0.07 0.09 0.13

(0.07) (0.04) (0.08) (0.03) (0.01) (0.06) (0.05) (0.03) (0.04)

COF -0.02 -0.02 0.76 0.22 0.04 -0.14 0.01 0.01 0.16

(0.06) (0.02) (0.06) (0.03) (0.05) (0.03) (0.05) (0.03) (0.03)

HSBC 0.14 0.02 -0.05 -0.01 0.1 0.06 0.02 -0.12 0.23

(0.07) (0.02) (0.05) (0.02) (0.04) (0.02) (0.03) (0.02) (0.04)

AXP 0.27 -0.01 0.12 0.53 -0.45 0.08 0.61 -0.24 0.04

(0.12) (0.03) (0.1) (0.05) (0.09) (0.06) (0.08) (0.11) (0.06)

CSGN 0.3 -0.01 -0.34 -0.02 -0.1 0.14 0.21 0.8 0.17

(0.09) (0.06) (0.09) (0.03) (0.08) (0.07) (0.06) (0.09) (0.03)

Table 1: Estimates of the network structure. Standard deviations (in brackets) are obtained

by bootstrapping (2000 resamples) across regimes. In this case, regimes are decided by CDS

quantile. There are H = 20 regimes.

27



Figure 3: Visualization of the single network identified by statistical regimes

We now turn to the estimation results for our linear network model. As defined in Section 2,

we estimate the linear shock propagation channel among the top 10 US banks. In our esti-

mates, we assume that the linear structural parameters that we estimate is always between

-1 and 1. i.e.,

γi,j,m ∈ [−1, 1],∀i, j,m. (19)

Mathematically, this constraint will remove any non-unique solutions due to columns per-

mutations. Economically, this means that the bank which receives a shock directly is most

affected. This approach of removing permutation solutions will be problematic if a lot of

the estimated structural parameters are on the boundary (i.e., the constraint (19) is binding
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for a lot of parameters). However, at least for the CDS spread dataset that we study, only

1 parameters is on the boundary in statistical identification, and 3 parameters are on the

boundary in macroeconomic identification.

Table 1 shows the estimates of the 10-by-10 network structure using statistical identifi-

cation.12 Standard deviations (in brackets) are obtained by bootstrapping (2000 resamples)

across regimes. In this case, as the name “statistical identification” suggested, regimes are

decided by CDS quantile levels discussed in Section 3.1. The matrix in Table 1 can be re-

garded as a weighted directed graph. Each column shows where the shock is originated from,

and each row shows where the shock propagates to. For example, the structural parameter

in the 4th column (Citigroup) and the 1st row (JP Morgan) represents the channel where

shock propagates from Citigroup to JP Morgan. In an earlier example in Section 2.1, we used

the correlation between Citigroup to JP Morgan as an example to show that the correlation

between banks can be very volatile. Here the structural parameter, on the other hand, is

reliably estimated with bootstrapping standard deviation of only 0.02.

The estimated matrix of structural parameters is asymmetric in general. However, this

does not mean any causal relationship between each pair of banks. In our original model,

without (19), any column permutation of Γ will give a new solution and change the direction

of edges of the weighted directional graph in Table 1. Now with constraint (19), the directions

of the edges of the graph are pinned down by the constraint, but not by any inherent causality

in the data.

Figure 3 gives a visualization of the same network. The values of structural parameters

are represented by the color and size of the corresponding circles. Positive structural pa-
12We do not use Lasso in this small scale estimation problem, because Lasso may introduce bias that affects

our statistical tests in the next section. Furthermore, in our identification using CDS data, a reasonable

amount of Lasso penalty will not change the result much. However, in a larger scale estimate (e.g., a banking

network with 1000+ nodes), Lasso will be very useful in obtaining sparse networks.
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rameters are displayed in blue and negative structural parameters are displayed in red. In

addition, color intensity and the area of the circles are proportional to the absolute values of

the structural parameters. The visualization helps identify patterns in the risk transmission

mechanism. For example, Wells Fargo is exposed to a number of different shocks, while Bank

of America is more resilient to shocks transmitted from other banks.
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3.3 Estimates: Macro Identification

JPM BAC WFC C GS MS COF HSBC AXP CSGN

JPM -0.01 0.23 -0.06 0.19 0.04 -0.04 0.23 -0.02 0.05

(0.02) (0.06) (0.03) (0.04) (0.02) (0.03) (0.07) (0.02) (0.02)

BAC 0.55 1.0 -0.04 0.34 0.29 -0.36 -0.28 -0.08 0.12

(0.17) (0.14) (0.12) (0.12) (0.08) (0.08) (0.19) (0.03) (0.05)

WFC 0.25 0.07 0.03 0.0 0.01 0.19 0.13 0.03 -0.06

(0.05) (0.02) (0.03) (0.03) (0.02) (0.04) (0.04) (0.02) (0.02)

C -1.0 0.25 0.24 0.3 0.35 0.16 -0.6 0.08 -0.18

(0.16) (0.09) (0.27) (0.14) (0.09) (0.19) (0.25) (0.04) (0.1)

GS 0.37 0.01 -0.07 0.06 0.52 0.0 0.22 -0.05 -0.13

(0.07) (0.02) (0.05) (0.03) (0.04) (0.04) (0.06) (0.02) (0.03)

MS 0.41 -0.0 0.14 0.17 1.0 -0.26 0.01 0.06 0.2

(0.13) (0.04) (0.11) (0.04) (0.03) (0.06) (0.1) (0.04) (0.04)

COF -0.13 0.14 0.57 0.08 0.01 -0.14 0.03 0.01 0.19

(0.07) (0.02) (0.09) (0.05) (0.05) (0.04) (0.06) (0.04) (0.03)

HSBC 0.4 0.02 0.17 -0.02 0.15 -0.05 0.01 -0.04 0.26

(0.1) (0.03) (0.08) (0.05) (0.04) (0.03) (0.04) (0.02) (0.04)

AXP -0.03 0.02 -0.04 0.49 -0.55 0.17 0.38 0.14 -0.14

(0.12) (0.04) (0.17) (0.05) (0.14) (0.1) (0.13) (0.1) (0.07)

CSGN 0.38 0.1 -0.08 -0.02 -0.24 0.17 -0.04 0.78 0.14

(0.1) (0.03) (0.07) (0.03) (0.07) (0.04) (0.05) (0.08) (0.02)

Table 2: Estimates of the network structure. Standard deviations (in brackets) are obtained

by bootstrapping (2000 resamples) across regimes. In this case, regimes are decided by

macroeconomic indicators. There are H = 20 regimes.
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Figure 4: Visualization of the single network identified by macroeconomic regimes

If we select regimes by the quantile levels of macroeconomic factors rather than the quantile

levels of CDS spreads, we obtain estimates of the network by macro identification. Table 1

and Figure 3 shows the result of macro identification. Similarly to the statistical identifica-

tion, Table 2 shows the estimates of the 10-by-10 network structure. Standard deviations

(in brackets) are obtained by bootstrapping (2000 resamples) within regimes. Furthermore,

Figure 4 gives a visualization of the network. The values of structural parameters are repre-

sented by the color and size of the corresponding circles. Positive structural parameters are

displayed in blue and negative structural parameters are displayed in red.

In macro identification, standard deviations of structural parameters are estimated by
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bootstrapping within each regime, as opposed to bootstrapping across regimes in the entire

dataset for statistical identification. This is because the regimes and networks are inter-

changeable. When we bootstrap the whole dataset, what constitutes network 1 changes.

and in fact, the computer has no way to pick network 1 always, and this will exacerbate the

standard errors. In the end, the estimates are the mixture of the networks.

Comparing Figure 3 with Figure 4 we notice that the two networks are almost identical.

This is because the linear network identified using our approach is the same no matter how

regimes are selected. In the last subsection and this subsection, we are using the same

dataset, and the model we adopt is a linear model, hence the underlying linear financial

network is the same. The bootstrapping standard deviations, on the other hand, are very

different between statistical identification and macroeconomics identification. Both methods

give consistent estimators but the estimators converge at different rates as the number of

data points increases.

4 Multiple Contingent Network Estimation

This section presents a test for the multiple network assumption. In particular, we propose a

testing procedure that compares the consistency of the estimates of structural variables in a

single network case versus a multiple network case. In a point-wise test, one can obtain the

distribution of differences and carry out the test without any assumptions on distributions.

However, a point-wise test cannot provide a summary of the results. If we further assume that

structural variables follow independent but not necessarily identical Gaussian distributions,

we can test the sum of normalized residuals, which follows a Chi-squared distribution.
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4.1 F-test for Network Contingency and the Rejection of the Single

Network Hypothesis

In this subsection, we construct an intuitive F-test that is used to reject the single net-

work hypothesis. Suppose one observes two sequences of data {Xt}t∈D1 and {Xt}t∈D2 , and

estimates structural parameters ΓD1 and ΓD2 . We want to know whether the two sets of

structural parameters are consistent. Let γi,j,1 and γi,j,2 denote the ith row, jth column

entry of the network estimated from data set D1 and D2 respectively.

We begin with a number of assumptions

Asymptotic Assumptions: (a) The parameter space Ψ of ψ =

 Γ

{Σh}Hh=1

 is a compact

subset of Rd, and the true value ψ0 lies in the interior of the parameter space Ψ. (b) The

moment function ψ → g(ψ) defined in (17) identifies ψ0: g(ψ) = 0 iff ψ = ψ0. (c) The

empirical moment function ψ → ĝ(ψ) converges uniformly in probability to the moment

function ψ → g(ψ), namely supψ∈ψ ‖ĝ(ψ)−g(ψ)‖ →p 0 (d) The empirical Jacobian Ĝ(ψ) =

∂
∂ψ
ĝ(ψ) is continuous and is uniformly consistent for the Jacobian matrix, G(ψ) = ∂

∂ψ
g(ψ),

i.e., supψ∈ψ ‖Ĝ(ψ)−G(ψ)‖ →p 0 (e) The matrix G(ψ0)>G(ψ0) is positive definite. (f) The

empirical moment function evaluated at the true parameter value obeys a central limit

theorem:
√
nĝ(ψ0) ∼ N(0,Ω)

asymptotically, where n is the number of samples.

Note those assumptions are inherently the same with the assumptions in the original

GMM paper by Hansen (1982). Note that the key to our single network test is the solu-

tion uniqueness assumption (b) of GMM summarized above. Failing to establish a result

for solution uniqueness will cause incorrect estimates of parameter distribution. Generally
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speaking, the bootstrap estimated parameter distribution will have a larger variance and

therefore fails to reject the hypothesis even if the hypothesis is incorrect. Lemma 1 in our

paper deals with this problem.

Under the null hypothesis that

H0 : γi,j,1 and γi,j,2 are the same

their difference

γi,j,1 − γi,j,2 (20)

should follows a distribution with zero mean. If the estimated value of γ̂i,j,1− γ̂i,j,2 lies in the

0.05 left or right quantiles of the bootstrapping distribution, we can reject the null hypothesis

and claim that with 90% confidence

H1 : ΓD1 and ΓD2 are different

The above point-wise test has the advantage of distribution-free. However, without a

summarizing statistic, one cannot draw conclusions on the overall network. Suppose further

that γi,j,1 − γi,j,2 follows Gaussian distribution N (γi,j, σ
2
i,j). Under the null hypothesis that

H0 : ΓD1 and ΓD2 are the same (21)

their squared difference (γi,j,1 − γi,j,2)2 /σ2
i,j follows a Chi-squared difference with degree of

freedom 1.

In addition, under the independence assumption, the sum of squared differences∑
i6=j

(γi,j,1 − γi,j,2)2 /σ2
i,j ∼ K (N(N − 1))

where K denotes a Chi-squared distribution.
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If the estimated value of
∑

i6=j (γi,j,1 − γi,j,2)2 /σ2
i,j lies in the 0.1 right quantiles of the

bootstrapping distribution, we can reject the null hypothesis and claim that with 90% con-

fidence

H1 : ΓD1 and ΓD2 are different

4.2 Estimates: the Sensitivity of Network Structures to Macroeco-

nomic Environments

Using the statistical test derived in the last subsection, we are able to compare the network

contingency given any two sets of data. In this subsection, we divide our dataset according to

quantile levels of macroeconomic factors and test the network contingency to those factors.

This procedure is analogous to a sensitivity test of our model. For example, we first look at

the network contingency to the inflation rate.

More specifically, let Xt, a 10-by-1 vector time series, denote the CDS spread of top 10

US banks, and St denote the time series of a macroeconomic factor. Similarly to Section 3,

macroeconomic factors in this paper include Price Index, WTI, S&P Index, VIX Volatility,

3-month Interest Rate, US Dollar Index, and 10-year minutes 3-month Interest Yield Curve.

The dataset is divided into two parts

D1 = {Xt|St ≤ median[St]}, D2 = {Xt|St > median[St]}

and both the pointwise test and Chi-squared test in Section 4.2 is carried out on these two

sub-datasets. The result of tests are summarized in Table 3. In this table, we do not list the

corresponding p-values because the J-statistics is large enough to reject the null hypothesis

with p-value less than 0.01 in all scenarios.
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Mean diff Mean std Num. rejections J-stat

WTI 0.212803 0.131362 23 373.41

SP500 0.180177 0.138155 11 340.13

VIX 0.156272 0.119048 23 256.89

i_3M 0.158900 0.141999 15 315.09

USD 0.188294 0.136103 19 375.21

i_10Y-i_3M 0.185558 0.152019 20 279.12

Inflation 0.143617 0.141792 22 176.85

Table 3: Structural changes driven by macroeconomic indicators

Among the seven macroeconomic factors, network structural changes are most significant

when asset prices are used to split the sample. Inflation and Volatility (as measured by the

VIX) have the least rejections. Nevertheless, in all seven cases we reject the hypothesis of

single network.

4.3 Estimating mixture models using EM-Algorithm

Although we build the model with a mixture of multiple networks, so far, the identification

process has mostly been with a single network. In the case of a single network, the mixture

random variable w := {wmh}M ,H
m=1,h=1 is trivial, and the identification is through the GMM

algorithm. Because the last subsection showed that a single network is not sufficient to

describe the data, we move towards the model setup of a multi-network mixture.

Recall the main characteristics of our mixture model as follows: the data Xt in each

regime t ∈ Rh is generated by

Xt =
M∑
m=1

wmh(1− Γm)−1εt (22)
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where

εt ∼ N (0,Σh)

Γ := {Γm}Mm=1 and Σ := {Σm}Hh=1 are parameters to be identified. In addition, wmh denote

the indicator random variable that equals to 1 if network m dominates in regime h. Assume

wmh =

1 w.p. pm

0 o.w.
. Because only one network dominates in each regime,

M∑
m=1

pm = 1 (23)

Our objectives is to estimate parameters Γ and Σ by observing Xt.

Similarly to the case of single network identification, we construct

Ωh =
1

nh

∑
t∈Rh

XtX
>
t

the maximum likelihood estimator (MLE) of population variance of Xt in each heteroskedas-

ticity regimes h. As it will become clear later in this subsection, using Ωh will allow us to

separate the identification of Γ and Σ. Furthermore, it allows us to estimate each Γm sepa-

rately.

The above mixture model is difficult to identify, because wmh is a random variable which

is not observed. In this case, the Expectation-Maximization (EM) Algorithm can be used to

make the problem tractable. Note that Ω := {Ωh}Hh=1 given w is Wishart distributed, even

though Ω itself is not. The EM Algorithm takes this advantage by iterating between the E

step and M step. In the E step, it computes the discrete distribution of wmh given current

parameter estimates, and calculate the function

Q(Γ,Σ | Γ(current),Σ(current)) = Ew|Ω,Γ(current),Σ(current) [logL(Γ,Σ; Ω, w)]

where L(Γ,Σ; Ω, w) is the likelihood function assuming w is observable. In the M step, it

computes the optimal parameters Γ and Σ to maximize the Q(·) function. It is a general
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result of EM that improving Q(·) improves the likelihood function of the mixture model

L(Γ,Σ; Ω), see Little and Rubin (2019).

A critical step of implementing the EM algorithm is to calculate the likelihood function

of Ω given w. Given wmh = 1, i.e. network m dominates in regime h, we have

vmh := nh(1− Γm)Ωh(1− Γm)> =
∑
t∈Rh

εtε
>
t ∼Wishart(Σh, nh) (24)

The Wishart distributed vmh has a probability density function (PDF)

fV(vmh) =
1

2nhN/2 |Σh|nh/2 L
N

(
nh

2

) |vmh|(nh−N−1)/2e−(1/2) tr(Σ−1
h vmh) (25)

where nh is the number of samples in regime h, N is the number of banks in the network,

| · | is the determinant of a matrix, and
L
N(·) is the multivariate Gamma function with

dimension N .

Now we can write the likelihood function L(Γ,Σ; Ω, w) using the Wishart PDF

L(Γ,Σ; Ω, w) =
∏
m

∏
h

(
fV(vmh)

)Iwmh=1

(26)

Recall that we can separate the estimation of the network matrices Γ with the shock

variances Σ in the single network case. Similarly, we can also do that in EM, but for a

different reason: the optimal diagonal Σh that maximize (25) equals to the diagonal entries

of vmh. i.e.,

Lemma 2. Let vmh be a given N-by-N positive semidefinite matrix. Also, define PD as the

set of positive semidefinite diagonal matrices. Then

Σ∗h := arg max
Σh∈PD

1

2nhN/2 |Σh|nh/2 L
N

(
nh

2

) |vmh|(nh−N−1)/2e−(1/2) tr(Σ−1
h vmh) =

1

nh
diag(vmh)

(27)

39



The proof is given in Appendix C.

The above Lemma means that we do not have to identify the join of Γ and Σ. We can

just identify Γ, and the optimal Σ can be obtained analytically. Now that we have separated

the identification of the network Γ with Σ, we focus on a EM-algorithm that identifies Γ. At

this point, we are looking at a mixture model with parameters Γ, hidden random variables

w, and observed random variables Ω. We define the function Q as follows

Q(Γ | Γ(current)) = Ew|Ω,Γ(current) [logL(Γ; Ω, w)]

=
∑
m

∑
h

Ew|Ω,Γ(current)Iwmh=1 log fV|Σ∗(vmh)

=
∑
m

∑
h

pmh log fV|Σ∗(vmh)

(28)

where fV|Σ∗ is the Wishart PDF given optimal Σ, and pmh := P(wmh = 1|Ωh; Γ) is the

probability that network m dominates in a specific regime h. Inserting (27) into (25), we

have

fV|Σ∗(vmh) =
|vmh|(nh−N−1)/2

|diag(vmh)|(nh/2)
· constant not depend on vmh

hence

Q(Γ | Γ(current)) =
∑
m

∑
h

p
(current)
mh

(
nh −N − 1

2
log |vmh| −

nh
2

log |diag(vmh)|
)

+ constant

(29)

where vmh = nh(1− Γm)Ωh(1− Γm)>.

Another step that plays an important role in EM algorithm is the estimate of pmh and

pm. Note that pmh and pm are two different quantities: pmh is the posterior probability of

wmh = 1 for a specific h. On the other hand, pm is the prior distribution of wmh, which is

the same for all regimes. According to Bayes rule

pmh := P
(
wmh = 1|Ωh; Γ(current)

)
= P(wmh = 1; Γ(current)) · P(Ωh|wmh = 1; Γ(current)) · constant

= p(current)
m · f (current)

V (vmh) · constant

(30)
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where p(current)
m can be estimated by p(current)

m = 1
H

∑H
h=1 p

(current)
mh , fV is defined in (25) and

the normalizing constant is decided by
∑M

m=1 pmh = 113.

EM-Algorithm

Take an initial guess of Γ, then iterate between the following E-step and M-step.

E-step:

Update pmh, the probability that network m dominates in regime h, given current estimates

of Γ, according to (30). After that, we use the updated pmh to construct

Q(Γ | Γ(current)) =
∑
m

∑
h

p
(current)
mh

(
nh −N − 1

2
log |vmh| −

nh
2

log |diag(vmh)|
)

+constant

(31)

where vmh = nh(1− Γm)Ωh(1− Γm)>.

M-step:

Update estimates of Γ by maximizing Q(Γ | Γ(current)). It is sufficient to update Γm sepa-

rately by

max
Γm

∑
h

p
(current)
mh

(
nh −N − 1

2
log |vmh| −

nh
2

log |diag(vmh)|
)

for each m.

4.4 The number of networks

To obtain the optimal number of networks, we apply the Bayesian information criterion.

The Bayesian information criterion is defined as

BIC = ln(n)k − 2 ln(L).

where n is the number of samples, k is the number of parameters, and L is the maximum

mixture log-likelihood function, see Fraley and Raftery (1998).
13This process is similar to the case of Gaussian mixture models, see Chapter 9 of Bishop (2006)
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Figure 5: Negative log-likelihood and BIC vs. No. of networks

As shown in Figure 5, the optimal number of networks selected by Bayesian information

criteria is 3.

4.5 Network Centrality

In our macro-identification process, we divide regimes according to macroeconomic shocks.

According to the results of EM, it turns out some of those shocks play important roles in the

network switching process, while others only contribute to the network switching marginally.

In Table 4, regimes are grouped by networks in which they dominate. e.g., in regimes 1, 2,

3, 6, 14, 16, 17 and 18, network 1 dominates. On top of that, we list whether or not each

macroeconomic factor is active in each regime.14 Active factors are denoted by 1 and others

by 0.
14By active macroeconomic factor, we mean that the specific macroeconomic factor is in its top 25%

quantile in that regime.
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Inflation WTI S&P VIX i_3M USD i_10Y-i_3M

Network 1

regime 1 0 0 0 0 0 0 0

regime 2 1 0 0 0 0 0 0

regime 3 0 1 0 0 0 0 0

regime 6 1 0 0 1 0 0 0

regime 14 0 0 0 1 1 1 0

regime 16 1 0 0 0 0 0 1

regime 17 0 1 0 0 0 0 1

regime 18 1 1 0 0 0 0 1

Network 2

regime 4 0 0 1 0 0 0 0

regime 8 1 0 1 0 1 0 0

regime 9 0 0 1 0 0 1 0

regime 10 1 0 1 0 0 1 0

regime 11 0 0 0 1 0 1 0

regime 12 0 0 1 0 1 1 0

regime 13 1 0 1 0 1 1 0

Network 3

regime 5 0 0 0 1 0 0 0

regime 7 0 1 0 1 0 0 0

regime 15 0 0 0 0 0 0 1

regime 19 0 0 0 1 0 0 1

regime 20 1 0 0 1 0 0 1

Table 4: Network vs. Macro shocks
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From Table 4, we can summarize what each network represents. Network 1, which

includes the regime where no macroeconomic factor is active, can be interpreted as normal

times. Network 2, on the other hand, is very likely to be an asset price shocks, because

S&P and exchange rates are both moving. Network 2 also reflects some short-run monetary

policy that is usually reflected in asset prices. Finally, Network 3 is clearly an uncertainty

shock, as it corresponds to VIX and yield curve activities. We also find that those shocks

have different transmission mechanisms within the networks as can be seen in Figure 7.

Now that we know there are three networks in the interbank financial system, a systemic

risk measure, namely the Katz centrality, will be calculated for each of the networks. The

Katz centrality (Katz, 1953; Junker and Schreiber, 2008) of a network with adjacency matrix

Γ is defined as
−→
C Katz = ((I − αAT )−1 − I)

−→
I , (32)

where α is a damping factor that satisfies 0 ≤ α < 1/|λmax|. In our paper, we choose α = 0.5.

The Katz centrality is a generalization of the degree centrality. Intuitively, a node in the

graph is more important if it more often receives shocks from other nodes. Furthermore, the

Katz centrality considers both the direct impact from other nodes as well as the cascade im-

pact many steps ago. It assumes that both direct and indirect impacts affect the importance

of a node, given that indirect impacts are discounted by a factor of α after each step. Apart

from original applications in social networks and biological networks, Katz centrality has

also been applied to evaluate systemic risk in financial networks, see (Thurner and Poledna,

2013; Temizsoy et al., 2017). The Katz centrality of the top 10 banks in the US in the three

estimated networks is shown in Table 5.

To understand the economic intuition of the Katz centrality, we first look at an alternative

definition of it

CKatz(i) =
∞∑
k=1

N∑
n=1

αk(Γk)ni

44



1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 1
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 1
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 1
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6: Estimated 3 networks
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Network 1 Network 2 Network 3

JPM 0.041 (0.005) 0.008 (0.013) 0.055 (0.015)

BAC 0.150 (0.018) 0.176 (0.017) 0.195 (0.045)

WFC 0.059 (0.006) 0.046 (0.013) 0.066 (0.011)

C 0.124 (0.008) 0.152 (0.022) 0.054 (0.039)

GS 0.100 (0.012) 0.122 (0.017) 0.139 (0.021)

MS 0.181 (0.016) 0.188 (0.021) 0.221 (0.025)

COF 0.117 (0.018) 0.054 (0.039) 0.075 (0.032)

HSBC 0.037 (0.016) 0.066 (0.036) 0.075 (0.015)

AXP 0.084 (0.020) 0.144 (0.033) 0.027 (0.016)

CSGN 0.107 (0.012) 0.044 (0.050) 0.095 (0.036)

Table 5: Estimates of network Katz centrality. Centrality values are normalized to sum up

to 1. We use a discount factor α = 0.5. Standard deviations (in brackets) are obtained

by bootstrapping (2000 resamples) across regimes. In this case, regimes are decided by

macroeconomic indicators. There are H = 20 regimes.
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Figure 7: Rank of the estimated Katz centrality of in the 3 estimated networks.

From this definition, it is easy to see that the Katz centrality calculates the summation of

an infinite series of impacts given a uniform shock to each bank. In our estimates, centrality

values are normalized to sum up to 1, therefore each value C̃i just means the portion of shock

that is transmitted through bank i.

In summary, we find the data can be explained by 3 networks in the financial network

among the top 10 banks in the US with our criteria. We reject the hypothesis of 1 network

using an F-test and then use the Bayesian information criteria to conclude that 3 networks

are optimal. With 4 or more networks, the model complexity penalty term in the BIC

would standout and reject the models. We are only applying our identification method on

financial networks though, other applications of our identification method could give 4 or

more networks as the optimal solution.

The three different networks we estimates imply different economic behaviors. The first

network represents normal time, the second network represents an equity market shock, and

the third network represents a VIX shock. Furthermore, the Katz centrality in different
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networks is not the same. Interestingly, some banks are always systemically important (i.e.,

Bank of America and Morgan Stanly), but depending on the type of shocks other banks

might change their rank of centrality.

Without the multi-network assumption in this paper, we would have incorrectly estimated

a single network. In that case, the centrality rank assuming 1 network is given by JPM:

10, BAC: 2, WFC:9, C:7, GS:3, MS:1, COF:5, HSBC:8, AXP:6, CSGN:4. The resulting

centrality measures, or any other systemic risk measures, will only be the weighted average

of different scenarios in general. As a result, we lack the ability to identify banks that is

systematic with respect to some specific shocks. Furthermore, with WFC for example, the

centrality rank assuming 1 network is only 9th place, but it is actually more important in

all three networks. Such an incorrect estimate of systemic risks could result in suboptimal

decisions for financial practitioners, policymakers and regulators.

5 Conclusions

Understanding the interconnections within the financial system has been a first-order con-

cern in developed economies since the 2008 global financial crises. In fact, macroeconomic

prudential regulation needs to determine which banks and financial institutions are system-

ically important so they can be supervised closely. In the network language, it would mean

that such financial institutions have a large centrality. Most of this analysis has been done

either by concentrating on symmetric responses (computation based on correlations) or by

observing a subset of financial contracts. This approach has been quite fruitful. In our view,

however, both approaches might be incomplete.

On the one hand, the estimation of networks tends to obviate the directionality of the

effects. In other words, Bank of America might have a large impact on American Express,
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but the opposite might not be true. Network analysis in the literature tends to obviate this

feature. The second approach, which concentrates on the detail description of the contingent

contracts across banks, could represent a solution to this problem. However, it is virtually

impossible to observe all possible contracts. Therefore, a market price of CDS is conceivably a

more reliable measure of the actual exposure. This ambivalence implies that each procedure

has a weakness that we have tried to address in the current paper. Furthermore, as has

been shown in the literature, the nature of the transmission mechanisms changes with the

shocks hitting the economy – meaning that the network is contingent on the state of the

economy. We argue that the estimation of an asymmetric and contingent network requires a

different identification method. We develop a methodology based on identification through

heteroskedasticity. Applying this estimation method on CDS data of 10 large banks, we

construct a financial network model and find that the data generating the model is consistent

with three networks, each one contingent on one different macroeconomic shock.

Our results indicate that the systemically important bank depends on the type of shock

that hits the economy – which is ultimately transmitted through a different network. Without

our contingent financial network model, it is not possible to identify the importance of each

bank in the financial system when a specific type of shock hits the economy. Indeed, we reject

that the data is explained by a single network – suggesting that a policy designed based on

that network would be inappropriate when a different transmission mechanism governs the

dynamics of the system.

From the regulatory point of view, understanding the relative rankings on the financial

institutions and how such ranking shifts in the sample is important. Our data is short and

therefore we are limited in our ability to observe shocks that have not happened yet. For

instance, we have not observed large positive productivity shocks, or relatively high inflation

rates, or even high interest rates. Therefore, our conclusions are conditional to the sample

we have seen. Within that sample, though, it is easy to identify tranquil times, periods
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when there are shocks to asset prices, and times where uncertainty is high. In those settings,

which bank is systemically important changes. Central banks and regulators need to pay

attention to these changes if the proper macro-prudential regulation is to be designed. In

fact, regulators with misleading information about the financial network may not be able to

make the most appropriate policy decisions to minimize the impact of those shocks.

Furthermore, the application of our identification method for contingent networks is not

limited to policymaking. For example, asset management practitioners could use our method

to estimate the contingent network and allocate assets according to the dominate shock in

a period of time, and macroeconomists could use our method to evaluate the impact of

macroeconomic interventions. In general, how to model, estimate and intervene in shock

contingent networks is still an open and important topic for future research.
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Appendices

A A Single Network Endogenous Model

Assume two banks are related according to the following system of equations and shocks

xt = βyt + εt (33)

yt = αxt + ηt (34)

with reduced form,

xt =
1

1− αβ
(βηt + εt)

yt =
1

1− αβ
(ηt + αεt)

where ηt and εt are the structural shocks and α and β are describing the network.

As it is, this model cannot be estimated from the data. Equations (33) and (34) describe

the behavior of the data entirely with 4 parameters/variables: two shocks ε and η and two

parameters α and β. These four constitute the unknowns of the system. The problem of

identification arises because there are three equations in four unknowns. The observable

variables x and y have zero mean and in the data only three moments can be estimated;

all from the variance-covariance matrix. What are the solutions to the problem? In eco-

nomics, solutions tend to create circumstances in which an additional equation is added to

the system of equations. For instance, the exclusion restriction in the instrumental variable

approach boils down to assuming that one parameter is zero (the exclusion assumption).
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Randomized controlled trials assume that all the variation is due to the treatment — again,

this is implicitly assuming that there is no feedback effect (β = 0). This is a very reason-

able assumption when the experiment is properly designed. All these solutions are making

a parameter assumption (usually that a parameter is equal to zero). The identification

through heteroskedasticity has a slightly different flavor. The easiest way to explain how

identification through heteroskedasticity works is to show the system of equation. Assume

that the parameters are stable and that the data has heteroskedasticity. For simplicity as-

sume that there are two heteroskedastic regimes. In this case, it is possible to estimate one

variance-covariance matrix in each regime.

Ω1 =

var(xt,1) covar(xt,1, yt,1)

var(yt,1)

 =
1

(1− αβ)2

σ2
ε,1 + β2σ2

η,1 ασ2
ε,1 + βσ2

η,1

α2σ2
ε,1 + σ2

η,1


Ω2 =

var(xt,2) covar(xt,2, yt,2)

var(yt,2)

 =
1

(1− αβ)2

σ2
ε,2 + β2σ2

η,2 ασ2
ε,2 + βσ2

η,2

α2σ2
ε,2 + σ2

η,2


There are six unknowns in the system. The two parameters (α and β), and four variances

(σ2
ε,1, σ2

ε,2, σ2
η,1, and σ2

η,2). As can be seen, there are six equations in six unknowns. This

means that the system of equations is just identified.

Notice that even though in each regime the system is under-identified (fewer equations

than unknowns) the system as a whole is identified. The key assumptions are two: that the

structural shocks are indeed structural (they are uncorrelated) and that the parameters are

stable. In the end, the parameter stability allows the heteroskedasticity to add additional

equations — which helps solve the identification problem.

The intuition of the two endogenous variables case is as follows. First, the graphical

representation of the joint residuals in this model always takes the form of a rotated ellipse.

Second, the rotation is summarized by the variance-covariance matrix.

In equations (33) and (34), the only meaningful moment we can compute to estimate the
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degree of contagion is the covariance matrix. An important question is then, what does the

variance-covariance matrix represent? The errors in these models are distributed as a multi-

nomial and their contours are ellipses. To fix concepts, let us start with a simple endogenous

system of equations (33) and (34). The 95th percentile of the errors is distributed as a rotated

ellipse. We can solve for two independent normal distributions from the structural equations

as follows (with some abuse of notation)

φ1 =
xt − βyt

σε
∼ N(0, 1)

φ2 =
yt − αxt
ση

∼ N(0, 1)

Because φ1 and φ2 are independent with mean zero and variance one, it is possible to

describe the ζ confidence interval as φ2
1 + φ2

2 = ζ. This is exactly an ellipse. Substituting

(
xt − βyt

σε

)2

+

(
yt − αxt
ση

)2

= ζ (35)

The two axes of the ellipse cannot be computed in closed-form solution, but they depend

on the slope of the curves (structural parameters) as well as the relative variances of the

shocks. In Figure A.1 a graphical representation is shown. Suppose that the blue curve

represents the supply and the red is the demand (when there are no shocks). Then xt

represent quantity and yt represent price. Furthermore, the points reflect some random

realization of structural shocks that leads to a point far from the depicted schedules. The

ellipse represents the 90th percentile. In this particular case β is assumed to be negative

(representing the “demand"), while α is positive. In Figure A.1, the variance of the demand

shocks is larger than the variance of the shocks to the supply, hence, the ellipse is closely

aligned with the supply curve. In the limit, if the variance of the demand is infinitely large,

the ellipse would coincide exactly with the supply curve.
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Figure A.1: Distribution of Errors

The form of the ellipse is also summarized by the variance-covariance matrix computed

in the reduced form. Additionally, most of the methodologies we study are based on the

variance-covariance matrix. Therefore, all the sources of bias can be tracked to it. Finally,

as mentioned previously, in this model the only statistic that can be computed from the data

— that allows us to recover the structural parameters — is the variance-covariance matrix.
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Figure A.2: Identification Through Heteroskedasticity

The intuition behind the identification through heteroskedasticity comes from the rota-

tion of the residual ellipses. When the variances change, for the same parameters, the ellipses

rotate. In Figure A.2, we show two cases: One when the shocks to the demand dominate

(red), and one when the shocks to the supply dominate (blue). In particular, when the

shocks to the demand dominate, then the ellipse approximates the supply curve. In fact,

it is identical to the supply curve if the variance of the demand is infinite relative to the

supply. Conversely, when the supply shocks are larger, then the long axis of the ellipse tilts

toward the demand curve. It is this rotation of the ellipses when the relative variances shift

that provides the identification.

It is instructive to re-state the underlying assumptions: structural shocks are uncorrelated
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(quite uncontroversial) and parameters need to be stable across the regimes (so, this is a

good technique to measure spillovers).

B Equivalent Formulation via Tensor Decomposition

We first show that the identification problem is equivalent to a tensor decomposition problem.

In previous sections, we identify multiple layers by matching the second moments

Ωh = (1− Γ1)−1Σh(1− Γ1)−>

We define a new N -by-M matrix

A = (1− Γ1)−1

Then we can write the moment matching equation as

Ωh = AΣhA
>.

Because the matrix Σh is diagonal, we can further write

Ωh =
N∑
r=1

−→a rσrh
−→a >r

where −→a r is the rth column of A and σrh is the rth diagonal entry of Σh. Because vector

outer products can be written as tensor products, we can also write

Ωh =
N∑
r=1

(−→a r ⊗−→a r)σrh

where ⊗ is the tensor product. Now if we stack all the second moments Ωh along a third

dimension, we obtain a N -by-N -by-H tensor [Ωh] and it holds that

[Ωh] =
N∑
r=1

−→a r ⊗−→a r ⊗−→σ r (36)
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where −→σ r =
[
σr1 σr2 · · · σrH

]>
.

We can obtain estimates of Γ1 by taking the rank-N tensor decomposition of [Ωh].

According to the Kruskal’s rank condition, if

Krank(ar) +Krank(ar) +Krank(σr) ≥ 2R + 2

then the tensor decomposition problem has a unique solution.

C Proof of Lemma 2

Proof. First, constants are irrelevant, so we just have to prove

Σ∗h = arg max
Σh∈PD

1

|Σh|nh/2
|vmh|(nh−N−1)/2e−(1/2) tr(Σ−1

h vmh) =
1

nh
diag(vmh) (37)

Define D to be the new optimization variable with D = diag(vmh)/Σh. Note by definition,

D is a diagonal matrix. Now we insert Σh = D−1 × diag(vmh) and change the optimization

variable to D. Now the optimization problem becomes

D∗ = arg max
D∈PD

1

|D−1|nh/2 |diag(vmh)|nh/2
|vmh|(nh−N−1)/2e−(1/2) tr(D)

(38)

and we just have to prove that the optimal D∗ is a diagonal matrix with all entries equal to

nh. At this step, we have already separated vmh from this optimization problem. vmh is just

a constant matrix that does not affect the optimal value of D∗. Leaving out all constants,

and let di be the diagonal entries of D. Note that |D| =
∏

i di and tr(D) =
∑

i di. Now the

optimization problem becomes

d∗i = arg max
di>0

(
∏
i

di)
nh/2e−

1
2

∑
i di (39)

The solution of this optimization problem is given by d∗i = nh.
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D Credit Default Swap Data Details and Data Retrieval

Process

To better assist understanding our results or reproducing our results, we list carefully the

details of data we used in this paper.

We obtain the par mid spread of the credit default swap of the 10 target banks through

the Thomson Reuters Eikon excel tool.

Step 1: CDS Ticker search

Due to the variety of CDS product exist in the market, we first need to decide which

CDS we use. Thomson Reuters has decided a primary CDS for each bank through the ticker

searching service. Input the command

=@TR("JPM;BAC;WFC;C;GS;MS;COF;HSBC.K;AXP;CSGN.S",

"TR.CDSPrimaryCDSRic","CH=Fd RH=IN",B2)

into the Eikon excel tool, then we have the tickers of primary CDS products of the target

companies. The obtained tickers are in Table A.1.

Most of those produces are 5 years CDS contracts traded in US. For HSBC and CSGN,

they are 5 year CDS contracts traded in Euroupe.

Step 2: Retrieve par mid spread data for CDS

After obtaining those tickers, we request the actual par mid spread of those CDS products

in the target date range. The command for retrieving spread data is

=@TR("JPM5YUSAX=R;BAC5YUSAX=R;WFC5YUSAX=R;C5YUSAX=R;

GS5YUSAX=R;MS5YUSAX=R;COF5YUSAX=R;HSBA5YEUAM=R;AXP5YUSAX=R;
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Bank RIC Primary CDS RIC

JPM JPM5YUSAX=R

BAC BAC5YUSAX=R

WFC WFC5YUSAX=R

C C5YUSAX=R

GS GS5YUSAX=R

MS MS5YUSAX=R

COF COF5YUSAX=R

HSBC.K HSBA5YEUAM=R

AXP AXP5YUSAX=R

CSGN.S CSGN5YEUAM=R

Table A.1: RIC tickers for primary CDS products of target banks.

CSGN5YEUAM=R","TR.PARMIDSPREAD","Frq=D SDate=20090901 EDate=20170630

CH=Fd;IN RH=date",B2)
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