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1 Introduction

Wage rigidities play a critical role in many quantitative business cycle models. Estimated

New Keynesian (NK) models consistently feature important nominal wage rigidities.1 The

newest generation of heterogeneous agent (HANK) models also assigns prominent roles to

wage rigidities.2 There is also a long tradition of wage rigidities in open-economy models of

aggregate fluctuations.3 Wage rigidities enable all of these models to generate employment

fluctuations that are comparable to those observed in the data.

But do wage rigidities play an important role in understanding why unemployment is

so countercyclical? The standard framework used to study unemployment features search

and matching frictions of the sort emphasized by Diamond (1982), Mortensen (1982) and

Pissarides (1985) (henceforth, DMP). Shimer (2005) showed that standard versions of these

models cannot - at least with plausible parameter values - explain the countercyclical behav-

ior of unemployment. This ‘Shimer critique’ has led to a very large literature whose goal is

to account quantitatively for the dynamics of unemployment. There is intense disagreement

within this literature about the role of wage inertia in the cyclical behavior of unemployment.

Authors like Hall (2005) and Rogerson and Shimer (2011) argue that wage inertia greatly

increases the cyclical volatility of unemployment in search and matching models. Similarly,

Gertler and Trigari (2009) and Christiano, Eichenbaum and Trabandt (2016, CET) stress

the importance of wage rigidities in estimated New-Keynesian search and matching models.

In sharp contrast, Hagedorn and Manovskii (2008, HM) and Ljungqvist and Sargent (2017,

LS) argue that the emphasis on wage rigidity is misplaced. Building on HM’s analysis, LS

stress the usefulness of what they call the ‘fundamental surplus fraction’ for understanding

the response of unemployment to shocks. By the fundamental surplus fraction they mean

the “upper bound on the fraction of a job’s output that the invisible hand can allocate

1See for example Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007). See also
Del Negro, Eusepi, Giannoni, Sbordone, Tambalotti, Cocci, Hasegawa and Linder (2013) for an example of
DSGE models used for policy analysis.

2See for example Broer, Hansen, Krusell and Oberg (2018) and Auclert, Rognlie and Straub (2019).
3See for example Kollman (2001), Schmitt-Grohé and Uribe (2016) and Eichenbaum, Johannsen and

Rebelo (2019).
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to vacancy creation”.4 LS argue that the fundamental surplus fraction must be small to

account for the Shimer puzzle and that wage rigidities don’t play any special role in this

connection. We argue that wage rigidities do in fact play a pivotal role in allowing variants of

the standard search and matching models to account for the large countercyclical response

of unemployment to shocks. In fact wage rigidities are necessary in empirically plausible

versions of those models for explaining the cyclical volatility of unemployment.

In section two we present a simple labor market search and matching model. In section

three we proceed as in much of the literature and use comparative steady state analysis as a

short-cut for analyzing model dynamics. We characterize the implications of the search and

matching model for the volatility of unemployment by a standard statistic: the elasticity

of steady state labor market tightness with respect to a shift in the steady state marginal

revenue product of labor. We decompose that elasticity into a wage inertia component and

a profit rate component. Our decomposition makes clear that wage inertia is a necessary

condition for generating a large countercyclical response of unemployment to a shift in the

marginal revenue product of labor. If the wage rate responds one-to-one to the marginal

revenue product across steady states, then the unemployment rate remains exactly the same

across those steady states. Our decomposition also makes clear that, other things equal,

the less the wage rate responds to the marginal revenue product, the more responsive is the

unemployment rate. We show that similar conclusions hold for changes in the discount rate

of the sort considered in Hall (2017).

We apply our decomposition to analyze the role of wage inertia in di↵erent wage-setting

models estimated by CET. Specifically, we consider versions of their DSGE model where

wages are set according to Nash bargaining and alternating o↵er bargaining (AOB). Both

models solve the Shimer puzzle because they have more wage inertia than does the model

considered by Shimer. A sticky wage variant of the model, in which wages are constant

across steady states, generates an enormous response of unemployment to a permanent shift

in firms’ marginal revenue product. As a by-product of our analysis, we provide a counter-

4See LS, abstract.
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example to the claim in LS that search and matching models can only successfully address the

Shimer critique by incorporating features that make the inverse of the fundamental surplus

fraction large. In that section we also address the HM critique of wage inertia as a solution

to the Shimer puzzle.

The comparative steady state approach can yield important insights about the role of

wage rigidity in dynamics. However, it can also be very misleading. The approach assumes

the underlying shock is close to a random walk and the economy does not have quantitatively

important state variables. These two assumptions are satisfied in the simple search and

matching model, e.g., Shimer (2005). But they are not satisfied in generalizations of that

model which include transitory shocks and a rich assortment of state variables. Moreover,

model features like adjustment costs and nominal rigidities give rise to additional sources of

dynamics while leaving no trace in the steady state. A steady-state analysis could assign no

role at all to wage rigidity even if in fact it plays an very important role.

In light of these considerations, section four focuses on the dynamic response of unem-

ployment to shocks. We do so using variants of the Nash and AOB models estimated in

CET. Our main results can be summarized as follows. First, wage inertia greatly magnifies

the response of unemployment to shocks. That is, models which do well at matching the data

like the estimated AOB model do poorly if one replaces the wage determination mechanism

by one in which wages are less inertial. Models that do badly at matching the data, like

the Nash model with plausible replacement ratios, do much better if we impose on them

wage processes that are more inertial. Second, we show that steady-state based measures

of the fundamental surplus are uninformative about the dynamic response of unemployment

to shocks. Models which have identical steady states exhibit dynamic response functions

of unemployment to shocks that are very di↵erent from each other. These di↵erences are

driven by di↵erent degrees of wage inertia.

Section five contains concluding remarks.
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2 A Simple Labor Market Model

In this section we consider a simple discrete time search and matching model developed in

CET. There is a continuum of identical workers and firms. To map into the medium-sized

DSGE model in section 4, we refer to these firms as wholesaler firms. Firms produce a good

using labor as the sole input. A wholesaler firm that wishes to meet a worker in period t

must post a vacancy at a cost st, expressed in units of the consumption good. The vacancy

is filled with probability Qt. Following Pissarides (2009), the firm must pay a fixed real cost,

t, before bargaining with the newly-found worker.

Let Jt denote the value to the firm of a worker, expressed in units of the final consump-

tion good:

Jt = #p

t � wp

t . (1)

Here, #p

t denotes the expected present discounted value, over the duration of the worker/firm

match, of the marginal revenue product of the worker. The latter could be stochastic because

technology shocks a↵ect the productivity of workers or because there are shocks to the price

of the wholesale firm good. The variable wp

t denotes the discounted value of the real wage.

The latter is determined by worker-firm bargaining and is discussed below. In recursive form:

#p

t = #t + ⇢Etmt+1#
p

t+1, w
p

t = wt + ⇢Etmt+1w
p

t+1. (2)

Here ⇢ is the probability that a given firm/worker match continues from one period to the

next. In equation (2), mt+1 is a discount factor which firms and workers view as an exogenous

stochastic process with a well defined steady-state value. We allow mt to be stochastic in

anticipation of the medium-sized DSGE model considered in section 4.

The law of motion for aggregate employment, lt, is given by:

lt = ⇢lt�1 + xtlt�1.

5



The term ⇢lt�1 denotes the number of workers that were attached to firms in period t�1 and

remain attached at the start of period t. The variable xt denotes the hiring rate so that xtlt�1

represents the number of new firm/worker meetings at the start of period t. The number of

workers searching for work at the start of period t is the sum of the number of unemployed

workers in period t� 1, 1� lt�1, plus the number of workers that separate from firms at the

end of t� 1, (1� ⇢)lt�1. Consequently, the probability, ft, that a searching worker meets a

firm is given by:

ft =
xtlt�1

1� ⇢lt�1
.

Free entry by wholesalers implies that, in equilibrium, the expected benefit of a vacancy

equals the cost:

Qt(Jt � t) = st. (3)

Let Vt denote the value to a worker of being matched with a firm. We write Vt as the sum of

the expected present discounted value of wages earned while the firm-worker match endures

and the continuation value, At, when the match terminates:

Vt = wp

t + At. (4)

Here

At = (1� ⇢)Etmt+1[ft+1Vt+1 + (1� ft+1)Ut+1] + ⇢Etmt+1At+1 (5)

and

Ut = Dt + Ũt (6)

where Dt denotes unemployment benefits. In addition, Ũt denotes the continuation value of

unemployment:

Ũt⌘Etmt+1[ft+1Vt+1 + (1� ft+1)Ut+1]. (7)

Labor market tightness, �t, is the ratio of aggregate vacancies to the number of workers

searching for work. Assuming a standard constant returns to scale matching function, the
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vacancy filling rate, Qt, and the job finding rate for workers, ft, are related to �t, as follows:

ft = �m�
1��
t

, Qt = �m�
��
t

(8)

where �m > 0, 0 < � < 1 and

�t =
vtlt�1

1� ⇢lt�1
. (9)

Here, vtlt�1 denotes the total number of vacancies posted by firms at the start of period t.

As soon as the lt matches are determined at the start of period t, each worker in lt

engages in bilateral bargaining over the current wage rate, wt, with a wholesaler firm. Each

worker-firm bargaining pair takes the outcome of all other period t bargains as given. In

addition, they take as given the outcome of future wage agreements as long as the worker

and firm remain matched. Because bargaining in period t applies only to the current wage

rate, we refer to it as period-by-period bargaining. The bargaining problem of all worker-firm

pairs is the same, regardless of how long they have been matched.5

In the basic search and matching model, the match surplus Jt+Vt�Ut is split between

a matched firm and worker according to Nash bargaining. The Nash-sharing rule is given

by:

Jt =
1� ⌘

⌘
(Vt � Ut) (10)

where ⌘ is the share of total surplus going to the worker.

Following Hall and Milgrom (2008) and CET, we also consider a version of the model

in which real wages are determined by alternating o↵er bargaining (AOB). We suppose that

bargaining proceeds across M sub-periods within the period, where M is even.6The firm

5This result follows from our assumptions that hiring costs, i.e. st and t, are sunk when bargaining
occurs and the expected duration of a match is independent of how long a match has already been in place.

6 Our model di↵ers from Hall and Milgrom’s in two ways. First, they assume alternating o↵ers are made
in successive periods, t, t + 1, etc., and can potentially continue indefinitely. With this assumption, they
must specify the time period of the model to be shorter than the quarterly or monthly rate over which many
macroeconomic variables are measured. Our approach, which assumes that bargaining proceeds within a
period, means that when we use standard time series estimation methods which use quarterly data, as in
CET, we can avoid having to explicitly take into account temporal aggregation e↵ects. Second, we assume
that a worker can go from one job to another without passing through unemployment.
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makes a wage o↵er at the start of the first sub-period. It also makes an o↵er at the start of

a subsequent odd sub-period in the event that all previous o↵ers have been rejected. The

cost to a firm of making an o↵er is �t. Similarly, the worker makes a wage o↵er at the start

of an even sub-period in case all previous o↵ers have been rejected. The worker makes the

last o↵er, which is take-it-or-leave-it. In sub-periods j = 1, ...,M � 1, the recipient of an

o↵er has the option to accept or reject it. If the o↵er is rejected, the recipient may declare

an end to the negotiations or she may plan to make a countero↵er at the start of the next

sub-period. In the latter case, with probability � bargaining breaks down.

As shown in CET, the solution to the AOB problem is given by:

wp

t =
1

↵1 + ↵2
(↵1#

p

t + ↵2(Ut � At) + ↵3�t � ↵4(#t �Dt)) . (11)

where ↵1 = 1 � � + (1 � �)M , ↵2 = 1 � (1 � �)M , ↵3 = ↵2(1 � �)/� � ↵1 and ↵4 =

(1� �)(↵2/M)/(2� �) + 1�↵2. Relations (1), (4) and (11) can be combined and written in

the form of the AOB-sharing rule:

Jt = �1(Vt � Ut)� �2�t + �3(#t �Dt) (12)

with �i = ↵i+1/↵1, for i = 1, 2, 3. The Nash-sharing rule can be viewed as a special case of

the AOB-sharing rule, in which �1 = (1� ⌘)/⌘ and �2 = �3 = 0.

We use (2) to solve for the real wage: wt = wp

t�⇢Etmt+1w
p

t+1. In principle wp

t is consistent

with a wide variety of wage payments over the periods in which the worker and firm remain

matched. We resolve this potential non-uniqueness in wt by assuming that each period’s

wage rate is the same time-invariant function of variables that are exogenous to the worker

and firm.
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3 Steady-State Analysis of Wage Inertia and Labor

Market Volatility

This section analyzes the role of wage inertia in generating labor market volatility using the

type of comparative steady-state methods commonly used in the literature. We consider

three models of wage determination: Nash bargaining, AOB, and sticky wages. In the latter

case, w is simply a constant, w̃, like in Hall (2005).

The analysis in this section focuses on the elasticity, ⌘�,#, of market tightness (�) with

respect to the marginal revenue product of labor (#). The first subsection develops a de-

composition of this elasticity that highlights the role of wage inertia. The second subsection

studies the fundamental surplus fraction decomposition developed in LS. In the examples

studied in LS, that decomposition can be used in a simple and transparent way to determine

the impact on ⌘�,# of a change in the value of a model parameter. We show that for the

Nash bargaining case with a positive fixed cost, , the LS decomposition is not su�cient

to determine the impact of a parameter change on ⌘�,#. In that case it is necessary to also

recompute the steady state finding rate, using the relevant steady state equilibrium condi-

tions. The same observations hold for the AOB case when  � 0. The third subsection

below presents a quantitative analysis of the decompositions considered in this section. The

version of the AOB model estimated in CET has an elasticity, ⌘�,#, that is about six times

bigger than the value implied by a standard version of the Nash bargaining model. We show

that the inverse fundamental surplus fraction plays only a small role in this substantial in-

crease. Using our wage interia-based decomposition, we show that wage inertia is the main

reason for the jump in ⌘�,#. The fourth subsection extends the analysis to disturbances in

the discount rate. Hall (2017) has recently argued that discount rate shocks are important

in labor market fluctuations, and we show that wage inertia is important for amplifying the

e↵ects of those shocks.
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3.1 A Wage-Inertia Decomposition

The free-entry condition and the bargaining equation play a central role in the steady-state

equilibrium conditions of the model. Equation (8) implies that in steady state, the vacancy

filling probability, Q, and market tightness, �, are related by:

Q = �m�
��,

where a time series variable without a time index denotes its steady-state value. The steady-

state version of the free entry condition, (3) is:

s

�m
�� +  =

#� w

1� ⇢�
. (13)

Here, � is the steady-state value of the representative household’s discount factor, mt. The

right hand side of equation (13) corresponds to the steady-state expected profits from a filled

vacancy.

Denote the elasticity of market tightness with respect to the marginal revenue product

#, by ⌘�,# :

⌘�,# ⌘ d log�

d log #
. (14)

Shimer (2005) and much of the related literature use ⌘�,# as a measure of the labor market

volatility implied by a model.

Totally di↵erentiating (13) and rewriting implies:

⌘�,# =
1

�

#

#� w �  (1� ⇢�)| {z }
1/(Profit rate)


1� dw

d#

�

| {z }
Wage inertia term

. (15)

Expression (15) decomposes labor market volatility ⌘�,# into a term that reflects the inverse

profit rate and a term that is a function of dw/d#. Note that equation (15) uses only the free

entry condition, so that it holds regardless of how wages are determined. Other things equal,
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a wage determination mechanism that implies greater wage inertia, i.e. a smaller value of

dw/d#, implies a larger value of ⌘�,#. The intuition is simple. When the wage rate is more

inertial, firms receive a greater share of the rent associated with vacancies after a rise in the

marginal revenue product (or technology) #. So the more inertial is the wage, the greater is

the incentive of the firm to post vacancies in the wake of an increase in #. This increased

incentive leads to a greater increase in market tightness and a larger drop in unemployment

after an increase in #.

Expression (15) makes clear that some wage inertia is necessary for the model to generate

a larger value of ⌘�,#. If, across steady states, a change in # is fully reflected in the real wage

rate (dw/d# = 1), then ⌘�,# must be zero.

3.2 Fundamental Surplus-Based Decompositions

We now study the steady-state decomposition of ⌘�,# developed in LS. This decomposition

is based on what they call the fundamental surplus fraction, which we denote by FS. In

contrast to our decomposition, an FS�based decomposition is derived using both the free

entry condition and the details of the wage-setting mechanism. That decomposition takes

the following form,

⌘�,# =
⌥

FS
,

where ⌥ > 0. We show that this type of decomposition is in general not unique. In what fol-

lows we discuss two such decompositions for each of the Nash and AOB models. In the first

decomposition FS is an analytic function of model structural parameters. In contrast, ⌥ gen-

erally involves steady-state variables. We refer to this type of decomposition as a structural

decomposition. With the possible exception of the section on the financial accelerator model,

LS focus on such decompositions. In the second decomposition FS depends on steady-state

variables. We refer to this type of decomposition as a non-structural decomposition.
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3.2.1 Nash Bargaining

In Appendix A.1.1 we derive the following structural decomposition for ⌘�,# in the Nash

bargaining model,

⌘Nash

�,# =
⌥Nash

FSNash
(16)

where

⌥Nash =

1� ⇢� + ⌘⇢�f

✓
1 + �m

s

⇣
f

�m

⌘ ��
1��

◆

� (1� ⇢�) + ⌘⇢�f

✓
1 + (1� �) �m

s

⇣
f

�m

⌘ ��
1��

◆ , ⌧Nash


=

1� ⇢�

1� ⌘
, (17)

FSNash =
#�D � ⌧Nash




#
. (18)

This decomposition e↵ectively coincides with the decomposition reported in section A.5

of the LS online technical appendix.7 There is a slight di↵erence between our structural

decomposition and the one in LS, reflecting timing di↵erences in job-to-job transitions. These

timing di↵erences do not a↵ect the substance of our analysis.8

A distinguishing feature of FS in equation (16) is that it does not involve endogenous

variables like f . In contrast, ⌥Nash involves f .

In Appendix A.1.2 we derive a non-structural decomposition for ⌘�,#. It takes the form

of (16) with FSNash given in (18). The di↵erence is that ⌥Nash and ⌧Nash


in (17) are then

given by:

⌥Nash =
1� ⇢� + ⌘⇢�f

� (1� ⇢�) + ⌘⇢�f
, ⌧Nash


=

(1� �⇢ (1� f⌘))2

(1� ⌘) (1� �⇢ (1� f⌘/�))
. (19)

Notice that ⌧Nash


and, hence, FSNash, depend on the steady-state value of f . In the special

7The equivalence between the two decompositions is easier to see using the fact that Q = �m

⇣
ft
�m

⌘ 1
1��

.
8LS use the same timing assumptions adopted by Hall and Milgrom (see footnote 6). In their main text

LS assume, as in Mortensen and Nagypal (2007), that  is paid after bargaining has occurred. In section
A.5 of their online technical appendix, LS assume, as in Pissarides (2009), that  is paid before workers and
firms bargain. We adopt the latter assumption.
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case,  = 0, the structural and non-structural decompositions coincide.9

We now show that when  6= 0 there is an important di↵erence between the structural

and non-structural decompositions in terms of their usefulness for analyzing how changes in

parameter values a↵ect ⌘�,#. To understand the di↵erence, it is useful to distinguish between

two types of model parameters. First, some parameters enter the decomposition explicitly.

Second, there may be other parameters that only enter via their impact f . In the case of

our non-structural decomposition there is such a background parameter, �m. In the presence

of such a background parameter, the non-structural decomposition provides a simple and

transparent way to perform a particular experiment: evaluate the impact on ⌘�,# of a change

in a model parameter holding f and the non-background parameters constant. This type

of experiment is of interest to the extent that the analyst has flat priors about the value of

�m.10 In the case of the structural decomposition stressed in LS, when  6= 0 there are no

background parameters that can implicitly be adjusted to keep f fixed. As a consequence

the formula loses its transparency and simplicity. This loss is easy to see for the experiment

described above: the analyst is now forced to solve a non-trivial problem to determine the

required change in �m.

3.2.2 Alternating O↵er Bargaining

We now consider the alternating o↵er bargaining case. In Appendix A.2.1 we derive the

following structural decomposition for ⌘�,#,

⌘AOB

�,# =
⌥AOB

FSAOB
(20)

9In this special case the two formulas also coincide with the one studied in HM.
10The proposed change in the structural parameter must be su�ciently small so that it does not require

inadmissible values for the background parameters, e.g., �m < 0.
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where

⌥AOB =
�1 + (1� ⇢�) �3 + ⇢��3f

�1 + (1� ⇢�) �3
⌅ (21)

⌅ =

(1� ⇢�) (1 + �1) + ⇢�f

✓
1 + (+ �2� � �3 (#�D)) �m

s

⇣
f

�m

⌘ ��
1��

◆

� (1� ⇢�) (1 + �1) + ⇢�f

✓
1 + (1� �) (+ �2� � �3(#�D)) �m

s

⇣
f

�m

⌘ ��
1��

◆(22)

⌧AOB


=

(1 + �1) (1� ⇢�)

�1 + (1� ⇢�) �3
, ⌧AOB

�
=

�2 (1� ⇢�)

�1 + (1� ⇢�) �3
(23)

FSAOB =
#�D � ⌧AOB


� ⌧AOB

�
�

#
. (24)

The coe�cients �1, �2 and �3 are defined after equation (11). Notice that FSAOB is not a

function of endogenous variables like f .

In Appendix A.2.2 we derive a non-structural decomposition for ⌘�,# in which:

⌥AOB =
�1 + �3 (1� ⇢� (1� f))

 a
,

where

 ⌘ ⇢�f + � (1� ⇢�) (1 + �1)

⇢�f + (1� ⇢�) (1 + �1)
, a = �1 +

✓
1� �⇢ (1� f) +

⇢�f (� � 1)

 

◆
�3.

Also,

⌧AOB


=

(1 + �1) (1� ⇢�) + �⇢f + ⇢�f(��1)
 

a
, ⌧AOB

�
=

h
1� �⇢ (1� f) + ⇢�f(��1)

 

i
�2

a
. (25)

Here �1, �2 and �3 are the same as above. Equations (20) and (24) continue to hold. Note

that f now appears in FSAOB via ⌧AOB


and ⌧AOB

�
(see (25)).

Recall that in discussing Nash bargaining, we discussed a particular experiment in which

the analyst wants to study the e↵ect on ⌘Nash

�,# of a structural parameter, keeping f fixed.

We argued that it is easy to do so using the non-structural decomposition and is more com-
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plicated using the structural decomposition. The same result holds in the case of AOB bar-

gaining. One interesting di↵erence is that in the Nash case the structural and non-structural

decompositions are the same when  = 0. In the AOB case, the two decompositions are

di↵erent, even when  = 0.

3.2.3 Sticky Wages

When wages are constant (dw/d# = 0) (15) implies:

⌘Sticky�,# = ⌥Sticky
#

#� w̃ � (1� ⇢�)
, ⌥Sticky = 1/�.

Here, w̃ denotes the constant wage. LS interpret this expression as an FS�based decompo-

sition.

3.2.4 Using FS�based Decompositions for Cross-model Comparisons

The discussion above focused on the use of the FS�based decomposition to analyze how,

within a given model, changes in parameter values a↵ect ⌘�,#. LS also argue that FS�based

decompositions are useful for understanding why di↵erent models imply di↵erent values for

⌘�,#.

We now briefly summarize their argument. LS consider structural, FS�based decom-

positions for various models, including a version of the AOB model. For those models, ⌥ has

an upper bound of roughly 1/�. The consensus view in the literature is that �, the marginal

product of unemployment in the matching function, is roughly 1/2. So, ⌥ has an upper

bound of about 2. Shimer argues that a reasonable data-based target for ⌘�,# is about 20.11

These observations lead LS to conclude that researchers should look for models in which FS

is small.

Critically, the version of the AOB model that LS consider di↵ers from ours along three

important dimensions. First, the time needed to make an o↵er or a countero↵er is the same as

11Mortensen and Nagypál (2007) and Pissarides (2009) argue that a better empirical estimate of the target
is 12, also a large number.
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the time needed to produce the good. Second, the bargaining process can in principle go on

forever. Third, to solve their version of the AOB model, LS adopt a particular approximating

assumption: the probability that a job is destroyed is the same as the probability, �, that

bargaining breaks down. This assumption has the important consequence that workers do

not consider the value of their outside option when they decide whether or not to accept a

wage o↵er from a firm.12

Ljungqvist and Sargent (forthcoming) consider our version of the AOB model. However,

in solving and analyzing the model they adopt the approximating assumption just discussed.

Recall that in our AOB model jobs can be destroyed at the beginning of a period, but not

within a period. So the approximating assumption requires � ! 0. As above, this assumption

leads to the extreme implication that workers do not consider the value of their outside option

when bargaining.

To see why setting � to zero in our model has this extreme implication, it is useful to

understand how a firm chooses its wage o↵er in bargaining round, j. Let wj,t denote a firm’s

wage o↵er in bargaining round j of period t, where j is an odd number between 1 and M�1.

The firm wants to set wj,t as low as possible, subject to not being rejected by the worker.

So, wj,t has the property that workers are indi↵erent between accepting and rejecting the

o↵er:

wj,t + w̃p

t + At = �


M � j + 1

M
D + Ũt

�
+ (1� �)


D

M
+ wj+1,t + w̃p

t + At

�
. (26)

The term, wj,t + w̃p

t , represents the present discounted value of the wages associated with

accepting the firm’s o↵er, wj,t. So, the left-hand side of (26) represents the value to the worker

of accepting the firm’s o↵er. Under our period-by-period bargaining assumption, the firm

takes w̃p

t as given. The right-hand side of the indi↵erence condition is the value to the worker

of rejecting an o↵er and, with probability 1� �, making a countero↵er in bargaining round,

j+1. The firm takes wj+1,t as given and understands that if its current o↵er is rejected, then

12LS also assume  = 0 when they work with the AOB model. But, this assumption does not a↵ect our
qualitative results for that model.
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wj+1,t will be accepted unless bargaining breaks down. The first term on the right-hand side

of (26) is � times the sum of two terms: (i) the pro-rata unemployment benefits received

by the worker in the event that bargaining breaks down; and (ii) the continuation value of

being unemployed (see (7)). The second term on the right-hand side is 1� � times the sum

of one sub-period’s unemployment benefit plus the value to the worker of an accepted o↵er.

When � = 0 the worker indi↵erence condition, (26) reduces to

wj,t =
D

M
+ wj+1,t.

So, under Ljungqvist and Sargent (forthcoming)’s approximating assumption, workers in

our AOB model do not consider the value of their outside option, Ut, when considering a

particular wage o↵er, wj,t.

In the special case of � = 0, the structural and non-structural FS�based decompositions

coincide and are given by

⌘�,# =
1

�

#

#�D � (M � 2) � � 2
. (27)

Here, ⌥AOB = 1/�. So, our AOB model with the approximating assumption, � = 0, fits the

pattern of the models considered by LS in which ⌥ is bounded above by roughly 2.13

While the arguments associated with the LS approximation assumption are elegant, we

find the models above that embed this assumption unappealing. First, the implication that

workers do not consider their outside option when considering a wage o↵er seems implausible

on a priori grounds. Second, CET find that � = 0 is empirically implausible. In particular,

the 95 percent probability interval associated with CET’s estimate of � easily excludes a

value of zero.14 Third, CET report that the mode of the posterior distribution of � implies

13It is easily verified that � ! 0 implies �1 ! 0,�2 ! M�2
2 ,�3 ! 1

2 . Substitute out for J and Q in (3)
using (12) and (8), respectively. Then, take the limit, � ! 0. Finally, totally di↵erentiate (3) with respect
to � and # and rearrange, to obtain (27).

14CET estimate their model using Bayesian methods. Notably, the lower bound of the posterior probability
interval is substantially higher than the lower bound of the prior probability interval for that parameter. So,
the data push the distribution of � away from zero. See Table (4).
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that the total job destruction probability, conditional on no resolution to bargaining over

a quarter, is meaningfully higher than zero, at roughly 10 percent.15 Fourth, formula (27),

which corresponds to the case � = 0, provides a strikingly bad approximation to the value of

⌘�,# implied by CET’s estimated AOB model. The value of ⌘�,# implied by the mode of the

posterior distribution reported by CET is 24.1.16 In sharp contrast, equation (27) implies a

negative value, �28.14, for ⌘�,#.

3.3 Quantitative Analysis

In this section we provide a quantitative analysis of the role played by the fundamental

surplus and wage inertia on labor market volatility in di↵erent models.

3.3.1 FS�based Decompositions

We begin by discussing the implications of CET’s AOB model for ⌘AOB

�,# . Row one of Table 2

displays components of the structural FS�based decomposition of ⌘AOB

�,# as well as the wage-

inertia decomposition. These are evaluated at the mode of the model parameters’ posterior

distribution and steady states (see Tables 1 and 4). Notice that ⌘AOB

�,# is roughly 24, so

the model is successful in terms of generating a large elasticity of labor market tightness

(and unemployment) to a change in the marginal revenue product of labor. The key factor

underlying the model’s success in generating a large value of ⌘AOB

�,# is the high value of ⌥AOB,

7.08. The latter exceeds by a factor 3 the upper bound of ⌥AOB emphasized by LS for

the models that they consider. The inverse fundamental surplus fraction, 1/FS, plays a

smaller role than ⌥AOB in generating the large value of ⌘AOB

�,# . This finding provides a stark

counterexample to the claim in LS that a small surplus fraction is crucial for a model to

generate empirically plausible volatility in labor market variables.

Row four of Table 2 displays results for the estimated Nash model (for parameter and

15Table (4) reports that the mode of � is 0.0019. CET set M = 60, so
PM

j=1 (1� �)j�1 � = 1� (1� �)M =
0.11. We thank Lars Ljungqvist for suggesting this way of interpreting the magnitude of �.

16The number is generated using equation (20).
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Table 1: Steady States and Implied Parameters at Estimated Posterior Mode in Alternating
O↵er Bargaining and Nash Bargaining Models.

Variable
AlternatingO↵er

Bargaining
Nash

Bargaining
Description

# 0.910 0.844 Marginal revenue product
w 0.904 0.837 Realwage
D 0.333 0.734 Unemployment benefits
 0.057 0.072 Fixed hiring cost
� 0.552 0.542 Matching function parameter
⇢ 0.900 0.900 Job survival probability
� 0.9968 0.9968 Discount factor
f 0.632 0.632 Job finding rate
⌘ - 0.674 Worker bargaining power
� 0.002 - Prob. of bargaining breakdown
� 0.009 - Firm countero↵er costs
Q 0.7 0.7 Vacancy filling probability
M 60 - Max. bargaining rounds

Notes: For model specifications where particular parameter values are not relevant, the
entries in this table are blank. Further calibrated and estimated model parameters are
provided in Tables 3 and 4. Source: CET.

steady state values see Tables 1 and 4). The estimated Nash model also generates a value of

⌘�,# in excess of 20. But, it does so with a low ⌥Nash and a high 1/FSNash. Taken together,

the Nash and AOB model results imply that FS is not a reliable guide to understanding

whether a model generates a high value of ⌘�,#.

We now consider the role of the FS�based decomposition in cross-model comparisons

of ⌘�,#. As CET point out, the estimated Nash model is able to generate a high elasticity

because the estimated value of unemployment benefits D, reported in Table 1, is very high

(88% of the steady-state wage). The last row of Table 2 presents results for what we call the

restricted Nash model. This is a version of the estimated Nash model in which D is a more

reasonable 37% of the steady-state wage, a replacement ratio that corresponds to the one in

the estimated AOB model.17 Notice that ⌘�,# is only about 4 in the restricted Nash model,

as opposed to 24 in the estimated AOB model. The lion’s share of this six-fold increase in

17We adjusted ⌘ in the restricted Nash model to keep the steady-state job finding rate as in the estimated
Nash model.
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the elasticity is due to the higher value of ⌥ in the AOB model. So, the inverse surplus

fraction is not a good guide for understanding why one model generates much higher labor

market volatility than another.

3.3.2 Wage Inertia

We now turn to the role of wage inertia in generating high values of ⌘�,#. Consider first the

estimated AOB and Nash models. According to Table 2, wage inertia fully accounts for the

fact that ⌘AOB

�,# is larger than ⌘Nash

�,# . The wage inertia e↵ect more than makes up for the fact

that the inverse profit rate is lower in the AOB model than in the Nash model.

Although the wage inertia component may appear to be numerically small in the esti-

mated AOB model, it is the percent change in that term that matters for ⌘AOB

�,# when wage

inertia changes. This percent change can be large even if the level seems low.

Next, we compare the estimated and restricted Nash models. By construction, the

inverse profit rate is the same in these two models. But, ⌘�,# is much larger in the estimated

Nash model. All of the di↵erence is due to the rise in wage inertia as we move from the

restricted to the estimated Nash model.

We now consider our two sticky wage models. In the first one we fix the wage rate at

its steady state value in the estimated AOB model. The non-bargaining parameters are the

same as in the estimated AOB model. The results are reported in row two of Table 2. Notice

that ⌘�,# is now 3837 – orders of magnitude larger than in the estimated AOB model. As

one might anticipate from LS, the inverse of the fundamental surplus increases dramatically

compared to the estimated AOB model. But the interesting economic question is why? By

construction the profit rate is the same in this model and in the estimated AOB model. So,

all of the change in the fundamental surplus is due to the wage inertia component, which is

equal to 1 by construction in the sticky wage model.

Results for the second sticky wage model appear in the third row of Table 2. That

model has the same parameters and steady state wage as the estimated Nash model. Notice

that the results of the two sticky wage models are similar.
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Table 2: Numerical Expressions for the Elasticity of Labor Market Tightness with Respect
to Technology and Decomposition of Fundamental Surplus into Profit Rate and Wage In-
ertia in Estimated Nash, Estimated Alternating O↵er Bargaining (AOB), Sticky Wage and
Restricted Nash Models.

Elasticity= ⌥ ⇥ 1/Fundamental = 1
�
⇥ 1/Profit⇥ Wage Wage

⌘�,# Surplus Rate Inertia
Term

Alternating O↵er Bargaining (AOB)
24.1 7.08 3.41 1.81 2120.7 0.0063 0.90

Sticky Wage
AOB Params. 3837.4 1.81 2120.7 1.81 2120.7 1 0.90
Nash Params. 7333.1 1.84 3985.4 1.84 3985.4 1 0.84

Nash Bargaining
20.4 2.11 9.65 1.84 3985.4 0.0028 0.84

Restricted Nash
3.97 2.11 1.88 1.84 3985.4 0.0005 0.84

Notes: The sticky wage model is evaluated using parameters of the estimated alternating
o↵er bargaining (AOB) model and estimated Nash model. The restricted Nash model is the
estimated Nash model with the estimated replacement rate of 88% set to 37%.
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Our results may appear to contradict some claims in the literature, according to which

wage inertia has at best only a marginal impact on labor market volatility. For example

HM reach this conclusion using the Nash model. To make wages inertial in that model HM

reduce ⌘ to zero. Recall that ⌘ governs the bargaining power of workers. Reducing ⌘ drives

the wage down to the workers’ outside option, D, so that dw/d# = 0. When HM induce

wage inertia in this way, ⌘�,# rises by only a negligible amount.

HM’s finding depends on their assumption that wages are determined by Nash bargain-

ing and their way of inducing wage inertia. To see this, recall our decomposition of ⌘�,#, given

by equation (15). That decomposition is derived using only the firms’ free entry condition.

It holds regardless of how wages are determined. Equation (15) implies that, other things

equal, wage inertia drives ⌘�,# up. But other things aren’t equal. HM induce wage rigidity

in a way that drives the level of the wage down. According to (15), this level e↵ect drives

⌘�,# down. The net e↵ect of these o↵setting forces is the negligible rise in ⌘�,# that HM find.

Clearly HM’s results do not imply that other ways of inducing wage inertia in other models

of wage determination will have small e↵ects on ⌘�,#.

3.4 Alternative Driving Forces: Discount Rate Shocks

A variety of authors argue that variations in discount rates can be an important source of

variations in unemployment. Hall (2017) models these variations as exogenous shocks to

the stochastic discount factor in a search and matching model. A comparative steady-state

analysis implies that wage inertia is a necessary condition for variations in the discount factor

to induce movements in labor market tightness and unemployment.

For simplicity, we assume that the fixed hiring cost  is equal to zero. In steady state

the value of a worker to a firm is equal to

J = #� w + �⇢J. (28)
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In addition, the free entry condition is given by:

s

�m
�� = J.

Substituting out J , totally di↵erentiating and re-arranging yields the elasticity of labor

market tightness with respect to the discount rate, ⌘�,�:

⌘�,� =
d�
�
d�

�

=
�

�#

#

#� w| {z }
1/(Profit rate)


⇢J � dw

d�

�

| {z }
Wage inertia term

. (29)

To interpret this expression suppose that the steady-state value of # is una↵ected by the

value of �. This is the case in standard search and matching models. If dw

d�
= ⇢J , then the

right hand side of equation (28) is una↵ected by a change in �. In equation (28), the term

�⇢J is the discounted expected future value of a worker to the firm. If the discount rate

change induces a change in w that is exactly equal to �⇢J , then the current value of a worker

to the firm, J, is unchanged. Then the firm has no incentive to post more vacancies and the

unemployment rate is not a↵ected by a change in �. So, equation (29) shows that for ⌘�,�

to be positive, wages must be inertial in the sense that dw

d�
< ⇢J . Of course the actual value

of dw

d�
is determined by the wage determination mechanism in the model, e.g. sticky wages,

Nash bargaining or AOB.

4 Dynamic Analysis

In this section we consider the dynamic impact of wage inertia in generating labor market

volatility in search and matching models. We make two key points. First, comparative

steady-state analysis can be deeply misleading about the dynamic behavior of these mod-

els. Models which have identical fundamental surpluses can exhibit very di↵erent dynamic

response functions. In these cases, the fundamental surplus is uninformative about the

question of interest. Second, even conditioning on a low inverse fundamental surplus, wage

23



inertia greatly magnifies labor market fluctuations in empirically plausible versions of search

and matching models. In the first subsection we consider a simple dynamic example. In

the second subsection, we analyze the impact of wage inertia in estimated DSGE models

conditional on a given value of the fundamental surplus.

4.1 Wage Inertia: A Simple Dynamic Example

In this section we consider the role of wage inertia using a simple dynamic example. Suppose

that the equilibrium wage rate is given by the following simple inertial wage rule:

wt = �#t � �(1� �) (#t � #) (30)

where � > 0 and D  wt  #t. In addition, assume that 0 < �(1 � �) < �. The latter

assumption implies that a rise in #t generates a positive response in wt. The dynamics of wt

depend on � and �. Note that � has no impact on the steady-state value of wt. We can think

of this wage rule as being a variant of the Hall (2005) wage norm, as long as D  wt  #t so

that the firm and worker each have an incentive to produce. A larger value of � means more

inertia in wt: a given shock to #t is associated with a smaller change in wt. For simplicity,

in this subsection, we abstract from the hiring cost, i.e.  = 0.

We seek to evaluate the generic formula for the steady-state elasticity of labor market

tightness with respect to technology, i.e. equation (15), for the simple wage rule (30).

Note that in steady state dw

d#
= �. Inserting the latter result together with the steady-state

version of equation (30) into equation (15) yields the following expression for the steady-state

elasticity:

⌘steady�,# =
1

�
.

Note that the steady-state elasticity is independent of the fundamental surplus. Moreover,

the elasticity is identical to one implied by the Nash bargaining model with ⌘ = D = 0.

To derive the actual dynamics of the simple model, we must take a stand on the law of
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motion for #t. To this end, we assume:

#t = (1� v)#+ v#t�1 + "t. (31)

where "t is uncorrelated over time and uncorrelated with #t�u for u > 0.

In Appendix B we show that the equilibrium solution for the value of a worker to the

firm, Jt, is given by:

Jt = �0 + �1#t (32)

where

�0 = ��(1� �)#� �⇢�1(1� v)#

1� �⇢
and �1 =

(1� �) (1 + �) .

1� �⇢v

Combining the free-entry condition (13) with the solution for Jt we obtain:

s

�m
��
t
= Jt = �0 + �1#t.

Totally di↵erentiating and rearranging yields the following expression for the dynamic elas-

ticity of labor market tightness with respect to the marginal revenue product:

⌘dynamic

�,# ⌘
d�t
�

d#t
#

=
1

�

(1� �) (1 + �)

(1� �) (1 + �)� 1��⇢v
1��⇢

⇣
�(1� �)� �⇢(1��)(1+�)(1�v)

1��⇢v

⌘ . (33)

Consider v close to unity, so that the marginal revenue product of a worker is close to a

random walk. The limiting case implies that a shock to #t is permanent which mimics the

permanent shift in technology considered in the comparative steady-state analyses in section

3. For v ! 1, the dynamic elasticity (equation 33) becomes:

⌘dynamic

�,# ' 1

�
(1 + �) = ⌘steady�,# (1 + �) .

Note that if � > 0 then ⌘dynamic

�,# > ⌘steady�,# . The restriction on the parameters � > �(1 � �)

discussed above implies that � > �

1+� or � < �

(1��) . By making � su�ciently large, i.e. by
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making wages su�ciently inertial, ⌘dynamic

�,# can be made arbitrarily large, even though ⌘steady�,#

is always simply equal to 1/�. That is, the more inertia there is in wages, the larger is

the impact of a shock to #t on labor market tightness and unemployment. Clearly, in this

example comparative steady-state analysis is very misleading about the dynamic e↵ects of a

persistent shock to technology. Also notice that the parameter � which plays a central role

in ⌘dynamic

�,# is completely absent from the fundamental surplus formula. So the latter is not

helpful for anticipating the results of a dynamic analysis of a shock to the marginal revenue

product of labor.

4.2 Wage Inertia in an Estimated Dynamic Search and Matching

Model

In this subsection we consider the model of CET who embed the labor market model of

subsection 2 into a medium-sized DSGE NK model.

4.2.1 Households

The economy is populated by a large number of identical households. The representative

household has a unit measure of workers which it supplies inelastically to the labor market.

We denote the fraction of employed workers in the representative household in period t

by lt. An employed worker earns the nominal wage rate, Wt and an unemployed worker

receives Dt goods in government-provided unemployment compensation. Each worker has

the same concave preferences over consumption. Households provide perfect consumption

insurance to their members, so that each worker receives the same level of consumption,

Ct. The preferences of the representative household are the equally-weighted average of the

preferences of its workers:

E0

1X

t=0

�tln(Ct � bCt�1)
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where the parameter 0 b < 1 controls the degree of habit formation in preferences. The

representative household’s budget constraint is:

PtCt + PI,tIt +Bt+1  (RK,tu
K

t
� a(uK

t
)PI,t)Kt + (1� lt)PtDt +Wtlt +Rt�1Bt � Tt. (34)

Here, Tt denotes lump sum taxes net of profits, Pt denotes the price of consumption goods,

PI,t denotes the price of investment goods, Bt+1 denotes one period risk-free bonds purchased

in period t with gross return, Rt and It denotes the quantity of investment goods. The object

RK,t denotes the rental rate of capital services, Kt denotes the household’s beginning of

period t stock of capital, a(uK

t
) denotes the cost, in units of investment goods, of the capital

utilization rate, uK

t
and uK

t
Kt denotes the household’s period t supply of capital services.

We discuss details about the capital utilization cost function in subsection 4.2.4. All prices,

taxes and profits in equation (34) are in nominal terms. The representative household’s stock

of capital evolves as follows:

Kt+1 = (1� �K)Kt + (1� S(It/It�1)) It

where �K denotes the depreciation rate and S(It/It�1) are convex investment adjustment

costs. We discuss details about the latter in subsection 4.2.4.

4.2.2 Final Goods Producers

A final homogeneous good, Yt, is produced by competitive and identical firms using the

following technology:

Yt =

✓Z 1

0

(Yj,t)
1
�dj

◆�

(35)

where � > 1. The representative firm chooses specialized inputs, Yj,t, to maximize profits:

PtYt �
Z 1

0

Pj,tYj,tdj,
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subject to the production function (35). Output, Yt can be used to produce either consump-

tion goods or investment goods. The production of the latter uses a linear technology in

which one unit of Yt is transformed into  t units of It.

4.2.3 Retailers and Wholesalers

The jth input good in (35) is produced by a retailer, with production function:

Yj,t = k↵
j,t
(zthj,t)

1�↵ � 't.

Here kj,t denotes the total amount of capital services purchased by firm j and 't represents

a fixed cost of production which evolves according to an exogenous stochastic process that is

consistent with balanced growth. We discuss details about the latter in subsection 4.2.4. The

variable zt is a technology shock and hj,t is the quantity of an intermediate good purchased

by the jth retailer. This good is purchased in competitive markets at the price P h

t
from a

wholesaler discussed in subsection 2. To produce in period t, the retailer must borrow P h

t
hj,t

at the gross nominal interest rate, Rt. The retailer repays the loan at the end of period

t after receiving sales revenues. The jth retailer sets its price, Pj,t, subject to the demand

curve for its good, and a Calvo sticky price friction. With probability 1� ⇠, the retailer can

re-optimize his price and with probability ⇠, Pj,t = Pj,t�1.18

Wholesaler firms produce the intermediate good using labor which has a fixed marginal

productivity of unity. The real price of the intermediate good is P h

t
/Pt where P h

t
and Pt are

the nominal prices of the intermediate and final good, respectively. Let #t ⌘ P h

t
/Pt which

is the marginal revenue of wholesalers. Then the analysis of the labor market discussed

in sections 2 and 3 obtains directly with the understanding that all of the shocks to the

economy, including monetary policy, impact #t, thereby a↵ecting firms incentives to post

vacancies.
18We assume that producers make their price setting decision before observing the current period realiza-

tion of the monetary policy shock, but after the time t technology shocks.
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4.2.4 Monetary Policy and Functional Forms

We adopt the following specification for monetary policy:

ln(Rt/R) = ⇢Rln(Rt�1/R) + (1� ⇢R)[r⇡ln(⇡t/⇡) + ryln(GDPt/GDP ⇤
t
)] + �R"R,t.

Here, ⇡ denotes the monetary authority’s target inflation rate. The monetary policy shock,

"R,t, has unit variance and zero mean. Also, R is the steady-state value of Rt. The variable,

GDPt, denotes Gross Domestic Product (GDP), which equals Ct + It/ t + Gt and GDP ⇤
t

denotes the value of GDPt along the non-stochastic steady-state growth path. We assume

that the growth rate of neutral technological progress, lnµz,t ⌘ ln(zt/zt�1), is i.i.d. and that

the growth rate of investment-specific technological progress, lnµ ,t ⌘ ln( t/ t�1), follows

a stochastic first order autoregressive process.

The sources of growth in the model are neutral and investment-specific technological

progress because  t and zt grow over time. Let �t =  
(↵/(1�↵))
t zt denote the composite level

of technology. To guarantee balanced growth in the non-stochastic steady state, we require

that each element in ['t, st,t, �t, Gt, Dt] grows at the same rate as �t in steady state. To

this end, we adopt the following specification:

['t, st,t, �t, Gt, Dt]
0
= [', s,, �, G,D]

0
⌦t.

Here, ⌦t is a diagonal matrix with the ith diagonal element, ⌦i

t
, where i 2 ', s,, �, G,D

and ⌦i

t
= �✓i

t�1(⌦
i

t�1)
1�✓i .19

The cost of adjusting investment takes the form:

S(It/It�1) = 0.5(exp[
p
S 00(It/It�1 � µ⇥ µ )] + exp[�

p
S 00(It/It�1 � µ⇥ µ )])� 1.

19With this specification, ⌦i
t/�t�1 converges to a constant in non-stochastic steady state, for each i. When

✓i is close to zero, ⌦i
t is virtually unresponsive in the short-run to an innovation in either of the two technology

shocks, a feature that we find attractive on a priori grounds.
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Here, µ and µ denote the unconditional growth rates of �t and  t. Also, S
00
denotes the

second derivative of S(·), evaluated in steady state. The cost associated with setting capacity

utilization is given by:

a(uK

t
) = �a�b(u

K

t
)2/2 + �b(1� �a)u

K

t
+ �b(�a/2� 1)

where �a and �b are positive scalars. For a given value of �a, we select �b so that the

steady-state value of uK

t
is unity.

Finally, we refer the reader to CET and CET’s technical appendix for the market clearing

conditions, the definition of equilibrium and the set of dynamic and steady-state equilibrium

equations.

4.2.5 The Role of Wage Inertia in the Estimated Model

CET estimate the medium-sized DSGE NK model discussed above for various wage bar-

gaining environments. Their estimation strategy is a Bayesian variant of the strategy in

Christiano, Eichenbaum and Evans (2005) that minimizes the distance between the dynamic

responses to three shocks in the model and the analog objects in the data. The shocks used

by CET include a shock to monetary policy, a neutral technology shock, and an investment-

specific technology shock. The dynamic responses to those shocks are obtained using an

identified VAR for post-war quarterly U.S. times series that include key labor market vari-

ables, see CET for further details.

Here we focus on the versions of the model in which wages are determined by Nash and

AOB bargaining. Table 3 reports the values of parameters that CET set a priori. Table 4

reports the mean and 95 percent probability intervals for the priors and posteriors of the

estimated parameters in the Nash and AOB bargaining models. Table 1 reports the implied

steady states.

Note that the estimated values of the replacement ratio D/w in the Nash and AOB

models are 0.88 and 0.37, respectively. CET argue that the estimated value of the replace-
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Table 3: Non-Estimated Parameters and Calibrated Variables.

Parameter Value Description

Panel A: Parameters

�K 0.025 Depreciation rate of physical capital
� 0.9968 Discount factor
⇢ 0.9 Job survival probability
M 60 Max. bargaining rounds per quarter (AOB)

400ln(µ) 1.7 Annual output per capita growth rate
400ln(µ · µ ) 2.9 Annual investment per capita growth rate

Panel B: Steady State Values

400(⇡ � 1) 2.5 Annual net inflation rate
profits 0 Intermediate goods producers profits

Q 0.7 Vacancy filling rate
u 0.055 Unemployment rate

G/Y 0.2 Government cons. to gross output ratio

Notes: Table based on CET.

ment ratio of 0.88 in the Nash model, i.e. steady-state unemployment benefits amount to

88% percent of the steady-state wage, is strongly at odds with the micro evidence. Given

that in the Nash model, the posterior mode of D/w is in the tail of the prior distribution, the

marginal likelihood of the Nash model is about 14 log points lower than the AOB model. We

also find it useful to consider the restricted Nash model defined in section 3, i.e. we set D/w

to 0.37, keeping all other estimated parameters in the estimated Nash model unchanged.

The solid thin back lines in rows 1 and 2 of Figure 1 display VAR-based estimates of

the dynamic responses of the unemployment rate, the real wage rate and the inflation rate

to a monetary policy shock and a neutral technology shock.20 The grey bands correspond

to 95% confidence intervals. The blue lines correspond to the dynamic response functions of

the Nash model, evaluated at the mode of the parameter estimates. Notice that the model

does a good job of matching the dynamic response of unemployment to both shocks. There

is no Shimer puzzle here.

This result depends critically on the fact that the model does a reasonably good job of

20For brevity and without loss of generality, we exclude the responses to the investment-specific technology
shock.
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Table 4: Priors and Posteriors of Parameters in Estimated Bargaining Models.

Alternating O↵er
Bargaining

Nash
Bargaining

Prior Distribution Posterior Distribution
D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]

Price Setting Parameters

Price Stickiness, ⇠ B,0.68,[0.45 0.84] 0.75,[0.69 0.78] 0.74,[0.69 0.79]
Price Markup,� G,1.19,[1.11 1.31] 1.42,[1.33 1.51] 1.43,[1.35 1.52]

Monetary Authority Parameters

Taylor Rule: Smooth., ⇢R B,0.76,[0.37 0.94] 0.84,[0.81 0.87] 0.84,[0.82 0.87]
Taylor Rule: Inflation, r⇡ G,1.69,[1.42 2.00] 1.38,[1.21 1.65] 1.38,[1.23 1.69]
Taylor Rule: GDP, ry G,0.08,[0.03 0.22] 0.03,[0.01 0.07] 0.04,[0.02 0.08]

Preferences and Technology Parameters

Consumption Habit, b B,0.50,[0.21 0.79] 0.80,[0.78 0.84] 0.81,[0.78 0.84]
Cap. Util. Adj. Cost,�a G,0.32,[0.09 1.23] 0.11,[0.04 0.30] 0.18,[0.05 0.32]
Investment Adj. Cost,S

00 G,7.50,[4.57 12.4] 15.7,[11.0 19.6] 15.2,[10.7 19.0]
Capital Share,↵ B,0.33,[0.28 0.38] 0.26,[0.20 0.27] 0.23,[0.21 0.27]
Technology Di↵usion, ✓ B,0.50,[0.13 0.87] 0.05,[0.02 0.07] 0.03,[0.01 0.05]

Labor Market Parameters

Prob. Barg.Breakup, 100� G,0.18,[0.04 1.53] 0.19,[0.09 0.37] -
Replacement Ratio,D/w B,0.39,[0.21 0.60] 0.37,[0.22 0.63] 0.88,[0.85 0.90]
Hiring Cost/Output, 100⌘h G,0.91,[0.50 1.67] 0.46,[0.24 0.84] 0.64,[0.34 1.07]
Search Cost/Output, 100⌘s G,0.05,[0.01 0.28] 0.03,[0.00 0.12] 0.02,[0.00 0.09]
Match. Fun. Parameter,� B,0.50,[0.31 0.69] 0.55,[0.47 0.61] 0.54,[0.47 0.61]

Exogenous Processes Parameters

Std. Mon. Pol., 400�R G,0.65,[0.56 0.75] 0.63,[0.57 0.70] 0.63,[0.58 0.70]
Std. Neut. Tech., 100�µz G,0.08,[0.03 0.22] 0.16,[0.11 0.19] 0.14,[0.11 0.18]
Std. Inv. Tech., 100� G,0.08,[0.03 0.22] 0.12,[0.08 0.15] 0.11,[0.08 0.16]
AR(1) Invest. Tech., ⇢ B,0.75,[0.53 0.92] 0.72,[0.60 0.85] 0.74,[0.59 0.83]

Memo Item

Log Marginal Likelihood: 286.7 272.9

Notes: Posterior mode and parameter distributions are based on a standard MCMC algo-
rithm with a total of 10 million draws (11 chains, 50 percent of draws used for burn-in, draw
acceptance rates about 0.24). B and G denote beta and gamma distributions, respectively.
Source: CET.
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Figure 1: Impulse Responses in Estimated Nash Model.
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Figure 2: Impulse Responses in Restricted Nash Model.
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matching the inertial response of real wages to the shocks. To substantiate this claim we

consider the following experiment. We impose on the model the assumption that real wages

go up, in period 1, by 50% more than their peak response in the estimated Nash model and

then stay at that level for three consecutive years. After the three years the economy returns

to the wage rule implied by the restricted Nash-sharing rule. The dotted red lines in rows

1 and 2 of Figure 1 display the implied impulse response response functions. The response

functions are calculated using the Fair and Taylor (1983) perfect foresight simulation method

in which households and firms know, at the time of the shock, the assumed wage path in the

experiment, see Christiano, Eichenbaum and Trabandt (2015) for a detailed description.

The key result here is that for both shocks the response of unemployment is much

smaller, in absolute value, than in the estimated model. For the monetary policy shock,

the response is counterfactually small, even taking VAR sampling uncertainty into account:

without wage inertia, there is a Shimer-like puzzle. Note also that by construction the

estimated Nash model and the estimated Nash model with the three-years elevated wage

have the same steady state so the fundamental surplus is exactly the same in both models.

So, the fundamental surplus contains no information about the dynamic responses of the

two economies being compared.

Rows 1 and 2 of Figure 2 reports the results for the restricted Nash model. From the

solid blue lines we see that real wages respond by a counterfactually large amount to both

shocks. Not surprisingly, the response of unemployment in this model is much smaller than

in the estimated Nash model. Again, without wage inertia, there is a Shimer-like puzzle. The

red dashed lines display the impulse response functions if we hold real wages fixed for three

consecutive years and then let wages be determined by the Nash-sharing rule afterwards.

With inertial wages, unemployment now responds by much more. So, wage inertia allows a

Nash model with a low replacement ratio to overcome the Shimer-like puzzle. Note again,

that the two models being compared have identical steady states and fundamental surpluses.

Finally rows 1 and 2 of Figure 3 repeat the experiment presented in Figure 1 for the

estimated AOB model. The results are consistent with those emerging from the estimated
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Figure 3: Impulse Responses in Estimated Alternating O↵er Bargaining (AOB) Model.
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Nash model. Again, wage inertia plays a pivotal role for the model’s ability to account for

the dynamic response of unemployment to shocks. And again the fundamental surplus is

fundamentally uninformative about the model’s dynamic impulse response functions.

The results in this section highlight the potential danger of using comparative steady-

state analyses as a substitute for dynamic analyses. This warning is particularly clear in

the case of monetary policy shocks which have no impact on the steady state. Nevertheless,

di↵erent models of wage determination imply very di↵erent responses of unemployment to a

monetary policy shock.

As we noted in the introduction, there do exist assumptions under which comparative

steady-state analyses do a reasonably good job of mimicking dynamics, i.e. shocks are close

to a random walk and there are no important state variables. These assumptions are not

satisfied in CET. Another recent example of note is the competitive search model developed

in Kehoe et al. (2019) which adopts the specification of preferences developed by Campbell

and Cochrane (1999). That specification generates important additional sources of dynamics

while leaving no trace in steady state. A comparative steady-state analysis sheds no light

on the interesting dynamic properties of their model.

We conclude that one should be skeptical about the use of comparative steady-state

analysis to understand the dynamics of empirically plausible models.

5 Conclusion

Wage inertia is widely recognized as playing an important role in business cycle fluctuations.

An important exception to this view is the search and matching literature where the role of

wage inertia is the subject of an ongoing debate. In this paper we argued that wage inertia

does in fact play a crucial role in allowing variants of standard search and matching models

to account for the large countercyclical response of unemployment to shocks. We made this

argument using comparative steady state and dynamic analyses of estimated DSGE models.

While the former mode of analysis is widely used and can generate useful insights, it can also
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be very misleading in the present context. Specifically, dynamic models with the same steady

state and fundamental surplus can exhibit very di↵erent dynamic responses of unemployment

to shocks. In the models that we investigate, large dynamic responses of unemployment to

shocks always coincide with an inertial response of wages. The basic intuition is that if wages

increase too much after a change in the marginal revenue product of labor, firms have little

incentive to invest in new jobs.
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Appendix

A Steady-State Elasticity Formulae

A.1 Nash Bargaining

In this appendix we derive the structural and non-structural fundamental surplus based

decompositions of ⌘Nash

�,# .

A.1.1 Structural Fundamental Surplus Based Decomposition

Recall the set of equilibrium labor market equations with the Nash-sharing rule:
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t
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= Jt � 

⌘Jt = (1� ⌘)Sw

t

Substitute out for Sw

t
and EtSw

t+1 in the first equation using the last equation. Then add the

first and second equation to get rid of the wage:
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Impose steady state, multiply out the last term on the right hand side, collect terms and

re-arrange:

(1� ⇢�)
s

�m
�� + ⇢�⌘s�+ ⇢�⌘�m�

1�� = (1� ⌘) (#�D)� (1� ⇢�) (36)

Totally di↵erentiating:
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s��
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�
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�
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Rearranging:
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(37)

Rewrite equation (36) as follows:
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�m
�� + ⇢�⌘�+ ⇢�⌘�m�1�� 

s

Substitute for s in the elasticity formula (37) and rearrange:
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Recall that f = �m�1�� and Q = �m��� so that:

⌘Nash

�,# =
1� ⇢� + ⇢�⌘f

�
1 + 

s
Q
�

� (1� �⇢) + ⌘⇢�f
�
1 + (1� �) 

s
Q
� #

#�D � 1�⇢�
1�⌘ 

Defining ⌥Nash and ⌧Nash
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yields:
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where

⌥Nash =
1� ⇢� + ⌘⇢�f

�
1 + Q

s
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� (1� ⇢�) + ⌘⇢�f
�
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
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1� ⌘

which are the expressions for ⌘Nash

�,# , ⌥Nash and ⌧Nash


in the main text. Note that the inverse

fundamental surplus fraction does not contain endogenous variables.

A.1.2 Non-structural Fundamental Surplus Based Decomposition

As discussed in the main text, we derive a non-structural fundamental surplus based decom-

position of ⌘�,# for the Nash model in which the inverse fundamental surplus term involves

the endogenous variable f . Note that the elasticity formula, equation (37), can be written

as:
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Also, equation (36) can be solved for s:
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Substituting for s in the elasticity formula and simplifying yields:
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where
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� (1� ⇢�) + ⌘⇢�f
, ⌧ =

(1� �⇢ (1� f⌘))2

(1� ⌘) (1� �⇢ (1� f⌘/�))

which are the expressions provided in the main text. Notice that ⌧ contains the endogenous

variable f in this alternative expression for the inverse fundamental surplus.
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A.2 Alternating O↵er Bargaining

A.2.1 Structural Decomposition

Recall the set of equilibrium labor market equations with the AOB-sharing rule:
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Add the first and second equation and use the third equation to substitute out Jt and EtJt+1

Sw

t
+

s

�m
��
t
+  = #t �D + ⇢�Et

✓
s

�m
��
t+1 + 

◆
+ ⇢�

�
1� �m�

1��
t+1

�
EtS

w

t+1

s

�m
��
t
+  = �1S

w

t
� �2� + �3(#t �D)

Use the last equation to substitute out for Sw

t
and EtSw

t+1 in the first equation and impose

steady state:

(1 + �1) (1� ⇢�)
s

�m
�� + ⇢�s�+ ⇢��m�

1��+ ⇢��m�
1���2� � ⇢��m�

1���3(#�D)

= (�1 + (1� ⇢�) �3) (#�D)� (1 + �1) (1� ⇢�)� (1� ⇢�) �2� (38)

Totally di↵erentiating, using f = �m�1�� and Q = �m��� and re-arranging gives:

d�
�
d#

#

=
�1 + (1� ⇢�) �3 + ⇢�f�3⇥

� (1� ⇢�) (1 + �1) + ⇢�f + (1� �) ⇢�fQ

s
+ (1� �) ⇢�f�2�

Q

s
� (1� �) ⇢�f�3(#�D)Q

s

⇤
s

Q

#

Rewrite equation (38):

s

Q
=

(�1 + (1� ⇢�) �3) (#�D)� (1 + �1) (1� ⇢�)� (1� ⇢�) �2�

(1 + �1) (1� ⇢�) + ⇢��Q+ ⇢�fQ

s
+ ⇢�fQ�2

�

s
� ⇢�fQ�3

#�D

s
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Substituting into the elasticity formula and rewriting yields:

⌘AOB

�,# =
d�
�
d#

#

= ⌥AOB
#

#�D � ⌧AOB


� ⌧AOB
�

�

where

⌥AOB =
�1 + (1� ⇢�) �3 + ⇢��3f

�1 + (1� ⇢�) �3
⌅

⌅ =
(1� ⇢�) (1 + �1) + ⇢�f

�
1 + (+ �2� � �3 (#�D)) Q

s

�

� (1� ⇢�) (1 + �1) + ⇢�f
�
1 + (1� �) (+ �2� � �3(#�D)) Q

s

�

⌧AOB


=

(1 + �1) (1� ⇢�)

�1 + (1� ⇢�) �3
, ⌧AOB

�
=

�2 (1� ⇢�)

�1 + (1� ⇢�) �3

which are the expressions provided in the main text for the AOB model where �1, �2 and

�3 are defined in subsection 2. Note that the Nash model corresponds to the special case of

�1 = (1� ⌘)/⌘ and �2 = �3 = 0.

A.2.2 Non-Structural Decomposition

Recall the set of equilibrium equations, with the AOB sharing rule:

Sw

t
= wt �D + ⇢�

�
1� �mEt�

1��
t+1

�
EtS

w

t+1

Jt = #t � wt + ⇢�EtJt+1

s

�m
��
t

= Jt � 

Jt = �1S
w

t
� �2� + �3(#t �D)

Substitute:

Sw

t
+

c

�m
��
t
+  = #t �D + ⇢�Et

✓
c

�m
��
t+1 + 

◆
+ ⇢�

�
1� �m�

1��
t+1

�
EtS

w

t+1

c

�m
��
t
+  = �1S

w

t
� �2� + �3(#t �D)
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Impose steady state:

(⇤) (1 + �1) (1� ⇢�)
c

�m
�� + ⇢�c�+ ⇢��m�

1��+ ⇢��m�
1���2� � ⇢��m�

1���3(#�D)

= (�1 + (1� ⇢�) �3) (#�D)� (1 + �1) (1� ⇢�)� (1� ⇢�) �2�

Totally di↵erentiate:


� (1 + �1) (1� ⇢�)

c

�m
�� + ⇢�c�+ (1� �) ⇢�f+ (1� �) ⇢�f�2� � (1� �) ⇢�f�3(#�D)

�
d�

�

=
�
�1 + (1� ⇢�) �3 + ⇢��m�

1���3
�
#
d#

#

Re-arrange:

d�
�
d#

#

=
�1 + (1� ⇢�) �3 + ⇢�f�3

[� (1� ⇢�) (1 + �1) + ⇢�f ] c

Q
+ (1� �) ⇢�f+ (1� �) ⇢�f�2� � (1� �) ⇢�f�3(#�D)

#

Solve (⇤) for c

Q
:

c

Q
=
�1 + (1� ⇢�) �3 + ⇢�f�3
(1� ⇢�) (1 + �1) + ⇢�f

(#�D)� � 1� ⇢� + ⇢�f

(1� ⇢�) (1 + �1) + ⇢�f
�2�

Substitute into elasticity formula:

d�
�
d#

#

=
�1 + (1� ⇢�) �3 + ⇢�f�3

�(1�⇢�)(1+�1)+⇢�f
(1�⇢�)(1+�1)+⇢�f (�1 + (1� ⇢�) �3 + ⇢�f�3)� (1� �) ⇢�f�3

⇥

#

#�D � �(1�⇢�)(1+�1)+⇢�f�(1��)⇢�f
�(1�⇢�)(1+�1)+⇢�f
(1�⇢�)(1+�1)+⇢�f (�1+(1�⇢�)�3+⇢�f�3)�(1��)⇢�f�3

� ⇣�2�

where ⇣ =
[�(1�⇢�)(1+�1)+⇢�f ] 1�⇢�+⇢�f

(1�⇢�)(1+�1)+⇢�f �(1��)⇢�f
�(1�⇢�)(1+�1)+⇢�f
(1�⇢�)(1+�1)+⇢�f (�1+(1�⇢�)�3+⇢�f�3)�(1��)⇢�f�3

.

Re-arrange to obtain the elasticity formula for the AOB model:

d�
�
d#

#

= ⌥AOB
#

#�D � ⌧� ⌧��
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where

⌥AOB =
�1 + �3 (1� ⇢� (1� f))

a 
(39)

⌧ =
(1 + �1) (1� ⇢�) + ⇢�f + ⇢�f(��1)

 

a

⌧� =

✓
1� ⇢� (1� f) +

⇢�f (� � 1)

 

◆
�2
a

a = �1 +

✓
1� ⇢� (1� f) +

⇢�f (� � 1)

 

◆
�3

 =
⇢�f + � (1� ⇢�) (1 + �1)

⇢�f + (1� ⇢�) (1 + �1)

B Dynamic Elasticity Formula in Inertial Wage Rule

Here we derive the equilibrium solution for the value of a worker to a firm, Jt, provided in

subsection 4.1.

Note that the value of a worker to a firm is given by:

Jt = #t � wt + �⇢EtJt+1. (40)

Substituting out for wt using (30) gives:

Jt = #t � �#t + �(1� �) (#t � #) + �⇢EtJt+1 (41)

Next, we solve for Jt using the method of undetermined coe�cients. Guess that the solution

takes the following form:

Jt = �0 + �1#t (42)

where �0 and �1 are undetermined coe�cients that are to be determined as a function of

model parameters. Substituting (42) into (41) also making use of (31) gives:

0 = [(1� �) (1 + �)� �1 + �⇢�1v]#t + [�⇢�0 � �(1� �)#� �0 + �⇢�1(1� v)#]
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Setting the two square braskets to zero and solving for �0 and �1 gives:

�0 = ��(1� �)#� �⇢�1(1� v)#

1� �⇢
and �1 =

(1� �) (1 + �)

1� �⇢v

Next, combine the free-entry condition (13) with the solution for Jt:

s

�m
��
t
= Jt = �0 + �1#t.

Totally di↵erentiating:
s

�m
���

d�t

�
= �1#

d#t

#
.

Re-arranging and using s

�m
�� = �0 + �1# yields:

⌘dynamic

�,# ⌘
d�t
�
d#t
#

=
�1#

� s

�m
��

=
1

�

(1� �) (1 + �)

(1� �) (1 + �)� 1��⇢v
1��⇢

⇣
�(1� �)� �⇢(1��)(1+�)(1�v)

1��⇢v

⌘

which is the expression for the dynamic elasticity of labor market tightness with respect to

the marginal revenue product (or technology) provided in subsection 4.1.
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