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1. Introduction

The ratio of revenue to inputs differs substantially across establishments within

narrow industries in the U.S. and other countries. See the survey by Syverson

(2011). One interpretation of such gaps is that they reflect differences in the

value of marginal products for capital, labor, and intermediate inputs. Such

differences may imply misallocation, with negative consequences for aggre-

gate productivity. This point has been driven home by Restuccia and Rogerson

(2008) and Hsieh and Klenow (2009). See Hopenhayn (2014) and Restuccia and

Rogerson (2017) for surveys of the growing literature surrounding this topic.

Differences in measured average products need not imply differences in true

marginal products. First, marginal products are proportional to average prod-

ucts only under Cobb-Douglas production. Second, and to our point of em-

phasis, measured differences in revenue per inputs could simply reflect poor

measurement of revenue or costs. For example, the capital stock is typically a

book value measure that need not closely reflect the market value of physical

capital. Misstatement of inventories will contaminate and distort measures of

gross output and intermediates, since these are inferred in part based on the

change in finished, work in process, and materials inventories.1

We propose and implement a method to quantify the extent to which mea-

sured average products reflect true marginal products in the presence of mea-

surement error and overhead costs. Our method is able to detect measurement

error in revenue and inputs which is additive but whose variance can scale up

with the plant’s true revenue and inputs. Our method cannot identify pro-

portional measurement error, and therefore may yield a lower bound on the

magnitude of measurement error.

1See White, Reiter and Petrin (2018) for how the U.S. Census Bureau tries to correct for
measurement errors in its survey data on manufacturing plants. Rotemberg and White (2019)
argue that the use of imputation in the U.S. but (perhaps) not in India could account for
why allocative efficiency seems higher in the U.S. than in India. Bartelsman, Haltiwanger
and Scarpetta (2013) and Asker, Collard-Wexler and De Loecker (2014) discuss why revenue
productivity need not reflect misallocation even aside from measurement error, due to
overhead costs and adjustment costs, respectively.
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The intuition for our method is as follows. Imagine a world with constant

(proportional) differences in true marginal products. The only shocks are to

idiosyncratic plant productivity. Productivity shocks will move true revenue

and inputs around across plants in the same proportion.2 Thus, in the absence

of measurement error, revenue growth will be proportional to input growth

across all plants. Now suppose, instead, that revenue is overstated for a given

plant. If this measurement error is additive and fixed over time, then the plant’s

measured revenue will move by less in percentage terms in response to a change

in its productivity. Similarly, if a plant has overstated inputs in an additive

and fixed way, its measured inputs will move less than proportionately in re-

sponse to productivity shocks. Thus, if a plants revenue/inputs are overstated

by measurement error, its measured revenue growth will be less responsive to

its measured input growth. We can then gauge the importance of measurement

error in the cross-section by the degree to which high average product plants

exhibit a low elasticity of revenue with respect to inputs over time.

Our method applies to less stark environments with changing true marginal

products and measurement error over time for plants. A key restriction we

do require is that the measurement errors be orthogonal to the true marginal

products. As we will show, our approach involves regressing revenue growth

on input growth within each decile of average products. The extent to which

the resulting coefficients decrease with the decile (level) of TFPR speak to how

much measurement error is contributing to the dispersion in measured average

products in the cross-section.

We apply our methodology to panel data on U.S. manufacturing plants from

1978–2013 and formal Indian manufacturing plants from 1985–2013. The U.S.

data is from the Annual Survey of Manufacturers (ASM) plus ASM plants in

Census years, both from the Longitudinal Research Database (LRD). The Indian

data is from the Annual Survey of Industries (ASI). The LRD contains about

2Output increases more than inputs in response to a productivity shock, of course. But a
plant’s relative output price will decline with productivity so that its revenue will rise by the same
proportion as its inputs. This is true if the plant’s price-cost markup, or true ratio of revenue to
inputs, does not change with its productivity.
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50,000 ASM plants per year, and the ASI about 43,000 plants per year.

We first report estimates of allocative efficiency without correcting for mea-

surement error. The U.S. exhibits a severe decline, seemingly going from pro-

ducing 3/5 as much as it could by equalizing marginal products across plants to

producing only 1/3 as much as it could. Figure 1 displays this pattern. If true,

this plunge reduced the annual TFP growth rate by 1.7 percent per year over

1978–2013. By comparison, we estimate that Indian manufacturing operated at

about 1/2 efficiency, with a fair bit of volatility from year to year but no clear

trend despite major policy reforms. Thus by the end of the sample the U.S.

appears to have lower allocative efficiency than India.

Once we correct for measurement error, U.S. allocative efficiency is much

higher (above 2/3) with a modest downward trend and much less volatility.

Measurement error appears to be a growing problem in Census LRD plant data.

In the Indian ASI, correcting for measurement error has a less dramatic effect.

As a result, corrected allocative efficiency appears consistently higher in the

U.S., raising manufacturing productivity by 10 to 50 percent relative to that in

India (in all but one year).

The rest of the paper proceeds as follows. Section 2 presents a simple model

wherein both measurement error and distortions are fixed over time. Section 3

presents the full model, which allows both measurement error and distortions

to change over time. Section 4 describes the U.S. and Indian datasets, and raw

allocative efficiency patterns in the absence of our correction for measurement

error. Section 5 lays out our method for quantifying measurement error, and

applies it to the panel data on manufacturing plants in the U.S. and India. As

stated, these estimates impose the strong assumption that measurement error

and true productivity are uncorrelated. We also rely on local approximations,

so in Section 6 we examine how well our measure performs under alternative

assumptions on the properties of shocks to productivity, distortions, and mea-

surement error. Section 7 shows how correcting for measurement error affects

the picture of allocative efficiency in the U.S. and India.
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Figure 1: Allocative Efficiency in the U.S.

Source: U.S. LRD. The figure shows the % allocative efficiency in U.S.
manufacturing between 1978 and 2013.

2. An Illustrative Model

In order to convey intuition for our methodology, we first present a simple model.

We assume the economy has a fixed number of workers L and a single, compet-

itive final goods sector producing aggregate output Y . Aggregate output is, in

turn, produced by CES aggregation of the output Yi of N intermediate goods

producers with elasticity of substitution ε:

Y =

(
N∑
i=1

Y
1− 1

ε
i

) 1

1− 1
ε

.

The price index of the final good is given by P =

(∑
i

P 1−ε
i

) 1
1−ε

and is nor-

malized to 1. Intermediate firms produce output using a linear production

technology in labor under heterogeneous productivities: Yi = AiLi. These

firms are monopolistically competitive and face a downward sloping demand

curve: Yi ∝ P−ε
i . They maximize profits taking as given Y , P , the wage w, and
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an idiosyncratic revenue distortion τi:

Πi =
1

τi
PiYi − wLi .

The researcher observes only measured revenue P̂iYi ≡ PiYi + gi and mea-

sured labor L̂i ≡ Li+fi. Given the assumed CES demand structure, firms charge

a common markup over their marginal cost (gross of the distortion):

Pi =

(
ε

ε− 1

)
×
(
τi ·

w

Ai

)
.

True revenue is therefore proportional to the product of true labor times and

the idiosyncratic distortion:

PiYi ∝ τi · Li . (1)

Thus variation across firms in true average revenue products
(
PiYi
Li

)
is solely

due to the distortion. Variation in measured average revenue products (TFPR),

however, reflects both the distortion and measurement errors:

TFPRi ≡
P̂iYi

L̂i
∝
[
τi ×

1 + gi/(PiYi)

1 + fi/Li

]
.

While our methodology will allow both the true distortions and measurement

errors to vary over time, to convey intuition we make the a number of simplify-

ing assumptions in this section:

1. The true distortions τi are fixed over time

2. The additive measurement error terms gi and fi are fixed over time

3. The idiosyncratic productivities Ait are time-varying
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Under these assumptions,

∆PiYi = ∆Li = (ε− 1) ∆Ai .

Thus true revenue growth equals true input growth for a given plant. There-

fore, regressing revenue growth on input growth should yield a coefficient of 1

independently of a plant’s level of TFPR.

In the presence of measurement error, however, the relation between mea-

sured revenue and input growth in this economy is, for small ∆Ai,

∆P̂ Y i = ∆L̂i ·
τi

TFPRi

.

The higher is TFPR relative to the true distortion τ , the lower is revenue growth

relative to input growth. To the extent measurement errors, not true distortions,

drive TFPR differences, the estimated elasticity of plant revenue growth on in-

put growth will be predictably lower for plants with higher TFPR.

In Section 5 we will generalize this logic to allow for shocks to both mea-

surement error and distortions. The intuition from this simple example will

remain: the extent to which high TFPR plants exhibit a low elasticity of revenue

with respect to inputs will help us to estimate the role of measurement error in

TFPR dispersion. We will use this, in turn, to estimate the variance of the true

distortion and therefore the true level of allocative efficiency. In the next section

we present the full model and a decomposition of aggregate and sectoral TFP

into allocative efficiency vs. other terms.
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3. Model

3.1. Economic Environment

We consider an economy with S sectors, L workers and an exogenous capital

stock K. There are an exogenous number of firms Ns operating in each sector.

A representative firm produces a single final good Q in a perfectly competitive

final output market. This final good is produced using gross output Qst from

each sector s with a Cobb-Douglas production technology:

Q =
S∏
s=1

Qθs
s where

S∑
s=1

θs = 1 .

We normalize P , the price of the final good, to 1. The final good can either be

consumed or used as an intermediate input:

Q = C +X .

All firms use the same intermediate input, with the amounts denotedXsi so that

X ≡
S∑
s=1

Xs =
S∑
s=1

Ns∑
i=1

Xsi .

Sectoral output Qs is a CES aggregate of the outputs of the Ns sector-s firms:

Qs =

(
Ns∑
i=1

Q
1− 1

ε
si

) 1

1− 1
ε

.

We denote by Ps the price index of output from sector s. Firms have idiosyn-

cratic productivity draws Asi, and produce output Qsi using a Cobb-Douglas

technology in capital, labor and intermediate inputs:

Qsi = Asi(K
αs
si L

1−αs
si )γsX1−γs

si where 0 < αs, γs < 1 .

The output elasticitiesαs and γs are sector-specific, but time-invariant and com-

mon across firms within a sector. Firms are monopolistically competitive and
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face a downward sloping demand curve given by Qsi = Qs

(
Psi
Ps

)−ε
. Firms treat

Ps andQs as exogenous. Firms also face idiosyncratic labor distortions τLsi, capi-

tal distortions τKsi and intermediate input distortions τXsi . They maximize profits

Πsi taking input prices as given.

Πsi = Rsi − (1 + τLsi)wLsi − (1 + τKsi )rKsi − (1 + τXsi )PXsi ,

where Rsi ≡ PsiQsi is firm revenue.

3.2. Aggregate TFP

We define aggregate TFP as aggregate real consumption (or equivalently value-

added) divided by an appropriately weighted Cobb-Douglas bundle of aggre-

gate capital and labor:

TFP ≡ C

L1−α̃K α̃
where α̃ ≡

∑S
s=1 αsγsθs∑S
s=1 γsθs

.

We show in our Online Appendix that

TFP = T ×
S∏
s=1

TFP

θs∑S
s=1 γsθs

s .

T captures the effect of the sectoral distortions τLs , τKs and τXs , which are the

revenue-weighted harmonic means of the idiosyncratic firm-level distortions.3

Sectoral TFP is then:

TFPs ≡
Qs

(Kαs
s L

1−αs
s )γsX1−γs

s

.

Within-sector misallocation lowers TFPs. The sectoral distortions will in-

3(1+ τLs ) ≡

[
Ns∑
i=1

Rsi
Rs

1

1 + τLsi

]−1

and similarly for (1+ τKs ) and (1+ τXs ). The Online Appendix

expresses sectoral distortions as a function only of firm distortions and productivities.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
http://klenow.com/misallocation-mismeasurement-appendix.pdf
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duce a cross-sector misallocation of resources, which will show up in T . While

cross-sector misallocation is of interest, it is not the focus of this paper. We

therefore leave it to future research to determine how important this could be

in determining cross-country aggregate TFP gaps.

3.3. Sectoral TFP Decomposition

Sector-level TFP is a function of firm-level productivities and distortions:

TFPs =

[
Ns∑
i=1

Aε−1
si

(
τsi
τs

)1−ε
] 1
ε−1

,

where τsi ≡
[(

1 + τLsi
)1−αs (

1 + τKsi
)αs]γs (

1 + τXsi
)1−γs

,

and τs ≡
[(

1 + τLs
)1−αs (

1 + τKs
)αs]γs (

1 + τXs
)1−γs

.

We can go one step further, and decompose sectoral TFP into the product

of four terms: allocative efficiency (AEs), a productivity dispersion term (PDs),

average productivity (As), and a variety term (N
1
ε−1
s ).

TFPs =

[
1

Ns

Ns∑
i

(
Asi

Ãs

)ε−1(
τsi
τs

)1−ε
] 1
ε−1

︸ ︷︷ ︸
AEs=Allocative Efficiency

×

[
1

Ns

Ns∑
i

(
Asi

As

)ε−1
] 1
ε−1

︸ ︷︷ ︸
PDs=Productivity Dispersion

×N
1
ε−1
s︸ ︷︷ ︸

Variety

× As︸︷︷︸
Ave. Productivity

.

Ã is the power mean of idiosyncratic productivities,

[
1

Ns

Ns∑
i=1

(Asi)
ε−1

] 1
ε−1

, and A

is the geometric mean of idiosyncratic productivities
Ns∏
i=1

A
1
Ns
si . AEs is maximized

and equal to 1 when there is no variation in the distortions across firms (τsi = τs

∀i). The productivity dispersion term (PDs) is the ratio of the power mean to

the geometric mean. Because ε > 1, greater dispersion in firm-level productiv-

ities induces a reallocation of labor towards the most productive firms, thereby

increasing sectoral TFP. N
1
ε−1
s captures the productivity gains from expanding
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the set of varieties available to sectoral goods producers. Finally, it is clear why

increases in average productivity (As) should increase sectoral TFP.

The goal of this paper is to present a methodology for inferring allocative

efficiency (AEs) from plant-level data while allowing for measurement error. In

the next section we briefly describe the U.S. and Indian datasets we use, present

the model-based approach to inferring allocative efficiency in the absence of

measurement error, and show raw allocative efficiency patterns in the data.

4. Inferring Allocative Efficiency

4.1. The Datasets

We use two datasets of manufacturing plants in this paper: the Indian Annual

Survey of Industries (ASI) from 1985 to 2013 and the U.S. Longitudinal Research

Database (LRD) from 1978 to 2013.

The ASI is a nationally representative survey of formal manufacturing plants

in India. The coverage includes plants with at least 10 workers using power,

and plants with at least 20 workers not using power. Plants fall into two cate-

gories: Census and Sample. Census plants are surveyed every year, and consist

of plants with at least 100 workers (the threshold increases to 200 workers in

some survey years) as well as all plants in 12 of the “industrially backwards”

states. Sample plants are randomly sampled each year within state × industry

cells. Official panel identifiers are available from 1998 on, and we use panel

identifiers from an old version of the publicly available ASI prior to 1998. We

construct an industry classification consisting of 50 manufacturing industries

which are consistently defined throughout our time period.4

The LRD is a database of U.S. manufacturing plants put together by the

U.S. Census Bureau. The coverage is all manufacturing plants with at least

one employee. The database includes information from the Annual Survey of

4The official sectoral classification (NIC) changed in 1987, 1998, 2004 and 2008. We use
official NIC concordances to construct our harmonized classification.
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Manufactures (ASM) and the Census of Manufactures (CMF), augmented with

establishment identifiers from the Longitudinal Business Database (LBD). The

CMF is a census which is conducted in years ending in 2 or 7. The ASM is

a survey which is conducted in all other years. The ASM covers large plants

with certainty (typically plants with at least 100 workers, though the threshold

varies by survey year) and randomly samples smaller plants. The ASM sample

is redrawn in years ending in 4 and 9. In order to avoid any large changes in

sample size over time, we use only the ‘ASM’ sample plants in CMF years. From

here on, we refer to our U.S. dataset as the LRD. We use the harmonized sectoral

classification from Fort and Klimek (2016) at the NAICS 3-digit level (86 sectors).

The main variables we use are gross output, labor costs, capital, inventories,

and intermediate inputs. We construct gross output as the sum of shipments,

changes in finished and semi-finished good inventories, and other revenues.

We construct intermediate inputs as the sum of materials, fuels and other ex-

penditures. We include unpaid family workers in our measure of labor in India.

We construct labor costs as the sum of wages, salaries, bonuses and supplemen-

tal labor costs. We set the capital stock as the sum of fixed assets and the stock

of inventories.5 Official sampling weights are used in all of our calculations. We

discuss more details about variable construction in our Online Appendix.

We clean the ASI and LRD using the same approach. We drop plants with

missing or negative values for any of the variables described above. We then

trim the 1% tails of TFPR and TFPQ deviations from the industry average in each

year (TFPR and TFPQ are defined in the next section). We describe these steps

in more detail in our Online Appendix. Our final sample sizes are 1,806,000

plant-years for the U.S. and 943,186 plant-years for India.6

5Because of data availability, we use the nominal book value of fixed assets in India, and the
real market value of fixed assets in the U.S. Book value capital stocks are not reported every
year in the U.S., unlike investment in fixed assets. Our real capital stock measure is constructed
using the perpetual inventory method. We do not deflate any nominal variables. Industry-level
deflators would difference out because all of our analyses focus on within-industry differences
across plants.

6We round U.S. observation counts in accordance with Census data disclosure rules.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
http://klenow.com/misallocation-mismeasurement-appendix.pdf
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4.2. Inferring Allocative Efficiency

Continuing to use ̂ ’s to denote measured values, TFPR and TFPQ are:

TFPRsi ≡
R̂si

(K̂αs
sitL̂

1−αs
si )γsX̂1−γs

si

,

(2)

TFPQsi ≡

(
R̂sit

) ε
ε−1

(K̂αs
si L̂

1−αs
si )γsX̂1−γs

si

.

In the absence of measurement error, TFPR would be proportional to the dis-

tortion and TFPQ would be proportional to productivity:

Rsi

(Kαs
si L

1−αs
si )γsX1−γs

si

∝ τsi and
(Rsi)

ε
ε−1

(Kαs
si L

1−αs
si )γsX1−γs

si

∝ Asi .

We infer sectoral allocative efficiency using the following expression:

ÂEs =

[
Ns∑
i=1

(
TFPQsi

TFPQs

)ε−1(TFPRsi

TFPRs

)1−ε
] 1
ε−1

,

where TFPQs =

[
Ns∑
i=1

TFPQε−1
si

] 1
ε−1

,

and TFPRs =

(
ε

ε− 1

)[
MRPLs

(1− αs)γs

](1−αs)γs [MRPKs

αsγs

]αsγs [MRPXs
1− γs

]1−γs
.

MRPLs, MRPKs and MRPXs are the revenue-weighted harmonic mean values of

the marginal products of labor, capital and intermediates, respectively. E.g.,

MRPKs =

[∑
i

R̂si

R̂s

1

MRPKsi

]−1

,

MRPKsi =

(
ε− 1

ε

)
αsγs

R̂st

K̂si

.

Aggregating across sectors we obtain inferred aggregate allocative efficiency,
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which is equal to true allocative efficiency when there is no measurement error:

ÂEt =
S∏
s=1

ÂE

θst∑S
s=1 γsθst

st .

In order to obtain estimates of allocative efficiency over time for the U.S.

and India we need to pin down a number of parameters in the model. Based on

evidence from Redding and Weinstein (2019), we pick a value of ε = 4 for the

elasticity of substitution across plants. Allocative inefficiencies are amplified

under higher values of this elasticity. We infer αs and γs based on country-

specific average sectoral cost shares.7 We allow the aggregate output shares θst

to vary across years, and base them on country-specific sectoral shares of man-

ufacturing output.8 We use labor costs as our measure of labor input because it

captures variation in human capital and hours worked across plants.

4.3. Time-Series Results

Figure 2 plots inferred allocative efficiency for India and the U.S. over their

respective samples. While allocative efficiency exhibits no clear trend in India,

there is a remarkable decrease in allocative efficiency in the U.S. from 1978

to 2006. As a result, over the entire sample allocative efficiency surprisingly

averages the same 48% for both India and the United States.9 Figure 3 plots

the ratio of U.S. to Indian allocative efficiency for their overlapping samples.

Allocative efficiency is lower in the U.S. than in India by around the year 2000

— substantially lower, as U.S. allocative efficiency averages only two-thirds of

Indian allocative efficiency from 2003 to 2013.

7We assume a rental rate for fixed assets of 20% and a rental rate of 10% for inventories.
8Our results are not sensitive to the choice of constant or time-varying sectoral shares.
9Average gains from full reallocation are 123% for the U.S. versus 111% for India. In contrast,

Hsieh and Klenow (2009) found 40-60% higher potential gains from reallocation in India than
in the United States. Our estimates diverge from Hsieh and Klenow’s for several reasons: We
use gross output while they use value added; we have a 1978–2013 LRD sample while they have
1987, 1992, and 1997 Census plants; we trim 1% tails in the U.S., while they trim 2%. (They
inconsistently trimmed 2% for the U.S. and only 1% for India.)
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Figure 2: Allocative Efficiency in India and the U.S.

India U.S.

Source: Indian ASI and U.S. LRD. The figure shows the % allocative efficiency for both countries. Average
allocative efficiency is 49% in India and 54% in the U.S. over the respective sample periods.

Figure 3: Allocative Efficiency, U.S. Relative to India

Source: Indian ASI and U.S. LRD. The figure plots the ratio of U.S. allocative efficiency to
Indian allocative efficiency for the years 1985 to 2007 (years in which the datasets overlap).
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The dramatic decline in allocative efficiency for the U.S. mirrors a sharp rise

in its TFPR dispersion. Figure 4 displays the variance of ln(TFPR) for both India

and the U.S. for 1985 to 2013.10 While the Indian data display little or no trend,

the variance of ln(TFPR) essentially doubles for the U.S. from 1985 to the late

2000s, before retreating part way by the end of the sample.11 Figure A2 in the

Online Appendix plots the 90:50 and 50:10 percentile ratios of ln(TFPR) for the

U.S., and shows that the increasing variance is mostly coming from the right

tail.

Figure 4: Variance of ln(TFPR)

Source: Indian ASI and U.S. LRD. The variance of ln(TFPR) is weighted by gross output.

10Figure 4 plots the variance of ln(TFPR) weighting plants by output shares. This measure
maps more directly into allocative efficiency than the unweighted variance. The unweighted
variance of ln(TFPR) exhibits the same trend in the U.S., with the variance increasing from 0.06
in 1978 to 0.16 in 2009, before falling slightly to 0.13 in 2013.

11As noted above, allocative efficiency averaged 48% in both the Indian and U.S. samples.
This may seem inconsistent with the markedly higher TFPR dispersion for the U.S. displayed in
Figure 4. But India’s intermediate share is 82.2% while the U.S. intermediate share is 65.3%, and
this higher intermediate share magnifies the impact of distortions on allocative efficiency.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
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Figure A3 in the Online Appendix shows that TFPQ dispersion rose in both

the U.S. and India from 1985–2013. The variance in logs rose from about 0.35

to 0.45 or more in both countries. At the same time, the elasticity of TFPR

with respect to TFPQ rose in the U.S. while falling in India — see Figure A4 in

the Online Appendix. The elasticity rose from around 0.27 to 0.37 in the U.S.

from 1985 to 2013. Gouin-Bonenfant (2019) formulates a theory in which ris-

ing TFPQ dispersion is responsible for both rising TFPR dispersion (and falling

labor share of income) in the U.S. in recent decades. In Section 7 we examine

how correcting for measurement error alters these patterns, in addition to its

impact on trends in allocative efficiency.

In the next section we present out methodology to correct TFPR for mea-

surement errors with the goal of obtaining measures of allocative efficiency that

are more robust to such errors.

5. Measurement Error

Calculations of misallocation, including those just presented, interpret plant

differences in measured average revenue products (TFPR) as differences in true

marginal products. In many of these studies the underlying plant data are lon-

gitudinal. We will show that, using such data, one can project the elasticity of

revenue with respect to inputs on TFPR to answer the question: to what extent

do plants with higher measured average products have higher true marginal

products? The logic is similar to using the covariance of two noisy measures of

a variable, here noisy measures of a plant’s marginal revenue product, to recover

a truer measure of the variable.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
http://klenow.com/misallocation-mismeasurement-appendix.pdf
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5.1. Measurement Error and TFPR

Consider the following description of measured inputs Î and measured revenue

R̂ for plant i (year subscripts implicit):

Îi ≡ φi · Ii + fi ,

R̂i ≡ χi ·Ri + gi ,

where I and R denote true inputs and revenues, f and g reflect additive mea-

surement errors, and φ and χ are multiplicative errors.12 For simplicity, we treat

the impact of measurement error in inputs as common across different inputs

(capital, labor, intermediates).

In the setting of Section 2, profit maximization by each plant implies

TFPRi ≡
R̂i

Îi
∝ τi

(
R̂i

Ri

Ii

Îi

)
.

Absent measurement error, a plant’s TFPR provides a measure of its distortion

τ . But, to the extent revenue is overstated or inputs are understated, TFPR will

overstate τ . In that circumstance, the plant’s marginal revenue product is less

than implied by its TFPR.

The growth rate of a plant’s TFPR will reflect the growth rate of its measure-

ment error as well as the growth rate of its τ :

∆TFPRi = ∆τi + ∆

(
R̂i

Ri

)
− ∆

(
Îi
Ii

)
.

∆ denotes the growth rate of a plant variable relative to the mean in its sector.

If there are only additive measurement errors, then TFPR growth is

∆TFPRi ≈
∆τi

R̂i/Ri

−

(
R̂i −Ri

R̂i

− Îi − Ii
Îi

)
∆Ii +

dgi

R̂i

− dfi

Îi
,

12Note that the additive terms f and g could alternatively reflect deviations from Cobb-
Douglas production. For instance, positive values for f (such as overhead inputs), or negative
for g, would imply marginal revenue exceeds average revenue per input.
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where the approximately equals reflects ignoring higher-order terms. As above,

dx denotes the level change in x, as opposed to ∆x, which denotes its percent-

age change. The response of TFPRi to inputs speaks to the size of additive mea-

surement error in revenue versus that in inputs. TFPR decreases when inputs

rise if revenue is overstated relative to inputs ( R̂−R
R̂

> Î−I
Î

), and TFPR increases

when inputs rise when the reverse is true. Because relative measurement error,
R̂−R
R̂

versus Î−I
Î

, causes TFPRi to mismeasure τ , the response of TFPR to inputs

can identify the role of such errors in observed TFPR.

By contrast, if there are only multiplicative measurement errors, then the

percentage change in TFPR equals:

∆TFPRi = ∆τi + ∆χi − ∆φi .

Here TFPR growth provides no information on measurement error in the level

of TFPR, except to the extent ∆τ , ∆χ, and ∆φ project onto those errors. With

proportional measurement errors, any increase in true inputs or revenue at a

plant will scale up its measurement errors. Here errors that plague TFPR also

contaminate the change in revenue relative to the change in inputs.

Going forward, we focus on purely additive measurement error. For this

reason, our estimates should be viewed as a conservative assessment of the role

of measurement error in generating differences in TFPR. We find that even this

conservative assessment dramatically reduces the size and volatility of inferred

misallocation. We further assume that measurement errors are mean zero.13 Fi-

nally, we assume that measurement errors are uncorrelated with the distortion

τ across plants.

We next show that the relation between a plant’s TFPR level and how its

revenue growth responds to input growth can address the role of measurement

error in TFPR. We then present results for both U.S. and Indian manufacturing.

13We allow the variance of innovations to measurement error to scale with a plant’s
productivity A and distortion τ . For this reason, we do not predict that measurement errors
become less important with trend growth or systematically differ large and small plants.
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5.2. Identifying Measurement Error

Our focal point is the elasticity of measured revenue with respect to measured

inputs, conditional on plant TFPR taking a particular value–call it TFPRk:

βk ≡
Covk(∆R̂i,∆Îi)

Vark(∆Îi)
.

For exposition we first assume no measurement error, then allow for errors

in both revenue and inputs. Absent measurement error, changes in revenue

and inputs simply reflect changes in the plant’s productivity and distortion:

∆Îi = ∆Ii = (ε− 1) ∆Ai − ε∆τi ,

(3)

∆R̂i = ∆Ri = (ε− 1)(∆Ai −∆τi) .

So βk is given by:

βk = 1 + φk , (4)

where φk ≡
Covk(∆τi,∆Ii)

Vark(∆Ii)
=
−ε · Vark(∆τi) + (ε− 1) · Covk(∆τi,∆Ai)

Vark(∆Ii)
.

φk is the elasticity of ∆τ with respect to ∆I.

βk reflects a standard inference problem: a given increase in inputs creates

a larger response in revenue if it is driven by A than if it is driven by a decline in

τ . If Vark (∆τ) = 0 then βk = 1, whereas if Vark (∆A) = 0 then βk = ε−1
ε
< 1. If τ

follows a random walk so that ∆τ is i.i.d., then βk reduces to 1 + φ regardless of

TFPR. For stationary τ , its conditional volatility is greater at extreme τ ’s, reflect-

ing τ ’s regression back to its mean. Thus the Vark(∆τ) is greater at extremes for

TFPR, implying smaller values for βk.
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With measurement error in plant revenues and inputs, (4) becomes:

βk ≈ Ek

(
RiÎi

R̂iIi

)
(1 + φk) + ψk , (5)

where φk ≡
Covk

(
Ii
Îi

∆τi − dfi
Îi
, ∆Îi

)
Vark

(
∆Îi

) and

ψk ≡
1

Vark
(

∆Îi

)(Covk

(
dgi

R̂i

, ∆Îi

)
+ Covk

(
RÎi

R̂i Ii
, ∆Îi

(
∆Îi +

Ii

Îi
∆τ − dfi

Îi

))

−Ek
(

∆Îi

)
Covk

(
RiÎi

R̂iIi
,
(

∆Îi +
Ii

Îi
∆τ − dgi

Îi

)))
.

The approximate equality in (5) means it is a good approximation for relatively

small changes in A, τ , f , and g.

Comparing equations (4) and (5), with measurement error the factor 1 + φk

in βk scales by Ek(RÎR̂I ). For instance, if revenue is overstated, then any implied

increase in revenue is only manifested to the proportion R/R̂. If inputs are

over measured, then any true increase in inputs is scaled down by Î/I, so the

response in revenues is scaled up by Î/I. The same factor RÎ

R̂I
confounds TFPR

as a measure of the true distortion τ , with the expectation of τ at a particular

TFPR level k given by:

Ek (τi) = Ek

(
Ri Îi

R̂i Ii

)
· TFPRk .

Using the definition of βk from (5), we have:

Ek (τi) = Ek

(
Ri Îi

R̂i Ii

)
· TFPRk =

(
βk − ψk
1 + φk

)
· TFPRk . (6)
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Measurement error affects the interpretation of φk and potentially intro-

duces the factor ψk. φk still reflects the inference problem that the elasticity

of measured revenue with respect to measured inputs depends on the source

of the change in inputs. There are now three sources of change: ∆A, ∆τ and df .

Increases in measured inputs driven either by a decrease in τ or an increase in

f result in smaller responses in revenue than do increases in A. Turning to ψk,

its first element allows for the possibility that changes in measurement errors

in revenue are correlated with measured changes in inputs. The latter terms

are more subtle, reflecting any correlations between the measurement error

component of TFPR, in levels, and changes in inputs or measurement errors.

If ∆τ , ∆A, df/Î and dg/R̂ are each i.i.d., then ψk = 0 and φk reduces to φ,

independent of the level of TFPR. In this case βk ≈ Ek(
RÎ

R̂I
)(1+φ) and (6) yields:

Ek (τi) ∝ βk · TFPRk . (7)

Thus, given estimates of the βk’s, we can answer the question: If two plants

differ in TFPR, what is the expected difference in their actual marginal revenue

products due to differences in their τ ’s. If differences in TFPR partially reflect

errors f or g, then β̂k’s will be systematically lower at higher TFPR’s.

We will use equation (7) as a benchmark to correct TFPR for measurement

error. In general, ψk 6= 0 and φk will depend on the level of lagged TFPR. To

address these possibilities, we will simulate a model economy under plausible

scenarios to see if our simple correction using (7) overstates or understates the

role of measurement error in TFPR dispersion. In particular, we will simulate

models where ∆τ , ∆A,
df

Î
and

dg

R̂
are not i.i.d., for instance due to τ , A, or mea-

surement errors being stationary. To anticipate, we will find that our correction

based on (7) is quite accurate for a wide range of parameter values, especially

if measurement errors are only moderately large. For very large measurement

errors, we find (7) tends to under estimate the role of measurement, rendering

our corrections somewhat conservative.

From (7), we can capture the dispersion in τ ’s that is predicted by TFPR’s. But
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in the presence of measurement error there will also be differences in τ ’s that are

orthogonal to TFPR. For instance, a plant with a high value for τ but understated

revenue might display purely average TFPR. To capture this component, we

“add back” variation in τ ’s that is orthogonal to TFPR, under an assumption

that true τ is orthogonal to the measurement error component of TFPR.

From the relation between TFPR, τ , and measurement error, we have:

Var
(

ln τi

)
= Var

(
ln TFPRi

)
− Var

(
ln

(
Ri Îi

R̂i Ii

))
+ 2Cov

(
ln τi, ln

(
Ri Îi

R̂i Ii

))
.

(8)

We assume that the two components of TFPR, namely the true distortion τ and

the measurement error component R̂ I

R Î
, are orthogonal to each other in their

natural logs. This eliminates the last term in equation (8). Furthermore, the

middle term can be written as the two terms:14

−Var

(
ln

(
Ri Îi

R̂i Ii

))
= Cov

(
ln TFPRk, Ek

(
ln

(
Ri Îi

R̂i Ii

)))
− Cov

(
ln τi, ln

(
Ri Îi

R̂i Ii

))
,

which reduces to its first term, given the assumption τ and R̂

R Î
are orthogonal.

Thus equation (8) can be reduced to:

Var
(

ln τi

)
= Var

(
ln TFPRi

)
+ Cov

(
ln TFPRk, Ek

(
ln

(
Ri Îi

R̂i Ii

)))
. (9)

The first term is data. The second is provided by how the estimates of βk, dis-

cussed earlier in this subsection, covary with TFPR. We add back dispersion in τ

that is mean zero and orthogonal TFPR, with variance dictated by equation (9).

14This step uses that ln
(
R Î

R̂ I

)
equals (− ln TFPR + ln τ) and that it can also be broken into

Ek

(
ln

(
R Î

R̂ I

))
and

(
ln
(
R Î

R̂ I

)
− Ek

(
ln

(
R Î

R̂ I

)))
.
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In turn, that variance can be expressed as:

σ2 = − Cov
(

ln(TFPRk), ln
(
βk − ψk
1 + φk

))
− Var

(
ln
(
βk − ψk
1 + φk

))
. (10)

We assume this component in τ , orthogonal to TFPR, is distributed lognormally.

5.3. Estimates for India and the U.S.

For both India and the U.S. we start with plants that are observed in consec-

utive years. This reduces the number of observations in the U.S. to 1,423,000

and in India to 318,311. We then divide each country’s data into separate time

windows. For India we have growth rates for 1985–1986 to 2013–2014 that we

split into five windows of approximately six years each.15 For the U.S. we divide

36 years in growth rates from 1978–1979 to 2013–2014 into five windows of ap-

proximately seven years each. We then regress plant revenue growth on plant

input growth by decile of TFPR in each window:

∆R̂i = λ̂k + β̂k∆Îi + ei , (11)

Here i denotes the plant and k the decile of TFPR. ∆R̂i, ∆Îi and TFPR are each

deviations from the sector-year average for that plant. The individual decile-

windows contain on average 13,000 plants per year for India and 41,000 for the

U.S. Within each decile, plants are weighted by their share of total input costs.16

Measurement error is manifested in a lower β at higher levels of TFPR. We

first report β̂ by decile of TFPR, pooling all years for each country. The estimates

are in Table 1. Looking first at India, we see a clear tendency for β̂ to decline

with the level of TFPR. This decline is most pronounced in the top two deciles

15Because of breaks in the panel identifiers, we have growth rates for only 25 of the 29 years.
16More precisely, a plant’s share of inputs reflects the (Tornqvist) average of its shares across

the annual observations being differenced. Similarly, a plant’s relative TFPR reflects the average
of its relative TFPRs across the two years. In constructing a plant’s input growth rate, growth
rates in intermediates, labor, and capital are weighted by its sector’s average input shares.
Observations where TFPR increases or decreases by a factor greater than five are excluded.
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of TFPR. The difference in β̂ going from the bottom to the top decile is –0.205

with a standard error of 0.020. For the U.S. the negative relationship between

TFPR and β̂ is even more striking. β̂ declines monotonically with TFPR and,

as in India, most sharply in the top two deciles of TFPR. The difference in β̂

between the top and bottom deciles is –0.505 with a standard error 0.025.

Table 1: Coefficients β̂k for revenue growth on input growth by TFPR decile

Decile k→ 1 2 3 4 5 6 7 8 9 10

India 1.087 1.040 1.027 0.996 1.007 0.991 0.996 0.989 0.951 0.882

1985–2013 (.017) (.012) (.010) (.014) (.011) (.011) (.009) (.014) (.010) (.011)

U.S. 1.046 0.995 0.969 0.961 0.931 0.896 0.863 0.837 0.704 0.541

1978–2013 (.013) (.019) (.015) (.019) (.020) (.016) (.014) (.019) (.021) (.021)

Source: Indian ASI and U.S. LRD. Entries are coefficients from regressing revenue growth on input growth by decile of
ln(TFPR), as shown in equation (11). TFPR deciles are constructed as Tornqvist deviations from the (cost-weighted) sector-
year average. Decile 1 corresponds to the lowest decile of TFPR, and Decile 10 the highest decile of TFPR. Regressions are
weighted by each plant’s (Tornqvist) share of all input costs. Standard errors are clustered at the industry level. There are
1,423,000 plant growth rate observations in the U.S. sample, and 318,311 observations in the India sample.

How does the relation between TFPR and β̂ change through time? Figures 5

and 6 display these estimates for India and the U.S., with ln(β̂) plotted against

ln(TFPR) by sample period. For India in Figure 5, β̂ decreases with TFPR to

a similar degree in all periods. Figure 6 reveals the increase in U.S. TFPR dis-

persion over time, manifested by the increasing spread with respect to TFPR in

later periods. Over time β̂ becomes much more negatively related to TFPR in the

United States. Thus the increased dispersion in TFPR in the U.S. is associated

with an increased role for measurement error in that dispersion.

Given the β̂k estimates, we construct a corrected cross-sectional distribution

of distortions τ ’s for each time frame in each country according to:

ln (τ̂) = ln(TFPR) + ln(β̂k) + ε . (12)
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Figure 5: India β Slopes

Source: Indian ASI. The figure plots the β̂k coefficients recovered from running the regressions in (11)
against deciles of TFPR. In each time window and for each TFPR decile k, revenue growth is regressed
on input growth to obtain β̂k. The relationship is plotted separately for five different time windows.

Figure 6: U.S. β Slopes

Source: U.S. LRD. The figure plots the β̂k coefficients recovered from running the regressions in (11)
against deciles of TFPR. In each time window and for each TFPR decile k, revenue growth is regressed
on input growth to obtain β̂k. The relationship is plotted separately for five different time windows.
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More exactly, each plant in a cross-sectional sample is assigned the βk estimated

for the TFPR decile corresponding to its TFPR.17 ε is drawn from a log normal

distribution, conditional on TFPR, with variance as dictated by equation (10).18

We report the resulting dispersion in ln(τ)’s over time for each country in

Table 2, expressed in terms of the variance of ln(τ̂) relative to the variance of

ln(TFPR). For India, the variance of τ̂ is consistently about 30% smaller than the

variance of TFPR. For the U.S. we estimate an even bigger and growing role for

measurement error. In the U.S. the variance of τ̂ is about 70% lower than that

for TFPR from 1999 onward. The implication, we shall see, is that measurement

error exaggerates misallocation in both countries, but especially in the U.S. in

recent years. But first, in the next section, we use simulations of a wider range

of models to examine the robustness of our approach.

Table 2: Dispersion in Marginal Products vs. TFPR Dispersion

Panel A: India

1985–1991 1992–1996 1997–2001 2002–2007 2008–2013

σ2
τ̂

σ2
TFPR

0.739 0.763 0.745 0.697 0.732

Panel B: U.S.

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013

σ2
τ̂

σ2
TFPR

0.404 0.432 0.379 0.325 0.274

Source: Indian ASI and U.S. LRD. The table shows the ratio of the variance of ln(τ̂ ) to the
variance of ln(TFPR), for both India and the U.S. for five different time periods. Variances are
output share weighted. τ̂ is constructed as in equation (12).

17Some years in the cross-sectional sample appear in two separate windows. For instance the
year 2002 for India is spanned by the panel window covering growth rates from 1997–1998 to
2001–2002 as well as the window for growth rates from 2002–2003 to 2007–2008. For such years
we average the β̂’s for its backward and forward-looking windows.

18Comparing equations (12) and (7), we have replaced ln
(
Ek(τ)

)
with Ek

(
ln(τ)

)
. For ln(τ)

conditionally distributed lognormal, this adds a sector-specific constant term that does not
enter into measured dispersion.
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6. Robustness in Simulations

Our approach to estimating the share of true τ dispersion in TFPR dispersion

rests on a set of assumptions, most notably that measurement errors are addi-

tive and that their role in a plant’s TFPR is orthogonal to its true τ distortion.19

Furthermore, if innovations to A, τ , or measurement errors are not i.i.d., then

our corrections based on equation (6) are potentially clouded as terms φk and

ψk may influence the projection of βk on TFPR. Finally, our derivations rely

on first-order approximations which may not perform well for large shocks to

productivity, distortions or measurement errors.

For these reasons, we explore the performance of our estimator in simula-

tions. We match simulated moments to data moments for India and the United

State. We find that our estimator performs well even if measurement error is

sizable, such as we estimate for India. If measurement error is enormously

important, as we find for the U.S., then our approach is conservative, as it tends

to understate the role of measurement error in TFPR dispersion.

We assume that plant i’s idiosyncratic productivity in period t is given by:

Ait = Ai · ait .

Ai is the permanent component of a plant’s productivity, which we assume is

lognormally distributed: ln(Ai) ∼ N(0, σ2
A). ait is the transitory component of

plant productivity. Plants also face an idiosyncratic, time-varying distortion τit.

ait and τit follow:

ln(ait) = ρa · ln(ait−1) + ηait where ηait ∼ N(0, σ2
a) ,

(13)

ln(τit) = ρτ · ln(τit−1) + ητit where ητit ∼ N(0, σ2
τ ) .

19Assuming that a firm’s τ is orthogonal to the size of its measurement errors f and g does not
translate directly to orthogonality of τ and the measurement error component of TFPR, because
a plant’s τ affects its scale and thereby the relative importance of its measurement errors.
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Measurement errors in inputs and revenues follow AR(1) processes, with the

variance of the shocks scaling with the size of the plant:

fit = ρf · fit−1 + ηfit · Iit where ηfit ∼ N(0, σ2
f ) ,

(14)

git = ρf · git−1 + ηgit ·Rit where ηgit ∼ N(0, σ2
g) .

As a baseline, we consider the case with measurement error in inputs only.

We set ε = 4 and ρa = ρτ = ρf = 0.9 and use the simulated method of moments

(simulating 30,000 plants over 50 years) to calibrate στ , σA, σa and σf .20 We target

four moments from the data: the (output share weighted) variance of ln(TFPR),

the unweighted variance of ln(TFPQ), the slope of ln(β̂) vs. Tornqvist ln(TFPR)

across deciles, and the variance of input growth.21

The parameters are jointly calibrated, but they are differentially important

for certain moments. The variance of ln(TFPR) and the ln(β̂) slope are particu-

larly important in disciplining the values of στ and σf . The variance of ln(TFPQ)

is sensitive to the variance of the permanent component of firm productivity σA,

while the variance of input growth relates strongly to the variance of productiv-

ity shocks σa. Table 3 shows our estimated parameter values. The targeted data

moments and simulated moments for each time period in India and the U.S. are

in Table 4. The simulated moments are always close to the targeted moments

— though not exactly the same because of non-linearities.

The main outcome of interest is how accurately our estimator captures the

variance of distortions relative to TFPR dispersion, σ2
τ/σ

2
TFPR. We compare our

estimated share σ2
τ̂/σ

2
TFPR to the true share for India and the U.S. in Table 5.

Our estimator performs remarkably well for India in all time periods. While

20We clean the simulated data in the same way we do the actual micro data: dropping
observations with negative revenues or inputs and those where TFPR changes by a factor of
five or more. We simulate all plants for 50 years, and then construct the simulated moments as
the average value over the last 30 years.

21We minimize the sum of the absolute ln differences between the targeted data moments
and the simulated moments.
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Table 3: Calibrated Parameter Values

στ σA σa σf

Panel A: India

1985–1991 0.060 0.637 0.181 0.030

1992–1996 0.074 0.711 0.102 0.040

1997–2001 0.073 0.712 0.088 0.042

2002–2007 0.056 0.733 0.110 0.039

2008–2013 0.060 0.744 0.113 0.035

Panel B: U.S.

1978–1984 0.036 0.520 0.103 0.079

1985–1991 0.053 0.517 0.075 0.088

1992–1998 0.050 0.542 0.071 0.103

1999–2005 0.044 0.500 0.070 0.123

2006–2013 0.017 0.494 0.103 0.130
Source: This table shows the parameter values recovered from the model
calibration. The model is calibrated for both India and the U.S. separately
for five different time periods. στ is the standard deviation of the shocks to
the distortions, σA is the standard deviation of the permanent component
of plant productivity, σa is the standard deviation of the time-varying
component of plant productivity, and σf is the standard deviation of
shocks to measurement error in inputs.

conservative, in that it understates the role of measurement error, it deviates

from the true share of distortions in TFPR dispersion by less than 1.3 percentage

points on average. For the U.S. the discrepancy is larger. We overestimate the

share of true distortions in TFPR dispersion for all periods, particularly when

there is a lot of measurement error. For the 2006–2013 window, our estimator

says the variance of distortions is one fourth the variance of TFPR, when in fact

it is only one fiftieth. Despite this, our estimator does capture reasonably well

the movements over time in the share of distortions in TFPR dispersion.

We obtain similar results when we add the autocorrelation of log TFPR as a

targeted moment, with ρ = ρτ = ρf as an additional parameter. Likewise, we

obtain similar results if measurement error is in revenues rather than inputs.

Although we have more difficulty simulataneously hitting all targeted data mo-

ments, our estimator continues to be a conservative gauge of the importance of

measurement error. We provide these results in our Online Appendix.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
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Table 4: Data Moments versus Simulated Moments

σ2
TFPR σ2

TFPQ ln(β̂) slope σ2
∆I

Data Model Data Model Data Model Data Model

Panel A: India

1985–1991 0.032 0.032 0.47 0.54 -0.35 -0.35 0.38 0.38

1992–1996 0.038 0.038 0.52 0.52 -0.31 -0.30 0.20 0.20

1997–2001 0.038 0.038 0.50 0.50 -0.33 -0.32 0.17 0.17

2002–2007 0.027 0.027 0.54 0.54 -0.39 -0.38 0.17 0.17

2008–2013 0.027 0.027 0.56 0.56 -0.33 -0.32 0.18 0.18

Panel B: U.S.

1978–1984 0.047 0.047 0.35 0.35 -0.73 -0.75 0.14 0.14

1985–1991 0.060 0.060 0.33 0.33 -0.67 -0.65 0.12 0.12

1992–1998 0.072 0.073 0.37 0.37 -0.74 -0.72 0.12 0.12

1999–2005 0.096 0.096 0.36 0.36 -0.82 -0.80 0.12 0.12

2006–2013 0.102 0.102 0.41 0.41 -0.90 -0.90 0.16 0.16
Source: This table shows the data moments to which the model described in Section 6. is calibrated, and the model-
generated moments from simulations with the calibrated parameter values reported in Table 3. The model is calibrated
for both India and the U.S. separately for five different time periods in each. σ2

TFPR is the output share weighted variance of

ln(TFPR). σ2
TFPQ is the variance of ln(TFPQ). ln(β̂) slope is the slope of β̂ against mean Tornqvist ln(TFPR) across deciles.

σ2
∆I is the variance of input growth.

In our Online Appendix we also check how multiplicative measurement er-

ror and adjustment costs affect our estimator. As expected, if all measurement

error is multiplicative we find that our estimator predicts that TFPR dispersion

stems entirely from distortions. So, in the presence of multiplicative errors, our

estimated share of measurement error in TFPR dispersion is conservative. We

also consider a model with adjustment costs whereby a plant chooses its inputs

one period ahead, before its productivity shock is observed. Our estimator

interprets TFPR dispersion due to adjustment costs as if this dispersion was due

to true distortions. This would suggest that, if adjustment costs are important

in the U.S. and India, the share of TFPR dispersion due to τ dispersion may be

even lower than what our estimator finds.

http://klenow.com/misallocation-mismeasurement-appendix.pdf
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Table 5: Simulations: Our Estimator vs. Truth

Panel A: India

1985–1991 1992–1996 1997–2001 2002–2007 2008–2013

σ2
τ̂

σ2
TFPR

(our estimator) 0.678 0.712 0.699 0.640 0.692

σ2
τ

σ2
TFPR

(truth) 0.604 0.693 0.682 0.581 0.656

Panel B: U.S.

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013

σ2
τ̂

σ2
TFPR

(our estimator) 0.334 0.407 0.366 0.304 0.236

σ2
τ

σ2
TFPR

(truth) 0.143 0.240 0.181 0.107 0.015

Source: This table shows, for simulated data, the ratio of the variance ln(τ̂ ) to the variance of ln(TFPR), and the
ratio of the true variance of ln(τ ) to the variance of ln(TFPR). Results are for both India and the U.S., and for five
different time-periods each. The parameters used to generate each of these results are shown in Table 3.

7. Revisiting Misallocation

We now compare the “raw” measures of allocative efficiency for Indian and U.S.

manufacturing to our estimates purging the impact of measurement error. This

is achieved by replacing TFPR as an estimate of τ with the estimated dispersion

of τ ’s implied by equation (12), which we repeat here for convenience:

ln (τ̂) = ln(TFPR) + ln(β̂k) + ε.

To construct allocative efficiency we also need measures of plant TFPQ and

sectoral TFPR. Measurement error in inputs affects TFPQ and TFPR in the same

way, so we get that ln (Â) = ln(TFPQ) + ln(β̂k) + ε.22 To construct sectoral TFPR

we need corrected measures of sectoral MRPL, MRPX and MRPK. We assume

that measurement error is common to all inputs, and therefore affects each of

22Measurement error in revenues is amplified by σ
σ−1 , but this is not quantitatively important.
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Figure 7: Allocative Efficiency in India

Source: Indian ASI. The figures show uncorrected and corrected allocative
efficiency (AE) for years 1985 to 2013. Average uncorrected AE is 47.7% while
average corrected AE is 53.4%.

these in the same way.23 Our estimates for ln(β̂k) are in Figures 5 and 6.

We display corrected vs. uncorrected allocative efficiency for India in Figure

7. Averaging across years, the correction increases allocation efficiency mod-

estly from 48% to 53%. The impact of the correction is fairly stable for India

across the 29 years. Another way to express misallocation is in terms of the in-

crease in productivity that can be reaped by attaining perfect (100%) allocative

efficiency. This is reported for India in Table 6. With distortions measured by

TFPR dispersion, the potential increase in productivity is 111%. Based on the

corrected numbers it is 21 percent lower, at 89% — still quite massive.

In Figure 8 we see a far greater impact in the United States. Our correction

eliminates more than half of potential gains from reallocation and the lion’s

share of the conspicuous downward trend in allocative efficiency. Allocative

efficiency declines by 15% over the 35 years according to our corrected series.

While significant, this is only a third of the 45% decline with no corrections.

23We have that ln (M̂RPL) = ln(MRPL) + ln(β̂k) + ε, and similarly for MRPK and MRPX.
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Table 6: Uncorrected and Corrected Gains from Reallocation

India U.S.

Mean S.D. Mean S.D.

Uncorrected gains 110.8% 17.1% 123.1% 59.7%

Corrected gains 89.0% 12.9% 49.2% 12.1%

Shrinkage 21% 20% 60% 80%

Source: Indian ASI and U.S. LRD. This table reports the average and standard
deviation of uncorrected and corrected gains from improving allocative
efficiency to 100% in India (1985–2013) and the U.S. (1978–2013). The
shrinkage is the percent reduction in the average or standard deviation of
gains after our corrections.

Table 6 reports the potential percent gains from going to 100% allocative

efficiency in the United States. The correction reduces potential gains, averaged

across years, from 123 percent down to 49 percent. In addition to dampening

the trend in misallocation, the correction moderates its higher frequency va-

garies. As a result, volatility for the time series for gains, as measured by its

standard deviation, plummets from 60 percent down to 12 percent.

Our corrections dramatically affect comparisons of allocative efficiency in

the U.S. versus India. Figure 9 displays the allocative efficiency for the U.S.

relative to that in India. Without correcting, the U.S. averages a 16 percent

advantage in allocative efficiency for the first ten years (1985 to 1994). But in

the last ten years, U.S. efficiency collapses relative to India. Over those years

U.S. efficiency averages only two-thirds that for India.

Our corrected series, however, looks entirely different. The U.S. advantage

relative to India is much higher, averaging 25 percent, compared to −6 percent

uncorrected. The U.S. advantage remains positive throughout, with a modest

exception in 2006.
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Figure 8: Allocative Efficiency in the United States

Source: U.S. LRD. The figures show uncorrected and corrected allocative
efficiency (AE) for years 1978 to 2013. Average uncorrected AE is 47.6% while
average corrected AE is 67.4%.

Figure 9: Allocative Efficiency: U.S. relative to India

Sources: Indian ASI and U.S. Census LRD. The figures show uncorrected and
corrected allocative efficiency for the U.S. relative to India for years 1985 to 2013.
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Figure 10: Variance of ln(τ) for U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected variance of ln(τ)
for the U.S., 1978 to 2013.

We demonstrated in Section 4.3. that the perceived decline in allocative ef-

ficiency for the U.S. mapped directly to a sharp rise in the variance of ln(TFPR)

in the United States. It should come as no surprise, then, that our correction

to allocative efficiency reflects much less estimated dispersion in τ ’s. Figure

10 shows this to be the case. Dispersion in our corrected TFPR series is much

lower, trends less, and is generally less volatile.

Our adjustments for measurement error also alter the implied elasticity of

TFPR with respect to TFPQ in the United States. As displayed in Figure 11, our

corrections lower the elasticity and its upward drift. Bento and Restuccia (2017)

and Decker, Haltiwanger, Jarmin and Miranda (2018) highlight this elasticity

as indicative of barriers to investing in, or benefiting from, higher TFPQ at the

plant level. Related, our corrections undermine the case that TFPQ dispersion

has risen across plants in the U.S. (see Figure 12), as emphasized for example

by Gouin-Bonenfant (2019).
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Figure 11: Elasticity of TFPR with respect to TFPQ in the U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected elasticity of TFPR
with respect to TFPQ for the U.S., 1978 to 2013.

Figure 12: Variance of ln(A) in the U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected variance of ln(A)
for the U.S., 1978 to 2013.
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8. Conclusion

We proposed a way to estimate the true dispersion of marginal products across

plants in the presence of additive measurement errors in revenue and inputs.

We showed that the response of revenue growth to input growth should be lower

for high-TFPR plants in the presence of measurement error. And then used the

projection of that response on TFPR to correct for measurement error. While

our method employs several assumptions, we used simulations to demonstrate

that our approach is robust or at least conservative.

We implemented our method on data from the Indian Annual Survey of In-

dustries from 1985–2013 and the US. Annual Survey of Manufacturing from

1978–2013. In India, we estimated that true marginal products were signifi-

cantly less dispersed than average products. As a result, potential gains from

reallocation fell 21% and the volatility of those gains across years fell by 20%.

In the U.S. our correction had even more bite. Average potential gains from

reallocation fell by 60%, while time-series volatility fell by 80%. Our correction

eliminated 2/3 of a severe downward trend in allocative efficiency for the U.S.

Even corrected, allocative efficiency declined by 15% for U.S. manufacturing

over the 35 years. Based on uncorrected data, allocative efficiency was 6% lower

in the U.S. than in India for 1985 to 2013. In contrast, our corrected series

implies consistently higher allocative efficiency in the U.S. than in India.

We hope our method provides a useful diagnostic for measurement errors

that can be applied when researchers have access to panel data on plants and

firms. For example, David and Venkateswaran (2019) and Bai, Jin and Lu (2019)

apply our correction to firm-level data for China.

Our findings leave many open questions for future research. Why did mea-

surement error worsen considerably over time in the U.S.? Why, even after our

corrections, does ample misallocation remain in the U.S. and India? Is this

real or due to some combination of model misspecification and proportional

measurement error? If it is real, can it be traced to specific government policies

or market failures (e.g. markup dispersion or capital/labor market frictions)?
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