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1 Introduction

Aggregate stock returns are predictable over time (e.g., Shiller 1981, Fama and French 1988),

creating the scope for investors to engage in market timing. Factors beyond the aggregate

market are sources of risk premia in the cross-section of assets (e.g., Fama and French 1993),

creating the basis for factor investing. How valuable is it to combine these two ideas and

construct the optimal factor timing portfolio, which unifies cross-sectional and time-series

predictability of returns? Answering this question has economic importance: the optimal

portfolio is equivalent to the stochastic discount factor (SDF). Therefore, if factor timing is

relevant for the optimal portfolio, we should account for this fact when estimating the SDF.

Empirically determining the value of factor timing appears difficult because it requires

measuring the predictability of many returns, which opens the door for spurious findings.

We propose a new approach to overcome this challenge. Imposing that the implied SDF is

not too volatile leads us to focus only on estimation of predictability of the largest principal

components of the factors. We find that these statistical restrictions are crucial to construct

robust forecasts of factor returns.

Taking into account the predictability of the factors leads to an estimated SDF which

exhibits drastically different properties than estimates which assume constant factor premia,

the standard approach in previous work. Our estimated SDF is more volatile: its variance

increases from 1.66 to 2.96. Moreover the benefits to factor timing are strongly time-varying,

which results in much more heteroskedasticity of the SDF. These fluctuations in SDF variance

exhibit a very different pattern than estimates which only account for the predictability of

market returns. They occur mostly at shorter business-cycle frequencies, and are correlated

with different macroeconomic variables.

Our empirical analysis focuses on fifty standard stock “anomaly” portfolios that have been

put forward in previous work as capturing cross-sectional variation in expected returns. To
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characterize an optimal portfolio and the SDF, we rely on two restrictions. First, we assume

that the SDF which prices stocks implies that a conditional factor model holds with respect

to these portfolios. Our setting enriches the previous literature by allowing for time-varying

loadings of the SDF on the factors. With this assumption, we entertain the possibility

that factor timing strategies are profitable. Second, we assume that the pricing kernel does

not generate excessively high Sharpe ratios.1 Such near-arbitrage opportunities would be

eliminated by arbitrageurs in equilibrium (Kozak et al., 2018). When the cross-section of

returns has a strong factor structure, this assumption implies that the time-series variation

in risk premia is mostly driven by time-varying exposure of the SDF to the largest sources

of variation in realized returns. If this were not the case, small components would be highly

predictable, generating implausibly large Sharpe ratios. The fifty portfolios we consider

exhibit such a factor structure, with a stable covariance matrix over time, which allows us to

exploit this idea empirically. We focus on the largest sources of variation by restricting our

attention to the first five principal components (PCs) of anomaly returns, which explain 60%

of the variation in realized returns. This dimension reduction allows for robust estimation of

their predictability, and therefore the SDF. As such, our approach is a regularization of the

left-hand-side of the predictability problem — “which factors are predictable?” — rather

than the right-hand side — “which variables are useful predictors?” We take a simple stance

on this second issue by using only the book-to-market ratio of each portfolio as a measure

to predict its returns.

We find that the PCs of anomalies are strongly predictable. For the two most predictable

components, the first and fourth PCs, their own book-to-market ratios predict future monthly

returns with an out-of-sample R2 around 4%, about four times larger than that of predicting

the aggregate market return. We confirm these strong relations are not driven by statistical

issues arising in small samples. The predictability of the dominant PC portfolios captures
1Using simple economically-motivated restrictions on asset prices to stabilize statistical inference has

notable antecedents, for example Cochrane and Saa-Requejo (2000) and Campbell and Thompson (2007).
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common variation in risk premia which allows us to form forecasts of individual anomaly

returns. These forecasts yield a sizable total out-of-sample monthly R2 around 1%. The

observation that factor returns are robustly predictable lends support to the enterprise of

factor timing. We confirm that this conclusion does not rely on the details of our imple-

mentation by varying, for example, the number of principal components, the construction of

anomaly portfolios, and the horizon of predictability.

The key ingredient for our results is the dimension reduction of the set of portfolios to

predict. One could instead separately estimate expected returns for each anomaly portfo-

lio without recognizing the factor structure in returns and imposing the absence of near-

arbitrage. We find this approach to be less fruitful: predicting each anomaly return with its

own book-to-market ratio generates only half of the predictability our restrictions uncover.

The out-of-sample robustness of our approach supports the validity of these restrictions. In-

terestingly, our approach complements the set of methods developed to choose among many

predictors given a portfolio to predict. For example, we find that the 3-pass regression fil-

ter of Kelly and Pruitt (2013) provides more robust results when applied to the dominant

components of anomalies rather than to each portfolio separately.

We use our results to construct an optimal factor timing portfolio. This allows us to

quantify the investment benefits to factor timing. And, more importantly, we use it to

characterize the properties of an SDF consistent with the evidence of these factor timing

benefits. First, timing expected returns provides substantial investment gains; a pure factor

timing portfolio achieves a Sharpe ratio of 0.71. This means that the conditional variance of

the SDF is substantially larger than that inferred from static strategies alone. The benefits

from timing market-neutral factors largely outweigh those from timing the aggregate mar-

ket return and are comparable to those obtained by static factor investing. Second, these

benefits vary over time: the SDF is strongly heteroskedastic. Variation in the maximum

compensation for risk is driven by changes in the means of the factors and to a lesser extent
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changes in their variances. Again, these fluctuations are much more pronounced than fluc-

tuations in the Sharpe ratio of the market portfolio. Third, the dynamics of the variance of

the SDF differ from those of the market risk premium. The SDF variance evolves mostly at

business cycle frequency rather than at longer horizons. However, it is not always related

to recessions. More broadly, macroeconomic variables capturing variations in the price of

market risk often have different relations with the SDF variance. Fourth, the contribution

of various anomalies to the SDF exhibit interesting dynamics. For example, the loadings of

size and value are procyclical while the loading of momentum is countercyclical.

To summarize, factor timing is very valuable, above and beyond market timing and factor

investing taken separately. The changing conditional properties of the pricing kernel are

mostly driven by market-neutral factors. The methods and facts we study in this paper are

only the beginning of the economic enterprise of understanding the evolution of drivers of risk

premia. Our results suggest that theories developed to understand cyclical variation in the

price of market risk (e.g. Campbell and Kyle (1993); Campbell and Cochrane (1999); Bansal

and Yaron (2004); Barberis et al. (2015)) are unlikely to capture the dynamic properties

of the cross-section of returns. Indeed, these models generate SDFs that are much less

volatile and heteroskedastic than our estimated SDF. Further, they typically focus on a

single common force driving variation in risk premia, at odds with the multiple dimensions

we uncover. Finally, the properties of our estimated SDF provide a useful set of moments

summarizing the properties of the rich cross-section of stocks, moments that future theories

should target.

Related literature

This paper builds on the long literature which studies the time series predictability of returns,

starting from Shiller (1981) and Fama and French (1988) for stocks, or Fama and Bliss (1987)
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for bonds.2 While this early evidence is mostly about aggregate returns, our main focus is

on understanding predictability of cross-sections of returns. Early work has extended the

ideas of market predictability to specific anomalies: Cohen et al. (2003) for value or Cooper

et al. (2004) and Daniel and Moskowitz (2016) for momentum. We aim to tackle the entire

cross-section. With a similar goal, various papers such as Stambaugh et al. (2012) and Akbas

et al. (2015) examine the ability of a single variable to forecast all anomaly returns, and thus

their common component. These papers implicitly assume a single source of time-varying

risk premia; our approach entertains multiple. This multiplicity is complementary to that of

Kelly and Pruitt (2013): while we study how to predict many returns with a factor-specific

explanatory variable (its own valuation ratio), they predict a single return with a wide cross-

section of valuation ratios. That is, we ask a question of what we should predict, while they

study how to select variables which are most useful in making such a prediction.

Another strand of the literature studies the predictability of returns anomaly by anomaly

(or stock by stock) without imposing any structure on the implied pricing kernel. Recent

prominent examples are Campbell et al. (2009) and Lochstoer and Tetlock (2016), who use

panel VAR techniques to forecast firm-level expected returns, then aggregate the estimates

into portfolios. Asness et al. (2000); Cohen et al. (2003); Arnott et al. (2016a,b); Baba Yara

et al. (2018) and others use valuation ratios to forecast anomaly returns. Greenwood

and Hanson (2012) forecast characteristics based anomalies using their “issuer-purchaser”

spread—the difference in the average characteristic for net equity issuers vs repurchasers.

Conversely, some papers such as Ilmanen and Nielsen (2015), Asness (2016), and Asness

et al. (2017) find that cross-sectional long-short factors are not very predictable by valuation

ratios. Irrespective of their conclusion, all of these papers forecast a single return at a time,

ignoring the correlation across assets. Implicitly, they assume there are potentially as many

independent sources of time-varying risk premia as there are assets. We, instead, study

2See Koijen and Van Nieuwerburgh (2011) for a survey of recent work on the topic.
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common sources of predictability across all anomalies in a restricted setup and then infer

the implied predictability of each anomaly. Such an approach brings important statistical

advantages in terms of dimensionality reduction. In Section 3 we show our method yields

greater out-of-sample predictability than various alternatives.

Another literature develops methods for dealing with the large dimensionality of the

cross-section. Freyberger et al. (2018) use an adaptive group lasso method to test which

characteristics provide independent information for the cross section of expected returns on

individual stocks. Kozak et al. (2019) model SDF risk prices as linear functions of char-

acteristics, while Kozak (2019) extends this approach to capture arbitrary non-linearities.

Kelly et al. (2018) model stock betas as linear functions of characteristics. Light et al.

(2017), Kelly et al. (2018), and Giglio and Xiu (2018) employ latent factor analysis. Kozak

et al. (2018) and Kozak et al. (2019) use no near-arbitrage to argue for the use of prin-

cipal components analysis (PCA). All these dimension-reduction techniques are somewhat

related. For example, Kelly et al. (2018) show that if the cross-sectional correlation matrix

of stock characteristics is constant their latent factors exactly correspond to largest PCs of

characteristics-managed anomaly portfolios. We also use PCA to handle a high-dimensional

factor space. However, we differ from this previous work in an important dimension. In

all these papers, expected returns on anomaly portfolios are approximately constant or vary

only due to time-varying volatility. In contrast, we entertain the possibility and find evidence

for significant time-variation in prices of risk on these factors.

Finally, some papers highlight the quantitative importance of conditioning information for

the SDF. Gallant et al. (1990) use conditioning information and asset prices to derive lower

bounds on the unconditional variance of the SDF. We use upper bounds on the unconditional

variance to derive restrictions on the impact of conditioning information. Chernov et al.

(2018) propose testing asset-pricing models using multi-horizon returns and find that many

standard empirical models of the SDF are rejected, exactly because they lack time-variation
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in how the SDF loads on the factors. Moreira and Muir (2017) document benefits to volatility

timing, implying changes in volatility play a meaningful role in the heteroskedasticity of the

SDF.

2 Methodology

We are interested in assessing the benefits of timing strategies for a cross-section of excess

returns {Ri,t}i∈I ; our main empirical setting is the cross-section of stock returns. Studying

these timing benefits is important for the purpose of optimal portfolio choice, but also

to understand the economic forces shaping equilibrium prices. To measure these benefits

requires measuring the dynamics of risk premia. The connection between factor timing

benefits, the stochastic discount factor, and predictability is best illustrated by the following

decomposition. In Appendix A, we show that if asset returns are uncorrelated, the average

maximum conditional Sharpe ratio can be expressed as

E
(
SR2

t

)
= E [vart (mt+1)] =

∑
i

E [Ri,t+1]2

σ2
i

+
∑
i

(
R2
i

1−R2
i

)
. (1)

The first equality shows that the average maximum squared Sharpe ratio coincides with the

expected variance of mt+1, where mt+1 is the minimum variance stochastic discount factor

which prices the set of returns. The second equality shows that these quantities combine two

elements. The first term is an unconditional part reminiscent of static Sharpe ratios: the sum

of ratios of the squared average return to σ2
i , the conditional variance of the asset return.3 Of

interest to us is the second term which encodes predictability. This term is increasing in the

R2
i s, the maximum predictive R-squared when forecasting asset i, R2

i = 1− σ2
i /var (ri,t+1).

Without any structure, it is challenging to create robust forecasts for all returns. Spurious

results are likely, especially with many assets to predict. In this section, we show how two
3For simplicity of exposition, we focus on a homoskedastic setting.
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simple restrictions help address these issues. First, we follow the literature and assume

that a relatively small number of stock characteristics capture pricing-relevant information.

Equivalently, the assets are conditionally priced by a factor model, the main motivation

behind factor timing portfolio strategies. Second, we assume that prices feature no near-

arbitrage opportunities. These assumptions imply that measuring the predictability of the

largest principal components of the set of factors is enough to characterize expected returns.4

This strong dimension reduction allows us to use the standard tools for forecasting single

return series to measure this predictability.

2.1 Factor Model, Factor Investing, and Factor Timing

First, we impose some structure on the pricing kernel. Start with the minimum variance

SDF in the span of N individual stock (asset) excess returns Rt+1 (Hansen and Jagannathan,

1991):

mt+1 = 1− b′t (Rt+1 − Et [Rt+1]) , (2)

which satisfies the fundamental relation 0 = Et [mt+1Rt+1]. We restrict the behavior of the

loading bt. As in Kelly et al. (2018), Kozak et al. (2019), Freyberger et al. (2018), and Kozak

(2019), we use stock characteristics to reduce the dimensionality of the return space and

the SDF. In particular, we assume that cross-sectional heterogeneity in risk prices bt can

be largely captured by K observable stock characteristics, Ct, with K � N . Time-series

variation in the importance of each characteristic is summarized by the vector δt of size

K × 1.

4Specifically, the expected return on any asset is the product of the asset’s conditional loading on, and
the expected return of these few components.
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Assumption 1. Stock-level SDF loadings can be represented as

bt︸︷︷︸
N×1

= Ct︸︷︷︸
N×K

δt︸︷︷︸
K×1

, (3)

where Ct is an N ×K matrix of stock characteristics and δt is a K × 1 vector of (possibly)

time-varying coefficients, and K � N .

Substituting Equation 3 into Equation 2, we obtain an alternative SDF representation

mt+1 = 1− δ′t (Ft+1 − Et [Ft+1]) , (4)

where Ft = C ′t−1Rt are “characteristics-managed” factor portfolios. For example if one

element of Ct is the market capitalization of a firm, the corresponding factor is the market

return. If the characteristic is an indicator taking values -1, 0, or 1 depending on whether

a stock is in the upper or lower quantiles of a characteristic, the corresponding factor is a

standard sort-based portfolio in the style of Fama and French (1992). We can now interpret

δt as time-varying prices of risk on these factor portfolios.

Assumption 1, therefore, allows us to use characteristics to parsimoniously describe the

cross-section but also permits time-variation in a relatively small number of factor risk prices.

Consequently, it results in a large dimensionality reduction in the number of variables de-

termining the SDF. However, it is rich enough to consider meaningful variation in factor

expected returns, the fundamental idea behind factor timing. For example, this is a richer

setting than in Kozak et al. (2019) which assumes the mapping from stock characteristics to

SDF coefficients is constant, bt = Ctδ.5 In such a specification, there is no scope for factor

timing since SDF coefficients are equal to weights in the maximum Sharpe ratio portfolio.

Another way to see that our model entertains factor timing is to notice that our SDF can
5While they focus on slightly different functional forms, Kelly et al. (2018) and Freyberger et al. (2018)

also assume a constant mapping between characteristics and factor exposures.

10



alternatively be represented as a factor model, with arbitrarily changing expected factor

returns.

Lemma 1. (Conditional Factor Model) A conditional factor model holds:

Et [Rj,t+1] = β′jtΣF,tδt = β′jtEt [Ft+1] . (5)

The equivalence between the factor model and Equation 4 is given by δ′t = Σ−1
F,tEt (Ft+1),

where ΣF,t is the conditional covariance matrix of the factors. This relation also highlights

that our model can generate interesting risk premium variation even in a homoskedastic

setting for returns, where the variance-covariance matrix of the factors ΣF,t and the betas

β′jt are constant over time. This result arises because δt controls how the SDF loads on the

factors, and therefore changes their price of risk.6

In our framework, because the factors completely capture the sources of risks of concern

to investors, optimal portfolios can be constructed from only these few factors—the so-

called mutual fund theorem. Factor timing strategies are the dynamic counterpart of this

observation; as the properties of the factors change, an investor should adjust her portfolio

weights accordingly. For example, the maximum conditional Sharpe ratio return is obtained

by:

Ropt
t+1 = Et [Ft+1]′Σ−1

F,tFt+1. (6)

Knowledge of the conditional risk premia of the factors is crucial to form this and other

dynamic strategies.

While going from individual assets to factors provides some useful dimension reduction

and stabilization of the covariance structure, we are still left with many factor returns to

6Variations in δt could occur for multiple reasons. For example, investors’ aversion to the various sources
of factor risk could change over time. Or, their exposure to these risks, for example through consumption,
could change over time.
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forecast.7 A multitude of empirical results and theoretical motivations have put forward

a large number of potential factors, leading to the emergence of what Cochrane (2011)

calls the “factor zoo.” Including potentially irrelevant factors does not affect the theoretical

performance of a factor model; the SDF would just have zero loading on these factors.

However, including too many factors leads to greater probability of estimating spurious

return predictability in finite samples. We now turn to a second assumption which helps

discipline our empirical analysis.

2.2 Absence of Near-Arbitrage

Various authors have used the idea of the absence of “good deals” or “no near-arbitrage”

opportunities to add economic discipline to statistical exercises. For example, Cochrane

and Saa-Requejo (2000) impose an upper bound on the conditional variance of the SDF to

derive bounds on option prices. Ross (1976) originally proposed a bound on the squared

Sharpe ratio for an unconditional empirical implementation of his APT in a finite-asset

economy. Such a bound on the maximum squared Sharpe ratio is immediately equivalent

to an upper bound on the variance of the SDF, mt+1 (Hansen and Jagannathan, 1991).

Kozak et al. (2018) use a similar argument to show that unconditionally, the large principal

components of anomaly returns must explain most of the cross-sectional variation in average

returns. In our setting with time-varying risk premia, there is no such thing as the maximum

Sharpe ratio, rather a conditional maximum Sharpe ratio at each point in time. What is

an appropriate metric for a “good deal in this setting?” We argue that it is the average

maximum conditional squared Sharpe ratio, E
[
SR2

t

]
.

Assumption 2. (Absence of near-arbitrage) There are usually no near-arbitrage opportuni-

ties: average conditional squared Sharpe ratios are bounded above by a constant.

7This stabilization role is discussed for example in Brandt et al. (2009); Cochrane (2011); Kozak et al.
(2018).
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There are two interpretations of this restriction on Sharpe ratios which help clarify its

economic content. First, this quantity corresponds to the average certainty equivalent for a

mean-variance investor who optimally uses conditioning information. For such an investor

with risk-aversion parameter γ, her certainty equivalent at time t is SR2
t

2γ where SR2
t is the

maximum conditional squared Sharpe ratio (see Section A.2). Taking the unconditional

expectation of SR2
t measures, on average, the welfare gain from investing in risky assets.

Second, the average conditional variance of the SDF in Equation 4 is also equal to its

unconditional variance since it has constant conditional mean. Therefore, our bound is also

a bound on the unconditional variance of the SDF. Third, it equivalently provides an upper

bound on the maximum unconditional squared Sharpe ratio when considering all possible

dynamic factor strategies. This unconditional value measures the welfare gain for a mean-

variance investor who does not have direct access to conditioning information but follows a

buy and hold strategy from a menu of managed portfolios (Ferson and Siegel, 2001).8 Both

of these interpretations highlight that our bound forbids “good deals” on average, but not

always.

We now show that Assumption 2 leads to further dimensionality reduction. First, notice

that because the maximum conditional Sharpe ratio is invariant to rotations of the asset

space, we can apply Equation 1 with the PC decomposition of returns. Letting PCi,t+1 be

the ith principal component portfolios of the factors F , and λi the corresponding eigenvalue,

we have

E
(
SR2

t

)
=

K∑
i=1

E [PCi,t+1]2

λi
+

K∑
i=1

(
R2
i

1−R2
i

)
, (7)

where the summation is across all K PC portfolios. Again, the first term represents the

benefits of static factor investing. It is the squared Sharpe ratio of an optimal static factor

portfolio. The second term is our focus in this paper and captures the amount of pre-

8Gallant et al. (1990) use this estimated unconditional variance to empirically test asset pricing models
in the presence of conditioning information.
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dictability for each principal component. The more a principal component can be predicted,

the better portfolio performance an investor can obtain. This second term represents the

incremental benefit of optimally timing the factors.

Second, we can ask how much each PC portfolio contributes to the total predictability

of returns. As a measure of the total amount of predictability we define the total R2 as

R2
total ≡

tr [cov (Et [Ft+1])]
tr [cov (Ft+1)] = tr [cov (Et [PCt+1])]

tr [cov (PCt+1)] (8)

=
K∑
i=1

(
R2
i

1−R2
i

)
λi
λ
,

where λ = ∑ λi
1−R2

i
≈ ∑

λi is the total unconditional variance of returns (Appendix A.3

shows the derivations). This quantity measures the total amount of predictability for the

cross-section of returns, and has the useful feature to be invariant by rotation of the asset

space. The second line shows that the total R2 comes from the predictability of each of the

PCs, weighted by their importance in explaining the factors. In the case of a single asset,

the formula reduces to the standard predictive R2.

What happens when the set of portfolios exhibits a factor structure, that is some λi are

large while others are smaller? Combining the total R2 and maximum squared Sharpe ratio

relations, one can see that small principal components cannot contribute meaningfully to

predictability, or they would yield too high a Sharpe ratio. Intuitively, while it is entirely

possible that each of the many proposed factors are predictable, it is unlikely they all cap-

ture independent sources of risk. Otherwise, investors would be able to diversify across them

and obtain implausibly large Sharpe ratios. This is the dynamic counterpart to the static

reasoning of Kozak et al. (2018), who use a similar argument to conclude that small principal

components cannot contribute meaningfully to the cross-sectional dispersion in average re-

turns. Hence, the large few PC portfolios must capture both cross-sectional and time-series

variation in expected factor returns. We define Zt+1 as the vector of the largest principal
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component portfolios of Ft+1. The exact number of PCs to include is an empirical question

and depends on the strength of the factor structure. The following proposition summarizes

the implications of this result for the SDF and the optimal factor timing portfolio.

Proposition 1. Under Assumption 1 and Assumption 2, the SDF can be approximated by

a combination of the dominant factors:

mt+1 ≈ 1− Et [Zt+1]′Σ−1
Z,t (Zt+1 − Et [Zt+1]) . (9)

Equivalently, the maximum Sharpe ratio factor timing portfolio can be approximated by

Ropt
t+1 ≈ Et [Zt+1]′Σ−1

Z,tZt+1. (10)

Our two assumptions are complementary in the following sense. Assumption 1 delivers

the conclusion that factor timing is sufficient; one need not time individual stocks. Even

without this assumption, Assumption 2 provides a useful way to time a given set of factors.

However, the two together allow us to measure properties of the SDF, shedding light on a

fundamental economic quantity.

As we will show in the context of our empirical application, no more than a few principal

components explain a sizable fraction of the variation in the factor returns. In addition,

because factors are often chosen to offer a stable correlation structure, the extraction of

dominant components is readily implementable using the standard unconditional method.9

We are left with estimating the conditional means and variances of these large principal

components. In this paper, we concentrate on estimating the mean forecasts Et [Zt+1], that

is produce return forecasts for a low-dimensional set of portfolio returns. The estimation of

volatility is typically more straightforward, and we come back to it in Section 5.4.10 Because
9Stock and Watson (2002) provide conditions under which unconditional principal components analysis

identifies important components even in the presence of time-varying parameters.
10Moreira and Muir (2017) and Engle and Kelly (2012) are examples of work that point to methods for
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we are only focusing on few components, we use standard forecasting methods for individual

returns.

To summarize, our assumptions lead to the following approach to measure conditional

expected returns and engage in factor timing:

1. Start from a set of pricing factors Ft+1.

2. Reduce this set of factors to a few dominant components, Zt+1, using principal com-

ponents analysis.

3. Produce separate individual forecasts of each of the Zt+1, that is measures of Et [Zt+1].

4. To measure the conditional expected factor returns, apply these forecasts to factors

using their loadings on the dominant components.

5. To engage in factor timing or estimate the SDF, use these forecasts to construct the

portfolio given in Equation 10.

In the remainder of this paper, we implement this approach in the context of the cross-

section of stock returns. We show how our method allows one to obtain robust measures

of expected returns, which is useful for factor timing. And, by studying the corresponding

SDF, we explain how it generates novel empirical facts to discipline economic models. In

Appendix C, we provide an alternative, more statistical motivation for our methodology.

3 Factor Return Predictability

3.1 Data

Step 1 of our approach is to start with a set of pricing factors. For equities, we focus on

a broad set of fifty “anomaly” portfolios which effectively summarize the heterogeneity in
timing volatility and the benefits it provides.
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expected returns, following the logic in Kozak et al. (2019). We present here the construction

for our main estimates, and confirm the robustness of our conclusions around these choices

in Table 4. We construct these portfolios as follows. We use the universe of CRSP and

COMPUSTAT stocks and sort them into 10 value-weighted portfolios for each of the 50

characteristics studied in Kozak et al. (2019) and listed in Appendix Table A.4. Portfolios

include all NYSE, AMEX, and NASDAQ firms; however, the breakpoints use only NYSE

firms as in Fama and French (2016). Our sample consists of monthly returns from January

1974 to December 2017.

We construct the long-short anomalies as differences between each anomaly’s return on

portfolio 10 minus the return on portfolio 1. For each anomaly strategy we also construct its

corresponding measure of relative valuation based on book-to-market ratios of the underlying

stocks. We define this measure, bm, as the difference in log book-to-market ratios of portfolio

10 and portfolio 1.11

Most of these portfolio sorts exhibit a significant spread in average returns and CAPM

alphas. This finding has been documented in the vast literature on the cross-section of

returns and can be verified in Appendix Table A.4. In our sample, most anomalies show a

large, nearly monotonic pattern in average returns across decile portfolios, consistent with

prior research. Rather than studying unconditional mean returns, our primary focus in this

paper is on time variation in conditional expected returns, which has received considerably

less attention in prior work.

Finally, we also market-adjust and rescale the data. Specifically, for each anomaly we

compute its regression β with respect to aggregate market returns. We then market-adjust

our returns and predictors by subtracting β × rmkt for returns and β × bmmkt for the bm

ratios. Next, we rescale the market-adjusted returns and bm ratios so that they have equal

11The book-to-market ratio, bm, of a portfolio is defined as the sum of book equity relative to the total
market capitalization of all firms in that portfolio. Equivalently, it is the market-capitalization weighted
average of individual stocks’ bm ratios.
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Table 1: Percentage of variance explained by anomaly PCs

Percentage of variance explained by each PC of the 50 anomaly strategies.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
% var. explained 25.8 12.4 10.3 6.7 4.8 4.0 3.6 2.8 2.2 2.1
Cumulative 25.8 38.3 48.5 55.2 60.0 64.0 67.6 70.4 72.6 74.7

variance across anomalies. Importantly, the βs and variances used for these transformations

are estimated using only the first half of the sample so that out-of-sample (OOS) statistics

contain no look-ahead bias.

3.2 Dominant Components of the Factors

Step 2 of our approach is to reduce this set of factors to a few dominant components, its

largest PCs. We are interested in the joint predictability of anomaly portfolio returns. We

construct PCs from the 50 anomaly portfolios and study their predictability. Formally,

consider the eigenvalue decomposition of anomaly excess returns, cov (Ft+1) = QΛQ′ , where

Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The i-th PC

portfolio is formed as PCi,t+1 = q′iFt+1 where qi is the i-th column of Q. To ensure our later

OOS results do not have any look-ahead bias, we estimate Q and Λ using only the first half

of the data.

Table 1 shows that anomaly portfolio returns exhibit a moderately strong factor struc-

ture. For example the first PC accounts for one fourth of the total variation. This is sizable

but however, much weaker than what is typically found in other asset classes such as Trea-

sury bonds or foreign exchange. How many components should we use? The relations of

Equation 7 and Equation 8 provide some guidance for this choice if we use some plausible

priors. First, Campbell and Thompson (2007) show that the monthly R2 when predicting

the market is around 75bp when using various price ratios, so we can use this as a rea-

sonable magnitude for the predictability (total R2) of the anomalies. Second, a relatively
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loose upper bound on the maximum Sharpe ratio E (S2
t ) is 1 at the annual frequency —

about twice that of the market — or 8.3% monthly. Under the view that all included PCs

contribute equally to the total R2, the harmonic mean of their contribution to the total

variance of returns must be higher than the ratio of these two numbers, 75bp/8.3% = 9%.12

Using the eigenvalues in Table 1, this value yields that we should include at most five PCs.

Based on this simple calculation, we focus on these for our main analysis, but also explore

robustness to other choices. These five components jointly explain nearly two-thirds of the

total variation in returns. Since our portfolios are market-neutral, we also include the ag-

gregate market portfolio as a potentially important pricing factor. In other words, we study

Zt+1 = (Rmkt,t+1, PC1,t+1 · · · PC5,t+1).

3.3 Predicting the Large PCs of Anomaly Returns

Step 3 of our approach is to produce individual forecasts of the dominant components of

factor returns.

Predictors. We obtain these forecasts using standard predictive regressions on valuation

ratios. Valuation ratios are the most commonly used forecasters for the market return, going

back to Shiller (1981), Fama and French (1988), and Campbell and Shiller (1988). They have

also been used at the individual stock level, by Vuolteenaho (2002); Lochstoer and Tetlock

(2016). Cohen et al. (2003) show that value-minus-growth strategies are predictable by their

own book-to-market ratios. Kelly and Pruitt (2013) use a large cross-section of book-to-

market ratios to predict both the aggregate market return as well as portfolios sorted on

various characteristics. This broad use comes from the fact that one should expect them

to be informative about expected returns. For example, log-linearizing the clean surplus

accounting relation of Ohlson (1995), Vuolteenaho (2002) shows that the log book-to-market

12Appendix Section A.4 provides a derivation of this formula.

19



ratio of a long-only strategy is a discounted sum of all future expected returns for this strategy

minus future earning growth. By using valuation ratios as well, our conclusions are readily

comparable to this seminal work. However, we are not arguing that other predictors, perhaps

motivated by specific economic theories, could not find additional sources of predictability.

Following our broad goal of dimension reduction, we construct a single predictor for

each portfolio: we use its net book-to-market ratio. For predicting PCi,t+1, we construct

its own log book-to-market ratio bmi,t by combining the anomaly log book-to-market ratios

according to portfolio weights: bmi,t = q′ibm
F
t . We use the difference between this quantity

for the long and short leg of our PCs, thereby capturing potentially useful information about

future expected returns. Intuitively, bmi,t keeps track of the relative valuation of stocks of

a certain fixed combination of “types” (e.g. value vs. growth, large vs. small, etc.), where

these “types” are varying across stocks. When the valuation spread is large, it is natural to

expect that stocks of the corresponding combination of “types” will experience low future

returns. These portfolio-level book-to-market ratios are likely to be stable (even though

portfolio composition is changing) because expected returns depend on this combination of

“types”; empirically we find they are stable.

In addition, note that this choice of predictors dramatically reduces the dimensionality

of the set of predictive variables. In Section 3.6 we explore alternative methods for analyzing

high-dimensional data.

Predictability results. We analyze the predictability of anomaly PC portfolios and the

aggregate market using a monthly holding period, as in Campbell and Thompson (2007).

Table 2 shows the results of these 6 predictive regressions. The first two rows report the

predictive coefficient estimate and Newey and West (1987) t-statistic.13 The third and fourth

rows show the bias in coefficient estimate and p-value obtained from a parametric bootstrap.

13We use a two-year window for the Bartlett kernel.
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Precisely, we first estimate a restricted VAR(1) for a PC’s return and bm ratio under the

null of no predictability. We then simulate 10,000 histories from the VAR system with errors

drawn with replacement from the empirical distribution. From these simulations, we obtain

the distribution of coefficients and t-statistics. We construct p-values by using the simulated

distribution of the t-statistics. Both the asymptotic standard errors and these p-values are

useful for inference: the Newey and West (1987) standard errors is consistent under mild

assumptions on the data-generating process, while the p-value corrects for potential finite-

sample biases and non-normality. The fifth row gives the full sample predictive R2 and the

sixth row reports the OOS R2.14 To compute this statistic we divide the sample into two

equal halves. We estimate predictive coefficients in the first half and apply these to bm ratios

in the second half to form OOS forecasts. Since all data construction choices use only the

first half data, OOS results are not subject to look-ahead biases.

14We define the OOS R2 as 1 − var(r−r̂)
var(r) where r̂ is the forecast formed using parameters estimated

in-sample.
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Table 2: Predicting dominant equity components with BE/ME ratios

We report results from predictive regressions of excess market returns and five PCs of long-short
anomaly returns. The market is forecasted using the log of the aggregate book-to-market ratio.
The anomaly PCs are forecasted using a restricted linear combination of anomalies’ log book-to-
market ratios with weights given by the corresponding eigenvector of pooled long-short strategy
returns. The first row shows the coefficient estimate. The second row shows asymptotic t-statistics
estimated using the method of Newey and West (1987). The third and fourth rows show the bias
and p-value from a parametric bootstrap. The fifth and sixth rows shows the in-sample and out-of-
sample monthly R2. The last three rows give critical values of the OOS R2 based on the placebo
test in Kelly and Pruitt (2013).

MKT PC1 PC2 PC3 PC4 PC5
Own bm 0.76 4.32 1.62 1.80 4.86 1.56

(1.24) (4.31) (1.81) (2.01) (3.74) (0.78)

bias 0.68 0.36 0.16 0.18 0.10 0.08
p-value 0.35 0.00 0.10 0.07 0.00 0.48
R2 0.29 3.96 0.74 0.56 3.59 0.50
OOS R2 1.00 4.82 0.97 0.47 3.52 0.55

OOS R2 Critical Values
90th 0.44 0.49 0.29 0.21 0.71 0.59
95th 0.68 0.97 0.48 0.37 1.19 0.96
99th 1.35 1.73 0.87 0.84 1.95 1.71

Consistent with previous studies, the estimate is not statistically significant for the mar-

ket. While the OOS R2 of 1% is encouraging, the bootstrap exercise reveals that there is

substantial Stambaugh bias, almost as large as the estimated coefficient. In contrast, PCs 1

and 4 are unambiguously predictable by their own bm ratio. The estimated coefficients are

large and significant, with t-statistics around 4 and bootstraped p-values close to 0. Both

the in-sample and OOS R2s are large: around 4% for PC1 and around 3.5% for PC4. The

estimated relation for PC2 and PC3 exhibit weaker strength, but still appears statistically

significant. T-statistics are 1.81 and 2,01, while bootstraped p-values are 11% and 7%. The

OOS R2s take values around 1% and 0.5%. Finally, PC5 does not appear predictable, with

an insignificant coefficient estimate. For these PC portfolios, coefficients are slightly biased
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upward. In contrast to the market estimates, the biases for the PC portfolios are small

relative to the estimated coefficients. In Appendix B.2 we show that this substantially lower

bias for the PC portfolios obtains for two reasons. First, their bm ratios are less persistent

than that of the aggregate market. Second, the correlation of innovations to bm ratios and

returns is lower for the PCs than for the market.

To further demonstrate that the predictability we uncover does not arise due to mechan-

ical biases, we run placebo tests following Kelly and Pruitt (2013). This allows us to assess

whether the OOS R2s we obtain are statistically significant. Specifically, we generate six

AR(1) processes that are specified to have the same mean, autocorrelation, and covariance

as the bm ratios we use as predictors.15 Since these are simulated values, they are inde-

pendent of true return data. We then construct OOS forecasts for actual returns using the

simulated data and record the OOS R2 values. We repeat this procedure 1,000 times to

obtain simulated distributions for OOS R2 statistics. From these distributions, we compute

90%, 95%, and 99% critical values, reported in the last three rows of Table 2. Comparing

the estimated OOS R2 with the critical values reinforces the conclusions we drew above. The

estimated OOS R2 for the PCs are unlikely to be due to mechanical finite-sample biases:

they are all significant at the 5% level except for PC5.

In Appendix Figure A.1 we report the time series of realized returns along with full

sample and out-of-sample forecasts of returns on the aggregate market and the first five

PC portfolios of anomalies. In particular for PC1 and PC4, the out-of-sample forecasts are

remarkably close to the full sample values, further confirming that our coefficient estimates

are precisely measured.

Importance of restrictions. Our emphasis on the largest principal components is pred-

icated on the idea that they should capture most of the variation in expected returns. In

15We match these moments using the first half of the data to avoid any potential look-ahead bias.
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Figure 1: Predictability of equity PCs with own bm ratios. The plot shows the in-sample
(IS) and out-of-sample monthly R2 of predicting each PC of anomaly portfolio returns with its own
bm ratio. The dotted gray line (using the right axis) shows the fraction of total variance explained
by each PC.

Figure 1 we report predictability for all the principal components of our factors. Only large

PCs are strongly predictable in- and out-of-sample by their own bm ratios. In this sense, our

focus on predicting only the first few PCs is not only motivated by theory, but finds strong

support in the data. In addition, by focusing on predicting only these dominant components

we uncover robust predictability in the data and largely ignore spurious predictability that

stems from small PCs. This latter result echoes the more statistical concerns we put forward

as well.

We now turn to forecasting individual anomalies to consider how the restrictions we

impose help in this exercise.

3.4 Predicting Individual Factors

Step 4 of our approach is to infer expected return forecasts for the individual factors from

the forecasts of our dominant components. Since factors are known linear combinations of

the PC portfolios, we can use the estimates in Table 2 to generate forecasts for each anomaly.

Notably, each anomaly return is implicitly predicted by the whole cross-section of bm ratios.
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Table 3 shows the in- and out-of-sample R2 for each anomaly return using our method.

Many of the anomalies are highly predictable; roughly half have OOS R2 greater than 1%

and only two have OOS R2 below −1%. The total R2 is 1.03% in-sample and 0.93% OOS.16

Our approach allows us to uncover these patterns in a robust way.

The substantial anomaly predictability we document in Table 3 also contributes to the

recent debate on whether these strategies represent actual investment opportunities or are

statistical artifacts which are largely data-mined. For example, Hou et al. (2017) claim that

most anomalies are not robust to small methodological or sample variations and conclude

there is “widespread p-hacking in the anomalies literature.” Using a different methodology,

Harvey and Liu (2016) argue that the three-factor model of Fama and French (1993) provides

a good description of expected returns, and hence, most CAPM anomalies are spurious.

Interestingly, we find that some anomalies, such as size and sales growth, which have low

unconditional Sharpe ratios are nonetheless highly predictable. This indicates that these

strategies at least sometimes represent “important” deviations from the CAPM. This echoes

the importance of conditioning information, as emphasized by Nagel and Singleton (2011)

and others. More generally these results highlight that a lack of risk premium on average

does not necessarily imply a lack of risk premium always: expected returns can be sometimes

positive and sometimes negative for the same strategy.

16We measure the OOS total R2 as 1− tr[cov(εt+1)]
tr[cov(Fi,t+1)] where εt+1 are forecast errors. This quantity can be

negative, which typically obtains if forecasts and realizations are negatively correlated out-of-sample.
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Table 3: Predicting individual anomaly returns: R2 (%)

Monthly predictive R2 of individual anomalies returns using implied fitted values based on PC forecasts. Column 1 (IS) provides
estimates in full sample. Column 2 (OOS) shows out-of-sample R2.

IS OOS
1. Size 3.8 4.5
2. Value (A) 1.8 1.9
3. Gross Profitability -2.2 -4.7
4. Value-Profitablity 3.7 3.8
5. F-score 0.4 -0.2
6. Debt Issuance 0.8 0.5
7. Share Repurchases 0.9 0.7
8. Net Issuance (A) 2.4 3.8
9. Accruals -0.2 -0.1
10. Asset Growth 1.8 2.6
11. Asset Turnover 0.6 0.8
12. Gross Margins 0.6 -1.0
13. Earnings/Price 0.7 -0.0
14. Cash Flows/Price 0.7 0.4
15. Net Operating Assets 0.6 -0.2
16. Investment/Assets 1.8 1.3
17. Investment/Capital -0.1 -0.5
18. Investment Growth 1.8 1.9
19. Sales Growth 1.2 2.2
20. Leverage 0.6 0.7
21. Return on Assets (A) 0.9 1.2
22. Return on Book Equity (A) 1.2 -0.1
23. Sales/Price 2.0 1.2
24. Growth in LTNOA 0.5 0.7
25. Momentum (6m) 1.7 1.7
26. Value-Momentum -0.0 1.2
27. Value-Momentum-Prof. 1.7 2.5

IS OOS
28. Short Interest -0.5 -0.4
29. Momentum (12m) 1.3 1.4
30. Industry Momentum 0.1 -0.2
31. Momentum-Reversals 2.8 3.3
32. Long Run Reversals 5.7 5.5
33. Value (M) 3.6 3.0
34. Net Issuance (M) 0.8 1.3
35. Earnings Surprises -0.9 -0.7
36. Return on Book Equity (Q) 0.2 0.0
37. Return on Market Equity 0.7 0.1
38. Return on Assets (Q) 0.3 0.5
39. Short-Term Reversals 0.3 0.5
40. Idiosyncratic Volatility 1.5 0.6
41. Beta Arbitrage -0.6 -0.6
42. Seasonality -0.4 0.1
43. Industry Rel. Reversals 1.2 1.0
44. Industry Rel. Rev. (L.V.) 1.9 1.6
45. Ind. Mom-Reversals 0.6 -0.2
46. Composite Issuance -0.3 0.1
47. Price 4.3 3.5
48. Share Volume -0.4 -0.6
49. Duration 2.1 2.9
50. Firm age 0.3 0.5

Mean 1.1 1.0
Median 0.8 0.7
Std. Dev 1.4 1.7
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3.5 Robustness

Our main estimation includes many choices such as how to construct the raw anomaly

returns, the length of the holding period, how many PCs to include, whether to market-

adjust, and whether to rescale the data. In Table 4 we explore the robustness of our results

to changes in these specifications. For each specification, we report the OOS total R2 as

well as the number of PCs with statistically significant OOS R2 at the 5% level. The

first row repeats the results for our main specification. The next two rows show that our

results are robust to how the anomaly portfolios are constructed. Instead of first sorting

stocks into deciles for each characteristics, we use quintiles and terciles and obtain similar

results. In the next block we consider varying the number of included PCs from one to seven

and again obtain similar OOS findings. Adding more components does not meaningfully

enhance performance. Reducing the number of PCs below four leads to some reduction in

performance. Still, with only one PC we obtain more than half the OOS R2 of our baseline

model. Next we consider not market-adjusting or rescaling returns and bm ratios. In fact, the

OOS total R2 improves without these transformations. Finally, we consider different holding

periods. With quarterly, half-year, and annual holding periods, the OOS total R2 increases

almost proportionately with horizon. Importantly, this only obtains when estimating the PC

eigenvectors using monthly returns. That is, even with a twelve month holding period, we can

construct the PCs using the covariance matrix of monthly holding period returns. If instead

we construct PCs using only returns at the same frequency, meaningful information about

the covariance structure of returns is lost. Since we use non-overlapping returns, increasing

the holding period proportionately reduces the sample size. For an annual holding period,

the eigenvectors are estimated using only twenty-two observations so the sample covariance

matrix is not even of full rank. It is evidently beneficial to use higher frequency data to

estimate the covariance matrix and resulting eigenvectors. In Section B.1 we show that

our results are robust to using expanding- and rolling-window OOS methods, as well as

27



estimating the regressions in the second half of the sample and measuring OOS performance

in the first half.

Table 4: Various data choices

The table reports summary statistics of predictive regressions in Table 2 for various data construc-
tion choices. Specifically, we report the OOS total R2 and the number of PC portfolios for which
the OOS R2 is statistically significant using the placebo test of Kelly and Pruitt (2013). The first
column reports the number of portfolios used for the underlying characteristic sorts. The second
column reports the holding period in months. For holding periods longer than one month, the
third column reports whether principal components are estimated using monthly or holding period
returns. The fourth column reports whether the anomaly returns are orthogonalized relative to
the aggregate market. The fifth column reports whether the anomaly returns and book-to-market
values are normalized to have equal variance.

Anomaly
portfolio

sort

Holding
period

(months)

# of
PCs

Monthly
PCs

Market
adjusted
returns

Scaled
Returns
and bm

OOS
Total R2

# PCs
signif.

OOS R2

Deciles 1 5 X X X 0.93 4
Quintiles 1 5 X X X 1.01 4
Terciles 1 5 X X X 0.81 3
Deciles 1 1 X X X 0.57 1
Deciles 1 2 X X X 0.72 2
Deciles 1 3 X X X 0.78 3
Deciles 1 4 X X X 0.90 4
Deciles 1 6 X X X 0.97 5
Deciles 1 7 X X X 0.96 5
Deciles 1 5 X X 1.18 3
Deciles 1 5 X X 1.27 4
Deciles 1 5 X 1.24 2
Deciles 3 5 X X X 2.69 4
Deciles 3 5 X X 0.99 2
Deciles 6 5 X X X 5.42 3
Deciles 6 5 X X 3.49 3
Deciles 12 5 X X X 10.05 3
Deciles 12 5 X X 4.54 2
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3.6 Comparison to Alternative Approaches

Forecasting only large PC portfolios by their own bm ratio generates robust OOS total R2,

but there are many other ways one could forecast anomaly returns. Some papers advocate

methods which aim to deal with the high-dimensionality of either the forecast targets (re-

turns) or the predictors (bm ratios). Others use different predictive variables altogether.

In Table 5 we report the OOS total R2 as well as mean, median, and standard deviation

of individual anomaly R2s for a wide variety of these approaches. All statistics are out-of-

sample. The first row shows results from a completely unregularized estimation in which

each anomaly return is forecast using all anomaly 50 bm ratios. As expected, the OOS total

R2 of -134% is terrible. This highlights the need for dimensionality reduction. The second

row reports results from our method.

Instead of predicting each PC return with only its own bm, we could expand the informa-

tion set and allow each PC return to be forecast by any or all of the five PCs’ bm ratios. Since

OLS with even five time-series predictors is likely substantially overfit, we consider various

regularization schemes. We first consider ridge regression and Lasso estimation with penalty

parameters chosen to allow for exactly one degree of freedom, as in our main estimation. Row

3 shows that ridge regression, even with five predictors, does not deliver robust predictability.

Row 4 shows that Lasso does somewhat better, but still substantially worse than using only

each portfolio’s own bm. Belloni et al. (2013) show theoretically that the “OLS post-Lasso

estimator performs at least as well as Lasso in terms of the rate of convergence, and has the

advantage of a smaller bias.” Row 5 confirms this result empirically. Using Lasso to select

one predictor, then estimating the coefficient by OLS produces a 0.76% total R2, nearly as

high as our method. Instead of using the bm ratios of the PC portfolios, we could have

used PCA directly on the anomaly bm ratios to reduce the dimensionality of the predictors.

Row 6 shows that OLS post-Lasso on the five principal components of anomaly bm ratios

does reasonably well, but worse than using the bm ratios of the PCs themselves. Since price
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Table 5: Out-of-sample R2 of various forecasting methods

The table reports the monthly OOS total R2 as well as mean, median, and standard deviation
of OOS R2 for individual anomaly portfolios for various forecasting methods. The first column
gives the set of assets which are directly forecast, the predictive variables used, and the forecasting
method. When omitted, the method is ordinary least squares.

Method OOS
Total R2 Mean Median Std.

1. 50 Anom, BM of Anom, OLS -133.73 -161.91 -123.12 129.75
2. 5 PCs, Own BM 0.93 1.00 0.69 1.69
3. 5 PCs, BM of PCs, Ridge 1DoF 0.01 0.02 0.02 0.09
4. 5 PCs, BM of PCs, Lasso 1DoF 0.26 0.27 0.19 0.56
5. 5 PCs, BM of PCs, Lasso-OLS 1DoF 0.76 0.83 0.61 1.75
6. 5 PCs, PCs of BM, Lasso-OLS 1DoF 0.52 0.59 0.35 1.17
7. 5 PCs, BM of PCs, 3PRF 0.32 0.36 0.19 0.96
8. 50 Anom, BM of Anom, Lasso-OLS 1DoF -2.79 -3.27 -1.04 5.10
9. 50 Anom, BM of PCs, Lasso-OLS 1DoF 0.03 -0.06 -0.18 2.33
10. 50 Anom, Own BM 0.50 0.49 0.11 1.42
11. 50 Anom, Own BM, Pooled 0.48 0.51 0.42 1.13
12. 50 Anom, BM of Anom, 3PRF 0.16 0.17 0.12 0.81
13. 50 Anom, Own Characteristic -2.94 -3.21 0.03 20.67
14. 50 Anom, Sentiment 0.17 0.06 0.01 1.19
15. 5 PCs, Sentiment 0.19 0.06 0.01 1.19
16. 50 Anom, Factor Momentum -0.49 -0.48 -0.32 1.12
17. 5 PCs, Factor Momentum -0.08 -0.05 -0.23 1.19

ratios are much more persistent than returns, the sample covariance matrix and resulting

eigenvectors are measured with substantially more error, which may contribute to the worse

performance. Row 7 uses the five PCs’ bm ratios, but uses the three-pass regression filter

(3PRF) from Kelly and Pruitt (2013) instead of ridge or Lasso. As in that paper, the filter

is run separately for each dependent variable (PC return). For this set of portfolios, 3PRF

does produce moderate OOS predictability, but less than OLS post-Lasso.

Rows 8 to 12 consider various methods for reducing the dimensionality of the predictors

but without any left-hand-side (LHS) dimensionality reduction. These methods predict
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each of the 50 anomaly returns directly. Row 8 shows that OLS post-Lasso using 50 bm

fails completely OOS. Instead of using the 50 anomaly bm ratios, we could use the five

PCs’ bm ratios as in row 5. This approach does substantially better (row 9), improving to

near zero OOS total R2. However, row 5 shows that with the same information set and

same estimation technique, restricting to PCs of returns produces a large OOS total R2,

highlighting the importance of reducing the dimension of the LHS.

In row 10 we predict each anomaly with its own bm ratio, as our method does for PC

portfolios. Perhaps not surprisingly, this produces a substantial total R2 of 0.5%. Price

ratios seem to be robust predictors of returns. Still, the total R2 is only slightly greater

than half of what we find when directly predicting large PC portfolios. This highlights that

while an asset’s price ratio may be informative about its expected return, there is valuable

information in the whole cross-section of valuation ratios, a point first made by Kelly and

Pruitt (2013). There are a number of previous papers using a similar methodology. Asness

et al. (2000) and Cohen et al. (2003) find that the value anomaly itself is forecastable by its

own bm ratio.17 Arnott et al. (2016b) use various valuation measures (price ratios) to forecast

eight anomaly returns; they forecast each anomaly return with its own valuation measures

and find statistically significant results. Asness et al. (2017) use each anomaly’s bm ratio

to construct timing strategies for the value, momentum, and low β anomalies. Using their

methodology, however, they conclude that the strength of predictability is lacking. Implicitly,

these methods allow for as many independent sources of time-varying expected returns as

there are assets or factors to predict.18 This framework is optimal only if one thinks the

anomalies and their expected returns are independent, at odds with our Assumption 2.

In row 11, we show results from repeating the exercise of forecasting each anomaly with

its own bm ratio, but now estimate the predictive coefficients from a panel regression which

17Asness et al. (2000) use the ratio of the book-to-market of value stocks to that of growth stocks. Cohen
et al. (2003) uses the log difference, as we do.

18Formally, the covariance matrix of expected returns is allowed to have full rank.
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imposes that the coefficient on bm is the same for all anomalies. Formally, we estimate

Et (Fi,t+1) = a0,i+a1bmi,t, allowing each anomaly factor to have a different intercept, thereby

allowing different unconditional means, but imposing uniform predictability of returns using

bm. The OOS performance is not meaningfully different from unrestricted estimation. In

related work, Campbell et al. (2009) and Lochstoer and Tetlock (2016) use a bottom-up

approach of aggregating firm-level estimates to portfolios in order to decompose variation in

returns into discount rate and cash-flow news. They estimate a panel VAR in which they

forecast each stock’s return using its own bm ratio, additional stock characteristics, and

some aggregate variables.19 Unlike the previous studies, they impose that the coefficients in

the predictive regression are the same for all stocks. While imposing this equality is a form

of statistical regularization, it still allows for as many independent sources of time-varying

expected returns as there are stocks. Therefore, these restrictions do not put discipline on

the Sharpe ratios implied by the predictability estimates.

In row 12 we apply the 3PRF directly to the anomaly returns, using their 50 bms as

predictors. This is unlike row 7 where we first reduce by the LHS dimension before estimating

with 3PRF. As with PCs, 3PRF generates a moderate OOS total R2, but substantially less

than just using an asset’s own bm ratio. These lower R2s for the 3PRF might seem at

odds with the numbers reported in Kelly and Pruitt (2013). One reason for this difference

is that we work with market-neutral long-short portfolios whereas that paper focuses on

long-only characteristic sorted portfolios which all have market β of around unity. The

PLS implementation in Kelly and Pruitt (2013) assumes that each target variable (asset

return) loads on only one of the (possibly) few latent factors that drive the cross-section of

expected returns, cash flow growth rates, and valuation ratios. Since 3PRF is successful at

predicting the aggregate market, it should perform nearly as well in predicting these other

19Campbell et al. (2009) do not include any aggregate variables and further cross-sectionally demean stock
returns each period. Since most stocks have market β close to unity, their VAR approximately forecasts
market-neutral stock returns using each stock’s own bm ratio and other characteristics.
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portfolios since they all approximately equal the market return plus some smaller other

source of variation — their β is close to 1 and they are highly correlated to the market.

This conclusion holds even if these other variations are unpredictable, as shown in Appendix

C.2. This explanation can rationalize why their cross-sectional portfolios are well-predicted

by 3PRF but not our long-short factor portfolios. In fact, their findings for size-sorted

portfolios are consistent with this view. The OOS R2s increase monotonically with firm size,

increasing from -18% for the smallest quintile — which is less correlated with the value-

weighted market — to +12% for the largest quintile — which is strongly correlated with the

market.

Light et al. (2017) develop a related approach to construct forecasts for each stock each

month using a large set of characteristics. However, their method does not provide a forecast

µi,t but rather a scaled forecast Ftµi,t where the scaling factor Ft is unobserved and has

arbitrary time-varying scale. Hence, their method, while confirming the existence of timing

benefits, cannot be directly compared to other forecasting approaches.

In rows 13-17 we consider predictors besides bm ratios. In row 13, we present a natural

alternative: predicting each anomaly with its own characteristic spread. For example, when

sorting firms into deciles based on log market capitalization, the characteristic spread at time

t is log (ME1,t)− log (ME10,t) where MEi,t is the weighted average market capitalization of

firms in decile i at time t. As above with bm ratios, each anomaly is forecast using its own

anomaly specific variable. Somewhat surprisingly, this approach does quite poorly. The

performance could possibly be improved through judicious transformation of the sorting

variable, though without theoretical guidance on the functional form such an exercise is

prone to data mining concerns. In a related paper, Greenwood and Hanson (2012) forecast

characteristic-based anomalies using their “issuer-purchaser” spread, or the difference in

characteristic (say ME or bm) for net equity issuers versus repurchasers. However, as above,

a concern for approaches using an anomaly-specific forecasting variable implicitly is that it
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allows for as many independent sources of time-varying expected returns as there are assets

or factors to predict.

There is another literature quite unlike the above alternatives, focusing on one or a few

return predictors for all anomalies together. Stambaugh et al. (2012) forecast twelve anomaly

strategy returns using the aggregate sentiment index of Baker and Wurgler (2006) and find

statistically significant predictability for most of the anomalies they consider. Further, the

predictive coefficients are of similar magnitude across anomalies. This is reminiscent of

the tradition in bond return forecasting which seeks a single variable that is a significant

predictor of excess bond returns of all maturities Cochrane and Piazzesi (2005, 2008); Cieslak

and Povala (2015). Using a single predictor for all assets implicitly or explicitly assumes there

is only a single source of time-varying expected returns.20 Stambaugh et al. (2012) do not

report R2 statistics, but a back-of-the-envelope calculation gives values ranging from 0.5%-

4% across the anomalies. Rows 14 and 15 show that sentiment does produce moderate OOS

predictability, but much less than in-sample. This is true even if we restrict to predicting the

five PC portfolios. This suggests that while sentiment is an important variable in estimating

variation in expected returns across anomalies, it captures only a small fraction of this total

variation. Akbas et al. (2015) start similarly, forecasting eleven anomaly returns individually

using aggregate mutual fund and hedge fund flows. Based on the pattern of coefficients,

they divide the anomalies into two groups: “real investment factors” and “others”. They

then form an aggregate portfolio return for each group and forecast these two returns and

find substantial R2 for the “other group” and nearly zero for the investment group.Finally,

Ehsani and Linnainmaa (2019) show that for fifteen anomalies, the anomaly’s own prior

performance significantly positively predicts its return in month t. Rows 16 and 17 show

that for our broader set of anomalies, “factor momentum” does not predict returns OOS,

with R2s of -0.49% and -0.08%.21

20Formally, the covariance matrix of expected returns has at most rank one.
21We follow Ehsani and Linnainmaa (2019) and forecast each portfolio with an indicator variable which
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4 The Optimal Factor Timing Portfolio

We turn to step 5 of our approach: using our forecasts to form an optimal factor timing

portfolio. We find large benefits to factor timing, benefits that appear feasible to collect in

practice. This portfolio is also of interest economically, because it informs the properties of

the SDF, which we discuss in Section 5.

4.1 Performance

The strong evidence of predictability we document yields substantial investment benefits.

By scaling up positions when expected returns are larger, an investor can increase the per-

formance of her portfolio. For example, consider the case of one asset with time-varying

expected excess return µt and constant variance σ2. In this situation, the optimal portfolio

of a mean-variance investor invests proportionally to µt/σ2 at each point in time. This po-

sition generates a certainty equivalent proportional to
(
E [µt]2 + var [µt]

)
/σ2.22 The second

term, var [µt] /σ2, is the gain from taking advantage of variation in expected returns. If the

same investor invests in a static portfolio with constant weight E [µt] /σ2, she would only

obtain the first term. With multiple assets, the optimal portfolio is given by Equation 10,

which yields gains given by Equation 7. Here again, one can see that both the mean and

variation in average returns increase the Sharpe ratio. To quantify the gains to factor tim-

ing in our setting, we implement this portfolio. Specifically, we use our method to predict

component means, Et [Zt+1]. We then use these forecasts to construct forecast errors and

compute an estimate of the conditional covariance matrix of the market and PC returns,

ΣZ,t, which we for now assume is homoskedastic in order to estimate the role of forecasting

means; we revisit this assumption in Section 5.4. We combine these estimates into portfolio

equals one if the portfolio’s average monthly return over the past year is positive and zero otherwise.
22For an investor with risk aversion γ, the proportionality constant is 1/γ for the portfolio weight and

1/(2γ) for the certainty equivalent. Campbell and Thompson (2007) and Moreira and Muir (2017) discuss
similar utility calculations.
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Table 6: Performance of various portfolio strategies

The table reports the unconditional Sharpe ratio, information ratio, and average mean-variance
utility of five strategies: (i) static factor investing strategy, based on unconditional estimates of
E [Zt]; (ii) market timing strategy which uses forecasts of the market return based on Table 2 but sets
expected returns on the PC equal to unconditional values; (iii) full factor timing strategy including
predictability of the PCs and the market; (iv) anomaly timing strategy which uses forecasts of
the PCs based on Table 2 but sets expected returns on the market to unconditional values; and
(v) pure anomaly timing strategy sets the weight on the market to zero and invests in anomalies
proportional to the deviation of their forecast to its unconditional average, Et [Zt+1] − E [Zt]. All
strategies assume a homoskedastic conditional covariance matrix, estimated as the covariance of
forecast residuals. Information ratios are calculated relative to the static strategy. Out-of-sample
(OOS) values are based on split-sample analysis with all parameters estimated using the first half
of the data.

Factor
investing

Market
timing

Factor
timing

Anomaly
timing

Pure anom.
timing

IS Sharpe ratio 1.27 1.23 1.19 1.19 0.71
OOS Sharpe ratio 0.76 0.63 0.87 0.96 0.77
IS Inf. ratio - -0.17 0.36 0.37 0.35
OOS Inf. ratio - -0.64 0.42 0.60 0.59
Expected utility 1.66 1.69 2.96 2.92 1.26

weights ωt = Σ−1
Z,tEt [Zt+1] = Σ−1

Z Et [Zt+1]. Importantly, remember that the components Zt+1

are fixed linear combinations of the factors Ft+1. So, while we express here the factor timing

portfolio in terms of the components, it is implicitly trading the underlying factors.

Table 6 reports measures of the performance for versions of this portfolio under various

assumptions. We consider five variations of the optimal timing portfolio. “Factor timing” is

the portfolio described above. “Factor investing” sets all return forecasts to their uncondi-

tional mean, while “market timing” does the same except for the market return. “Anomaly

timing” does the opposite: the market is forecast by its unconditional mean, while anomalies

receive dynamic forecasts. Finally, the “pure anomaly timing” portfolio sets the weight on

the market to zero and invests in anomalies proportional to the deviation of their forecast

to its unconditional average. In other words, this portfolio has zero average loading on all

factors, and lets us zoom in on the new information of this paper: variation in anomaly
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expected returns. The following equations summarize these strategies:

Factor timing: ωF.T.,t = Σ−1
Z [Et (Rmkt,t+1) ,Et (PC1,t+1) , . . . ,Et (PC5,t+1)]′ , (11)

Factor investing: ωF.I. = Σ−1
Z [E (Rmkt,t+1) ,E (PC1,t+1) , . . . ,E (PC5,t+1)]′ , (12)

Market timing: ωM.T.,t = Σ−1
Z [Et (Rmkt,t+1) ,E (PC1,t+1) , . . . ,E (PC5,t+1)]′ , (13)

Anomaly timing: ωA.T.,t = Σ−1
Z [E (Rmkt,t+1) ,Et (PC1,t+1) , . . . ,Et (PC5,t+1)]′ , (14)

Pure anomaly timing: ωP.A.T.,t = Σ−1
Z [0, [Et − E] (PC1,t+1) , . . . , [Et − E] (PC5,t+1)]′ . (15)

The first performance metric we consider is the unconditional Sharpe ratio: the ratio of

the sample mean and the standard deviation of returns. The factor investing, market timing,

anomaly timing, and factor timing portfolio all produce meaningful performance, with Sharpe

ratios around 1.2 in sample and between 0.63 and 0.87 out of sample.One might be tempted

to conclude from these numbers that factor timing does not improve performance relative to

static factor investing. However, it is important to remember that the factor timing portfolio

is not designed to maximize the unconditional Sharpe ratio. In a world with predictability,

this is not an accurate measure of performance improvement. Ferson and Siegel (2001) show

that maximizing the unconditonal Sharpe ratio requires portfolio weights which are highly

nonlinear and nonmonotone in conditional expected returns. Still, the sizable Sharpe ratio

of the pure anomaly timing portfolio is a first piece of evidence that factor timing is valuable.

This portfolio does not engage in any static bets, but obtains Sharpe ratios of 0.71 and 0.77

in and out of sample.

A second way to evaluate the value of factor timing is to assess whether the timing

portfolios expand the unconditional investment opportunity set captured by the static factor

investing portfolio. To do so, we compute the information ratio for the various timing

strategy. This number corresponds to the Sharpe ratio that these strategies produce once

orthogonalized to the static factor investing portfolio. An advantage of this statistic is that
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it can be measured without relying on assumptions about return dynamics. However, it only

constitutes a lower bound on the benefits to factor timing, because it takes the perspective of

an uninformed investor. Judged by the information ratio, factor timing, anomaly timing, and

pure anomaly timing substantially extend the investment opportunity set. Their information

ratios are almost equal at 0.36 in sample, and actually increase to 0.42, 0.60, and 0.59 out of

sample. These stable information ratios, in contrast to the more strongly decaying Sharpe

ratio of the factor investing portfolio suggests that our conclusions about predictability are

actually more robust than the measurement of unconditional return premia.

A third take on the value of factor timing is to ask, given our completely estimated model,

what utility would a mean-variance investor expect to obtain on average.23 Absent statistical

issues this is the most accurate characterization of the value of factor timing, because it takes

into account the information behind these strategies in the portfolio evaluation. However,

this approach does lean more heavily on our estimated model: because expected utility is

an ex-ante concept, one needs to take a stand on the distribution to evaluate it. For this

reason we can only report full-sample estimates of this quantity. For ease of comparison we

report expected utility scaled as in the formulas from the beginning of this section. The

gains to factor timing are large: they yield an almost two-fold increase in expected utility

from 1.66 to 2.96. Most of that increase, 1.26, comes from pure anomaly timing alone. In

contrast, adding market timing to factor investing only slightly increases expected utility by

0.03; removing it from factor timing decreases expected utility by 0.04.

As we have discussed in Section 2.2, another interpretation of this utility calculation is

in terms of volatility of the implied SDF. Therefore these numbers suggest large differences

in SDF behavior relative to estimates which ignore the evidence of factor predictability. We

examine these changes and their economic implications in the next section. Before doing so,

we briefly discuss the role of the portfolio rebalancing frequency..

23The numbers we report correspond to γ = 1/2.
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4.2 How fast does timing need to be?

Our factor timing portfolios change weights on the anomalies each month. What happens

if we trade more slowly? In Table A.5, we report the performance measures for versions of

the “pure anomaly timing” strategy which rebalance at lower frequencies. Performance does

not deteriorate meaningfully. The unconditional Sharpe ratio actually increases from 0.71 to

0.79 with annual rebalancing. Expected utility declines from 1.26 to 0.81, still a substantial

value. We discuss the other results and their construction at more length in Appendix B.6.

These results have two implications. First, the potentially less economically meaningful

high-frequency variations in our predictors are not the main force behind our predictability

results. Second, factor timing strategies might be implementable by actual investors; direct

measures of transaction costs would be necessary to make this a firm conclusion.

5 Properties of the SDF

We now use the equivalence between optimal portfolio and SDF to study how including the

possibility for factor timing affects the properties of an estimated SDF. This is of particular

interest for the construction of economic models: because the SDF encodes asset prices,

it can often directly be related to fundamentals of the economy in specific models. For

example, the SDF is equal to the marginal utility of consumption of the representative agent

in unconstrained economies.

5.1 Volatility

A first property of the SDF which has been the subject of attention by economists is its

variance. Hansen and Jagannathan (1991) first show that the variance of the SDF is the

largest squared Sharpe ratio attainable in the economy under complete markets; an upper

bound in incomplete markets. Therefore the variance of an SDF backed out from asset prices
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tells us how volatile the SDF has to be in an economic model to possibly account for this

evidence. Hansen and Jagannathan (1991) document that the market return alone implies

that the SDF is much more volatile than implied by reasonable calibrations of the CRRA

model. Subsequent research has proposed models resolving this puzzle.

Naturally, using more conditioning information increases the investment opportunity set,

and therefore the variance of the SDF. The results of Table 7 tell us by how much. We report

the average conditional variance of the SDF constructed under various sets of assumptions.

Remember that the SDF is given by: mt+1 = 1 − ω′t (Zt+1 − Et [Zt+1]), where ωt are the

weights in the optimal portfolio. The conditional variance of the SDF is therefore:

vart (mt+1) = ω′tΣZωt, (16)

which we then average over time. “Factor timing” is our full estimate of the SDF, which

takes into account variation in the means of the factors, with ωt given by Equation 11. “Fac-

tor investing” imposes the assumption of no factor timing: conditional means are replaced

by their unconditional counterpart, Equation 12. Finally, “market timing” only allows for

variation in the mean of the market return, Equation 13. These three names coincide with

the portfolios of Section 4 because portfolio weights and SDF exposures are equal. However

there is a fundamental difference in interpretation. Within the same economy, one can eval-

uate separately the performance of various strategies. However, there is only one SDF which

determines prices, so these various versions are just different estimators of this quantity.

They cannot be all correct, and our “factor timing” specification is designed to be the best

estimator, while the others force some misspecification in the construction. We find that

accounting for the possibility to time factors substantially increases the estimated variance

of the SDF. Adding this possibility in addition to timing the market and engaging in static

factor investing yields estimates almost twice as large. The magnitude of the SDF variance,
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Table 7: Variance of the SDF

We report the average conditional variance of the SDF and its standard deviation constructed under
various sets of assumptions. “Factor timing” is our full estimate, which takes into account variation
in the means of the PCs and the market. “Factor investing” imposes the assumption of no factor
timing: conditional means are replaced by their unconditional counterpart. “Market timing” only
allows for variation in the mean of the market return.

Factor Investing Market Timing Factor Timing

E [vart (mt+1)] 1.67 1.71 2.96
std [vart (mt+1)] - 0.29 2.17

2.96, is sizable compared to estimates ignoring factor timing, but also substantially larger

than in standard models. Bansal and Yaron (2004) report an annualized variance of the

SDF of 0.85, while Campbell and Cochrane (1999) obtain a variance that fluctuates roughly

between 0 and 1.2.

5.2 Heteroskedasticity

Next, we ask how much does the variance of the SDF change over time. Changes in vari-

ance of the SDF can capture how investors’ attitude towards risk changes over time: when

marginal utility is more volatile, investors ask for larger compensations for bearing risk. The

observation that the SDF is heteroskedastic has long been known. Closely related to find-

ing of predictability of market returns in Shiller (1981), many studies document that the

Sharpe ratio of the market portfolio fluctuates. Motivated by this observation, a number of

models have been developed to capture these changes. In the habit model of Campbell and

Cochrane (1999), low realizations of consumption growth make households more risk averse,

and renders the SDF more volatile. In the long-run risk model of Bansal and Yaron (2004)

periods of high uncertainty about long-run consumption growth yield larger fluctuations in

marginal utility.

Because the loadings of our estimated SDF on the components change over time, the SDF
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Figure 2: Conditional variance of SDFs. This figure plots the conditional variance of the
SDF, constructed in two ways. The solid blue line uses the “factor timing” construction, which
allows for variation in the means of the PCs and the market. The red dashed line is a “market
timing” estimate that ignores predictability of the anomaly factors. The aggregate market is forecast
using aggregate dividend/price, 10-year smoothed earnings/price, realized volatility, term premium,
corporate spread, cay (Lettau and Ludvigson (2001)), GDP growth, and sentiment (Baker and
Wurgler (2006)).

is heteroskedastic even though we assume the component returns themselves are not. Said

otherwise, the maximum Sharpe ratio changes over time because prices of risk are changing.

With our model estimates, we can compute not only the average variance of the SDF, but

also its conditional variance at each point in time using Equation 16. We report this result

on the solid blue line in Figure 2. The variance of our estimated SDF varies substantially

over time: it fluctuates between low levels close to 0.8 and values as high as 12. The evidence

of factor timing is the main driving force behind this result. As a comparison, we report

estimates for an SDF estimated under the assumption of constant factor expected returns,

but time-variation in market risk premium. We depart from our baseline “market timing”

specification and allow many variables other than the book-to-market ratio to forecast market

returns.24 Doing so yields an upper bound on what market return predictions using any

combination of these variables imply in terms of SDF heteroskedasticity.25 Despite this
24We include aggregate dividend/price, 10-year smoothed earnings/price, realized volatility, term

premium, corporate spread, cay (Lettau and Ludvigson (2001)), GDP growth, and sentiment (Baker
and Wurgler (2006)).

25Appendix Figure A.4 reports the variance of our baseline “market timing” SDF estimate, which is
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flexibility, the corresponding SDF variance is much less volatile than our estimate, with a

volatility of only 0.29 relative to 2.17. In Appendix Figure A.4 we also report the volatility

of our estimated SDF if one imposes constant expected returns on the market and we find

no meaningful difference relative to our estimate including factor timing. This observation

further corroborates the importance of factor timing as a driver of the time-variation in SDF

variance.

The large variations over time we find in SDF variance are at odds with standard theories

behind these changes. The variance of the SDF in Campbell and Cochrane (1999) has a

standard deviation lower than 0.5. Models focusing on intermediary leverage such as He and

Krishnamurthy (2013) generate large spikes in this variance when financial institutions are

constrained because they become unwilling to absorb extra risks. However, these theories

have a limited appeal in explaining the evidence from factor timing: the large spikes we

observe in our estimates do not coincide with periods of intense stress in the financial sector.

5.3 Relation with economic conditions

Economic theories typically focus on specific drivers of variations in the maximum Sharpe

ratio. To understand which properties these drivers must exhibit in order to rationalize our

findings, we study how the variance of the SDF we estimate relates to measures of economic

conditions. We standardized these variables to make estimates comparable.

A first observation is that the variance of the SDF exhibits a moderate degree of per-

sistence. Its yearly autocorrelation is of 0.51. As we noticed when studying performance

measures, this implies that following our signals even on a yearly basis provides similar

results. Such a result is encouraging for macroeconomic models to explain this variation.

However, 0.51 is also a much lower value than what is implied by theories focusing on slow,

long-term changes in economic conditions. In line with these short-run patterns, the variance

indeed much less heteroskedastic than this specification.
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Table 8: SDF variance and macroeconomics variables

We report univariate regression coefficients and absolute t-statistics from regressions of estimated
SDF variance on various macroeconomic variables. Factor timing uses the SDF variance shown in
Figure 2. Market timing uses SDF variance assuming the anomaly returns are not predictable and
sets the conditional expected market return to the fitted value from a multivariate regression of
market returns on the aggregate dividend/price ratio, realized market volatility, term spread, cor-
porate bond yield spread, cay (Lettau and Ludvigson, 2001), GDP growth and aggregate sentiment
(Baker and Wurgler, 2006). Common idiosyncratic volatility is orthogonalized to market volatility
(Herskovic et al., 2016).

Factor timing Market timing
D/P −0.01 (0.03) 0.22 (2.86)
GDP growth −0.37 (1.60) −0.34 (4.93)
Market volatility 0.44 (2.48) 0.30 (5.37)
Sentiment −0.15 (0.60) −0.25 (3.35)
Common idio. volatility 0.49 (2.19) −0.07 (0.97)
cay −0.42 (1.79) 0.23 (3.00)
Term premium −0.53 (2.36) 0.24 (3.35)
Inflation 0.75 (3.26) 0.01 (0.08)

of the SDF is, on average, related to the state of the business cycle. It averages 4.9 during

recessions while only being 2.7 during expansions. However, as one can notice by examining

Figure 2, this relation is not systematic. In particular, the depth of the recession does not

appear strongly related to the size of the spike in expected returns. This is in part due

to the fact that the market component in our “factor timing” SDF does not pick up large

variations, unlike the one we use to construct the “market timing” SDF of Figure 2. But this

also comes from the weak relation between the intensity of increases in anomaly expected

returns with the overall intensity of broad macroeconomic events. For example, these two

effects play a role in the low SDF volatility during the 2008 financial crisis relative to the

tech boom and bust.

Table 8 relates the variance of the SDF to a variety of measures of economic conditions.

For each measure, we report the coefficient and t-statistics of a univariate regression of the

SDF variance on the variable. The first column uses our estimated SDF which accounts for
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the factor timing evidence. The second column uses the estimate of SDF which assumes

constant expected returns on the factors, and forecasts market return using a variety of

predictors, as in Figure 2. For this second column, because the market forecast is constructed

using these specific conditions, it is somewhat mechanical to obtain significant relations.

However, the magnitude of the various coefficients still provides a useful benchmark. In

contrast, for the first column, we did not use any of these variables are predictors.

We find that the dividend-price ratio of the market, a slow-moving measure of market

conditions, does not predict the SDF variance. This is consistent with our discussion on

the relatively low persistence of our estimated SDF variance: while D/P contains useful

information for the market premium, it does not reveal much about overall fluctuations in

Sharpe ratios, which move faster. More transitory measures of business cycle conditions do

better: the variance of the SDF is larger following years of lower GDP growth and in periods

of high market volatility or low economic sentiment, with loadings similar to those of the

pure market timing SDF. Importantly, this similarity in loadings is not mechanically driven

by the fact that our estimated SDF times the market: we obtain similar coefficients, -0.33

and 0.45, when setting the expected market return to a constant. Relatedly, the quantity of

idiosyncratic risk also becomes important for the variance of the SDF once one accounts for

the evidence of factor timing. We find that the common idiosyncratic volatility measure of

Herskovic et al. (2016), orthogonalized to market volatility, is strongly positively related to

the variance of the factor timing SDF, but not of the the market timing SDF.26

Interestingly, some measures of economic conditions that predict the market positively, cay

and the term premium, forecast the SDF variance negatively. Along these dimensions, risk

compensations tend to be low for anomalies when they are large for the market. Finally, last

year’s inflation rate appears to strongly positively correlate with the SDF variance, while

it holds no relation to the overall market return. Upon inspection of the time series (see

26We thank Bernard Herskovic who graciously shared his data with us.
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Appendix Figure A.5), this relation appears to be driven by the bouts of high inflation in

the early part of the sample, and the high inflation during the Internet boom.

Naturally, one should be wary of drawing any causal conclusion from these relations.

That being said, economic theories associating variations in the variance of the SDF, or the

overall appetite for risk, to these macroeconomic quantities, should confront this evidence

to assess if they are consistent with the cross-section of expected returns.

5.4 The role of volatility timing

So far, we have focused our efforts on using information from the predictability of factor

returns to discipline the properties of the SDF. Movements in the volatility of factor returns

could also play a potentially important role, as suggested for example by Moreira and Muir

(2017).27 In Appendix Section B.8, we measure ΣZ,t and revisit the properties of the mean

and standard deviation of the SDF variance. Including a time-varying ΣZ.t pushes the average

SDF variance up from 2.97 from 3.54, about a third of the increase from 1.66 provided by

variation in risk premia. In short, both changes in expected returns and variances contribute

to the variance of the SDF, but the largest part comes from expected returns. The standard

deviation of the squared Sharpe ratio goes from 2.17 to 2.06 when adding volatility timing

to factor timing. This small change indicates that including information from changing

volatility of returns only has a small effect on the cyclical behavior of the variance of the

SDF. Overall, these results imply that the conclusions we have reached so far on our estimates

using means only are robust to including volatility timing.

27If one focuses on the market return, Moreira and Muir (2017) document that variations in volatility
dominate variations in expected returns in creating changes in the squared Sharpe ratio. They also show
that volatility timing is useful for factor strategies.
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5.5 What are the priced risks?

In addition to specifying how the size of risk compensations evolve over time, economic

models typically also specify which sources of risk receive this compensation. For example,

the basic tenant of the consumption-CAPM is that the SDF is proportional to aggregate

consumption growth. Richer theories include other economic shocks which are priced risks

such as long-run shocks to consumption growth, changes in disaster probability, or changes

in the health of the financial sector. Going from our estimates to answering which sources of

risks are priced is more challenging. When the SDF combines multiple, potentially correlated,

sources of risk with time-varying loadings, it is generally not possible to characterize it

without a complete structural specification. However, without focusing on a specific model,

we can produce a number of statistics that can guide the design of future models.

A first question we answer is whether using a model which targets an SDF which only

combines static factor strategies is at least focusing on the right sources of risks. So far, we

have showed that such an estimates grossly underestimates the variance and heteroskedas-

ticity of the SDF. However, it might be feasible to easily “patch” univariate dynamics onto

the estimate that fits the unconditional properties of returns. Concretely, start from the

misspecified static specification of the SDF: mt+1 = 1 − b′εt+1. Is it enough to enrich the

model with a single state variable xt to obtain a SDF mt+1 = 1−xtb′εt+1 in order to capture

the evidence of factor timing benefits? An economic motivation behind such xt could for

example be a shifter of the risk appetite of the economy, keeping constant the nature of

economic risks investors worry about. For example the habit model behaves conditionally

a lot like the regular consumption-CAPM, but the level of habit affects risk aversion. In

the intermediary asset pricing literature such as He and Krishnamurthy (2013) changes in

intermediary wealth (or leverage) drive expected returns in all assets in which they are the

marginal investor. Less formally, Stambaugh et al. (2012) articulate a view where investor

sentiment coordinates expected returns across anomalies.
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Figure 3: Conditional correlation of the estimated SDF and the misspecified SDF un-
der the assumption of no factor timing benefits. This figure plots the conditional correlation
our estimated SDF and a misspecified version which sets conditional factor means to their sample
averages. Reported values are six-month averages.

This scaled SDF would be perfectly conditionally correlated with the baseline SDF, but

would just add a time-varying loading on it. To assess whether this approach can work, we

compute the conditional correlation of the misspecified SDF which is estimated under the

assumption of constant expected returns (“factor investing”) with our complete estimate of

the SDF (“factor timing”). This correlation is given by

corrt (mF.T.,t+1,mF.I.,t+1) =
ω′F.T.,tΣZωF.I.√(

ω′F.T.,tΣZωF.T.,t
)

(ω′F.I.ΣZωF.I.)
, (17)

where the weights are defined in equations 11 and 12. Figure 3 reports this conditional

correlation. On average the two SDF estimates are quite correlated, with values that fluc-

tuate around 0.8. However, the correlation exhibits strong time series variation, with dips

to values as low as 0.4. Both the observations of a mean meaningfully below 1 and these

changes indicate that our SDF is not just a rescaling of the naive estimate ignoring factor

timing evidence.

This first result suggests that one needs to include multiple sources of time-varying load-

ing on shocks to fit the factor timing evidence. What should these loadings look like? We
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can shed light on this question by considering how the covariance of our estimated SDF

covaries with some specific anomalies. While there is no a priori reason that anomaly port-

folio returns coincide with economic shocks, many theories offer a clear mapping between

structural shocks and characteristic-sorted portfolio returns. For example, Hong and Stein

(1999) develop a model of featuring both underreaction and overreaction to news, generating

value and momentum type effects. In Papanikolaou (2011), the relative returns of value and

growth stocks reveal investment-specific technological shocks. Alti and Titman (2019) study

how investor overconfidence and aggregate disruption shocks lead to time-varying expected

returns on value, profitability, and asset growth anomaly strategies. Berk et al. (1999) study

how the dynamics of firm investment lead to the value and momentum anomalies. With

our estimates, it is straightforward to compute the conditional covariance of a specific factor

return with the SDF: it is their conditional expected returns. Figure 4 reports the con-

ditional expected return on four standardized factor returns: size, value, momentum and

ROA.28 Several interesting patterns emerge. All four strategies exhibit substantial variation

in their correlation to the SDF, with frequent sign changes. Second, the pattern of these

correlation differs across assets: size and value often have large correlations with the SDF

during recessions, while momentum tends to relate negatively with the SDF during these

episodes.29 These patterns are not necessarily only driven by recessions: a lot of the cyclical

movement in the correlation of the ROA factor with the SDF occurs outside of business

cycle. Of course, these are just a few of the many potential portfolio sorts one can focus on.

Appendix Figure A.3 reports the average return and the standard deviation of conditional

expected returns for each of the 50 portfolios. The figure shows a lot of cross-sectional vari-

ation in degree of predictability across anomalies. Interestingly, predictability and average

28Because the factor strategies are correlated, the covariance of a specific factor with the SDF differs from
the loading (or multivariate regression coefficient) of the SDF on this factor. We report these loadings in
Appendix Figure A.2.

29Interestingly, this last observation is consistent with the findings of Daniel and Moskowitz (2016) who
document forecastable momentum crashes, even though we use completely different variables as predictors.
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Figure 4: Anomaly expected returns. The plot shows the time-series of conditional expected
returns on four anomaly strategies: size, value, momentum, and return on assets.

performance are not related: the cross-sectional correlation between the mean and standard

deviation numbers is close to zero. This result further highlights that there is not a single

variable scaling all risk premia up and down.

The broader point is that one can, with our estimates in hand, ask if their theory generates

a time series pattern of loadings of the SDF on a specific shock or factor which is consistent

with the evidence from the entire cross-section.

50



6 Concluding Remarks

In this paper we study factor timing, which combines the ideas of long-short factor investing

and market timing. Measuring the benefits to such strategies is relevant given their recent

popularity, but more importantly, because they affect inference about the stochastic discount

factor. However, taking a holistic approach to this question is challenging: there are many

potential factors one could time, which increases the scope for finding spurious results. We

use the idea of no near-arbitrage to overcome this issue. We show this principle disciplines the

estimation of the dynamics of expected returns. Thus guided, we obtain robust estimates

of factor predictability. We find that factor timing is very valuable, generating superior

performance relative to market timing and factor investing alone.

This conclusion has important consequences for the SDF. When we include our findings

in the estimation of the SDF, we uncover a behavior which differs strongly from misspecified

SDF estimates ignoring factor predictability. The variance of the implied SDF is much larger

and more variable over time. These observations pose strong challenges for existing economic

models, which understate these quantities, if they aim to match the cross-section of returns.

But the difficulty is not only about explaining a more volatile and heteroskedastic SDF. We

find that the variance of the SDF exhibits different cyclical pattern than standard estimates,

suggesting that some of the previously established drivers of variation in risk premia are less

important when looking at the cross-section. In addition, the dynamics of risk premia are

heterogenous across different factors.

In short, our results suggest that it is at least as important for economic theories to un-

derstand the dynamic properties of the cross-section as its average properties. We anticipate

these facts will be helpful in guiding future research.
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Internet Appendix

A Key formulas
We derive key results. First, start with a set of returns Rt+1 = [r1,t+1 · · · rN,t+1]′. The maximum
conditional squared Sharpe ratio is

SR2
t = Et [Rt+1]′Σ−1

R,tEt [Rt+1] . (A1)

A.1 Expected conditional squared Sharpe ratio, E
[
SR2

t
]

If the assets are conditionally uncorrelated, then ΣR,t is diagonal and the formula becomes

SR2
t =

N∑
i=1

Et [ri,t+1]2

σ2
i,t

, (A2)

where σ2
i is the conditional variance of the return on asset i. Assuming returns are homoskedastic

and taking unconditional expectations we obtain

E
[
SR2

t

]
=

N∑
i=1

E
(
Et [ri,t+1]2

)
σ2
i

. (A3)

Substituting in the identity E
(
Et [ri,t+1]2

)
= E [ri,t+1]2 + var (Et [ri,t+1]) we have

E
[
SR2

t

]
=

N∑
i=1

E [ri,t+1]2

σ2
i

+
N∑
i=1

var (Et [ri,t+1])
σ2
i

. (A4)

Using the definition of R-squared, R2
i = 1− σ2

i

var(Et[ri,t+1])+σ2
i
, we obtain R2

i

1−R2
i

= var(Et[ri,t+1])
σ2
i

, which
can be substituted in to get the formula in the paper:

E [vart (mt+1)] = E
(
SR2

t

)
=
∑
i

E [ri,t+1]2

σ2
i

+
∑
i

(
R2
i

1−R2
i

)
. (A5)

A.2 Expected utility
We consider the perspective of an investor with mean-variance utility risk aversion parameter equal
to γ. We maintain the assumption that ΣR,t is diagonal, constant, and known. Consider two
portfolio strategies: (1) the static (s) strategy which does not use conditioning information and (2)
the dynamic (d) strategy which can condition on µt = Et (Rt+1). The optimal portfolio weights are
given by

wt,s = 1
γ

Σ−1
R,tµ (A6)

wt,d = 1
γ

Σ−1
R,tµt (A7)
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where µ = E (Rt+1) is the unconditional mean return. The date t expected utility for the agent
under the two strategies are given by

Ut,s = 1
γ
µ′Σ−1µt −

1
2γµ

′Σ−1µ (A8)

Ut,d = 1
2γµ

′
tΣ−1µt, (A9)

where expectations are taken under the same measure. Computing unconditional expectations we
obtain

E [Ut,s] = 1
2γµ

′Σ−1µ = 1
2γ
∑
i

E [ri,t+1]2

σ2
i

(A10)

E [Ut,d] = 1
2γE

[
µ′tΣ−1µt

]
= 1

2γ
∑
i

E [ri,t+1]2

σ2
i

+ 1
2γ
∑
i

(
R2
i

1−R2
i

)
. (A11)

Therefore the “timing” term
∑
i

(
R2
i

1−R2
i

)
exactly captures the increase in average utility obtained

by using conditioning information.

A.3 Total R2

Again start with a set of returns Rt+1 = [r1,t+1 · · · rN,t+1]′ with arbitrary cross-correlations. Define
the total R2 as

R2
total ≡

tr [cov (Et [Ri,t+1])]
tr [cov (Ri,t+1)] , (A12)

where tr is the trace function. By similarity invariance of trace, this is equal to

R2
total ≡

tr [Q′cov (Et [Ri,t+1])Q]
tr [Q′cov (Ri,t+1)Q] , (A13)

where and Q is any orthogonal matrix
(
Q′ = Q−1). Next assume returns are homoskedastic, that

is, ΣR,t is constant. This leads to the eigendecomposition ΣR,t = QΛQ′. Denoting PCt+1 = Q′Rt+1
and substituting in we have

R2
total = tr [cov (Et [PCt+1])]

tr [Λ] + tr [cov (Et [PCt+1])] , (A14)

where we use cov (PCt+1) = Λ + cov (Et [PCt+1]) and additivity of trace. Next use R2
i

1−R2
i

=
var(Et[PCi,t+1])

λi
to obtain

R2
total =

K∑
i=1

(
R2
i

1−R2
i

)
λi
λ
, (A15)
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where

λ = tr [Λ] + tr [cov (Et [PCt+1])] (A16)

=
K∑
i=1

λi
1−R2

i

≈
∑

λi. (A17)

A.4 Number of PCs
Start with prior beliefs on the maximum squared Sharpe ratio E

[
SR2

t

]
≤ s? and the total R2

R2
total ≥ r?.30 Given these beliefs how many PCs should we include? Under the view that all

included k PCs contribute equally to the total R2, using Equation 7 and Equation 8, we can
equivalently write

r? ≤ k
(

R2
i

1−R2
i

)
λi
λ

(A18)

s? ≥
k∑
i=1

(
R2
i

1−R2
i

)
. (A19)

Note this is analogous to the setup in Kozak et al. (2018) who assume that all included PCs con-
tribute equally to cross-sectional heterogeneity in expected returns when determining the number
of PCs to include. Combining these expressions we obtain the final formula:

r?

s?
≤
[

1
k

k∑
i=1

λ

λi

]−1

. (A20)

By inspection, the weaker the factor for a given set of assets the fewer PCs one may include given
prior beliefs.

B Additional Results
We report supplemental empirical results.

B.1 Out-of-sample
Our main out-of-sample analysis uses a sample split where all parameters are estimated using
the first half and used to construct OOS forecasts in the second half of the data. We consider
two alternatives, expanding and rolling window analysis. For both, the OOS analysis begins on
the same date as the main estimation, but predictive regression coefficients are reestimated each
month. For rolling window, we use a twenty year (240 month) sample. Table A.1 presents results
from the alternative OOS methods. The first row shows the coefficient estimate. The second row
shows asymptotic t-statistics. The third and fourth rows show coefficients estimated from the first
and second half data, respectively. The fifth shows the in-sample R2. The next three rows give

30Here we ignore the static component of the Sharpe ratio.
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Table A.1: Predicting Dominant Equity Components with BE/ME ratios

We report results from predictive regressions of excess market returns and five PCs of long-short
anomaly returns. The market is forecast using the log of the aggregate book-to-market ratio.
The anomaly PCs are forecast using a restricted linear combination of anomalies’ log book-to-
market ratios with weights given by the corresponding eigenvector of pooled long-short strategy
returns. The first row shows the coefficient estimate. The second row shows asymptotic t-statistics
estimated using the method of Newey and West (1987). The third and fourth rows show coefficients
estimated from the first and second half data, respectively. The fifth shows the in-sample R2. The
next three rows give OOS R2 based on split sample, expanding window, and 240 month rolling
window analysis. The last row reports a reverse OOS R2 where estimation is conducted in the
second half of the sample and performance is measured in the first half.

MKT PC1 PC2 PC3 PC4 PC5
Own bm Full 0.76 4.32 1.62 1.80 4.86 1.56

(1.24) (4.31) (1.81) (2.01) (3.74) (0.78)

Own bm 1st 1.46 3.77 1.37 2.62 5.66 2.74
Own bm 2nd 2.79 4.91 7.68 2.83 4.31 2.14
R2 Full 0.29 3.96 0.74 0.56 3.59 0.50
Split R2 1.00 4.82 0.97 0.47 3.52 0.55
Expanding R2 -0.53 4.43 -0.32 -0.30 2.59 -1.31
Rolling R2 -0.28 3.04 -0.50 -1.10 2.47 -1.61
Reverse R2 0.09 2.40 -7.30 1.17 2.65 1.62

OOS R2 based on split sample, expanding window, and rolling window analysis. PCs 1 and 4 show
remarkable stability of estimated coeffcients and substantial OOS R2 using all three methods. This
stability reflects the precision of the coefficient estimates documented by the t-statistics. Finally,
the last row reports a reverse OOS R2 where estimation is conducted in the second half of the
sample and we evaluate the performance of the prediction in the first half of the sample. Here
again, PC1 and PC4 have sizable R2. Interestingly, PC3 and PC5 have larger R2 than in the
baseline, while PC2 does poorly, consistent with the instability of the predictive coefficient across
periods. Overall, these various OOS approaches lead to similar conclusions to our baseline in terms
of predictability of the dominant components.

B.2 Finite Sample Bias
The relative lack of Stambaugh-type bias for the PCs may be surprising given that bias for the
aggregate market is large. However, this difference arises for two reasons. Assuming an AR(1)
process for the predictor, Stambaugh (1999) shows that

E
(
β̂ − β

)
= cρxyE (ρ̂x − ρx) ,
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where β̂ is the estimated predictive coefficient, ρxy is the contemporaneous correlation of innovations
to x and y, and ρx is the autocorrelation of x. Marriott and Pope (1954) show that the bias in
ρ̂x is approximately proportional to ρx itself. Hence, the overall bias in β̂ is proportional to ρxρxy.
We empircally estimate these quantities for the market and the anomaly PC portfolios to help
decompose the lower simulated bias for PCs shown in Table 2.

In the first row of Table A.2 we report annualized AR(1) coefficients estimated by OLS from
monthly data, ρannual = ρ12

monthly. Unsurprisingly, they are much smaller for PCs relative to the
aggregate market. By estimating the restricted VAR(1) assumed in Stambaugh (1999), we obtain
estimates of the error correlation, shown in the second row of Table A.2. The error correlation is
also substantially smaller for the PCs, further reducing the bias in estimated predictive coefficients.

Table A.2: Stambaugh Bias

The first row reports annualized AR(1) coefficients of bm ratios, estimated from monthly data(
ρannual = ρ12

monthly

)
. The second row reports the contemporaneous correlation of innovations to

returns and bm ratios assuming a VAR(1) data-generating process.

MKT PC1 PC2 PC3 PC4 PC5

Persistence 0.87 0.52 0.61 0.53 0.27 0.44
Error correlation -0.84 -0.67 -0.33 -0.34 -0.30 -0.15

B.3 Macro Predictors
It is possible that price ratios are useful return forecasters of anomaly returns, but their predic-
tive ability is subsumed by standard aggregate return predictors. We explore this by including
the aggregate dividend-to-price ratio (D/P), cyclically-adjusted earnings-to-price (CAPE), lagged
realized volatility, the term premium, corporate bond yield spread, consumption-to-wealth ratio
from Lettau and Ludvigson (2001) (CAY), GDP growth, and aggregate sentiment from Baker and
Wurgler (2006). We include each of these additional predictors one at a time to the regressions of
the market and PC returns on their own bm. In Table A.3 we report the multivariate coefficients,
t-statistics on the bm ratios and full sample R2 values. The first row repeats the baseline estimates
from Table 2. The remaining rows show that macro variables do not even partially drive out the
price ratios when predicting returns. This is not surprising. Even if we knew the “true” macro
variables that drive time-variation in expected returns, the empirically measured values are likely
extremely noisy since quantities like consumption, wealth, and gdp are not directly observable.
Price ratios, by contrast, are likely much better measured expected return proxies. Daniel and
Moskowitz (2016) find that aggregate market volatility predicts returns on the momentum port-
folio. Among the largest five PCs, we find that market volatility predicts only PC2, which has a
large loading on momentum.
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Table A.3: Including Macro Predictors

We we report the multivariate coefficients, t-statistics on the bm ratios and full sample R2 values.
The first row repeats the baseline estimates from Table 2.

MKT PC1 PC2 PC3 PC4 PC5
Baseline 0.76 4.32 1.62 1.80 4.86 1.56

(1.24) (4.31) (1.81) (2.01) (3.74) (0.78)
0.29 3.96 0.74 0.56 3.59 0.50

D/P 1.09 4.17 6.82 3.02 4.48 2.45
(0.50) (4.36) (3.40) (2.49) (3.29) (1.47)
0.30 4.02 4.55 0.83 3.79 0.87

CAPE 1.21 4.31 1.97 2.64 4.44 1.89
(1.42) (4.29) (1.90) (2.96) (3.65) (1.06)
0.39 3.97 0.77 0.87 4.14 0.77

Volatility 0.74 4.57 1.03 1.82 4.88 1.47
(1.17) (4.09) (1.40) (2.05) (3.89) (0.74)
0.48 4.09 2.04 0.84 3.66 0.59

Term Premium 0.82 4.32 1.61 1.79 5.02 1.36
(1.33) (4.24) (1.82) (1.85) (3.60) (0.66)
0.53 4.06 0.74 0.56 3.83 0.58

Corp. Spread 0.68 4.02 1.35 1.77 4.64 1.55
(0.99) (3.38) (1.62) (1.96) (3.57) (0.77)
0.36 4.13 1.42 0.58 4.07 0.52

CAY 0.75 4.30 1.61 1.87 5.19 1.68
(1.25) (4.17) (1.74) (1.78) (4.32) (0.79)
0.57 3.97 0.74 0.57 4.55 0.57

GDP growth 0.69 4.62 1.39 1.81 4.85 1.51
(1.09) (4.36) (1.75) (2.06) (3.78) (0.75)
0.44 4.09 1.55 0.59 3.59 0.70

Sentiment 0.65 4.15 1.88 1.49 3.85 1.80
(1.15) (4.12) (2.40) (1.75) (2.71) (0.89)
0.37 4.06 2.28 1.17 4.62 1.29

A6



74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

-5

0

5

(a) Market

74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18
-4

-2

0

2

4

(b) PC1

74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

-2

0

2

4

6

8

(c) PC2

A7



74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

-6

-4

-2

0

2

4

6

(d) PC3

74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

-2

0

2

4

6

(e) PC4

74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

-5

0

5

10

(f) PC5

Figure A.1: Realized and Predicted Return. The plot shows realized returns along with full
sample and out-of-sample forecasts of returns on the aggregate market and first five PC portfolios
of the fifty anomalies.
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B.4 Forecast and Realized Returns
Figure A.1 shows realized returns along with full sample and out-of-sample forecasts of returns on
the aggregate market and first five PC portfolios of anomalies.

B.5 Anomaly Return Properties
Table A.4 shows annualized mean excess returns on the fifty anomaly long-short portfolios as well
as the underlying characteristic-sorted decile portfolios.
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Table A.4: Part I: Anomaly portfolios mean excess returns, %, annualized

Columns P1 through P10 show mean annualized returns (in %) on each anomaly portfolio net of risk-free rate. The column P10-P1
lists mean returns on the strategy which is long portfolio 10 and short portfolio 1. Excess returns on beta arbitrage portfolios are
scaled by their respective betas. F-score, Debt Issuance, and Share Repurchases are binary sorts; therefore only returns on P1 and
P10 are reported for these characteristics. Portfolios include all NYSE, AMEX, and NASDAQ firms; however, the breakpoints use
only NYSE firms. Monthly data from January 1974 to December 2017.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1
1. Size 6.5 8.5 9.0 9.7 9.4 10.1 9.7 10.5 9.9 9.6 3.1
2. Value (A) 5.8 8.0 9.0 7.6 8.8 9.1 9.0 9.2 9.0 12.2 6.4
3. Gross Profitability 6.0 6.0 6.9 6.4 8.5 7.6 8.2 7.1 7.9 9.8 3.8
4. Value-Profitablity 4.7 6.4 4.9 7.1 9.1 8.6 11.1 11.9 12.1 13.7 9.0
5. F-score 6.9 - - - - - - - - 7.9 1.0
6. Debt Issuance 7.0 - - - - - - - - 8.7 1.7
7. Share Repurchases 7.0 - - - - - - - - 8.4 1.4
8. Net Issuance (A) 3.5 5.8 9.4 8.8 7.8 7.8 7.1 9.1 8.9 11.8 8.3
9. Accruals 5.0 6.7 6.1 7.5 7.8 7.8 8.7 7.7 10.3 9.0 4.0
10. Asset Growth 5.8 7.4 7.9 7.8 8.1 7.7 7.9 9.3 10.6 10.0 4.2
11. Asset Turnover 4.8 7.3 6.8 7.0 8.2 9.1 9.6 7.6 10.2 9.8 5.0
12. Gross Margins 6.9 7.5 8.7 7.7 8.7 7.2 8.1 7.5 6.5 7.5 0.6
13. Earnings/Price 4.6 5.8 7.2 7.9 7.7 7.9 10.4 9.3 9.7 12.3 7.6
14. Cash Flows/Price 5.3 8.1 6.7 8.6 8.7 9.1 8.4 9.7 11.4 11.2 5.9
15. Net Operating Assets 3.8 7.0 7.5 4.5 8.3 8.1 8.5 8.3 9.4 9.1 5.2
16. Investment/Assets 5.2 5.7 8.3 7.0 8.9 7.2 8.1 9.2 9.0 11.0 5.8
17. Investment/Capital 7.0 7.3 6.9 8.0 7.6 9.0 7.8 8.2 9.0 9.9 2.9
18. Investment Growth 5.4 8.7 7.4 7.1 7.0 7.9 8.6 8.4 10.3 9.1 3.7
19. Sales Growth 7.9 7.6 7.9 7.0 8.1 9.1 7.3 8.4 9.3 7.3 -0.5
20. Leverage 6.2 7.3 7.4 10.8 7.9 8.6 9.2 9.2 9.4 8.9 2.7
21. Return on Assets (A) 4.5 8.8 7.9 8.1 7.7 7.6 7.9 8.3 7.1 7.7 3.2
22. Return on Book Equity (A) 6.4 7.3 7.0 8.2 7.0 8.1 7.1 8.0 6.9 8.4 2.0
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Table A.4: Part II: Anomaly portfolios mean excess returns, %, annualized

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1
23. Sales/Price 5.5 6.7 7.4 8.9 9.5 9.4 9.9 11.4 11.5 13.1 7.7
24. Growth in LTNOA 7.4 6.9 7.1 9.1 6.5 7.8 7.3 8.6 8.6 8.4 1.0
25. Momentum (6m) 9.9 9.6 9.1 9.1 8.3 8.6 7.5 6.1 7.9 11.2 1.3
26. Value-Momentum 6.8 8.6 7.4 8.1 8.9 9.7 10.1 9.1 8.4 11.5 4.7
27. Value-Momentum-Prof. 6.4 8.3 8.2 8.8 7.6 5.9 8.2 9.3 11.9 14.8 8.4
28. Short Interest 7.1 6.6 9.1 9.4 8.7 7.1 7.7 6.5 5.1 5.8 -1.4
29. Momentum (12m) -0.3 5.6 7.0 8.1 6.6 7.4 7.6 9.6 9.4 12.7 13.0
30. Industry Momentum 6.6 6.2 8.5 5.8 8.2 10.4 8.2 7.4 9.6 9.5 2.9
31. Momentum-Reversals 5.6 7.5 8.0 7.6 8.0 9.7 7.8 9.8 9.5 12.5 6.9
32. Long Run Reversals 7.4 7.4 8.2 9.0 8.6 9.0 8.8 9.9 10.6 11.8 4.4
33. Value (M) 6.4 7.0 7.3 7.4 8.7 7.9 9.7 7.8 12.8 12.3 5.9
34. Net Issuance (M) 4.6 6.1 10.8 8.8 9.2 7.7 7.9 8.7 10.6 11.2 6.6
35. Earnings Surprises 5.0 5.2 5.8 7.7 7.4 8.3 7.6 8.0 8.9 11.5 6.4
36. Return on Book Equity (Q) 2.4 6.3 7.4 5.4 6.4 7.1 8.2 8.2 7.8 9.8 7.5
37. Return on Market Equity 1.3 2.2 7.1 6.4 7.8 7.7 8.7 11.1 12.1 15.8 14.4
38. Return on Assets (Q) 2.8 5.3 8.1 7.9 7.9 7.6 8.8 8.1 7.6 8.6 5.8
39. Short-Term Reversals 4.0 5.0 7.2 7.3 7.4 8.5 9.5 9.9 10.3 8.4 4.4
40. Idiosyncratic Volatility 0.9 8.9 11.4 8.5 10.6 9.1 8.3 8.2 7.9 7.5 6.7
41. Beta Arbitrage 3.9 4.0 5.1 7.3 8.6 10.2 11.2 11.8 14.6 17.2 13.3
42. Seasonality 4.0 4.4 6.7 6.3 8.5 7.4 7.9 7.6 9.8 13.2 9.2
43. Industry Rel. Reversals 2.6 4.2 4.9 6.3 6.8 8.2 9.6 11.6 13.3 13.1 10.6
44. Industry Rel. Rev. (L.V.) 1.7 5.2 5.2 6.8 6.6 7.4 9.8 10.8 13.8 15.6 13.9
45. Ind. Mom-Reversals 4.1 5.3 6.2 6.3 8.4 7.9 8.4 9.5 10.4 14.7 10.6
46. Composite Issuance 4.7 6.5 6.6 7.1 8.0 8.0 7.5 8.1 10.3 10.8 6.1
47. Price 6.1 9.5 9.2 10.8 9.2 8.9 7.9 7.9 7.9 6.5 0.5
48. Share Volume 7.2 8.7 7.3 7.6 8.1 6.8 8.4 7.3 6.9 6.8 -0.4
49. Duration 5.4 7.5 9.0 8.3 9.3 10.1 9.8 9.5 11.0 11.8 6.5
50. Firm age 7.0 9.1 6.0 9.8 6.4 8.8 10.0 8.5 7.3 7.7 0.7
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Figure A.2: Anomaly SDF Weights. The plot shows implied SDF coefficients on the size,
value, momentum and ROA anomaly portfolios..

Figure A.2 gives the time-series of implied SDF coefficients on the size, value, momentum and
ROA anomaly portfolios.

Figure A.3 shows the annualized unconditional mean return and standard deviation of condi-
tional mean return on the fifty anomaly portfolios. Unconditional mean returns are computed as
sample average returns. Standard deviation of conditional mean return are model implied based on
the expected returns of five PC portfolios. The cross-sectional correlation of these two quantities
is -20%.

B.6 Role of the Rebalancing Frequency
Table A.5 studies the role of the rebalancing frequency for factor timing. To focus on anomaly
timing, we report statistics for the “pure anomaly timing” strategy which always has zero weight
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Table A.5: Rebalancing frequency

We report the average unconditional Sharpe ratio, expected utility for a mean-variance investor,
monthly portfolio turnover, and correlation with the monthly strategy with various rebalancing
frequencies. Turnover is measured as the sum of absolute changes in portfolio weights divided by
the sum of absolute initial portfolio weights.

Monthly Quarterly Semi-annual Annual
Sharpe ratio 0.71 0.72 0.82 0.79
Expected utility 1.26 1.08 0.88 0.81
Turnover 0.41 0.20 0.13 0.08
Correlation 1.00 0.98 0.92 0.88

in the market and has zero weight on average in each of the fifty anomaly portfolios.31 We change
portfolio weights on the anomalies monthly, quarterly, semi-annually, or annually. The first two rows
report the Sharpe ratio and expected utility performance measures. The third row reports portfolio
turnover, which we construct as follows. Given portfolio weights wi,t on anomaly i at date t, we
construct period t turnover as

∑
i |wi,t − wi,t−1| /

∑
i |wi,t−1| which measures absolute trading scaled

by gross exposure.32 We report the average of this monthly measure over our sample. The last row
of Table A.5 reports the correlation of each of the portfolios with the baseline monthly rebalanced
return. Interestingly, the performance of the portfolios does not deteriorate meaningfully. The
unconditional Sharpe ratio actually increases from 0.71 to 0.79 with annual rebalancing. Expected
utility declines from 1.26 to 0.81, still a substantial value. For comparison, the static factor investing
strategy yields an expected utility of 1.66 so even with annual rebalancing, timing benefits are
economically meaningful. The correlation of the slower strategies with our baseline further confirms
that the strategies are not that different. Even with annual rebalancing the correlation drops to
only 0.88, showing that lowering the rebalancing frequency does not generate substantial tracking
error. The signaling value of the predictors we use is sufficiently persistent to be used without
continuous tracking.

Our anomaly timing strategy has a monthly turnover of 41%. Changing nearly half of positions
each month might seem large, but it is important to remember that nothing in the construction
of our strategy imposes a smooth trading path. The lower rebalancing frequencies drastically
lower the turnover rate down to 8% with annual rebalancing. It is tempting to conclude that
that these strategies are implementable in practice. Indeed, these numbers are in line with usual
trading activity of investment funds. Griffin and Xu (2009) show that the median hedge fund has
8.5% monthly turnover and even the median mutual fund has 5% turnover. However, to reach a
firm conclusion in terms of implementability, one would need a clear model of transaction costs.
In addition, the transaction costs would likely depend of the scale at which the strategies are
implemented.

31The factor timing strategy has about 25-30% lower turnover at all rebalancing frequencies.
32Since our portfolios are all zero cost excess returns, the standard definition which divides by portfolio

equity makes little sense in this context.
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Table A.6: Volatility timing

We report the mean and standard deviation of the conditional variance of the SDF based on three
estimates. The first column uses the SDF variance shown in Figure 2 based on return forecasts
in Table 2 and assumes returns are homoskedastic. The second column assumes returns are not
predictable and uses estimates of conditional return variances constructed from a regression of
squared forecast errors on lagged realized variance. The final column combines both mean and
variance forecasting.

Means Variances Both

E [vart (mt+1)] 2.96 2.19 3.54
std [vart (mt+1)] 2.17 0.74 2.06

B.7 Conditional Variance of the SDF
Figures A.4 and A.5 show conditional variance of SDFs, as well as the relationship between SDF
variance and inflation.

B.8 Volatility timing
As discussed in Moreira and Muir (2017), optimal timing strategies rely not only on estimates of
conditional expected returns, but also conditional volatilities. Going back to our one-asset example
at the beginning of Section 4.1, consider the situation where volatility changes independently from
expected returns. Then the average squared Sharpe ratio becomes

(
E [µt]2 + var [µt]

)(
E
[ 1
σt

]2
+ var

[ 1
σt

])
,

the gains from timing returns and volatility are multiplicative.
In our multivariate setting, we need to construct estimates of ΣZ,t. We proceed as follows. For

each of our five principal components and the market returns, we compute the realized volatility
of daily returns during the previous month. We use these realized variances to create a forecast
of the squared monthly prediction errors in the following month using a simple regression for
each return series. These forecasts constitute the diagonal elements of ΣZ,t. We confirmed that
using GARCH(1,1) volatility forecasts leads to similar conclusions. We further assume that the
five principal components and the market are conditionally orthogonal, and set the off-diagonal
elements to 0.33

In Section 5.4 we report statistical properties of estimated stochastic discount factors which
incorporate time-varying means, variances, or both. We compute the mean and standard deviation
of the corresponding SDF variances. Figure A.6 shows the time-series of the conditional SDF
variance implied by each of these three estimates. Examining the two time series, we note that the
largest volatility spikes tend to mitigate the effect of high expected returns on SDF variance. For

33The five components and the market are unconditionally orthogonal by construction.
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example this coincidence occurs during the Internet boom and bust, and also during the financial
crisis of 2008.

C Statistical Approach
We first discuss an alternative statistical motivation behind our methodology, then derive some
useful statistical properties.

C.1 An Alternative Statistical Motivation
Another way to approach our empirical exercise is to look for common sources of variation in risk
premia across base assets or factors. For example, starting from a vector of candidate predictors
Xt, we want to assess their usefulness to forecast the returns. In a linear setting, this corresponds
to studying the vector of coefficients b′i in the panel regression:

Ri,t+1 = ai + b′iXt + εi,t+1, (A21)

where one can replace Ri,t+1 by Fj,t+1 if focusing on factors. There are multiple ways to aggregate
the information in the estimated coefficients of interest, bi, to judge the success of Xt as a predictor.

One can ask if Xt predicts “something”: is there a linear combination of the coefficients b =
[b1 · · · bn] that is statistically distinct from zero? This corresponds exactly to a standard Wald
test. This notion of predictability, is intuitively too lax. For instance, our conclusion about the
predictive value of Xt could be driven by its ability to predict only a few assets or the lowest
variance PC portfolios. A small amount of noise in measured returns can lead to significant spurious
predictability of the smallest PC portfolios, even in population. This issue is exacerbated in small
samples.

The other extreme is to ask whether elements of Xt predicts “everything”, or that all coefficients
in a row of b are statistically distinct from zero. For instance Cochrane and Piazzesi (2005) obtain
such a pattern predicting Treasury bond returns of various maturities using the cross-section of
yields, concluding to the presence of a single common factor in expected returns. While this
approach can uncover interesting patterns, it is likely to be too stringent. We show in Section C.2
that such a test is often equivalent to testing whether Xt predicts the first principal component
of realized returns. In other words, finding uniform predictability across all assets simply finds
predictability of the “level” factor in returns. In contrast, we show in Section C.3 that if a predictor
is useful for forecasting index-neutral factor returns, captured by a long-short portfolio, but not for
aggregate returns, individual asset predictive regressions are unlikely to uncover such predictability.

Our approach strikes a balance between these two extremes by asking whether Xt predicts the
largest principal components of returns. In other words, we focus on common predictability along
the few dimensions explaining a large fraction of realized returns. Focusing on components with
a large explanatory power avoids the issue of the Wald test. Entertaining multiple dimensions
avoids the other extreme of only focusing on the first component of returns, and allows us to study
time-series predictability of cross-sectional strategies.

Our approach to the predictability of cross-sections of returns is focused on predicting important
dimensions of the data rather than considering regressions at the individual asset level. In this
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section, we study more systematically the relation between predicting important components of
returns and predicting individual returns.

We consider three features that were relevant in our empirical applications and provide ways
to quantify them more generally. First, there is a strong link between predicting the first principal
component of returns and predicting each individual return. Second, it is difficult to detect pre-
dictability of the second or higher components of returns in individual regressions when the first
component is large. Third, joint tests of significance in individual regressions are susceptible to
picking up small unimportant patterns of predictability.

C.2 First Principal Component and Individual Regressions
A common empirical situation is that a family of returns {Ri,t+1}i∈I has a strong common compo-
nent Ft+1. When this component is predictable by a variable Xt, does this imply that the individual
returns are predictable byXt? We answer this question quantitatively by deriving a series of bounds
linking the predictability of Ft+1 with the individual predictability of asset returns. We first zoom
in on one particular return before considering properties for an entire family of returns.

One individual return: a purely statistical bound. Define R2
1,i as the population R-

squared of the contemporaneous regression of an individual asset on the common component,

Ri,t+1 = λiFt+1 + εi,t+1, (A22)

and R2
X as the R-squared of the predictive regression of the factor,

Ft+1 = β1Xt + ut+1. (A23)

We are interested in R2
X,i, the R-squared of the predictive regression

Ri,t+1 = biXt + vt+1. (A24)

The following proposition characterizes a lower bound on this quantity.34

Proposition 2. If a variable Xt predicts a factor Ft+1 with R-squared R2
X and an individual

return is explained by this factor with R-squared R2
1,i, then a lower bound for the R-squared R2

X,i of
predicting this return using Xt is given by:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√(
1− R2

1,i

) (
1− R2

X

)
, 0
)2

. (A25)

Proof. By the definition of a regression R2 we have R2
1,i = λ2

i var(Ft+1)
var(Ri,t+1) , R

2
X = β2

1
var(Ft+1) , and R2

X,i =
b2
i

var(Ri,t+1) . The the linearity of regression we have bi = λiβ1 + cov (Xt, ui,t+1). We can bound the

34Without loss of generality, we assume that the predictor Xt has unit variance.
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second term in this expression:

|cov (Xt, ui,t+1)| = |corr (Xt, ui,t+1)|
√

var (ui,t+1)

≤
√

1− R2
1,i

√
var (ui,t+1),

where the bound comes from the fact that the correlation matrix of ui,t+1, Ft+1 and Xt+1 has to
be semidefinite positive and therefore have a positive determinant.

If |λiβi| ≤
√

1− R2
1,i

√
var (ui,t+1), then 0 is a lower bound for R2

X,i. In the other case, we obtain
the following bound:

R2
X,i ≥

(
λiβ1 −

√
1− R2

1,ivar (ui,t+1)
)2

var (Ri,t+1)

≥
(√

λ2
iβ

2
1

var (Ri,t+1) −
√

1− R2
1,i

√
var (ui,t+1)
var (Ri,t+1)

)2

≥
(√

R2
1,iR2

X −
√(

1− R2
1,i

) (
1− R2

X

))2

Putting the two cases together gives Equation A25.

Intuitively, if Xt strongly predicts the common factor, and the factor has high explanatory
power for individual returns, then Xt should predict the individual returns as well. The bound is
indeed increasing in the R-squared of these two steps. However, it is lower than the product of the
two R-squared — a naive guess that assumes “transitivity” of predictability. This is because the
predictor Xt might also predict the residual εi,t+1 in a way that offsets the predictability coming
from the factor. The orthogonality of Ft+1 and εi,t+1 limits this force, but does not eliminate it.

To get a quantitative sense of the tightness of this bound, consider the case of bond returns.
The level factor explains about 90% of the variation in individual returns, and it can be predicted
with an R-squared around 25%. Plugging into our bound, this implies a predictive R-squared of
at least 4% for a typical individual bond return. This is a sizable number, but also much less than
the 22.5% implied by a naive approach.

One individual return: a bound with an economic restriction. One reason this bound
is relatively lax is that it does not take into account the nature of the variable εi,t+1. Indeed, if, as
is the case in our setting, the component Ft+1 is itself an excess return, the residual εi,t+1 is one
too. It is therefore natural to make the economic assumption that it cannot be “too”’ predictable
by the variable Xt. This corresponds to imposing an upper bound R2

max on the R-squared of the
predictive regression of εi,t+1 by Xt+1.35 In this case, our bound becomes:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√
R2

max

(
1− R2

X

)
, 0
)2

. (A26)

35One way to determine a reasonable bound on R2
max is to note that the standard deviation of an asset’s

conditional Sharpe ratio equals
√

R2
x,i

1−R2
x,i

.
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Such an approach can considerably tighten the bound. For instance, in our example for treasuries,
one could impose an upper bound of 25% for predicting the residual. This yields a lower bound on
predicting the return Ri,t+1 of 10%, a much larger number, statistically and economically.

Family of returns: the symmetric case. Another reason that predictability of the common
factor must transmit to predictability of individual returns is that by design it absorbs common
variation across all those returns. To highlight this point, we consider the following simple symmet-
ric case. We assume that the factor is the average of all the individual returns, Ft+1 = 1

N

∑
iRi,t+1.

We further assume that all assets have the same loading on the factor and the factor has the same
explanatory power for each return. This corresponds to constant λi, and R2

1i across assets. We
then immediately have: ∑

i

ui,t+1 = 0∑
i

cov (Xt, ui,t+1) = 0.

Letting γi = cov (Xt, ui,t+1) we then obtain an expression for an individual asset:

R2
X,i = (λiβ1 + γi)2

var (Ri,t+1)

= R2
1R2

X + γ2
i

var (Ri,t+1) + 2γi
λiβ1

var (Ri,t+1)

Finally, taking averages across assets we have:

Ei
[
R2
X,i

]
= R2

1R2
X + vari

(
R2
X,i

)
, (A27)

where Ei(·) and vari(·) are the mean and variance in the cross section of individual returns and
we use the fact that we use the fact that Ei [γi] = 0. This formula implies that the average
explanatory power is now at least as large as given by the transitive formula. This would correspond
to 22.5% in our example, almost the same value as the predictive R-squared for the common factor.
Furthermore, the more unequal this predictive power is across assets, the stronger it must be on
average. That is, if the variable Xt does less well than the transitive R-squared for some particular
returns, it must compensate more than one-to-one for the other assets.

From predicting “everything” to aggregate returns. Maintaining the same assump-
tions, we can rearrange Equation A27 to see what the predictability of “everything” implies for
predictability of the common factor. We have:

R2
X =

Ei
[
R2
X,i

]
− vari

(
R2
X,i

)
R2

1
.

At first this may not seem very powerful since vari
(
R2
X,i

)
could be large. This maximal variance,

however, is related to the average Ei
[
R2
X,i

]
. Consider the simple example of only two assets. Then,
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if the average Ei
[
R2
X,i

]
is 10%, the maximal variance is only 1%, which obtains when R2

X,1 = 0%
and R2

X,2 = 20%. In general with two assets we have

vari
(
R2
X,i

)
≤
(
0.5−

∣∣∣Ei [R2
X,i

]
− 0.5

∣∣∣)2

which gives the bound

R2
X ≥

Ei
[
R2
X,i

]
−
(
0.5−

∣∣∣Ei [R2
X,i

]
− 0.5

∣∣∣)2

R2
1

.

For large N , the Bhatia-Davis inequality gives:

R2
X ≥

(
1− R2

max

)
Ei
[
R2
X,i

]
+ Ei

[
R2
X,i

]2
R2

1
,

where R2
max, as before, is the maximum R2

X,i from any individual asset forecasting regression. For
reasonable values of R2

max, such as 0.5 or less, the bound implies that ~22% average R2 we obtain for
individual bonds implies at least 18% R2

X , the R-squared when predicting the aggregate portfolio
return.

C.3 Low Power of Individual Tests
While individual regressions are strongly related to predicting the first common component of
returns, they can face challenges in detecting predictability of other factors. We provide a way to
quantify this issue by characterizing the statistical power of a test of significance for a predictor
that only predicts one particular component of returns. We illustrate this idea in the simple case of
an i.i.d. predictor. Simulations confirm these ideas extend to a situation with persistent predictors.

I.i.d. predictor. Consider first the case where the forecasting variable Xt+1 has i.i.d. draws.36

Suppose that Xt forecasts only one particular principal component j with population R-squared
R2
X and the remaining principal component returns are i.i.d. Gaussian with known mean.37 For

power analysis, we consider repeated samples of length T .38

When directly forecasting the principal component return, Fj,t+1, the power to correctly reject
the null with test of nominal size α is

power (F2) = G
(
−tα/2,T − z

)
+
[
1−G

(
tα/2,T − z

)]
, (A28)

where G is the CDF of a t-distribution with T degrees of freedom, z =
√
R2
X

√
T
(
1− R2

X

)− 1
2 , and

tα/2,T is the α
2 critical value from the t-distribution.

36The formulas hereafter admit simple generalizations to multivariate prediction.
37More generally, the components need not be principal components. They must be uncorrelated and

only one particular component must be forecastable by our predictor. If the mean is unknown, the results
below are unchanged except that the degrees of freedom are T − 1 instead of T .

38The analysis treats X as stochastic. With fixed X the distribution is normal instead of a Student t.
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In contrast, when directly forecasting an individual return, Ri,t+1, the power is

power (Ri) = G
(
−tα/2,T − ζ

)
+
(
1−G

(
tα/2,T − ζ

))
, (A29)

where ζ =
√
R2
X

√
T

((
1− R2

X

)
+ 1−R2

j,i

R2
ji

)− 1
2
. By symmetry of the t-distribution and because ζ ≤ z,

we immediately obtain that power (F2) is larger than power (Ri) for all assets. Therefore, there is
always more information about predictability of the important component by studying it directly.
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Figure A.3: Anomaly Expected Returns. The plot shows the annualized unconditional mean
return and standard deviation of conditional mean return on the fifty anomaly portfolios.
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Figure A.4: Conditional Variance of SDFs. This figure plots the conditional variance of the
SDF constructed under various sets of assumptions. “Factor timing” (solid blue line) is our full
estimate, which takes into account variation in the means of the PCs and the market. “Anomaly
timing” (dashed red line) imposes the assumption of no market timing: the conditional expectation
of the market return is replaced by its unconditional counterpart. Conversely, “Market timing”
(starred yellow line) allows for variation in the mean of the market return, but not the means of
the factors.
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Figure A.5: Variance of the SDF and inflation. This figure plots the conditional variance
of the SDF (solid blue line), and inflation rate over the previous year (dashed rate line). The SDF
variance is constructed using the predictive regressions reported in Table 2. The inflation rate is
the annual log change in the CPI.
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Figure A.6: Conditional Variance of SDFs. This figure plots the model-implied conditional
variance of the SDF constructed in three ways. The solid blue line uses only timing of conditional
means but constant variance. The red dashed line ignores predictability of returns but times
variances. The yellow starred line times both means and variances.
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