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1 Introduction

One of the primary functions of the economics profession is measuring the state of the economy
and developing models that link these measurements to distributions of future outcomes. This arms
consumers, investors, and policymakers with the information and structural context necessary to
allocate resources efficiently. But the economy is a complex system whose current state defies simple
measurement. Vast resources, both public and private, are devoted to measuring the many facets
of economic activity. For example, the BEA maintains detailed national accounts for income and
spending at the aggregate and industry level, while the BLS specializes in measuring employment,
wages, and general price levels. In addition, equity and debt markets provide a barometer for
economic conditions facing the corporate sector. And academic researchers maintain and distribute
indices of economic volatility (Engle, 2019) and recession probabilities (Chauvet and Piger, 2008),
to name a few. Together, these comprise an overlapping ecosystem of numerical business cycle
indicators. Ascertaining the nature and evolution of the state of the economy from these data is a
notoriously difficult task.

In this paper, we offer a new approach to measuring the state of the economy via textual analysis
of business news. The media sector, as a central information intermediary in society, continually
transforms perceptions of economic events into a verbal description that we call “news.” This
transformation involves describing events, interpreting their meaning and impact, and inferring their
causes. The information disseminated by news media is an equilibrium outcome determined by the
confluence of consumer preferences, news production technologies, and the competitive landscape of
the news industry (Mullainathan and Shleifer, 2005). As such, news text is a mirror of the prevailing
economic issues that are important to both news consumers and producers. News text is a one-
stop shop for simultaneously understanding many facets of the state of the economy and how they
interact with each other. It uses the richness of narrative, derived from human understanding and
interpretation of complex contexts.

Despite the fact that news media reflects information that consumers rely on to make allocation
and consumption choices in an evolving environment, little work has directly studied the structure
of news. We focus our analysis on the full text of the The Wall Street Journal (WSJ), consisting
of approximately 800,000 articles from 1984-2017. We summarize this dense verbal description of
the state of the economy via a topic model. Topic models are a popular dimension reduction tech-
nique from the fields of machine learning and natural language processing.! They have two essential
elements. Just as principal component analysis condenses large data matrices into a comparatively
low number of common factors, a topic model’s first element reduces an inherently ultra-high di-
mension representation of a text corpus into a relatively low-dimensional set of common “topics.”
The formation of topics is unsupervised—they are estimated as clusters of terms that are most likely

to co-occur in the same article. Those clusters are optimized so that relatively few clusters (many

!Topic models have only recently begun to be explored in empirical economics research. The earliest example we
are aware of is Hansen et al. (2017). While we use LDA, contemporaneous work of Cong et al. (2018) use unsupervised
methods for WSJ text based on the word2vec approach of Mikolov et al. (2013), and while we analyze full text of all
WSJ articles, they analyze headlines and abstracts of front page articles (as in Manela and Moreira, 2017).



fewer than the number of distinct terms in the data set) preserve as much of the meaning in original
corpus as possible, by best explaining the variation in term usage across articles.

A topic model’s second main element estimates for each article, the proportion of text dedicated
to each topic. These proportions are a valuable map from the common topics to the individual,
article-level narratives that invoke those topics. But more importantly, they quantify the amount of
news attention allocated to each topic. This makes it possible, for example, to analyze the interaction
between news and economic activity. In short, our topic model accomplishes two important estima-
tion tasks of 1) summarizing dominant themes throughout the history of the WSJ, and 2) tracking
how media attention to news topics evolves. From this, we provide a new quantitative description of
the state of the economy.

Our main empirical findings are the following. First, we characterize the topical structure in
business news. WJSJ news decomposes into easily interpretable topics with intuitive time series
patterns. A model with 180 topics is a statistically optimal specification according to a Bayes factor
criterion. Models with fewer topics tend to mix news themes into overly broad clusters, while more
topics use more parameters than are warranted by the gain in fit.

Almost all topics exhibit strong time series persistence. A long open question in financial research
is why do asset returns exhibit such strong volatility clustering. A leading hypothesis for this fact
(e.g., Engle et al., 1990) is that volatility is driven by news arrivals, and that news itself arrives in
clusters. The persistence in attention paid to a particular news topic supports at least part of this
hypothesis. For example, the prevalence of news associated with the “oil drilling” {key terms: exzon
mobil, cubic feet, drill rig, offshore oil} and “oil market” {key terms: opec, nonopec, oil minister, oil
demand} topics in the WSJ closely coincide with the volatility of crude oil prices.

We find that news is a combination of recurrent, seasonal, and episodic topics. Recurrent topics
are those garnering media attention consistently throughout the sample. For example, the “Federal
Reserve” topic, whose key terms include {greenspan, yellen, federalfunds rate, fomc}, is regularly
active throughout the sample. As is the “health insurance” topic {key terms: hmo, health plan,
health coverage, blue cross}, which becomes highly prevalent during debate of the Clinton Health
Plan proposal (peaking around President Clinton’s speech to Congress in September 1993), the pro-
posal and passage of Obamacare in 2008-2010, and the Obamacare repeal debate around the 2016
presidential election. Seasonal topics include “presidential elections” {key terms: obama, romney,
dukakis, campaign finance}, whose prevalence has a clockwork seasonal pattern peaking every four
years, and “earnings forecasts” {key terms: analyst poll, earn forecast, earningspershare, earn expec-
tation} which spikes ahead of each earnings announcement season. Episodic topics are dormant for
much of the sample, then spike around particular events. For example, the “terrorism” topic {key
terms: taliban, queda, suicide bomber, osama} is a prototypical regime shift: It has a prevalence near
zero for the first half of our sample, spikes dramatically at 9/11, and remains high henceforth. Sim-
ilarly, the “natural disasters” topic {key terms: katrina, quake, tsunami, hurricane} has a very low
proportion during most of the sample, but rises sharply in August 2005 (Hurricane Katrina), then
reverts but remains slightly elevated for much of the remaining sample, presumably due to increased

news attention on the effects of climate change (Engle et al., 2019). These examples illustrate the



fact that many topics describe subjects of the news (elections, the Fed, earnings), and do not assign
an obvious value of assessment of good news versus bad news. For other topics, the subject itself
carries a value assignment (terrorism, recession, natural disasters). And there are a small number of
sentimental topics, such as the “concerns” topic {key terms: raise concern, major concern, express
concern, increase concern}, that provide directional color to the subject topics with which co-occur
in a given article.

We draw on a number of additional tools from the machine learning literature that help us further
understand the rich structure of text. One is a machine learning graphing tool known as stochastic
nearest neighbor embedding (t-SNE, Maaten and Hinton, 2008) which helps us visualize WSJ news
in two-dimensional space. In a topic model, a news article is a mixture of themes, which can be
interpreted as a news-based snapshot of the state of the economy. The t-SNE plots help digest the
high-dimensionality and complexity of news events, illustrating their intuitive underlying structure
as recurring constellations of topics. Another machine learning tool that we use is hierarchical
agglomerative clustering (Murtagh and Legendre, 2014), which we use to group topics together based
on their thematic similarities. We recursively combine our 180 base topics into a tree structure of
gradually broadening metatopics. In doing so, we establish a complete taxonomy of business news.

W

We find that the proportion of attention paid to high-level metatopics (like “markets,” “government,”
and “technology”) is roughly constant over time. Instead, it is at finer resolutions where we find
often dramatic time variation in attention. That is, news churn occurs as rapid shifts in attention to
specific sub-topics within broad and stable metatopics.

Our main contribution is to show that the text of business news summarizes wide ranging facets of
the state of the economy. Similar to the oil volatility example, we report a variety of validation checks
showing that economic topics identified from WSJ text coincide with closely conceptually related
measures of specific economic activities. For many data series, ranging from output and employment
to financing activity, asset prices, and uncertainty, we find that a small subset of thematically related
news topics provide a close match to the paths of the numerical macro series.

One example of economic activity that we study is financing volume. We find that the volume
of leveraged buyout (LBO) transactions is most significantly associated with the “takeovers” topic
{key terms: poison pill, hostile takeover, share tender, higher offer} and “control stakes” topic {key
terms: control stake, majority stake, minority shareholder, acquire stake}, which help explain 58%
of the variation in LBO activity. Similarly, the time series behavior of IPO volume is closely tracked
by news attention to the “IPO” topic {key terms: ipo market, ipo price, roadshow, lockup} and
“venture capital” topic {key terms: joint venture, venture capitalist, venture fund}. The key term
lists of statistically related topics offer an immediate narrative for each numerical time series that
we study. These are not causal narratives. In some cases they may reflect proximate causes, and
in others they may represent anticipated impacts. But they outline how discussion of prevailing
economic topics helps understand realized macroeconomic fluctuations.

Contemporaneous correlation between news narratives and macroeconomic fluctuations is a use-
ful validation that text can be productively converted into a summary of the state of the economy.

This, however, has little to say about whether news text contains distinct or incremental information



versus standard numerical indicators. To investigate this directly, we study news attention within an
otherwise standard macroeconomic vector autoregression (VAR). We find that attention to recession
news has economically large and highly significant predictive power for future output and employ-
ment. For example, one conservative variant of our analysis shows that a standard deviation impulse
in recession attention associates with a decline in industrial production of 1.7% after twelve months,
after controlling for a variety of common VAR components such as stock market returns, interest
rates, and measures of economic uncertainty. That is, news coverage of recession risk captures useful
information about future economic outcomes above and beyond commonly used indicators. Taken
together, our results highlight fascinating possibilities for using textual data in problems such as
macroeconomic forecasting, which tend to rely exclusively on numerical data sources, and modeling
the role of information transmission and media in the macroeconomy.”

Modeling economic activity in terms of news-based topics offers economists a new set of tools for
understanding shocks. For example, in a standard macroeconomic VAR, shock interpretation often
boils down to a choice of rotation for the error covariance matrix. But with news-based models,
fluctuations can be directly mapped to textual narratives of economic conditions. We describe an
approach to narrative retrieval in a macroeconomic forecasting application. In a first step, we forecast
industrial production growth (after controlling for past growth) using news attention and identify
the most predictive topics. To understand a specific shock to expected growth within the model,
we examine which of the influential topics experienced a coincident shift in news attention. Next,
the estimated topic model traces these specific shifts in topic attention back to the original news
articles that most closely associate with topic coverage at the time of the shift. For example, we
find that the largest shifts in industrial production growth expectations are associated with news
article headlines, including “Survey Finds Sharp Drop in Consumer Confidence,” “Slower Growth in
Manufacturing Raises Concerns,” and “Gasoline Prices Fall as Imports Rise and Demand Drops.”
Using the topic model as a narrative retrieval device, the researcher can map any shock of interest to
a nuanced verbal interpretation of economic events (i.e., news articles) that are statistically closest to
the shock. In essence, the estimated model flags articles that the researcher should read throughly,
alleviating the need to manually read every article in the history of the WSJ corpus. By combining
macroeconomic analysis with topic modeling, the researcher achieves the hitherto unmanageable task
of drawing on vast written texts to better understand quantitative economic phenomena.

We end the paper with brief explorations of extensions that highlight the fascinating possibilities
for text-based approaches to economic modeling. First, because news data arrives daily, we can
estimate the state of economy at a higher frequency than most macroeconomic series allow. We show
how the time-varying correlation of high frequency financial frictions measures with our news topics
provides a narrative understanding of episodes such as financial crises in which events impacting the
macroeconomy unfold rapidly—inbetween monthly or quarterly macro announcements.

We also show that the slew of economic policy uncertainty indices developed by (Baker et al.,

2016, BBD) are closely related to our estimated topics. For example, their government spending

2See Kelly et al. (2019) for an alternative approach to incorporating textual data into macroeconomic forecasting
models.



and fiscal policy uncertainty index has a 66% correlation with our “government budget” topic {key
terms: spend cut, deficit reduction, grammrudman, federal budget, balance budget}. And the BBD
sovereign debt and currency crises uncertainty index looks like a combination of our “European debt”
and “Southeast Asia” {key terms: jakarta, thailand, southeast asia, rupiah} topics, which combine
to explain more than 40% of the variation in their BBD counterpart. What is impressive about this
comparison is that our topics are estimated in an entirely unsupervised manner.?

Section 2 briefly discusses our model structure and estimation. Section 3 describes the estimated
structure of economic news underlying WSJ text. Finally, Section 4 analyzes the connection between

news text and numerical economic data, and Section 5 concludes.

2 Topic Model and Estimation

Our model for the structure of economic news text follows the Latent Dirichlet Allocation (LDA)
topic modeling approach of Blei et al. (2003). We provide a brief summary of the model and its
estimation, and refer interested readers to the original paper for additional detail.

We study the WSJ text corpus in its “bag-of-words” form, represented numerically as the article-
term matrix, w. This is a T x V matrix where row indices correspond to the list of T' different
articles in the corpus, and column indices correspond to the vocabulary of V' unique terms in the
corpus. Its individual elements, w; ,, count the number of times that the v term appears in article
t.

2.1 Model

While the bag-of-words representation is a dramatic reduction in complexity compared to the raw
text, it remains an extraordinarily high-dimensional object. LDA seeks a tractable thematic summary
of w that reduces the dimensionality of the historical WSJ to a scale that can be digested and
interpreted by a human reader in one sitting. To achieve this summary, it 1) imposes explicit
parametric assumptions on the distribution of term counts and 2) imposes a factor structure on term
counts. In particular, LDA assumes that the V-dimensional vector of term counts for a given article

t, denoted wy, are distributed according to a multinomial distribution:
wg ~ Mult(@'&t, Nt), (1)

where V; is the total number of terms in article ¢ and thus governs the scale (or number of trials) of the
multinomial distribution. In other words, expected term counts are summarized by a comparatively
low dimension set of parameters, §; and ® = [¢1, ..., ¢x]’. The k** “topic” in the text is defined by
the V-dimensional parameter vector ¢y, where ¢, > 0 for all v and ) ¢, = 1. That is, a news

topic is a probability distribution over terms. The set of terms that take especially high probabilities

3In related work, Hassan et al. (Forthcoming) present a text-based approach to measuring political risk, in their
case at the individual firm level.



in ¢ convey the thematic content of the topic. The model’s dimension reduction is achieved by
setting the total number of topics K much smaller than the size of the vocabulary.

While the topics, ¢, describes the common themes in the corpus as a whole, LDA treats an
individual article as a mixture of topics. The article-specific parameter vector 6, = (041, ..., 01 k)" is
also a probability vector, with 6;, > 0 for all k£ and ), 6;, = 1. That is, LDA views articles as a
distribution over topics. It determines how article ¢ allocates its attention to themes associated with
each topic. A brief inspection of (1) discerns a factor structure embedded in LDA, in which topics
(¢r) serve common factors and 6 captures articles-specific exposure to those factors. At an intuitive
level, LDA achieves its dimension reduction by trading off two goals. First, for a given topic k, it
assigns high probabilities to as few terms as possible. Second, for any article, LDA tries to allocate
words in the article to as few topics as possible. This tradeoff is optimized by identifying a relatively

small number of word clusters that tend to frequently co-occur in news articles.

2.2 Estimation

In principle, one could estimate ¢ and 6 via maximum likelihood according to (1). However, in most
text applications this is computationally unrealistic. Instead, we use Bayesian methods and approach
estimation with the Gibbs sampler proposed by Griffiths and Steyvers (2004).°

The intuition behind the estimation procedure can be understood with minimal technical over-
head. First, note that model (1) can be equivalently represented as a “generative” model; that is, as

0 we can conceptualize writing

a set of sampling rules. Taking model parameters ¢ and 6; as given,
an article in the context of the model. Consider the ¢ article with N; total words. How does the
model “write” the first term in the article? First, it draws a topic at random from the list of all
topics, where the probabilities of drawing each topic are given by the K x 1 vector ;. That is, the
topic assignment of that first term, call it z;, is distributed as a unit multinomial (i.e., categorical)
with parameter 6;. Suppose we happened to draw topic k for the first term’s topic. To then draw
the first term itself, we randomly choose from the vocabulary of all terms, where the probability of
drawing any given term is given by the V' x 1 vector ¢, which is the topic-specific term probability
distribution. Call this first term z; 1, which is distributed as a unit multinomial with parameter ¢y.
This process is repeated for each subsequent term in the article, a total of N; times, at which point
the model has authored the complete article and stops. In distribution notation, each term ¢ in the
article is given by
Ty ~ Mult(¢z, ;, 1), 2z ~ Mult(6y, 1).

The Gibbs sampling estimation procedure searches for parameter values ¢ and 6; that simulate

articles most similar to those found in our news data set.”

“Paraphrased from Blei (2013).

SWe refer interested readers to Steyvers and Griffiths (2007) for an especially transparent description of their LDA
Gibbs sampler. Asuncion et al. (2009) review and compare alternative estimation approaches such as variational Bayes
and maximum a posteriori estimation. They conclude that, with proper hyperparameter tuning, all estimators perform
similarly in terms of model fit.

6These are drawn in a preliminary step from the Dirichlet priors, §; ~ Dir(c) and ¢y ~ Dir(8).

"We take 300 iterations of the Gibbs sampler over the entire corpus, and use hyperparameters of 8 = 1 and a = 1.



The estimated attention that article ¢ allocates to topic k can be represented as the frequency

with which its terms are assigned to k

Zi\il H(ét,i = k’)
S N W(a = q)

O = (2)
where Z;; are topic assignments from the estimated model. Likewise, estimates of the topics them-
selves are determined by the number of times each term v in the vocabulary is assigned to topic k

(aggregated over all articles):®

Yo Yt ani = o)l =)
21‘7/1:1 Zf:l Zf\; I(z¢; = m)L(2,; = k)

Phw = (3)

Finally, while 6, describes the allocation of news attention to each topic in article ¢, we are often
interested in characterizing how attention allocation of the WSJ as a whole varies through time. We
measure the overall news attention at a point in time 7 (e.g., a given day or month) by aggregating
topic attention over all articles at that time. Thus, WSJ attention allocation to, say, topic k in

month 7 is N
0 L= Doter i L2 = k)
Tk = K N: 1/2 :
D ter Zq:l i1 Iz = q)

Our reportage below focuses on estimates of the topics, qASk., and allocation of news attention

(4)

across topics, 6;.

2.3 The Wall Street Journal Data Set

The data set we use is among the most extensive text corpora of business news studied in the
economics literature to date. It consists of all articles published in WSJ from January 1984 through
June 2017, purchased from the Dow Jones Historical News Archive. This represents the longest
history of full text articles in digital text format available for purchase from Dow Jones & Company.
As a comparison, Manela and Moreira (2017) extract a news-based analogue to the VIX index using
the WSJ over a long sample, but their data only includes abstracts of front page articles. Baker et al.
(2016) study a large collection of newspapers, but restrict their analysis to counting occurrences of
a small, pre-defined key term list. In contrast, our analysis leverages the richness of full newspaper
text.

We take a number of steps to homogenize the data sample and reduce confounding effects of
organizational changes to the WSJ over time. First, the Dow Jones Historical News Archive contains
data as far back as 1979, but data prior to 1984 is limited to article abstracts. We therefore omit

8 As shown in (2) and (3), we choose to not incorporate priors in our 6 and ¢ estimates. Griffiths and Steyvers
(2004) show that priors can be easily incorporated as

SN I = k) +a ' ST SN L = o) = k) + 8

O = - y Pre = - .
25:1 Zf’él [(2ti = ¢) + Ka Z"r/n:l Zf:l Zi\]:tl Iz = m)I(2, = k) + VB




pre-1984 data to maintain consistency in the definition of what constitutes an article throughout our
sample. Next, over its history, WSJ has initiated (and sometimes later abandoned) a number of non-
core sections such as “Personal Journal” (initiated 2002), “Weekend Journal” (initiated 2005), and
“Off Duty” (initiated 2012). To help maintain consistency in topical content over time, we exclude
articles appearing in sections other than the three core sections (“Section One,” “Marketplace,” and
“Money and Investing”) that are available over our full sample. Because our interest is in economic
news, we also exclude articles with subject tags corresponding with predominantly non-economic
content such as sports, leisure, books, and arts, and exclude articles that contain regular data tables
with little supporting text.

Next, we transform the dataset from a collection of raw article text files into numerical term
counts for statistical modeling. We arrange term counts in an article-term matrix, w. As described
in the model section, columns of w correspond to unique terms in our dataset and rows correspond
to individual articles. Our vocabulary includes all uni-grams and bi-grams occurring in our data set
after applying a mild set of term filters and lemmatization of derivative words.

Appendix A describes in step-by-step detail all data processing and filtering steps we take to
transform raw article text into numerical counts that we use in our empirical analysis. Our final
data set consists of 763,887 articles with a vocabulary of 18,432 unique terms. The left panel of
Figure 1 conveys how the size of the data set varies over time, reporting the number of articles
published each month and total term counts aggregated over those articles. The structure of the
topic model absorbs some of the secular changes in news production by essentially modeling news
term proportions rather than term count levels. But it is important to bear in mind that, our
homogenization efforts notwithstanding, the WSJ is an evolving product that undergoes structural

shifts over the course of our sample.

2.4 Topic Model Specification Choice

LDA is an unsupervised machine learning technique that requires the econometrician to choose only
two inputs: The term count data set and the number of topics, K. We take a data-driven approach
to select K. In particular, we estimate a variety of models with K ranging from 50 to 250 topics in
increments of ten. We select the model specification from this set as the one with the highest Bayes
factor.” As a complementary analysis, we also examine model selection based on ten-fold cross-
validation. In particular, we partition the WSJ sample into ten validation samples, each having
an equal number of articles. For the i model specification, we re-estimate the K;-topic model on
the data ten times, one time excluding each of the ten validation samples, then evaluate its fit on
the left-out sample. We calculate an aggregate goodness-of-fit for each model as the average log
likelihood value over the ten validation samples.

The right panel of Figure 1 plots goodness-of-fit across candidate specifications. Bayes factor

9The Bayes factor is the ratio of posterior probabilities for the alternative model versus the null model. When
selecting among topic models with different K, we compare all models to the same null model so that the denominator
is constant across K. Thus, our Bayes factor criterion is equivalent to selecting the model with the highest posterior
probability.



Figure 1: WSJ Observation Counts and Model Selection
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Note. The left panel plots the final filtered article count each month (red line) and the total term counts aggregated
over all articles in each month (blue line). The right panel plots the cross-validated model fit (average log likelihood

over the validation samples) and Bayes factor for topic models with K ranging from 50 to 250 in increments of 10.

and cross-validation analyses indicate that a 170-180 topic specification approximately optimizes
our specification criteria. Manual inspection of estimates for various choices of K also indicates
that K = 180 is a sensible choice. A model with many fewer topics (e.g., 50) produces mixed
topics that contain multiple separate themes. A very large model (e.g., 250 topics) delivers similar
interpretability as that for the 180-topic model, but with a number of overly specific topics that
capture one-off events. Finally, all models in the neighborhood of K = 180 look very similar in their

topic decomposition.

3 The Structure of Economic News

In this section we dissect the model representation of economic and financial news from the WSJ.
The topic model estimates reported below focus on the 180-topic specification and are based on a
single estimation using the full data sample. Note that, unlike other dimension reduction techniques
such as principal component analysis, LDA does not provide a natural ordering of topics, thus our
presentation of topics is based on expositional convenience. It is also important to recognize that
due to the richness of information contained in news text, our 180-topic model is higher dimensional
than typical economic models, and it is impossible to report the full scope of estimates in this article.
To give readers the ability to explore all facets of our model in detail, we have built an interactive
website, www . structureofnews. com, to allow users to visualize and inspect a wide variety of features

from our estimated model.
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3.1 Topic Key Terms

First, we present estimates for each term cluster—that is, the V' x 1 term probability vector ¢i—that
defines a given topic k. The most common terms in the vocabulary appear with high frequency in
many topics, and this is naturally reflected in LDA estimates. In order to best identify the unique

semantic content of each topic, we calculate scaled topic-term weights:

Ok

(bk,v = K .
Zq:l Pq,0

This scaling emphasizes terms that have an unusually large weight in topic k (terms like “pharma-
ceutical” or “iron ore”) and downplays words that are common to many topics (terms like “price”
and “company”). Sorting the elements of q;k identifies the terms that are most diagnostic of thematic
content of topic k.

Table 7 lists the key terms for each topic k, defined as the top ten vocabulary items based on
the sorted ¢, vector. These key terms are entirely unsupervised as they are estimated from the data
without any guidance from article labels or from the researcher. We manually assign a label to each
topic based on our reading of the key term lists. Topic labels serve as a shorthand for referencing
topics throughout the paper.

There are several features of the key term lists that stand out. First, they show that topics
represent coherent concepts with clear interpretability. For example, the first key term list from the
table is

bonus, base salary, total compensation, pay package, compensation package, compensation

committee, restrict stock, tyco, executive compensation, bonuses.

This list is easily recognized as an “executive pay” topic. The list is un-mixed; each term has a
direct narrative link to the topic label. The purity of the topic extends beyond the top ten terms.

For example, key terms 11-25 for this topic are

stockoption, executive pay, stock option, compensation, annual salary, tyco international,
exercise option, severance package, severance payment, exercise price, salary, retention,

vest, proxy statement, severance.

This term purity is representative of our estimated model very broadly. There are no topics that
appear to mix topics. To draw a contrast, when we estimate a smaller model with K = 50 topics,
we find articles that begin to lump multiple concepts together. For example, the 50-topic model

generates the following key term list for one of its topics:

creditor lawsuit, unsecured creditor, ual corps, chapter company, texas air, bankruptcy
court, federal bankruptcy, bankruptcy code, continental airline, usair, load factor, flight at-
tendant, reorganization plan, american airline, northwest airline, chapter file, amr corps,
bankruptcy protection, major airline, corps unit, airline unit, pilot association, chapter

bankruptcy, world airways, twa.

11



Evidently, this topic combines two distinct topics—“airlines” and “bankruptcy”—that we identify in
the K = 180 specification. While this mixing is understandable given the string of airline bankrupt-
cies in our sample period, mixing confounds the model’s ability to identify important non-bankruptcy
airline news such as sharp drops in flight demand following terrorist events. Examples like this abound
in smaller models.'” The general absence of mixing in the K = 180 specification is a validation that
the larger model achieves a successful separation of distinct subjects.

Second, we see that most topics represent news subjects, as opposed to appraisals of good versus
bad news for a given subject. Examples of appraisal-free subject topics include “airlines,” “Federal
Reserve,” and “China.” Some subject topics carry an implicit appraisal, usually of bad news, such
as “terrorism,” “natural disasters,” and “recession.” A small number of sentimental topics are inter-

pretable as good versus bad news and include topics labeled “problems,” “concerns,” and “positive

10 Another example in the K = 50 specification is a topic with key terms

ipo market, sachs group, ipo, csfb, stearns cos, berkshire, buffett, berkshire hathaway, suisse group, ipo
price, brother hold, investmentbanking business, stanley group, goldman, hathaway, group credit, firstday,
weill, witter discover, investmentbanking, stanley dean, goldman sachs, sachs, warren buffett, credit suisse,

which is a mixture of the “IPO,” “investment banking,” and “Buffett” topics in the K = 180 model.

Figure 2: Hierarchical Taxonomy of WSJ News
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Note. Hierarchical agglomerative clustering dendrogram based on <Z’k similarity among the 180 topics listed on the

right.

sentiment.” We interpret these as “modifier” topics that, when combined in a news article with a
given subject topic, convey a signed/directional appraisal of the subject’s current events.'!

A larger K results in more specific subject categories. An advantage of having fine-grained topics

HThere is also a very small number of topics that represent shifts in language usage over time, but do not have
any economic meaning. For example, there is a “corrections/amplifications” topic {key terms: article correction,
amplifications, incorrect, misstated} and a “news conference” topic {key terms: press conference, told reporter, apology,
issue statement}. Both of these have a clear positive time trend. Language topics are valuable for de-noising news text
by absorbing common variation in language that is distinct from genuine news content, and that would otherwise be
absorbed into a content topic and act as a source of noise in our subsequent analysis.
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is that, if a broader notion of a topic is desired, finer topics can be agglomeratized into broader
metatopics. In fact, we find that our 180 topics cluster into an intuitive hierarchy of increasingly
broad metatopics. Figure 2 illustrates the topical hierarchy in our model in the form of a dendrogram.
We estimate this hierarchy with recursive agglomeration (Murtagh and Legendre, 2014) based on the
semantic distance between topics, defined as the distance in their (;Abk vectors. Like the estimation of
topics themselves, the connectivity of topics in the dendrogram is entirely data driven, and we only
supply metatopic labels based on our manual read of the estimated clusters.

Figure 2 provides a full taxonomy of WSJ news. At the broadest level, news is classified into
either “economy” topics (top half of the dendrogram) or “politics and culture” (bottom half) top-
ics. Within “economy,” topics split into the broad metatopics such as “financial intermediaries,”

“economic growth,” and “industry.” The “politics and culture” branch includes topic clusters such

bY AN b

as “international relations,” “national politics,” and “science and arts.” As emphasized by Quinn
et al. (2010), an intuitive metatopic hierarchy is a useful check on the semantic validity of a model.

Furthermore, it gives us the ability to analyze attention to news topics at various levels of granularity.

3.2 Quantifying News Attention

With an understanding of the topic structure in place, we turn to the second main output of the
model—its estimate of news attention paid to each topic. Attention allocation is a convenient
quantitative transformation of news composition that can serve as numerical input to subsequent
empirical investigations of economic hypotheses. Our estimates describe how allocation of media

attention across topics evolves over time.

3.2.1 News Attention by Month

In the model, topic attention proportions are estimated at the article level but can be summed to any
level of aggregation according to equation (4). Throughout this section we focus on aggregate WSJ
topic attention at the monthly frequency by collating article-level attention estimates for all articles
published in the same calendar month. Figure 3 shows the time series variation in attention for a
subset of six illustrative topics.'> The black line, corresponding to the left vertical axis, shows the
attention to a given topic as a percent of total monthly WSJ news production. More specifically, it
reports the fraction of total terms published in a given month that the model infers are drawn from
that topic. The right vertical axis lists the key terms, and the blue line shows the weight of each
term in the topic (scaled by the maximum term weight within that topic), corresponding to the top
horizontal axis. The topic attention plots highlight a number of stylized facts about the composition
of business news.

News consists of a combination of recurrent, seasonal, and episodic topics. Recurrent topics re-
appear consistently throughout the sample. For example, the “Federal Reserve” topic is regularly

active throughout the sample. As is the “health insurance” topic, which becomes highly prevalent

12 Appendix Figure 15 plots an additional 24 illustrative topic attention time series, and the website for this research
project, www.structureofnews.com, includes time series plots for all 180 topics.
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Figure 5: News Attention Across Metatopics
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Note. Stacked area plot of attention allocation to 23 metatopics based on the first-level clustering of baseline topics.

during debate of the Clinton Health Plan proposal (peaking around President Clinton’s speech to
Congress in September 1993), the proposal and passage of Obamacare in 2008-2010, and around
the debated repealing of Obamacare around the 2016 presidential election. Seasonal topics include
“presidential elections,” whose attention has a clockwork pattern peaking every four years with
a secondary peak every two years, and the “earnings forecasts” topic which spikes ahead of each
quarterly earnings announcement season. Episodic topics are dormant for much of the sample, then
spike around particular events. For example, the “terrorism” topic is a prototypical regime shift: It
receives minute attention for the first half of our sample, spikes dramatically at 9/11, and remains
high henceforth. Similarly, the “natural disasters” topic draws very little attention during most of
the sample, but rises sharply in August 2005 (Hurricane Katrina), then reverts but remains slightly
elevated for much of the remaining sample, presumably due to increased news attention on the effects
of climate change (Engle et al., 2019).

With 180 topics, it is difficult to isolate the focus of attention at each point in time in a single
line plot overlaying many time series. To overcome this, Figure 4 shows the top two topics receiving
the most news attention each month. Dominant topics vary depending on exogenous factors (such
as election cycles or natural disasters) and endogenous states of the economy (such as recessions and
sovereign debt crises), with primary attention rotating between political, macroeconomic, industrial,

and financial topics.
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Figure 5 zooms out to show how attention behaves at the 23-metatopic level. The fraction of
news attention allocated to metatopics is remarkably stable over time. This metatopic stability
belies a high degree of attention churn within metatopic clusters. The upper left panel of Figure
6 shows stable attention to the “political leaders” metatopic as a whole, but that attention within
this metatopic transitions dramatically as power changes hands, from Reagan at the beginning of
the sample to Trump at the end. Likewise, while attention to the “banks” metatopic is stable over
time, the focus shifts from savings and loans in the 1980’s to mortgages in the mid 2000’s, and
remains dominated by attention to financial crises even through the recent economic expansion. The
stable attention to “technology” is dominated by mainframe and desktop computers at the start of
the sample, which is displaced by attention to software mid-sample, which is in turn displaced by
mobile devices and the internet in the later part of the sample. The “international affairs” metatopic
includes steady attention to western Europe, but also shows episodic spikes in attention to Russia,
a brief focus on Southeast Asia during its 1998 crisis, and the gradual emergence of China as a focal

point by the end of the sample.

3.2.2 Article-level News Attention

Time series plots describe the attention paid to each topic by the WSJ as a whole. In this section,
we explore patterns in topic attention at the article level. Article-level attention is a 180-dimension
vector listing the proportion attention that the article pays to each topic. While this is an enormous
reduction in dimensionality relative to the term count representation, the fits amount to a large
dataset in their own right: a matrix of roughly 800,000 articles by 180 topics. In order to visualize and
interpret article-level fits, we project the fitted proportions into two dimensions using t-distributed
stochastic nearest neighbor embedding (-SNE, Maaten and Hinton, 2008). Intuitively, the t-SNE
plot assigns a two-dimensional coordinate to each article so that the nearness of articles in the plane
best represents the nearness of the article fits in the full 180-dimensional space.

The top panel of Figure 7 shows the two-dimensional embedding of model fits for every WSJ
article in our data set, and Figure 8 breaks down the complexity of Figure 7 by separately plotting
articles based on their leading topic for an illustrative subset of nine topics. In Figure 7, each topic is
assigned a color, and each article (a single point) is colored in correspondence with the topic having
the highest weight in that article. Naturally, articles cluster spatially based on their dominant topics.
Graphically, an article (which the model views as a mixtures of topics) is an intersection of topic
clouds. Articles that mix many topics must intersect with many clouds, so they are centrally located
in the plot. Similarly, clouds of topics that tend to co-occur with other topics (such as “Federal
Reserve”) need to be dispersed throughout the ¢-SNE, while those that mix with only a few other
topics are more concentrated (such as “mortgages” and “terrorism”). This can also be seen at the
article level via the two bottom panels of Figure 7, which separates articles by their purity. “Pure”
articles are shown in color on the left, and are defined as those with a maximum topic proportions
exceeding 33%. These articles (18% by count) are dominated by a single topic. The right shows the

set of “mixed” articles (maximum topic proportion below 25%). Pure articles, which have little need

19



Figure 7: Article-level Nearest Neighbor Embedding

Note. The top shows the two-dimensional embedding of WSJ articles, where each topic is assigned a color and articles
are colored in correspondence with their dominant topic. The bottom left panel highlights only “pure” (those with
maximum topic proportion exceeding 33%), while the bottom right shows “mixed” articles (maximum topic proportion
below 25%).

for proximity to other topics, and tend to live on the periphery of the embedding. Mixed articles

require topic crossing and are thus centrally located.

Figure 9 provides more detail for one specific example. It documents the other topical content of
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Figure 8: Article-level Nearest Neighbor Embedding (Topic Breakout)

Note. Two-dimensional embedding of WSJ articles broken out by individual topics.

articles whose leading topic is “Federal Reserve.” It splits articles within the Fed topic based on their
second largest topic allocation. Figure 9 shows that articles about the Fed also tend to relate to the

bR EN1Y

“economic growth,” “European sovereign debt,” “bond yields,” “macroeconomic data,” “Treasury

Y

bonds,” “financial crisis,” “mortgages,” and “China” topics, with each of these secondary topics
tightly spatially clustered within the Fed topic.

Like the hierarchical metatopic analysis, the --SNE plots as a whole demonstrate coherence of the
estimated topic model. They show that an economic event—captured verbally as a news article—
is summarized via our model as the constellation of topics that constitute that event. Likewise,
the point-in-time distribution of aggregate topic proportions summarizes the overall state of the

economy. These model estimates illustrate that the economy is fundamentally complex. An attempt
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Figure 9: Articles Featuring the Federal Reserve
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Note. Detail of two-dimensional embedding for article whose dominant topic is “Federal Reserve.” Articles within this

set are colored according to their second largest topic proportion.

at parsimoniously representing the verbal state of the economy, while a drastic simplification of the
full WSJ narrative, nonetheless requires an elaborate specification to capture its common themes.
But our model estimation results, and our further empirical analysis below, also demonstrate that

this complexity can be effectively harnessed for economic analysis.

4 News Attention and the State of the Economy

In this section we empirically investigate how faithfully the topical content of economic news captures
the state of the economy. Our analysis proceeds by linking the output of our estimated topic model,
both in terms of topical content and attention allocation across topics, to commonly studied numerical

macroeconomic data series.
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Table 1: Reconstructing Macroeconomic Time Series

Industrial Production Growth Employment Growth
Topic Coeft. p-val. Topic Coeft. p-val.
Recession -0.38 0.03 Recession -0.61 0.00
Oil market -0.18 0.00 Rail/trucking/shipping 0.21 0.00
Southeast Asia 0.11 0.07 Bush/Obama/Trump -0.15 0.08
Health insurance 0.06 0.96 Iraq -0.14 0.00
Clintons 0.03 0.23 Clintons 0.13 0.07
R? 0.22 R? 0.59
—— Actual —— Actual

Predicted

Predicted

T T T T T T T T T T T T T T T T T T T T T T
1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017 1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Note. Five-regressor lasso regression estimates and fits with p-values are adjusted for post-selection inference.

4.1 Reconstructing Economic Activity With News Text

We begin by investigating the extent to which our estimates of news topic attention align with a
range of numerical measures of economic and financial activity. We then move to predictive analysis

via vector autoregression.

4.1.1 Macroeconomic Activity

Ideally, an accurately estimated vector of economic state variables would be able to statistically
reconstruct other measures of macroeconomic activity with a high degree of accuracy.

We attempt to reconstruct a candidate numerical measure of economic activity, z; (e.g., US
industrial production growth), through a time series regression of x; on the set of estimated topic
attention proportions, a; = (ai4,...,ax+). Our criteria for this analysis are two-fold. First, we
evaluate accuracy of the text-based explanation in terms of regression fit, and second we evaluate
whether the most influential news topics in the regression are thematically related to x;.

With 180 topics, the attention vector is high-dimensional relative to the number of monthly time
series observations, so OLS regression of x; on a; is subject to severe overfit. To limit the undue
influence of data mining on our conclusions, we apply heavy lasso penalization in the estimation.
We make a stark choice on the extent of penalization—we set the lasso penalty parameter such that

exactly five out of the 180 coefficients take non-zero values. We choose a fixed five-variable regression
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to ensure clear interpretability of results, as well as to have uniformity and comparability across the
many z variables that we study.'?

Because lasso penalization behaves like a model selection device, standard errors on the non-zero
coefficients must be adjusted to account for model search. Our reported p-values use the post-
selection inference approach of Tibshirani et al. (2016). We scale regression coefficients to reflect
the dependent variable’s response in standard deviations to a one standard deviation change in the
regressor.

To begin, we study two high profile macroeconomic indicators that are available at the monthly
frequency, aggregate output (industrial production) and employment (non-farm payrolls). The left
side of Table 1 reports results for the lasso regression of (seasonally adjusted) monthly log indus-
trial production growth on the 180 news attention time series. With a lasso penalty chosen to

? “oil mar-

include exactly five non-zero regression coeflicients, we find that attention to “recession,
ket,” “Southeast Asia,” “health insurance,” and “Clintons” news topics most closely associate with
contemporaneous industrial production growth. After accounting for the effects of model selection,
only “recession” and “oil market” significantly correlate with output growth at the 5% level. A one
standard deviation rise in WSJ attention to these two topics associates with 0.38 and 0.18 standard
deviation drops in industrial production growth, respectively. With just five non-zero topics, we find
that fluctuations in news topic attention explain 22% of output growth variance.

7w

Log employment growth most closely associates with attention to “recession,” “rail/trucking/shipping,”
and “Iraq” topics, which are significant at the 5% level. The fitted regression explains 59% of the
variance in realized employment growth. A one standard deviation rise in “recession” attention
associates with a 0.61 standard deviation decrease in employment growth and the “Iraq” topic as-
sociates with a 0.14 standard deviation drop. In contrast, a standard deviation rise in attention to
“rail/trucking /shipping” aligns with a 0.21 standard deviation rise in employment growth. Finally,
the lasso regression juxtaposes the employment experience under various presidential administra-
tions, though these are insignificant effects at the 5% level.'* As a whole, Table 1 illustrates that
news attention closely tracks macroeconomic indicators, and the most correlated topics have intuitive

thematic associations with the numerical data.

4.1.2 Financial Activity

We next analyze the ability of WSJ to track fluctuations in financial markets, including various forms
of financing activity, measures of market risk, and values of financial assets.

In terms of financing activity, we study IPO volume and leveraged buyout (LBO) volume. Table
2 shows that news attention closely tracks fluctuations in each financial time series with R? values of
43% and 58%, respectively. More interestingly, the news topics that associate most strongly with each

financing variable are also those with the most similar thematic content. The three significant topics

13Separately tuning cross-validation parameters for each x generally produces even higher R? values than what we
present here, but do not provide much additional economic insight.

4This result also shows how the choice of topic number can influence second-stage economic analysis. A finer
decomposition of the WSJ into 300 topics produces separate topics for each presidential administration, while a coarser
decomposition of 50 topics groups all administrations together.
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in the IPO volume regression are “IPOs,” “venture capital” which is the typical form of financing
prior to IPO, and “internet” which is the industry that saw the greatest IPO activity during our
sample period. For LBO volume, “takeovers,” “control stakes,” “key role,” and “job cuts” topics
capture key LBO concepts such as transition from public market to private ownership and control,
management changes (“key role”), and eliminating jobs to reduce costs and improve production
efficiency.

The upper right panel of Table 2 reports the monthly count of bankruptcies among US public
companies. News attention explains the variance in bankruptcy intensity with an R? of 42%, with the

9

three significantly associated topics “recession,” “accounting,” and “small caps” all being themes that
closely relate to debt default. The lower left panel reports regressions of average CDS spreads among
Eurozone countries on news attention. A one standard deviation rise in the lone significant news
topic, “European sovereign debt,” associates with a 0.59 standard deviation increase in European
sovereign credit spreads. The time series plot of actual spreads versus spreads reconstructed from
news shows the rapid rise and fall of CDS spreads and reveals that this data series only amounts
to a handful of distinct observations. Despite this, news text data is informative enough that lasso
regression hones in on the correct narrative account of these events.'?

The remaining two panels study risk and return in the US stock market. The lower center panel
shows that the five-topic news attention regression captures 63% of the variance in stock market

16 By far the most important topic is “recession,” which carries a coefficient of 0.54, and

volatility.
reflects the strongly countercyclical nature of market volatility. It also shows that there is more news
attention to options and the VIX index, and tends to describe adverse conditions more generally

¢

(captured by the “problems” topic) when market volatility is elevated. It also shows that discussion
of “small business” and “electronics” topics tends to associate with the low volatility regimes in our
sample.

The lower right panel regresses returns on the value-weighted US stock market index on AR(1)
innovations in topic attention. Realized returns significantly negatively associate with increases in
“recession” attention. Collectively, the most informative five topics explain 25% of the variation in
stock market fluctuations. This is a rather extraordinary result. One of the central puzzles in financial
economics is the notorious inability to explain stock market fluctuations even ex post with anything
other than other asset prices (Roll, 1988).!7 As a benchmark for comparison, AR(1) innovations
in the four components of the Chicago Fed National Activity Index'® jointly explain less than 5%
of the variation in contemporaneous monthly stock returns. As another benchmark, we consider

a contemporaneous regression of market returns on AR(1) innovations in the 108 macroeconomic

variables in the FRED-MD database.'” To remain comparable with news attention regressions, we

15While other topics related to financial crises and subprime mortgages follow similar time series patterns, the
penalized regression bypasses these in favor of the European sovereign debt narrative.

16\We measure monthly stock market volatility as the standard deviation of daily market returns within the month.

"Our analysis focuses on explaining aggregate stock market fluctuations. Boudoukh et al. (2018) examine the
complementary question of explaining idiosyncratic returns for individual stocks using news text.

8The four component indices measure production/income, employment/unemployment/hours, personal consump-
tion/housing, and sales/orders/inventory.

19 Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/. We exclude FRED-MD in-
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Table 2: Reconstructing Financial Activity

Topic Coeff.  p-val. Topic Coeft. p-val. Topic Coeft. p-val.
IPO Volume LBO Volume Bankrupty Filings

IPOs 0.27 0.00 Takeovers 0.31 0.28 Recession 0.48 0.00
Venture cap. 0.22 0.00 Insurance -0.28 0.02 Venture cap. 0.25 0.06
Bankruptcy -0.14 0.20 Control stakes 0.27 0.03 Accounting 0.24 0.03
Internet 0.12 0.05 Key role 0.23 0.70 Small caps 0.12 0.00
M&A 0.09 0.61 Job cuts -0.18 0.13 Machinery -0.06 0.34
R? 0.43 R? 0.58 R? 0.42

— Actual — Actual — Actual
Predicted

— Predicted — Predicted

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017 1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 201 1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

European CDS Spreads Stock Market Volatility Stock Market Return
Euro. sov. debt 0.59 0.00 Recession 0.54 0.00 Recession -0.33 0.00
Middle east 0.16 0.26 Options/VIX 0.28 0.00 Problems -0.21 0.06
Govt. budgets 0.13 0.35 Electronics -0.24 0.02 Convert./pref.  -0.17 0.46
Company spokes. 0.13 0.91 Problems 0.16 0.00 Options/VIX -0.11 0.95
Mobile devices 0.11 0.60 Small business  -0.15 0.00 Record high 0.10 0.08
R? 0.79 R? 0.63 R? 0.25

—— Predicted —— Predicted

— Actual

—— Predicted

B4 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017 1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017 1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Note. Five-regressor lasso regression estimates and fits with p-values are adjusted for post-selection inference.

use a lasso penalty to select exactly five non-zero coefficients among the macro variables. We find
an R? of 10%, which exceeds that from the CFNAI regression, but is less than half of the text-based
result.”’ The ability of non-price variables, and interpretable text-based regressors in particular,
to produce such a large gain in explained return variation, is refreshing progress in resolving the
Roll (1988) puzzle. It indicates that the lack of explanatory power in past analyses is likely to be
driven by inadequate methods for introducing narratives into the statistical model, a problem that

our approach helps solve.

terest rate and exchange rate variables. These are asset prices and have mechanically links to stock market returns.

20This result is robust to a variety of regression specifications. The explained variation in returns is essentially
unchanged if we use other constructions of macro variable innovations, or if we control for lagged as well as contempo-
raneous values. Even if we include interest rate and exchange rate variables, the R? rises only to 17%.
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4.1.3 Industry Volatility

Our third set of contemporaneous lasso regressions investigates how well WSJ news attention ac-
counts for patterns in industry-level stock volatility. We use the 49 industry categories from Ken
French’s website, and measure monthly volatility as the standard deviation of daily industry returns
within the month. Essentially all equity portfolios tend to share a large common time series compo-
nent associated with overall market volatility (Herskovic et al., 2016). To hone in on industry-specific
volatility patterns that are distinct from the market volatility analysis above, we perform two ad-
justments to the raw industry volatility data. First, we orthogonalize each industry volatility series
against the first principal component of the industry volatility panel. Then, we construct the AR(1)
innovations in the adjusted series.?!

Table 3 reports results from five-regressor lasso regressions of industry volatility innovations on
AR(1) innovations in news topic attention. For the sake of brevity, the table reports results for
nine of the 49 industries. The influential topics in each regression are close thematic counterparts
for the respective industry. For example, banking sector volatility is highest amid news attention
to “nonperforming loans” and “mortgages” topics. Volatility in the computer hardware industry
(which includes firms like Apple, Dell, and Hewlett Packard) is most tightly linked to “retail,”
“computers,” and “software” topic attention. In addition to the “pharma” news topic, volatility
in the pharmaceuticals sector is associated with attention to the “Clintons” topic, reflecting the
important role of healthcare reform in the policy platforms of both Bill and Hillary Clinton, as well

as attention to the “health insurance” topic.

4.2 News Attention and Macroeconomic Dynamics

Analyzing contemporaneous correlation between news narratives of macroeconomic fluctuations helps
validate the extent to which news can be converted to a numerical summary of the state of the
economy—one with inherent interpretability. This, however, has little to say about whether news
text conveys new information that is distinct from information in standard numerical macroeconomic
indicators, and the extent to which it helps predict longer term macroeconomic trajectories.

We investigate whether news attention has a distinct impact on macroeconomic outcomes by
studying its incremental forecasting power in a macroeconomic VAR. We build on the five-variable
monthly VAR specification studied by Baker et al. (2016), which includes (in order) the BBD news-
based measure of economic policy uncertainty (EPU), log value of the S&P 500 index, Federal Reserve
funds rate, log employment, and log industrial production. We augment this VAR to include a sixth
variable—media attention to the “recession” topic—based on its central role in the lasso regressions
of Table 1. We define orthogonal shocks based on the Choleski decomposition for this variable
ordering, and include three lags of all variables.

We estimate output and employment impulse response functions for a shock to recession news

2'Without the principal component adjustment, we essentially recover the results seen for market volatility in
the lower center panel of Table 2. While the principal component adjustment is necessary for our conclusions, the
results from our analysis are largely unchanged if we use levels of orthogonalized industry volatility rather than AR(1)
innovations.
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Table 3: Reconstructing Industry Volatility (Innovations)

Topic Coeff.  p-val. Topic Coeff.  p-val. Topic Coeff. p-val.
Aircraft and Parts Automotive Banking

Sales call 0.19 0.00 Automotive 0.18 0.01 Nonperf. loans 0.23 0.00
Airlines 0.15 0.00 Mutual funds -0.14 0.26 Mortgages 0.18 0.00
Research -0.15 0.03 Fees 0.11 0.12 Options/VIX -0.13 0.31
Terrorism 0.09 0.46 Corporate gov. 0.11 0.79 NASD -0.10 0.89
Restraint 0.08 0.96 Credit cards 0.10 0.94 Financial crisis 0.08 0.77
R? 0.15 R? 0.09 R? 0.14

= Actual
Predicted

— Actual
Predicted

it

— Actual
= Predicted

L

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Pharmaceuticals Investments and Trading Computer Hardware
Clintons 0.19 0.05 Investment banks 0.18 0.23 Retail 0.19 0.01
Pharma 0.15 0.01 Elections -0.13 0.40 Computers 0.17 0.01
Health insurance 0.12 0.08 Earnings losses -0.13 0.49 Software 0.12 0.09
News conference -0.12 0.30 Recession -0.13 0.09 Couriers 0.09 0.96
Earnings forecasts 0.09 0.96 European politics 0.10 0.91 Competition 0.05 0.68
R? 0.11 R? 0.11 R? 0.09

il ‘“ il Wl le;‘

— Actual
—— Predicted

= Actual

—— Predicted
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—— Actual

—— Predicted

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Insurance QOil and Gas Tobacco
Insurance 0.21 0.00 Oil market 0.35 0.00 Tobacco 0.18 0.01
Revised estimate -0.16 0.09 Cultural life 0.18 0.01 Mexico 0.12 0.79
Mortgages 0.12 0.43 Casinos -0.17 0.36 Lawsuits 0.09 0.13
Mgmt. changes -0.10 0.91 Options/VIX -0.16 0.10 Product prices  -0.09 0.53
Bank loans 0.09 0.54 Earnings losses -0.15 0.09 Recession -0.08 0.94
R? 0.12 R? 0.23 R? 0.09

— Actual

~— Predicted

—— Actual
—— Predicted

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Note. Five-regressor lasso regression estimates and fits wi?lg p-values are adjusted for post-selection inference.



Figure 10: VAR Responses to Recession News Attention Shock

Panel A: Baseline VAR
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Note. Responses to a one standard deviation impulse to recession topic attention in various VAR specifications.

attention and plot results in Panel A of Figure 10. A one standard deviation rise in recession news
attention associates with a drop in industrial production of 1.7% after twelve months. Employ-
ment experiences a maximum response of 0.8% after sixteen months. These effects are statistically
significant, as shown by the 90% confidence bands (dashed lines).

The estimated responses reflect large economic magnitudes. As a benchmark for comparison,
Panel B reports our replication of the impulse response to EPU (solid gray line) in the VAR model
of BBD.?? The response of industrial production to EPU and recession news attention are similar in

magnitude, while employment responds nearly twice as strongly to a rise in recession news attention

22We replicate Figure 8 of BBD exactly, with the minor exception that we define the shock as a one standard
deviation movement in the EPU measure for comparability with our attention shock definition. The resulting impulse
responses to EPU are therefore slightly larger than those reported by BBD.
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than it does to EPU.

The baseline impulse responses to recession news attention are conservative. Our news attention
variable is ordered last in the baseline VAR, thus the impulse responses reflect the macroeconomic im-
pact of recession news coverage after controlling for contemporaneous responses to all other variables.
Panel B demonstrates the robustness of our baseline VAR conclusions to alternative specifications.
First, we consider ordering news attention first in the VAR while otherwise preserving the order
of covariates. This has a large impact on our conclusions, more than doubling the recession news
impulse response from production and almost doubling the effect on employment. If instead we alter
the order of variables so that the news attention variable is second, after the S&P 500 index but
before the Fed funds rate, production, and employment, we see slight increases in the magnitude
of both industrial production and employment responses. The difference in responses for “news
1st” and “news 2nd” specifications highlights that news is often revealed simultaneously by media
narratives and asset prices.

We then add BBD’s EPU index (which we order first in the VAR, as done in BBD), which
magnifies the drop in production to -2.2% at twelve months and the drop in employment to -0.9%
at sixteen months following a recession news attention shock. Replacing EPU with the Michigan
Consumer Sentiment Index (ordered first) attenuates the effect of recession news attention but leaves
the baseline pattern unchanged and statistically significant. Likewise, accounting for fluctuations in
economic uncertainty via inclusion of the VIX index, introducing a time trend, and incorporating
six rather than three lags in the VAR leave results qualitatively unchanged.

Our interpretation of these findings is that news attention to the recession topic captures useful
information about future economic outcomes that is missed by other variables in the system. That
such a readily available source of data—mnews text—can improve output and employment predictions
above standard numeric macroeconomic series highlights fascinating possibilities for use of textual
data in problems such as macroeconomic forecasting, which rely primarily on numerical data sources,

and modeling the role of information transmission and media in the macroeconomy.

4.3 Narrative Retrieval

In the preceding analyses, we project a given numerical economic time series, x;, onto topic attention
to reconstitute macroeconomic time series in terms of news text. By combining estimates from this
projection with the structure of the topic model, we can recover narratives corresponding to specific
fluctuations in x4 or in conditional expectations of z;. To illustrate our approach to narrative retrieval,
we work with a lasso regression analysis motivated by the VAR in the previous section.

We first orthogonalize monthly industrial production growth with respect to its own lagged value
in order to focus on growth rate innovations that are not forecastable with their own past values.
Next, we forecast these innovations using news attention data in a five-variable lasso regression,
following Section 4.1.

Table 4 reports the predictive regression results. The right panel plots industrial production

growth AR(1) innovations (blue line) against their predicted values based on lagged news topic
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Table 4: News-based Industrial Production Growth Forecasts

_— /}jrcel:::led

Topic Coeff.  p-val.
Recession -0.18 0.04
Health insurance 0.13 0.10
Russia -0.09 0.80
Space program -0.08 0.83
Oil market -0.08 0.08
R? 0.08

T T T T T T T T T T T
1984 1987 1990 1994 1997 2000 2004 2007 2010 2014 2017

Note. Five-regressor lasso regression estimates and fits with p-values are adjusted for post-selection inference. Depen-
dent variable is the AR(1) innovation in industrial production growth.

attention (red line). The left panel shows the five topics selected by the lasso, their regression
coefficients, and their adjusted p-values for post-selection inference. In line with our VAR analysis
above, the regression results show that the recession topic is a strong predictor of output growth.
A one standard deviation increase in recession attention forecasts a 0.18 standard deviation drop in
next month’s production growth (after controlling for lagged growth rates). The other marginally
significant forecaster of growth rates is attention to the oil market topic.

From the fitted forecasting model we can investigate which narratives are associated with changes
in expected output. Both the top and bottom panel in Figure 11 show the news-based growth rate
predictions in red, which correspond to the fitted values shown in the left panel of Table 4. Along
with the news-based model predictions, we plot the contributions to the predicted values coming
from the recession topic (top panel) and oil market topic (bottom panel). Prediction contributions
for each topic are defined as the topic’s prediction coefficient multiplied by its attention proportion
each period.

Overlaying expected growth rates with forecast contributions shows how fluctuations in numerical
economic time series can be mapped to news via topic attention regressions. From here, one can
further map economic fluctuations to specific textual narratives by using topic model estimates. In
each month ¢, we identify the WSJ article published during the month that is most representative of
each topic k. This representative article is defined as the article ¢ with the largest proportion of its
content (6;) allocated to topic k.

The top panel of Figure 11 illustrates this mapping from growth rate expectations to narratives by
annotating the six largest shifts in recession attention with the headlines of articles most indicative of
recession news coverage at the time of the shift. For example, our model shows that narratives related
to falling consumer confidence (November 1987), declining corporate sales and profits (October 1998,
November 2008, and February 2016), and global growth concerns (September 2015) are key drivers
of growth rate expectations in our model. Likewise, the lower panel shows that oil market narratives

regarding changes in oil demand (October 2005), oil extraction (June 2004), and supply uncertainty
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Figure 11: Narrative Retrieval for Industrial Production Growth Forecasts

Panel A: Recession Topic

I I \ \ \
— Predicted |P Growth

— Recession Attention Contribution

Dow Drops 6.6 in August
Slower Growth In Manufacturing Raises Concerns Amid Concerns Prices Don't Fully

i p’ |
“ﬂ i “W f g WA

,w
R

Executives Anticipate Lower Sales and Profits ’

J

Survey Finds Sharp Drop in Confidence
Of Consumers After Stock Market Crash

No Profit Relief in Sight

Stanley to Cut Jobs as Sales Of Tools Slow

198402 198706 199010 199402 199706 200010 200402 200706 201010 201402 201706

Panel B: Oil Market Topic
I I I

I I
— Predicted |P Growth
— Qil Market Attention Contribution

OP‘;C Discord Seen Limiting Pol i}cy Options Gasoline Prices Fall as Imports Rise Demand Drops
Big Producers Want Flood Of Oil Others
Seek Cuts As Group Meets on Crisis

TP ,l,l il [ L
iﬂ’M "W ) | M{w | Mww” \% "l J "

\

OPEC's Output May Forestall Energy Shortfall

OPEC Raises Output Quotas By 11% To Tame o
High Oil Prices Move Reflects an Attempt To Calm Forecasters Lower Gil Price Calls, Global
L ; Markets Concerned About Middle East Turmoil Benchmark Ends Under 50 a Barrel
Falling Oil Prices Relieve Consumers Goldman Predicts an Average 42
But May Set Stage for Future Shortage

198402 198706 199010 199402 199706 200010 200402 200706 201010 201402 201706

Note.

News-based growth rate predictions are in red, and contributions to the predicted values coming from the

recession topic (top panel) and oil market topic (bottom panel) are in black. Each panel is annotated with the six
largest shifts in attention based on the headlines of articles most indicative of topic coverage at the time of the shift.
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(February 1986) influence growth expectations.

More generally, our proposed algorithm for narrative retrieval is the following. First, estimate
the projection of numerical series ; on the set of news topic attention proportions (ai,...,ax ) and
recover projection coefficients f31, ..., Sk (many of which may be zero if using a penalized regression
as in our earlier analysis). For a given event of interest, z,, identify the topics that most strongly
contribute to that event through the projection. In the growth forecast example, we sought the topic
that contributed most prominently to the shift in growth forecasts, corresponding to topic-dates
characterized by large values of Bi(air — air—1). After identifying the key topics and events, we
finally trace the event back to the original narrative text underlying that topic by finding the article
published at time 7 with the largest allocation to the key topics. For the purpose of Figure 11,
we represented the event narrative as the headline of a single representative article. But retrieved
narratives can be as rich as the researcher desires, including multiple articles with high attention on
the topic of interest (rather than a single representative article) and leading sentences, paragraphs,

or even full text (as opposed to just a headline).

4.4 High Frequency Macroeconomic Modeling: A Financial Frictions Narrative

Few economists saw the 2007-2009 financial crisis coming, perhaps because it is not possible to
predict such events (Cochrane, 2011), because of behavioral biases (Gennaioli and Shleifer, 2018), or
because of strong beliefs in misspecified economic models (Krugman, 2009). When financial turmoil
begins, economists, market participants, and policy makers gradually develop a narrative for the
market’s behavior (Shiller, 2017). This narrative is important as it can shape the policy response.

Recent literature has developed several measures of financial frictions that can quantify their
severity in realtime. These measures can sound the alarm about emerging risks in the financial sector,
but leave the problem of identifying their causes open. We next provide a method for identifying
such causes by studying the time-varying correlation of a high frequency measure of financial frictions
with the topics that appear in the WSJ.

We measure financial frictions by the spread between the price of five-year interest rate swaps
and five-year treasury rates. Swap spreads represent the difference between the yield on a synthetic
bond (receiving fixed on a swap) and the yield on a treasury bond of the same maturity. A larger
spread captures the extent to which the financial intermediary that writes the swap is riskier than
the treasury. Liu et al. (2006) have shown that this credit premium is primarily compensation
for liquidity risk. Fleckenstein and Longstaff (2018) show that it is tightly related to balance sheet
frictions and constraints faced by financial intermediaries. A major advantage of this measure is that
it is readily available starting in mid-2000 on a daily basis. The high frequency nature of our daily
newspaper data allows a higher frequency narrative for emerging risks than, for example, Hanley
and Hoberg (2019) who rely on annual corporate filings.

We estimate which topics best explain intermediary frictions in rolling 1000-day lasso regressions
of swap spreads on topic proportions. As before, we select a penalty that generates exactly five

non-zero coefficients. We show a heatmap of topic coefficients over time in both levels (Figure 12)
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Figure 12: Financial Frictions (Levels)
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Note. We estimate which topics best explain financial frictions, as measured by the swap spread. The swap spread is
the yield difference between five-year interest rate swaps and five-year treasury rates, both from FRED. We run rolling
1000-day window Lasso regressions of swap spreads on news topic proportions (levels on levels). We select a penalty

that generates exactly five non-zero coefficients and plot a heatmap of these topic coefficients over time.

and innovations (Figure 13). The sparsity of the regression models provides a concise narrative for
major events that exacerbated (redder) or alleviated (bluer) financial frictions.

Figure 12 shows that regressing levels on levels tends to focus on slow-moving trends associated
with financial frictions. For example, “mortgages” and “financial crisis” light up in 2003, suggesting
that concerns about mortgages and potential for an impending financial crisis partly explain the
variation in swap spreads over the 2003-2006 period—well before the full blown crisis starts in the
summer of 2007. Other major topics associated with worsening liquidity risk are “recession” and
“European sovereign debt”. Interestingly, while coverage of the 2004 and 2008 elections coincided
with worsening financial frictions, the 2012 elections are a period of improving liquidity.

A regression of changes on changes suggests a more nuanced narrative of financial frictions. Fig-
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Figure 13: Financial Frictions (Innovations)
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Note. We estimate which topics best explain financial frictions, as measured by the swap spread. The swap spread is
the yield difference between five-year interest rate swaps and five-year treasury rates, both from FRED. We run rolling
1000-day window Lasso regressions of swap spreads on news topic proportions (innovations on innovations). We select

a penalty that generates exactly five non-zero coefficients and plot a heatmap of these topic coefficients over time.

ure 13 shows that more topics become transiently important for understanding variation in swap
spreads. For example, increased coverage of the middle east, concentrated around the 9/11 attack
and the subsequent war in Iraq, is associated with increasing swap spreads. Greater coverage of
“California” is associated with worsening financial frictions, long before it became an epicenter for
delinquent mortgage-backed securities. Mentions of “acquired investment banks”, “trading activ-
ity”, and securities market “exchanges” are associated with improved liquidity, as are mentions of
“Connecticut”—a hedge fund hub. Toward the end of our swap spreads sample, which ends on
October 28, 2016, the greatest source of heightened financial frictions is attributed to “utilities,” in-

dicating a link between financial stability and attention on energy production and regulation around
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Table 5: WSJ Topics and Economic Policy Uncertainty Indices

Topic Coeff P-Value Topic Coeff P-Value Topic Coeff P-Value
Entitlement Programs Financial Regulation Fiscal Policy/Spending/Taxes
Govt. budgets 0.45 0.00 Financial crisis 0.25 0.00 Govt. budgets 0.49 0.00
Euro. sov. debt 0.18 0.00 Competition -0.25 0.00 Recession 0.20 0.00
Takeovers -0.18 0.11 Bank loans 0.15 0.02 M&A -0.16 0.00
Credit ratings 0.17 0.09 Problems 0.14 0.13 Competition -0.16 0.33
Economic growth  0.08 0.15 Recession 0.13 0.03 Credit ratings 0.11 0.92
R? 0.46 R? 0.45 R? 0.54
Government Spending Health Care Monetary Policy
Govt. budgets 0.54 0.00 Govt. budgets 0.37 0.44 Recession 0.24 0.06
Restraint 0.17 0.00 Economic growth 0.25 0.00 Airlines 0.22 0.00
M&A -0.17 0.00 Takeovers -0.18 0.96 Restraint 0.20 0.00
Problems 0.13 0.74 Bush/Obama/Trump  0.14 0.00 Record high -0.18 0.00
Competition -0.05 0.27 Euro. sov. debt 0.14 0.00 Problems 0.13 0.01
R? 0.55 R? 0.53 R? 0.37
National Security Regulation Sov. Debt/Currency Crises

Iraq 0.53 0.00 Govt. budgets 0.27 0.11 Southeast Asia  0.41 0.24
Internet -0.19 0.00 Recession 0.23 0.04 Euro. sov. debt  0.33 0.03
Airlines 0.17 0.00 Financial crisis 0.20 0.00 Music industry  -0.26 0.79
Record high -0.17 0.00 M&A -0.19 0.01 Movie industry  -0.13 0.15
US defense 0.09 0.06 Competition -0.15 0.01 Problems 0.13 0.16
R? 0.57 R? 0.46 R? 0.43

Taxes Trade Policy Broad EPU
Govt. budgets 0.43 0.00 Mexico 0.44 0.00 Problems 0.33 0.00
Recession 0.24 0.00 Trade agreements 0.26 0.00 M&A -0.28 0.00
M&A -0.15 0.00 Consumer goods 0.23 0.00 Govt. budgets 0.27 0.00
Competition -0.15 0.00 Trading activity 0.15 0.06 Restraint 0.17 0.05
Credit ratings 0.12 0.08 Intl. exchanges 0.01 0.83 Competition -0.09 0.07
R? 0.49 R? 0.50 R? 0.53

Note. Five-regressor lasso regression estimates and fits with p-values are adjusted for post-selection inference.

that time.

4.5 Unsupervised Economic Policy Uncertainty

In influential recent work, Baker et al. (2016) develop a broad index of economic policy uncertainty
(EPU) based on news text, as well as a number of category-specific sub-indices that focus on par-
ticular aspects of economic policy like trade, taxes, and financial regulation. Our estimated topics
are closely related to the EPU indices developed by BBD. Table 5 reports the five-regressor lasso
regression of BBD’s 12 EPU indices (11 catagorical EPU indices plus their broad EPU index) on our
estimated news attention time series, and Figure 14 plots the model fits. For example, our five-topic
news attention regression explains 55% of the variation in the BBD “government spending” uncer-
tainty index. This is driven primarily by our “government budget” topic {key terms: spend cut,

deficit reduction, grammrudman, federal budget, balance budget}, which has a univariate correlation
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of 66% with the BBD index. The BBD “financial regulation” uncertainty index looks like a com-

0«

bination of our “financial crisis,” “competition,” “bank loans,” and “recession” topics (R? = 45%).
It is interesting to note that “competition” is the only topic significantly negatively associated with
financial regulation uncertainty. And the BBD “trade policy” uncertainty index behaves like a com-
bination of our “Mexico,” “trade agreements,” and “consumer goods” topics (R? = 50%).

To construct their main EPU index, BBD measure the fraction of articles in ten leading U.S.

bR

newspapers that contain the terms “economic” or “economy;” “uncertain” or “uncertainty;” and

&

“Congress,” “deficit,” “Federal Reserve,” “legislation,” “regulation,” or “White House.” Their tex-
tual analysis amounts to a heavily restricted model, as the researchers decide on a few specific search
terms from first principles prior to analyzing data. This approach has advantages and limitations.
Thoughtfully choosing a small list of search terms ex ante has the advantage that a researcher can
hone in on the text content of interest while easily avoiding the complexity and noise of surrounding
text. But by requiring such detailed researcher input (i.e., priors), this textual analysis approach is
especially prone to misspecification biases. Without some degree of flexibility in the text model, it
is impossible to discern potentially important patterns in news outside of the pre-established term
list. These considerations are a manifestation of the fundamental bias-variance tradeoff at the core
of statistics.

In contrast to BBD, our topic modeling approach is unsupervised and comparatively unrestricted.
This also has its advantages and limitations. LDA lays out a general distributional framework for
word counts that acts as a blank canvas for the data. This has the advantage of allowing the data
to speak directly by projecting its underlying patterns onto this canvas (within the structure of the
distributional assumptions). That is, our priors are less informative and therefore our approach is
less biased. On the variance side of the tradeoff, our model has the limitation that, by modeling raw
counts in their complex and high-dimensional form, it must wrestle with all varieties of noise in the
data.

Our estimated news attention series share the great advantage of BBD’s approach—the natural
interpretability inherent in the use of text as data. While the BBD approach relies on careful
researcher intervention to curate narrow search term lists, our results illustrate the exciting potential
that topic models and other machine learning methods offer for constructing indices of economic

conditions from news text with much less researcher intervention.

4.6 Exploring Ultra-high Dimensionality

In the preceding sections, we approach the reconstruction of numerical economic time series with
linear models of topic attention time series. The view we propose, that the state of the economy is
describable as time-varying configurations of topic attention, is likely to be better captured in regres-
sions that allow for (potentially complex) interactions among topics. We explore this by extending
the five-regressor lasso regressions for industrial production and employment in Table 1 to include
not only the 180 topic attention time series as regressors, but also all pairwise topic interactions.

Table 6 reports the results. Interestingly, we find that no individual topics are selected for the
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Figure 14: WSJ Topics and Economic Policy Uncertainty Indices
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Table 6: Reconstructing Macroeconomic Time Series With Interactions

Industrial Production Growth Employment Growth

Topic Coeft. p-val. Topic Coeft. p-val.
Recession x Oil market -0.25 0.00 Inv. banksxBush/Obama/Trump -0.28 0.94

Inv. banksxBush/Obama/Trump -0.18 0.17 Recession x Fees -0.22 0.24

Job cutsxRecession -0.09 0.73 Publishing x Recession -0.19 0.51

Recession x Corporate governance -0.07 0.94 Recession x Bankruptcy -0.17 0.04

Short salesx Recession -0.02 0.11 Credit ratings x Recession -0.07 0.60

R? 0.24 R? 0.63

Note. Five-regressor lasso regression estimates and fits with p-values are adjusted for post-selection inference, using
individual topic attention regressors as well as their pairwise interactions.

model. Instead, all of the selected regressors are topic interactions, and the majority of them (eight
of ten) include the recession topic. These results suggest that macroeconomic outcomes can be
accurately captured not just by discussion of economic downturns, but with specific attributes of
downturns such as conditions in commodities markets and attention to corporate bankruptcy. More
broadly, these results raise the possibility that more flexible non-linear models from the machine
learning toolkit, such as tree models which tend to be more adept than regressions for modeling

covariate interaction, are likely to be valuable tools for measuring the state of the economy.

5 Conclusion

Understanding the forces that drive fluctuations in the state of the economy is central to economic
modeling. The overwhelming majority of empirical research has focused on numerical macroeconomic
indicators to approach this problem. We offer an alternative approach that summarizes economic
conditions in terms of narratives in business news.

Our approach is motivated by the view that news text is a mirror of the state of the economy. The
media sector is an information intermediary that meets information demand of consumers and in-
vestors with verbal descriptions of economic events and their interpretation. Of course, viewing news
media as a verbal mirror of the economy, we must also recognize that it comes with flawed refrac-
tions, often in the form of producer and consumer biases, erroneous inference, and unsubstantiated
speculations (Gentzkow and Shapiro, 2006).

We estimate a topic model from the full text of The Wall Street Journal. Our estimates provide
a complete taxonomy of its recurrent themes that describe subjects of attention in financial markets
and the broader economy. We measure how much attention is allocated to each theme at each point
in time, and then use these measurements as inputs into statistical models of economic fluctuations.

Economic topics identified from WSJ text closely coincide with related numerical measures of
economic activity, including macroeconomic aggregates like output and employment, financing ac-
tivity, asset prices, and different measures of economic uncertainty. In the context of a standard
macroeconomic VAR, we show that news topic attention contains substantial information about

future economic outcomes above and beyond standard indicators.
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Lastly, we propose a new econometric perspective on shock identification. Our approach relies on
the model to digest massive text corpora that are beyond human readability, and flags articles that
are most statistically related to a specific shock or fluctuation of interest. It thus isolates news-based
narratives of those events that the researcher can “close-read” for detail and nuance about a given

“shock” in numerical data.
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A

Construction the WSJ Document-Term Matrix

We conduct data processing steps in the following order:

1.

10.

11.

12.
13.

14.

Remove all articles prior to January 1984 and after June 2017 (data purchased at the beginning of July
2017).

. Replace all non-alphabetical characters with an empty string and set the remaining characters to lower-

case.

Parse article text into a white-space-separated word list retaining the article’s word ordering. Exclude

single-letter words.
Exclude articles with page-citation tags corresponding to any sections other than A, B, C, or missing.
Exclude articles corresponding to weekends.

Exclude articles with subject tags associated with obviously non-economic content such as sports. See

the full list of excluded tags at www.structureofnews.com.

Exclude articles with the certain headline patterns (such as those associated with data tables or those
corresponding to regular sports, leisure, or books columns). See the full list of excluded headline patterns

at www.structureofnews. com.
Concatenate articles with the same accession-number as these are chained articles.
Exclude articles with less than 100 words.

Remove common “stop” words and URL-based terms. See the full list of excluded stop words and URL

patterns at www.structureofnews.com.

Lastly, we conduct light lemmatizing of derivative words. The following rules are applied in the order
given, where ’x’ is a candidate term. In each case, the stemming is only applied if the multiple terms
reduce to the same stem.

) Replace trailing “sses” with “ss”
) Replace trailing “ies” with “y”
¢) Remove trailing “s”

) Remove trailing “ly”

)

)

Remove trailing “ed.” Replace remaining trailing “ed” with “e”

Replace trailing “ing” with “e”. For remaining trailing “ing” that follow a pair of identical conso-

29

nants, remove “ing” and one consonant. Remove remaining trailing “ing
(g) Remove words with less than 3 letters.
From the resulting uni-grams, generate the set of bi-grams as all pairs of (ordered) adjacent uni-grams.

Exclude terms (both uni-grams and bi-grams) appearing in less than 0.1% of articles. The unique set of

terms is the corpus vocabulary. Each column of the DTM corresponds to an element of the vocabulary.

Convert an article’s word list into a vector of counts for each term in the vocabulary. This vector is the

row of the DTM corresponding to the article.

Topic Key Terms
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