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ABSTRACT

In the early 1940s, Haavelmo proposed a probabilistic structure for econometric modeling, 
aiming to make econometrics useful for public decision making. His fundamental contribution 
has become thoroughly embedded in subsequent econometric research, yet it could not fully 
answer all the deep issues that the author raised. Notably, Haavelmo struggled to formalize the 
implications for decision making of the fact that models can at most approximate actuality. In the 
same period, Wald initiated his own seminal development of statistical decision theory. 
Haavelmo favorably cited Wald, but econometrics subsequently did not embrace statistical 
decision theory. Instead, it focused on study of identification, estimation, and statistical inference. 
This paper proposes statistical decision theory as a framework for evaluation of the performance 
of models in decision making. I particularly consider the common practice of as-if optimization: 
specification of a model, point estimation of its parameters, and use of the point estimate to make 
a decision that would be optimal if the estimate were accurate. A central theme is that one should 
evaluate as-if optimization or any other model-based decision rule by its performance across the 
state space, not the model space. I use prediction and treatment choice to illustrate. Statistical 
decision theory is conceptually simple, but application is often challenging. Advancement of 
computation is the primary task to continue building the foundations sketched by Haavelmo and 
Wald.
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1. Introduction: Joining Haavelmo and Wald 

 

Early in the modern development of econometrics, Trygve Haavelmo compared astronomy and 

planning to differentiate two objectives for econometric modeling: to advance science and to inform 

decision making. He wrote (Haavelmo, 1943, p. 10): 

“The economist may have two different purposes in mind when he constructs a model . . . . First, 

he may consider himself in the same position as an astronomer; he cannot interfere with the actual 

course of events. So he sets up the system . . . . as a tentative description of the economy. If he finds 

that it fits the past, he hopes that it will fit the future. On that basis he wants to make predictions, 

assuming that no one will interfere with the game. Next, he may consider himself as having the 

power to change certain aspects of the economy in the future. If then the system . . . . has worked 

in the past, he may be interested in knowing it as an aid in judging the effect of his intended future 

planning, because he thinks that certain elements of the old system will remain invariant.” 

Jacob Marschak, supporting Haavelmo’s work, made a related distinction between meteorological and 

engineering types of econometric inference; see Bjerkholt (2010) and Marschak and Andrews (1944). 

 Comparing astronomy and planning provides a nice metaphor for two branches of econometrics. 

In 1943, before the advent of space flight, an astronomer might model a solar system or galaxy to advance 

physical science, but the effort could have no practical impact on decision making. An economist might 

similarly model a local or national economy to advance social science. However, an economist might also 

model to inform society about the consequences of contemplated public or private decisions that would 

change aspects of the economy. 

 Haavelmo’s seminal doctoral thesis (Haavelmo, 1944), initiated when he worked as an assistant to 

Ragnar Frisch, proposed a formal probabilistic structure for econometric modeling that aimed to make 

econometrics useful for public decision making. To conclude, he wrote (p. 114-115): 

“In other quantitative sciences the discovery of “laws,” even in highly specialized fields, has moved 

from the private study into huge scientific laboratories where scores of experts are engaged, not 

only in carrying out actual measurements, but also in working out, with painstaking precision, the 

formulae to be tested and the plans for crucial experiments to be made. Should we expect less in 
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economic research, if its results are to be the basis for economic policy upon which might depend 

billions of dollars of national income and the general economic welfare of millions of people?” 

Haavelmo’s thesis made fundamental contributions that became thoroughly embedded in subsequent 

econometric research. Nevertheless, it is unsurprising to find that it did not fully answer all the deep issues 

that the author raised. Notably, Haavelmo struggled to formalize the implications for decision making of 

the fact that models can at most seek to approximate actuality. He called attention to the broad issue in his 

opening chapters on “Abstract Models and Reality” and “The Degree of Permanence of Economic Laws,” 

but the later chapters did not resolve the matter. 

 Haavelmo devoted a long chapter to “The Testing of Hypotheses,” expositing the then recent work 

of Neyman-Pearson and considering its potential use to evaluate the consistency of models with observed 

sample data. Testing models subsequently became widespread in economics, both as a topic of study in 

econometric theory and as a practice in empirical research. However, Neyman-Pearson hypothesis testing 

does not provide satisfactory guidance for decision making.  See Section 2.3 below. 

 While Haavelmo was writing his thesis, Abraham Wald was initiating his own seminal 

development of statistical decision theory in Wald (1939, 1945) and elsewhere, which later culminated in 

his own treatise (Wald, 1950). Wald’s work has broad potential application. Indeed, it implicitly provides 

an appealing formal framework for evaluation of the use of models in decision making. I say that Wald 

“implicitly” provides this framework because, writing in an abstract mathematical manner, he appears not 

to have explicitly examined decision making with models. Yet it is conceptually straightforward to use 

statistical decision theory in this way. Explaining this motivates the present paper. 

 I find it intriguing to join the contributions of Haavelmo and Wald because these pioneering 

econometrician and statistician interacted to a considerable degree in the United States during the wartime 

period when both were developing their ideas. Wald came to the U.S. in 1938 as a refugee from Austria. 

Haavelmo did so in 1939 for what was intended to be a short-term professional visit, but which lasted the 

entire war when he was unable to return to occupied Norway. Bjerkholt (2007, 2015), in biographical essays 

on Haavelmo’s period in the United States, describes the many interactions of Haavelmo and Wald, not 
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only at professional conferences but also in hiking expeditions in Colorado and Maine. Bjerkholt observes 

that Haavelmo visited Neyman as well, the latter being in Berkeley by then. 

 Haavelmo’s appreciation of Wald is clear. In the preface of Haavelmo (1944), he wrote (p. v): 

“My most sincere thanks are due to Professor Abraham Wald of Columbia University for numerous 

suggestions and for help on many points in preparing the manuscript. Upon his unique knowledge 

of modern statistical theory and mathematics in general I have drawn very heavily. Many of the 

statistical sections in this study have been formulated, and others have been reformulated, after 

discussions with him.” 

The text of the thesis cites several of Wald’s papers. Most relevant is the final chapter on “Problems of 

Prediction,” where Haavelmo suggests application of the framework in Wald (1939) to choose a predictor 

of a future random outcome. I discuss this in Section 3.3 below. 

Despite Haavelmo’s favorable citations of Wald=s ideas, econometrics in the period following 

publication of Haavelmo (1944) did not embrace statistical decision theory. Instead, it focused on study of 

identification, estimation, and statistical inference. None of the contributions in the seminal Cowles 

Monograph 10 (Koopmans, 1950) mentions statistical decision theory. Only one does so briefly in Cowles 

Monograph 14 (Hood and Koopmans, 1953). This appears in a chapter by Koopmans and Hood (1953), 

who refer to estimates of structural parameters as “raw materials, to be processed further into solutions of 

a wide variety of prediction problems.” See Section 3.3 for further discussion. 

Modern econometricians continue to view parameter estimates as “raw materials” that may be used 

to solve prediction and other decision problems. A widespread practice has been as-if optimization: 

specification of a model, point estimation of its parameters, and use of the point estimate to make a decision 

that would be optimal if the estimate were accurate. As-if optimization has heuristic appeal, but econometric 

theory has not provided a well-grounded mechanism to evaluate its performance in decision making. 

Statistical decision theory does so. 

Beginning in Manski (2000, 2004) and then in a sequence of subsequent articles, I have argued that 

econometrics can and should make productive use of statistical decision theory. Until now, I have not 
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specifically addressed the potential use of statistical decision theory to evaluate the performance of as-if 

optimization and other applications of econometric models in decision making. This paper does so. 

 Section 2 reviews the core elements of statistical decision theory and uses choice between two 

actions to illustrate. The basic idea is simple, although it may be challenging to implement. One specifies a 

state space, listing all the states of nature that one believes feasible. One considers alternative statistical 

decision functions (SDFs), which map potentially observed data into decisions. One evaluates an SDF in 

each state of nature ex ante, by its mean performance across repeated samples. The true state of nature is 

not known. Hence, one evaluates the performance of an SDF across all the elements of the state space. 

Three decision criteria have drawn much attention: maximization of subjective expected welfare (aka 

minimization of Bayes risk), the maximin criterion, and the minimax-regret criterion. 

 Section 3 shows how the Wald framework may be used to evaluate decision making with models. 

One specifies a model space, which simplifies or approximates the state space in some manner. A model-

based decision uses the model space as if it were the state space. I particularly consider the use of models 

to perform as-if optimization. A central theme is that one should evaluate as-if optimization or any other 

model-based decision rule by its performance across the state space, not the model space. I use prediction 

of a real-valued outcome to illustrate. 

 To illustrate further, Section 4 considers use of the empirical success (ES) rule in treatment choice. 

Recent econometric research has shown that this application of as-if optimization is well-grounded in 

statistical decision theory when the data are generated by an ideal randomized trial; see Manski (2004), 

Hirano and Porter (2009, 2019), Stoye (2009, 2012), Manski and Tetenov (2016, 2019), and Kitagawa and 

Tetenov (2018). When the ES rule is used with observational data, it exemplifies a controversial modeling 

practice, wherein one assumes without good justification that realized treatments are statistically 

independent of treatment response. Decision-theoretic analysis shows when use of the ES rule with 

observational data does and does not yield desirable treatment choices. 
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 Although statistical decision theory is conceptually simple, application is computationally 

challenging in many contexts. Section 5 cites advancement of computation as the primary task to continue 

building the foundations sketched by Haavelmo and Wald. 

 

 

2. Statistical Decision Theory: Concepts and Practicalities 

 

The Wald development of statistical decision theory directly addresses decision making with 

sample data. Wald began with the standard decision theoretic problem of a planner (equivalently, decision 

maker or agent) who must choose an action yielding welfare that depends on an unknown state of nature. 

The planner specifies a state space listing the states that he considers possible. He must choose an action 

without knowing the true state. 

Wald added to this standard problem by supposing that the planner observes sample data that may 

be informative about the true state. He studied choice of a statistical decision function (SDF), which maps 

each potential data realization into a feasible action. He proposed evaluation of SDFs as procedures, chosen 

prior to observation of the data, specifying how a planner would use whatever data may be realized. Thus, 

Wald=s theory is frequentist. 

I describe general decision problems without sample data in Section 2.1 and with such data in 

Section 2.2. Section 2.3 examines the important special case of decisions that choose between two actions. 

Section 2.4 discusses the practical issues that challenge application of statistical decision theory. 

 

2.1. Decisions Under Uncertainty 

 

Consider a planner who must choose an action yielding welfare that varies with the state of nature.  

The planner has an objective function and beliefs about the true state. These are considered primitives. He 

must choose an action without knowing the true state. 
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Formally, the planner faces choice set C and believes that the true state lies in set S, called the state 

space. The objective function w(·, ·): C ൈ S ⇾ R1 maps actions and states into welfare. The planner ideally 

would maximize w(·, s*), where s* is the true state. However, he only knows that s* ∈ S. 

The choice set is commonly considered to be predetermined. The welfare function and the state 

space are subjective. The former formalizes what the planner wants to achieve and the latter expresses the 

states of nature he believes could possibly occur. 

As far as I am aware, Wald did not address how a planner might formalize a welfare function and 

state space in practice. I find it interesting to mention that Frisch proposed late in his career that 

econometricians wanting to help planners make policy decisions might perform what is now called stated-

preference elicitation; see, for example, Ben-Akiva, McFadden, and Train (2019). In a lecture titled 

“Cooperation between Politicians and Econometricians on the Formalization of Political Preferences,” 

Frisch (1971) proposed that an econometrician could elicit the “preference function” of a politician by 

posing a sequence of hypothetical policy-choice scenarios and asking the politician to choose between the 

policy options specified in each scenario. 

 While the state space ultimately is subjective, its structure may use observed data that are 

informative about features of the true state. This idea is central to econometric analysis of identification. 

Haavelmo’s formalization of econometrics initially considers the state space to be a set of probability 

distributions that one thinks may possibly describe the economic system under study. The Koopmans (1949) 

formalization of identification contemplates unlimited data collection that enables one to shrink the state 

space, eliminating distributions that are inconsistent with the information revealed by observation. 

Koopmans put it this way (p. 132): 

“we shall base our discussion on a hypothetical knowledge of the probability distribution of the 

observations . . . . Such knowledge is the limit approachable but not attainable by extended 

observation. By hypothesizing nevertheless the full availability of such knowledge, we obtain a 

clear separation between problems of statistical inference arising from the variability of finite 

samples, and problems of identification in which we explore the limits to which inference even 

from an infinite number of observations is suspect.” 
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In modern econometric language, the true state of nature is point identified if the contemplated 

observational process eliminates all but one probability distribution for the economic system. It is partially 

identified if observation eliminates some but not all the distributions initially deemed possible. 

Given a welfare function and state space, a close to universally accepted prescription for decision 

making is that choice should respect dominance. Action c ∈ C is weakly dominated if there exists a d ∈ C 

such that w(d, s) ≥ w(c, s) for all s ∈ S and w(d, s) > w(c, s) for some s ∈ S. Even though the true state s* is 

unknown, choice of d is certain to weakly improve on choice of c. 

There is no clearly best way to choose among undominated actions, but decision theorists have not 

wanted to abandon the idea of optimization. So they have proposed various ways of using the objective 

function w(A, ·) to form functions of actions alone, which can be optimized. In principle one should only 

consider undominated actions, but it may be difficult to determine which actions are undominated. Hence, 

it is common to optimize over the full set of feasible actions. I define decision criteria accordingly in this 

paper. I also use max and min notation, without concern for the mathematical subtleties that sometime make 

it necessary to suffice with sup and inf operations. 

One broad idea is to place a subjective probability distribution on the state space, average state-

dependent welfare with respect to this distribution and maximize the resulting function. This yields 

maximization of subjective average welfare. Let π be the specified distribution on S. For each feasible 

action c, w(c, s)dπ is the mean of w(c, s) with respect to π. The criterion solves the problem 

 

(1)      max  ∫w(c, s)dπ. 
           c ∈ C 

 

Another broad idea is to seek an action that, in some well-defined sense, works uniformly well over 

all elements of S. This yields the maximin and minimax-regret (MMR) criteria. The maximin criterion 

maximizes the minimum welfare attainable across the elements of S. For each feasible action c, consider 

the minimum feasible value of w(c, s); that is, min s ∊ S w(c, s). A maximin rule chooses an action that solves 

the problem 
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(2)           max     min    w(c, s).  
                c ∈ C     s ∈ S 
 

The MMR criterion chooses an action that minimizes the maximum loss to welfare that can result 

from not knowing the true state. An MMR choice solves the problem 

 

(3)      min  max   [max w(d, s) − w(c, s)]. 
          c ∈ C   s ∈ S      d ∈ C 
 

Here max d ∊ C w(d, s) − w(c, s) is the regret of action c in state of nature s; that is, the welfare loss associated 

with choice of c relative to an action that maximizes welfare in state s. The true state being unknown, one 

evaluates c by its maximum regret over all states and selects an action that minimizes maximum regret. The 

maximum regret of an action measures its maximum distance from optimality across all states. Hence, an 

MMR choice is uniformly nearest to optimal among all feasible actions. 

A planner who asserts a partial subjective distribution on the states of nature could maximize 

minimum subjective average welfare or minimize maximum average regret. These hybrid criteria combine 

elements of averaging across states and concern with uniform performance across states. Hybrid criteria 

have drawn attention in decision theory. However, I will confine discussion to the polar cases in which the 

planner asserts a complete subjective distribution or none. 

 

2.2. Statistical Decision Problems 

 

Statistical decision problems add to the above structure by supposing that the planner observes 

finite-sample data generated by some sampling distribution. Sample data may be informative but, unlike 

the unlimited data contemplated in identification analysis, they do not enable one to shrink the state space. 

In practice, knowledge of the sampling distribution is generally incomplete. To express this, one 

extends the concept of the state space S to list the set of feasible sampling distributions, denoted (Qs, s ∈ 
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S). Let Ψs denote the sample space in state s; that is, Ψs is the set of samples that may be drawn under 

sampling distribution Qs. The literature typically assumes that the sample space does not vary with s and is 

known. I maintain this assumption and denote the known sample space as Ψ, without the s subscript. Then 

a statistical decision function c(@): Ψ ⇾  C maps the sample data into a chosen action. 

Wald’s concept of a statistical decision function embraces all mappings of the form [data → action]. 

An SDF need not perform inference; that is, it need not use data to draw conclusions about the true state of 

nature. None of the prominent decision criteria that have been studied from Wald=s perspective −− maximin, 

minimax-regret, and maximization of subjective average welfare −− refer to inference. The general absence 

of inference in statistical decision theory is striking and has been noticed; see Neyman (1962) and Blyth 

(1970). 

Although SDFs need not perform inference, some do so. That is, some have the sequential form 

[data → inference → action], first performing some form of inference and then using the inference to make 

a decision. There seems to be no accepted term for such SDFs, so I will call them inference-based. 

SDF c(@) is a deterministic function after realization of the sample data, but it is a random function 

ex ante. Hence, the welfare achieved by c(@) is a random variable ex ante. Wald=s central idea was to evaluate 

the performance of c(@) in state s by Qs{w[c(ψ), s]}, the ex-ante distribution of welfare that it yields across 

realizations ψ of the sampling process. 

It remains to ask how a planner might compare the welfare distributions yielded by different SDFs. 

The planner wants to maximize welfare, so it seems self-evident that he should prefer SDF d(@) to c(@) in 

state s if Qs{w[d(ψ), s]} stochastically dominates Qs{w[c(ψ), s]}. It is less obvious how he should compare 

SDFs whose welfare distributions do not stochastically dominate one another. 

Wald proposed measurement of the performance of c(@) in state s by its expected welfare across 

samples; that is, Es{w[c(ψ), s]} / ∫w[c(ψ), s]dQs. An alternative that has drawn only slight attention is to 

measure performance by quantile welfare (Manski and Tetenov, 2014). Writing in a context where one 
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wants to minimize loss rather than maximize welfare, Wald used the term risk to denote the mean 

performance of an SDF across samples. 

In practice, one does not know the true state. Hence, one evaluates c(@) by the state-dependent  

expected welfare vector (Es{w[c(ψ), s]}, s ∈ S). Using the term inadmissible to denote weak dominance 

when evaluating performance by risk, Wald recommended elimination of inadmissible SDFs from 

consideration. As in decision problems without sample data, there is no clearly best way to choose among 

admissible SDFs. Ferguson (1967) nicely put it this way (p. 28): 

“It is a natural reaction to search for a ‘best’ decision rule, a rule that has the smallest risk no matter 

what the true state of nature. Unfortunately, situations in which a best decision rule exists are rare 

and uninteresting. For each fixed state of nature there may be a best action for the statistician to 

take. However, this best action will differ, in general, for different states of nature, so that no one 

action can be presumed best overall.” 

He went on to write (p. 29): “A reasonable rule is one that is better than just guessing.” 

Statistical decision theory has mainly studied the same decision criteria as has decision theory 

without sample data. Let Γ be a specified set of feasible SDFs, each mapping Ψ ⇾ C. The statistical versions 

of decision criteria (1), (2), and (3) are 

 

(4)           max  ∫Es{w[c(ψ), s]} dπ, 
               c(@) ∈ Γ 
 
 
(5)           max      min   Es{w[c(ψ), s]}, 
               c(@) ∈ Γ    s ∈ S 
 
 
(6)           min    max   ( max w(d, s) − Es{w[c(ψ), s]}). 
              c(@) ∈ Γ    s ∈ S       d ∈ C 
 

I discuss these criteria below, focusing on (4) and (6). 
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2.2.1. Bayes Decisions 

Considering contexts where one wants to minimize loss rather than maximize welfare, research in 

statistical decision theory often refers to criterion (4) as minimization of Bayes risk. This term may seem 

odd given the absence of any reference in (4) to Bayesian inference. Criterion (4) simply places a subjective 

distribution on the state space and optimizes the resulting subjective average welfare. 

Justification for use of the word Bayes when considering (4) rests on an important mathematical 

result. When the set of feasible statistical decision functions is unconstrained and certain regularity 

conditions hold, it follows from Fubini’s Theorem that criterion (4) yields the same solution as is obtained 

in conditional Bayes decision making. Conditional Bayes decision making calls on one to first perform 

Bayesian inference, which uses the likelihood function for the observed data to transform the prior 

distribution on the state space into a posterior distribution, without reference to a decision problem. One 

then chooses an action that maximizes posterior subjective average welfare. It turns out that this sequential 

procedure, applied to each possible data realization, solves Wald’s problem of maximization of subjective 

average welfare. See, for example, Berger (1985, Section 4.4.1). 

The equivalence of Wald’s decision criterion (4) and conditional Bayes decisions holds under 

specified conditions. Advocates of conditional Bayes decision making go beyond the mathematics. They 

assert as a self-evident axiom that decision making should condition on observed data and should not 

perform frequentist thought experiments that contemplate how statistical decision functions perform in 

repeated sampling; see, for example, Berger (1985, Chapter 1). 

Considering the mathematical equivalence of minimization of Bayes risk and conditional Bayes 

decisions, Berger asserts that that the conditional Bayes perspective is normatively “correct” and that the 

Wald frequentist perspective is “bizarre.” He states (p. 160): 

“Note that, from the conditional perspective together with the utility development of loss, the 

correct way to view the situation is that of minimizing ρ(π(θ|x), a). One should condition on what 

is known, namely x  . . . . and average the utility over what is unknown, namely θ. The desire to 

minimize r(π, δ) would be deemed rather bizarre from this perspective.” 
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In this passage, a is an action, x is data, θ is a state of nature, π(θ|x) is the posterior distribution on the state 

space, ρ is posterior loss with choice of action a, δ is a statistical decision function, π is the prior distribution 

on the state space, and r(π, δ) is the Bayes risk of δ. 

 I view Berger’s normative statement to be overly enthusiastic for two distinct reasons. First, the 

statement does not address how decisions should be made when part of the decision is choice of a procedure 

for collection of data, as in experimental or sample design. Such decisions must be made ex ante, before 

collecting the data. Hence, frequentist consideration of the performance of decision functions across 

possible realizations of the data is inevitable. Berger recognizes this later, in his chapter on “Preposterior 

and Sequential Analysis.” 

Second, the Bayesian prescription for conditioning decision making on sample data presumes that 

the planner feels able to place a credible subjective prior distribution on the state space. However, Bayesians 

have long struggled to provide guidance on specification of priors and the matter continues to be 

controversial. The controversy suggests that inability to express a credible prior is common in actual 

decision settings. 

When one finds it difficult to assert a credible subjective distribution, Bayesians may suggest use 

of some default distribution, variously called a “reference” or “conventional” or “objective” prior; see, for 

example, Berger (2006). However, there is no consensus on the prior that should play this role. The chosen 

prior matters for decision making. 

 

2.2.2. Focus on Maximum Regret 

Concern with specification of priors motivated Wald (1950) to study the minimax criterion. He 

wrote (p. 18): “a minimax solution seems, in general, to be a reasonable solution of the decision problem 

when an a priori distribution . . . . does not exist or is unknown to the experimenter.” 

I similarly am concerned with decision making in the absence of a subjective distribution on the 

state space. However, I have mainly measured the performance of SDFs by maximum regret rather than by 

minimum expected welfare. Practical and conceptual reasons motivate focus on maximum regret. 



13 
 

 

From a practical perspective, it has been found that MMR decisions behave more reasonably than 

do maximin ones in the important context of treatment choice. In common settings of treatment choice with 

data from randomized trials, it has been found that the MMR rule is well approximated by the empirical 

success rule, which chooses the treatment with the highest observed average outcome in the trial; see 

Section 4 for further discussion. In contrast, the maximin criterion commonly ignores the trial data, 

whatever they may be. This was recognized verbally by Savage (1951), who stated that the criterion is 

“ultrapessimistic” and wrote (p. 63): “it can lead to the absurd conclusion in some cases that no amount of 

relevant experimentation should deter the actor from behaving as though he were in complete ignorance.” 

Savage did not flesh out this statement, but it is easy to show that this occurs with trial data. Manski (2004) 

provides a simple example. 

The conceptual appeal of using maximum regret to measure performance is that maximum regret 

quantifies how lack of knowledge of the true state of nature diminishes the quality of decisions. While the 

term “maximum regret” has become standard in the literature, this term is a shorthand for the maximum 

sub-optimality of a decision criterion across the feasible states of nature. An SDF with small maximum 

regret is uniformly near-optimal across all states. This is a desirable property. 

In a literature distinct from statistical decision theory, minimax regret has drawn diverse reactions 

from axiomatic decision theorists. In a famous early critique, Chernoff (1954) observed that MMR 

decisions are not always consistent with the choice axiom known as independence of irrelevant alternatives 

(IIA). He considered this a serious deficiency, writing (p. 426): 

“A third objection which the author considers very serious is the following.  In some examples, the 

min max regret criterion may select a strategy d3 among the available strategies d1, d2, d3, and d4.  

On the other hand, if for some reason d4 is made unavailable, the min max regret criterion will 

select d2 among d1, d2, and d3. The author feels that for a reasonable criterion the presence of an 

undesirable strategy d4 should not have an influence on the choice among the remaining strategies.” 

This passage is the totality of Chernoff’s argument. He introspected and concluded that any reasonable 

decision criterion should always adhere to the IIA axiom, but he did not explain why he felt this way. 

Chernoff’s view has been endorsed by some modern axiomatic decision theorists, such as Binmore (2009). 
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On the other hand, Sen (1993) argued that adherence to axioms such as IIA does not per se provide a sound 

basis for evaluation of decision criteria. He asserted that consideration of the context of decision making is 

essential. 

 Manski (2011) also argues that adherence to the IIA axiom is not a virtue per se. What matters is 

how violation of the axiom affects welfare. I observed that the MMR violation of the IIA axiom does not 

yield choice of a dominated SDF. The MMR decision is always undominated when it is unique. There 

generically exists an undominated MMR decision when the criterion has multiple solutions. Hence, I 

concluded that violation of the IIA axiom is not a sound rationale to dismiss minimax regret. 

 

2.3. Binary Choice Problems 

 

SDFs for binary choice problems are simple and interesting. They can always be viewed as 

hypothesis tests. Yet the Wald perspective on testing differs considerably from that of Neyman-Pearson. 

Let choice set C contain two actions, say C = {a, b}. A SDF c(·) partitions Ψ into two regions that 

separate the data yielding choice of each action. These regions are Ψc(@)a ≡ [ψ 0 Ψ: c(ψ) = a] and Ψc(@)b ≡ [ψ 

0 Ψ: c(ψ) = b]. 

A hypothesis test motivated by the choice problem partitions state space S into two regions, say Sa 

and Sb, that separate the states in which actions a and b are uniquely optimal. Thus, Sa contains the states [s 

∈ S: w(a, s) > w(b, s)] and Sb contains [s ∈ S: w(b, s) > w(a, s)]. The choice problem does not provide a 

rationale for allocation of states in which the two actions yield equal welfare. The standard practice in 

testing is to give one action, say a, a privileged status and to place all states yielding equal welfare in Sa. 

Then Sa ≡ [s ∈ S: w(a, s) ≥ w(b, s)] and Sb ≡ [s ∈ S: w(b, s) > w(a, s)]. 

In the language of hypothesis testing, SDF c(·) performs a test with acceptance regions Ψc(·)a and 

Ψc(·)b. When ψ ∈ Ψc(·)a, c(·) accepts the hypothesis {s ∈ Sa} by setting c(ψ) = a. When ψ ∈ Ψc(·)b, c(·) accepts 
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the hypothesis {s ∈ Sb} by setting c(ψ) = b.  I use the word “accepts” rather than the traditional term “does 

not reject” because choice of a or b is an affirmative action. 

Although all SDFs for binary choice are interpretable as tests, Neyman-Pearson hypothesis testing 

and statistical decision theory evaluate tests in fundamentally different ways. Sections 2.3.1 and 2.3.2 

contrast the two paradigms in general terms. Section 2.3.3 illustrates. 

 

2.3.1. Neyman-Pearson Testing 

Let us review the basic practices of classical hypothesis testing, developed by Neyman and Pearson 

(1928, 1933). These tests view the hypotheses {s ∈ Sa} and {s ∈ Sb} asymmetrically, calling the former the 

null hypothesis and the latter the alternative. The sampling probability of rejecting the null hypothesis when 

it is correct is called the probability of a Type I error. A longstanding convention has been to restrict 

attention to tests in which the probability of a Type I error is no larger than a predetermined value α, usually 

0.05, for all s ∈ Sa. In the notation of statistical decision theory, one restricts attentions to SDFs c(·) for 

which Qs[c(ψ) = b] ≤ α for all s ∈ Sa. 

Among tests that satisfy this restriction, Neyman-Pearson testing seeks ones that give small 

probability of rejecting the alternative hypothesis when it is correct, the probability of a Type II error. 

However, it generally is not possible to attain small probability of a Type II error for all s ∈ Sb. Letting S 

be a metric space, the probability of a Type II error typically approaches 1 − α as s ∈ Sb nears the boundary 

of Sa. See, for example, Manski and Tetenov (2016), Figure 1. Given this, the convention has been to restrict 

attention to states in Sb that lie at least a specified distance from Sa. 

Let ρ be the metric measuring distance on S. Let ρa > 0 be the specified minimum distance from Sa. 

In the notation of statistical decision theory, Neyman-Pearson testing seeks small values for the maximum 

value of Qs[c(ψ) = a] over s ∈ Sb s. t. ρ(s, Sa) ≥ ρa. 
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2.3.2. Expected Welfare of Tests 

Decision theoretic evaluation of tests does not restrict attention to tests that yield a predetermined 

upper bound on the probability of a Type I error. Nor does it aim to minimize the maximum value of the 

probability of a Type II error when more than a specified minimum distance from the null hypothesis. 

Wald’s central idea, for binary choice as elsewhere. is to evaluate the performance of SDF c(·) in state s by 

the distribution of welfare that it yields across realizations of the sampling process. He first addressed 

hypothesis testing this way in Wald (1939). 

The welfare distribution in state s in a binary choice problem is Bernoulli, with mass points max 

[w(a, s), w(b, s)] and min [w(a, s), w(b, s)]. These mass points coincide if w(a, s) = w(b, s). When s is a 

state where w(a, s) ≠ w(b, s), let Rc(·)s denote the probability that c(·) yields an error, choosing the inferior 

treatment over the superior one. That is, 

 

(7)              Rc(·)s  =  Qs[c(ψ) = b]   if w(a, s) > w(b, s), 

                            =  Qs[c(ψ) = a]   if w(b, s) > w(a, s). 

 

The former and latter are the probabilities of Type I and Type II errors. Whereas Neyman-Pearson testing 

treats these error probabilities differently, statistical decision theory views them symmetrically. 

The probabilities that welfare equals max [w(a, s), w(b, s)] and min [w(a, s), w(b, s)] are 1 − Rc(·)s 

and Rc(·)s. Hence, expected welfare in state s is 

 

(8)          Es{w[c(ψ), s]}  =  Rc(·)s{min [w(a, s), w(b, s)]} + [1 − Rc(·)s]{max [w(a, s), w(b, s)]} 

                                        =  max [w(a, s), w(b, s)]  −  Rc(·)s@|w(a, s) − w(b, s)|. 

 

The expression Rc(·)s@|w(a, s) − w(b, s)| is the regret of c(·) in state s. Thus, regret is the product of the error 

probability and the magnitude of the welfare loss when an error occurs. 
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 Evaluation of hypothesis tests by expected welfare constitutes a fundamental difference between 

the perspectives of Wald and of Neyman-Pearson. A planner should care about more than the probabilities 

of Type I and II error. He should care as well about the magnitudes of the losses to welfare that arise when 

errors occur. A given error probability should be less acceptable when the welfare difference between 

actions is larger. The Neyman-Pearson theory of hypothesis testing does not recognize this. 

Computation of regret in a specified state is usually practical. The welfare magnitudes w(a, s) and 

w(b, s) are usually easy to compute. The error probability Rc(·)s typically does not have a simple explicit 

form, but it can be approximated to any desired precision by Monte Carlo integration. That is, one draws 

repeated pseudo-realizations of ψ from the distribution Qs, computes the fraction of cases in which the 

resulting c(ψ) selects the inferior action, and uses this to estimate Rc(·)s. 

 Whereas computation of regret in one state is not problematic, computation of maximum regret 

across all feasible states may be burdensome. The state space commonly is uncountable in applications. A 

pragmatic process for coping with uncountable state spaces is to discretize the space, computing regret on 

a finite subset of states that reasonably approximate the full state space. 

 

2.3.3. Illustration: Comparing a Neyman-Pearson Test with an MMR Decision 

Manski and Tetenov (2016) compare a Neyman-Pearson test with a decision that minimizes 

maximum regret, in a simple context where the MMR decision is known. The context is choice between 

two treatments, say t = a and t = b, when the outcome of interest is binary, with y(t) = 1 denoting success 

and y(t) = 0 failure. State s indexes a possible value for the pair of outcome probabilities {Ps[y(a) = 1], 

Ps[y(b) = 1]}. The welfare yielded by treatment t in state s is w(t, s) = Ps[y(t) = 1]. The sample data are the 

findings of a balanced randomized trial, assigning the same number N of subjects to each treatment. In this 

setting, a widely used test is a one-sided two-sample z-test, which asymptotically makes the probability of 

a Type I error equal to 0.05. See Fleiss (1973) for details. 

The regret of any test c(@) in any state s is Rc(@)s@|Ps[y(a) = 1] − Ps[y(b) = 1]|. In the language of 

analysis of treatment response, |Ps[y(a) = 1] − Ps[y(b) = 1]| is the absolute value of the average treatment 
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effect comparing the two treatments. We suppose that the planner has no a priori knowledge of the outcome 

probabilities. Hence, the state space is the rectangle [0, 1]2. We approximate maximum regret by computing 

regret over a finite grid of states, thus discretizing the state space. Stoye (2009) shows that the MMR 

decision is the empirical success (ES) rule. This rule, which will be discussed more fully in Section 4, 

chooses a treatment that maximizes the average sample outcome in the trial. 

Figure 1 of Manski and Tetenov (2016) shows how the regret incurred by the ES rule and the z-test 

rule varies across states for a sample size of N = 145 per treatment arm. With this sample size, maximum 

regret is 0.01 for the ES rule and 0.05 for the z-test. Maximum regret for each test occurs at an intermediate 

value of the effect size. Regret is necessarily small for small effect sizes. Regret is also small for large effect 

sizes, because the probability of error declines with the effect size. The intermediate effect sizes at which 

regret is maximized differ for the two tests, reflecting the differences in their state-specific error 

probabilities. 

 

2.4. Practicalities 

 

Statistical decision theory has breathtaking generality. It enables comparison of all SDFs whose 

risk functions exist. It applies to any sample size, without asymptotic approximations. 

The state space may take any form. In Haavelmo’s formalization of econometrics, S is a space of 

probability distributions that may describe the economic system under study. The state space may be finite 

dimensional or larger. The theory is applicable when unlimited data collection would point or partially 

identify the true state. 

Given these features, one might anticipate that statistical decision theory would play a central role 

in modern statistics and econometrics. Notable contributions by statisticians emerged in the 1950s and 

1960s, as described in the monographs of Ferguson (1967) and Berger (1985). However, the early period 

of development of statistical decision theory largely closed by the 1970s, except for the conditional Bayes 
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version of Bayesian theory. Conditional Bayes analysis has continued to develop, but as a self-contained 

field of study disconnected from Wald’s frequentist idea of maximization of subjective average welfare. 

Why did statistical decision theory lose momentum? One reason may have been diminishing 

interest in decision making as the motivation for analysis of sample data. Many modern statisticians and 

econometricians view the objective of empirical research as inference for scientific understanding, rather 

than use of data in decision making. Another reason may have been the technical difficulty of the subject. 

Wald’s ideas are easy to describe abstractly, but they can be difficult to apply in practice. 

Consider the mathematical problems (4) through (6). These problems are generally well-posed in 

principle, but they may not be solvable in practice. Each problem requires performance of three nested 

operations. The most basic inner operation integrates across the sampling distribution of the data to 

determine expected welfare when a specified SDF c(·) is used in each feasible state of nature s ∈ S. The 

result is evaluation of c(@) by the state-dependent expected welfare vector (Es{w[c(ψ), s]}, s ∈ S). The 

middle operation averages or finds an extremum of the result of the inner operation across the state space. 

The outer operation finds an extremum of the result of the middle operation across all SDFs. 

Analytical arguments and numerical computation sometimes yield tractable solutions to these 

problems. Early analytical work in the conditional Bayes paradigm studied conjugate priors, which pair 

certain prior distributions on the state space with certain state-dependent sampling distributions for the data 

to yield simple posterior distributions. 

An important early analytical solution of an MMR problem was the study by Hodges and Lehmann 

(1950) of point prediction of a bounded outcome under square loss, with data from a random sample. 

Recently, Dominitz and Manski (2017, 2019) have derived analytical findings on the maximum regret of 

certain tractable point predictors of bounded outcomes with data from random samples when some 

outcomes are missing. See Section 3.4 below for further discussion. 

In another domain, econometricians have proved a sequence of analytical findings on tractable 

decision rules for treatment choice with data from a randomized experiment. See Manski (2004, 2005, 
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2007), Hirano and Porter (2009, 2019), Stoye (2009, 2012), Manski and Tetenov (2016, 2019), and 

Kitagawa and Tetenov (2018). This decision problem will be discussed further in Section 4. 

Numerical computation often was infeasible when statistical decision theory developed in the 

1940s, but it has become increasingly possible since then. Modern conditional Bayes analysis has 

increasingly moved away from use of conjugate priors to numerical computation of posterior distributions. 

Numerical determination of some maximin and MMR decisions has also become feasible. For example, 

Manski and Tetenov (2016, 2019) present in tabular form the MMR solutions to certain treatment choice 

problems with data from a randomized experiment. Computation of state-dependent expected welfare, the 

inner operation in problems (4) through (6), can now be accomplished numerically by Monte Carlo 

integration methods. Manski and Tabord-Meehan (2017) do this in the context of point prediction with 

random-sample data when some outcomes are missing; see Section 3.4 for further discussion. 

 

 

3. Decision Making with Models 

 

3.1. Basic Ideas 

 

I stated at the outset that standard decision theory begins with a planner who “specifies a state space 

listing the states that he considers possible.” Thus, the state space should include all states that the planner 

believes feasible and no others. The state space may be a large set that is difficult to contemplate in its 

entirety. Hence, it is common to make decisions using a model. 

The word “model” is commonly used informally to connote a simplification or approximation of 

reality. Formally, a model specifies an alternative to the state space. Thus, model m replaces S with a model 

space Sm. A planner using a model acts as if the model space is the state space. For example, the planner 

might solve problem (4), (5), or (6) with Sm replacing S. Section 3.2 discusses other possibilities. 
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The states contained in a model space may or may not be elements of the state space. The statistician 

George Box famously wrote (Box, 1979): “All models are wrong, but some are useful.” The phrase “all 

models are wrong” indicates that Box was thinking of models that simplify or approximate reality in a way 

that one believes could not possibly be correct; then Sm ∩ S = Ø. On the other hand, researchers often use 

models that they believe could possibly be correct but that are not necessarily so; then Sm ⊂ S. 

Economists have long used models of the second type, ones they believe could be correct but are 

not necessarily so. A persistent concern of econometric theory has been to determine when such models 

have implications that may potentially be inconsistent with observable data. These models are called 

testable, refutable, or over-identified. 

Working within the paradigm of Neyman-Pearson hypothesis testing, econometricians have 

developed specification tests which take the null hypothesis to be that the model is correct and the 

alternative to be that it is incorrect. Formally, the null is {s* ∈ Sm} and the alternative is {s* ∉ Sm}. However, 

econometricians have struggled to answer persuasively a central question raised by Haavelmo (1944) in his 

opening chapter on “Abstract Models and Reality” and restated succinctly in a recent paper by Masten and 

Poirier (2019). The latter authors write (p. 1): “What should researchers do when their baseline model is 

refuted?” They discuss the many ways that econometricians have sought to answer the question, and they 

offer some new suggestions of their own. 

The literature on specification testing has not sought to evaluate the performance of models in 

decision making. Statistical decision theory accomplishes this in a straightforward way. What matters is the 

SDF, say cm(·), that one chooses using a model. As with any SDF, one measures the performance of cm(·) 

by its vector of state-dependent expected welfares (Es{w[cm(ψ), s]}, s ∈ S). Importantly, the relevant states 

for evaluation of performance are those in the state space S, not those in the model space Sm. 

Thus, statistical decision theory enables one to operationalize Box=s assertion that some models are 

useful. Useful model-based decision rules yield acceptably high state-dependent expected welfare across 

the state space, relative to what is possible in principle. From this perspective, one should not make an 

abstract assertion that a model is or is not useful. Usefulness depends on the decision context. 
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3.2. As-If Optimization 

 

 A familiar econometric practice specifies a model space, typically called the parameter space. The 

parameter space is often finite-dimensional in applied research, but this is not essential. Sample data are 

used to select a point in the parameter space, called a point estimate of the parameter. The econometric 

method used to compute the point estimate typically is motivated by reference to desirable statistical 

properties that hold if the model is correct; that is, if the true state of nature lies within the parameter space. 

As-if optimization chooses an action that optimizes welfare as if the estimate is the true state. 

 As-if optimization is a type of inference-based SDF. Whereas Wald supposed that a planner both 

performs research and makes a decision, in practice there commonly is an institutional separation between 

research and decision making. Researchers report inferences and planners use them to make decisions. 

Thus, planners perform the mapping [inference 6 decision] rather than the more basic mapping [data 6 

decision]. Having researchers report point estimates and planners use them as if they are accurate 

exemplifies this process. 

Formally, a point estimate is a function s(@): Ψ ⇾ Sm that maps data into a point in a model space. 

As-if optimization means solution of the problem max c ∊ C w[c, s(ψ)]. When as-if optimization yields 

multiple solutions, one may use some auxiliary rule to select one. The result is an SDF c[s(@)], where  

 

(9)    c[s(ψ)]  ∈  argmax w[c, s(ψ)],     ψ ∈ Ψ. 
                              c ∈ C  
 

 Solving problem (9) is often simpler than solving problems (4) through (6). Selecting a point 

estimate and using it to maximize welfare is easier than performing the nested operations requires to solve 

problems (4) through (6). However, computational appeal does not suffice to justify this approach to 

decision making. 
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To motivate as-if optimization, econometricians often cite limit theorems of asymptotic theory that 

hold if the model is correct. They hypothesize a sequence of sampling processes indexed by sample size N 

and a corresponding sequence of point estimates sN(@): ΨN ⇾  Sm. They show that the sequence is consistent 

when specified assumptions hold. That is, sN(ψ) ⇾ s* as N ⇾ 4, in probability or almost surely. They may 

prove further results regarding rate of convergence and the limiting distribution of the estimate. 

These asymptotic arguments may be suggestive, but they do not prove that as-if optimization 

provides a well-performing SDF in practice. Statistical decision theory evaluates as-if optimization in state 

s by the expected welfare Es{w{c[s(ψ)], s}} that it yields across samples of size N, not asymptotically. It 

calls for study of expected welfare across the state space, not the model space. 

 

3.2.1. As-If Optimization with Analog Estimates 

Econometric research from Haavelmo onward has focused to a considerable degree on a class of 

problems that connect the state space and the sampling distribution in a simple way. These are problems in 

which states are probability distributions and the data are a random sample drawn from the true distribution. 

In such problems, a natural form of as-if optimization is to act as if the empirical distribution of the data is 

the true population distribution. Thus, one specifies the model space as the set of all possible empirical 

distributions and uses the observed empirical distribution as the point estimate of the true state. 

Goldberger (1968) called this the analogy principle. He wrote (p. 4): “The analogy principle of 

estimation . . . . proposes that population parameters be estimated by sample statistics which have the same 

property in the sample as the parameters do in the population.” The empirical distribution consistently 

estimates the population distribution and has further desirable asymptotic properties. This suggests decision 

making using the empirical distribution as if it were the true population distribution. 

 

3.2.2. As-If Decisions with Set Estimates 

As-if optimization uses data to compute a point estimate of the true state of nature and chooses an 

action that optimizes welfare as if this estimate is accurate. An obvious, but rarely applied, extension is to 
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use data to compute a set-valued estimate of the true state and then act as if the set estimate is accurate. 

Whereas a point estimate s(·) maps data into an element of Sm, a set estimate S(·) maps data into a subset 

of Sm. For example, S(·) could be a confidence set reported by researchers. 

Given data ψ, one could act as if the state space is S(ψ) rather than the larger set S. Specifically, 

one could solve these data-dependent versions of problems (1) through (3): 

 

(1')            max  w(c, s)dπ(ψ), 
                  c ∈ C 
 
 
(2')            max     min    w(c, s),  
                  c ∈ C     s ∈ S(ψ) 
 
 
(3')            min     max    [max w(d, s) − w(c, s)]. 
                   c ∈ C     s ∈ S(ψ)    d ∈ C 
 

In the case of (1'), π(ψ) is a subjective distribution on the set S(ψ). 

These as-if problems are generally easier to solve than are problems (4) to (6). The as-if problems 

fix ψ and select one action c, whereas problems (4) to (6) require one to consider all potential samples and 

choose a decision function c(@). The as-if problems compute welfare values w(c, s), whereas (4) to (6) 

compute more complex expected welfare values Es{w[c(ψ), s]}. Section 3.4.1 provides an example. 

 

3.3. Prediction with Sample Data 

 

A familiar case of as-if optimization occurs when states are distributions for a real random variable 

and the decision problem is to predict the value of a realization drawn from the true distribution. When 

welfare is measured by square and absolute loss, the best predictors are well-known to be the population 

mean and median. When the true distribution is not known but data from a random sample are observed, 

the analogy principle suggests use of the sample average and median as predictors. 
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In his final chapter on “Problems of Prediction,” Haavelmo (1944) questioned this common 

application of as-if optimization and instead recommended application of the Wald theory. This final 

chapter was added by Haavelmo after his distribution, in 1941, of an early version of the thesis. In his 

section on “General Formulation of the Problem of Prediction,” he wrote (p. 109): “We see therefore that 

the seemingly logical ‘two-step’ procedure of first estimating the unknown distribution of the variables to 

be predicted and then using this estimate to derive a prediction formula for the variables may not be very 

efficient.” Citing Wald (1939), he next proposed computation of the state-dependent risk for any proposed 

predictor function. 

Letting E2 denote a predictor function and (x1, x2, . . , , xN) the sample data, he wrote (p. 109): “We 

have to choose E2 as a function of x1, x2, . . , , xN, and we should, naturally, try to choose E2(x1, x2, . . , , xN) 

in such a way that r (the ‘risk’) becomes as small as possible.” But he immediately recognized that there 

generally does not exist a predictor function that minimizes risk across all states of nature.  Hence, he went 

on to suggest a feasible approach. I quote in full this key passage, which uses the notation Ω1 to denote the 

state space (p. 116): 

“In general, however, we may expect that no uniformly best prediction function exists. 

Then we have to introduce some additional principles in order to choose a prediction function. We 

may then, first, obviously disregard all those prediction functions that are such that there exists 

another prediction function that makes r smaller for every member of Ω1. If this is not the case we 

call the prediction function considered an admissible prediction function. To choose between 

several admissible prediction functions we might adopt the following principle, introduced by 

Wald: For every admissible prediction function E2 the ‘risk’ r is a function of the true distribution 

p. Consider that prediction function E2, among the admissible ones, for which the largest value of 

r is at a minimum (i.e., smaller than or at most equal to the largest value of r for any other admissible 

E2). Such a prediction function, if it exists, may be said to be the least risky among the admissible 

prediction functions.” 

Thus, following Wald, Haavelmo suggested elimination of inadmissible predictors followed by choice of a 

minimax predictor among those that are admissible. 
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It may be that econometrics would have progressed to make productive use of statistical decision 

theory if Haavelmo had been able to pursue the above idea further. However, in his next section on “Some 

Practical Suggestions for the Derivation of Prediction Formulae,” he cautioned regarding the practicality 

of the idea, writing (p. 111): “The apparatus set up in the preceding section, although simple in principle, 

will in general involve considerable mathematical problems and heavy algebra.” 

Aiming for tractability, Haavelmo went on to sketch an example of as-if optimization that chooses 

an action using a maximum likelihood estimate of a specific finite-dimensional parametric model. He noted 

that one could study the state-dependent risk of the resulting SDF, but he did not provide any analysis. With 

this, his chapter on prediction ended. Thus, Haavelmo initiated econometric consideration of statistical 

decision theory but, stymied by computational intractability, he found himself unable to follow through. 

Nor did other econometricians apply statistical decision theory to prediction in the period after 

publication of Haavelmo (1944). I observed earlier that no contribution in Cowles Monograph 10 mentioned 

statistical decision theory and only one did so briefly in Cowles 14. Cowles 10 and 14 contain several 

chapters by Haavelmo and by Wald, but these concern different subjects. The only mention in Cowles 14 

appeared in Koopmans and Hood (1953). Considering “The Purpose of Estimation,” they wrote (p. 127): 

“if a direct prediction problem . . . . can be isolated and specified, the choice of a method of 

estimation should be discussed in terms of desired properties of the joint distribution of the 

prediction(s) made and the realized values(s) of the variables(s) predicted. In particular, in a 

precisely defined prediction problem of this type, one may know the consequence of various 

possible errors of prediction and would then be able to use predictors minimizing the mathematical 

expectation of losses due to such errors. Abraham Wald [1939, 1945, 1950c], among others, has 

proposed methods of statistical decision-making designed to accomplish this.” 

However, they immediately went on to state that neither they nor the other contributors to Cowles 14 apply 

statistical decision theory to prediction. They wrote (p. 127): 

“The more classical methods of estimation applied in this volume are not as closely tailored to any 

one particular prediction problem. Directed to the estimation of structural parameters rather than 

values of endogenous variables, they yield estimates that can be regarded as raw materials, to be 
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processed further into solutions of a wide variety of prediction problems---in particular, problems 

involving prediction of the effects of known changes in structure.” 

This passage expresses the broad thinking that econometricians have used to motivate as-if optimization. 

 

3.4. Prediction under Square Loss 

 

Haavelmo discussed application of statistical decision theory to prediction briefly and abstractly. 

Subsequent research has focused on the special case of square loss. In this case, the risk of a candidate 

predictor using sample data is the sum of the population variance of the outcome and the mean square error 

(MSE) of the predictor as an estimate of the mean outcome. The regret of a predictor is its MSE as an 

estimate of the mean. An MMR predictor minimizes maximum mean square error. MMR prediction of the 

outcome is equivalent to minimax estimation of the population mean. 

Among the earliest important practical findings of statistical decision theory was reported by 

Hodges and Lehman (1950). They derived the MMR predictor under square loss with data from a random 

sample, when the outcome has known bounded range and all sample data are observed. They assumed no 

knowledge of the outcome distribution beyond its bounded support. Normalizing the support to be the 

interval [0, 1], they proved that the MMR predictor is (μN√N + ½)/(√N + 1), where N is sample size and μN 

is the sample average outcome. 

 

3.4.1. Prediction with Missing Data 

Dominitz and Manski (2017, 2019) have recently extended study of prediction of a bounded 

outcome under square loss to settings in which a random sample is drawn but some realized outcomes are 

unobserved. It is challenging to determine the MMR predictor when some data are missing. Seeking an 

approach that is both tractable and reasonable, the paper studies as-if MMR prediction. The analysis 

assumes knowledge of the fraction of the population with missing data, but it assumes no knowledge of the 
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distributions of observed and missing outcomes beyond their bounded support. It uses the empirical 

distribution of the observed sample data as if it were the population distribution of observable outcomes.  

In the absence of knowledge of the distribution of missing outcomes, the population mean outcome 

is partially identified when the outcome is bounded. Its identification region is an easy-to-compute interval 

derived in Manski (1989). If this interval were known, the MMR predictor would be its midpoint. The 

identification interval is not known with sample data, but one can compute its sample analog and use the 

midpoint of the sample-analog interval as the predictor. 

This midpoint predictor is easy to compute. Its maximum regret is shown to have a simple form. 

Let δ indicate the observability of an outcome. Let P(δ = 1) and P(δ = 0) denote the fractions of the 

population whose outcomes are and are not observable. Let N be the number of observed sample outcomes, 

which is fixed rather than random under the assumed survey design. The paper proves that the maximum 

regret of the midpoint predictor is ¼[P(δ = 1)2/N + P(δ = 0)2]. 

The analysis in Dominitz and Manski (2017) presumes a state space that places no restrictions on 

the distributions of observable and unobservable outcomes. Researchers often assume that data are missing 

at random. That is, they invoke a model space in which the distributions of observable and unobservable 

outcomes are the same. They then use the sample average of observed outcomes as the predictor. Dominitz 

and Manski caution against this application of modeling when the distributions of observable and 

unobservable outcomes may differ arbitrarily. They show that the maximum regret of the model-based 

predictor necessarily exceeds that of the midpoint predictor, in some cases substantially so. 

 

3.4.2. Numerical Computation of Maximum Regret in Prediction with Missing Data 

The analytical finding on the maximum regret of the midpoint predictor described above assumes 

knowledge of the fraction of the population with missing data. A midpoint predictor remains easy to 

compute when P(δ = 0) is not known and instead is estimated by its sample analog. In this case, derivation 

of an analytical expression for maximum regret does not seem possible, but numerical computation is 
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tractable. I summarize here. This demonstrate how advances in numerical analysis now enable applications 

of statistical decision theory that were impractical when Haavelmo and Wald made their contributions. 

Manski and Tabord-Meehan (2017) describe an algorithm coded in STATA for numerical 

computation of the maximum regret of the midpoint predictor and other user-specified predictors in the 

setting of Dominitz and Manski (2017). The program, named wald_mse, does not require knowledge of the 

population fraction of missing data. Instead, P(δ = 0) may be estimated by its sample analog. 

Letting y denote the outcome of interest, the state space has the form [Ps(y|δ = 1), Ps(y|δ = 0), Ps(δ 

= 0)], s 0 S]. An important feature of wald_mse is that the user can specify the state space flexibly. For 

example, the user may assume that nonresponse will be no higher than 80% or that the mean value of the 

outcome for nonresponders will be no lower than 0.5. The user may impose no restrictions connecting the 

two outcome distributions Ps(y|δ = 1) and Ps(y|δ = 0), or he may bound the difference between these 

distributions. 

In any given state s, the algorithm uses Monte Carlo integration to approximate the MSE of the 

user-specified predictor. The quality of the approximation is controlled by user specification of the number 

of pseudo realizations of (y, δ) that are drawn. Increasing the number yields a better approximation at the 

cost of longer computation time. 

The algorithm embodies two approaches to maximize MSE across the state space, one applicable 

when the outcome is binary and the other when the outcome has a continuous distribution. When y is binary, 

Ps(y|δ = 1), Ps(y|δ = 0), and Ps(δ = 0) are all Bernoulli distributions. The algorithm approximates the state 

space by a finite grid over the possible Bernoulli parameters for each distribution. It then maximizes MSE 

over the grid. The user controls the quality of the approximation to the state space by specifying the density 

of the grid. Increasing the density yields a better approximation at the cost of longer computation time. 

When y is continuous, the algorithm presumes that Ps(y|δ = 1) and Ps(y|δ = 0) are Beta distributions, 

while Ps(δ = 0) is a Bernoulli distribution. Supposing that the two outcome distributions are Beta is a 

substantive restriction, aiming to provide a relatively flexible and tractable approximation to the state space 

that a user of the program may perceive. The algorithm computes mean square error on a finite grid over 



30 
 

 

the possible shape parameters of the Beta distributions and over the possible values of the Bernoulli 

parameter. As before, the user specifies the density of the grid and the algorithm maximizes mean square 

error over the grid. 

 

 

4. Maximum Regret of the Empirical Success Rule for Treatment Choice 

 

4.1. Background 

 

 To further flesh out the abstract discussion of Section 3, this section provides decision-theoretic 

analysis of an important instance of as-if optimization, summarizing findings to date and adding new ones. 

 A large body of empirical research performed by econometricians, statisticians, and others has 

studied treatment response in randomized trials and observational settings. The objective of some of this 

research has been to perform so-called causal inference, without reference to an explicit decision problem. 

However, much of the research has aimed to inform treatment choice by planners acting in public health or 

public policy settings. I am concerned with the latter. 

I discuss a standard formalization studied in many sources; see, for example, Manski (2004). States 

of nature are possible distributions of treatment response for the members of a population of observationally 

identical persons who are subject to treatment. The term “observationally identical” means that these 

persons share the same observed covariates. Groups of persons with different observed covariates are 

considered as separate populations. 

 The decision problem is to choose treatments for the members of a population. It is assumed that 

treatment response is individualistic, meaning that each person’s outcome may depend on the treatment he 

receives but not on the treatments received by others. Welfare is measured by the mean outcome of 

treatment across the population. In this setting, optimal treatment choice maximizes the mean outcome. 
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In practice, optimal treatment is infeasible because the true distribution of treatment response is not 

known. Decision making may use data on the outcomes realized by a sample of the population. Some 

research studies data from randomized trials, and some studies observational data. Either way, statistical 

decision theory may be used to evaluate the performance of SDFs, which have been called statistical 

treatment rules in this context. 

 A simple way to use sample data to make treatment choices is as-if optimization. Applying the 

analogy principle, one acts as if the empirical outcome distribution for each treatment equals the population 

distribution of outcomes for this treatment. Emulating the fact that it is optimal to chooses a treatment that 

maximizes the mean population outcome, one chooses a treatment that maximizes the average sample 

outcome. This has been called the empirical success (ES) rule in Manski (2004) and elsewhere. 

 When analyzing data from randomized trials, econometricians and statisticians have long used 

asymptotic arguments to motivate the ES rule, citing laws of large numbers and central limit theorems for 

convergence of sample averages to population means. In contrast, a small but growing recent econometric 

literature studies the maximum regret of the ES rule with trial data. Maximum regret quantifies how lack 

of knowledge of the true state of nature diminishes the quality of decisions. An SDF with small maximum 

regret is uniformly near-optimal across all states. 

 Section 4.2 summarizes findings on the performance of the ES rule with trial data. Section 4.3 

provides new analysis of its performance with observational data. In both cases, the analysis assumes that 

treatment outcomes have known bounded range but otherwise places no restrictions on the distribution of 

treatment response. Section 4.4 relates the analysis to the early literature in econometrics. 

 

4.2. Maximum Regret of the ES Rule with Trial Data 

 

 Consider a classical randomized trial, where all subjects comply with assigned treatments and all 

sample realized outcomes are observed. Then the only feasible states of nature are ones in which, for each 

treatment, the population distribution of counterfactual outcomes equals that of realized outcomes. 
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 Study of the regret performance of the ES rule with trial data was initiated by Manski (2004), who 

used a large-deviations inequality for sample averages of bounded outcomes to derive an upper bound on 

maximum regret in problems of choice between two treatments. Subsequently, Stoye (2009) showed that 

in trials with moderate sample size, the ES rule either exactly or approximately minimizes maximum regret 

in cases with two treatments and a balanced design. Hirano and Porter (2009) showed that the ES rule is 

asymptotically optimal in a formal decision-theoretic sense. 

 Considering problems with multiple treatments or unbalanced designs, Manski and Tetenov (2016) 

use large deviations inequalities for sample averages of bounded outcomes to obtain upper bounds on the 

maximum regret of the ES rule. Their Proposition 1 extends the early finding of Manski (2004) from two 

to multiple treatments. Proposition 2 derives a new large-deviations bound for multiple treatments. 

Let L be the number of treatment arms and let V be the range of the bounded outcome. When the 

trial has a balanced design, with n subjects per treatment arm, the bounds on maximum regret proved in 

Propositions 1 and 2 have particularly simple forms, being 

 

(10)           (2e) B2V(L − 1)n−2 

 

(11)            V(ln L)2nB2. 

 

Result (10) provides a tighter bound than (11) for two or three treatments. Result (11) gives a tighter bound 

for four or more treatments. 

 

4.3. Maximum Regret of the ES Rule with Observational Data 

 

 In observational studies of treatment response, distributions of counterfactual and realized 

outcomes need not coincide. A researcher might nevertheless apply the ES rule, viewing equality of 

counterfactual and realized outcome distributions as a model that may or may not be correct. I consider this 
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practice here, determining when use of the ES rule does and does not yield a desirable treatment choice 

from the perspective of maximum regret. 

 Consider an observational study with two treatments, say {a, b}, and bounded outcomes taking 

values in the interval [0, 1]. The planner’s problem is to choose between the two treatments. Each member 

of the study population has potential outcomes [y(a), y(b)]. Binary indicators [δ(a), δ(b)] denote whether 

these outcomes are observable. Realized outcomes are observed, but counterfactual outcomes are not. 

Hence, the possible values for the observability indicators are [δ(a) = 1, δ(b) = 0] and [δ(a) = 0, δ(b) = 1]. 

Each element s of the state space denotes a possible distribution Ps[y(a), y(b), δ(a), δ(b)] of outcomes and 

observability. 

As shown in Section 2.3, in states of nature where treatment a is better, the regret of any SDF is the 

product of the sampling probability that the rule commits a Type I error (choosing b) and the magnitude of 

the loss in welfare that occurs when choosing B. Similarly, in states where b is better, regret is the 

probability of a Type II error (choosing a) times the magnitude of the loss in welfare when choosing a. 

Thus, regret in state s is Rc(⋅)s⋅|Es[y(b)] − Es[y(a)]|, where Rc(⋅)s denotes the error probability. Regret is zero 

in states where Es[y(b)] = Es[y(a)]. Hence, it suffices to consider states where Es[y(b)] ≠ Es[y(a)]. 

With finite sample data, the state-dependent error probabilities for the ES rule do not have simple 

explicit forms, but they may be computed numerically by Monte Carlo integration. The maximum regret of 

the ES rule can be approximated by computing regret numerically on a finite grid that discretizes the state 

space. An algorithm akin to that described by Manski and Tabord-Meehan (2017) can be developed to 

perform the computations. 

Rather than pursue numerical computation here, I derive simple analytical results that hold in the 

limit, when all population realized outcomes are observed. Given that realized outcomes are observed while 

counterfactual ones are not, P[δ(a) = 1] + P[δ(b) = 1] = 1. I suppose that P[δ(a) = 1] > 0 and P[δ(b) =1] > 0. 

Then the data reveal the true values of P[y(a)|δ(a) = 1], P[y(b)|δ(b) = 1], P[δ(a) = 1], and P[δ(b) = 1]. This 

setting has long been studied in partial identification analysis of treatment response, beginning with Manski 

(1990). I proceed likewise here. 
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4.3.1. MMR Treatment Choice 

 The data do not reveal the counterfactual outcome distributions P[y(a)|δ(a) = 0] and P[y(b)|δ(b) = 

0]. Outcomes have bounded domain [0, 1], hence 0 ≤ E[y(a)|δ(a) = 0] ≤ 1 and 0 ≤ E[y(b)|δ(b) = 0] ≤ 1. By 

the Law of Iterated Expectations, the feasible values of E[y(a)] and E[y(b)] are 

 

(12a)    E[y(a)]  ∈  [E[y(a)|δ(a) = 1]⋅P[δ(a) = 1], E[y(a)|δ(a) = 1]⋅P[δ(a) = 1] + P[δ(a) = 0]], 

(12b)    E[y(b)]  ∈  [E[y(b)|δ(b) = 1]⋅P[δ(b) = 1], E[y(b)|δ(b) = 1]⋅P[δ(b) = 1] + P[δ(b) = 0]]. 

 

 Consider choice of treatment a or b. With choice of a, the error probability Ras = 0 in states where 

Es[y(b)] < Es[y(a)] and Ras = 1 in states where Es[y(b)] > Es[y(a)]. Maximum regret occurs in the state where 

Es[y(a)|δ(a) = 0] = 0 and Es[y(b)|δ(b) = 0] = 1. In this state, regret is 

 

(13a)        Ras⋅|Es[y(b)] − Es[y(a)]|  =  E[y(b)|δ(b) = 1]⋅P[δ(b) = 1] + P[δ(b) = 0] 

                                                                                  − E[y(a)|δ(a) = 1]⋅P[δ(a) = 1]. 

 

With choice of b, maximum regret is 

 

(13b)       Rbs⋅|Es[y(b)] − Es[y(a)]|  =  E[y(a)|δ(a) = 1]⋅P[δ(a) = 1] + P[δ(a) = 0] 

                                                                            − E[y(b)|δ(b) = 1]⋅P[δ(b) = 1]. 

 

The difference between these maximum-regret expressions is 

 

(14)         E[y(b)|δ(b) = 1]⋅P[δ(b) = 1] + P[δ(b) = 0] − E[y(a)|δ(a) = 1]⋅P[δ(a) = 1] 

                       − E[y(a)|δ(a) = 1]⋅P[δ(a) = 1] − P[δ(a) = 0] + E[y(b)|δ(b) = 1]⋅P[δ(b) = 1] 
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        =  2⋅{E[y(b)|δ(b) = 1]⋅P[δ(b) = 1] − E[y(a)|δ(a) = 1]⋅P[δ(a) = 1]} + P[δ(b) = 0] − P[δ(a) = 0]. 

 

Treatment b (a) uniquely minimizes maximum regret if the value of (14) is positive (negative). The 

treatments yield the same maximum regret if the value of (14) is zero. 

 

4.3.2. Maximum Regret of the ES Rule 

 Now consider treatment choice with the ES rule. I show below that this rule minimizes maximum 

regret for some but not all values of the observable quantities. It selects the inferior treatment for other 

values. 

 The ES rule chooses treatment a if E[y(a)|δ(a) =1] > E[y(b)|δ(b) = 1] and chooses b if E[y(a)|δ(a) 

=1] < E[y(b)|δ(b) = 1]. The ES rule does not prescribe a treatment if E[y(a)|δ(a) = 1] = E[y(b)|δ(b) = 1]. 

Then some auxiliary criterion must be used. I henceforth consider the cases where the ES rule yields a 

determinate choice. 

 The ES rule yields the MMR choice when the ordering of E[y(a)|δ(a) =1] and E[y(b)|δ(b) = 1] 

reverses the ordering of maximum regret across the two treatments. This necessarily occurs when P[δ(a) = 

1] = P[δ(b) = 1] = ½. Then (14) reduces to E[y(b)|δ(b) = 1] − E[y(a)|δ(a) = 1]. 

 When P[δ(a) = 1] ≠ P[δ(b) = 1], the ES rule may minimize or maximize maximum regret, depending 

on the values of the observable quantities E[y(a)|δ(a) = 1], E[y(b)|δ(b) = 1], P[δ(a)], and P[δ(b)]. I consider 

here cases in which treatment b has greater empirical success than a, so the ES rule chooses b. Analysis of 

the contrary case is symmetric. 

 To simplify notation, let E[y(b)|δ(b) = 1] = m and E[y(a)|δ(a) = 1] = m − ε, where 0 < ε ≤ m ≤ 1. 

First consider cases where P[δ(b) = 1] = ½ + k and P[δ(a) = 1] = ½ − k, where 0 < k < ½. Then the value of 

(14) is 

 

        2[m(½ + k) − (m − ε)(½ − k) − k)]  =  2[2mk + ε(½ − k) − k]  = 2[ε(½ − k) − k(1 − 2m)]. 
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Hence, treatment b uniquely minimizes maximum regret if ε > k(1 − 2m)/(½ − k) and treatment a does so 

if ε < k(1 − 2m)/(½ − k). A sufficient condition for the former result is that m ≥ ½. The latter result occurs 

if m < ½, k is sufficiently large, and ε is sufficiently small. 

 Now consider cases where P[δ(b) = 1] = ½ − k and P[δ(a) = 1] = ½ + k, where 0 < k < ½. Then the 

value of (14) is 

 

        2[m(½ − k) − (m − ε)(½ + k) + k)]  =  2[−2mk + ε(½ + k) + k]  = 2[ε(½ + k) − k(2m − 1)]. 

 

Hence, treatment b uniquely minimizes maximum regret if ε > k(2m − 1)/(½ + k) and treatment a does so 

if ε < k(2m − 1)/(½ + k). A sufficient condition for the former result is that m ≤ ½. The latter result occurs 

if m > ½, k is sufficiently large, and ε is sufficiently small. 

 Recall Box’s statement that a model may be wrong but useful. The above derivation shows that 

using the model of random treatment selection to motivate the ES rule minimizes maximum regret when 

similar fractions of the population receive each treatment and/or the treatments differ greatly in empirical 

success. However, it maximizes maximum regret when treatment shares are sufficiently different and the 

treatments have sufficiently similar empirical success. Thus, the model is useful for treatment choice in 

some contexts but is harmful in others. 

 

4.3.3. Illustration: Sentencing and Recidivism 

To illustrate, I use the Manski and Nagin (1998) analysis of sentencing and recidivism of juvenile 

offenders in the state of Utah. The feasible treatments are alternative sentencing options. Judges in Utah 

have had the discretion to order varying sentences for juvenile offenders. Some offenders have been 

sentenced to residential confinement (treatment a) and others have been given sentences with no 

confinement (treatment b). A possible policy would be to replace judicial discretion with a mandate that all 

offenders be confined. Another would be to mandate that no offenders be confined. 
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To compare these alternative mandates, we took the outcome of interest to be recidivism in the 

two-year period following sentencing. Let y = 1 if an offender commits no new offense and y = 0 otherwise. 

No new offense was interpreted as treatment success, and commission of a new offense was interpreted as 

failure. 

We obtained data on the sentences received and the recidivism outcomes realized by all male 

offenders in Utah who were born from 1970 through 1974 and who were convicted of offenses before they 

reached age 16. The Utah data reveal that 11 percent of the offenders were sentenced to confinement and 

that 23 percent of these persons did not offend again in the two years following sentencing. The remaining 

89 percent were sentenced to non-confinement and 41 percent of these persons did not offend again. Thus, 

P[y(a)|δ(a) = 1] = 0.23, P[y(b)|δ(b) = 1] = 0.41, P[δ(a) = 1] = 0.11, and P[δ(b) = 1] = 0.89. 

Reviewing the criminology literature on sentencing and recidivism, we found little research on 

sentencing practices and disparate predictions of treatment response. Hence, we deemed it relevant to 

perform partial identification analysis of treatment response, assuming no knowledge of counterfactual 

outcomes. This makes the analysis of Sections 4.3.1 and 4.3.2 applicable. 

Equation (13a) show that the maximum regret of treatment a is (0.41)(0.89) + 0.11 – (0.23)(0.11) 

= 0.45. Equation (13b) shows that the maximum regret of b is (0.23)(0.11) + 0.89 − (0.41)(0.89) = 0.55. 

Hence, treatment a minimizes maximum regret.  

One might assume that Utah judges have sentenced offenders randomly to treatments and b. One 

consequently might use the ES rule to choose between the two. Given that 0.41 > 0.23, the result is choice 

of treatment b. Thus, in this setting, the ES rule selects the treatment that is inferior from the minimax-

regret perspective. 

 

4.4. Analysis of Treatment Response and Study of Systems of Jointly Determined Variables 

 

 The terminology “analysis of treatment response” has become widespread in empirical 

microeconomics since the 1990s, but it does not appear in early writing on econometrics. At time of 
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Haavelmo (1944), a central focus was identification and estimation of models of systems of jointly 

determined variables. An important objective was to use estimated models to predict the impacts of 

contemplated public policies. Using further notation to denote realized treatments and outcomes, it is easy 

to see that analysis of treatment response lies within this longstanding concern of econometrics. 

 Let z denote the treatment that a person in the study population receives; thus, z = 1 if δ(b) = 1 and 

z = 0 if δ(b) = 0. Let y denote the outcome that a person realizes; thus, y = y(b) if z = 1 and y = y(a) if z = 

0. Realizations of (y, z) are observable. Random sampling of the study population asymptotically reveals 

the distribution P(y, z). 

 Early econometricians analyzed data on realized treatments and outcomes in settings where 

treatments are chosen purposefully rather than randomly. Haavelmo (1944) put it this way (p. 7): “the 

economist is usually a rather passive observer with respect to important economic phenomena; he usually 

does not control the actual collection of economic statistics. He is not in a position to enforce the 

prescriptions of his own designs of ideal experiments.” 

 Analyzing settings with passive observation of treatments and outcomes, econometricians found it 

sensible to model y and z as jointly determined variables. When treatment selection is random, E(y|z = 1) 

= E[y(b)] and E(y|z = 0) = E[y(a)]. Among the central contributions of early econometrics was to show that 

these equalities do not generally hold when y and y are jointly determined. Haavelmo (1943), Section 1 

showed this in a simple context. 

 Viewing random treatment selection as implausible in settings with passive observation, 

econometricians have long studied other models that point-identify E[y(b)] and E[y(a)], given empirical 

knowledge of P(y, z). The early literature mainly studied linear models and distributional assumptions 

involving instrumental variables. Recent research weakens the assumption that relations are linear but 

continues to use instrumental variables. Throughout all this long period, econometricians have struggled to 

measure model performance in decision making. Statistical decision theory provides a coherent framework 

for model evaluation. 

 



39 
 

 

4.4.1. Illustration: Classical Linear Models 

 Consider classical linear models that assume homogeneous treatment response and use a binary 

instrumental variable to point-identify the treatment effect. In settings with two treatments, the model 

assumes that yj(t) = β·1[t = b] + εj for each t ∊ {a, b} and each member j of the study population. The 

homogeneous treatment effect is the parameter β = yj(b) − yj(a), whose value does not vary with j. 

 Let vj denote the binary instrumental variable, whose value varies across j. The earliest econometric 

literature assumed that Cov(v, ε) = 0 and Cov(v, z) ് 0. This implies that β = Cov(v, y)/Cov(v, z). Later 

econometricians assumed that E(ε|v = 1) = E(ε|v = 0) and E(z|v = 1) ് E(z|v = 0). This implies that β = 

[E(y|v = 1) – E(y|v = 0)]/[E(z|v = 1) – E(z|v = 0)]. 

 Whichever version of the model is assumed, it has been common to use the resulting value of β to 

recommend a treatment, namely treatment a if β < 0 and b if β > 0. Applied researchers have long recognized 

that the assumed model may be incorrect, but the econometric literature has not shown how to evaluate the 

consequences of using incorrect models to make decisions. Statistical decision theory does so. 

 

 

5. Conclusion 

 

 To reiterate the central theme of this paper, use of statistical decision theory to evaluate econometric 

models is conceptually coherent and simple. A planner specifies a state space listing all the states of nature 

deemed feasible. One evaluates the performance of any contemplated SDF by the state-dependent vector 

of expected welfare that it yields. Decisions made using models are evaluated in this manner. Statistical 

decision theory evaluates model-based decision rules by their performance across the state space, not across 

the model space. 

 The primary challenge to use of statistical decision theory in practice is computational. Recall that, 

in his discussion sketching application of statistical decision theory to prediction, Haavelmo (1944) 
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remarked that such application (p. 111): “although simple in principle, will in general involve considerable 

mathematical problems and heavy algebra.” 

 Many mathematical operations that were infeasible in 1944 are tractable now, as a result of 

advances in analytical methods and numerical computation. Hence, it has increasingly become possible to 

use statistical decision theory when performing econometric research that aims to inform decision making. 

Future advances in analysis and numerical computation should continue to expand the scope of applications. 
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