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1 Introduction

Many economic applications of ML originate in research on consumer choice. For instance,

Bajari et al. (2015) uses ML to predict the demand for salty snacks. What does the ML

toolkit offer empirical labor economics? Like marketing researchers, labor economists also

benefit from more and bigger data sets. But most empirical labor questions turn on features

of distributions, like conditional mean functions, rather than on the accuracy of individual

prediction. Much of the applied labor agenda seeks to uncover causal effects, such as the effect

of schooling on wages, using tools like regression and instrumental variables (IV). Other labor

applications describe distributional shifts and trends, such as changes in income inequality.

Whether causal or descriptive, labor questions involve few pure prediction problems.

The distinction between parameter estimation and individual prediction parallels that

between slope coefficients and R2 in regression analysis. Pursuing this analogy, Mullainathan

and Spiess (2017) note that ML aims to improve the accuracy of fitted values (ŷ), rather

than estimates of a regression slope coefficient or marginal effect. Empirical findings in labor

economics rarely turn on ŷ. Yet, as Belloni, Chernozhukov and Hansen (2014a) observe,

in any empirical application with many covariates, we’d like to guard against over-fitting

and the vagaries of data mining. And two-stage least squares (2SLS) estimates of causal

effects are made more precise by improving the first-stage R2. Indeed, first-stage estimation

is sometimes framed as a prediction problem, and the bias of 2SLS is arguably a consequence

of over-fitting.

We consider three domains where ML might play a supporting role in pursuit of causal

effects in labor economics. The first is data-driven selection of ordinary least squares (OLS)

control variables. Hahn (1998) notes that efficient nonparametric matching estimators use

controls to impute counterfactual outcomes. The fact that imputation is a form of prediction

suggests ML is a good way to do it. We find empirical support for this idea in a replication

and extension of the Dale and Krueger (2002) investigation of the causal effect of college

characteristics on graduates’ earnings (henceforth, DK02).

The DK02 research design conditions on the characteristics of colleges to which an appli-

cant has applied and been admitted. The key identifying assumption here takes enrollment

decisions conditional on application/admission sets to be as good as randomly assigned.



Graduates of highly selective and private colleges earn more, on average, than do those who

attended less selective or public institutions. But this evidence of an elite school earnings

advantage disappears after conditioning on 150 dummy variables indicating the selectivity

of the schools in application/admissions sets. The cost of the DK02 dummy-variable control

strategy is a two-thirds reduction in sample size. DK02 therefore deploys more parsimonious

though also more parametric control strategies.

In the DK02 context, analysts seeking a smaller set of control variables must grapple

with the fact that the college application process can be parameterized in many ways. This

flexibility opens the door to potentially misleading specification searches. Regression analysis

has long been subject to the concern that analysts cherry-pick regressors in service of an un-

scientific agenda (See, for example, Leamer’s (1983) discussion of Ehrlich’s (1975) influential

analysis of the effects of capital punishment on homicide rates). The “post double selection”

(PDS) lasso estimator introduced by Belloni, Chernozhukov and Hansen (2014b) can address

this concern. Lasso (Tibshirani, 1996), which abbreviates the “least absolute shrinkage and

selection operator,” is a form of penalized regression that improves out-of-sample prediction

by discarding some regressors and shrinking the coefficients on those retained. Estimators

that use lasso solely for variable selection are said to be “post-lasso.” The PDS procedure es-

timates causal effects in two steps. First, lasso is used to determine which covariates predict

outcomes and which covariates predict treatment. The treatment effect is then estimated

in a second step that includes the union of post-lasso controls selected for the outcome and

treatment models as covariates in a conventional regression.

The value of ML for sensitivity analysis emerges when we use PDS to select the control

variables characterizing sets of colleges to which members of the DK02 sample had applied

and been accepted. Although the number and identity of lasso-chosen controls changes

as we change the details of lasso implementation, OLS estimates with ML-chosen controls

robustly replicate earlier estimates showing null returns to elite or private college attendance.

These encouraging findings should not be taken as suggesting ML creates valid conditional

independence restrictions. Rather, ML tools seem helpful for choosing between alternative

specifications that implement a common underlying conditional independence claim. The

DK02 study, for example, is grounded in the idea that the characteristics of colleges to which

applicants apply signal their ambition, while the set of schools to which they’re admitted
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indexes their ability. This is a compelling but incomplete identifying assumption: in practice,

schools can be described in many ways.1

Our second domain is the choice of instrumental variables. Use of ML for instrument

selection is often motivated by the fact that 2SLS estimates in heavily over-identified models

are biased. And 2SLS estimation is infeasible when the instrument set exceeds the sample

size. ML would seem to provide a useful guide to instrument selection in the face of these

problems, whittling a large set of potential instrumental variables down, keeping only those

with a strong first stage. Motivated by this idea, theoretical work by Belloni et al. (2012);

Carrasco (2012); Hansen and Kozbur (2014); Hartford et al. (2016) and others considers

regularized models like lasso for first-stage estimation. We explore a pair of over-identified

IV applications that would seem to have a role for ML-based instrument selection (though

the settings considered here have far fewer instruments than observations). In contrast with

encouraging findings on the utility of ML for selection of OLS control variables, our findings

for instrument choice are mostly negative.

In simulations derived from the Angrist and Krueger (1991) (AK91) data, 2SLS esti-

mation using a post-lasso first stage often improves on conventional 2SLS estimators using

all available instruments, especially when lasso uses a plug-in rather than a cross-validated

penalty. Lasso with a cross-validated penalty performs about like conventional 2SLS. How-

ever, split-sample IV (SSIV) and limited information maximum likelihood (LIML) estimators

are usually better than 2SLS with a post-lasso first stage, no matter how the instruments are

chosen. These findings can be explained by the fact that approximate sparsity, a key lasso

assumption, requires the unknown population first stage to have few parameters relative to

sample size. In the applications we have in mind, the finite-sample behavior of IV estimators

is better described by a Bekker (1994) many-instrument asymptotic sequence that fixes the

ratio of sample size to first-stage parameters (see, for example, Angrist, Imbens and Krueger

1999). The Bekker sequence is not approximately sparse.

2SLS with an ML-chosen first stage also fails to stand out in a reexamination of the
1Urminsky, Hansen and Chernozhukov (2016) discuss the value of PDS for principled variable selection.

Empirical work using ML for the selection of controls includes Goller et al. (2019), which explores propensity
score matching with an ML-based propensity score estimate. See also Lee, Lessler and Stuart (2010) for an
earlier effort in the same vein. In a Monte Carlo study, Knaus, Lechner and Strittmatter (2018) compare
ML-based estimates of individual average treatment effects, focusing on effect heterogeneity. We discuss a
related paper by Wuthrich and Zhu (2019) below.
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instrument selection strategy used by Gilchrist and Sands (2016). This study uses lasso

to pick instrumental variables for the effect of a movie’s opening-weekend viewership on

subsequent ticket sales. ML is unimpressive here in spite of the fact that the first stage seems

reasonably sparse. The potential drawbacks of ML for instrument choice are anticipated

in part by Belloni et al. (2012), Belloni, Chernozhukov and Hansen (2013), and especially

Hansen and Kozbur (2014), but our conclusions are less optimistic.2 Even in models with a

mix of strong and weak IVs, where an analyst might hope that lasso favors the strong, results

using a post-lasso first stage exhibit substantial bias. Moreover, this bias is aggravated by

the pre-testing of first-stage estimates implicit in lasso.3

Our exploration of ML-based instrument selection shows that the disappointing perfor-

mance of ML-augmented IV estimators is not unique to lasso. Random forest is an ML-

inspired matching estimator that builds on the idea of regression trees. Ash et al. (2018) and

Chernozhukov et al. (2018a) use random forest and related methods to select instruments in

over-identified models. When random forest methods are used to estimate first stage fitted

values in the AK91 data, the resulting IV estimates are indistinguishable from 2SLS estimates

with a saturated many-instrument first stage.

Our third domain concerns the selection of control variables in IV models with few in-

struments. For example, Angrist and Evans (1998) estimate causal effects of childbearing on

mothers’ labor supply using use twin births and sibling sex composition as a source of exoge-

nous variable in family size. These just-identified IV estimates are made more plausible by

conditioning on maternal characteristics (twin birth rates, for example, are correlated with

maternal age and schooling). Our exploration of this idea, inspired by Athey, Tibshirani and

Wager (2019)’s use of the Angrist and Evans (1998) data to select among high-dimensional

controls and to model treatment effect heterogeneity, shows how random forest procedures

founder when confronted with models that require an additive first stage for identification.
2Summarizing an analysis of the AK91 data, for example, Belloni, Chernozhukov and Hansen (2013)

conclude that “The results in Table 5 are interesting and quite favorable to the idea of using lasso to perform
variable selection for instrumental variables.” Hansen and Kozbur (2014) note the poor performance of
post-lasso IV in the absence of approximate sparsity, including the potential for pretest bias, but this work
comments more on precision than bias. Hansen and Kozbur (2014) also introduce a regularized jackknife IV
estimator (JIVE) of the sort considered by Angrist, Imbens and Krueger (1999). The Hansen and Kozbur
(2014) simulations omit LIML.

3Hall, Rudebusch and Wilcox (1996) appear to be the first to note the likelihood of bias from a pretested
first stage. Andrews, Stock and Sun (2019) demonstrate the relevance of pretest bias in a simulation study
based on articles appearing in the American Economic Review.
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The worst-case scenario here is an estimator with algorithmically-induced exclusion restric-

tions that yield meaningless (though statistically significant) second-stage estimates.

2 Casting Regression in Two Roles

Many ML applications employ regression models. So does empirical Labor. What’s the

difference?

Regression uses linear models to describe conditional expectation functions (CEFs). The

conditional expectation of a random variable, denoted Yi for person i, as a function of data

on a set of variables, Xi, can be written E[Yi|Xi = x]. The symbol “E” in this expression

denotes a population average, while the notation E[Yi|Xi = x] denotes the average of Yi for

everyone in a population of interest who has characteristics Xi equal to a particular value, x.

For example, labor economists have long been interested in how much average (log) wages

rise with each additional year of schooling. We compare E[Yi|Xi = 16], the average wages of

on-time college graduates, with E[Yi|Xi = 12], the earnings of high school graduates. The

notation E[Yi|Xi] represents population mean Yi for any value in the support of random

variable Xi. Written this way, the CEF is random because Xi is random.

Because E[Yi|Xi = x] takes on as many values as there are choices of x, labor economists

and others doing applied econometrics often aspire to simplify or approximate the CEF, so

as to highlight or summarize important features of it. The regression of Yi on Xi does this

by providing the best linear approximation to the CEF. Formally, given a set of k = 1, ..., K

explanatory variables, Xi, theK×1 regression slope vector, β, can be defined as the minimum

mean squared error (MMSE) linear approximation:

β = arg min
b
E
[
{E[Yi|Xi]−X ′ib}2

]
= E[XiX

′
i]
−1E[XiYi]. (1)

Moreover, if the CEF is indeed linear, then regression finds it.

The contemporary ML agenda is more likely to use data on schooling to predict individual

earnings than to approximate the CEF. But the law of iterated expectations implies that the

best (MMSE) linear predictor of Yi coincides with the best linear approximation to E[Yi|Xi].

That is,
β = E[XiX

′
i]
−1E[XiYi] = arg min

b
E
[
{Yi −X ′ib}2

]
. (2)
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The distinction between CEF approximation and individual prediction is therefore of no

consequence for parameters : the regression slope vector that approximates the CEF also

provides the best linear predictor of Yi given Xi. The ordinary least squares (OLS) estimator,

denoted here by β̂LS, replaces expectations with sums in (2) and provides the best linear

predictor in the sample in which it’s fit.

There seems to be little daylight between predictive regression and econometric regression

models motivated by an interest in conditional distributions. A gap opens, however, when

an analyst aspires to use regression to generate predictions in new data. Assuming β̂LS is

computing using data on the first n observations only, the regression prediction of Yn+1 given

Xn+1 is ŷn+1 = X ′n+1β̂LS. Even in the realm of linear models, ŷn+1 is not the last word in

out-of-sample prediction.

A better out-of-sample predictor augments the least squares minimand, (2), with a reg-

ularization term that favors smaller coefficients and lower-dimensional models over an un-

restricted OLS fit. Much of the ML toolkit can be said to consist of prediction augmented

by regularization. Ridge regression, introduced by Hoerl and Kennard (1970), is an early

version of this idea: the ridge regularization term is the sum of squared regression coeffi-

cients. Lasso, a method associated with contemporary ML, regularizes by including the sum

of the absolute value of coefficients in the estimation minimand. The family of widely-used

regularized regression estimators can be defined as solving

min
b
E{Yi −X ′ib}2 + λ||b||qq, (3)

where λ is a user-chosen tuning parameter and ||b||q = (
∑

k |bk|q)
1/q. Ridge sets q = 2; lasso

sets q = 1. A best subset estimator is obtained by letting q → 0 (since the resulting estimand

penalizes the number of non-zero coefficients).4

A second gap between the econometric and predictive ML frameworks arises from the

asymmetry with which most empirical Labor views regressors. The modern empirical paradigm

usually distinguishes between the components of Xi: one is a causal variable of interest; the

rest, a set of supporting controls whose coefficients are of little interest. An empirical example

highlights the significance of this distinction.
4Abadie and Kasy (2018) compare the Bayes risk of alternative estimators in this family.
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When Regression Reveals Causal Effects

Adapting the pioneering study by Dale and Krueger (2002), Angrist and Pischke (2015)

ask whether it pays to attend a private university like Duke instead of a state school like

the University of North Carolina. Is the money spent on private college tuition justified by

future earnings gains? The causal regressor here is a dummy variable that indicates graduate

i attended private college, denoted by Di. Control variables are represented by a vector, Ai.

The outcome of interest, Yi, is a measure of earnings roughly 20 years post-enrollment. Our

sample consists of the College and Beyond survey data analyzed in Dale and Krueger (2002).

The causal relationship between private college attendance and earnings can be described

in terms of potential outcomes: Y1i represents the earnings of individual i were he or she to

go private (Di = 1), while Y0i represents i’s earnings after a public education (Di = 0). The

causal effect of attending a private college is the difference, Y1i − Y0i. We see only Y1i or Y0i,

depending on the value of Di. The analyst therefore aspires to measure an average causal

effect like E [Y1i − Y0i], or an effect conditional on treatment, E [Y1i − Y0i|Di = 1].

The link between causal inference and regression is facilitated by a constant-effects frame-

work that highlights the problem of selection bias, glossing over the distinction between

different sorts of causal averages. The constant-effects causal model can be written:

Y0i = α + ηi (4)

Y1i = Y0i + ρ, (5)

where the first equation defines α to be the mean of Y0i and the individual deviation from

this mean to be ηi. The second line says that the causal effect, Y1i − Y0i, is a constant, ρ.

Using the fact that observed outcomes are related to counterfactual outcomes by

Yi = Y0i + (Y1i − Y0i)Di,

we can use the constant-effects model to write

Yi = α + ρDi + ηi. (6)

Equation (6) casts the problem of selection bias in terms of ηi, which looks like a regression

error term. Unlike regression residuals, however, which are uncorrelated with regressors by

definition, ηi is correlated with Di.
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Regression-based solutions to the problem of selection bias begin with a key conditional

independence assumption. Specifically, causal claims for regression are founded on the as-

sumption that
E (ηi|Di = 1, Ai = a) = E (ηi|Di = 0, Ai = a) , (7)

where Ai is a vector of m control variables and a is a particular value of Ai. In other words, in

the population with Ai = a, the private and public earnings comparison is an apples-to-apples

contrast. This ceteris paribus claim can be written compactly as:

E (ηi|Di, Ai) = E (ηi|Ai) . (8)

Controls satisfying 8 must be “pre-treatment variables,” that is, they cannot themselves

be outcomes. In the Dale and Krueger (2002) empirical strategy, the control vector Ai

identifies the sets of schools to which the college graduates in the sample had applied and

were admitted. Equations (7) and (8) say that, conditional on having applied to Duke and

UNC, and having been admitted to both, those who chose Duke have the same average

potential earnings as those who went to UNC. Dale and Krueger (2002) and Angrist and

Pischke (2015) provide evidence in support of this claim.

The final element of the causal regression story is the assumption that the conditional

mean of Y0i is a linear function of Ai :

E (ηi|Ai) = γ′Ai. (9)

This implies
ηi = γ′Ai + εi,

where it’s surely true that
E (εi|Ai) = 0. (10)

Combining these pieces generates a linear CEF with a causal interpretation:

E (Yi|Ai, Di) = α + ρDi + E (ηi|Ai)

= α + ρDi + γ′Ai.

The regression model,
Yi = α + ρDi + γ′Ai + εi, (11)

can therefore be used to construct unbiased estimates of the causal effect of interest, ρ. The

control coefficient vector, γ, need not be economically interesting, but may provide diagnostic
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information useful for assessing the plausibility of (8).5

Private college alumni earn more than those who went public. Remarkably, however, a

set of well-chosen controls serves to eliminate evidence of an elite college premium based

on uncontrolled comparisons. This can be seen in Panel A of Table 1. A private schooling

earnings premium of around 21 log points estimated with no controls (reported in the first

column of the table) falls to a still-substantial 14 points (reported in the second column)

when estimated with ten controls for applicant ability, like SAT scores and class rank, and

family background in the form of parents’ income. In contrast with the substantial private

college premia reported in the first two columns, however, estimates in columns 3-4 show

that, conditional on controls for the selectivity of schools to which graduates had applied and

been admitted, the private premium falls to zero.

The choice of selectivity controls used to compute the estimates reported in columns 3-4

of Table 1 is motivated by the idea that, within each selectivity group, students are likely to

have similar educational and career ambitions, while they were also judged similarly capa-

ble by college admissions staff. Within-group comparisons should therefore be considerably

more apples-to-apples than uncontrolled comparisons involving all students. Because there

are many unique combinations of application and admissions choices, it’s helpful to group

similarly selective schools like Princeton and Yale together. The models used to construct

the estimates in columns 3-4 therefore control for sets of schools grouped by their Barron’s

selectivity (Barron’s magazine groups schools into 6 selectivity groups). This model can be

written
Yi = α + ρDi + δ′0Ci +

150∑
j=1

δjGROUPji︸ ︷︷ ︸
γ′Ai

+ εi, (12)

where {GROUPji; j = 1, ..., 150} is a set of dummy variables indicating application and

admission to a particular configuration of Barron’s selectivity groups, with group coefficients

denoted δj (for 151 groups with variation in private college attendance). The vector Ci

contains the additional controls used to construct the estimates reported in column 2. The

full set of controls in Ai includes Ci and the selectivity group dummies, though, conditional
5The utility of regression for causal inference is not limited to models with constant effects. Provided

the parameterization of Ai is suitably flexible (as with sets of dummy variables for categorical controls), the
OLS estimand is a weighted average of control-specific average causal effects (See, for example, Angrist and
Krueger (1999) for details).
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on the latter, the former may be unnecessary.6

Estimates of equation (12) suggest that the earnings premium enjoyed by private college

grads reflects the good Y0i’s of those who aim higher and are more attractive to admissions

officers, rather than capturing a causal effect of private attendance. The similarity of the

estimates in columns 3 and 4 also shows this conclusion to be unaffected by adjustment for

further controls. Since applicant characteristics like SAT score and family background are

strongly predictive of earnings, the similarity of the estimated private school effects across

these two columns has the implication that, after conditioning on the selectivity groups indi-

cated by {GROUPji; j = 1, ..., 150}, private attendance must be uncorrelated with applicant

characteristics.7 Following a brief digression, we use ML to explore the robustness and sen-

sitivity of this finding.

2.1 It’s Only Fitting

Students of econometrics learn to distinguish between slope coefficients and goodness of fit.

The latter is usually measured by

R2 = 1− S(Yi −X ′iβ̂LS)

S(Yi −my)
,

where S(·) is the sample sum of squares and my is the sample mean of Yi. By minimizing

S(Yi−X ′iβ̂LS), the OLS estimator maximizes in-sample R2, while many ML methods aim to

boost out-of-sample R2.

How important is fit as a research goal? The quality of the individual predictions gener-

ated by models linking private college attendance with future wages is summarized by the R2

statistics reported in Table 1. The proportion of earnings variance explained by covariates

ranges from tiny (just under 2%) to modest (almost 14%). Models that control for variables
6College selectivity categories are determined by Barron’s Profiles of American Colleges 1978. For example,

one of the selectivity groups coded by {GROUPji; j = 1, ..., 150} indicates those who applied to one highly
competitive school and two competitive schools, and were admitted to one of each. Our sample consists of
people from the 1976 college-entering cohort who appear in the College and Beyond survey and who were full-
time workers in 1995. The analysis excludes graduates of historically black schools and is further restricted
to applicant selectivity groups containing some students who attended public universities and some students
who attended private universities. The dependent variable is the log of pre-tax annual earnings in 1995.
Regressions are weighted to make the sample representative of the population of graduates of 30 College and
Beyond institutions. 8.6 percent of the sample with Barron’s matches attended a private school.

7Angrist and Pischke (2015) estimate this piece of the omitted variables bias (OVB) formula directly.
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like GPA and family background yield the best fit, while those controlling for selectivity

groups but omitting these personal characteristics (reported in column 3) have an R2 of only

around 6%. Still, the estimates generated by the latter likely provide a more useful guide to

the economic returns to private education than does the estimate associated with a higher

R2 in column 2. This is is evident in that fact that, once we control for selectivity groups, re-

maining covariates are uncorrelated with elite school attendance (a result detailed in Angrist

and Pischke 2015).

Beyond the DK02 study that we expand on here, Alan Krueger’s many path-breaking

empirical contributions testify to the primacy of causality over fit in empirical labor eco-

nomics. His work shows, for example, that company-owned fast-food franchises pay their

workers more than franchisee-owned stores (Krueger, 1991), suggesting a role for efficiency

wages in the low-wage labor market; that workers with computer skills earn substantially

more and receive a higher rate of return to their schooling than other workers (Krueger,

1993), illuminating the theory of skill-biased technical change; that IV estimates of the effect

of schooling on wages are close to the corresponding OLS estimates (Angrist and Krueger,

1991), suggesting there’s little OVB in Mincerian wage equations; that minimum wages don’t

appear to depress employment (Card and Krueger, 1994; Katz and Krueger, 1992), prompt-

ing a re-think of the competitive labor market paradigm; and that workers who attended

schools with more resources earn more (Krueger, 1999; Card and Krueger, 1992a,b).

These influential empirical findings provide evidence on causal relationships that are cen-

tral to labor economics, yet unrelated to regression R2. Whether measured in-sample or

out-of-sample, labor R2s are mostly pitiable. Replacing OLS with a penalized estimator like

ridge or lasso will likely improve the out-of-sample fit associated with estimates like those in

Table 1. An analyst who seeks only to predict the wages of college graduates might be led (by

lasso, say) to dispense with variables describing college characteristics, individual computer

skills, and high school resources. Other variables, such as where sample respondents live and

work, are likely more important. Yet, this misses the point of any causal inquiry.
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3 Welcome to the Machine

3.1 ML Picks OLS Controls

Predictive ML fails to discriminate between causal and control variables, but economists

using ML are free to draw such distinctions. In an important econometric extension of the

ML toolkit, Belloni, Chernozhukov and Hansen (2014b) introduce the method of post double

selection (PDS), an empirical strategy that uses lasso to pick regression control variables

like Ai, given interest in a particular causal effect, like that of private college attendance.

PDS builds on Robinson (1988)’s partially linear model, which seeks to identify an additive

causal effect using flexible and possibly nonlinear controls.8 The DK02 research design,

potentially involving hundreds of control variables, seems like a promising test bed for the

PDS framework.

Returning to the simple causal structure embodied in (4) and (5), the identifying assump-

tion motivating PDS can be stated as

E (ηi|Di, Ai) = E (ηi|Ai) = γ′0Ai + r0i, (13)

where Ai is now a vector of m controls with m potentially larger than the sample size, n, and

r0i is an approximation error that is small in a sense made precise in Belloni, Chernozhukov

and Hansen (2014b). The full set of m covariates is sometimes said to make up a “dictionary”

of possible controls. Importantly, the Belloni, Chernozhukov and Hansen (2014b) framework

maintains the hypothesis that we observe any variables needed to support identification

under equation (13). The fact that γ0 is non-zero for only a subset of controls is the key

PDS assumption of approximate sparsity: the number of possible controls may exceed the

sample size, but the model of interest is well-approximated by s0 < n non-zero elements. ML

uses approximate sparsity for estimation when the identity of the specific controls needed to

support a conditional independence assumption is unknown.

PDS also includes a linear model for the propensity score, that is, for the conditional

probability of treatment given Ai. We write this as

E[Di|Ai] = γ′1Ai + r1i, (14)
8Hill (2011) uses high-dimensional Bayesian regression trees to separately impute E (Y1i|Ai) and E (Y0i|Ai)

when estimating average treatment effects.
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where γ1 likewise has s1 < n non-zero elements and r1i is approximation error. PDS regularity

conditions also require the propensity score to lie strictly between zero and one, at least for

some values of Ai, so that treatment status varies conditional on Ai. Finally, the union of

the sets of covariates with non-zero coefficients in either (13) or (14) is assumed to contain a

total of s < n unique variables (as a theoretical matter, s may be an increasing function of

sample size).

Faced with an abundance of candidate controls, PDS finds a list of variables adequate to

control OVB, while rendering causal inference feasible. This search can be formulated as a

model selection problem in the context of a two-equation system,

Yi = γ′0Ai + ρDi + r0i + εi (15)

Di = γ′1Ai + r1i + νi, (16)

where error terms εi and υi are mean-independent of regressors (implied by (13) and (14))

and ρ in the first equation is a constant additive causal effect.9

Substituting equation (16) into equation (15) generates a reduced form regression of

outcomes on controls,
Yi = γ′Ai + ri + ζi, (17)

where γ = γ0 + ργ1, ri = r0i + ρr1i, and ζi is a residual that’s mean-independent of Ai. The

PDS procedure starts by fitting lasso regression models to both (16) and (17). Lasso is a

penalized regression estimator that minimizes equation (3) with q = 1. Lasso deletes some

variables from the covariate dictionary, while shrinking the coefficients on those retained

towards zero. PDS ignores lasso shrinkage, using lasso only as a model selection device. OLS

estimation of a model including only the variables retained by lasso is called “post-lasso”

estimation. Let Mi denote the union of control variables selected by lasso estimation of the

propensity score and reduced form. The PDS estimator of ρ is the coefficient on Di in

Yi = π′Mi + ρDi + ξi, (18)

where ξi is regression residual. Belloni, Chernozhukov and Hansen (2014b) give conditions

under which the resulting estimates of ρ are consistent and asymptotically normal.
9Belloni, Chernozhukov and Hansen (2014b) link PDS with Robinson (1988), which specifies potentially

nonlinear functions m0(Ai) and m1(Ai) in place of γ′0Ai and γ′1Ai. The linear model described by (15) and
(16) is then seen as approximating these functions in an asymptotic sequence that shrinks approximation
error as the sample size grows.
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3.2 Elite College Effects

The estimates in Table 1 suggest that, conditional on the Barron’s categories of the colleges

to which graduates had applied and been admitted, private college attendance is unrelated to

graduates’ earnings. But control for OVB using 150 Barron’s dummies leaves around 5,600

observations, down from over 14,000 observations in the full College and Beyond sample of

graduates with earnings. The problem here is that many selectivity groups are populated

by sets of graduates that uniformly attended a public or private college. OLS estimation

of a model including the set of Barron’s dummies is implicitly a panel-data-style “within

estimator” that drops observations on regressors in covariate cells where the regressor Di is

fixed at zero or one, that is, cells with a degenerate propensity score. The sample that can

be used to estimate (12) need not be representative of the population covered by the College

and Beyond survey.

PDS winnows a large dictionary of potential control variables, retaining variables that

seem likely to mitigate omitted variables bias. It’s worth noting, however, that while a

post-lasso algorithm applied to the set of Barron’s dummies included in equation (12) may

drop some of these dummies, it won’t combine them. Rather, by dropping dummies that are

deemed unnecessary, post-lasso estimators expand the reference group for the set of dummies

retained. Suppose, for example, that applicants apply to and are admitted to one of three sets

of schools. This scenario generates two Barron’s dummies, plus a reference group. Omitting

one dummy pools this group with the original reference group. Likewise, lasso won’t pool

groups of applicants with a degenerate probability of assignment in a manner that makes

such groups informative about treatment effects. Recognizing these problems, analysts have

proposed lasso-type strategies that penalize differences in coefficients like the δjs in (12).

But such methods (known as fused lasso) seem unlikely to be attractive for models with

categorical control variables indicating many categories.10

10The cardinality of the set of all possible subsets of a set with J elements is 2J . For variables like the
Barron’s categories used to compute the estimates in Table 1, the number of parameters required to model
all possible dummy coefficient differences far exceeds the rate required for approximate sparsity (as described
by Belloni, Chernozhukov and Hansen (2014b)) and is arguably also larger than that required for the “many
covariates” asymptotic sequence discussed by Cattaneo, Jansson and Newey (2018a). Note also that lasso
estimators, like ridge estimators, are sensitive both to the choice of omitted group when categorical variables
are coded with dummies, and to regressor scale. The lasso routines used here standardize regressors, in
some cases employing the regressor-specific penalty loadings detailed in Belloni, Chernozhukov and Hansen
(2014b).
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In addition to saturated control for 151 Barron’s selectivity groups, the DK02 study

explores a parsimonious control strategy that conditions only on the average SAT score of

the schools to which graduates applied, plus dummies for the number of schools applied to

(specifically, three dummies indicating those who applied to two, three, and four or more

schools). The DK02 paper labels this specification, which can be estimated in the full C&B

sample, a “self-revelation model.” The self-revelation model is motivated by the hypothesis

that college applicants have a pretty good idea of the sort of schools within their reach, and

of the set of schools where they’re likely to be well-matched. An applicant’s self-assessment

is reflected in the average selectivity of the schools they’ve targeted, while the number of

applications submitted is a gauge of academic ambition.

The small set of DK02 self-revelation controls yields a model suitable for estimation

in the full sample. But the set of controls used by this strategy could just as well have

been something else, perhaps characteristics of the most or least selective school to which

applicants applied instead of the average. ML methods–and PDS in particular–seem useful for

exploring the sensitivity of causal conclusions when many equally plausible control variables

are at hand.

Columns 5 and 6 in Panel A of Table 1 report estimates of private school effects from the

self-revelation model. When estimated using the sample for which we can control for Barron’s

matches, the self-revelation model likewise generates a small and statistically insignificant

private school effect (specifically, 0.036 with a standard error of 0.029). Moreover, as can

be seen in column 6, the estimated private attendance effect is almost unchanged when the

self-revelation model is estimated using the full College and Beyond sample rather than the

sample with Barron’s matches.

The DK02 study focuses on a continuous measure of college selectivity–the average SAT

score of students enrolled at the college attended–rather than a dichotomous private atten-

dance variable. Although PDS is motivated as a strategy for estimation of dichotomous

treatment effects, the logic behind it applies to models with continuous causal regressors

(Belloni, Chernozhukov and Hansen (2014b) evaluate PDS in a simulation study involving a

normally distributed regressor). As a benchmark for ML estimates of average SAT effects,

Panel B of Table 1 reports estimates of the earnings gain generated by attendance at a more

selective school (columns 2 and 4 of this panel replicate results reported in DK02). Without
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controls, each 100 point increment in alma mater selectivity is associated with around 11%

higher earnings among graduates, a substantial gap that falls to a still-significant 7.6%when

estimated with controls for individual characteristics like SAT scores and class rank. As with

the private earnings premium, however, the estimates reported in columns 3 and 4 of Panel

B suggest that college selectivity is unrelated to earnings when SAT effects are estimated

with ability and ambition controls in the form of dummies for Barron’s selectivity groups.

Likewise, as can be seen in column 5, self-revelation controls serve to eliminate college selec-

tivity effects. Finally, the estimates in column 6 show that this conclusion holds in the full

College and Beyond sample.

We also consider effects of a third treatment variable, dichotomous like the private atten-

dance dummy, but measuring college selectivity like average SAT scores. This is a dummy

for schools that Barron’s ranks as being “highly competitive” or better (HC+). Roughly

73% of the full College and Beyond sample attended HC+ schools, close to the 72% who

attended a private school (The private and HC+ dummies differ for 13% of the College and

Beyond sample). As can be seen in Panel C of Table 1, the premium associated with HC+

attendance is close to that associated with private attendance. Moreover, like the estimated

private college effects reported in Panel A, the HC+ effect falls but remains substantial when

estimated with controls for a few individual characteristics. Finally, as with the private and

selective college estimates in Panels A and B, the HC+ effect disappears conditional on dum-

mies for Barron’s selectivity groups and when estimated with self-revelation controls in the

Barron’s-group sample. Interestingly, however, self-revelation estimates computed using the

full sample fail to replicate the statistical zeroes reported in columns 3 and 4. Rather, the

estimated premium for HC+ attendance reported at the bottom of column 6 is a marginally

statistically significant 0.068.

PDS-Supported Sensitivity Analysis

Our PDS estimator for private college effects begins with a dictionary containing 384 possi-

ble control variables, including the personal characteristics used for column 2 and the self-

revelation controls used for column 4. This dictionary omits dummies for Barron’s selectivity

groups, relying on coarser summary statistics to describe the colleges to which graduates ap-

plied and were accepted. Specifically, the dictionary adds the number of colleges applied
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to; indicators for being accepted to one, two, three or four or more colleges; indicators for

being rejected from one, two, three or four or more colleges; mean SAT scores at the most

selective school, least selective school, and for all schools where the applicant was accepted;

mean SAT scores at the most selective school, least selective school, and for all schools

where the applicant was rejected, and all two-way interactions and squared terms associated

with the underlying list of possible controls, except for squares of dummy variables, which

are redundant. We see this dictionary as encompassing a wide range of alternatives to the

self-revelation model.

PDS estimates of private college effects, reported in the first three columns of Table

2, are mostly similar to the corresponding estimates computed in models with Barron’s

dummies and self-revelation controls. For example, using a plug-in penalty computed by

Stata 16’s lasso linear command, the PDS-estimated private attendance effect is 0.038

with a standard error of 0.04. This is generated by a model that retains 18 controls. The

plug-in penalty used to compute this estimate, based on a formula in Belloni, Chernozhukov

and Hansen (2014b), is data-driven, though not cross-validated. As can be seen in column

2, a cross-validated penalty retains far more controls (100), but yields similar estimates.

An alternate procedure, cvlasso, part of a set of Stata routines called Lassopack (Ahrens,

Hansen and Schaffer 2019) adds a few more controls (for a total of 112), but again yields

similar estimated private school effects. These results appear in column 3.11

The tendency for cross-validation to produce smaller penalties (and hence to include more

controls) also surfaces in results reported by Chetverikov, Liao and Chernozhukov (2019).

This is a caution for practitioners: implementation details may matter in some applications,

even if not in our Table 2. Other relevant computational considerations include the use of

regressor-specific penalty loadings, choice of software, and options affecting cross-validation.

In view of the increasingly wide variety of lasso estimation routines, an Appendix details our

choices in this regard. Appendix Table A1 also compares elite college effects computed using

alternative implementations beyond those used for the estimates reported in Table 2. With

one important exception, these are qualitatively similar to the estimates reported in Table 2.
11The Belloni et al. (2012) and Belloni, Chernozhukov and Hansen (2014b) plug-in penalties generalize the

penalty formula proposed by Bickel et al. (2009). The plug-in penalty requires two user-specified constants, c
and γ, which we set at the rlasso (Ahrens, Hansen and Schaffer (2019)) defaults (c = 1.1 and γ = .1/log(n)).
Belloni, Chernozhukov and Hansen (2014b) suggest using c = 1.1 and γ = .05. These choices may also be
consequential for the number of controls retained by lasso.
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PDS estimates of the effect of elite college attendance as measured by school average

SAT scores are reported in the first three columns of Panel B in Table 2. These are close

to zero and about as precise as the benchmark full-sample estimates of average SAT effects

reported in Table 1. In this case, PDS estimation with plug-in, cross-validated and cvlasso

tuning parameters retains 24, 151, and 58 controls, respectively. The wide variation in

control variable choice induced by changes in tuning parameters is an important caution

for researchers looking to interpret coefficients on the control variables themselves. But

this variation also makes the estimated private and selective college effects in Table 1 seem

impressively robust. In particular, these estimates do not appear to be the product of a

judicious specification search. Finally, as with the benchmark self-revelation estimates of

HC+ attendance effects reported in column 5 of Table 1, PDS estimates of HC+ effects

reported in Panel C of Table 2 show positive effects, two of which are marginally significant.

Again, tuning parameter choice generates considerable variation in controls, but this variation

is not reflected in estimates of the causal effect of interest.

How important is double selection in this context? Results in columns 4-6 of Table 2

are from a procedure applying lasso to the reduced-form regression of the outcome on the

dictionary of controls (at the selection stage, this model excludes the treatment variable).

The single selection estimator naturally relies on fewer controls than does double selection.

Outcome-only selection of controls also generates somewhat larger HC+ effects. In contrast

with the rest of Table 2, the impression left by columns 4-6 of Panel C is one of significant

effects on the order of 0.08. For theoretical reasons detailed by Belloni, Chernozhukov and

Hansen (2014b), the smaller PDS estimates (with similar standard errors) are likely to be

more reliable. Reinforcing this conclusion, outcome selection using an alternative plug-in

penalty yields a model with only a single control and an outlying estimated HC+ effect of

0.22. At the same time, single selection applied to the propensity score with this penalty

generates an estimate with a standard error almost 50% larger than that of the corresponding

PDS estimate. These results appear in Appendix Table A1 (see columns 1, 5, and 9 in Panel

C of this table).

A conventional (ML-free) approach to probing the sensitivity of regression estimates like

those generated by the DK02 self-revelation model simply widens the set of controls. Column

7 of Table 2 reports estimates and standard errors of the effect of elite college attendance from
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models that include all possible controls. Because some controls are linearly dependent, the

model used to construct these estimates retains 303 of 384 controls in the dictionary. Full-

dictionary control is feasible because the dictionary of controls is not truly high-dimensional

in the sense of containing as many variables as there are observations. As it turns out, the

full-control estimates in column 7 are similar to those generated by PDS.

Our mostly encouraging PDS results do not make a theorem, of course. Wuthrich and Zhu

(2019) use a mix of simulation evidence and theory to show that successful bias-mitigation

from PDS depends on features of an application, including regressor variance and the extent

of OVB. Moreover, we’ve examined a scenario in which OLS with full-dictionary control

is feasible and effectively removes OVB. Even so, PDS seems a useful tool for sensitivity

analysis in a regression context, where analysts may choose from an abundance of possible

control variables. The fact that the list of selected controls varies widely from one routine to

another and with the choice of tuning parameters reinforces claims of robustness, provided

the target causal estimate remains reasonably stable. It’s worth emphasizing, however, that

our causal interpretation of the ML estimates in Table 2 turns on a maintained conditional

independence assumption. ML methods do not create quasi-experimental variation. Rather,

ML uses data to pick from among a large set of modeling options founded on a common

identifying assumption.

A further PDS plus is that in the DK02 application, the models selected save degrees of

freedom, possibly increasing precision and external validity. The DK02 strategy that controls

for 160 variables, including 150 application/admissions group dummies, trims a starting

sample of over 14,000 for the estimation of private school effects to around 5,600. This

changes the precision of estimated elite college effects little. But it still seems noteworthy

that replacing group dummies with a larger set of potential controls ultimately yields a

far more parsimonious setup that makes use of the entire data set. The resulting gains

in sample coverage are analogous to those yielded by propensity score matching over full

covariate matching when covariates are discrete and high-dimensional (as, for example, in

Abdulkadiroğlu et al. 2017).
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4 ML Picks Instruments

The asymptotic sampling variance of 2SLS estimates is inversely proportional to the first stage

R2, a statistic that summarizes the quality of the first stage fit to the CEF of endogenous

Di given an instrument vector, Zi. This fact encourages the use of many instruments. On

the other hand, 2SLS estimates are biased, with a finite-sample distribution shifted towards

the mean of the corresponding OLS estimates. Additional instruments aggravate this bias,

especially when their explanatory power is low (see, e.g., Angrist and Krueger, 1999). This

bias-variance trade-off would appear to open the door to a fruitful empirical strategy that

uses machine learning to select instruments. Use of ML for instrument selection is discussed

and explored in work by Belloni, Chernozhukov and Hansen (2011), Belloni et al. (2012), and

Mullainathan and Spiess (2017), among others.12

4.1 Machining the AK91 First Stage

How valuable is a machine-specified first stage for labor IV? We explore this question by

revisiting Angrist and Krueger (1991), an influential IV study that uses quarter of birth

(QOB) dummies as instruments to estimate the economic returns to schooling (henceforth,

AK91). The QOB identification strategy is motivated by the fact that children who start

school at an older age attain the minimum dropout age after having completed less schooling

than those who enter school younger. Because most children start school in the year they turn

six, those born later in the year are younger when school starts, and are therefore constrained

by compulsory attendance laws to spend more time in school before reaching the dropout age.

AK91 documents a strong QOB first stage, showing that highest grade completed increases

with QOB for American men born in the 1920s and 1930s.

The AK91 endogenous variable is highest grade completed; the dependent variable is the

log weekly wage in a sample of 329,509 men born between 1930 and 1939 from the 1980

Census public use files. A regression of schooling on three QOB dummies and 9 year of birth
12Okui (2011) and Carrasco (2012) appear to be the first explorations of ridge-type regularized IV as a

solution to the weak instruments problem. Carrasco and Tchuente (2015) discuss regularized LIML. Hansen
and Kozbur (2014) regularize the Angrist, Imbens and Krueger (1999) jackknife IV estimator. Donald and
Newey (2001) truncate an instrument list based on approximate mean squared error. Chamberlain and
Imbens (2004) introduce a random effects procedure for models with many weak instruments that is closely
related to LIML
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(YOB) dummies generates an F statistic for the three excluded QOB instruments of around

36. 2SLS estimates using three QOB dummies therefore seem unlikely to suffer substantial

weak-instrument bias. The many-weak instrument angle surfaces when QOB dummies are

interacted with dummies for year of birth (YOB) and place (state) of birth (POB). These

interactions are motivated by the fact that the relationship between QOB and schooling varies

both across cohorts, as compulsory attendance laws have grown less important, and across

states, since states set school attendance policy. Interacting three QOB dummies with nine

YOB and 50 POB dummies generates 180 excluded instruments.13 The first-stage F statistic

in this case (controlling for additive YOB and POB main effects) falls to around 2.6. As first

noted by Bound, Jaeger and Baker (1995), this many-weak first stage may generate estimates

of the economic returns to schooling that are close to OLS solely by virtue of finite-sample

bias. A fully interacted QOB-YOB-POB first stage has 1530 instruments. The first stage F

statistic in this case falls below 2, so the potential bias of 2SLS here is even larger.

As in the previous section, our framework for instrument selection maintains key iden-

tifying assumptions. In particular, we do not aspire to find valid instruments, but rather

to choose among them. We assess the consequences of instrument choice for the bias and

dispersion of the resulting IV estimates; problems of statistical inference are left for future

work. We begin by examining an ML strategy in which a conventional 2SLS second stage is

estimated using the instrument set retained by post-lasso first stage, as suggested by Belloni

et al., 2012.

Lasso for instrument selection is evaluated in a simulation experiment calibrated so that

OLS estimates are misleading. In the absence of omitted variables or endogeneity bias in

OLS estimates, it’s hard to gauge the potential for finite sample bias in 2SLS estimates.

For example, with a single fourth-quarter dummy as instrument, 2SLS in the AK91 sam-

ple generates an estimated return to schooling of 0.074. The corresponding OLS estimate

is 0.071.14 This just-identified IV estimate (which, like LIML, is approximately median-

unbiased) suggests OLS is a good guide to the causal effect of schooling on wages. But then

we should expect OLS and 2SLS estimates to be close regardless of instrument strength (see
13Washington, DC is treated as a state.
14These estimates, which include no controls, are from Table 6.5 in Angrist and Pischke (2015). The

corresponding standard error is 0.028. The 2SLS estimate with three QOB dummies as instruments and
YOB dummies included as controls is 0.105, with a standard error of 0.02.
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also Cruz and Moreira (2005), which argues that even heavily over-identified AK91 estimates

have little bias). This leads us to craft a simulation design that preserves the structure of

the AK91 sample and IV estimates, but introduces substantial omitted variables bias in the

corresponding OLS estimates.

Starting with the full AK91 1980 census sample, we computed average highest grade

completed in each QOB-YOB-POB cell (a total of 2040 means). Call these cell averages

s̄(q, c, p) where q = 1, ..., 4; c = 1930, ...1939; p = 1, ..., 51. Simulated schooling, s̃i, is a

Poisson draw with mean µi, where

µi = max[1, s̄(Qi, Ci, Pi) + κ1νi], (19)

and variables Qi, Ci, and Pi are i’s quarter, cohort (year), and place (state) of birth. This

mean is censored below at 1. The standard normal variable νi is multiplied by a scale pa-

rameter, κ1 chosen to generate a first stage R2 and partial F statistic matching those from

a 2SLS procedure that uses 180 excluded instruments in the original data. This benchmark

specification uses three QOB dummies interacted with 10 YOB dummies and 50 POB dum-

mies as instruments, controlling for a full set of POB-by-YOB interactions. The original-data

F-statistic in this 180-instrument model is 2.56.

Our simulated dependent variable builds on the conditional mean function generated by

2SLS estimation with 180 instruments in the AK91 sample. Specifically, let ŷ(Ci, Pi) be the

second-stage fitted value this model generates after subtracting ρ̂2SLSSi, where ρ̂2SLS is the

2SLS estimate of the returns to schooling and Si is the endogenous schooling variable. The

notation here reflects the fact that this estimated fitted value varies only by YOB and POB.

The simulated dependent variable is then constructed as

ỹi = ŷ(Ci, Pi) + 0.1s̃i + ω(Qi, Ci, Pi)(νi + κ2εi), (20)

where s̃i is simulated schooling drawn according to (19). The causal effect of schooling on

wages is fixed at 0.1. Error term εi is standard normal, while weight ω(Qi, Ci, Pi) is set

to generate a conditional variance of residual wages in each QOB-YOB-POB cell propor-

tional to the variance of 2SLS residuals in the original data (again, using the 180 instrument

model). Finally, setting the scale parameter κ2 = .1 generates an OLS estimand equal to

0.207, or roughly double the causal effect of interest. Each simulation sample begins with a
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bootstrap sample of {Qi, Ci, Pi} from the original data. Simulated schooling and wages are

then constructed for this draw as described by equations (19) and (20).

Across 999 simulation draws, 2SLS estimates exhibit a bias around 0.04, while the bias

of OLS is 0.107 by construction. Using the full set of QOB × Y OB × POB dummies as

instruments (for a total of 1530 excluded instruments) increases 2SLS bias by about 50%, to

0.061. These results appear in the first two rows of Table 3, which also shows the average

first-stage F-static across simulations above column headings. The Monte Carlo standard

deviation of 0.011 is close to the (robust) standard error estimated for this model using the

original data. Not surprisingly, moving from 180 to 1530 instruments increases precision, at

the price of increased bias when instruments are added. In both models, the median absolute

deviation of the 2SLS estimates (MAD, defined as the median of the absolute value of the

difference between simulated estimates and the median simulation estimate) is a little lower

than the corresponding standard deviation. The Monte Carlo median absolute error (MAE,

defined as the median of the absolute value of the difference between simulated estimates

and 0.1) is close to the bias.

The bias reduction yielded by a post-lasso first stage depends strongly on the manner

in which the penalty term is chosen. On average, a cross-validated (CV) penalty retains 74

of 180 and 99 of 1530 instruments. As can be seen in the row immediately below the 2SLS

estimates, however, post-lasso using CV-chosen penalties yields almost no bias reduction

from that of 2SLS, while slightly reducing precision.15

Swapping cross-validation for a plug-in penalty leaves far fewer instruments. This is

because the modified plug-in penalty proposed by Belloni et al. (2012) is much larger than the

corresponding CV penalty. Starting with a dictionary of 180 instruments, the plug-in penalty

retains only 2 instruments, on average, and even fewer when starting with 1530 instruments

(in a few simulation runs, the plug-in estimator retains no instruments). Our findings here

are also consistent with simulation results comparing lasso estimated with CV and plug-in

penalties reported by Belloni et al. (2012) and Chetverikov, Liao and Chernozhukov (2019).

Use of a much smaller instrument set reduces bias to around 0.015 in the two models.

The bias reduction yielded by a plug-in penalty comes at the cost of reduced precision.
15For purposes of the estimates in Table 3, cross-validated lasso penalty terms are chosen once using the

original data. Plug-in penalties are recalculated with each iteration. Conditional on covariates, the original
data and simulation draws are independent. Lasso is re-estimated for each draw.
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With so few instruments retained, the standard deviation of estimated schooling coefficients

is about 0.035, while the median absolute error of these estimates is about 0.028. This is a

considerable improvement on the bias and dispersion of 2SLS estimates. But two conventional

IV estimators often used in many-weak instrumental variables scenarios, SSIV and LIML, do

better. LIML is an approximately (median) unbiased maximum likelihood analog alternative

to 2SLS (see, for example, Davidson and MacKinnon 1993). SSIV, a version of 2SLS intro-

duced by Angrist and Krueger (1995), estimates first-stage parameters in half the sample,

carrying these over to the other half to compute fitted values. SSIV uses these “cross-sample

fitted values” as instruments.16 SSIV is consistent under a Bekker (1994) many-instrument

asymptotic sequence and is therefore also approximately unbiased.

The results in Table 3 suggest SSIV and LIML estimates using both 180 and 1530 instru-

ments are indeed unbiased, though LIML is more precise than SSIV (compare, for example,

Monte Carlo standard deviations of 0.012 and 0.016 using 1530 instruments). As measured

by standard deviation, the precision of these estimators mostly lies between that of the lasso

estimators computed using plug-in and CV penalties. LIML for the 1530-instrument model

has lower standard deviation than lasso with either penalty, however (0.012). And both LIML

and SSIV out-perform the best of the lasso estimators on MAE grounds. This reflects the

fact that, even with a relatively severe plug-in penalty, lasso-based estimates remain biased.

The unbiasedness of LIML is perhaps surprising since LIML is often said to have no moments

(e.g., Hausman et al., 2012). The median-unbiasedness of LIML and SSIV is apparent from

the fact that their MAE is almost indistinguishable from their MAD.

As can also be seen in the rows of Table 3 grouped under the SSIV heading, SSIV estimates

computed with an instrument list chosen by lasso with a CV penalty in one half sample are

unbiased. But there would seem to be little reason to prefer lassoed SSIV over full-dictionary

SSIV, since the latter is more precise and has smaller MAE. At the same time, use of a

plug-in penalty in a post-lasso SSIV procedure yields a first-stage that mostly chooses no

instruments. Specifically, post-lasso SSIV with a plug-in penalty picks zero instruments in

670 out of 999 iterations for the 180-instrument case, and in 893 out of 999 iterations for the

1530-instrument case. The IV estimates computed when instruments are selected are biased

and much less precise than conventional SSIV estimates.
16Angrist and Krueger (1995) call this version of split-sample IV an “unbiased split-sample estimator.”
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Finally, it’s noteworthy that using a sample split just to choose instruments (though not

for first stage estimation) yields estimates only marginally better than 2SLS when applied

to the 1530-instrument model (compare MAEs of 0.046 and 0.056) and a little worse for the

180-instrument model (compare MAEs of 0.043 and 0.040).17

4.2 Theoretical considerations

Lasso for instrument selection faces two challenges. First is the fact that any over-identified

2SLS estimator is biased. The second is a pretesting problem.

The “Bekker sequence” (named for Bekker (1994) and used by Angrist and Krueger (1995))

describes the bias of IV estimators using an asymptotic sequence that fixes the (limiting)

number of observations per instrument as the sample size grows. This sequence shows that

with many weak instruments, we should expect 2SLS to be biased towards the corresponding

OLS estimator in inverse proportion to the first-stage F statistic for excluded instruments. By

contrast, LIML and SSIV are Bekker-unbiased. As documented repeatedly (see, e.g., Angrist,

Imbens and Krueger 1999), the Bekker sequence describes the finite-sample behavior of 2SLS,

LIML, and related IV estimators extraordinarily well (like any asymptotic sequence, the goal

here is to characterize finite sample distributions; the Bekker sequence is not a model of data

collection behavior).18

ML methods are often motivated by the desire to fit relationships when the number of

predictors is very large, perhaps even of the same order of magnitude as the sample size. In an

IV context, this sounds like a many-weak scenario. But the asymptotic sequence that justifies

use of lasso for first stage estimation relies on the sample size increasing relative to the number

of parameters estimated. In such a sequence, the dictionary of possible instruments may be

much larger than the sample size, but the number of parameters in an ML-engineered first
17Specifically, this estimator, reported in the row labeled “Post-lasso ( IV choice split only, CV penalty)”,

splits the sample, using one half-sample and the cross-validation penalty chosen in the original data to select
instruments via lasso. This instrument set is then used for conventional 2SLS estimation in the other half.
All of our split-sample procedures enforce an equal split and average results from complementary splits.
Chernozhukov et al. (2018a) discuss IV strategies that use lasso or other ML estimators in combination with
SSIV-type sample splitting.

18The Bekker sequence has antecedents in Kunitomo (1980) and Morimune (1983), though Bekker (1994)
appears to be the first motivated by quasi-experimental applications like AK91. Hansen, Hausman and
Newey (2008) generalize the Bekker sequence to cover a wider class of estimators under weaker conditions.
Hansen and Kozbur (2014) refer to the Bekker sequence as describing models with a “dense signal.”
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stage is still limited. In particular, the Belloni et al. (2012) approximate sparsity condition

implies limn→∞
s
n

= 0, where s is the number of instruments needed to approximate the first

stage CEF. By contrast, the Bekker sequence allows the limit of s/n to be fixed at a number

strictly between zero and 1. Under Bekker, the fact that lasso truncates the instrument list

reduces the bias of 2SLS estimates, but does not eliminate it.

Perhaps the AK91 application is an unfair test of the lasso idea. The number of AK91

instruments is at least two orders of magnitude below sample size, while the first stage is

arguably more cloned than sparse. Even so, AK91 is often seen as representative of empirical

labor applications in which many weak instruments are a concern (e.g., Staiger and Stock

(1997), Chamberlain and Imbens (2004), and Hansen, Hausman and Newey (2008)). Belloni,

Chernozhukov and Hansen (2011), Belloni and Chernozhukov (2011), Belloni, Chernozhukov

and Hansen (2013) and Hansen and Kozbur (2014) use AK91 data as a testbed for machine-

chosen first stages). We note, however, that other IV scenarios may indeed favor lasso. For

example, Belloni et al. (2012) report simulation results for a Monte Carlo experiment with

100 possible instruments, a sample size of 100, and a sparse first stage with exponential or

discontinuously declining first-stage coefficients. In this experiment, lasso-based IV estima-

tion outperforms 2SLS, LIML, and a modification of LIML due to Fuller (1977). We note also

that Belloni et al. (2012) consider procedures for weak-instrument-robust hypothesis testing

in combination with lasso, extending an approach in Staiger and Stock (1997).19

Post-Lasso as Pre-Test

As first noted by Hall, Rudebusch and Wilcox (1996), estimation after screening instruments

on the basis of the statistical significance of first stage coefficients need not improve, and

may even aggravate, the bias of IV estimates. Pretesting estimated first-stage coefficients

aggravates bias because when population first stage coefficients are truly zero or close to it,

high in-sample correlation with an endogenous regressor is associated with a high in-sample
19This may be unnecessary. On the inference side, Bekker (1994) gives formulas consistent for standard

errors under a many-IV sequence; Kolesár et al. (2015) show this provides good confidence interval coverage,
while Hansen, Hausman and Newey (2008) generalize Bekker standard errors to allow for heteroskedasticity.
Note also that while LIML is the maximum likelihood estimator of a linear equation with an endogenous
regressor under normality, the GMM justification for LIML requires only conditional homoskedasticity (Haus-
man et al. 2012). Our simulation errors are normal but realistically heteroskedastic, so it seems fair to say
our design does not stack the deck in favor of LIML.
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correlation with omitted variables (or structural error terms).20

The theoretical link between post-lasso IV and pretesting is most visible in the case where

the instruments are a set of orthonormalized variables (say, mutually exclusive dummies

normalized by group size). In this case, post-lasso selects an instrument when the associated

first-stage coefficient exceeds a constant. In particular, letting π̂j denote the coefficient on

the j-th instrument from an OLS first stage using orthonormalized instruments, post-lasso

estimators retain the jth instrument when

|π̂j| > cn, (21)

where cn, is determined by the lasso penalty and sample size (see, e.g., Hastie, Tibshirani

and Wainwright 2015). The analogy with pretesting arises because pretest estimators retain

π̂j using a rule like (21), where the threshold is proportional to the estimated standard error

of π̂j, which depends on sample size. Lasso regularity conditions imply that lasso and pretest

thresholds converge at different rates. In the data at hand, however, lasso and 2SLS with a

pretested first stage can be operationally similar.

Evidence of pretest bias emerges when LIML is computed with a post-lasso instrument

list. This can be seen in the rows in Table 3 labeled “post-lasso LIML”. When lasso penalties

are cross-validated, the otherwise unbiased LIML estimator exhibits bias of 0.022 in the 180-

instrument model (with 74 instruments retained) and 0.048 when using 1530 instruments

(with an average of 99 retained). Lasso with a plug-in penalty retains only two instruments,

but here too, we see evidence of bias. With a plug-in penalty, the combination of bias and

reduced precision yields an MAE of around 0.026 using both instrument lists, two to three

times as large as conventional LIML. Not surprisingly, with only two instruments retained,

the behavior of plug-in lassoed LIML is close to that of post-lasso 2SLS using the same

small instrument set. By way of comparison, the table also shows an explicitly pretested

LIML estimator, which retains instruments with a first-stage t-static in the upper decile

of t-statistics for the full set of instruments. The point here is not to recommend this for

empirical practice. Rather, the similarity of bias and MAE for pretested LIML and lassoed

LIML using a cross-validated penalty highlight the pretesting analogy.

For the same reason that the SSIV estimator is essentially unbiased, sample splitting
20Andrews, Stock and Sun (2019) survey and assess the pretesting problem in modern empirical work.
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eliminates the risk of pretest bias. In particular, when estimated in a separate sample,

estimated first stage coefficients are independent of second stage residuals. As we’ve seen,

however, SSIV with all instruments tends to do better than a lassoed SSIV estimator that

uses half the sample to pick instruments and to estimate first stage coefficients.

A Walk in the Woods

The bias engendered by an ML-chosen instrument list is not unique to lasso. This is evident

in results from an IV procedure that uses regression trees to estimate first-stage conditional

mean functions. A “tree” in this context is the mean of the variable to be instrumented,

conditional on a sequence of splits into subsamples. Given predictors like YOB and QOB,

a tree-based first stage might split schooling into older and younger workers, and then split

the older group by QOB, while leaving all of the younger group pooled (perhaps because

compulsory attendance laws matter little for those born later). Splits are chosen or skipped

so as to minimize MSE or some other measure of fit. “Leaves” on the resulting trees are

endpoints in each sequence of splits. Athey and Imbens (2019) note that regression trees

can be interpreted as a nearest-neighbor-type matching procedure where an observation’s

neighbors are those found on the same leaf. Random forests, introduced by Breiman 2001,

elaborate on regression trees by using bootstrap samples (or subsampling) to decide where to

split, and by looking only at randomly selected subsets of predictors when deciding where to

split. Random forest predictions average the predictions yielded from each of these smaller

samples.

Building on methods described in Hartford et al. (2017), Ash et al. (2018) explore a

procedure using random forest first stage fitted values to compute IV estimates of the effects

of appellate court decisions on the length of sentences handed down in district courts. The

characteristics of appellate court judges, who are selected by random assignment, play the role

of (high dimensional) instruments. In a related application of ML to IV, Athey, Tibshirani

and Wager (2019) and Chernozhukov et al. (2018a) use a random forest procedure to select

and partial out non-excluded (exogenous) covariates.21

We explore the utility of these estimation strategies for IV by using random forest first
21 Athey, Tibshirani and Wager (2019) and Chernozhukov et al. (2018b) also use random forest to model

treatment effect heterogeneity.
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stage fitted values as instruments for education, controlling for a full set of YOB-by-POB

fixed effects. In a random forest procedure that mirrors the 1530 instrument model we’ve

estimated by 2SLS, the fitted values from a random forest fit of schooling to QOB, YOB, and

POB are all but indistinguishable from the fitted values generated by a saturated regression

model. This result is for a random-forest fit computed using a minimum leaf size of 1, the

default for Stata’s rforest command (a constraint not often binding in the AK91 data set).

Not surprisingly, therefore, the 2SLS estimates generated by 2SLS with random forest fits as

instrument, reported at the bottom of Table 3, are indistinguishable from the conventional

2SLS estimates, reported at the top. Likewise, an SSIV procedure based on random forest

first-stage fitted values, the results of which appear in the last row in this table, replicates

the relatively good performance of SSIV.

Increasing minimum leaf size to 800, a value used for IV estimation by Athey, Tibshirani

and Wager (2019), leads to estimates that differ slightly from the corresponding conventional

2SLS results. The larger leaf size combines some QOB-YOB-POB cells, reducing bias from

0.061 for conventional 2SLS to 0.057 using random forest fits. MAE for this procedure

is about like lasso with a cross-validated penalty, but far higher than lasso using a plug-

in penalty. Changing leaf size leaves the performance of random forest SSIV essentially

unchanged because this constraint is largely irrelevant (as we confirmed for minimum leaf

sizes of 10 and 100). The estimates in Table 3 offer little reason to favor IV using a random

forest first stage over conventional 2SLS, or, for that matter, over plug-in-penalized lasso.

4.3 IV at the Movies

Gilchrist and Sands (2016) uses lasso to select instruments for a 2SLS procedure in which

the ratio of the number of instruments to sample size is an order of magnitude higher than

in the 1530 instrument version of AK91. We might expect the relative performance of post-

lasso instrument selection to improve in this setting. The Gilchrist and Sands (2016) study is

motivated by an inquiry into social spillovers from movie viewership: filmgoers discuss movies

they’ve seen with friends and coworkers, perhaps increasing viewership. Weather induces

quasi-experimental variation in opening weekend viewership that identifies this social effect.

The Gilchrist and Sands (2016) sample contains information on the total dollar value of

ticket sales for 1,381 movies over the course of 1,671 weekend days (the unit of observation
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for econometric analysis). The instruments for opening weekend viewership are nationally

aggregated weather measures that summarize conditions near the nation’s movie theaters on a

given day. Theater weather conditions are proxied by conditions measured at weather stations

in the same zip code. This identification strategy is motivated by the idea that the weather

is randomly assigned and that good weather reduces viewership. The instrument dictionary

includes 52 weather variables, such as the proportion of theaters experiencing 75-80 degree

temperatures, indicators of snow and rain, and average hourly precipitation. Exogenous

covariates in the model include dummies for the timing of opening weekend days. Additional

exogenous controls include summary measures of weather conditions in the periods for which

subsequent viewership is measured. These variables control for possible serial correlation in

the weather. There are a total of 142 (mostly dummy) controls.

The IV estimates reported by Gilchrist and Sands (2016) are the result of a “manual

2SLS procedure” in which exogenous covariates are first partialed (using OLS) from opening

weekend and subsequent viewership, and from the excluded instruments. Specifically, the

paper reports estimates from a model regressing residual subsequent viewership on first stage

fitted values using “weather shocks” as instruments. The latter are residuals from regressions

of weather variables on covariates. Subject to the requirement that controls and samples

be identical in all three partialing steps, this procedure is the same as 2SLS estimation of a

model that includes exogenous covariates as controls instead of partialing them out (though

manual 2SLS standard errors are incorrect). We therefore focus on the 2SLS equivalent of

the Gilchrist and Sands (2016) estimates, and lasso versions thereof.

The full-dictionary 2SLS estimate of the effects of opening weekend viewership on view-

ership two weeks later is 0.5(SE = .022); the manual 2SLS estimate reported in Gilchrist

and Sands (2016) is 0.475(SE = 0.024), a result we replicate using data posted by the au-

thors. These estimates use all 52 excluded instruments. Our corresponding OLS estimate

is .449(SE = 0.016), while the original OLS estimate is 0.423(SE = 0.015). Small differ-

ences between our estimates and the originals arise because the original procedure partials

both dummy variable and weather controls from the outcome variable, while partialing only

contemporaneous weather variables out of the endogenous variable.

Using a single lasso-selected instrument, Gilchrist and Sands (2016) report an opening

weekend effect of 0.474(SE = 0.047). The instrument in this case, a dummy for pervasive
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good weather, has a strong first stage, with a t-statistic over 6 (and hence a first-stage F close

to 40). The fact that this differs little from 2SLS estimates using all 52 excluded weather

instruments and from the corresponding OLS estimates points to limited scope for bias in the

IV estimates. As we noted in the discussion of AK91, when OLS is indistinguishable from

low-dimensional, strongly identified IV estimates, finite-sample concerns usually evaporate.

This leads us to explore a simulation design built from the Gilchrist and Sands (2016) model

and data, but with more OLS bias. IV procedures can then be evaluated on the basis of their

ability to get closer than OLS to the truth.

Second-weekend attendance is our outcome variable of interest (the original study looks

at opening weekend effects on viewership in weeks 2 through 6, finding declining effects). The

simulation design starts by regressing opening weekend attendance (the endogenous regressor

of interest) on exogenous covariates and the full set of excluded instruments to obtain first-

stage fitted values. The list of exogenous covariates includes indicators for calendar year,

day of the week, week of the year, holidays, and measures of weather conditions during

the movie’s second weekend. Call these first-stage fitted values â (Xdt, Zt), where Xdt is

the vector of exogenous covariates on second-weekend day d (Friday, Saturday, Sunday)

among movies opening in week t, and Zt is the vector of excluded instruments for movies

opening in week t (the weather instruments vary only by week). Simulated opening-weekend

attendance, ãdt, is drawn from a standard gamma distribution with shape parameter µdt =

max {δ, â (Xdt, Zt)} /k1. This yields a skewed, non-negative continuous distribution. Scaling

by k1 = 1.35 approximates the first-stage R2 and partial F -statistic in the original data.

Because the gamma functional form requires a shape parameter bounded away from zero,

the shape parameter is censored below by setting δ = .01. Simulated attendance is then

drawn by first generating a uniform random variable, vdt, and evaluating the inverse gamma

conditional distribution function with shape parameter µdt at vdt. The appearance of vdt in

the simulated outcome residual is our source of endogeneity.

Our simulated outcome builds on LIML estimates in the original data using all 52 in-

struments. Specifically, let ŷ (Xdt) be the dependent variable fitted value, after subtracting

ρ̂LIMLadt, where ρ̂LIML is a LIML estimate of the effects of opening weekend attendance on

second-weekend attendance, and adt is observed opening weekend attendance on day d for

movies opening in week t. The notation here reflects the fact that this estimated fitted value
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varies only by Xdt. The simulated dependent variable is then constructed as

ỹdt = ŷ (Xdt) + .6ãdt + ω (Xdt, Zt)
(
k2Φ

−1 (vdt) + εdt
)
, (22)

so the causal effect of opening weekend attendance is fixed at .6. Error component εdt is

standard normal, while ω (Xdt, Zt) is set to generate a conditional variance of residual second-

weekend attendance given exogenous covariates and excluded instruments proportional to the

variance of second-stage LIML residuals in the original data. Finally, k2 = −1.5 generates

OLS estimates around 0.23, biased in the same direction as OLS in the original data, but much

more so. Each simulation draw begins with a bootstrap sample of (Xdt, Zt), with simulated

opening-weekend and second-weekend attendance constructed as described above.22

The coefficients of interest are OLS, 2SLS, and post-lasso 2SLS estimates of parameter

ρ in an IV setup modeling ticket sales on day d of the second weekend, ydt, as a function of

ticket sales on day d of the opening weekend, adt, among movies opening in week t. This

model can be written:

ydt = ρadt +X ′dtγ0 + εdt

adt = Z ′tπ +X ′dtγ1 + vdt,

where π is the vector of first-stage coefficients.

The bias of OLS estimates across simulations is −0.37, while 2SLS is about half as bad,

with a negative bias of 0.17. In other words, both procedures yield estimated effects of opening

weekend sales on second weekend sales that are much reduced from the causal effect of 0.6.

Adding 52 worthless (standard uniform) instruments to the original dictionary of 52 weather

instruments raises 2SLS bias by almost 50%, to 0.24. These benchmark estimates appear in

the first two rows of Table 4, which also show that the MAE of 2SLS is indistinguishable

from the bias of estimates using either 52 or 104 instruments. First-stage F statistics fall

from close to 3 with 52 instruments to around 2 with 104 instruments.

As can be seen in the third and fourth rows of the table, 2SLS with a post-lasso first

stage shortens the instrument list considerably but does little to reduce bias. Specifically,

using the larger plug-in penalty reduces the 52-instrument list to a list of 12, while the 104
22The sample includes 557 opening weekends. The bootstrap sample draws individual days independently

rather than by weekend. This is consistent with Gilchrist and Sands (2016), which reports standard errors
described as clustered, but with clusters equal to the unit of observation.
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instrument list falls to around 23. Lasso with a cross-validated penalty generates 37 and 58

instruments, respectively. But post-lasso 2SLS estimates remain substantially biased with

both instrument lists and either penalty choice. Using the larger plug-in penalty, for example,

yields second-stage estimates with a bias of −0.132. The bias-reduction payoff to post-lasso

is larger when the instrument dictionary includes 52 noise variables and lasso is tuned with

a plug-in penalty. In particular, the bias of 2SLS falls from around −0.24 to −0.15. On the

other hand, post-lasso instrument selection using cross-validated penalties leaves bias in the

104 instrument model almost unchanged from that of 2SLS.

The middle rows of Table 4, which describe the behavior of SSIV and LIML estimates,

show that SSIV estimates are less biased than 2SLS estimates computed using post-lasso to

choose instruments, but more biased than the SSIV results in the AK91 simulation. SSIV

also suffers here from low precision, with Monte Carlo standard deviations ranging from

around 0.6 to 6.6. This dispersion reflects a few extreme SSIV realizations. MAD for SSIV

is far below variance, however. Remarkably, SSIV still beats post-lasso for both models on

MAE grounds, with the SSIV advantage most impressive when the instrument list includes

52 real instruments only.

As in the AK91 results, LIML shines. Specifically, LIML estimates are virtually unbiased

using both instrument sets and about as precise as post-lasso 2SLS estimates computed with

a plug-in penalty. The upshot is that MAE for LIML is less than half of the MAE for

post-lasso IV estimates constructed using a plug-in penalty. The robust good performance of

LIML may be surprising given the fact that model used here has heteroskedastic errors and

the sample size is modest. But this finding is consistent with simulation evidence in favor of

LIML reported in Angrist, Imbens and Krueger (1999).

Our description of post-lasso IV estimators concludes with a brief account of results

generated by the Stata 16 poivregress command (documented in Stata 2019). Motivated

by Chernozhukov, Hansen and Spindler (2015), poivregress allows the list of instruments

and the list of exogenous covariates to be modeled as high-dimensional, applying lasso to the

selection of variables in both. As with the other estimators described in Tables 3 and 4, we

focus first on the consequences of lasso for instrument selection. The poivregress estimates

discussed here use a plug-in penalty (the appendix gives other implementation details).

Simulation results using poivregress to choose instruments, reported at the bottom

33



of Table 4, look much like those using Lassopack commands with a plug-in penalty. The

resulting estimates exhibit bias on the order of 0.13 for models estimated with 52 instruments

and 0.14 for models estimated with 104 instruments, only slightly below the bias of estimates

computed using Lassopack commands. This in spite of the fact that poivregress retains an

average of 1.3 instruments conditional on retaining any. It’s noteworthy that poivregress

fails to select any instruments in about two-thirds of the runs when starting with a dictionary

of 52, while no instruments are selected in about three-fourths of the runs starting with a

dictionary of 104. Surprisingly, poivregress reports second stage estimates even for these

runs. Unsurprisingly, IV estimates generated without excluded instruments are biased and

imprecise, with an MAE approaching that of OLS.

The bottom two rows of Table 4 show poivregress estimates computed for a procedure

in which control variable coefficients are penalized along with first stage coefficients. That

is, controls are treated as high-dimensional. Of 142 possible controls, 15-16 are retained in

models that also retain instruments. Again, the average number of instruments retained is

close to 1, conditional on having any retained. These estimates are less biased than post-lasso

estimates computed with a plug-in penalty. Compare, for example, a bias of −0.096 using

poivregress with a bias for plug-in post-lasso of −0.132 in the 52-instrument model. The

better performance of poivregress with high-dimensional controls appears to reflect a higher

first stage F when redundant controls are dropped. Even so, SSIV and LIML estimates of

this model are better on MAE grounds. For the model with 104 instruments, which perhaps

hews closest to the idea of sparsity, poivregress MAE beats that of SSIV (but not LIML)

in runs for which instruments are selected.

Application of poivregress to models that select controls as well as instruments also

yields results without instruments. In this case, instruments are retained in about half of

999 simulations runs, while no instruments are selected and an estimate of zero reported

for 372 and 409 runs in the 52- and 104-instrument models, respectively. Remaining runs

generate non-zero IV estimates even with no instruments chosen (though instrument-free IV

estimates are widely dispersed). On balance, the estimates in Table 4 make a weak case for

ML-augmented IV. But other scenarios, perhaps with as many instruments as observations,

might favor ML-based instrument selection more clearly.
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5 ML Picks IV Controls

Identification in instrumental variables models sometimes turns on control for covariates as

well as on the choice of instruments. For example, in a study of the effects of family size

on parents’ labor supply, Angrist and Evans (1998) use the occurrence of multiple second

births and samesex sibships as a source of quasi-experimental variation in the probability

of having a third child. Because twin birth rates increase with maternal age and education,

estimators exploiting the twins experiment are made more credible by conditioning on these

covariates. The Angrist and Evans (1998) samesex instrument exploits the fact that, among

women with two children, the probability of a third birth increases when the first two are

both boys or both girls. But parents may care about the sex of their first and second born

for reasons other than homogeneity (for example, Ananat and Michaels 2008 argue that male

first-borns reduce divorce). Because samesex sibships are more likely when children are male,

the samesex identification strategy is made more plausible by allowing for additive male birth

effects.

2SLS accommodates exogenous covariates in linear models. But ML methods can control

for covariates without functional form assumptions. We briefly explore the ability of random

forest routines to capture covariate effects in IV identification strategies that require some

degree of control. This investigation is inspired by Athey, Tibshirani and Wager (2019),

which uses random forest methods to model heterogeneous causal effects of family size when

these are identified by sibling sex composition in the Angrist and Evans (1998) data. The

first step in the Athey, Tibshirani and Wager (2019) analysis is a partialing operation that

subtracts the fitted values generated by random forest predictions of each of the dependent

variables, endogenous variables, and instruments as a function of exogenous covariates.23

23A related procedure outlined in Chernozhukov et al. (2018a) uses random forest and other ML methods
to partial covariates from instruments, dependent variables, and endogenous variables, in combination with
a sample splitting strategy similar to SSIV. The moment conditions motivating this procedure (equations 4.4
and 4.8 in Chernozhukov et al. (2018a)) appear to be the same as those motivating the estimators considered
by Athey, Tibshirani and Wager (2019). The Athey, Tibshirani and Wager (2019) procedure uses jackknifed
random forest fits rather than sample splitting.
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Randomly Excluded

Random forest estimators fit nonlinear conditional mean functions. Because random forest

is not regression, random forest residuals may be correlated with the covariates that made

them. In an IV context, failure to orthogonalize covariates risks the creation of unintended

exclusion restrictions that lead to misleading second stage estimates. This is analogous to

spurious identification when a probit or logit first stage is used to instrument a dummy

endogenous variable (see, e.g., Angrist 2001).

We illustrate this point using a version of the “artificial instruments” experiment that

inspired the Bound, Jaeger and Baker (1995) critique of Angrist and Krueger (1991). The

Bound, Jaeger and Baker (1995) experiment (suggested by Alan Krueger) used randomly

generated instruments to demonstrate the bias of heavily over-identified 2SLS estimates in

cases where the instruments are uninformative. Our version constructs instruments using a

setup in which a single just-identifying instrument is correlated with covariates, but unrelated

to treatment conditional on covariates.

As a benchmark, column 1 of Table 5 reports conventional 2SLS estimates of effects of

childbearing on labor supply using a dummy variable indicating samesex sibships to instru-

ment a variable indicating mothers with three or more children (everyone in the sample has

at least two). As in Angrist and Evans (1998), these estimates show a first-stage effect of

samesex sibships on the probability of having more than two children equal to about 0.07.

2SLS using the samesex instrument generates substantial and precisely estimated negative

labor supply effects of a third birth. Specifically, the birth of a third child reduces employ-

ment rates by about 12 points, with a concomitant decline of about 5 weeks worked and a

5 hour reduction in the work week. These effects are smaller than the corresponding OLS

estimates (not reported here), suggesting a high degree of selection bias in the latter.

The covariates used for IV estimation in Angrist and Evans (1998) and Athey, Tibshirani

and Wager (2019) include mother’s age (agemi) and mother’s education (educmi). Our

artificial instrument is a function of these two variables:

hi = agemi + educmi + UN(0, 1) ≡ xi + ui.

We refer to agemi + educmi as a “covariate index” (denoted by xi). Conditional on the

covariates used to construct xi, instrument hi should be orthogonal to it and therefore have
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no identifying power. Indeed, 2SLS estimates computed using hi as an instrument in a

model including mothers’ education, age, and other covariates, reported in column 2 of Table

5, generate large standard errors and appear uninformative. For example, while the samesex

instrument generates an estimated reduction of 5.3 weeks worked, with a standard error of

1.2, the estimated effect on weeks work using instrument hi has a standard error of around

22.

Partialing covariates from this artificial instrumental variable using random forest fails to

generate a residual orthogonal to covariates. The problem of residual covariate-instrument

correlation appears in Figure 6, which plots residuals from a random forest fit of hi to agemi,

educmi, mother’s age at first birth, the sex and ages of her first two children, and three race

indicators (these covariates were used to compute the 2SLS estimates in the first two columns

of Table 5). The figure shows conditional mean residuals given xi, along with the conditional

mean of OLS fitted values and OLS residuals. Not surprisingly, mean OLS fitted values are

linear in xi, while mean OLS residuals are flat. Mean random forest residuals, by contrast,

turn up or down for values at the ends of the support of xi. Larger leaf sizes ameliorate but

do not eliminate this evidence of correlation.24

The risks posed by Figure 6 for IV are apparent in the IV estimates reported in columns 3-5

of Table 5. These estimates, computed from random forest residuals estimated with differing

minimum leaf sizes, generate a misleading impression of large, statistically significant effects.

The problem is especially severe for estimates computed with a larger minimum leaf size,

where the standard errors are only about double those generated by a samesex instrument.

The spurious identification conjured by random forest partialing stems from a failure to fit an

additive linear model (repeated draws of hi generate similar findings). Some of the estimates

in Panel A of the table (computed using the Stata command rforest) are implausibly large,

showing, for example, a fall in employment rates in excess of one. A careful analyst might

not be fooled here. But the estimates in panel B, computed using the Athey, Tibshirani and

Wager (2019) Generalized Random Forest software package, are smaller and well inside the

bounds of dependent variable support.
24The figure plots residuals computed by Stata command rforest. Plots constructed using an R package

distributed by the authors of Athey, Tibshirani and Wager (2019) look similar. Athey, Tibshirani and Wager
(2019) use a leaf size of 800 to construct the residuals used for IV estimation. See the appendix for other
computational details.
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The failure to fit (or “learn”, in ML vernacular) the relationship between hi and covariates

may seem at odds with results using random forest to estimate the AK91 first stage, reported

in Table 3. In the AK91 simulations, random forest fits a 1530 instrument first stage perfectly,

recovering the empirical CEF. Random forest does worse with the artificial Angrist and Evans

(1998) first stage because the number of covariate cells in this case is much larger. While

the AK91 design has roughly 2000 cells and around 200 observations per cell, the Angrist

and Evans (1998) first stage has around 161,000 cells, with 1.6 observations per cell. This

necessitates some smoothing, which random forest delivers. Yet this flexible ML routine

misses important features of the CEF that it’s tasked to model.

Setting a smaller minimum leaf size reduces the correlation between random forest resid-

uals and covariates. In Panel B, partialing with a leaf size of 10 generates no statistically

significant second stage estimates. But the small-leaf strategy reveals a paradox of nonlinear-

ity that arises from the dependence of sibling sex composition on dummies indicating male

births. To see this, let mji indicate mothers with a male child at birth j. Note that the

samesex instrument can be written

ssi = m1im2i + (1−m1i)(1−m2i),

where ssi indicates mothers of a samesex sibship. Assuming that mji is i.i.d., the regression

of ssj on mji produces a slope coefficient of 2E[mji]− 1.

Samesex is correlated with male births because boys are born a little more often than girls.

This fact, and the possibility of violations of the exclusion restriction due to son preference,

motivates 2SLS estimators that control for additive male birth effects. But random forest

struggles with additive control form1i andm2i, resulting in imprecise IV estimates even when

using the (real) samesex instrument. As can be seen in columns 6-8 of Panel A in Table 5,

this problem is most acute for estimates computed using Stata’s rforest command. The

standard errors associated with random forest IV estimates of fertility effects on employment

computed using rforest range from 0.086 with a minimum leaf size of 800 to 0.342 with a

minimum leaf size of 10. The estimates reported in Panel B seem better in this regard, but

here too we see precision fall as leaf sizes fall, with the resulting IV estimates considerably

less precise than those generated by conventional 2SLS. Panel B also shows incongruously

large first stage coefficients that seem to be a symptom of the same underlying problem.
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6 Summary and Conclusions

The Belloni, Chernozhukov and Hansen (2014b) PDS procedure provides a partially auto-

mated scheme for regression sensitivity analysis. Application of PDS to estimation of effects

of elite college attendance shows how this approach can support causal conclusions in linear

models. The identity and length of the list of PDS-included controls varies with changes in

lasso tuning parameters and software. But the resulting estimates of causal effects are stable,

consistently showing little evidence of an elite college advantage. In this application, PDS

appears to offer a coherent data-driven complement to ad hoc robustness checks.

Our findings on ML in IV applications are less encouraging. In simulations modeled after

Angrist and Krueger (1991) and Gilchrist and Sands (2016), 2SLS estimates with a post-lasso

first stage sometimes improve on 2SLS with all available instruments. But SSIV and LIML do

better than procedures that use lasso for instrument selection. In the AK91 design, estimates

with a random forest first stage simply replicate 2SLS and SSIV, so this use of ML seems

gratuitous. We note that our analysis focuses on estimator bias and dispersion, rather than

procedures for inference. As has been shown elsewhere, however, many-instrument (Bekker,

1994) standard error formulas for LIML appear to provide good coverage. It seems likely

that similar formulas can be obtained for SSIV (perhaps along the lines of those for JIVE in

Chao et al. 2012).

The simulation results reported here show LIML to be surprisingly robust to heteroskedas-

ticity. While some types of heteroskedasticity can confound LIML, this need not be true.

Our results hint at the empirical relevance of heteroskedastic scenarios discussed by Bekker

and Van Der Ploeg (2005) and Hausman et al. (2012). For example, LIML remains Bekker-

unbiased under heteroskedasticity with dummy instruments and equal group sizes. More

general conditions for this result are constant instrument leverage and an orthogonality con-

dition given by Hausman et al. (2012). Scenarios involving a far higher ratio of instruments

to observations than we’ve considered might favor ML-based instrument selection over SSIV

and LIML. Such scenarios are, as yet, rarely seen in applied microeconometrics.

As a theoretical matter, our divergent conclusions on the utility of ML for control vari-

able selection and for instrumental variable selection may be related to results in Catta-

neo, Jansson and Newey (2018a,b). This work shows that regression estimators relying on
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high-dimensional controls to identify causal effects are consistent under a many-covariate

sequence analogous to the Bekker sequence for IV. Unlike 2SLS, which is biased in all but

just-identified models, the high-dimensional regression estimator at the heart of the PDS pro-

cedure is Bekker-unbiased (maintaining the conditional independence assumption motivating

the procedure). Moreover, double selection works to mitigate the consequences of selection

errors. With IV, pretest bias can be avoided by versions of lasso that use sample splitting to

separate first-stage and second-stage estimates. In our applications, however, SSIV mostly

does better without the complications of lasso.

Beyond matters of bias and precision, our analysis highlights the potential risks of non-

linear IV. In models with dummy endogenous variables, for example, a probit first stage

equation includes nonlinear terms that may create unintended identifying restrictions (An-

grist 2001). We’ve shown here that random forest partialing of covariates in a just-identified

model may likewise create artificial exclusion restrictions that lead to misleading second-stage

estimates. This would seem to be a caution for applications relying on other nonlinear ML

routines to pick controls in an IV setting. The bias documented in our experimental scenarios

is not integral to the ML methods we’ve explored. In some applications, regression trees,

random forests, elastic and neural networks, and ensemble methods that combine these may

indeed be harmless. As far as empirical Labor goes, however, the payoff to these baroque

procedures does not yet appear to be worth the risk.
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Table 1: OLS Estimates of Elite College Effects

DK02 Selection controls

Barron's 
sample Full sample

(1) (2) (3) (4) (5) (6)

Estimated Effect 0.212 0.139 0.007 0.013 0.036 0.037
(0.060) (0.043) (0.038) (0.025) (0.029) (0.039)

R-squared 0.019 0.107 0.058 0.138 0.111 0.114

No. of controls 0 10 150 160 13 14
N

Estimated Effect 0.109 0.076 0.008 0.004 0.004 0.000
(0.026) (0.016) (0.029) (0.016) (0.017) (0.018)

R-squared 0.019 0.107 0.066 0.140 0.107 0.113

No. of controls 0 10 334 344 13 14
N

Estimated Effect 0.225 0.153 0.018 0.022 0.031 0.068
(0.046) (0.030) (0.047) (0.035) (0.032) (0.029)

R-squared 0.020 0.108 0.048 0.129 0.106 0.114

No. of controls 0 10 128 138 13 14
N

A. Private School Effects

14238
B. Effects of School Average SAT/100

14238

5583

9166

Basic Controls

None

Personal 
charac-
teristics

Barron's 
matches 

w/pers. char.

Self-revelation
Barron's 

matches only

14238

14238

14238

Notes: This table reports OLS estimates of the effect of college characteristics on graduate earnings, estimated with
various sets of controls. Estimates use College and Beyond sampling weights and cluster standard errors on
institution. Controls used for column 2 include graduates' SAT scores, log parental income, indicators for female,
black, Hispanic, Asian, other/missing race, high school top 10 percent, high school rank missing, and athlete.
Controls for estimates reported in Panel A, column 3 include 150 dummies (for 151 categories) indicating the
Barron's selectivity mix of schools to which graduates applied and were admitted. Controls for column 4 include
Barron's dummies and the personal characteristics used for column 2. The Barron's model in Panel B includes 334
dummies; the Barron's model in Panel C includes 128 dummies. Columns 5-6 models replace dummies for Barron's
selectivity groups with the average SAT score of schools applied to, along with indicators for applying to two, three,
and four or more schools.  

C. Effects of Attending Schools Rated Highly Competitive +

14238 4945
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Table 2: Post-Lasso Estimates of Elite College Effects

All controls
plugin (16) C.V. λ cvlasso plugin (16) C.V. λ cvlasso OLS

(1) (2) (3) (4) (5) (6) (7)

Estimate 0.038 0.020 0.040 0.046 0.043 0.042 0.017
(0.040) (0.039) (0.041) (0.041) (0.043) (0.043) (0.039)

No. of controls 18 100 112 10 35 50 303

Estimate ‐0.009 ‐0.013 ‐0.009 ‐0.008 ‐0.009 ‐0.008 ‐0.012
(0.020) (0.018) (0.019) (0.020) (0.019) (0.019) (0.018)

No. of controls 24 151 58 10 34 43 303

Estimate 0.068 0.051 0.073 0.076 0.080 0.082 0.053
(0.033) (0.033) (0.033) (0.031) (0.032) (0.032) (0.033)

No. of controls 17 185 106 10 34 43 303

Notes: The sample size is 14,238. Estimates in columns 1‐3 are from a post‐double‐selection (PDS) lasso procedure. Results in
columns 4‐6 are from a procedure applying lasso to a reduced‐form regression of the the outcome on the dictionary of controls.
Columns 1 and 4 show results using the Stata 16 lasso linear command to select controls with a plug‐in penalty, and OLS to
compute the estimates. Columns 2 and 5 use lasso linear with 10‐fold cross validation to select the penalty. Columns 3 and 6 use
Stata 15 (Lassopack) cvlasso to select the penalty, rlasso to select controls, and OLS to compute estimates. See the appendix for
detals. Column 7 reports OLS estimates including the entire set of controls. Controls include those used for column 5 of the
previous table plus the following: indicators for being accepted to two colleges, three colleges, and four or more colleges;
indicators for being rejected from one college, two colleges, three colleges, and four or more colleges; the number of schools
applied to; the average SAT score among schools at which the applicant was accepted; the average SAT score among schools from
which the applicant was rejected; the highest average SAT score across schools at which the applicant was accepted; the highest
average SAT score across schools from which the applicant was rejected; the lowest average SAT score among schools at which
the applicant was accepted; the lowest average SAT score among schools from which the applicant was rejected, and all two‐way
interactions of the above variables. The control dictionary contains 384 variables. OLS estimates use weights, and are reported
with robust standard errors clustered by institution.  All lasso commands use regressor‐specific penalty loadings.  

Double‐selection (PDS) Outcome selection

A. Private School Effects

B. Effects of School Average SAT/100

C. Effects of Attending Schools Rated Highly Competitive +
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Table 3: Angrist and Krueger (1991) Simulation Results

Estimator
Avg. IVs 
retained Bias

Standard 
deviation

Median abs. 
dev.

Median abs. 
error

Avg. IVs 
retained Bias

Standard 
deviation

Median abs. 
dev.

Median abs. 
error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OLS 0.107 0.0004 0.0003 0.1070
2SLS 180 0.0403 0.0108 0.0075 0.0397 1530 0.0611 0.0046 0.0032 0.0611
  Post-lasso IV (CV penalty) 74.0 0.0390 0.0120 0.0082 0.0384 99.0 0.0559 0.0084 0.0059 0.0560
  Post-lasso IV (plug-in penalty, IVs selected)* 2.1 0.0143 0.0346 0.0218 0.0279 1.6 0.0149 0.0367 0.0224 0.0271

Split-Sample IV 180 -0.0009 0.0237 0.0158 0.0158 1530 -0.0001 0.0164 0.0112 0.0115
  Post-lasso SSIV (CV penalty) 63.1 -0.0015 0.0258 0.0172 0.0173 63.0 -0.0013 0.0280 0.0183 0.0183
  Post-lasso SSIV (plug-in penalty, IVs selected)** 2.1 -0.0724 1.3168 0.0274 0.0287 3.4 0.0197 0.0504 0.0228 0.0292
  Post-lasso ( IV choice split only, CV penalty) 63.1 0.0429 0.0144 0.0097 0.0431 63.0 0.0460 0.0141 0.0093 0.0459

LIML 180 -0.0016 0.0185 0.0123 0.0124 1530 -0.0034 0.0117 0.0079 0.0083
  Post-lasso LIML (CV penalty) 74.0 0.0222 0.0152 0.0102 0.0220 99.0 0.0484 0.0094 0.0066 0.0483
  Post-lasso LIML (plug-in penalty, IVs selected)* 2.1 0.0126 0.0347 0.0221 0.0273 1.6 0.0138 0.0366 0.0221 0.0257
  Pretested LIML (t => 3.12 for 180, t=>2.3 for 1530) 18 0.0222 0.0236 0.0148 0.0238 153 0.0385 0.0163 0.0111 0.0393

0.0611 0.0047 0.0030 0.0612
0.0567 0.0065 0.0045 0.0567
-0.0003 0.0158 0.0109 0.0108
-0.0005 0.0158 0.0104 0.0103

cross-post lasso! (worse b/c N falls

Notes: The table describes simulation results for 999 Monte Carlo estimates of the economic returns to schooling using simulated samples constructed from the
Angrist and Krueger (1991) census sample of men born 1930-39 (N=329,509). The causal effect of schooling is calibrated to 0.1; the OLS estimand is 0.207. The
instruments used to compute the estimates described by columns 1-5 consist of 30 quarter-of-birth-by-year-of-birth and 150 quarter-of-birth-by-state-of-birth
interactions (average F-stat = 2.5, average concentration parameter = 270). The instruments used to compute the estimates described by columns 6-10 are quarter-
of-birth-by-year-of-birth-by-state-of-birth interactions (average F-stat = 1.7, average concentration parameter = 1050). All models include saturated year of birth by
state of birth controls. Columns 1 and 6 report the average number of instruments retained by lasso. Post-lasso estimates are computed as described in the
appendix. Split-Sample IV uses first stage coefficients estimated in one half-sample to construct a cross-sample fitted value used for IV in the other. Sample-
splitting procedures average results from complementary splits. Post-lasso with an IV-choice split only uses post-lasso in half the sample to pick instruments, doing
2SLS with these and own-sample fitted values in the other half. "Post-lasso LIML" is LIML using the instrument set selected by a post-lasso first stage. "Pretested
LIML" estimates are computed using conventional LIML, retaining only instruments with a first-stage t-statistic in the upper decile of t-statistics for the full set of
instruments.  Simulation sets choose lasso penalties once, using the original AK91 data.  Random forest routines are described in the appendix.
*The plug-in penalty generates a lasso first stage that includes no instruments in 11 simulation runs with 180 instruments and in 57 simulation runs with 1530
instruments. Statistics reported in these rows are for runs completed. 
**Post-lasso SSIV with a plug-in penalty picks zero instruments in 670 of 180-instrument runs, and in 893 of 1530-instrument runs. Statistics reported in these rows
are for runs completed.

1530 Instruments (QOB*YOB*POB; Average F=1.7)180 Instruments (QOB*YOB; POB*YOB; Average F=2.5)

Random forest first stage, 2SLS using RF fits as instruments (min leaf size=1)

Random forest first stage, SSIV  using RF fits as instruments (min leaf size =1)
  Random forest 2SLS, min leaf size = 800

  Random forest SSIV, min leaf size = 800
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Table 4: Simulation Results for Opening Weekend Effects

Avg. IVs 
retained Bias

Standard 
deviation

Median 
abs. dev.

Median 
abs. error

Avg. IVs 
retained Bias

Standard 
deviation

Median 
abs. dev.

Median 
abs. error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS -0.374 0.015 0.010 0.374
2SLS 52 -0.165 0.042 0.027 0.165 104 -0.239 0.034 0.022 0.238
 Post-lasso IV (CV penalty) 36.6 -0.160 0.054 0.029 0.163 58.2 -0.219 0.063 0.029 0.228
 Post-lasso IV (plug-in penalty) 12.2 -0.132 0.092 0.053 0.142 22.5 -0.150 0.095 0.067 0.159

Split-sample IV 52 0.053 0.568 0.095 0.093 104 -0.109 6.610 0.134 0.134
LIML 52 0.007 0.089 0.057 0.057 104 0.009 0.104 0.064 0.065

poivregress (fixed # of controls)
 Some IVs selected 1.32 -0.133 0.084 0.053 0.137 1.26 -0.145 0.077 0.050 0.143
 No IVs selected* 0 -0.287 0.360 0.198 0.316 0 -0.291 0.352 0.189 0.325
poivregress (high-dim controls)
 Some IVs selected (15-16  ctls retained) 1.22 -0.096 0.108 0.069 0.107 1.22 -0.098 0.104 0.068 0.106
 No IVs selected** (49-50 ctls retained) 0 -1.58 18.5 0.354 0.477 0 -1.90 19.5 0.375 0.477

Original plus 52 noise instruments (F=2.06)

Notes: The table reports simulation results for 999 Monte Carlo estimates of the effect of opening weekend ticket sales on second weekend ticket sales
using simulated samples constructed from the data used by Gilchrist and Sands (2016) (N=1,671). The causal effect of interest is calibrated to 0.6.
Columns 1-5 show results using the original instruments. Columns 6-10 report the results of adding 52 randomly generated (standard uniform)
instruments to the original 52-instrument dictionary. Lasso estimates are computed after partialing out included exogenous covariates. Post-lasso IV
estimates are computed as described in the appendix. Split-Sample IV uses first stage coefficients estimated in one half-sample to construct a cross-
sample fitted value used for IV in the other. Sample-splitting procedures average results from complementary splits.  
*poivregress reports estimates with zero instruments selected in 640 of 999 runs for the original 52-instrument set and in 741 of 999 runs using the 104
instrument set.
**poivregress with high-dimensional controls reports estimates with zero instruments selected in 141 of 999 runs for the original 52-instrument set and
in 132 of 999 runs using the 104 instrument set. In 372 runs with 52 instruments and 409 runs with 104 instruments, this version of poivregress selects
zero instruments and reports an estimate of zero.

Original Instruments (F=2.85)

Estimator
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Table 5: IV Estimates After Random Forest Partialing

Samesex Artificial
2SLS 2SLS Leaf 10 Leaf 100 Leaf 800 Leaf 10 Leaf 100 Leaf 800
(1) (2) (3) (4) (5) (6) (7) (8) 

More than 2 children 0.0676*** -0.0066* -0.0051*** -0.0096*** -0.0144*** 0.0804*** 0.0838*** 0.0868***
(0.0018) (0.0031) (0.0012) (0.0009) (0.0007) (0.0234) (0.0123) (0.0067)

Employment -0.118*** -0.035 -1.240*** -1.073*** -1.084*** 0.046 -0.077 -0.115
(0.028)          (0.504) (0.349) (0.135) (0.065) (0.342) (0.168) (0.086)

Weeks worked -5.277*** -4.939 -51.45*** -43.44*** -43.15*** 0.153 -2.042 -3.590
(1.233) (21.80) (14.61) (5.584) (2.670) (14.86) (7.354) (3.737)

Hours/week -4.822*** -22.53 -49.17*** -38.58*** -32.68*** 0.792 -2.790 -4.966
(1.037) (19.73) (13.66) (5.083) (2.288) (13.23) (6.494) (3.259)

More than 2 children -0.0108*** -0.0173*** -0.0169*** 0.572*** 0.370*** 0.239***
(0.0028) (0.0017) (0.0007) (0.0200) (0.0107) (0.0066)

Employment -0.0824 -0.451*** -0.655*** -0.110** -0.123*** -0.118***
(0.286) (0.112) (0.0501) (0.0402) (0.0323) (0.0314)

Weeks worked -8.013 -23.70*** -27.96*** -4.484** -5.344*** -5.267***
(12.33) (4.858) (2.101) (1.731) (1.406) (1.350)

Hours/week -19.44 -19.78*** -21.76*** -4.595** -5.257*** -4.954***
(11.11) (4.379) (1.873) (1.488) (1.189) (1.155)

Notes: This table reports 2SLS and random forest IV estimates of the effect of having more than two children on the outcome variables listed at left.
Covariates include mother’s age, mother’s age at first birth, the sex and age of each of the first two children, and three race indicators. Columns 1 and 2
show conventional 2SLS estimates computed using samesex and the artifical instrument described in the text. Columns 3-5 report artificial IV estimates
after partialing covariates from the outcome variable, the endogenous variable, and the instrument using separate random forests. Columns 6-8 report the
same sort of results using the samesex instrument. Estimates in Panel A use rforest in Stata; Estimates in Panel B use regression_forest, from the grf
package for R provided by Athey, Wager and Tibshirani (2018). Random forests have 100 trees. regression_forest trees are grown on 5% sub-samples.
The sample includes married women from the 1980 PUMS aged 21-35 with two or more children. The sample size in all columns is 254,652. (* p<.05,
** p<.01, *** p<.001)

Random Forest
Artificial RF Samesex RF

A. rforest

B. regression_forest
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Figure 1: Random Forest Residuals are Correlated with Covariates
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Note: The figure plots residuals from random forest and least squares fits of an artificial instrument on a linear function of covariates.
The covariate list contains mother’s education, mother’s age, mother’s age at first birth, an indicator for the sex of each of the first two
children, ages of the first two (in quarters), and three race indicators (black, Hispanic and other race). The artificial instrument is the sum
of mother’s age and education plus uniform (0,1) noise. Plotted points are averages conditional on the value of mother’s age + education.
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Appendix

We experimented with lasso commands in Stata 16, documented in Stata (2019), the Lassopack routines for

Stata 15 documented in Ahrens, Hansen and Schaffer (2019), and the Elasticregress routines for Stata 15

documented in Townsend (2017). Different routines default to or allow the user to select different sorts of

penalties. As in Belloni, Chernozhukov and Hansen (2013) and related work, our estimates use two types

of penalty terms, one a Bickel et al. (2009)-type (BRT) plug-in penalty, described in Belloni, Chernozhukov

and Hansen (2014b), another using cross-validation. Each lasso estimation procedure has 3 parts: penalty

selection; lasso estimation (to select controls or instruments); final estimation. Stata 16 lasso commands

applied to problems other than estimation of elite college effects proved slow and, in some cases, numerically

unstable, as documented in Table 3. This led us to Lassopack and Elasticregress for lasso estimation with

large samples and/or high dimensional controls and instruments. Random forest estimates reported in Table

3 were computed in Stata; those in Table 5 use Stata and R.

Table 2: Post-Lasso Estimates of Elite College Effects

The sample size is 14,238. Estimates in columns 1-3 are from a post-double-selection (PDS) lasso procedure.

Results in columns 4-6 are from a procedure applying lasso to a reduced-form regression of the outcome on

the dictionary of controls. Controls include those used for the “self-revelation” model in Table 1 plus the

following: indicators for being accepted to two colleges, three colleges, and four or more colleges; indicators

for being rejected from one college, two colleges, three colleges, and four or more colleges; the number of

schools applied to; the average SAT score among schools at which the applicant was accepted; the average

SAT score among schools from which the applicant was rejected; the highest average SAT score across schools

at which the applicant was accepted; the highest average SAT score across schools from which the applicant

was rejected; the lowest average SAT score across schools at which the applicant was accepted; the lowest

average SAT score across schools from which the applicant was rejected, and all two-way interactions and

squared terms associated with the underlying list of possible controls. The dictionary of controls includes

384 variables, of which 303 are linearly independent. Penalties are computed once, using the original AK91

sample. Computational details are as follows:

• Columns 1 and 4 (Plug-in penalties)

– Penalty: Uses Stata 16 lasso linear command to select controls, specifying a plug-in penalty,

lasso linear log-income ’dictionary-of-controls’ [sampling weights ],selection(plugin,het)

lasso linear elitetreatment ’dictionary-of-controls’ [sampling weights ],selection(plugin,het)

– Lasso (control selection): Uses lasso linear as specified above.

– Final estimates: Least squares regression of the outcome on the elite school variable, controlling

for the variables selected by lasso (as needed for PDS and single selection), using College and
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Beyond sampling weights, with standard errors clustered at the institution level.

• Columns 2 and 5 (Cross-validated penalties)

– Penalty: Computed using lasso linear to select controls using 10-fold cross-validation, which

is the default in this case,

lasso linear log-income ’dictionary-of-controls’ [sampling weights ]

lasso linear elitetreatment ’dictionary-of-controls’ [sampling weights ]

– Lasso (control selection): Uses lasso linear as specified above.

– Final estimates: Least squares regression of the outcome on elite school variables, controlling

for the variables selected by lasso (as needed for PDS and single selection), using College and

Beyond sampling weights, with standard errors clustered at the institution level.

• Columns 3 and 6 (Cross-validated penalties using cvlasso)

– Penalty: Computed using the Lassopack command cvlasso. This yields a cross-validated MSE-

minimizing penalty level, λCV . Lassopack rlasso was also used to compute the default plug-

in penalty, λdefault, specifying institutional weights and clustering (clustering induces robust,

covariate-specific penalty loadings following Belloni, Chernozhukov and Hansen 2014b). A cross-

validated penalty scaling factor is then computed as cCV = 1.1λCV /λdefault. The factor 1.1

arises because the default scaling factor in rlasso is 1.1.

– Lasso (control selection): Uses rlasso, with cCV replacing c = 1.1, specifying weights and

clustering at the institution level.

– Final estimates: Least squares regression of the outcome on elite school variables, controlling

for the variables selected by lasso (as needed for PDS and single selection), using College and

Beyond sampling weights, with standard errors clustered at the institution level.

Appendix Table A1: Alternative Post-Lasso Estimates of Elite College Effects

This table reports estimates using Lassopack command rlasso and Elasticregress command lassoregress.

• Columns 1, 5, and 9 use rlasso and a plug-in penalty

– Penalty: Computed using Lassopack rlasso with default plug-in penalty, specifying weights

and clustering by institution.

– Lasso (control selection): Uses rlasso with regressor-specific penalty loadings.
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– Final estimates: Least squares regression of the outcome on elite school variables, controlling

for the variables selected by Lasso, using College and Beyond sampling weights, with standard

errors clustered at the institution level.

• Remaining columns use the Elasticregress command lassoregress and cross-validated penalties done

three ways

– Penalty: Computed via 10-fold cross validation as implemented in lassoregress, specifying

institutional weights. Columns 2, 6, and 10 use the default cross-validated penalty, which min-

imizes cross-validated MSE. Columns 3, 7, and 11 specify the option ,lambda1se, which uses

the largest penalty such that the cross-validated MSE is within one standard deviation of the

minimum. Columns 4, 8, and 12 calculate the penalty as 10 times the default.

– Lasso (control selection): Estimated by the lassoregress command call that computes penal-

ties.

– Final estimates: Least squares regression of the outcome on elite school variables, controlling

for the variables selected by Lasso, using College and Beyond sampling weights, with standard

errors clustered at the institution level.

Elite college effects computed using the R-based package glmnet (Friedman, Hastie and Tibshirani, 2010)

are similar to those reported in Tables A1 and 2. When applied to estimate the propensity score, however,

the number of controls retained under glmnet-determined cross-validated penalties is generally much larger

than the number of controls retained by Lassopack and Elasticregress. This is the result of a smaller penalty

chosen for equation (16); glmnet lasso with cvlasso-determined penalties behaves like the Stata lasso routines,

as does glmnet lasso on the PDS reduced form, equation (17).

Table 3: Angrist and Krueger (1991) Simulation Results

For estimates using the large AK91 sample with many fixed effects, Lassopack was faster and appeared to

be more stable than Stata 16’s poivregress (used for Table 4 and described below)

• Penalty: Lasso estimates computed with a plug-in penalty use Lassopack ivlasso with default param-

eters. Estimates using cross-validated penalties were computed using Lassopack cvlasso as applied

to a first-stage equation, specifying the option ,fe to control for a full set of state-of-birth and year-

of-birth interactions. A scaling factor for ivlasso is then computed as described for Table 2, above.

• Lasso (instrument selection): Computed using Lassopack routine ivlasso controlling for state-of-

birth and year-of-birth interactions via the ,fe option. Estimates using plug-in penalties use Las-

sopack ivlasso defaults. Estimates using cross-validated penalties employ the scaling adjustment

described for the cvlasso estimates reported in Table 2. Note that ivlasso computes first stage

estimates by calling rlasso.
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• Final estimates: Computed via post-lasso 2SLS using ivlasso.

LIML estimates were computed using Stata ivregress liml. Lassoed versions of LIML use the instrument

lists chosen for post-lasso 2SLS. Pretested LIML estimates use the instrument list described in the text.

SSIV estimates split the sample in equal-sized halves randomly. One half-sample is used to estimate first

stage parameters by OLS; these are carried over to the second half to compute cross-sample fitted values.

Cross-sample fitted values and covariates are used to compute second-stage parameters using ivregress.

The sample halves are then swapped, and the two resulting estimates averaged.

Post-lasso LIML estimates use the instruments chosen for post-lasso 2SLS. Post-lasso SSIV recomputes

the lasso first stage in each half sample.

Random forest IV estimates in this table use Stata’s rforest command (documented in Schonlau (2019))

to fit the first stage, with predictors YOB, POB, and QOB. Random forest estimates were computed with a

minimum leaf size of 1 and 800, averaging results from 100 trees with no maximum depth (these are rforest

defaults; Oshiro, Perez and Baranauskas 2012 finds little payoff to more trees). The number of variables

randomly investigated is equal to the square root of the number of right-hand-side variables (also a default

setting). Random forest 2SLS uses random forest fitted values as excluded instruments, in a model with

saturated control for year of birth and state of birth. Random forest SSIV fits the first stage with Stata

command rforest in half the sample, assigning cross-sample fitted values to the relevant cells in the other

half. Second-stage estimates are then obtained using these cross-fitted fitted values as instruments with

saturated YOB-by-POB controls. As with the other SSIV estimates in the table, random forest SSIV swaps

half samples and averages the resulting second-stage estimates from each.

Table 4: Simulation Results for Opening Weekend Effects

These simulations link a film’s opening weekend ticket sales to subsequent ticket sales. OLS estimates are

from a regression of second-weekend ticket sales on opening weekend ticket sales, controlling for year, week-

of-year, day-of-week, and holiday dummies, as well as a set of second-weekend weather controls that includes

indicators for the maximum temperature in 10-degree increments and indicators for rain, snow, and indicators

for average precipitation in quarter inches per hour. 2SLS estimates (computed by ivregress 2sls) in

columns 1-5 include the same exogenous controls used for OLS, with a set of 52 opening-weekend weather

indicators used as excluded instruments. Estimates in columns 6-10 these instruments plus an additional 52

uniform noise instruments. Lasso estimates were computed as follows:

• Penalty: Lasso estimates computed with a plug-in penalty use Lassopack ivlasso with default pa-

rameters, partialing controls using the Lassopack ,partial() option. Estimates using cross-validated

penalties were computed using Lassopack cvlasso with opening-weekend ticket sales as the depen-

dent variable and the controls and instruments as explanatory variables, partialing controls using the

,partial() option. This yields the cross-validated MSE-minimizing penalty level, λCV . A scaling

56



factor, cCV , is then computed as described for Table 3, above. Penalties are recomputed for each

simulation draw.

• Lasso (instrument selection): Computed using Lassopack ivlasso, with controls partialed via the

,partial() option, using the scaling factor computed as described for Table 3, above.

• Final estimates: Computed via post-lasso 2SLS using ivlasso.

LIML estimates were computed using ivregress liml. SSIV estimates split the sample in equal-sized

halves randomly. One half-sample is used to estimate first stage parameters by OLS; these are carried over

to the second half to compute cross-sample fitted values. Cross-sample fitted values and covariates are used

to compute second-stage parameters using ivregress. The sample halves are then swapped, and the two

resulting estimates are averaged.

The bottom four rows show results generated using Stata 16’s poivregress command with the default

plug-in penalty. This command is described on page 5 of Stata (2019) as

....partialing-out lasso instrumental-variables linear regression. This command estimates coeffi-

cients, standard errors, and confidence intervals and performs tests for variables of interest, both

exogenous and endogenous, while using lassos to select from among potential control variables

and instruments.

In models with a fixed number of controls, we computed poivregress estimates using the command

poivregress week2tickets ‘low-dim exogenous vars’ (week1tickets =‘high-dim instruments’),vce(robust).

For poivregress estimates treating controls as high dimensional, we used

poivregress week2tickets (week1tickets =‘high-dim instruments’), controls(‘high-dim exogenous vars’) vce(robust).

Pages 267-8 of Stata (2019) described the multi-step sequence of regression and post-lasso partialing imple-

mented by this command. The fact that poivregress reports IV estimates with no instruments retained

appears to be an artifact of numerical imprecision in the construction of first-stage residuals computed at

the final partialing step.

Figure 6 and Table 5: IV Estimates After Random Forest Partialing

These exhibits use the Angrist and Evans (1998) sample of married women from the 1980 Census. Random

forest partialing for Figure 6 uses the Stata rforest command discussed in the context of Table 3. Estimates

in Table 5 use rforest and the regression_forest command contained in the Generalized Random Forest

(GRF) software package referenced by Athey, Tibshirani and Wager (2019). Residuals plotted in the figure
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and used as instruments were computed using leaf sizes indicated in legends and column headings. GRF

parameter settings mostly equal to those use by Athey, Tibshirani and Wager (2019). The number of variables

randomly investigated is equal to the square root of the number of right-hand-side variables plus 20, with a

subsample rate of 5 percent. Our implementation computes 100 trees. We obtained similar estimates using

much larger numbers of trees. GRF regression_forest reports leave-out fitted values, as suggested by

Athey, Tibshirani and Wager (2019).
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Table A1: Alternative Post-Lasso Estimates of Elite College Effects

plug‐in (15) C.V. λ 1 S.E. λ 10xC.V. λ plug‐in (15) C.V. λ 1 S.E. λ 10xC.V. λ plug‐in (15) C.V. λ 1 S.E. λ 10xC.V. λ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Estimate 0.055 0.021 0.023 0.037 0.058 0.021 0.021 0.048 0.205 0.039 0.040 0.035
(0.041) (0.039) (0.038) (0.041) (0.062) (0.040) (0.039) (0.054) (0.050) (0.042) (0.041) (0.041)

Treatment residual s.d 0.339 0.304 0.308 0.330 0.339 0.305 0.308 0.332 0.492 0.333 0.335 0.356

No. of controls 6 107 91 27 5 93 86 25 1 34 10 2

Estimate ‐0.014 ‐0.014 ‐0.015 ‐0.014 ‐0.028 ‐0.009 ‐0.009 ‐0.015 0.111 ‐0.013 ‐0.009 ‐0.018
(0.023) (0.018) (0.019) (0.020) (0.027) (0.020) (0.021) (0.021) (0.018) (0.020) (0.021) (0.017)

Treatment residual s.d 0.414 0.390 0.391 0.409 0.415 0.393 0.393 0.409 0.943 0.411 0.414 0.528

No. of controls 15 90 64 15 14 71 61 14 1 34 6 2

Estimate 0.079 0.057 0.050 0.073 0.076 0.054 0.052 0.075 0.220 0.076 0.079 0.063
(0.029) (0.034) (0.034) (0.032) (0.043) (0.034) (0.035) (0.037) (0.036) (0.033) (0.031) (0.030)

Treatment residual s.d 0.342 0.289 0.288 0.330 0.342 0.289 0.288 0.332 0.470 0.335 0.337 0.357

No. of controls 8 106 82 30 7 88 79 28 1 34 6 2

A. Private School Effects

B. Effects of School Average SAT/100

C. Effects of Attending Schools Rated Highly Competitive +

Notes: This table reports estimates computed using alternative lasso routines. Estimators are as described in the note to Table 2. Columns 1, 5, and 9 use the default
plug‐in penalty implemented in Lassopack rlasso; these estimates (like those in Table 2) use regressor‐specific penalty loadings. Columns 2, 6, and 10 use a cross‐
validated penalty, as implemented in the Elasticregress lassoregress command (see Townsend, 2018); these estimates standardize regressors but omit regressor‐specific
penalty loadings. Columns 3, 7, and 11 use the largest penalty such that the cross‐validated mean squared error is within one standard error of the minimum cross‐
validated mean squared error, a variation implemented in lassoregress. Hastie, Tibishrani, and Wainwright (2016) suggest this modification. Columns 4, 8, and 12 use a
penalty equal to 10 times the cross‐validated penalty used for columns 2, 6, and 10.  

Treatment (score) selectionDouble‐selection (PDS) Outcome selection
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