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1 Introduction

This paper considers the problem of forecasting a large collection of short time series with

censored observations. In the empirical application we forecast charge-off rates on loans for

a panel of small banks. The prediction of charge-off rates is interesting from a regulator’s

perspective because charge-offs generate losses on loan portfolios. If these charge-offs are

large, the bank may be entering a period of distress and require additional capital. Due to

mergers and acquisitions, changing business models, and changes in regulatory environments

the time series dimension that is useful for forecasting is often short. The general methods

developed in this paper are not tied to the charge-off rate application and can be used in

any setting in which a researcher would like to analyze a panel of censored data with a large

cross-sectional and a short time-series dimension.

In a panel data setting, we often capture cross-sectional heterogeneity in the data with

unit-specific parameters. The more precisely these heterogeneous coefficients are estimated,

the more accurate are the forecasts. The challenge in forecasting panels with a short time

dimension is that they do not contain a lot of information about unit-specific parameters.

A natural way of adding information to the estimation of the unit-specific parameters is

through the use of prior distributions. For each time series, the prior information can be

combined with the unit-specific likelihood function to form a posterior. From a Bayesian

perspective the posterior distribution then can be used to derive a forecast that minimizes

posterior expected loss. From a frequentist perspective one obtains a forecast that will have

some bias, but in a mean-squared-error sense, the resulting reduction in sampling variance

might dominate the introduction of bias. The key insight in panel data applications is that

in the absence of any meaningful subjective prior information, one can extract information

from the cross section and equate the prior distribution with the cross-sectional distribution

of unit-specific coefficients.

There are several ways of implementing this basic idea. An empirical Bayes imple-

mentation creates a point estimate of the cross-sectional distribution of the heterogeneous

coefficients and then condition the subsequent posterior calculations on the estimated prior

distribution.1 In fact, the classic James-Stein estimator for a vector of means can be inter-

preted as an estimator constructed as follows. In the first step a prior is generated by fitting

a normal distribution to a cross-section of observations. In a second step, this prior is then

1Empirical Bayes methods have a long history in the statistics literature going back to Robbins (1956);
see Robert (1994) for a textbook treatment.
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combined with the unit-specific likelihood function to generate a posterior estimate of the

unknown mean for that unit. In a panel setting the implementation is more involved but

follows the same steps. If the model is linear in the coefficients and the forecast is evalu-

ated under a quadratic forecast error loss function, then Tweedie’s formula, which expresses

the posterior mean of the heterogeneous coefficients as the maximum likelihood estimate

corrected by a function of the cross-sectional density of sufficient statistic, can be used to

construct a forecast without having to explicitly estimate a prior distribution for the hetero-

geneous coefficients. This insight has been recently used by Brown and Greenshtein (2009),

Gu and Koenker (2017a,b), and Liu, Moon, and Schorfheide (2019).

Unfortunately, Tweedie’s formula does not extend to nonlinear panel data models. Thus,

rather than pursuing an Empirical Bayes strategy, we will engage in a full Bayesian anal-

ysis by specifying a hyperprior for the distribution of heterogeneous coefficients and then

constructing a joint posterior for the coefficients of this hyperprior as well as the actual

unit-specific coefficients. While the computations are more involved, this approach can in

principle handle quite general nonlinearities. Moreover, it is possible to generate point pre-

dictions under more general loss functions, as well as interval and density forecasts. For a

linear panel data model, a full Bayesian analysis is implemented by Liu (2018).

The contributions of our paper are threefold. First, we extend the implementation of the

full Bayesian estimation in Liu (2018) to the dynamic panel Tobit model with heteroskedastic

innovations and correlated random effects. Second, in regard to interval forecasting, we

construct forecasts that target average posterior coverage probability across all units in our

panel instead of pointwise coverage probability for each unit. These forecasts are obtained

from highest posterior density sets that are constructed using the same threshold for each

unit instead of unit-specific thresholds. Because the predictive distributions associated with

the Tobit models are mixtures of discrete and continuous distributions, interval forecasts may

also take the form of the union of an interval and the value zero or simply the value zero

(singleton). For this reason we will refer to these forecasts as set instead of interval forecasts

throughout this paper. Both in the Monte Carlo study and the empirical application the

proposed Bayesian set forecasts have good frequentist coverage properties in the cross-section.

This basic insight has been used in the literature on nonparametric function estimation and

dates back to Wahba (1983) and Nychka (1988).

Third, we present a novel application in which we forecast bank-level charge-off rates.

Our empirical analysis is based on more than 100 short panel data sets with a time dimension

of T = 10. These panel data sets include predominantly credit card (CC) and residential
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real estate (RRE) loans and cover various (overlapping) time periods. For each data set,

we consider several model specifications that differ with respect to assumptions about the

correlation between heterogeneous coefficients and initial conditions (random versus corre-

lated random effects), heterogeneity in the variances of the error terms (homoskedasticity

versus heteroskedasticity) and the distributional assumptions about the distribution of the

heterogeneous coefficients (Normal versus flexible). The model with flexibly modeled corre-

lated random effects and heteroskedasticity serves as a benchmark. We conduct a variety

of posterior predictive checks to document that this model is able to capture the salient

features of our data.

We compare Bayesian density, set, and point forecasts for the various specifications.

Forecasts from a Tobit model that allows for heterogeneous coefficients, clearly dominate

forecasts from a model that imposes homogeneity. Modeling heteroskedasticity improves

the density and set forecasts substantially. Set forecasts are evaluated based on average (in

the cross section) length and coverage probability. We show how to construct Bayesian set

forecasts that target average posterior coverage probability in the cross section. With respect

to average length, these forecasts dominate traditional set forecasts that are constructed by

targeting pointwise posterior coverage probability. Our empirical model includes local house

prices and unemployment rates as additional predictors. The estimated effects of these

predictors in the benchmark specification are qualitatively and quantitatively plausible.

Our paper relates to several branches of the literature. The papers most closely related

are Gu and Koenker (2017a,b), Liu (2018), and Liu, Moon, and Schorfheide (2019). All four

of these papers focus on the estimation of the heterogeneous coefficients in linear panel data

models and the subsequent use of the estimated coefficients for the purpose of prediction.

Only the full Bayesian analysis in Liu (2018) has a natural extension to nonlinear models.

Liu, Moon, and Schorfheide (2019), building on Brown and Greenshtein (2009), show that

an empirical Bayes implementation based on Tweedie’s formula can asymptotically (as the

cross-sectional dimension tends to infinity) lead to forecasts that are as accurate as the so-

called oracle forecasts. Here the oracle forecast is an infeasible benchmark that assumes that

all homogeneous coefficients, as well as the distribution of the heterogeneous coefficients, are

known to the forecaster. Liu (2018) shows that the predictive density obtained from the full

Bayesian analysis converges strongly to the oracle’s predictive density as the cross-section

gets large.

There is a Bayesian literature on the estimation of censored regression models. The

idea of using data augmentation and Gibbs sampling to estimate a Tobit model dates back
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to Chib (1992). To sample the latent uncensored observations we rely on an algorithm

tailored toward dynamic Tobit models by Wei (1999). Sampling from truncated normal

distributions is implemented with a recent algorithm of Botev (2017). Our benchmark

model is most closely related to the Bayesian semiparametric panel Tobit model of Li and

Zheng (2008). They used their model to study female labor supply and estimated average

partial effects and average transition probabilities. We generalize Li and Zheng’s model by

introducing heteroskedasticity through a latent unit-specific error variance and allowing for a

more flexible form of correlated random effects. As mentioned previously, the former is very

important for the density and set forecast performance. A broader survey of the literature on

Bayesian estimation of univariate and multivariate censored regression models can be found

in the handbook chapter by Li and Tobias (2011).

We model the unknown distribution of the heterogeneous coefficients (intercepts and

innovation variances) as Dirichlet process mixtures of Normals. Even though we do not

emphasize the nonparametric aspect of this modeling approach (due to a truncation, our

mixtures are strictly speaking finite and in that sense parametric), our paper is related to

the literature on nonparametric density modeling using Dirichlet process mixtures (DPM).2

Examples of papers that use DPMs in the panel data context are Hirano (2002), Burda and

Harding (2013), Rossi (2014), and Jensen, Fisher, and Tkac (2015). The implementation of

our Gibbs sampler relies on Ishwaran and James (2001, 2002). If we restrict the number of

mixture components to be equal to one, then we obtain a Normal correlated random effects

model as a special case.

The remainder of this paper is organized as follows. Section 2 presents the specification

of our dynamic panel Tobit model, a characterization of the posterior predictive distribution

for future observations, and discusses the construction and evaluation of point, density,

and set forecasts. Section 3 provides details on how we model the correlated random effects

distribution and heteroskedasticity. It also presents the prior distributions for the parametric

and flexible components of the model, and outlines a posterior sampler. We conduct a Monte

Carlo experiment in Section 4 to examine the performance of the proposed techniques in a

controlled environment. The empirical application in which we forecast charge-off rates on

various types of loans for a panel of banks is presented in Section 5. Finally, Section 6

concludes. A description of the data sets, additional empirical results, and some derivations

are relegated to the Online Appendix.

2Keane and Stavrunova (2011) introduce a smooth mixture of Tobits to model a cross-section of healthcare
expenditures. Our model is related, but different in that we are using a DPM to average across different
intercept values and innovation variances.
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2 Model Specification and Forecast Evaluation

Throughout this paper we consider the following dynamic panel Tobit model with heteroge-

neous intercepts and innovation variances:

yit = y∗itI{y∗it ≥ 0}, y∗it|(y∗it−1, xit, λi, σ2
i , ρ, β) ∼ N

(
λi + ρy∗it−1 + β′xit, σ

2
i

)
, (1)

where i = 1, . . . , N , t = 1, . . . , T , and I{y ≥ a} is the indicator function that is equal to one

if y ≥ a and equal to zero otherwise. The nx × 1 vector xit comprises a set of regressors

and we define the homogeneous parameter θ = [ρ, β′]′. It is assumed that conditional on

the heterogenous parameters and the regressors xit the observations yit are cross-sectionally

independent. Our specification uses the lagged latent variable y∗it−1 on the right-hand side

because it is more plausible for our empirical application. The Bayesian computations de-

scribed in Section 3.2 below can be easily adapted to the alternative model, in which the

lagged censored variable yit−1 appears on the right-hand side.

We model the heterogeneous parameters as correlated random effects (CRE) with density

p(λi, y
∗
i0, σ

2
i |xi0, ξ),

assuming cross-sectional independence of the heterogeneous coefficients.3 Here ξ is the pa-

rameter vector that indexes the CRE distribution, which we flexibly represent by a mixture

of Normal distributions. The model is completed with the specification of a prior distribution

for
(
θ, ξ
)
. In the remainder of this section, we will discuss the posterior predictive density in

Section 2.1, point and density forecasting in Section 2.2, and the construction and evaluation

of set forecasts in Section 2.3.

2.1 Posterior Predictive Densities

Our goal is to generate forecasts of Y1:N,T+h =
{
y1,T+h, . . . , yN,T+h} conditional on the ob-

servations

Y1:N,0:T =
{

(y10, . . . , yN0), . . . , (y1T , . . . , yNT )
}

X1:N,0:T+h =
{

(x10, . . . , xN0), . . . , (x1T+h, . . . , xNT+h)
}
.

3In principle the conditional distribution of (λi, y
∗
i0, σ

2
i ) could also depend on xit for t > 0, but in our

applications we simply condition on the initial value of the regressors.
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Because y∗it+h depends on xit+h we are implicitly assuming that the sequence X1:N,T+1:T+h is

known once the forecast is made. In our application we focus on h = 1-step-ahead forecasts

and define xit as house price growth and unemployment growth in period t− 1.

Define λ1:N = (λ1, . . . , λN) and σ2
1:N = (σ2

1, . . . , σ
2
N). Assuming that X1:N,T+1:T+h contains

no information about (λ1:N , σ
2
1:N , θ, ξ) and is strictly exogenous, we can write the posterior

distribution of the parameters and time-T latent variables as

p
(
Y ∗1:N,T , λ1:N , σ

2
1:N , θ, ξ|Y1:N,0:T , X1:N,0:T+h

)
(2)

∝
[ N∏
i=1

∫
p(Yi,1:T |Y ∗i,1:T )p

(
Y ∗i,1:T |y∗i,0, Xi,1:T , λi, σ

2
i , θ
)

×p(yi0|y∗i0)p
(
λi, y

∗
i0, σ

2
i |xi0, ξ

)
· dY ∗i,0:T−1

]
p(θ)p(ξ),

where ∝ denotes proportionality. Here, p(Yi,1:T |Y ∗i,1:T ) and p(yi0|y∗i0) represent the censoring

(in slight abuse of notation). The distribution of yit|y∗it is a unit point mass that is located at

0 if y∗it ≤ 0 or at y∗it if y∗it > 0. The density p(Y ∗i,1:T |·) can be derived from (1), p(λi, y
∗
i0, σ

2
i |·)

is the CRE density, and p(θ) and p(ξ) are priors for θ and ξ, respectively.

The posterior predictive distribution for unit i is given by

p(yiT+h|Y1:N,0:T , X1:N,0:T+h) (3)

=

∫ ∫ ∫
p(yiT+h|y∗iT+h)p

(
y∗iT+h|y∗iT , Xi,T+1:T+h, λi, σ

2
i , θ
)

×p
(
y∗iT , λi, σ

2
i , θ, ξ|Y1:N,0:T , X1:N,0:T+h

)
· dy∗iT · d(λi, σ

2
i ) · d(θ, ξ).

Draws from the density p(y∗iT+h|y∗iT , Xi,T+1:T+h, λi, σ
2
i , θ) can be generated by forward simu-

lation of the autoregressive law of motion for y∗it in (1). Using decision-theoretic arguments,

one can derive point and set forecasts from the predictive density p(yiT+h|Yi,0:T , Xi,0:T+h).

To simplify the notation, we will drop X1:N,0:T+h from the conditioning set in the remain-

der of this section. We denote expectations and probabilities under the posterior predictive

distribution by EyiT+h

Y1:N,0:T
[·] and PyiT+h

Y1:N,0:T
{·}, respectively. More generally, we use subscripts to

denote the conditioning set and superscripts to denote the random variables over which the

operators integrate.

The predictive distribution is a mixture of a point mass at zero and a continuous distri-



This Version: December 10, 2019 7

bution for realizations of yiT+h that are greater than zero:

p(yiT+h|Y1:N,0:T ) = PyiT+h

Y1:N,0:T
{yiT+h = 0}δ0(yiT+h) + pc(yiT+h|Y1:N,0:T )I{yiT+h ≥ 0}. (4)

Here δ0(y) is the Dirac function with the property δ0(y) = 0 for y 6= 0 and
∫
δ0(y)dy = 1.

The density pc(yiT+h|Y1:N,0:T ) represents the continuous part of the predictive distribution.

2.2 Point and Density Forecasts

Point forecasts are evaluated under the quadratic compound loss function

LN(Ŷ1:N,T+h|T , Y1:N,T+h) =
1

N

N∑
i=1

(ŷiT+h − yiT+h)2.

The posterior risk associated with a particular model specification M is given by

RN(Ŷ1:N,T+h|T , Y1:N,T+h) =
1

N

N∑
i=1

Eyi,T+h

Y1:N,0:T

[
(ŷi,T+h|T − yiT+h)2|M

]
and minimized by the posterior mean forecasts

ŷoi,T+h|T (M) = EyiT+h

Y1:N,0:T
[ŷiT+h|M ], i = 1, . . . , N.

In the Monte Carlo study and the empirical application we report the root mean squared

error (RMSE)

RMSEh(M) =
√
LN
(
Ŷ o
1:N,T+h|T (M), Y1:N,T+h

)
. (5)

To compare the density forecast performance of various model specifications M we report

the average log predictive scores

LPSh(M) =
1

N

N∑
i=1

ln
(
I{yiT+h = 0} · PyiT+h

Y1:N,0:T
{yiT+h = 0|M} (6)

+I{yiT+h > 0}p(yiT+h|Y1:N,0:T )
)

and contiuous ranked probability scores (CRPSs). The CRPS measures the L2 distance

between the cumulative density function F
yiT+h

Y1:N,0:T
(y|M) associated with p(yiT+1|Y1:N,1:T ) and
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a “perfect” density forecasts which assigns probability one to the realized yiT+h. Then,

CRPSh(M) =
1

N

N∑
i=1

∫ ∞
0

(
F
yiT+h

Y1:N,0:T
(y|M)− I{yiT+h ≤ y}

)2
dy. (7)

Both LPS and CRPS are proper scoring rules, meaning that it is optimal for the forecaster

to truthfully reveal her predictive density.

2.3 Constructing and Evaluating Set Forecasts

We construct set forecasts Ci,T+h|T (Y1:N,0:T ) from the posterior predictive distribution p(yiT+h|Y1:N,0:T )

in (3). We consider the following types of set forecasts:

{0}, [0, bi], {0} ∪ [ai, bi], ∅. (8)

The {0} values are generated by the discrete portion of the predictive density, whereas the

interval components are obtained from the continuous portion of the predictive density; see

the decomposition in (4). Throughout this paper, we restrict the interval portions to be

connected. The empty set ∅ may arise for some units if we target an average coverage

probability in the cross section. We measure the volume of the sets using the Euclidean

length of the interval portions of the sets, which are 0, bi, bi − ai, and 0, respectively.

The assessment of the set forecasts in our simulation study and the empirical application

is based on the cross-sectional coverage frequency

1

N

N∑
i=1

I
{
yiT+h ∈ Ci,T+h|T (Y1:N,0:T )

}
(9)

and the average length of the sets Ci,T+h|T (Y1:N,0:T ). Rather than trading off average length

against deviations of average coverage frequency from the nominal coverage probability in a

single criterion, we will simply report both.4

To generate the set forecasts, we adopt a Bayesian approach and require that the proba-

bility of {yiT+h ∈ Ci,T+h|T (Y1:N,0:T )} conditional on having observed Y1:N,0:T is at least 1−α.

Given that the estimation of the Tobit model is executed with Bayesian techniques, the use

of posterior predictive credible sets is natural. Moreover, it is known from the literature on

4Various approaches to rank interval forecasts are discussed in Askanazi, Diebold, Schorfheide, and Shin
(2018).
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nonparametric function estimation, that Bayesian credible sets can have good frequentist

average coverage probability; see Wahba (1983) and Nychka (1988). We will distinguish be-

tween forecasts that are constructed to satisfy the coverage probability constraint pointwise,

that is,

PyiT+h

Y1:N,0:T

{
yiT+h ∈ Ci,T+h|T (Y1:N,0:T )

}
≥ 1− α for all i,

and sets that are constructed to satisfy the constraint on average:

1

N

N∑
i=1

PyiT+h

Y1:N,0:T

{
yiT+h ∈ Ci,T+h|T (Y1:N,0:T )

}
≥ 1− α.

The latter approach allows the sets Ci,T+h|T (Y1:N,0:T ) for some units i to be “shortened” in

the sense that their posterior credible level drops below 1 − α, whereas sets for other units

are “lengthened.”

In the remainder of this subsection we describe how the endpoints ai and bi of the interval

portion of the set forecasts are determined. Let αi0 = PyiT+h

Y1:N,0:T
{yiT+h = 0} and define the

interval length li = bi − ai. The problem of minimizing the average length subject to the

constraint on coverage probability is given by

min
ai,li

li s.t.

∫ ai+li

ai

pc(yiT+h|Y1:N,0:T )dyiT+h = 1− α− αi0, (10)

ai ≥ 0.

Because pc(yiT+h|Y1:N,0:T ) represents the continuous part of the predictive density, we deduce

that li > 0 provided that 1− α− αi0 > 0. The first-order conditions are

(li) : 1 = µαpc(ai + li|Y1:N,0:T )

(ai) : 0 = µα
[
pc(ai + li|Y1:N,0:T )− pc(ai|Y1:N,0:T )

]
+ µi,a, µi,a · ai = 0, µi,a ≥ 0,

where µα and µi,a are the Lagrange multipliers for the coverage probability constraint and

the non-negativity constraint for ai, respectively. If µi,a > 0 and ai = 0, then the set

forecast is of the form [0, bi]; otherwise it takes the form {0}∪ [ai, bi], where pc(bi|Y1:N,0:T ) =

pc(ai|Y1:N,0:T ). If, in addition, the continuous portion of the predictive density is unimodal,

then the interval part of the set forecast is the HPD interval
{
yiT+h | pc(yiT+h|Y1:N,0:T ) ≥ C

}
,

where C = pc(ai + li|Y1:N,0:T ).

Targeting average coverage probability changes the derivation as follows. Define ᾱ0 =
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1
N

∑N
i=1 P

yiT+h

Y1:N,0:T
{yiT+h = 0}. If ᾱ0 > 1 − α then we can set the forecasts for some units

to Ci,T+h|T (Y1:N,0:T ) = ∅ and for the other units to Ci,T+h|T (Y1:N,0:T ) = {0} such that the

constraint on the coverage probability is satisfied. Otherwise, we need to solve

min
{ai,li}Ni=1

1

N

N∑
i=1

li s.t.
1

N

N∑
i=1

∫ ai+li

ai

pc(yiT+h|Y1:N,0:T )dyiT+h = 1− α− ᾱ0, (11)

ai ≥ 0 and li ≥ 0 ∀i.

Because it is conceivable that the solution implies that for some i the forecast is given by {0},
we now also account for the constraint li ≥ 0 with Lagrange multiplier µil. The first-order

conditions take the form

(li) :
1

N
=
µα
N
p(ai + li|Y1:N,0:T ) + µi,l, µi,l · li = 0, µi,l ≥ 0

(ai) : 0 =
µα
N

[
p(ai + li|Y1:N,0:T )− p(ai|Y1:N,0:T )

]
+ µi,a, µi,a · ai = 0, µi,a ≥ 0.

The first-order condition for li implies that for all units with li > 0 the densities at the

endpoint bi = ai + li are identical. If the continuous parts of the predictive densities are

unimodal for each i, then the first-order conditions imply that there is a common HPD

threshold C for all i such that the interval components of the set forecasts are of the form{
yiT+h | pc(yiT+h|Y1:N,0:T ) ≥ C

}
.

3 Correlated Random Effects, Priors, and Posteriors

We provide a characterization of the CRE distribution p(λi, y
∗
i0, σ

2
i |xi0, ξ) and a specification

of the prior distribution for (θ, ξ) in Section 3.1. Section 3.2 provides a description of the

posterior sampler and Section 3.3 discusses potential generalizations of the dynamic panel

Tobit model.

3.1 Correlated Random Effects and Prior Distributions

We will start out with a CRE specification in which we allow for heteroskedasticity, the

heterogeneous parameters λi and σ2
i are independent, and p(λi, y

∗
i0, σ

2
i |xi0, ξ) belongs to a

flexible family of mixtures. Subsequently, we will consider various special cases of this
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model, including a more tightly parameterized p(λi, y
∗
i0, σ

2
i |xi0, ξ), random effects (RE), and

homoskedasticity. At last, we will consider a prior under which λi and σ2
i are correlated.

Before we estimate the model specifications, we standardize the regressors xit to have zero

mean and unit variance. This will facilitate the scaling of the prior distributions. Our prior

depends on various hyperparameters that can be chosen by the user. The prior variances for

the conditional mean parameters are scaled by τ . We set τ = 5 in the simulation study in

Section 4 and the empirical analysis in Section 5, which makes these priors fairly diffuse. In

order to scale the prior distribution for σ2
i , we define the cross-sectional average of the time-

series variances of yit: let V ∗ = 1
N

∑N
i=1Vi(yit). For all other hyperparameters we report a

default choice based on the use of similar priors in other studies. These default choices seem

to work well in the application in that they provide a reasonable trade-off between flexibility

and model complexity.

The description of the CRE and prior distribution involves various parametric prob-

ability distributions in addition to the Normal distribution that appeared in (1). We use

B(a, b), G(a, b), and IG(a, b) to denote the Beta, Gamma, and Inverse Gamma distributions,

respectively. The pair (θ, σ2) has a Normal-Inverse-Gamma distribution NIG(m, v, a, b) if

σ2 ∼ IG(a, b) and θ|σ2 ∼ N(m,σ2v). Finally, the pair (Φ,Σ) has a matricvariate Normal-

Inverse-Wishart distribution MNIW (M,V, S, ν) if Σ ∼ IW (S, ν) has an inverse Wishart

distribution and vec(Φ)|Σ ∼ N(vec(M),Σ⊗ V ).

Flexible CRE with heteroskedasticity. We assume that the baseline CRE distribution

factorizes as follows:

p(λi, y
∗
i0, σ

2
i |xi0, ξ) = p(λi, y

∗
i0|xi0, ξ)p(σ2

i |ξ).

The distribution of (λi, σ
2
i ) is a mixture of Normal distributions:[

λi

y∗i0

] ∣∣∣∣xi0 iid∼ N
(
[1, x′i0]Φk,Σk

)
with prob. πλ,k, k = 1, . . . , K, (12)

where Φk is an (nx + 1)× 2 matrix and Σk is a 2× 2 matrix.5 Similarly, we model lnσ2
i as

5In our simulations we choose K = 20. This leads to the following uniform bound on the approximation
error (see Theorem 2 of Ishwaran and James (2001)): ‖fλ,K − fλ‖ ∼ 4N exp[−(K − 1)/α] ≤ 2.24× 10−5, at
the prior mean of α (ᾱ = 1) and a cross-sectional sample size N = 1000.
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a mixture of Normals:

lnσ2
i ∼ N

(
ψk, ω

2
k

)
with prob. πσ,k, k = 1, . . . , K. (13)

Our prior for
(
θ, ξ
)

takes the following form: the homogeneous regression parameters are

distributed according to

θ
iid∼ N(0, τInx+1), τ = 5. (14)

To generate a prior for the CRE distribution we use Dirichlet Process Mixtures (DPM).

We fix the maximum number of mixture components at a large number K which we set

equal to 20 in the simulation exercise and the empirical analysis. The prior for the mixture

probabilities πλ,1:K is generated by a truncated stick breaking process TSB(1, αλ, K) of the

form

πλ,1:K |(αλ, K) ∼


ζ1, k = 1,∏k−1

j=1 (1− ζj) ζk, k = 2, . . . , K − 1,

1−
∑K−1

j=1 pj, k = K,

, ζk ∼ B(1, αλ). (15)

We use G(2, 2) priors for the hyperparameter αλ of the TSB(1, αλ, K) process. The prior

for the mixture probabilities πσ,1:K takes the same form, with αλ replaced by ασ.

The coefficient matrices Φk and Σk for p(λi, y
∗
i0|xi0, ξ) are assumed to follow a MNIW

distribution:

(Φk,Σk)
iid∼ MNIW

(
0, τI3, 4I2, 7), k = 1, . . . , K. (16)

The coefficients ψk and ωk have NIG priors:

(ψk, ωk)
iid∼ NIG

(
lnV ∗ − ln(2)/2, 1, 3, (3− 1) ln 2

)
, k = 1, . . . , K. (17)

In the specification of these two distributions we already fixed some of the parameters of the

MNIW and NIG distributions in light of the subsequent application. This parameterization

of the heteroskedasticity prior in (17) is chosen so that the implied prior mean E[σ2
i ] and

prior variance V[σ2
i ] matches the one implied by the prior used in the homoskedastic versions

of the Tobit model (see (18) below).

Normal CRE. We replace the mixture of Normal distributions by a single Normal distri-

bution (K = 1).

Homoskedasticity imposes the restriction that σ2
i = σ2. To simplify the posterior compu-
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tations for the homoskedastic specification we use a conjugate prior for σ2 of the form

σ2 ∼ IG
(
3, (3− 1)V ∗

)
. (18)

Random Effects (RE). The CRE specification can be simplified to an RE specification as

follows. We factorize

p(λi, y
∗
i0, σ

2
i |xi0, ξ) = p(λi|ξ)p(y∗i0|ξ)p(σ2

i |ξ).

While p(σ2
i |ξ) remains the same as in (13), we set

λi
iid∼ N(φλ,k,Σλ,k) with prob. πλ,k, k = 1, . . . , K (19)

y∗i0
iid∼ N(φy,Σy).

The prior for the mixture probabilities is the same as in (15) and the priors for the coefficients

of the normal distributions are

(φλ,k,Σλ,k)
iid∼ NIG(0, τ, 3, 2), (φy,Σy) ∼ NIG(0, τ, 3, 2), τ = 5. (20)

By selecting between CRE versus RE, heteroskedastic versus homoskedastic, and flexible

(k > 1) versus Normal distributions (k = 1) we can generate eight specifications.

3.2 Posterior Sampling

Draws from the posterior distribution can be obtained with a Gibbs sampling algorithm.

We will subsequently describe the conditional distributions over which the Gibbs sampler

iterates. We will focus on the flexible CRE specification with heteroskedasticity, which is

the most complicated specification. A key feature of the Gibbs sampler is that it uses

data augmentation by sampling the sequences of latent variables Y ∗i,0:T , i = 1, . . . , N ; see

Tanner and Wong (1987) and for the Tobit model Chib (1992) and Wei (1999). The sampler

for the flexible mixture representation of the CRE distribution is based on Ishwaran and

James (2001, 2002). With the exception of the treatment of the latent variables Y ∗i,0:T , the

computations for the Tobit model are very similar to the ones for the linear model studied

in Liu (2018).
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In order to characterize the conditional posterior distributions for the Gibbs sampler, we

introduce some additional notation. Because p(λi, y
∗
i0|xi0, ξ) and p(σ2

i |ξ) are mixture distri-

butions, ex post each (λi, y
∗
i0) and σ2

i is associated with one of the K mixture components,

respectively. We denote the component affiliations by γi,λ and γi,σ ∈ {1, . . . , K}, respectively.

Step 1: Drawing from Y ∗i,0:T |(Yi,0:T , λi, σ2
i , γi,y, γi,σ, θ, ξ). To fix ideas, consider the follow-

ing sequence of observations yi0, . . . , yiT :

y∗i0, y
∗
i1, 0, 0, 0, y∗i5, y

∗
i6, 0, 0, 0, y∗i10.

Our model implies that whenever yit > 0 we can deduce that y∗it = yit. Thus, we can

focus our attention on periods in which yit = 0. In the hypothetical sample we observe

two strings of censored observations: (yi2, yi3, yi4) and (yi7, yi8, yi9). We use t1 for the start

date of a string of censored observations and t2 for the end date. In the example we have

two such strings, we write t
(1)
1 = 2, t

(1)
2 = 4, t

(2)
1 = 7, t

(2)
2 = 9. The goal is to characterize

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , . . .). Because of the AR(1) structure, observations in periods t <

t1 − 1 and t > t2 + 1 contain no additional information about y∗it1 , . . . , y
∗
it2

. Thus, we obtain

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , . . .)

= p(Y ∗
i,t

(1)
1 :t

(1)
2

|Y
i,t

(1)
1 −1:t

(1)
2 +1

, . . .)p(Y ∗
i,t

(2)
1 :t

(2)
2

|Y
i,t

(2)
1 −1:t

(2)
2 +1

, . . .),

which implies that we can sample each string of latent observations independently.

Let s = t2 − t1 + 2 be the length of the segment that includes the string of censored

observations as well as the adjacent uncensored observations. Iterating the AR(1) law of

motion for yit forward from period t = t1− 1 we deduce that the vector of random variables

[Y ∗i,t1:t2 , yit2+1]
′ conditional on yit1−1 is multivariate normal with mean

M1:s|0 = [µ1, . . . , µs]
′, µ1 = λi + ρyit1−1 + β′xit, µτ = λi + ρµτ−1 + β′xit for τ = 2, . . . , s.

(21)

The covariance matrix takes the form

Σ1:s|0 = σ2
i


ρ1,1|0 · · · ρ1,s|0

...
. . .

...

ρs,1|0 · · · ρs,s|0

 , ρi,j|0 = ρj,i|0 = ρj−i
i−1∑
l=0

ρ2l for j ≥ i. (22)

We can now use the formula for the conditional mean and variance of a multivariate normal
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distribution

M1:s−1|0,s = M1:s−1|0 − Σ1:s−1,s|0Σ
−1
ss|0(yit2+1 − µs) (23)

Σ1:s−1,1:s−1|0,s = Σ1:s−1,1:s−1|0 − Σ1:s−1,s|0Σ
−1
ss|0Σs,1:s−1|0

to deduce that

Y ∗i,t1:t2 ∼ TN−
(
M1:s−1|0,s,Σ1:s−1,1:s−1|0,s

)
. (24)

Here we use TN−(µ,Σ) to denote a normal distribution that is truncated to satisfy y ≤
0. Draws from this truncated normal distribution can be efficiently generated using the

algorithm recently proposed by Botev (2017).

There are two important special cases. First, suppose that t2 = T , meaning that the

last observation in the sample is censored. Then the mean vector and the covariance matrix

of the truncated normal distribution are given by (21) and (22) with the understanding

that s = t2 − t1 + 1. Second, suppose that t1 = 0, meaning that the initial observation

in the sample yi0 = 0. Because in this case the observation yit1−1 = yi,−1 is missing, we

need to modify the expressions in (21) and (22). According to (12), the joint distribution of

(λi, y
∗
i0) is a mixture of normals. Using the mixture component affiliation γi,λ, we can express

y∗i0|(λixi0) ∼ N(µ∗(λi, xi0), σ
2
∗). This leads to the mean vector

M1:s = [µ1, . . . , µs], µ1 = µ∗(λi, xi0), µτ = λi + ρµτ−1 + β′xit for τ = 2, . . . , s (25)

and the covariance matrix

Σ1:s = σ2
i


0 0 · · · 0

0 ρ1,1 · · · ρ1,s−1
...

...
. . .

...

0 ρs−1,1 · · · ρs−1,s−1

+ σ2
∗


ρ0+0 · · · ρ0+(s−1)

...
. . .

...

ρ(s−1)+0 · · · ρ(s−1)+(s−1)

 , (26)

where the definition of ρi,j is identical to the definition of ρi,j|0 in (22). One can then use

the formulas in (23) to obtain the mean and covariance parameters of the truncated normal

distribution.

Step 2: Drawing from λi|(Yi,0:T , Y ∗i,0:T , σ2
i , γi,y, γi,σ, θ, ξ). Posterior inference with respect

to λi becomes “standard” once we condition on the latent variables Y ∗i,0:T and the component
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affiliation γi,λ. It is based on the Normal location-shift model

y∗it − ρy∗it−1 − β′xit = λi + uit, uit
iid∼ N(0, σ2

i ), t = 1, . . . , T. (27)

Because the conditional prior distribution λi|(y∗i0, xi0, γi,λ) is Normal, the posterior of λi is

also Normal and direct sampling is possible.

Step 3: Drawing from σ2
i |(Yi,0:T , Y ∗i,0:T , λi, γi,y, γi,σ, θ, ξ). Posterior inference with respect

to σ2
i is based on the Normal scale model

y∗it − ρy∗it−1 − β′xit − λi = uit, uit
iid∼ N(0, σ2

i ), t = 1, . . . , T. (28)

However, even conditional on the mixture component affiliation γi,σ, the prior for σ2
i in (13) is

not conjugate and direct sampling is not possible. Instead, we sample from this non-standard

posterior via an adaptive random walk Metropolis-Hastings (RWMH) step.6

Step 4: Drawing from θ|(Y1:N,0:T , Y ∗1:N,0:T , λ1:N , σ2
1:N , γ1:N,λ, γ1:N,σ, ξ). Conditional on the

latent variables Y ∗i,0:T and the heterogeneous coefficients λi, σ
2
i , we can express our model as

y∗it − λi = ρy∗it−1 + β′xit + uit, uit
iid∼ N(0, σ2

i ), i = 1, . . . , N, t = 1, . . . , T. (29)

The temporal and spatial independence of the uit’s allows us to pool observations across i

and t. Under the Normal prior in (14), the posterior distribution of θ = [ρ, β′]′ is also Normal

and we can obtain draws by direct sampling.

Step 5: Drawing from (γi,λ, γi,σ)|(Yi,0:T , Y ∗i,0:T , λi, σ2
i , θ, ξ). We describe how to draw the

component affiliation γi,λ. Straightforward modifications lead to a sampler for γi,σ. Note

that ξ contains the elements of Φ1:K , Σ1:K , and πλ,1:K . The prior probability that unit i is

affiliated with component k is given by πλ,k. Let π̄i,λ,k denote the posterior probability of

unit i belonging to component k conditional on the set of means Φ1:K and variances Σ1:K as

well as λi. The π̄i,λ,k’s are given by

π̄i,λ,k =
πλ,kpN

(
λi|y∗i0, xi0,Φk,Σk

)∑K
k=1 πλ,kpN

(
λi|y∗i0, xi0,Φk,Σk

) . (30)

Note that the conditional distribution λi|(y∗i0, xi0,Φk,Σk) is Normal, indicated by the nota-

tion pN(·), and can be derived from the joint normal distributions of the mixture components

6We use an adaptive procedure based on Atchadé and Rosenthal (2005) and Griffin (2016), which adap-
tively adjusts the random walk step size to keep acceptance rates around 30%.
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in (12). Thus,

γi,λ|(Φ1:k,Σ1:K , λi) = k with prob. π̄i,λ,k. (31)

Step 6: Drawing from ξ|(Y1:N,0:T , Y ∗1:N,0:T , λ1:N , σ2
1:N , γ1:N,λ, γ1:N,σ, θ). Sampling from the

conditional posterior of Φ1:K , Σ1:K , and πλ,1:K can be implemented as follows. Let nλ,k be

the number of units and Jλ,k the set of units affiliated with component k. Both nλ,k and Jλ,k

can be determined based on γ1:N,λ. The conditional posterior of the component probabilities

takes the form of a generalized truncated stick breaking process

πλ,1:K |(nλ,1:K , α,K) ∼ TSB

{1 + nλ,k}Kk=1,

{
αλ +

K∑
j=k+1

nλ,j

}K

k=1

, K

 , (32)

meaning that the ζk’s in (15) have a B
(
1 +nλ,k, αλ +

∑K
j=k+1 nλ,j

)
distribution. Conditional

on πλ,1:K the hyperparameter αλ has a Gamma posterior distribution of the form

αλ|πλ,1:K ∼ G(2 +K − 1, 2− lnπλ,K). (33)

The conditional posterior for (Φk,Σk) takes the form

p(Φk,Σk|Y1:N,0:T , Y ∗1:N,0:T , λ1:N , σ2
1:N , γ1:N,λ, γ1:N,σ, θ) ∝ p(Φk,Σk)

∏
i∈Jλ,k

p(λi, y
∗
i0|Φk,Σk) (34)

Because here the prior p(Φk,Σk) is MNIW and the likelhood
∏

i∈Jλ,k p(λi, y
∗
i0|Φk,Σk) is

derived from a multivariate Normal linear regression model, the conditional posterior of

(Φk,Σk) is also MNIW. All three conditional posteriors allow direct sampling. The deriva-

tions can be modified to obtain the conditional posterior of ψ1:K , ω1:K , and πσ,1:K .

Step 7: Drawing from the predictive density. Conditional on (y∗iT , λi, σ
2
i , θ) and

xi,T+1:T+H , paths from the predictive distribution for yi,T+1:T+h can be easily generated by

simulating (1) forward.

Modifications for the simplified model specifications. If the CRE distribution is

modeled parametrically instead of flexibly, then the drawing of the component affiliations

(γi,λ, γi,σ) in Step 5 and the drawing of π·,1:K and α in Step 6 are unnecessary. One only

has to draw from the MNIW posterior of (Φ1,Σ1) and the NIG posterior of (ψ1, ω1). Under

homoskedasticity, i.e., σ2
i = σ2 for all i, we can pool (28) in Step 3 across t and i. In combi-

nation with the prior in (18) this leads to an IG posterior for σ2 from which one can sample

directly. The RE specification requires modifications to Step 1, because the distribution
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of yi0 is now simplified to y∗i0 ∼ N(φy,Σy), to Step 2 because the prior distribution of λi

is different, and to Step 6 because the pairs of VAR coefficients (Φk,Σk) are replaced by

(φλ,k,Σλ,k) and (φy,Σy), which leads to NIG posteriors.

3.3 Generalizations

The basic dynamic panel Tobit model in (1) can be generalized in several dimensions. First,

it is fairly straightforward to allow for randomly missing observations by modifying the

inference about the latent variables yit∗ in Step 1 of Section 3.2. Rather than drawing the

latent variables in Step 1 of the posterior sampler from a truncated normal distribution, we

need to draw them from a regular normal distribution.

Second, the panel setup can be extended to richer limited-dependent variable models.

Let Yit = [y1,it, . . . , yM,it]
′ and Y ∗it = [y∗1,it, . . . , y

∗
M,it]

′ and consider

Yit = f(Y ∗it ), Y ∗it |(Y ∗it−1, xit, λi, σ2
i , θ) ∼ p(Y ∗it |Y ∗it−1, xit, λi, σ2

i , θ), (35)

(λi, Y
∗
i0, σ

2
i )|θ ∼ p(λi, Y

∗
i0, σ

2
i |θ, ξ),

where f(·) is a known function, p(Y ∗it |·) is a known homogeneous transition density for Y ∗it ,

and p(λi, Y
∗
i0, σ

2
i |·) is the correlated random-effects distribution. In the benchmark model

(1) the dependent variable is a scalar, i.e., M = 1, the transformation of the latent variable

is given by f(y∗it) = y∗itI{y∗it ≥ 0}, and the transition density is N(λi + ρy∗it + β′xit, σ
2
i ). In

addition to this standard Tobit model, Amemiya (1985) defines four generalizations. For

instance, in the so-called Type 2 Tobit model M = 2 and the f(·) function takes the form

f(·) : y1,it = I{y∗1,it ≥ 0}, y2,it = y∗2,itI{y∗1,it ≥ 0},

in which the censoring of observation y2,it depends on the observed sign of the latent vari-

able y∗1,it. In order to implement richer Tobit models in our dynamic panel framework one

has to modify the sampler for the conditional posterior distribution of the latent variables

Y ∗i,0:T |(Yi,0:T , λi, σ2
i , γi,λ, γi,σ, θ, π) in Step 1 above. For instance, a posterior sampler for the

(static) Type 2 Tobit model is discussed in Li and Tobias (2011). These extensions may be

of interest for other panel data forecasting applications with limited dependent variables.
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Table 1: Monte Carlo Design

Law of Motion: y∗it = λi + ρy∗it−1 + uit where uit ∼ N(0, σ2
i ) and ρ = 0.8

Initial Observations: y∗i0 ∼ N(0, 1)
Skewed Random Effects Distributions:

p(λi|y∗i0) = 1
9
pN
(
λi|52 ,

1
2

)
+ 8

9
pN
(
λi|14 ,

1
2

)
p(lnσ2

i |y∗i0) = 1
9
pN
(
lnσ2

i − c|52 ,
1
2

)
+ 8

9
pN
(
lnσ2

i − c|14 ,
1
2

)
, c is chosen such that E[σ2

i ] = 1
Sample Size: N = 1, 000, T = 10
Number of Monte Carlo Repetitions: Nsim = 100
Fraction of zeros: 45%, Fraction of all-zeros: 15%

4 Monte Carlo Experiment

The Monte Carlo experiment is based on the dynamic panel Tobit model in (1), which

we simplify by omitting the additional predictors xit and using an RE version. We will

endow the forecaster with knowledge of the true p(y∗i0) and factorize p(λi, y
∗
i0, lnσ

2
i |ξ) as

p(λi|ξ)p(y∗i0)p(lnσi|ξ). The data generating process (DGP) is summarized in Table 1. We

set the autocorrelation parameter to ρ = 0.8 and consider skewed random effects distributions

for λi and lnσ2
i that are generated as mixtures of Normals.

The simulated panel data sets consist of N = 1, 000 cross-sectional units and the number

of time periods in the estimation sample is T = 10. We generate one-step-ahead forecasts

for period t = T + 1. The fraction of zeros across all samples is 45% and for roughly 15% of

the cross-sectional units the sample consists of T = 10 zeros (“all zeros”). The measures of

forecast accuracy discussed in Sections 2.2 and 2.3 are first computed for the cross section

i = 1, . . . , N = 1, 000 and then average the performance statistics over the nsim = 100 Monte

Carlo repetitions.7

Model Specifications and Predictors. We will compare the performance of six predictors

described below: four Bayes predictors derived from different versions of the dynamic panel

Tobit model, a predictor derived from a Tobit model with homogeneous coefficients, and a

predictor from a linear model with homogeneous coefficients that ignores the censoring. The

prior distributions used for the estimation of the various models were described in Section 3.1

and are summarized in Table 2. Further implementation details are provided in the Online

Appendix.

7If the performance statistic is linear, e.g., the coverage probability or the average length of credible sets,
then averaging the statistic is the same as pooling across i and across Monte Carlo samples.



This Version: December 10, 2019 20

T
ab

le
2:

S
u
m

m
ar

y
of

P
ri

or
D

is
tr

ib
u
ti

on
s

S
p

ec
ifi

ca
ti

on
λ

p(
λ
|ξ

)
σ
2

p(
σ
2
|ξ

)

F
le

x
ib

le
R

E
&

H
et

er
os

k
.
λ
∼
N

(φ
λ
,k
,Σ

λ
,k

)
(φ

λ
,k
,Σ

λ
,k

)
∼
N
I
G

(0
,5
,3
,2

)
ln
σ
2
∼
N

(ψ
k
,ω

k
)

(ψ
k
,ω

k
)
∼
N
I
G

(l
n
V
∗
−

ln
(2

)/
2,

w
.p

.
π
λ
,k

π
λ
,k
∼
T
S
B

(1
,α

λ
,K

)
w

.p
.
π
σ
,k

1,
3,

2
ln

2)
α
λ
∼
G

(2
,2

)
π
l,
k
∼
T
S
B

(1
,α

l,
K

)
α
l
∼
G

(2
,2

)

N
or

m
al

R
E

&
H

et
er

os
k
.

λ
∼
N

(φ
λ
,Σ

λ
)

(φ
λ
,Σ

λ
)
∼
N
I
G

(0
,5
,3
,2

)
ln
σ
2
∼
N

(ψ
,ω

)
(ψ
,ω

)
∼
N
I
G

(l
n
V
∗
−

ln
(2

)/
2,

1,
3,

2
ln

2)

F
le

x
ib

le
R

E
&

H
om

os
k
.

λ
∼
N

(φ
λ
,k
,Σ

λ
,k

)
(φ

λ
,k
,Σ

λ
,k

)
∼
N
I
G

(0
,5
,3
,2

)
σ
2
∼
I
G

(3
,2
V
∗ )

N
/A

w
.p

.
π
λ
,k

π
λ
,k
∼
T
S
B

(1
,α

λ
,K

)
α
λ
∼
I
G

(2
,2

)

N
or

m
al

R
E

&
H

om
os

k
.

λ
∼
N

(φ
λ
,Σ

λ
)

(φ
λ
,Σ

λ
)
∼
N
I
G

(0
,5
,3
,2

)
σ
2
∼
I
G

(3
,2
V
∗ )

N
/A

P
o
ol

ed
T

ob
it

/
L

in
ea

r
λ
∼
N

(0
,5

)
N

/A
σ
2
∼
G

(3
,2
V
∗ )

N
/A

P
ri

or
fo

r
ρ

ρ
∼
N

(0
,5

)

P
ri

or
fo

r
y
∗ i0

y
∗ i0
∼
N

(φ
y
,Σ

y
),

(φ
y
,Σ

y
)
∼
N
I
G

(0
,5
,3
,2

)

N
o
te
s:

W
e

se
t
V

∗
=

1 N

∑ N i=
1
V̂
i(
Y
it

).



This Version: December 10, 2019 21

Table 3: Monte Carlo Experiment: Parameter Estimates and Point Forecast Performance

Forecast Error Stats Parameter Estimates
RMSE Bias StdD RMSE Bias(ρ̂) StdD(ρ̂)
yiT+1 I{yiT+1 = 0}

Flexible & Heterosk. 0.740 -0.007 0.740 0.225 -0.001 0.006
Normal & Heterosk. 0.742 -0.008 0.742 0.225 -0.005 0.005
Flexible & Homosk. 0.746 -0.013 0.745 0.228 0.008 0.009
Normal & Homosk. 0.747 -0.014 0.747 0.228 0.003 0.009
Pooled Tobit 0.789 -0.142 0.776 0.228 0.252 0.004
Pooled Linear 0.822 -0.302 0.764 0.406 0.230 0.004

Notes: The design of the experiment is summarized in Table 1. The true values for ρ is 0.8.

We consider four versions of the dynamic panel Tobit model with random effects (see Sec-

tion 3.1 for details): (i) flexible RE and heteroskedasticity; (ii) Normal RE and heteroskedas-

ticity; (iii) flexible RE and homoskedasticity; and (iii) Normal RE and homoskedasticity.

Versions (b)-(d) are misspecified in light of the DGP. The pooled Tobit specification ignores

the heterogeneity in λi, setting λi = λ for all i, and imposes homoskedasticity. Finally, the

pooled linear specification imposes λi = λ, σi = σ2 for all i, and, in addition, ignores the

censoring of the observations during the estimation stage.

To generate point, set, and density forecasts, we first generate draws from the posterior

distribution of the model parameters and the latent variable y∗iT , and then, conditional on

each of these draws, simulate a trajectory {y∗iT+s, yiT+s}hs=1 from the predictive distribution.

While we ignore the censoring in the estimation of the pooled linear specification, we do

account for it when we generate forecasts from the linear model.

Point Forecasts and Parameter Estimates. In Table 3 we report RMSEs for poste-

rior mean point forecasts. We decompose the RMSEs into a bias and standard deviation

component. We also report the bias and standard deviation of the posterior mean estimate

of ρ across Monte Carlo repetitions. The correctly specified dynamic Tobit model that ap-

proximates the RE distribution flexibly and allows for heteroskedasticity attains the smallest

RMSE. Forcing the RE distributions to be Normal leads to a slight deterioration in RMSE.

Incorrectly imposing homoskedasticity increases the RMSE more substantially because of a

loss in efficiency. The bias of all four panel Tobit predictors is essentially negligible and the

RMSEs are determined by the standard deviations of the forecast errors. The behavior of

forecast errors across model versions mirrors the behavior of the ρ estimates: they are un-
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Figure 1: Posterior Means and Estimated RE Distributions for λi

Flexible & Heteroskedastic Normal & Heteroskedastic

Notes: The histograms depict E[λi|Y1:N,0:T ], i = 1, . . . , N , for two different model specifications. The
shaded areas are hairlines obtained by generating draws from the posterior distribution of ξ and plotting the
corresponding random effects densities p(λ|ξ). The black lines represent the true p(λ).

biased and the standard deviation increases if the heteroskedasticity is ignored. The pooled

Tobit and pooled linear predictors perform significantly worse as their estimates of ρ and

the resulting forecast errors are severely biased.

Each model delivers a forecast of the probability that yiT+1 = 0. We use this probability

as a point forecast of I{yiT+1 = 0} and compute the corresponding RMSEs, which are also

reported in Table 3. The two heteroskedastic specifications dominate all other predictors.

Conditional on using a homoskedastic specification, shutting down heterogeneity (pooled

Tobit) does not lead to a further increase in RMSE. Ignoring the censoring when estimat-

ing the parameters of the homogeneous specification (pooled linear), raises the RMSE for

predicting zero versus non-zero from 0.23 to 0.41.8

The panels of Figure 1 show the true RE density p(λ), hairlines that represent p(λ|ξ)
generated from posterior draws of ξ, and histograms of the point estimates E[λi|Y1:N,0:T ]. The

left panel corresponds to the flexible specification, whereas the panel on the right displays

results for the Normal specification. In both cases we allow for heteroskedasticity. The

posterior distribution of p(λ|ξ) under the flexible specification concentrates near the true

density, whereas, not surprisingly, the parametric specification yields to larger discrepancies

between the true RE density and the draws from the posterior distribution.

To interpret the histograms of E[λi|Y1:N,0:T ] in view of the plotted p(λ)’s, we consider two

stylized examples that capture important aspects of our setup. First, suppose that the model

8If Y ∈ {0, 1} and the probability of Y = 0 is p, then the RMSE associated with the optimal forecast
̂I{Y = 0} = 1− p is

√
p(1− p) ≤ 0.5.
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Table 4: Monte Carlo Experiment: Set Forecast and Density Forecast Performance

Density Forecast Set Forecast Set Forecast
“Average” “Pointwise”

LPS CRPS Coverage Avg. Len. Coverage Avg. Len.
Flexible & Heterosk. -0.761 0.277 0.910 1.260 0.932 1.506
Normal & Heterosk. -0.762 0.278 0.908 1.249 0.931 1.502
Flexible & Homosk. -0.899 0.294 0.928 1.505 0.942 1.698
Normal & Homosk. -0.901 0.294 0.927 1.499 0.941 1.699
Pooled Tobit -0.934 0.314 0.935 1.704 0.947 1.912
Pooled Linear -1.236 0.358 0.921 1.921 0.931 1.952

is static, linear, and homoskedastic, i.e., yit = λi+uit, uit ∼ N(0, σ2) and λi ∼ N(φλ, 1), and

φλ is known (which implies p(λ) is known). Therefore, the maximum likelihood estimator

(MLE) λ̂i = λi + 1
T

∑T
t=1 uit has the cross-sectional distribution λ̂i ∼ N

(
φλ, 1 + σ2/T

)
and

the posterior means have the distribution

E[λi|Y1:N,1:T ] =
T/σ2

T/σ2 + 1
λ̂i +

1

T/σ2 + 1
φλ ∼ N

(
φλ,

1

1 + σ2/T

)
.

In this example, the distribution of the posterior mean estimates is less dispersed than the

distribution of the λi’s, but centered at the same mean, which is qualitatively consistent with

Figure 1. Second, to understand the effect of censoring, suppose that y∗it = λi + uit and we

observe a sequence of zeros. The likelihood associated with this sequence of zeros is given

by ΦT
N(−λi/σ). The posterior mean for a sequence of zeros is then given by

E[λi|Y1:N,1:T = 0] =

∫
λΦT

N(−λ/σ)p(λ)dλ∫
ΦT
N(−λ/σ)p(λ)dλ

and provides a lower bound for the estimator λ̂i. If the λi’s are sampled from the prior, we

should observe this posterior mean with probability
∫

ΦT
N

(
− λ/σ

)
p(λ)dλ. Thus, according

to this example, there should be a spike in the left tail of the distributions of E[λi|Y1:N,1:T ].

This spike is clearly visible in the two panels of Figure 1.

Density and Set Forecasts. The dynamic panel Tobit model generates a posterior pre-

dictive density for yiT+1 from which one can derive density and set forecasts. Both types

of forecasts reflect parameter uncertainty, potential uncertainty about y∗iT , and uncertainty

about future shocks. Accuracy statistics are reported in Table 4. To assess the density fore-
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casts we compute LPS and CRPS; see Section 2.2. The larger LPS and the smaller CRPS

the better the forecast. As expected, the flexible specification with heteroskedasticity that

nests the DGP delivers the most accurate density forecasts. While replacing the flexible

representations of the RE distributions with Normal distributions only leads to a marginal

deterioration of forecast performance, imposing homoskedasticity generates a substantial

drop in accuracy.

As discussed in Section 2.3, we consider two types of set forecasts. The first type targets

the average coverage probability in the cross-section (“average”), whereas the other type

targets the correct coverage probability for each unit i (“pointwise”). To assess the set

forecasts we compute the coverage frequency and the average length of 90% predictive sets.

The “average” sets constructed from the heteroskedastic specification have good frequentist

coverage properties. They attain coverage frequencies of 91.0% and 90.8%, respectively.

The relationship between the nominal credible level of the set forecasts and the empirical

coverage frequency is delicate. Sampling in a Bayesian framework involves drawing parame-

ters from the appropriate distribution and generating data conditional on these parameters.

Define Ui,T+1:T+h = {uiT+1, . . . , uiT+h}. In our model (λi, σ
2
i , Ui,T+1:T+h) are cross-sectionally

independent conditional on (ρ, ξ), but not unconditionally. Let (ρ̃N , ξ̃N) be a draw from the

posterior p(ρ, ξ|Y1:N,0:T ). Then, (λi, σ
2
i , Ui,T+1:T+h) and hence Yi,T+1:T+h are cross-sectionally

independent conditional on (ρ̃N , ξ̃N , Y1:N,0:T ) and we can apply a law of large numbers for

independently and identically distributed random variables to deduce that (9) approximates

the random variable

1

N

N∑
i=1

PyiT+h

Y1:N,0:T ,ρ̃N ,ξ̃N
{yiT+h ∈ Ci,T+h|T (Y1:N,0:T )}. (36)

Recall that by construction of the set forecasts we have

1

N

N∑
i=1

PyiT+h

Y1:N,0:T
{yiT+h ∈ Ci,T+h|T (Y1:N,0:T )} = 1− α. (37)

If the posterior distribution of (ρ, ξ) concentrates around a limit point, then under suitable

regularity conditions the discrepancy between (36) and (37) will asymptotically vanish.

A comparison between the “average” and the “pointwise” set forecasts from the het-

eroskedastic models highlights that the average length of the “average” sets is indeed smaller.

Moreover, the coverage frequency of the “pointwise” sets exceeds the nominal coverage level
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of 90% by a larger amount. We observe a similar pattern also for the set forecasts from the

homoskedastic model specifications. Overall, the homoskedastic specifications generate worse

set forecasts, in terms of coverage frequency and average length, than the heteroskedastic

specifications.

5 Empirical Analysis

We will now use different versions of the dynamic panel Tobit model to forecast loan charge-

off rates (charge-offs divided by the stock of loans in the previous period, multiplied by

400) for a panel of “small” banks, which we define to be banks with total assets of less

than one billion dollars. For these banks it is reasonable to assume that they operate in

local markets. Thus, we will include local changes in house prices and the unemployment

rate as additional predictors in the empirical model. As mentioned in the introduction, the

prediction of charge-off rates is interesting from a regulator’s perspective because charge-offs

generate losses on loan portfolios. If these charge-offs are large, the bank may be entering a

period of distress and require additional capital.

5.1 Data

The raw data are obtained from “call reports” (FFIEC 031 and 041) that the banks have

to file with their regulator and are available through the website of the Federal Reserve

Bank of Chicago. Due to missing observations and outliers we restrict our attention to four

loan categories: credit card loans (CC), other consumer credit (CON), construction and

land development (CLD), and residential real estate (RRE). We construct rolling panel data

sets for each loan category that have a time dimension of twelve quarterly observations:

one observation y0 to initialize the estimation, T = 10 observations for estimation, and one

observation to evaluate the one-step-ahead forecast. The number of banks N in the cross

section varies depending on market size and date availability. The earliest sample considered

in the estimation starts (t = 0) in 2001Q2 and the most recent sample starts in 2016Q1. A

detailed description of the construction of the data set is provided in the Online Appendix.

In the remainder of this section, we will present two types of results: (i) forecast evalua-

tion statistics and parameter estimates for RRE and CC charge-off rates based on samples

that cover the Great Recession and range from 2007Q2 (t = 0) to 2009Q4 (t = T + 1); (ii)
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Table 5: Summary Statistics for Baseline Samples

Loan Category N Zeros [%] All Zeros [%] Mean 75th Max
Residential Real Estate (RRE) 2,576 76 61 0.25 0.00 33.1
Credit Card (CC) 561 43 22 3.27 4.07 260

Notes: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1
observations. “Zeros” refers to the fraction of zeros in the overall sample of observations (all i and all t),
“All Zeros” is the fraction of banks for which charge-off rates are zero in all periods. Mean, 75th percentile,
and maximum are computed based on the overall sample.

scatter plots summarizing forecast evaluation statistics for the 111 rolling samples that we

constructed (based on data availability) for the above-mentioned four loan categories.

Table 5 contains some summary statistics for the two baseline samples. For the small

banks in our sample, residential real estate loans are an important part of their loan portfolio.

For approximately 45% of the banks these loans account for 20% to 50% of their loan

portfolio. For 25% of the banks in the sample, RREs sum up to more than 50% of their

loan portfolio. Credit card loans, on the other hand, make up less than 2% of the loans held

by the banks in our sample. Both baseline samples contain a substantial fraction of zero

charge-off observations: 76% for RREs and 43% for CC which makes it more challenging

to estimate the coefficients of our panel data models. Moreover, 61% of the banks in the

RRE sample never write off any loans between 2007 and 2009. The distribution of charge-off

rates, across banks and time, is severely skewed. For RREs the 75th percentile is 0 and

the maximum is 33.1% annualized. For CCs the corresponding figures are 4.07% and 260%,

respectively. A table with summary statistics for the remaining samples is provided in the

Online Appendix.

5.2 Charge-Off Rates and the Tobit Model

The forecasts are generated from model (1) with xit = [∆ ln HPIit−1,∆URit−1]
′, where yit are

charge-off rates, ∆ is the temporal difference operator, HPIit is a house price index, and URit

is the unemployment rate. Define θ = [ρ, β]′. The model is completed by the specification

of a CRE distribution and a prior:

p
(
λi, y

∗
i0, σi|xi0, ξ

)
, p

(
θ, ξ
)
.
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In the empirical analysis below we consider various choices of p(λi, y
∗
i0, σi|xi0, ξ) that were

described in Section 3.1.

The Tobit model is consistent with the following stylized model. Suppose that bank i

has issued a continuum of loans indexed by j ∈ [0, 1] in the constant amount of ` and let

λ(j) be the probability of repayment of loan j. We assume that the bank writes off the loan

j if the repayment probability falls below a threshold κ. Then, we can write the charge-off

as

x(j) = `I{λ(j) ≤ κ}. (38)

Let Fit(κ) = F (κ− µit) be the cumulative distribution function of repayment probabilities

and assume that it belongs to a location family with a location parameter µit that varies

across banks and time. Then the charge-off rate is given by

yit = F (κ− µit) = F (y∗it) , where y∗it = κ− µit. (39)

Under the assumption that F (·) is the cdf of a random variable that is uniformly distributed

on the unit interval (or has a cdf that is locally linear near zero) we obtain for values of

yit ≤ 1:9

yit = y∗itI {y∗it ≥ 0} , (40)

which is the censoring used in (1). In our specification for y∗it the heterogenous intercept

λi can be interpreted as a bank-specific measure of the quality of the loan portfolio, the

autoregressive term captures the persistence of the composition of the loan portfolio over

time, and the covariates shift the density of repayment probabilities.

5.3 Density Forecasts

We begin the empirical analysis by comparing the density forecast performance of several

variants of (1) for the two baseline samples. This comparison includes forecasts from a

Tobit model and a linear model with homogeneous intercepts and homoskedastic innovation

variances. Table 6 reports LPS (the larger the better) and CRPS (the smaller the better).

Several observations stand out. First, allowing for heteroskedasticity improves the density

forecasts unambiguously. For RRE the CRE specification leads to more accurate density

forecasts than the RE specification. However, the gain from modeling the distribution of

9In the empirical analysis we use a scaling for y∗it which implies that it is between 0 and 400 instead of 0
and 1.
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Table 6: Density Forecast Performance

RRE Charge Offs CC Charge Offs
Specification LPS CRPS LPS CRPS
Heteroskedastic Models
Flexible CRE -0.52 0.24 -1.92 1.98
Normal CRE -0.52 0.24 -1.89 1.89
Flexible RE -0.75 0.26 -1.92 1.98
Normal RE -0.53 0.24 -1.90 1.93
Homoskedastic Models
Flexible CRE -0.75 0.27 -2.41 2.45
Normal CRE -0.75 0.27 -2.46 2.32
Flexible RE -0.52 0.24 -2.64 2.59
Normal RE -0.75 0.26 -2.53 2.36
Pooled Tobit -0.82 0.30 -2.64 2.60
Pooled Linear -1.58 0.37 -3.00 2.78

Notes: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1
observations.

the heterogeneous coefficients in a flexible manner is small. For CC charge-off rates the

predictive scores for the flexible CRE and RE specifications are essentially the same and

slightly dominate the scores of the Normal specifications.

Figure 2 summarizes the LPS comparisons for all 111 samples. The left panel compares

predictive scores from the heteroskedastic specifications versus homoskedastic specifications

using flexibly modeled correlated random effects. The center panel contrasts LPS obtained

from flexible and Normal CRE distributions. Finally, the right panel assesses the importance

of the correlation between the heterogeneous intercept and the initial observations and the

regressors. The solid lines are 45-degree lines and the blue and red circles correspond to the

scores associated with the baseline RRE and CC samples reported in Table 6. The figure

shows that the results for the baseline samples are qualitatively representative: incorporating

heteroskedasticity is important for density forecasting whereas accuracy differentials between

Normal and flexible CREs on the one hand, and CREs versus REs are small. In view of these

results, we will subsequently focus on the flexible CRE specification with heteroskedasticity.
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Figure 2: Log Predictive Density Scores – All Samples

Flexible CRE CRE & Heteroskedastic Flexible & Heteroskedastic

Notes: The panels provide pairwise comparisons of log predictive scores. We also show the 45-degree line.
Log probability scores are depicted as differentials relative to pooled Tobit. The blue (red) circle corresponds
to RRE (CC).

Table 7: Estimates of Common Parameters

y∗it−1 ∆ ln HPIit−1 ∆URit−1
Mean CI Mean CI Mean CI

RRE 0.22 [ 0.19, 0.26] -3.63 [ -4.57, -2.34] 11.61 [ 9.33, 13.47]
CC 0.46 [ 0.42, 0.50] -4.72 [ -7.75, -1.71] 2.97 [ -0.63, 6.55]

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The table contains posterior means and 90% credible intervals in brackets.

5.4 Parameter Estimates and Predictive Checks

Parameter estimates of the common coefficients for the flexible CRE specification with het-

eroskedasticity are reported in Table 7. We report posterior means and 90% credible inter-

vals. Both samples exhibit mild autocorrelation. The point estimate of ρ is 0.22 for RRE and

0.46 for CC. A reduction in house prices leads to an increase in the charge-off rates for RRE

and CC which is consistent with the narrative of the Great Recession. Likewise, a rise in the

unemployment rate is associated with higher charge-off rates. The effect of unemployment

changes is more pronounced for RRE loans than for CC loans. In fact, the credible interval

for the CC sample also contains some negative values.

Because we are using standardized regressors in our estimation, the numerical values in

Table 7 are not directly interpretable. The mean of the pooled log HPI changes in our sample
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Figure 3: Heterogeneous Coefficient Estimates
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Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). A few extreme observations are not visible in the plots.

is -0.012 and corresponds to a 4.8% drop at an annualized rate. The standard deviation is

0.014. Suppose that house prices drop by an additional one percent within a quarter. For

β1 = 4, this leads to an increase of the charge-off rate by 4∗(−0.01)/0.014 = 2.86 percentage

points relative to the baseline value. The average change in the unemployment rate is 0.47

percentage points per quarter and the standard deviation is 0.46. Suppose that β2 = 5 and

the increase in the unemployment rate within a quarter is 0.5 percentages higher than its

baseline value. In response, the charge-off rate rises by 5∗0.5/0.46 = 5.43 percentage points.

The distributions of posterior mean estimates of the heterogeneous coefficients are de-

picted in Figure 3. We use the AR coefficient ρ to rescale λi and σi. The panels on the

left and in the center of the figure show histograms for the posterior means of λi and σi,

respectively, whereas the panels on the right contain scatter plots that illustrate the corre-

lation between the posterior means of intercepts and shock standard deviations. A notable
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feature of the histograms for the posterior means of λi/(1− ρ) are the spikes in the left tail

of the distribution.10 The spikes correspond to banks with predominantly zero charge-off

rates. For these banks, the sample contains very little information about λi other than that

it has to be sufficiently small to explain the zero charge-off rates. In turn, the posterior mean

estimate is predominantly driven by the prior. Similar spikes are visible in the histograms

for the posterior means of the re-scaled log standard deviations and the right panels show

that the σi spikes and the λi spikes are associated with the same banks.

Recall from Table 5 that the RRE sample contains more zero charge-off observations

than the CC sample. Accordingly, the spikes in the RRE histograms are associated with

larger mass. The unconditional distribution of charge-off rates in the CC sample has a non-

zero mean and a longer right tail. This is captured in the histograms by larger posterior

mean estimates of λi and a more pronounced right tail. The estimated re-scaled standard

deviations are also larger for the CC sample than for the RRE sample. The large dispersion

of σi estimates in both samples is consistent with the substantially better density forecast

performance of the heteroskedastic models. For the RRE loan sample small estimates of σi

are associated with near zero estimates of λi, whereas large estimates of σi are associated

with a broad range of λi estimates. This pattern is less pronounced for the CC sample.

In order to assess the fit of the estimated panel Tobit model, we report posterior pre-

dictive checks in Figure 4. A posterior predictive check examines the extent to which the

estimated model can generate artificial data with sample characteristics that are similar to

the characteristics of the actual data that have been used for estimation.11 Consider the

top left panel of the figure. Here, the particular characteristic, or sample statistic, under

consideration is the cross-sectional density of yiT+1 conditional on yiT+1 > 0. The black line

is computed from the actual RRE loan sample. Each blue hairline is generated as follows:

(i) take a draw of (ρ, β, ξ) from the posterior distribution; (ii) conditional on these draws

generate λ1:N , Y ∗1:N,0, and σ2
1:N ; (iii) simulate a panel of observations Ỹ1:N,0+T+1; (iv) compute

a kernel density estimate based on Ỹ1:N,T+1. The swarm of hairlines visualizes the posterior

predictive distribution. A model passes a posterior predictive check if the observed value of

the sample statistic does not fall too far into the tails of the posterior predictive distribution.

Rather than formally computing p-values, we will focus on a qualitative assessment of the

model fit.

10Recall that these spikes were also present in the Monte Carlo simulation; see Figure 1.
11Textbook treatments of posterior predictive checks can be found, for instance, in Lancaster (2004) and

Geweke (2005).
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Figure 4: Posterior Predictive Checks: Cross-sectional Distribution of Sample Statistics

Density yiT+1|(yiT+1 > 0) Distr. of Frequency Correlation of (yit, yit−1)
of Zero Charge Offs if Both Are Positive
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Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The black lines (left and right panels) and the histogram (center panels) are computed

from the actual data. Each hairline corresponds to a simulation of a sample Ỹ1:N,0:T+1 of the panel Tobit
model based on a parameter draw from the posterior distribution.

By and large, the estimated models for RRE and CC charge-off rates do a fairly good job

in reproducing the cross-sectional densities of yiT+1 in that some of the hairlines generated

from the posterior cover the observed densities. The only discrepancies arise for charge-off

values close to zero. With high probability, the densities computed from simulated data have

less mass than the observed RRE and CC densities. Moreover, the modes of the simulated

densities are slightly to the right and lower than the mode in the two actual densities. The

hairlines depict the densities conditional on yiT+1 > 0. In the RRE sample the fraction of

yiT+1 = 0 is 0.71. The 90% posterior predictive interval is [0.73, 0.79]. For CC charge-off

rates, the value in the data is 0.43 and the posterior predictive interval is [0.37, 0.47].

The center panels of Figure 4 focus on the estimated models’ ability to reproduce the

number of zero charge-off observations. For each unit i we compute the number of periods in

which yit = 0. Because T = 10 the maximum number of zeros between t = 0 and t = T + 1

is 12. The histogram is generated from the actual data, whereas the hairlines are computed

from the simulated data. For instance, 61% of the banks do not write off any RRE loans in

the twelve quarters of the sample and roughly 5% of the banks write off RRE loans in every



This Version: December 10, 2019 33

period. Overall, the estimated models do remarkably well in reproducing the patterns in the

data. For RRE loans, the model captures the large number of all-zero samples and the fairly

uniform distribution of the number of samples with zero to nine instances of yit = 0. The

only deficiency is that the model cannot explain the absence of samples with ten or eleven

instances of zero charge-off rates. In the case of CC loans, the estimated model underpredicts

the number of all-zero samples but generally is able to match the rest of the distribution.

The last column of Figure 4 provides information about the models’ ability to capture

some of the dynamics of the charge-off data. Here the test statistic is the first-order sam-

ple autocorrelation of the yi0:T+1 sequence, conditional on both yit and yit−1 being greater

than zero. The panels in the figure depict the cross-sectional density of these sample au-

tocorrelations. For the RRE loans the density computed from the actual data is covered

by the hairlines generated from the posterior predictive distribution. For the CC loans the

estimated model generates somewhat higher sample autocorrelations than what is present

in the data.

In the Online Appendix (see Figure A-1) we consider three additional predictive checks

based on (i) the time series mean of yit after observing a zero (and, if applicable, before

observing the next zero), (ii) the time series mean of yit before observing a zero (and,

if applicable, after observing the previous zero), (iii) a robust estimate of the first-order

autocorrelation of yi,0:T+1 provided there are sufficiently many non-zero observations. With

the exception of the autocorrelations in the CC charge-off sample, the two estimated models

are able to reproduce the cross-sectional densities of the sample statistics.

5.5 Set Forecasts

Results on the accuracy of set forecasts for the 2007Q2 samples of RRE and CC charge-

off rates are presented in Table 8. The nominal credible level is 90%. We distinguish

forecasts that for each bank i are constructed from the posterior predictive distribution

as 90% credible sets, denoted by “Pointwise”, from forecasts that target conditional on

the observations Y1:N,0:T an average coverage probability across banks of 90%, labeled as

“Average.” In addition to the flexible CRE specification with heteroskedastic innovations,

we also consider a homoskedastic version. It turns out that the set forecasts generated by

the homoskedastic specifications are substantially larger than the sets obtained from the

models with heteroskedasticity, without improving the coverage probability. This finding is

consistent with the density forecast results in Table 6.
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Table 8: Set Forecast Performance

Fraction of CIs of the Form
Coverage Ave. Length {0} [0, b] {0} ∪ [a, b]

RRE Charge-Off Rates
Heterosk. Average 0.88 0.30 0.68 0.28 0.04

Pointwise 0.94 0.74 0.61 0.21 0.18

Homosk. Average 0.92 0.64 0.63 0.32 0.04
Pointwise 0.96 1.03 0.61 0.18 0.20

CC Charge-Off Rates
Heterosk. Average 0.90 6.35 0.02 0.82 0.15

Pointwise 0.91 7.71 0.22 0.25 0.53

Homosk. Average 0.95 10.10 0.21 0.71 0.07
Pointwise 0.95 10.19 0.00 0.34 0.65

Notes: Flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T =
10). We forecast 2010Q1 observations. The nominal coverage probability is 90%.

The set forecasts that are constructed by targeting the average coverage probability

have a cross-sectional coverage frequency that is closer to the nominal coverage probability

of 90% and they tend to be shorter. The reduction in the average length is particularly

pronounced for the heteroskedastic specifications, because due to the cross-sectional variation

in the variance of the posterior predictive distributions, there is more scope for tightening

wide forecast sets and enlarging narrow forecast sets while maintaining the average coverage

probability.

We also report the frequency of the three types of set forecasts. Due to the large number

of zero observations in the RRE sample, there is a large fraction of banks, between 60% and

68%, for which the posterior predictive probability of observing yiT+1 = 0 exceeds 90%. This

leads to a forecast of {0}. For the CC sample the fraction of {0} forecasts is considerably

smaller. As one switches from targeting pointwise coverage probability to average coverage

probability the composition of the set types changes. Recall that the set forecasts correspond

to HPD sets constructed from the posterior predictive distributions. If the forecaster targets

average instead of pointwise coverage probability, then, roughly speaking, she should widen

the “narrow” sets (small σi) by lowering their HPD threshold, and tighten the wide sets (large

σi) by raising their HPD threshold. For RRE we observe that the fraction of disconnected

set forecasts decreases when one switches to targeting average coverage probability, which

means that the HPD threshold for these sets has to fall. Thus, we can infer that the short
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Figure 5: Sets Forecasts – All Samples

Homosk. vs. Heterosk. Targeting Pointwise vs. Average
Targeting Average Coverage Coverage, Heteroskedastic

Notes: Flexible CRE specification. The blue (red) symbols corresponds to RRE (CC). The two endpoints
of each hairline indicate the coverage probability and length for a particular combination of loan category
and estimation sample. Left panel: circle corresponds heteroskedastic specification. Right panel: circles
correspond to targeting average coverage probability. Blue hairlines indicate samples for which the coverage
frequency gets closer to the nominal coverage probability of 90%. Red hairlines indicate samples for which
the coverage frequency deteriorates.

pointwise sets for low σi tend to be disconnected.

In Figure 5 we provide information about the coverage frequency and average length size

of the set forecast for all samples. The left panel compares the quality of the set forecasts for

the homoskedastic specification to that of the heteroskedastic specification. Each hairline

corresponds to one of the 111 different samples and the endpoints of the hairlines indicate

coverage and length. The circled endpoint corresponds to the heteroskedastic specification

whereas the unmarked endpoint indicates the performance of the homoskedastic specification.

In all samples allowing for heteroskedastic errors shortens the the average length of the set

forecasts. In addition, for 76% of the samples (blue hairlines) the discrepancy between

coverage frequency and nominal coverage probability is also reduced.

The right panel of Figure 5 compares set forecasts that target pointwise (unmarked

endpoint) and average (circled endpoint) coverage probability. Targeting the latter unam-

biguously reduces the average length. For 59% of the samples it also improves the empirical
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Figure 6: Point Forecast Accuracy: All Samples

Flexible CRE CRE & Homoskedastic Normal & Homoskedastic

Notes: The panels provide pairwise comparisons of log RMSE differentials with respect to Pooled Tobit
under the benchmark prior. The red (blue) circle corresponds to CC (RRE).

coverage frequency (blue hairlines). For many of the remaining 41% of the samples the dete-

rioration of the coverage frequency is relatively small. In all samples, the coverage frequency

falls. We conclude that, by and large, directly targeting the average posterior coverage prob-

ability improves the empirical coverage frequency in the cross section and produces shorter

set forecasts.

5.6 Point Forecasts

Finally, we provide an assessment of the performance of point forecasts, measured through

RMSEs. We consider the same model specifications as in Section 5.3. In Table 9 we report

results for forecasts of yiT+1 and the event that charge-offs are zero, I{yiT+1 = 0}. For the

two samples considered in the table, the heteroskedastic specifications deliver more accurate

forecasts than the homoskedastic representations, just as for density and set forecasts. The

RE specifications perform slightly better than the CRE specifications and in the CC charge-

off sample the Normal specifications deliver more precise point forecasts than the flexible

specifications. Thus, imposing parsimony on the Tobit model improves the point forecasts

in these two samples, at least marginally. We also consider a pooled Tobit model and a

pooled linear model (with homoskedasticity), but they perform generally worse than the

Tobit models that allow for intercept heterogeneity.12

12We censor the draws from the posterior predictive distribution of the pooled linear model, which leads
to a non-trivial probability of a zero charge-off.



This Version: December 10, 2019 37

Table 9: Point Forecast Accuracy: RMSEs

RRE Charge Offs CC Charge Offs
Specification yiT+1 I{yiT+1 = 0} yiT+1 I{yiT+1 = 0}
Heteroskedastic Models
Flexible CRE 1.10 0.28 6.42 0.39
Normal CRE 1.10 0.28 5.82 0.38
Flexible RE 1.08 0.28 6.28 0.38
Normal RE 1.09 0.29 6.01 0.38
Homoskedastic Models
Flexible CRE 1.15 0.30 8.37 0.41
Normal CRE 1.14 0.30 7.82 0.40
Flexible RE 1.14 0.30 9.24 0.41
Normal RE 1.14 0.30 8.29 0.40
Flat 1.14 0.30 8.05 0.39
Pooled Tobit 1.35 0.31 9.23 0.41
Pooled Linear 1.20 0.52 8.91 0.47

Notes: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1
observations.

Figure 6 compares the accuracy of point forecasts for the full set of our 111 samples. The

left panel compares log RMSE differentials – using the RMSE from the pooled Tobit models

as baseline – from the heteroskedastic specifications versus homoskedastic specifications using

flexibly modeled correlated random effects. A value below zero corresponds to a sample

in which the heterogeneous coefficient Tobit model leads to a more precise forecast than

its homogeneous counterpart. A point below the 45-degree line corresponds to a sample

in which the heteroskedastic specification delivers a lower RMSE than the homoskedastic

specification. Unlike in the case of density forecasts (see Figure 2), the heteroskedastic

specification does not dominate the homoskedastic specification. In fact, for about 60% of

the samples, the ranking is reversed. Because 86% of the dots lie to the left of the vertical

zero line, it remains the case that the model with heterogeneous λi’s dominates the pooled

Tobit model that imposes homogeneity.

Abstracting from the effect of censoring, the posterior mean of λi is a linear combination

of the MLE and the prior mean. The relative weights depend on the relative precision

of likelihood and prior. For our benchmark prior the variance of λi is not scaled by the

innovation variance σ2
i . Thus, while for the homoskedastic model the relative weight of MLE

and prior mean is similar for all banks in the panel, under the heteroskedastic specification
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the MLE receives little weight for banks that are associated with a large σ2
i . We investigated

whether this feature contributed to the poor point forecast performance by considering an

alternative prior in which we scale the prior variance of λi by σ2
i :[

λi

y∗i0

] ∣∣∣∣(xi0, σ2
i )

iid∼ N
(
[1, x′i0]Φk, σ

2
i Σk

)
with prob. πλ,k, k = 1, . . . , K. (41)

The multiplication of the prior variance by σ2
i disassociates the degree of shrinkage toward

the prior mean from the innovation variance σ2
i . While changing the prior leads to small

improvements in the point forecast performance in some samples, it created large distortions

in many other samples and therefore does not provide a robust remedy against a weak

point forecast performance of the heteroskedastic models in many of the samples that we

considered. A figure documenting this finding is provided in the Online Appendix.

The center panel and the right panel of Figure 6 focus on the homoskedastic specifications.

The center panel indicates that representing the CRE distribution by a multivariate Normal

distribution works as well and in many instances better than modeling it more flexibly

as a mixture of Normals (65% of the points are above the 45-degree line, and most of

the remaining points are very close to the line). The right panel focuses on a comparison

between CRE and RE. Here the ranking is mixed. In about half of the samples modeling the

correlation between intercept and initial observation improves the forecast accuracy. In the

other have of the samples the RE specification that assumes independence between intercept

and initial conditions leads to lower RMSEs. All three panels of Figure 6 that modeling the

heterogeneity in the intercept is important for point forecasting: once heteroskedasticity is

imposed, in the vast majority of samples (about 82%) the forecast from the dynamic panel

Tobit model with intercept heterogeneity is more accurate than the pooled Tobit forecast.

6 Conclusion

The limited dependent variable panel with unobserved individual effects is a common data

structure but not extensively studied in the forecasting literature. This paper constructs

forecasts based on a flexible dynamic panel Tobit model to forecast individual future out-

comes based on a panel of censored data with large N and small T dimensions. Our empirical

application to loan charge-off rates of small banks shows that the estimation of heteroge-

neous intercepts and conditional variances improves density and set forecasting performance
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in the more than 100 samples that are considering. Posterior predictive checks conducted

for two particular samples indicate that the Tobit model is able to capture salient features of

the charge-off panel data sets. Our framework can be extended to dynamic panel versions of

more general multivariate censored regression models. We can also allow for missing obser-

vations in our panel data set. Finally, even though we focused on the analysis of charge-off

data, there are many other potential applications for our methods.
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Supplemental Online Appendix to
“Forecasting with a Panel Tobit Model”

Laura Liu, Hyungsik Roger Moon, and Frank Schorfheide

This Online Appendix consists of the following sections:

A Data Set

B Computational Details

C Additional Empirical Results

A Data Set

Charge-off rates. The raw data are obtained from the website of the Federal Reserve Bank

of Chicago:

https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data.

The raw data are available at a quarterly frequency. The charge-off rates are defined as

charge-offs divided by the stock of loans and constructed in a similar manner as in Tables

A-1 and A-2 of Covas, Rump, and Zakrajsek (2014). However, the construction differs in the

following dimensions: (i) We focus on charge-off rates instead of net charge-off rates. (ii) We

standardize the charge-offs by the lagged stock of loans instead of the current stock of loans

to reduce the timing issue.13 (iii) For banks with domestic offices only (Form FFIEC 041),

RIAD4645 (numerator for commercial and industrial loans) is not reported, so we switch to

the corresponding variable RIAD4638.

The charge-offs are reported as year-to-date values. Thus, in order to obtain quarterly

data, we take differences: Q1 7→ Q1, (Q2−Q1) 7→ Q2, (Q3−Q2) 7→ Q3, and (Q4−Q3) 7→
Q4. The loans are stock variables and no further transformation is needed. We multiply the

charge-off rates by 400 to convert them into annualized percentages. We construct charge-off

rates for the following types of loans:

• CI = commercial & industrial;

13According to bank report forms (e.g. FFIEC 041), the stocks of loans are given by quarterly averages.
“For all items, banks have the option of reporting either (1) an average of DAILY figures for the quarter, or
(2) an average of WEEKLY figures (i.e., the Wednesday of each week of the quarter).”

https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf#https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf
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• CLD = construction & land development;

• MF = multifamily real estate;

• CRE = (nonfarm) nonresidential commercial real estate;

• HLC = home equity lines of credit (HELOCs);

• RRE = residential real estate, excluding HELOCs;

• CC = credit card;

• CON = consumer, excluding credit card loans.

Because in our econometric model we are relating the charge-off rates to local economic

conditions, we restrict our analysis to “small” banks that operate in well-defined local mar-

kets. We include a bank in the sample if its assets are below one billion dollars. The raw

data set contains missing observations and outliers that we are unable to explain with our

econometric model. Thus, we proceed as follows to select a subset of observations from the

raw data:

1. Eliminate banks for which domestic total assets are missing for all time periods in the

sample.

2. Compute average non-missing domestic total assets and eliminate banks with average

assets above 1 billion dollars.

3. For each loan category, eliminate banks for which the target charge-off rate is missing

for at least one period of the sample.

4. For each loan category, eliminate banks for which the target charge-off rate is negative

or greater than 400% for at least one period of the sample.

5. For loan category proceed as follows: First, for each bank, drop the two largest observa-

tions yit, t = 0, · · · , T+1, and calculate the standard deviation (stdd) of the remaining

observations. Then, eliminate a bank if any successive change |yit−yit−1|+|yit+1−yit| >
10stdd. For t = 0 and t = T + 1, we only have one of the two terms and we set the

other term in this selection criterion to zero.

The remaining sample sizes after each of these steps for the credit card loan charge-off rates

as well as some summary statistics are reported in Table A-1.
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Table A-1: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step5 % 0s Mean 75% Max
CLD 2007Q3 7,903 7,903 7,299 3,290 3,146 1,304 77 1.5 0.0 106.8
CLD 2007Q4 7,835 7,835 7,219 3,244 3,088 1,264 74 1.9 0.1 106.8
CLD 2008Q1 7,692 7,692 7,084 3,204 3,032 1,257 71 2.2 0.5 180.2
RRE 2007Q1 7,991 7,991 7,393 6,260 5,993 2,654 77 0.2 0.0 33.1
RRE 2007Q2 7,993 7,993 7,383 6,152 5,894 2,576 76 0.3 0.0 33.1
RRE 2007Q3 7,903 7,903 7,299 6,193 5,920 2,606 73 0.3 0.0 35.9
RRE 2007Q4 7,835 7,835 7,219 6,146 5,859 2,581 70 0.4 0.1 69.2
RRE 2008Q1 7,692 7,692 7,084 6,106 5,792 2,561 68 0.4 0.2 45.6
RRE 2008Q2 7,701 7,701 7,080 6,029 5,721 2,492 67 0.4 0.2 63.6
RRE 2008Q3 7,631 7,631 7,008 6,052 5,743 2,577 65 0.5 0.3 39.2
RRE 2008Q4 7,559 7,559 6,938 6,005 5,679 2,600 63 0.5 0.3 45.6
RRE 2009Q1 7,480 7,480 6,849 5,971 5,634 2,588 62 0.5 0.3 45.0
RRE 2009Q2 8,103 8,103 7,381 5,895 5,564 2,536 62 0.5 0.3 45.0
RRE 2009Q3 8,016 8,016 7,302 5,899 5,568 2,563 61 0.5 0.4 47.6
RRE 2009Q4 7,940 7,940 7,229 5,846 5,508 2,553 60 0.5 0.4 45.0
RRE 2010Q1 7,770 7,770 7,077 5,765 5,426 2,494 61 0.5 0.4 45.0
RRE 2010Q2 7,770 7,770 7,072 5,635 5,308 2,420 61 0.5 0.4 45.0
RRE 2010Q3 7,707 7,707 7,013 5,632 5,298 2,441 61 0.5 0.4 45.6
RRE 2010Q4 7,608 7,608 6,910 5,583 5,255 2,443 61 0.5 0.3 38.2
RRE 2011Q1 7,469 7,469 6,784 5,520 5,220 2,437 62 0.4 0.3 38.2
RRE 2011Q2 7,472 7,472 6,783 5,398 5,110 2,385 62 0.4 0.3 38.2
RRE 2011Q3 7,402 7,402 6,716 5,395 5,110 2,397 64 0.4 0.2 38.2
RRE 2011Q4 7,334 7,334 6,649 5,341 5,059 2,395 65 0.3 0.2 38.2
RRE 2012Q1 7,236 7,236 6,546 5,284 5,008 2,349 67 0.3 0.2 38.2
RRE 2012Q2 7,234 7,234 6,534 5,584 5,283 2,430 66 0.3 0.2 38.2
RRE 2012Q3 7,170 7,170 6,465 5,576 5,267 2,416 67 0.2 0.1 28.4
RRE 2012Q4 7,073 7,073 6,358 5,495 5,197 2,362 69 0.2 0.1 22.2
RRE 2013Q1 6,931 6,849 6,212 5,420 5,121 2,341 71 0.2 0.1 28.7
RRE 2013Q2 6,932 6,857 6,200 5,296 5,008 2,298 71 0.2 0.1 28.7
RRE 2013Q3 6,882 6,807 6,144 5,291 4,999 2,307 72 0.2 0.0 28.7
RRE 2013Q4 6,801 6,726 6,061 5,212 4,932 2,271 74 0.1 0.0 28.7
RRE 2014Q1 6,648 6,576 5,913 5,144 4,870 2,258 75 0.1 0.0 27.2
RRE 2014Q2 6,648 6,580 5,897 5,020 4,754 2,195 76 0.1 0.0 16.9
RRE 2014Q3 6,580 6,512 5,821 5,012 4,750 2,183 77 0.1 0.0 22.2
RRE 2014Q4 6,500 6,433 5,729 4,953 4,699 2,215 78 0.1 0.0 16.9
RRE 2015Q1 6,340 6,273 5,564 4,882 4,619 2,205 79 0.1 0.0 11.1
RRE 2015Q2 6,346 6,280 5,560 4,759 4,508 2,139 79 0.1 0.0 11.1
CC 2001Q2 9,031 9,031 8,532 1,691 1,540 875 33 3.4 4.7 162.5
CC 2001Q3 8,995 8,995 8,491 1,666 1,515 844 33 3.4 4.8 88.9
CC 2001Q4 8,887 8,887 8,382 1,636 1,489 836 34 3.3 4.6 88.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Table A-1: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates
(cont.)

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step5 % 0s Mean 75% Max
CC 2002Q1 8,723 8,723 8,228 1,612 1,466 814 35 3.3 4.4 400.0
CC 2002Q2 8,823 8,823 8,312 1,670 1,519 817 38 3.2 4.3 88.9
CC 2002Q3 8,805 8,805 8,286 1,631 1,488 821 38 3.2 4.3 88.9
CC 2002Q4 8,728 8,728 8,199 1,606 1,468 813 39 3.1 4.1 88.9
CC 2003Q1 8,611 8,611 8,077 1,573 1,445 811 40 3.0 4.0 128.5
CC 2003Q2 8,754 8,754 8,203 1,544 1,422 787 40 3.0 3.9 136.1
CC 2003Q3 8,755 8,755 8,198 1,513 1,395 754 41 2.9 3.8 136.1
CC 2003Q4 8,671 8,671 8,120 1,500 1,387 724 42 2.8 3.6 136.1
CC 2004Q1 8,526 8,526 7,989 1,468 1,355 707 43 2.7 3.6 136.1
CC 2004Q2 8,662 8,662 8,108 1,440 1,331 677 42 2.8 3.6 136.1
CC 2004Q3 8,626 8,626 8,067 1,411 1,308 664 43 2.7 3.5 136.1
CC 2004Q4 8,552 8,552 7,989 1,391 1,284 657 44 2.6 3.3 140.9
CC 2005Q1 8,384 8,384 7,829 1,369 1,271 639 44 2.5 3.2 151.3
CC 2005Q2 8,507 8,507 7,938 1,332 1,236 611 44 2.6 3.2 175.0
CC 2005Q3 8,482 8,482 7,897 1,315 1,218 596 45 2.6 3.2 175.0
CC 2005Q4 8,404 8,404 7,816 1,290 1,203 604 46 2.6 3.2 210.5
CC 2006Q1 8,263 8,263 7,674 1,275 1,188 614 47 2.6 3.1 175.0
CC 2006Q2 8,307 8,307 7,708 1,247 1,164 594 47 2.7 3.2 269.2
CC 2006Q3 8,240 8,240 7,639 1,231 1,156 594 46 2.8 3.4 269.2
CC 2006Q4 8,137 8,137 7,537 1,211 1,139 595 45 3.0 3.6 269.2
CC 2007Q1 7,991 7,991 7,393 1,197 1,129 574 44 3.2 3.9 269.2
CC 2007Q2 7,993 7,993 7,383 1,173 1,107 561 43 3.3 4.1 269.2
CC 2007Q3 7,903 7,903 7,299 1,159 1,091 544 44 3.2 4.2 175.0
CC 2007Q4 7,835 7,835 7,219 1,133 1,066 534 43 3.3 4.2 175.0
CC 2008Q1 7,692 7,692 7,084 1,123 1,056 527 44 3.3 4.2 175.0
CC 2008Q2 7,701 7,701 7,080 1,101 1,035 512 45 3.2 4.1 158.3
CC 2008Q3 7,631 7,631 7,008 1,096 1,036 509 44 3.1 4.0 158.3
CC 2008Q4 7,559 7,559 6,938 1,082 1,020 506 45 3.1 3.9 149.4
CC 2009Q1 7,480 7,480 6,849 1,059 999 498 46 3.0 3.7 147.3
CC 2009Q2 8,103 8,103 7,381 1,045 989 492 45 2.8 3.7 78.5
CC 2009Q3 8,016 8,016 7,302 1,042 988 492 47 2.7 3.5 77.6
CC 2009Q4 7,940 7,940 7,229 1,032 978 479 49 2.7 3.3 400.0
CC 2010Q1 7,770 7,770 7,077 1,020 963 459 49 2.5 3.2 100.0
CC 2010Q2 7,770 7,770 7,072 997 940 454 50 2.3 3.0 62.0
CC 2010Q3 7,707 7,707 7,013 994 940 450 50 2.2 2.8 62.0
CC 2010Q4 7,608 7,608 6,910 976 920 454 51 2.1 2.6 56.3
CC 2011Q1 7,469 7,469 6,784 961 906 451 52 2.0 2.5 68.6
CC 2011Q2 7,472 7,472 6,783 941 889 450 53 1.9 2.4 67.9
CC 2011Q3 7,402 7,402 6,716 933 879 443 54 1.9 2.3 67.9
CC 2011Q4 7,334 7,334 6,649 920 869 430 55 1.8 2.2 67.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Table A-1: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates
(cont.)

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step5 % 0s Mean 75% Max
CC 2012Q1 7,236 7,236 6,546 913 862 438 56 1.7 2.1 67.9
CC 2012Q2 7,234 7,234 6,534 916 862 430 54 1.8 2.2 67.9
CC 2012Q3 7,170 7,170 6,465 907 853 409 55 1.7 2.1 67.9
CON 2009Q2 8,103 8,103 7,381 5,837 5,698 2,600 77 0.4 0.0 77.4
CON 2009Q3 8,016 8,016 7,302 5,872 5,693 2,672 71 0.5 0.2 202.2
CON 2009Q4 7,940 7,940 7,229 5,814 5,584 2,723 65 0.5 0.5 202.2
CON 2010Q1 7,770 7,770 7,077 5,735 5,461 2,680 58 0.7 0.7 202.2
CON 2010Q2 7,770 7,770 7,072 5,602 5,339 2,600 53 0.7 0.8 202.2
CON 2010Q3 7,707 7,707 7,013 5,596 5,311 2,555 47 0.8 0.9 202.2
CON 2010Q4 7,608 7,608 6,910 5,545 5,227 2,473 42 0.9 1.0 202.2
CON 2011Q1 7,469 7,469 6,784 5,482 5,133 2,427 36 1.0 1.1 202.2
CON 2011Q2 7,472 7,472 6,783 5,361 5,026 2,328 37 1.0 1.1 202.2
CON 2011Q3 7,402 7,402 6,716 5,377 5,028 2,333 38 1.0 1.1 202.2
CON 2011Q4 7,334 7,334 6,649 5,324 4,979 2,377 38 0.9 1.0 202.2
CON 2012Q1 7,236 7,236 6,546 5,266 4,932 2,403 39 0.9 1.0 202.2
CON 2012Q2 7,234 7,234 6,534 5,544 5,195 2,530 42 0.8 1.0 76.0
CON 2012Q3 7,170 7,170 6,465 5,536 5,184 2,541 43 0.8 0.9 76.0
CON 2012Q4 7,073 7,073 6,358 5,457 5,117 2,526 43 0.8 0.9 44.7
CON 2013Q1 6,931 6,849 6,212 5,379 5,042 2,548 44 0.8 0.9 100.0
CON 2013Q2 6,932 6,857 6,200 5,254 4,932 2,465 43 0.8 0.9 100.0
CON 2013Q3 6,882 6,807 6,144 5,246 4,917 2,512 44 0.7 0.9 76.0
CON 2013Q4 6,801 6,726 6,061 5,165 4,843 2,470 44 0.7 0.9 76.0
CON 2014Q1 6,648 6,576 5,913 5,094 4,767 2,415 44 0.7 0.9 76.0
CON 2014Q2 6,648 6,580 5,897 4,976 4,658 2,332 44 0.7 0.9 35.7
CON 2014Q3 6,580 6,512 5,821 4,961 4,645 2,303 44 0.7 0.9 35.7
CON 2014Q4 6,500 6,433 5,729 4,901 4,592 2,330 43 0.7 0.9 76.0
CON 2015Q1 6,340 6,273 5,564 4,834 4,522 2,304 43 0.7 0.9 35.7
CON 2015Q2 6,346 6,280 5,560 4,711 4,413 2,219 43 0.7 0.9 52.9
CON 2015Q3 6,269 6,206 5,479 4,696 4,408 2,214 43 0.7 0.9 52.9
CON 2015Q4 6,181 6,120 5,395 4,632 4,343 2,227 43 0.8 0.9 113.8
CON 2016Q1 6,057 5,996 5,256 4,545 4,258 2,185 43 0.7 0.9 52.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Local Market. We use the annual Summary of Deposits data from the Federal Deposit

Insurance Corporation to determine the local market for each bank. This data set contains

information about the locations (at ZIP code level) in which deposits were made. Based on

this information, for each bank in the charge-off data set we compute the amount of deposits

received by state. We then associate each bank with the state from which it received the

largest amount of deposits.

Unemployment Rate (URit). Obtained from the Bureau of Labor Statistics. We use sea-

sonally adjusted monthly data, time-aggregated to quarterly frequency by simple averaging.

Housing Price Index (HPIit). Obtained from the Federal Housing Finance Agency on

all transactions, not seasonally adjusted. The index is available at a quarterly frequency.

B Computational Details

B.1 Gibbs Sampling

The Gibbs sampler for the flexible RE/CRE specification with heteroskedasticity is initialized

as follows:

• y∗1:N,0:T with y1:N,0:T ;

• ρ with a generalized method of moments (GMM) estimator ρ̂, such as the orthogonal

differencing in Arellano and Bover (1995) (implementation details can be found in the

working paper version of Liu, Moon, and Schorfheide (2018));

• λi with λ̂i = 1
T

∑T
t=1(y

∗
it − ρ̂y∗it−1);

• σ2
i with the variance of the GMM orthogonal differencing residues for each individual

i, i.e., let y⊥it , t = 1, · · · , T − 1, denote the data after orthogonal differencing transfor-

mation, then σ̂2
i = Vi(y

⊥
it − ρ̂y⊥it−1);

• for z = λ, σ, αz with its prior mean; γz,i with k-means with 10 clusters; {Φk,Σk, πλ,k}Kk=1

and {ψk, ωk, πσ,k}Kk=1 are drawn from the conditional posteriors described in Section 3.2.

The Gibbs samplers for the other dynamic panel Tobit specifications are special cases in

which some of the parameter blocks drop out. The Gibbs sampler for the pooled Tobit and

linear specifications are initialized via pooled OLS, which ignores the censoring. We generate
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a total of M0 +M = 10, 000 draws using the Gibbs sampler and discard the first M0 = 1, 000

draws.

B.2 Point Forecasts

For each unit i, the posterior sampler generates draws (y∗jiT , θ
j, λji ), j = 1, . . . ,M , from

the posterior distribution p(y∗iT , θ, λi|Y1:N,0:T ). Conditional on the parameter draws, the

predictive density is a censored normal distribution. Define

µjiT+h|T = λji

h−1∑
l=0

(
ρj
)l

+
(
ρj)hy∗jiT , σ2,j

iT+h|T = σ2,j

h−1∑
l=0

(
ρj
)2l
. (A.1)

Then, a draw from the predictive distribution can be generated according to

y∗jiT+h|(y
∗j
iT , θ

j, λji ) ∼ N
(
µjiT+h|T , σ

2,j
iT+h|T

)
, yjiT+h = y∗jiT+hI{y

∗j
iT+h ≥ 0}. (A.2)

The expected value of the censored random variable yjiT is given by

E
[
yjiT+h|(y

∗j
iT , θ

j, λji )
]

(A.3)

=

[
µjiT+h|T + σjiT+h|T

φN
(
µjiT+h|T/σ

j
iT+h|T

)
ΦN

(
µjiT+h|T/σ

j
iT+h|T

)]ΦN

(
µjiT+h|T/σ

j
iT+h|T

)
= µjiT+h|TΦN

(
µjiT+h|T/σ

j
iT+h|T

)
+ σjiT+h|TφN

(
µjiT+h|T/σ

j
iT+h|T

)
,

where φN(·) and ΦN(·) are the pdf and the cdf of a standard N(0, 1). The probability of

observing a zero is

P
[
yjiT+h = 0|(y∗jiT , θ

j, λji )
]

= ΦN

(
− µjiT+h|T/σ

j
iT+h|T

)
. (A.4)

Mean forecasts and forecasts of observing a zero can be approximated by Monte Carlo

averaging:

E
[
yiT+h|Y1:N,0:T

]
≈ 1

M

M∑
j=1

E
[
yjiT+h|(y

∗j
iT , θ

j, λji )
]

(A.5)

P
[
yiT+h = 0|Y1:N,0:T

]
≈ 1

M

M∑
j=1

P
[
yjiT+h = 0|(y∗jiT , θ

j, λji )
]
. (A.6)
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B.3 Set Forecasts

Algorithm for 1− α Credible Set Targeting Pointwise Coverage Probability:14

1. Sort {yjiT+h}Mj=1 in increasing order and denote the elements of the sorted sequence by

y
(j)
iT+h.

2. Now, separate the draws that are zero from the draws that are non-zero. Define j0,

such that y
(j)
iT+h > 0 for all j > j0. Define p0 = j0/M . Let p1 = max{(1− α)− p0, 0}.

3. If p1 = 0, the credible set is {0} and we can terminate.

4. If p1 > 0, then

(a) Define α1 = 1− p1.

(b) For j = j0 + 1 to bα1Mc, compute the length of the j’th connected 1−α1 interval

∆(j) = y
(j−1+d(1−α1)Me)
iT+h − y(j)iT+h.

(c) Choose the shortest interval that contains d(1− α1)Me draws.

(d) If p0 > 0, then take the union of the shortest connected interval and {0}. Note that

if the shortest interval constructed from the non-zero draws starts with y
(j0+1)
iT+h ,

then we interpreted the set as connected, ranging from 0 to some non-zero upper

bound.

Algorithm for 1− α Credible Set Targeting Average Coverage Probability:

1. For i = 1 to N :

(a) Generate draws Y j
iT+1, j = 1, . . . ,M , from the posterior predictive distribution.

(b) If Y j
iT+1 > 0 then set πji = p(Y j

iT+1|Yi). If Y j
iT+1 = 0 then set πji = ∞ with the

understanding that ∞ is replaced by a large number in the code.

Note: maybe use a subsample of MCMC draws to make computation less costly.

2. Let Π = {πji | i = 1, . . . , N and j = 1, . . . ,M}. Sort the elements of Π in descending

order. Denote the sorted elements of Π by π(s).

3. Define s0, such that π(s) < ∞ for all s > s0. Define p0 = s0/(NM). Let p1 =

max{(1− α)− p0, 0}.
14This algorithm assumes that the continuous part of the predictive density is unimodal.
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4. If p1 = 0 then proceed as follows:

(a) For each i, compute the fraction of zero-draws.

(b) Based on the fraction of zero-draws, sort the units i in descending order.

(c) Assign the set {0} to the units with the highest fraction of zeros until the desired

coverage is reached. All other units i are assigned ∅.

5. If p1 > 0, then

(a) Let Π̄0 be the set Y j
iT+1 = 0, i.e., πji =∞, so we have

Π̄0 = {π(s) : s = 1, · · · , s0}.

Define the set

J 0
i = {j | πji ∈ Π̄0}, i = 1, . . . , N.

(b) Define α1 = 1− p1.

(c) Let Π̄1 be the set of 1− α1 largest density values, excluding ∞, i.e.,

Π̄1 = {π(s) : s = s0 + 1, · · · , d(1− α)NMe}.

Define the set

J 1
i = {j | πji ∈ Π̄1}, i = 1, . . . , N.

(d) If J 0
i

⋃
J 1
i = ∅, then Ci = ∅.

(e) If J 0
i 6= ∅ and J 1

i = ∅, then Ci = {0}.

(f) If J 1
i 6= ∅, then for each i compute

Y iT+1 = argminY jiT+1
Y j
iT+1 s.t. j ∈ J 1

i

Y iT+1 = argmaxY jiT+1
Y j
iT+1 s.t. j ∈ J 1

i

If J 0
i 6= ∅, then Ci = {0} ∪ [Y iT+1, Y iT+1], else Ci = [Y iT+1, Y iT+1]. Check

whether {0} and [Y iT+1, Y iT+1] are connected.
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B.4 Density Forecasts

The log-predictive density can be approximated by

ln p
(
yiT+h|Y1:N,0:T

)
≈

 lnP
[
yiT+h = 0|Y1:N,0:T

]
if yiT+h = 0

ln
(

1
M

∑M
j=1 pN

(
yiT+h|µjiT+h|T , σ

2,j
iT+h|T

))
otherwise

. (A.7)

Define the empirical distribution function based on the draws from the posterior predic-

tive distribution as

F̂ (yiT+h) =
1

M

M∑
j=1

I{y(j)iT+h ≤ yiT+h}. (A.8)

Then the probability integral transform associated with the density forecast of yiT+h can be

approximated as

PIT (yiT+h) ≈ F̂ (yiT+h). (A.9)

The continuous ranked probability score associated with the density can be approximated

as

CRPS(F̂ , yiT+h) =

∫ ∞
0

(
F̂ (x)− I{yiT+h ≤ x}

)2
dx. (A.10)

Because the density F̂ (yiT+h) is a step function, we can express the integral as a Riemann

sum. To simplify the notation we drop the iT + h subscripts and add an o superscript for

the observed value at which the score is evaluated. Drawing a figure will help with the

subsequent formulas. Define

M∗ =
M∑
j=1

I{y(j) ≤ yo}.

Case 1: M∗ = M . Then,

CRPS(F̂ , yo) =
M∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
1− 0

]2
(yo − y(M)). (A.11)

Case 2: M∗ = 0. Then,

CRPS(F̂ , yo) =
[
0− 1

]2
(y(1) − yo) +

M∑
j=2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1)). (A.12)
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Case 3: 1 ≤M∗ ≤M − 1. Then,

CRPS(F̂ , yo) (A.13)

=
M∗∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗))− 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗))− 1

]2
(y(M∗+1) − yo) +

M∑
j=M∗+2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1)).

Equivalently, based on Gneiting and Raftery (2007) Equation (21), we have

CRPS(F̂ , yo) =
1

M

M∑
j=1

|y(j) − yo| − 1

M2

∑
1≤i<j≤M

(y(j) − y(i)). (A.14)

To see their equivalence, note that (A.14) can be re-written as follows:

1

M

M∑
j=1

|y(j) − yo| − 1

M2

∑
1≤i<j≤M

(y(j) − y(i)) (A.15)

=
1

M

[∑
j>M∗

y(j) −
∑
j≤M∗

y(j) +
(
M∗ − (M −M∗)

)
yo

]
− 1

M2

M∑
j=1

(2j −M − 1)y(j).

=
1

M2

[
−

M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]
+

2M∗ −M
M

yo.

Considering that F̂ (y(j)) is the empirical distribution, we have

F̂ (y(j)) =
j

M
.

First, let us look at the more general Case 3. After replacing F̂ (y(j)), the RHS of (A.13)
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becomes

M∗∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗))− 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗))− 1

]2
(y(M∗+1) − yo) +

M∑
j=M∗+2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1))

=
M∗∑
j=2

(j − 1)2

M2
(y(j) − y(j−1)) +

M2
∗

M2
(yo − y(M∗))

+
(M −M∗)2

M2
(y(M∗+1) − yo) +

M∑
j=M∗+2

(M − (j − 1))2

M2
(y(j) − y(j−1))

=
1

M2

[
− y(1) +

M∗∑
j=2

(
(j − 1)2 − j2

)
y(j) +

M−1∑
j=M∗+1

(
(M − (j − 1))2 − (M − j)2

)
y(j)

+y(M) +
(
M2
∗ − (M −M∗)2

)
yo
]

=
1

M2

[
−

M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)
]

+
2M∗ −M

M
yo,

which is the same as (A.15). Similarly, for Case 1, after substituting F̂ , the RHS of (A.11)

becomes

M∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
1− 0

]2
(yo − y(M))

=
M∑
j=2

(j − 1)2

M2
(y(j) − y(j−1)) + (yo − y(M))

=
1

M2

[
− y(1) +

M∑
j=2

(
(j − 1)2 − j2

)
y(j)
]

+ yo

= − 1

M2

M∗∑
j=1

(2j − 1)y(j) + yo,

which is equal to (A.15) when M∗ = M . And for Case 2, after substituting F̂ , the RHS of
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(A.12) becomes

[
0− 1

]2
(y(1) − yo) +

M∑
j=2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1))

= (y(1) − yo) +
M∑
j=2

(M − (j − 1))2

M2
(y(j) − y(j−1))

=
1

M2

[M−1∑
j=1

(
(M − (j − 1))2 − (M − j)2

)
y(j) + y(M)

]
− yo

=
1

M2

M∑
j=1

(2M − 2j + 1)y(j) − yo,

which is equal to (A.15) when M∗ = 0.
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C Additional Empirical Results

Figure A-1: Additional Posterior Predictive Checks: Cross-sectional Distribution of Sample
Statistics

Robust
Mean of YiT+1 Mean of YiT+1 Correlation of (yit, yit−1)

After Obs. Zero Before Obs. Zero All Observations
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h
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s

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The black lines are computed from the actual data. Each hairline corresponds to a

simulation of a sample Ỹ1:N,0:T+1 of the panel Tobit model based on a parameter draw from the posterior
distribution. Robust autocorrelations are computed using the MM estimator in Chang and Politis (2016).
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Figure A-2: Point Forecast Accuracy: All Samples

Benchmark vs. Alt. Prior

Notes: Flexible CRE specification with heteroskedasticity. The panels provide pairwise comparisons of
log RMSE differentials with respect to Pooled Tobit under the benchmark prior. The red (blue) circle
corresponds to CC (RRE).
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