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1 Introduction

Aggregate production in the economy is divided into millions of firms, each facing idiosyncratic fluc-

tuations in its productivity and demand. Understanding the process of labor reallocation across these

production units is important for several reasons. In the long run, reallocating labor away from unpro-

ductive firms toward more productive firms enhances aggregate productivity and growth. In the short

run, the propagation of sectoral and aggregate shocks depends on how quickly labor flows across firms

and between unemployment and employment. From a normative perspective, understanding the po-

tential welfare losses or gains due to reallocation is necessary for assessing the efficacy of policies that

subsidize jobless workers, protect employment, or advantage particular sectors/firms.

The labor reallocation process has three key properties. First, it has distinct layers: the entry and exit

of firms, the creation and destruction of positions (i.e., jobs) at existing firms, and the turnover of workers

across jobs at existing firms. Second, it is intermediated by labor markets that are frictional, as revealed

by the coexistence of vacancies and job seekers. Third, around half of worker turnover occurs through

direct job-to-job transitions: most new hires come from another firm rather than from unemployment.

Conceptually, therefore, addressing labor reallocation requires a framework with (i) a theory of the

firm (i.e., its boundaries) and of firm dynamics (entry, growth, separations, exit); and (ii) a theory of

worker flows intermediated by frictional labor markets that allows for on-the-job search and job-to-

job mobility (i.e., poaching). Quantitatively, such a framework should account for a new body of time

series and cross-sectional evidence—emerging from matched employer-employee data—that describes

the relationship between firm characteristics and the direction and composition of worker flows.1

In this paper, we present a new model with these traits. A firm is a profit maximizing owner of a

technology with decreasing returns to scale and stochastic productivity, that chooses optimally whether

to enter and when to exit the market.2 Firms grow by posting costly vacancies that are randomly matched

to either unemployed or employed workers. Worker flows occur when matched workers determine that

the value of working at the matched firm exceeds their value of unemployment or employment in their

current firm. In general, with decreasing returns to scale in production, these values are a complicated

function of a high dimensional state vector that includes distributions of wages or worker values inside

the firm. This makes the problem intractable.

The first contribution of our paper is to set out a parsimonious set of assumptions that are sufficient

1If we consider hires for a particular firm type (e.g., young, small and fast-growing), by composition we mean the split
between hires from unemployment and those from employment. Within hires from employment, direction refers to the charac-
teristics of the employers between which workers are reallocated.

2Or, equivalently, a monopolistic producer facing a downward sloping demand curve with a stochastic shifter. These two
interpretation are isomorphic in our model.
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for tractability. Our assumptions place a minimal structure on bargaining and surplus sharing such that,

as a result, the state vector becomes manageable. Three assumptions are common to many single-worker

firm environments: (i) lack of commitment in firing and quit decisions; (ii) wage contract renegotiation

by mutual consent; (iii) Bertrand competition among employers for employed jobseekers. Two further

assumptions are required in our new multi-worker firm environment: (iv) internal wage renegotiations

between the firm and its incumbent workers are a zero-sum game, i.e. no surplus gets lost; and (v) pri-

vately efficient vacancy posting—for which we offer an explicit microfoundation. Under these assump-

tions firm and workers’ decisions are privately efficient, as if the firm and incumbent workers maximize

their joint value. The state variables of the joint value function are only firm size (n) and productivity (z),

allowing us to cleanly study firm and worker dynamics in a frictional labor market.

Two other ingredients are vital to achieve tractability. First, we work in continuous time. In a small

interval of time only one random event may occur. A firm, for example, only needs to deal with one of its

employee meeting another firm, not all combinations of its employees meeting other firms. Second, we

take the continuous limit of a discrete workforce. Worker flows are determined by comparing the change

in joint surplus that would arise if a worker either joins or leaves a firm. With a continuous measure of

workers, this marginal surplus can be conveniently expressed as a partial derivative of total surplus.

We show that total and marginal surplus are sufficient for characterizing firm and worker dynamics.

Marginal surplus pins down hiring: facing a convex vacancy cost, firms post vacancies until the marginal

cost of a vacancy is equal to the expected marginal surplus of hiring. Marginal surplus also pins down

separations: facing a decreasing marginal product of labor, firms fire workers until the marginal surplus

of a worker equals the value of unemployment. When total surplus is less (more) than the firm’s private

outside option the firm exits (enters). Finally, in equilibrium, marginal surpluses determine the direction

of worker flows. Workers climb a job ladder in marginal surplus, quitting when on-the-job search delivers

a match with a higher marginal surplus firm. An intuitive Bellman equation accounts for the evolution

of surplus, while a law of motion reflecting frictional labor reallocation accounts for the evolution of the

firm size and productivity distribution.3

Our second contribution is to exploit the tractability of this simple representation to analytically

characterize equilibrium firm and worker reallocation. First, we characterize firm dynamics and job

turnover graphically in (n, z)-space by describing the regions in which a firm exits, fires and hires. Firms

that exit and fire always destroy jobs. Hiring firms may either grow on net (creating jobs) or shrink on net

3This representation uniquely pins down firm and worker dynamics, the subject of this paper, but is consistent with mul-
tiple wage determination mechanisms that determine how this joint value is split. Wages, therefore, are not allocative in that
the distribution of firms and flows of workers across firms is independent of wage dynamics. In order to study the model’s
implication for wage dynamics, one has to make additional assumptions. We return on this point in Section 2.
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(destroying jobs) because some of their workers quit to firms with a higher rank in the marginal surplus

ladder. Second, we decompose net growth of hiring firms into the different types of gross flows: hires

and separation from/to unemployment and from/to employment via poaching. This decomposition

varies systematically with the firm states (n, z) since they determine the firm marginal surplus. Third,

we study the limiting behaviors of our economy. As decreasing returns to scale vanish, the economy

converges to one in which single-worker firms operate in a frictional labor market (à la Postel-Vinay and

Robin, 2002). As frictions vanish, the economy converges to one in which multi-worker firms operate in

a competitive labor market (à la Hopenhayn, 1992). We show that this limit obtains only in the presence

of on-the-job search, which provides the key force toward equating marginal products across firms. As

opposed to an economy with constant returns to scale, our economy features a non-degenerate size

distribution in the limit.

Our third contribution is to exploit the tractability of our framework to implement the model quanti-

tatively. We estimate the model by Simulated Method of Moments, targeting cross-sectional moments of

the size distribution of firms, firm dynamics, job flows and worker flows for the U.S. economy. We argue

that parameters are well-identified. We then validate the model, conducting a data-model comparison

of how firm-level hiring is split into inputs, i.e. between vacancy rates and vacancy yields (as in Davis,

Faberman, and Haltiwanger, 2013) and outputs, i.e. between hires from employment and from unem-

ployment (as in Bagger, Fontaine, Galenianos, and Trapeznikova, 2019). A firm experiencing a positive

productivity shock increases hiring by posting more vacancies, but more so by filling those vacancies

faster as a higher marginal surplus makes it more attractive to jobseekers. For the same reason, hires

from employment increase disproportionately more than hires from unemployment. These patterns are

quantitatively consistent with the data.

Finally, we use the parameterized model to address three quantitative questions that require an envi-

ronment with decreasing returns to scale and on-the-job search. No other existing structural equilibrium

model can address them.

We begin by quantifying the misallocation effects of labor market frictions. A doubling of match

efficiency, which approximately corresponds to a doubling of contact rates, raises output by 15 percent

relative to our estimated benchmark. Our key finding is that four fifths of the increase in output is caused

by lower labor misallocation due to faster job-to-job transitions rather than by higher scale of production

due to more employment.

Next, we direct our attention to a new set of facts about job-to-job flows and net poaching. Job-to-

job flows and net poaching vary systematically by firm characteristics in the data (Haltiwanger, Hyatt,

Kahn, and McEntarfer, 2018). Young firms poach workers from older firms, but firm size is only weakly
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correlated with net poaching. Our theory offers an interpretation of these facts. A young firm is far

from its optimal size, and since decreasing returns generates a high marginal surplus, this firm will be

near the top of the job ladder. However, a firm may be small because unproductive, or because young

even if productive. These two types of small firms will be on opposite ends of the job ladder. To guide

future measurement we show that labor productivity and firm growth are observables that are strongly

positively correlated with marginal surplus, so predictive of net poaching and job ladder rank.

We conclude the quantitative analysis with an application to the U.S. Great Recession. Two distin-

guishing features were the sharp drop in firm entry and a decline in job-to-job reallocation of workers

that led to a ‘failure of the job ladder’, i.e. a slow down of the process through which workers climb to-

ward better firms (Siemer, 2014; Moscarini and Postel-Vinay, 2016). Our model suggests that the former

accounts for the latter. A transitory shock to the discount rate (a commonly used shortcut for worsening

financial frictions) lowers the value of entry and shrinks the population of young, high marginal sur-

plus firms with high equilibrium net poaching rates. With fewer firms at the top of the job ladder and

less vacancy posting among these firms, labor reallocation up the ladder breaks down. The resulting

misallocation causes a persistent slump in output.

Overall, these applications demonstrate that our new theoretical framework offers a useful platform

to jointly analyze the microeconomic dynamics of firms and workers in a frictional labor market and

how these relate to macroeconomic fluctuations.

Literature

Our paper connects two strands of literature. The common core between the two is the idea that dimin-

ishing returns in production and heterogeneity in productivity are the dominant forces that delivers a

non-degenerate firm-size distribution. This idea goes back at least to Lucas (1978) span of control model.

The first strand is the large literature on equilibrium models of single-product firm dynamics with

competitive labor markets. Classic examples are Hopenhayn (1992), Hopenhayn and Rogerson (1993),

and Luttmer (2011).4 Recent examples, with applications to the Great Recession, are Arellano, Bai, and

Kehoe (2016), Clementi and Palazzo (2010) and Sedláček (2014).

Like these models, our framework features entry, exit, and non degenerate distributions of firm size

and age. Unlike these models, the employment adjustment costs that firms face are endogenous. They

depend on the firm’s probability of poaching and the expected transfers required to hire a worker away

from a competing firm. Both are a function of the firm rank on the marginal surplus ladder, which itself

4For a review of the literature see also Luttmer (2010).
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is an equilibrium object. The frictionless limit of our model, where these endogenous costs vanish, is a

version of Hopenhayn (1992).

The second literature comprises a number of papers that model multi-worker firms in frictional labor

markets. Here, two parallel approaches have been taken: directed search and random search.

The directed search models of Kaas and Kircher (2015) and Schaal (2017) generate firm employment

dynamics resembling those in the micro data.5 Building on Menzio and Shi (2011), the model developed

by Schaal (2017) also allows for on the job search, and thus is the closest counterpart of our framework

within the directed search approach. A drawback of directed search is that the probability that a firm

hires from another firm or from unemployment is not determined.6 As a result, this class of models

cannot speak to systematic variation in net poaching rates or the composition of hires across firm types

that have been documented in micro data. A model consistent with these facts is one of the objectives of

our analysis.

In the random search strand, Elsby and Michaels (2013) and Acemoglu and Hawkins (2014) solve

models where firms face decreasing returns in production, linear vacancy costs, and wages determined

by Nash bargaining. Both generate employment relationships with a large average surplus and small

marginal surplus. Elsby and Michaels (2013) demonstrate that the latter property yields a volatile job-

finding rate over the cycle, while the former avoids an excessively high separation rate, thus resolving

the tension identified by Shimer (2005) in the Diamond-Mortensen-Pissarides framework. Gavazza,

Mongey, and Violante (2018) generalize this model by introducing a hiring effort decision and financial

constraints and show that it accounts for the sharp drop in aggregate recruiting intensity around the

Great Recession. All of these models abstract from search on-the-job.7

Random search models with wage posting feature both on-the-job search and a firm-size distribution

despite constant returns to scale. These follow Burdett and Mortensen (1998) and its generalizations to

out of steady-state dynamics in Moscarini and Postel-Vinay (2013, 2016), Coles and Mortensen (2016),

Engbom (2017a), Gouin-Bonenfant (2018) and Audoly (2019). In these models the size distribution is non

degenerate only because of the existence of search frictions. As frictions disappear, all workers become

5It is worth remarking that these two papers had very different objectives to ours. Kaas and Kircher (2015) illustrate that a
key advantage of directed search, the efficiency and block-recursivity properties of equilibrium, extends to models with ‘large’
firms. Schaal (2017) proves this property is also robust to the addition of on-the-job-search and studies aggregate uncertainty
shocks in the context of the Great Recession.

6A key feature of the equilibrium is that net hiring costs are equated across firms through free entry, which implies that
firms are indifferent across the markets in which they search for workers. The probability that a separation from a firm is to
employment or unemployment, however, is determined.

7Fujita and Nakajima (2016) introduce on-the-job search and study the dynamics of job-job flows over the business cycle.
However, in their model all workers are always indifferent between searching/working and staying/moving because, to solve
for the equilibrium, they must assume that the worker outside option is always the value unemployment.

5



employed at the most productive firm.8 In our framework, instead, we can decompose how much of

size dispersion is due to technology and how much is due to frictions.

Within the random search literature, we build on the set-up developed by Postel-Vinay and Robin

(2002), which pairs Bertrand competition for workers among employers with wage renegotiation under

mutual consent. This environment has become another workhorse of the literature due to its tractability

and empirically plausible wage dynamics.9 Kiyotaki and Lagos (2007) develop a version of this protocol

which is a step closer to us. Their firms have fixed capacity of exactly one position and thus feature

an extreme version of decreasing returns to scale. In their model, when a matched firm meets another

worker, it also engages in a negotiation with its current incumbent. Internal renegotiation is a prominent

feature of our model. Our contribution is to generalize this sequential auction protocol to multi-worker

firms, show how one can still solve the model’s equilibrium through the notion of joint surplus, and in

doing so maintain a great deal of tractability. As opposed to the original Postel-Vinay and Robin (2002)

framework the probability of hiring is not a function of the exogenous distribution of firm productivity,

but is determined by the endogenous distribution of marginal surpluses, which itself depends on how the

equilibrium of the frictional labor market has allocated workers across heterogeneous firms.

The final expression for joint surplus that features among our equilibrium conditions is reminiscent

of that in Lentz and Mortensen (2012), a version of Klette and Kortum (2004) with on-the-job search in

which a firm’s demand for labor is limited by demand for its portfolio of products. While they assume

that all decisions are based on joint firm-workers values, we derive this result from primitives, provide

a characterization of the equilibrium and illustrate how to use the model for a quantitative analysis of

newly documented empirical patterns. Our central finding that a job ladder in marginal surplus arises

in equilibrium is closely related to contemporaneous work by Elsby and Gottfries (2019) who elegantly

characterize a special case of our environment with linear vacancy costs and no firm entry/exit. In

this setting a firm’s values and its decisions are only a function of a single state variable reflecting the

marginal product of labor. In our model marginal surplus is related to the marginal product of labor,

but includes continuation values that depend on average surplus due to exit. In our calibrated model,

we find that the rank-correlation between marginal surplus and marginal product is high. To the extent

that marginal and average products of labor are strongly correlated, our result implies that the average

product of labor—which is easily measurable—is an informative proxy for the rank of a firm in the job

ladder, even in environments richer than Elsby and Gottfries (2019).

8Another implication of such environments is that large firms, which pay higher wages in the model, should poach from
small firms, while the data suggest otherwise.

9Recent examples are Postel-Vinay and Turon (2010); Jarosch (2015); Lindenlaub and Postel-Vinay (2016); Borovicková
(2016); Lise and Robin (2017).
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Outline. We first layout the model in a series of steps. In Section 2 we establish the environment and

our key assumptions on how firm and workers share value following various stochastic events, before

stating our joint value representation. To provide intuition on how these assumptions deliver tractability,

Section 3 applies these assumptions in a simplified, static framework. Section 4 returns to the fully

dynamic model and, after defining an equilibrium, characterizes firm dynamics and worker flows. In

Section 5 we estimate the model with US data, discuss identification and validate our parameterization.

Section 6 present our three quantitative exercises. Section 7 concludes. The Appendix contains all proofs

and details on the computation of the model’s equilibrium and its simulation.

2 Model

In this section we describe the characteristics of the agents in the economy, how meetings take place

in the labor market, and the timing of events. We then lay out our key assumptions regarding the

contractual environment, i.e. on how the value generated by production is shared. Finally, we state our

main result: the joint value representation of the economy. Under this representation, all allocations are

privately efficient, meaning that they maximize the joint value of all the agents involved in the decision.

2.1 Physical environment

Time is continuous and there is no aggregate uncertainty. There are two types of agents. An exogenous

mass n of ex-ante identical, infinitely-lived workers that are risk neutral, discount the future at rate ρ and

are endowed with one unit of time each period which is inelastically supplied to production. An infinite

mass of homogeneous potential firms, of which an endogenous mass become operating firms.

Production technology. There is a single homogeneous good. Workers may either be employed or

unemployed. Unemployed workers produce b units of the final good. Employed workers are orga-

nized into firms which are heterogeneous in their productivity z ∈ Z. A firm employing n workers

produces y(z, n) units of the final good, where y(z, n) is strictly increasing in z and n and concave in n,

i.e. ynn(z, n) ≤ 0.10, 11

10In addition, we assume that for any z the Inada conditions hold with respect to n: (i) y(z, 0) = 0, (ii) limn→0 yn(z, n) = +∞,
and (iii) limn→+∞ yn(z, n) = 0.

11Key for firms’ decisions is that this specification yields a decreasing returns to scale revenue function r(z, n) = Py(z, n),
with the normalization P = 1. An alternative foundation for a decreasing returns to scale revenue function is constant returns
to scale in production of a differentiated final good which would yield a decreasing marginal revenue as under monopolistic
competition. If firms’ goods are imperfectly substitutable and household preferences are CES with elasticity η > 1, the firm
faces a demand curve p(z, n) ∝ y(z, n)−1/η , such that the revenue function is r(z, n) = p(z, n)× y(z, n) ∝ y(z, n)(η−1)/η . Our
framework therefore accommodates imperfect substitutability in the goods market which is a key ingredient of trade models
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Firm demographics. A potential firm becomes an operating firm by paying a fixed cost c0. Paying the

fixed cost c0 produces a draw of productivity z from the distribution Π0 (z) and n0 workers, taken from

unemployment. If a potential firm enters and becomes an operating firm then its productivity z evolves

stochastically. At any point in time a firm may exit, at which point all of its workers become unemployed

and the firm produces ϑ > 0 units of the final good which we refer to as its scrap value.12 Denote the

mass of entrants m0 and the mass of operating firms m.

Matching technology. Workers join firms from both employment and unemployment through a fric-

tional matching process. The total number of meetings between firms and workers is given by a CRS

aggregate matching technology m(s, v). Inputs to the matching technology are total vacancies v and

total units of search efficiency s = u+ ξ(n− u), where the parameter ξ determines the relative search

efficiency of employed workers. Search is random in the following sense. A firm pays a cost c(v; z, n)

to post v vacancies, where c is increasing and convex in v and c(0; ·, ·) = 0. Each vacancy of the firm

is matched with a worker at rate q(s, v) = m(s, v)/v. With probability φ = (u/s) the worker is un-

employed, with probability (1 − φ) the worker is employed. A worker faces no cost of search. An

unemployed worker meets a firm at rate λU(s, v) = m(s, v)/s. An employed worker meets a firm at

rate λE(s, v) = ξλU(s, v). The rates q and λU can be expressed in terms of market tightness θ = (v/s)

If constituted, the match of a worker to a firm exogenously expires at rate δ, upon which the worker

becomes unemployed.

States. Let x be the vector of state-variables for the firm. This vector includes all individual state vari-

ables of all workers at the firm. For now, we do not specify exactly what is in x and, along the way, define

a number of functions that map x at instant t into a new state vector at t + dt. The vector x is common

knowledge among all workers and the firm. Let i be an indicator function (possibly also a vector) that

selects the particular entries of x that identify the worker within a firm (i.e., i is the unique identity of a

worker in the firm x).13 Let H (x) be the measure of x across firms in the economy, v(x) the number of

vacancies created by a firm with state x, and n(x) employment at firm x. The total mass of vacancies and

employed workers in the economy are

v =

�
v (x) dH (x) , n = n− u =

�
n (x) dH (x) .

and macroeconomic models with nominal rigidities.
12A positive scrap value plays the same role as a fixed operation cost in generating endogenous exit.
13For example, x is a complete description of IBM and of all its workers. It might contain IBM productivity z, its size n, and

all those features of the contracts of the current employees that are needed to forecast IBM’s value and the value of each of its
workers. The state (x, i) should be read: here is IBM, characterized by x, and we are assessing the characteristics of the worker
named i within IBM.
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Probability densities that will show up in firm and worker problems describe the vacancy-weighted and

employment weighted distributions of firms:

hv (x) =
v(x)h(x)

v
, hn (x) =

n(x)h(x)
n

.

Information. Information in the economy is complete. Workers and firms know the relevant aggregate

variables, i.e. u, m, the measure H (x) and distributions Hv (x), Hn (x). The states x and x′ of firms

in competition for a worker are observable to both firms and to all incumbent workers of the two firms.

Similarly, unemployed workers know the vector x of the firm they meet when searching, and incumbents

of firm x know whether the firm has met with an unemployed worker.

Timing. We separate the within-dt timing of events in the model into two parts.

First, events up to the opening of the labor market are described in Figure 1. A firm’s productivity z

is first realized. Next, incumbent workers are fired, choose whether to quit the firm, or their employment

contracts are renegotiated. Next, the firm decides whether to stay in operation or exit. An operating firm

produces y(z, n), pays wages according to contracts with its workers, and posts vacancies in the labor

market.

Second, the mutually exclusive events that may occur to a worker or firm are described in Figure

2.14 The first branch in Figure 2 describes events that may occur to an unemployed worker. The second

and third branch distinguish between direct and indirect events that may affect the value of incumbent

worker i. Direct events involve worker i meeting with another firm, or the destruction of the worker’s

job. Indirect events involve worker i’s co-worker j meeting with another firm, or the destruction of a

co-worker’s job. The final branch describes events that directly impact the firm. The firm may meet an

employed or unemployed worker, emerge either with a new hire or not and new allocation of values to

its workers, reflected in updates to the state x. Following any of these events, the state vector x changes,

potentially affecting the value of the match to worker i. Through the following assumptions, we put

structure on the states in which these events occur and how values evolve in each case.

2.2 Contractual Environment

In this section we state a set of assumptions on the contractual environment sufficient to derive our main

theoretical results. It is useful to begin from the definition of a wage contract. A contract between the

firm and one of its workers is a binding agreement which specifies a constant wage, i.e. a fixed payment

14The mutual exclusivity property is a consequence of continuous time.
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Beginning of
period [t, t + dt]

• State xtxtxt:

• Productivity ztztzt

• Workers ntntnt

• Wages {wit}nt
i=1{wit}nt
i=1{wit}nt
i=1

• ...

Separation

• Workers quit

• Firms fire

• Renegotiation

Stay/Exit

Operation

• Produce

• Pay wages

• Post vacancies

Productivity
shocks

Labor Market
Opens

Figure 1: Timing of events prior to the opening of the labor market

Labor
Market
Opens

Direct events to un-
employed worker Take-leave offer

Meeting UnemploymentReject

New firmAccept

Direct events to un-
employed worker Take-leave offer

Meeting UnemploymentReject

New firmAccept

Direct events to em-
ployed worker iii

Sequential auctionMeeting

UnemploymentDestroyed

Possible wage gain for iiiStay

New firm for iiiSwitch
Direct events to em-
ployed worker iii

Sequential auctionContact

UnemploymentDestroyed

Possible wage gain for iiiStay

New firm for iiiSwitch

Direct events to em-
ployed workers j 6= ij 6= ij 6= i

Sequential auctionMeeting

Unemployment

→ New state for iii
Destroyed

– Possible wage gain for jjj
– New state for iiiStay

– New firm for jjj
– New state for iii

Switch
Direct events to em-
ployed workers j 6= ij 6= ij 6= i

Sequential auctionContact

Unemployment

→ New state for iii
Destroyed

– Possible wage gain for jjj
– New state for iiiStay

– New firm for jjj
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Events to firm

Take-leave offerMeets unemployed
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– Possible wage cut for incumbents
– New state for all workers

– Possible wage cut for incumbents
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Hire
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Events to firm

Take-leave offerMeets unemployed

Sequential auctionMeets employed

– Possible wage cut for incumbents
– New state for all workers

– Possible wage cut for incumbents
– New state for all workers

Hire

Not hire

Figure 2: Labor market: Set of mutually exclusive possible labor market events

from the firm to the worker, in exchange for labor services. The contract satisfies five assumptions:

(A-LC) Limited commitment. All parties are subject to limited commitment. In particular,

(a) Layoffs - Firms can fire workers at will.

(b) Quits - Workers can always quit into unemployment or to another firm when they meet one.

(c) Collective agreements - Workers cannot commit to any other worker inside the firm. De facto

this assumption rules out transfers among workers.

(A-MC) Mutual consent. The wage (contract) can be renegotiated only by mutual consent, i.e. only if one

party can credibly threaten to dissolve the match (the firm by firing, the worker by quitting). A
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threat is credible when one of the two parties has an outside option that provides her with a value

that is higher than the value under the current contract.

(A-EN) External negotiation. An external negotiation is a situation where, through search, the firm comes

into contact with an external job seeker or an incumbent worker comes into contact with another

firm. In external negotiations, all offers are take-it-or-leave-it.

• In a meeting an unemployed worker, the firm makes a take-leave offer to the worker.

• In a meeting with an employed worker, the two firms Bertrand compete through a sequential

auction. First, the poaching firm makes the take-leave wage offer. Second, the target firm

makes a take-leave counteroffer to the worker. Third, the worker decides.

(A-IN) Internal negotiation. An internal negotiation is any other situation where contracts between firm

and any incumbent workers are modified (following (A-MC), an internal negotiation takes place

when any party has a credible threat). The only parties involved in an internal negotiation are those

that have a threat and those that are under that threat. We assume that—with respect to worker

and firm values—the internal negotiation is a zero-sum game and that participation is individually

rational for all parties.15 Apart from these assumptions we leave internal negotiation unrestricted.

(A-VP) Vacancy posting. The firm posts the privately efficient amount of vacancies, which is the one that

maximizes the sum of the values of the firm and its workers. Below we propose one possible

micro-foundation for (A-VP).

Discussion. First, our simple wage contracts are rooted in incomplete contract theory, in which a key

tenet is that contracting is only allowed on features that are verifiable to a third party e.g. a court. In our

context, the only verifiable and hence contractible features are the wage, whether the firm made the wage

payment, and whether the worker provided labor services. As a result, more complex state contingent

contracts are ruled out. In the context of such incomplete contracts, renegotiation under mutual consent

is a natural assumption consistent with many existing legal frameworks (as argued by Malcomson, 1999),

and in the terminology of MacLeod and Malcomson (1989) yields self-enforcing contracts.

Second, (A-LC, a,b), (A-EN) and (A-MC) amount to the contractual environment in Postel-Vinay

and Robin (2002). The authors show that they lead to a convenient joint value representation in the one-

15We adopt the standard definition of a zero-sum game: each individual’s gain or loss is exactly offset by losses and gains of
other participants. We also adopt the standard definition of individual rationality: after internal negotiation each player who
remains employed at the firm receives at least the outside option that was present before internal negotiation.
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worker-one-firm model. We now discuss how (A-IN) and (A-VP) are sufficient to extend this convenient

representation to an environment with a diminishing marginal product of labor.

Our zero-sum game assumption on internal negotiation (A-IN) allows for a large class of possible

micro-foundations for the internal renegotiation game. Each would imply different wage dynamics. The

central takeaway is that, no matter the details of such a game, if (A-IN) is satisfied then our following

representation of allocations as determined by joint value dynamics holds. Since this paper focuses on

the allocations that result from firm and worker dynamics in a frictional labor market, we leave for fu-

ture research a detailed theoretical and empirical investigation of the implications of different internal

renegotiation games.16

Absent (A-VP), the firm would have strong incentives to over-post vacancies relative to the privately

efficient amount. The incentives to over post come in two forms: over-hiring and generating what we call

swapping threats. The firm may post vacancies in order to over-hire, lowering marginal product and so

credibly threaten some of its incumbents with wage cuts, as extensively discussed by Stole and Zwiebel

(1996) and Brügemann, Gautier, and Menzio (2018). The firm may also post vacancies with no intention

of hiring—which only occurs when marginal products are decreasing—hoping to use a match to threaten

to swap an incumbent worker with a job seeker, extracting a wage cut from the incumbent. Proceeding

under either would require the full distribution of wages as a state variable, ruling out tractability. As-

sumption (A-VP) resolves these issues.17

The presence of these inefficiencies and the need for an assumption like (A-VP) is unique to an envi-

ronment with DRS, on-the-job search and endogenous vacancy posting. In a model with constant returns

and on-the-job search, over-hiring does not arise due to a constant marginal product of labor (Postel-

Vinay and Robin, 2002). Constant returns also implies that filling a vacancy with a matched job seeker is

always profitable, removing the swapping threat. In a model with extreme decreasing returns—a capac-

ity constraint of one worker—and on-the-job search but without endogenous vacancy posting there is

no inefficient vacancy posting to resolve (Kiyotaki and Lagos, 2007). In a multi-worker firm model with

decreasing returns and endogenous vacancies but without on-the-job search, incumbents are all hired

from unemployment and with the same outside option are paid the same wage (Elsby and Michaels,

2013; Acemoglu and Hawkins, 2014). Swapping is not a threat because the job seeker and incumbent are

16As a start, a companion note available on our websites, (Bilal, Engbom, Mongey, and Violante, 2019) shows how wages
would be pinned down under a particular internal renegotiation mechanism. We assume that workers make take-leave of-
fers to the firm in internal renegotiation. Since this satisfies (A-IN), then allocations are consistent with our general represen-
tation (1). In this setting we can compute wages without having to keep track of the entire within-firm wage distribution
under the assumption that exit is exogenous. We show that if, instead, the firm made take-leave offers to workers in internal
renegotiation—which also satisfies (A-IN), complex transfers would be needed to implement (A-VP) and compute wages.

17In a different environment that allows full commitment to paying a fixed wage, as in Hawkins (2015), wage cuts are
assumed away which eliminates privately inefficient vacancy posting.
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paid the same wage. An over-hiring inefficiency is present, but with a degenerate distribution of wages

within the firm, accommodating this inefficiency does not impede tractability. On-the-job-search gener-

ates a distribution of wages inside the firm due to the origin of hire and accumulated outside offers. If

not addressed, the over-hiring inefficiency would render the model intractable.

We propose one possible micro-foundation that implements assumption (A-VP). The idea is to re-

move any gains to the firm from expected future wage cuts that would otherwise encourage excess

vacancy posting. We assume that workers anticipate that firm’s behavior and offer a preemptive wage

cut that leaves the firm indifferent between the efficient vacancy policy and the firm’s privately optimal

policy.18 We formalize this assumption below.

(A-VPI) After the firm announces its proposed vacancies for dt, a randomly selected incumbent worker

has the opportunity to make a take-leave counter-offer to the firm. The counter-offer specifies

acceptable wages for all (or some) incumbents in exchange for an alternative spot vacancy policy.19

Having described the economy’s environment and the contract space, we now state our main result.

2.3 Joint value representation

In this section we describe the main theoretical result of the paper. For presentation purposes, the en-

vironment is specialized in two ways. First, each firm employs a continuum of workers n. Second,

productivity follows a diffusion dzt = µ(zt)dt + σ(zt)dWt.20

Result. All allocative decisions in the economy—entry, exit, vacancy posting and mobility of workers

between firms—are determined by the joint value. The joint value Ω(z, n) is the sum of the present dis-

counted value of an operating firm’s profits plus the present discounted value of lifetime utility of its

workers, and satisfies the following, where U is lifetime utility of an unemployed worker:

18Alternative implementations could be based on the introduction of ‘social norms’ that prevent firms from cutting the
wage of a worker and swapping an incumbent worker with a new worker. Because they would involve deviations from lack
of commitment (A-LC), we do not emphasize these alternative implementations in this paper.

19This assumption does not require commitment because it is a ‘spot contract’ between the parties involved: a transfer in
exchange for an immediate action.

20As shown in the Appendix, our results also hold with an integer-valued workforce and when the productivity process is
a jump-diffusion.
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ρΩ (z, n) = max
v≥0

y (z, n)− c (v; z, n) (1)

EU destruction: − δn
[
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(
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)
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]
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[
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(
z, n
)
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�
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)
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)
+

σ(z)2

2
Ωzz

(
z, n
)
.

Firms’ operation requires (z, n) to be interior to an exit boundary. An additional boundary condition

determines when separations occur:21

Exit boundary: Ω(z, n) ≥ ϑ + nU, , Layoff boundary: Ωn(z, n) ≥ U. (2)

The first term in (1) is simply output net of vacancy costs. Next, the firm exogenously loses a worker at

rate δn with a net loss of Ωn −U to the initial coalition of firm and workers. The change in value has

two pieces: the change in value of the firm and its non-separating workers which is simply the marginal

value of the lost worker (−Ωn) and the value of unemployment attained by the separated worker (+U).

The firm hires by posting vacancies which are matched to a worker at rate q(θ), the probability that this

worker is unemployed is φ. The firm always hires unemployed workers, which increases the value of

the firm and incumbents by Ωn but requires a pledge of U to the new worker.

The firm also hires from and loses workers to other firms by poaching. Workers at other firms are

met according to the employment-weighted distribution of productivity and size, Hn. Upon meeting,

the net coalition value increases by Ωn(z, n)−Ωn(z′, n′), so poaching is successful if the firm’s marginal

value is largest. Note that Ωn(z′, n′) is the highest value the other firm will offer to its incumbent, and

hence it is the take-leave offer the poaching firm will make, as long as it is lower than Ωn(z, n).22

The firm’s current workers may also quit to higher marginal value firms. The firm and non-poached

workers will lose Ωn(z, n) and so are prepared to increase the poached worker’s value by this amount to

retain them. Knowing this, the external firm offers the poached worker exactly Ωn(z, n) in order to hire

them. The joint value—that of firm, non-poached workers and poached worker—is therefore unchanged

and reminiscent of Postel-Vinay and Robin (2002), no ‘EE Quit’ term appears in (1).

21More formally, the Appendix states the full Hamilton-Jacobi-Bellman-Variational-Inequality formulation of the joint value
problem.

22This term of the Bellman equation reads as if the poaching coalition, which induces a breach of contract between the
worker and the losing coalition, compensates the latter exactly for its loss of value associated with the quit. This scheme is
reminiscent of the result in Diamond and Maskin (1979) (also present in Kiyotaki and Lagos, 2007) that compensatory damages
in breach of contracts restore efficiency.
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Boundary conditions (2) describe firm exit and layoffs. Firms keep operating if the value of doing

so exceeds the total value of exit: the private scrap value ϑ plus unemployment for all its workers. If

productivity falls, the marginal value of a worker will fall, but must remain above the opportunity cost

of employment. To ensure this, firms layoff workers to sustain Ωn(z, n) ≥ U.

Proof. In the Appendix we prove that our assumptions imply the joint value representation, requiring

much additional notation. The economics of the argument are best seen in the case of a static economy.

Section 3 describes the logic behind the terms in (1) in this simple case. We then return to define an

equilibrium in the full model and characterize firm and worker dynamics in Section 4. First we describe

three appealing properties of the joint value representation.

2.4 Properties

(1) Parsimony. Firm and worker policies are characterized by a low-dimensional state vector: produc-

tivity and size. Given decreasing returns to scale in production and on-the-job search, this simplification

is a contribution. With decreasing returns spillovers exist as bargaining moves from one worker to the

next. This problem has been addressed in the literature by following the approach of Stole and Zwiebel

(1996), recently revisited by Brügemann, Gautier, and Menzio (2018), which delivers tractability. How-

ever this approach fails when workers have heterogeneous outside options such as due to on-the-job

search. Previous frameworks have therefore restricted their analysis to the case of homogeneous outside

options which requires confining attention only to labor market transitions between employment and

unemployment, ignoring job-to-job flows and poaching altogether. In models with on-the-job search and

heterogeneous outside options these bargaining spillovers are assumed away either (i) by constant re-

turns to scale, which reduces decision making units to one-worker-one-firm pairs and impedes a proper

study of firm dynamics; or (ii) by the combination of full commitment to complex state-contingent con-

tracts and directed search. Our contribution is to prove that a plausible set of minimal assumptions on

the contractual environment (featuring limited commitment) is sufficient to micro-found a parsimonious

representation of allocations.

(2) Private efficiency. All agents’ decisions (entry, exit, separations, vacancies, and hires) maximize

their joint value. Put differently, in external and internal negotiations all privately attainable gains from

trade are exploited. For the parties involved, no transfer could yield a Pareto improvement. We have

therefore shown how the Coase theorem arises in our context without the need to assume full commit-

ment and complex state contingency in contracting.23

23We do not solve for the socially efficient allocations in this paper, but note that the decentralized and planner’s allocations
will not coincide. Besides the standard congestion externality à la Hosios, an additional composition externality arises. As in
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(3) Job ladder. In one-worker-one-firm models, it is the firm’s exogenous productivity that fully deter-

mines its position on the job ladder. Here the ladder is in endogenous marginal values of labor Ωn(z, n).

These equilibrium objects are determined by the current marginal product of labor together with ex-

pectations of future productivity, worker mobility and exit. Hence life-cycle firm dynamics and worker

dynamics across firms determine their equilibrium distribution. In particular, the equilibrium allocation

is affected by a job ladder in marginal values that endogenously lowers the cost of hiring for firms at the

top of the ladder.

3 Static example

To convey the economics of how our assumptions lead to the joint value representation, we use a static

model to construct each term in (1). The approach is the same as in the dynamic model, but it requires

much less notation. We relegate the full proof to the Appendix.

Set up. For now consider a firm with decreasing returns to scale technology y(z, n) such that y(z, 0) =

0. Suppose the firm starts with productivity z and n = 1 worker. The current contract between the firm

and the incumbent specifies a wage w1 ∈ (b, y(z, 1)), where b = U is the value of unemployment. At this

point, the incumbent worker does not have a credible threat to quit into unemployment nor the firm has

a credible threat to fire the worker. Then, the labor market opens. For now we also assume that the firm

has sunk the cost of a vacancy c, later considering the explicit decision to post a vacancy.

3.1 UE hire

Assume the firm’s vacancy meets an unemployed worker. Four different cases can arise from the com-

bination of hiring/not hiring and renegotiating/not renegotiating the wage with the incumbent. Our

assumption on external negotiation (A-EN) requires that in all cases the take-leave wage offer of the firm

to the outside worker is w2 = b. Our internal negotiation assumption (A-IN) requires that the joint value

with and without renegotiation is the same and simply equals output y(z, n). Let w∗1 be the incumbent

wage after the internal negotiation.

If the firm hires the new worker, its profits are as follows:

y(z, 2)− w1 − b︸ ︷︷ ︸
Without renegotiation

, y(z, 2)− w∗1 − b︸ ︷︷ ︸
With renegotiation

,

Acemoglu (2001), low-productivity firms do not internalize that when posting vacancies on-the-job search will result in them
diverting workers away from high-productivity firms. These distorted vacancy decisions affect the equilibrium distributions
of workers across firms Hn which, in turn, influences the hiring opportunities of all other firms.
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If the firm does not hire the new worker, its profits are

y(z, 1)− w1︸ ︷︷ ︸
Without renegotiation

, y(z, 1)− w∗1︸ ︷︷ ︸
With renegotiation

We now describe which case occurs. This requires understanding when our mutual consent assumption

(A-MC) coupled with limited commitment on layoffs (A-LC) bind. In particular, the firm may obtain a

credible threat to trigger renegotiation of w1. Since we are interested in allocations only, we focus first on

when a hire occurs.

Hire. A hire without renegotiation occurs when the following two conditions hold:

y(z, 2)− w1 − b ≥ y(z, 1)− b︸ ︷︷ ︸
No credible threat

, y(z, 2)− w1 − b ≥ y(z, 1)− w1︸ ︷︷ ︸
Optimal to hire w/o renegotiation

(3)

The first condition illustrates that the threat to fire the incumbent worker is not credible, which under (A-

MC) implies no renegotiation. Keeping the incumbent worker at w1 and employing the outside worker

at b delivers a higher value to the firm than the threat of “swapping”: firing worker one and hiring

the unemployed worker in his place. Given no renegotiation, the second condition ensures hiring is

privately optimal for the firm.

A hire with renegotiation occurs when the following two conditions hold:

y(z, 2)− w1 − b < y(z, 1)− b︸ ︷︷ ︸
Credible threat

, y(z, 2)− w∗1 − b > y(z, 1)− w∗1︸ ︷︷ ︸
Optimal to hire w/ renegotiation

. (4)

The firm has now a credible threat to fire the incumbent worker according to (A-LC). This is possible

only under decreasing returns to scale: even though w1 < y(z, 1), the first inequality in (4) implies

w1 > y(z, 2) − y(z, 1), i.e. the incumbent wage is above its own marginal product. Employing the

outside worker at b and keeping the incumbent worker at w1 delivers a lower value than ‘firing and

swapping’. The second condition is necessary for hiring to be optimal under the renegotiated wage w∗1
to the incumbent worker.

Under the zero sum game assumption (A-IN), the renegotiated wage w∗1 only redistributes value

between the incumbent worker and the firm and does not affect total value.24 In addition, it must be

individually rational, and so w∗1 ∈ [b, y(z, 2) − y(z, 1)]. Without further assumptions we cannot say

exactly what this wage is, but we can nonetheless pin down allocations.

24Two relevant cases that would violate this condition are (i) if worker’s effort enters the production function and effort
depends on the wage, and (ii) concave utility.
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Rearranging the optimal hiring conditions, we observe that both are satisfied as long as

y(z, 2)− y(z, 1) > b. (5)

Note that without internal renegotiation (A-IN), the hiring condition would differ in the two cases. If

wages could not be cut and the firm had a credible threat, the incumbent worker would be fired and

the firm would always hire the unemployed worker (y(z, 1) > b). As a result, to determine when a hire

occurs, one would need to know the incumbent’s wage to distinguish between the two cases (thus, in

the general model with n workers, the whole wage distribution). Similarly, if a fraction of output were

to be lost because of the internal negotiation, a violation of (A-IN), the hiring conditions in (3) and (4)

would differ and, again one would need to know wages to determine whether a hire occurs.

We can write inequality (5) in terms of joint value. Workers’ values are simply equal to their wage wi

for i ∈ {1, 2}. The firm’s value is simply equal to its profits. The fact that wages are valued linearly by

both worker and firm implies that the joint value Ω(z, n) is independent of wages:

Ω (z, n) = y(z, n)−
n

∑
i=1

wi︸ ︷︷ ︸
Firm value

+
n

∑
i=1

wi︸ ︷︷ ︸
Sum of workers’ values

, for any (wi)
n
i=1 .

Using the definition of joint value, equation (5) characterizes when the UE hire occurs:

Ω (z, 2)−Ω (z, 1) > U. (6)

Thus, the decision of hiring from unemployment does not depend on wages, but only on productivity,

size, and the value of unemployment U = b.

No hire. For completeness, consider the cases where no hiring occurs. No hire with renegotiation

occurs when the following two conditions hold:

y(z, 1)− b > y(z, 1)− w1︸ ︷︷ ︸
Credible threat

, y(z, 1)− w∗1 ≥ y(z, 2)− w∗1 − b︸ ︷︷ ︸
Optimal to not hire

(7)

When incentive compatible for the firm to not expand its workforce, the firm always has a credible threat

to swap out its incumbent worker since w1 > b. In this case we can pin down w∗1 from the worker’s

individual rationality constraint. If w∗1 > b, then the firm would still have a credible threat to swap the

worker, hence w∗1 = b. Since this outcome represents a redistribution of value between firm and worker

then, consistent with (A-IN), the joint value remains Ω(z, 1).25 Finally, the no-hiring condition in (7) can

be re-written as in (5) with the opposite inequality, Ω(z, 2)−Ω(z, 1) ≤ U.

25The value before renegotiation was Ω (z, 1) = z− w1 + w1 = z. The joint value after renegotiation is Ω (z, 1) = z− w∗1 +
w∗1 = z.
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Combined. The firm hires from unemployment when its vacancy meets an unemployed worker and

the marginal value of the job seeker exceeds the value of unemployment:

Ω (z, 2)−Ω (z, 1)
2− 1

> U. (8)

In addition, the joint value of the firm and its workers rises by Ω(z,2)−Ω(z,1)
2−1 −U when the hire occurs. This

is exactly the UE hire term in the HJB equation (1). In the case of a hire, incumbent wages may or may

not be renegotiated but this has no impact on whether hiring occurs, or how the joint value of the firm

and its workers changes. When this condition fails, the firm does not hire, wages are renegotiated, but

the joint value remains constant. All decisions require knowledge of (z, n) only, but not of incumbents’

wages.

Multiple incumbents The appendix contains an extension of the proof to the case where the hiring

firm has n = 2 incumbents and both can be possibly under threat. The logic is the same, but that proof

also highlights why it is useful to rule out transfers across workers, assumption (A-LC-c).

3.2 EE hire

Now suppose that the worker matched with the firm’s vacancy is currently employed at another firm

with productivity z′ and a single worker n′ = 1. The situation is not that different from UE hire, except

that the potential hire may have a better outside option in the form of the retention offer made to her by

her current employer under (A-EN). To see the similarity for now we fix this wage offer at w. The same

four cases can arise, except with w playing the role of b.26 We can therefore reason as before and jump to

the result that hiring will occur if and only if the following counterpart to (6) holds:

Ω(z, 2)−Ω(z, 1) > w.

We now determine the poached worker’s outside option w. The poached firm’s willingness to pay is

a wage w̃ that makes it indifferent between retaining and releasing the worker: y(z′, 1)− w̃ = 0. Hence,

the contacted worker switches to the new employer as long as the poaching firm offers w ≥ w̃ = y(z′, 1).

Bertrand competition between the two firms implies that the poaching firm offers w = y(z′, 1), which is

exactly the marginal value of the worker at the poached firm. As in the case of UE hire, whether EE hire

occurs can be summarized by joint values:

Ω (z, 2)−Ω (z, 1)
2− 1

>
Ω (z′, 1)−Ω (z′, 0)

1− 0
. (9)

26Renegotiation will happen for different values of w1 in the no hire case. Indeed, to establish the presence of a credible
threat w1 must be compared to w instead of b, but this has no allocative implications for the hiring decisions.
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The EE hire decision is entirely characterized by knowledge of the pair (z, n) for the two firms.27 The

value gain to the firm and its workers is the difference between the left-hand side and right-hand side of

equation (9). This comparison of marginal values is precisely the EE hire term in the HJB equation (1).

Finally, this exercise explains the absence of a EE quit term in (1). The payment received by its

poached worker is equal to the poached coalition’s willingness to pay, which is in turn exactly equal to

the worker’s marginal value to the coalition. The joint value of the poached coalition therefore does not

change as it loses its worker. EE quit events play an important role in the dynamics of employment at

the firm—which we describe below—but no role in the dynamics of Ω(z, n).

3.3 Vacancy posting

We now explain the private inefficiency in vacancy posting and why (A-VP) is crucial for tractability.

Recall that in the hiring scenarios just analyzed, two cases arise when the firm can credibly force a

wage cut: (i) when it hires and the incumbent wage is above the post-hire new marginal product; (ii)

when hiring is not profitable, but the firm can credibly ‘fire and swap’, i.e. as long as the reservation

wage of the external worker met through search is below the incumbent wage. The firm has therefore

incentives to spend resources on vacancy posting only to transfer value between agents, a privately

inefficient outcome. The amount spent would depend on the incumbent’s wage, breaking the tractability

of our representation. Private efficiency reinstates tractability.

We start with the firm’s preferred vacancy policy. Without loss of generality, suppose firms only meet

unemployed workers (hence, upon a meeting, the ‘fire and swap’ threat is always credible). Let v be the

number of vacancies posted, c(v) the associated cost, and qv the probability a single vacancy meets a

single worker. If no meeting occurs, then as per (A-MC), w1 does not change so the value of the firm

does not change. The firm maximizing the expected return from vacancy posting net of costs is:

max
v

−c(v) + qv
[

max
{

y(z, 2)− w′1 − b︸ ︷︷ ︸
Hire (cases 1&2)

, y(z, 1)− b︸ ︷︷ ︸
No hire (case 3)

}
−
(

y(z, 1)− w1

)]
,

Following a meeting, three cases may occur. In Case 1, the firm hires and there is no renegotiation,

w′1 = w1. This case arises when the wage of the incumbent worker is low enough. Then, adding a

second worker does not reduce the marginal product of labor down to the point where the firm has a

credible layoff threat. In Case 2, the firm hires but the wage of the incumbent is renegotiated down

27The case when the firm meets a worker at a firm with (z′, 2, w1, w2) is similar. Suppose the firm meets worker 1. The
poached firm has the additional option of cutting w2, but this is inconsequential for the argument because it only redistributes
value within the poached-from firm.
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to w′1 = w∗1 . In this case, diminishing marginal returns drive the marginal product of labor with two

workers below the incumbent’s initial wage. In Case 3, the firm is better off not hiring, but under the

threat of swapping out the incumbent, renegotiates w1 down to b. The firm’s preferred vacancy policy

v f then equates marginal cost to marginal expected return:

cv

(
v f
)
= q

[
max

{
y(z, 2)− w′1 − b , y(z, 1)− b

}
−
(

y(z, 1)− w1

)]
. (10)

The first-order condition (10) highlights that the firm’s preferred vacancy policy depends on the incum-

bent’s wage w1 because this wage determines the gains from forcing a renegotiation through vacancy

posting. This dependence is a source of intractability because, in the general model with n workers, (10)

would depend on the entire wage distribution inside the firm.

Our assumption (A-VP) ensures that firms do not post v f , but instead post the privately efficient

amount of vacancies which does not depend on worker wages. We now show how our micro-foundation

(A-VPI) implements (A-VP).

Case 1 – Hire without renegotiation. In this case the outcome is already privately efficient. The worker’s

value does not decrease (w′1 = w1), and by the fact that a hire occurs, the firm’s value must increase.

We can also write the expected return as qv [Ω(z, 2)−Ω(z, 1)−U]. Since the return is independent of

w1, then the efficient vacancy policy is independent of w1. The firm is choosing vacancies as if it were

maximizing the joint surplus without having to appeal to additional assumptions.

In cases 2 and 3, the outcome is privately inefficient because the firm may profit from vacancies that, if

met by a job seeker, deliver a credible threat to cut the incumbent’s wage to w′1 < w1.

Our assumption (A-VPI) allows the worker to correct for this over-posting. The worker can then

concede a pay cut in all states in exchange for an alternative level of vacancies. Such a pay cut is not

covered under (A-MC) since when the vacancy policy is announced there is not yet a credible threat to

layoff workers.28 The firm will accept this wage cut and choose the worker’s preferred vacancies if it

delivers at least the value obtained under the firm’s preferred vacancies v f . We show that the worker’s

preferred package satisfying incentive compatibility restores efficiency in vacancy posting.

Case 2 – Hire with renegotiation. In this case, the incumbent’s wage w1 is high enough that the firm

finds it profitable to raise the contact probability with an unemployed worker beyond what would be

efficient. Although the hiring outcome is efficient ex-post, too much resources are spent on vacancies

28A pay cut regardless of the outcome of the search for a new worker maps exactly into a transfer from worker to firm,
which is how we approach the proof in the Appendix. We could have allowed for state-contingent wage-cuts that depend on
who the firm meets or whether a meeting occurs. Even if these states were verifiable the result would only be for the worker
to offer a menu of wage-cuts across states. This would increase worker value but not change allocations, hence for consistency
with the rest of our assumptions, we assume a single wage cut.
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ex-ante. Let w∗1 be the renegotiated wage after a meeting. The worker chooses a package of vacancies

and a wage cut in all states (vw, x) that solves:

max
vw, x

qvw
(

w∗1 − w1

)
− x (11)

subject to

qvw
[(

y(z, 2)− (w1 − x)− b
)
−
(

y(z, 1)− w1

)]
− c(vw)

≥ qv f
[(

y(z, 2)− w∗1 − b
)

−
(

y(z, 1)− w1

)]
− c(v f ) (IC)

The worker anticipates that after a meeting their wage will be renegotiated to w∗1 < w1. Given this

wage cut, the worker seeks to limit the probability of this event by cutting back on vacancies. Incentive

compatibility (IC) requires that as the worker cuts vacancies it also cuts its wage so that the firm accepts

the proposed policy vw over v f .

The Pareto problem (11) yields the result that vacancy posting is independent of w1. First, given the

linear objective function, (IC) holds with equality. Thus, we can substitute out x. Second, the zero-sum

game assumption (A-IN) implies that w∗1 is a renegotiated wage that only redistributes value and hence

drops out. Third, all terms that do not depend on (x, vw) are irrelevant to the worker’s decision. This

leaves the following objective function:

max
vw

qvw
[(

Ω(z, 2)−U
)
−Ω(z, 1)

]
− c (vw) .

The decision can therefore be characterized by the privately efficient return, which is the change in joint

value net of the cost of the new hire, Ω(z, 2)−Ω(z, 1)−U.

Case 3 – No hire with renegotiation. In this case the ‘fire and swap’ threat is credible. The incumbent’s

wage w1 is high enough and the marginal product of an additional worker is below b. Replacing the

return to hiring by the wage cut for the incumbent worker, the previous logic delivers

max
vw

qvw
[
Ω(z, 1)−Ω(z, 1)

]
− c (vw) =⇒ vw = 0

Absent the transfer from worker to firm, the firm would post positive vacancies v f even if the return

from hiring is negative, i.e. Ω(z, 2)−Ω(z, 1) < U to induce a wage cut, and v f would depend on w1.

Under (A-VPI), the worker takes a preemptive wage cut, and vacancies are zero, the efficient amount in

this case.

Combined. Combining all three cases, privately efficient vacancies solve

max
v

qv
[

max
{

Ω(z, 2)−Ω(z, 1)
2− 1

−U, 0
}]
− c(v).
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Note three properties of this solution. First, the firm always hires when it meets an unemployed

worker. Second, optimal vacancy posting equates the marginal gain in joint value to the marginal cost of

a vacancy, and it only depends on (z, n). Third, this condition is the flip-side of the separation frontier.

In (1) we said that if Ωn(z, n) > U, then the firm will not separate with workers. The terms inside the

max expression say that if this is true, then the firm will post vacancies.29

We conclude that under (A-VPI), the joint value is sufficient to characterize the vacancy decision.

The distribution of wages in the firm is immaterial.

Multiple incumbents. When the firm employs more than one worker, the efficient transfer scheme

can be implemented by randomly selecting a worker under threat to offer a package of wage-cuts and

vacancies. In exchange, the firm posts the efficient number of vacancies. Under such a scheme, the

initiating worker is strictly better off while the firm and the other workers are indifferent. We establish

this case in detail in Appendix C.3.5.

3.4 Layoffs, quits, exit, entry

Having described most of the terms in the HJB (1), we conclude with the boundary conditions for exit,

layoffs and the free entry condition.

Layoffs. Consider now a firm with n = 2 workers paid (w1, w2), and assume that w1 < y(z, 1) such

that worker 1 is never under threat of layoff. The firm has a credible threat to fire worker 2 if

y(z, 1)− w1 > y(z, 2)− w1 − w2.

Such a situation may occur if, for example, productivity has just declined. The firm has a credible threat

to negotiate down to a wage level w∗2 such that y(z, 1) − w1 = y(z, 2) − w1 − w∗2 and keep worker 2

employed. From the worker’s perspective, it is individually rational to accept any wage w∗2 above b.

Worker 2 is laid off if y(z, 1)−w1 > y(z, 2)−w1− b. In terms of joint value, this can be written in exactly

the form of the layoff frontier (2): Ω (z, 2)−Ω (z, 1)
2− 1

< U.

The firm lays off workers until the marginal joint value of the worker is equal to the value of unem-

ployment.30 Note that this is the complement to the condition for posting vacancies. The special case

29It is possible to determine the optimal wage cut x that delivers the efficient policy, but throughout the paper we focus on
allocations only. See Bilal, Engbom, Mongey, and Violante (2019) for more details on wage determination.

30Note that, when both workers are under threat, the particular order in which values of workers are reduced is immaterial
to the condition Ω (z, 2)−Ω (z, 1) < U. One could for example lower the wages of both workers proportionally, increasing the
value of the firm, but a worker must be fired if J(z, 2, w∗1 , b) < J(z, 1, w∗1 , ·) for any w∗1 ≥ b.
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with n = 1 of this scenario also arises in the one worker-one firm model with productivity shocks of

Postel-Vinay and Turon (2010).

Quits to unemployment. Since in this static model workers will accept a renegotiated wage down to

w∗i = b, they will only quit at the point where the firm has a credible threat to lower wages below b.

This is exactly the point at which the marginal value is equal to the value of unemployment. In this

sense layoffs as described above are indistinguishable from quits to unemployment, as in any model

with privately efficient separations. For ease of language all endogenous UE transitions are referred to as

layoffs, and we use quits to refer only to EE transitions.

Finally, recall that in the dynamic model unemployed job seekers are promised a wage that imple-

ments a value U to them. If events occur in the firm that reduce the continuation value to that worker

below U (e.g., a negative productivity shock), the incumbent may have a credible threat to quit and

renegotiate her wage to restore its value at U, or above it, depending on the details of the internal ne-

gotiation. However, such renegotiation is, again, only a transfer of value within the firm. Separations

remain privately efficient even in the dynamic model.

Exit. Now consider the exit decision of a firm with one worker. The private value of exit to the firm is

the scrap value ϑ > 0. The firm therefore exits if and only if y(z, 1)− w∗1 < ϑ, where w∗1 is a possibly

renegotiated wage contingent on the firm remaining in operation. If the profit from operating at the

lowest possible renegotiated wage w∗1 = b is greater than ϑ, then the firm will continue to operate.

Hence, the firm exits if y(z, 1)− b < ϑ, and the renegotiated wage only affects the distribution of value.31

The exit condition can be written as Ω(z, 1)−U < ϑ, and in the general case of n workers is exactly the

boundary condition in (1): Ω (z, n)− nU < ϑ.

Entry. Upon entry the firm has n0 workers hired from unemployment. The private entry cost of the

firm is c0, so entry requires
�

y(z, n0)dΠ0(z)− n0b > c0. Using Ω(n, z) = y(z, n) and U = b, this requires�
Ω (z, n0) dΠ0(z) > c0 + n0U.

3.5 From static to dynamic

This static example showcases how to obtain every component of (1) from our set of assumptions. Ap-

pendix C generalizes these insights to the dynamic case. Two insights assist us. First, the proof begins

with a discrete workforce. Here we are helped by continuous time, which removes complicated binomial

31The firm has no credible threat to reduce w1 if y(z, 1) − w1 > ϑ. The firm can credibly threaten exit if ϑ ∈
(y(z, 1)− w1), y(z, 1)− b), but in this case w1 can be reduced to a point where this threat is no longer credible.
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probabilities of one, two, three, etc. incumbent workers meeting a competitor’s vacancy. Second, we take

the continuous workforce limit of the discrete workforce HJB equation. This limit delivers the joint value

representation (1) in terms of the derivative of the joint value function rather than differences of values

which, when moving up or down by one worker, are symmetric due to continuous differentiability.

4 Equilibrium and characterization

Returning to the joint value representation (1) and (2), we define an equilibrium and characterize firm

behavior and allocations.

4.1 Surplus formulation

A convenient formulation of (1) is in terms of joint surplus, defined as S(z, n) = Ω(z, n)− nU, such that

Sn(z, n) = Ωn(z, n)−U , Sz(z, n) = Ωz(z, n) , Szz(z, n) = Ωzz(z, n).

The marginal (joint) surplus Sn(z′, n′) at a competitor is sufficient to characterize how surplus changes

over an EE hire. We therefore directly compute the value of a vacancy using the employment-weighted

distribution of marginal surplus in the economy: Hn (S′n). Recall that ρU = b. With these definitions (1)

becomes

ρS (z, n) = max
v≥0

y (z, n) − nb − δnSn (z, n) (12)

+ q(θ)v

[
φSn (z, n) + (1− φ)

� Sn(z,n)

0

(
Sn (z, n)− S′n

)
dHn

(
S′n
) ]

︸ ︷︷ ︸
Return on a vacancy: R(z,n)=R̃(Sn(z,n))

−c
(

v; z, n
)

+ µ(z)Sz (z, n) +
σ2(z)

2
Szz (z, n)

subject to the two boundary conditions expressed in terms of surplus:

Exit boundary: S(z, n) ≥ ϑ , Layoff boundary: Sn(z, n) ≥ 0. (13)

The entry decision can be written as:
�

S (z, n0) dΠ0(z) ≥ c0.

One-worker-one-firm models. The Bellman equation (12) is a natural extension of expressions of firm

value found in earlier single worker job ladder models. In these settings, constant returns to scale pro-

duction imply that firms can be treated as arbitrary groups of one-worker-one-firm pairs, each with
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match output y(z). The surplus from such a firm-worker match in our model follows closely Postel-

Vinay and Robin (2002) and Lise and Robin (2017). It can be obtained as a special case of (12) when the

functions y and c are linear in n:32

ρS(z) = max
v≥0

y(z)− b− δS(z) + q(θ)v

[
φS(z) + (1− φ)

� S(z)

0
(S(z)− S′) dHn(S′)

]
− c(v; z)(14)

+ µ(z)Sz(z) +
σ2(z)

2
Szz(z) (15)

Surplus depends only on exogenous productivity z, and with one worker firms the unweighted and

employment weighted measures of firms are identical. The expected return to a vacancy is therefore

computed by integrating over Hn(S′) = H(z). In our framework Hn(S′) is an equilibrium outcome,

while here it coincides with the exogenous productivity distribution. Thus, the rank of a firm on the job

ladder is determined only by its productivity z.

4.2 Equilibrium

A stationary equilibrium with positive entry consists of: (i) a joint surplus function S(z, n); (ii) a vacancy

policy v(z, n); (iii) a law of motion for firm level employment dn
dt (z, n); (iv) a stationary distribution

of firms H(z, n); (v) vacancy and employment weighted distributions of marginal surplus Hv(Sn) and

Hn(Sn); (vi) a positive mass of entrants m0, (vii) a vacancy meeting rate q(θ) and conditional probability

of meeting an unemployed worker φ, such that:

(i) Total surplus S(z, n) satisfies the HJB equation (12) and boundary conditions (13).

(ii) The vacancy policy v(z, n) satisfies the first order condition:

cv(v(z, n); z, n) = q(θ)

[
φSn(z, n) + (1− φ)

� Sn(z,n)

0
(Sn(z, n)− S′n) dHn(S′n)

]
.

(iii) The law of motion for firm level employment is

dn
dt

(z, n) =


− n

dt n < n∗E(z)

q(θ)v(z, n)
[
φ + (1− φ)Hn(Sn(z, n))

]
− n

[
δ + λE(θ)(1− Hv(Sn(z, n)))

]
n ∈

[
n∗E(z), n∗L(z)

)
n∗L(z)−n

dt n ≥ n∗L(z),

32The comparison is clearest with Lise and Robin (2017) which features convex vacancy costs. To be precise in the com-
parison split (14) into three pieces. The value of the coalition is (δ + ρ)S(z) = y(z) − b + µ(z)Sz(z) +

(
σ2(z)/2

)
Szz(z), cor-

responding to their equation (3). The vacancy decision can be split off and given by v(z) that satisfies cv(v(z), z) = q(θ)S̃(z),
where the “expected value of a contact” is S̃(z) = φS(z) + (1− φ)

�
[S(z)− S(z′)]+ hn(z′)dz′. These are their equations (6) and

(7), respectively.
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where the notation n
dt denotes a jump of size n, and where the layoff and exit thresholds satisfy

Sn
(
z, n∗L(z)

)
= 0 , S

(
z, n∗E(z)

)
= ϑ︸ ︷︷ ︸

From (13)

, Sz
(
z, n∗E(z)

)
= 0 , Sn

(
z, n∗E(z)

)
= 0 if

dn
dt
(
z, n∗E(z)

)
< 0︸ ︷︷ ︸

Smooth pasting

(iv) The vacancy and employment weighted distributions of marginal surplus Hv(Sn) and Hn(Sn) are

consistent with H(z, n):

Hv(Sn) =

�
1[Sn(z,n)≤Sn]

v(z, n)
v

dH(z, n) , v =

�
v(z, n)dH(z, n)

Hn(Sn) =

�
1[Sn(z,n)≤Sn]

n(z, n)
n

dH(z, n) , n =

�
n(z, n)dH(z, n)

(v) The measure of firms H(z, n) is stationary, and admits a density function h(z, n) that satisfies:

0 = − ∂

∂n

(
dn
dt

(z, n) h (z, n)
)
− ∂

∂z

(
µ (z) h (z, n)

)
+

∂2

∂z2

(
σ (z)2

2
h (z, n)

)
+ m0 π0(z) ∆(n)

where ∆ is the Dirac delta “function” which is zero everywhere except n = n0 where it is infinite.33

(vi) Free-entry implies that the entry condition holds with equality, which determines entry m0:

c0 =

�
S(z, n0)dΠ0(z),

(vii) The vacancy meeting rate q(θ) and conditional probability of meeting an unemployed worker φ

are consistent with the aggregate matching function given unemployment (u = n−
�

n dH(n, z))

and aggregate vacancies (v =
�

v(z, n)dH(z, n)).

The numerical procedure to compute the equilibrium of the model is described in Appendix F.

4.3 Vacancy policy

From (12), the first order condition for the firm’s vacancy decision gives

q(θ)R(Sn(z, n)) = cv(v; z, n) , where R(Sn) = φSn + (1− φ)

� Sn

0

(
Sn − S′n

)
dHn

(
S′n
)

(16)

The return on a vacancy is independent of v, and is a strictly increasing and strictly convex function of

only marginal surplus:

R′(Sn) = [φ + (1− φ)Hn(Sn)] · 1︸ ︷︷ ︸
↑ Surplus on each hire

+ (1− φ)hn(Sn) · 0︸ ︷︷ ︸
Surplus on additional hires= 0

, R′′(Sn) = (1− φ)hn(Sn)

33For notational brevity we have slightly abused notation by writing the Kolmogorov-Forward equation in the space of
Schwarz distributions.
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Since the function c is convex in v and c(0; z, n) = 0, optimal vacancies are uniquely determined. On

the intensive margin, a rise in Sn increases the return to hiring an unemployed or employed worker one-

for-one. On the extensive margin, increasing Sn widens the set of firms from which the firm will poach,

increasing the probability of a hire by (1− φ)hn(Sn), but hiring from these additional firms yields zero

additional value as the target firm’s marginal surplus associated with the worker is close to that of the

poaching firm.

4.4 Endogenous hiring cost

The literature on firm dynamics models employment adjustment costs parametrically. Search frictions

and the job ladder induce, instead, an endogenous hiring cost function which depends on both equilib-

rium market tightness and on the rank of the firm on the job ladder.

The hiring rate per vacancy for a firm with marginal surplus Sn(z, n) is p = q(θ)[φ + (1− φ)Hn(Sn)].

Attaining h̃ hires therefore requires h̃/p vacancies and costs C(h, n, z, Sn), given by

C
(

h, z, n, Sn

)
= c
(

v
(

h̃, Sn

)
; z, n

)
= c

 h̃

q(θ)
[
φ + (1− φ)Hn(Sn)

] ; z, n

 . (17)

The reduced form hiring cost function implied by the model is convex in h̃ and decreasing in marginal

surplus. It is also determined by two equilibrium objects: overall market tightness via q(θ) and the

macroeconomic distribution of marginal surplus Hn(Sn). The cost function (17) therefore makes clear

the role of frictions and on-the-job search as endogenous sources of adjustment cost.34

4.5 Hire and separation policies

Properties of S(z, n). It is useful to establish some properties of the joint surplus function under stan-

dard assumptions on technologies. Suppose (i) productivity follows a geometric Brownian motion with

µ(z) = µ · z, σ(z) = σ · z, (ii) the vacancy cost function is isoelastic in vacancies only c(v) = c0v1+γ, and

(iii) the production function satisfies yz > 0, yn < 0, ynn < 0, yzn > 0.35 In Appendix D we show that

under these assumptions P1− P3 hold:

(P1) S is increasing and concave in employment: Sn > 0, Snn < 0

(P2) S is increasing in productivity: Sz > 0

34Compare this cost function, for example, to the standard convex adjustment cost in firm dynamics models, which depends
only on the net growth rate but not equilibrium objects, or to the effective firm-level employment adjustment cost functions in
the directed search model of Kaas and Kircher (2015) or the random search model of Gavazza, Mongey, and Violante (2018)
which do not feature on the job search and so depend on the distribution of firms in the economy only through the ‘price’ q(θ).

35All of which are satisfied by y(z, n) = znα with α ∈ (0, 1), the functional form assumed in our quantitative analysis.
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Figure 3: Values of exit, hiring and layoff for fixed levels of productivity z

(P3) S is supermodular in productivity and labor: Szn > 0

Optimal policies. Figure 3 exploits these properties to characterize the firm’s policies for alternative

levels of productivity. The red dashed line describes the value of hiring minus the scrap value: Ω(z, n)−

ϑ. The lower blue dashed line extending from the origin gives the total value of unemployment to the

firms’ employees: U × n. The exit threshold n∗E(z) is determined by their intersection. At this point the

per worker value net of ϑ is equal to the value unemployment: (Ω(z, n∗E(z))− ϑ) /n = U. As opposed

to this condition on average values, the layoff threshold n∗L(z) equates the marginal value to U.

The solid red line is the upper envelope describing the pre-separation/exit value Ω(z, n) =

1{n<n∗L(z)}max{nU, Ω(z, n) − ϑ} + 1{n≥n∗L(z)}

[
Ω(z, n∗L(z)) + (n− n∗L(z))U

]
. For example, if n > n∗L(z),

the firm fires (n− n∗L(z)) incumbents who each receive U. The joint value, given by the solid red line, is

therefore given by
Ω(z, n) = Ω(z, n∗L(z)) + (n− n∗L(z))U.

Panel (b) shows that under a lower productivity, the exit and layoff regions extend, while the hiring

region shrinks. At an even lower zL < zM it is optimal for the firm to exit for all n (panel (c)).

4.6 Worker reallocation

The model enables us to decompose firms’ job flows (i.e. growth) into the four worker flows discussed

in the introduction. Firm job growth in the hiring region is given by

dn
n

= q(θ)
v(z, n)

n

[
φ + (1− φ)Hn(Sn(z, n))

]
︸ ︷︷ ︸

UE+EE+

−
[
δ + λE(θ)Hv(Sn(z, n))

]
︸ ︷︷ ︸

EU+EE−

.

Under assumptions (i)-(iii) stated above, we can also prove (see Appendix D):
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Gross flow rates

n

Sn > 0

n∗E(z)

dn
n = 0

n∗ZG(z)

Sn = 0

n∗L(z)

δ

δ + λE

qv(z, n∗E)φ

qv(z, n∗E) [φ + (1− φ)G(Sn(z, n∗E))]

EE+

UE

EE−

EU

Figure 4: Gross worker flows by employment level, for given productivity

Notes: The solid red curve represents total separations (EU + EE−) and the dashed red horizontal line exogenous quits EU.
The green curve represents total hires (UE + EE+) and the dashed green curve hires from unemployment (UE).

(P4) Net employment growth dn/n is increasing with productivity z and decreasing with size n.

Figure 4 illustrates how the four worker flows which determine net firm growth vary with n for a

given level of z. Consider a firm that is at the layoff frontier, n = n∗L(z). Marginal surplus is zero so

the firm posts zero vacancies and shrinks due to exogenous separations and poaching. Conditional on

a meeting, any worker employed in that firm leaves (Hv(0) = 1), and so separations occur at rate δ +

λE(θ). As the firm shrinks, decreasing returns in production cause the firm’s marginal surplus to increase

(P1). In terms of outflows, the firm loses fewer workers to competitors. In terms of inflows, the firm posts

vacancies which always generate hires from unemployment and, as marginal surplus increases further,

hires from employment too. Firms shrink towards n∗ZG(z) where gross flows are positive but there is

zero growth. For any given productivity z, the firm with the highest marginal surplus has the smallest

size compatible with operating, i.e. size n∗E(z), and grows quickly away from n∗E(z) with high vacancy

posting and net poaching.

Moreover, if c(v; z, n) = c(v, Sn), then:

(1) Rates of EE− and EE+ are, respectively, decreasing and increasing in the firm’s growth rate. Faster

growing firms have higher rates of net-poaching: (EE+ − EE−).

(2) Share of hires from unemployment decreases (from employment increases) in firm growth rate.

(3) Share of separations to unemployment increases (to employment decreases) in firm growth rate.
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dn = 0

Stay & Layoff

(a) No endogenous exit (ϑ = 0)

z

0 n

Hire / Layoff

Stay / Exit

dn = 0
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Hire & JD

(b) Endogenous exit (ϑ > 0)

Figure 5: Exit, layoff and no-growth frontiers in the (n, z)-space

Notes: This figure plots exit, layoff and no-growth frontiers for two cases: without and with positive scrap value. It also
includes examples of hypothetical firm paths, in each case keeping productivity fixed. A firm (black dot) that begins in the
layoff region jumps to the layoff frontier, firing n − n∗S(z) workers. Subsequent declines in productivity smoothly move the
firm along the layoff frontier until, possibly, exit. A firm that is located in the hiring region smoothly converges toward the
dn = 0 line by growing or shrinking.

The intuition is simply that fast growing firms have high marginal surplus. For example, the pattern in

(2) can be observed from Figure 4. As one moves leftward along the x-axis, Sn and firm’s growth rate

increases and EE+ as a the share of total hires increases goes up as well.

We conclude by noting that this type of analysis on the composition of hires by firm size and produc-

tivity cannot be performed in directed search models. As explained in the Introduction, in that class of

models, the composition of hires at the firm level is indeterminate.

4.7 Firm dynamics

Combining the characterization above with properties P1 − P4, we can fully theoretically represent

firm reallocation (exit), job reallocation (net growth), and worker reallocation (hires and separations)

in (n, z)-space. Figure 5 attains this by describing the functions that determine the stay/exit frontier

n∗E(z), hire/layoff frontier n∗L(z), and the zero growth locus n∗ZG(z).

Panel (a) considers the model without a scrap value such that there is no endogenous exit. We can

tightly characterize the layoff frontier. From (13) the layoff frontier has slope dz/dn = −Snn/Szn. Given

properties P1 and P3, the frontier is therefore positively sloped. To understand firm dynamics to the left

of this frontier, note that fractionally to the left Sn ≈ 0, vacancy posting is low and the firm shrinks due

to EE− and EU flows. The zero growth locus along which dn = 0 must therefore be located strictly to the

left of the layoff frontier. To the right of the zero-growth locus, firms hire but lose even more workers,
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and so experience net job destruction (JD). To the left of the zero-growth locus, marginal surplus is

sufficiently large that firms are successful in hiring and retaining workers to experience net job creation

(JC), but some endogenous separations through quits also occur. Thus, the model generates both hires

for shrinking firms and endogenous separations for growing firms. To the right of the frontier, firms

layoff workers, destroying jobs en masse, jumping back to the frontier.

Panel (b) introduces a positive scrap value and endogenous exit. First, consider ignoring smooth-

pasting conditions. In this case the exit frontier would have gradient dz/dn = −Sn/Sz. Since Snn < 0

(P1) and Sz > 0, the frontier would have a minimum when Sn = 0. The exit frontier therefore crosses the

layoff frontier at its lowest point, increasing on either side.

Now let’s consider how incorporating smooth pasting conditions affects exit. A necessary condition

for optimal exit is that Sn = 0 on the boundary: if marginal surplus was positive, the firm would not

want to exit. Since Sn = 0 on the layoff boundary and by (P1) S is strictly concave in n then it cannot be

the case that Sn is zero again in the hiring region. This has two implications. First, firms cannot be exiting

along the downward sloping section of the exit boundary in the Hire & JC region. This is consistent with

employment dynamics as in this region firms drift to the right: dn/n > 0. Second, firms cannot be

located in the Hire & JD region below the z at which n∗ZG(z) crosses the exit frontier. A firm located here

would be drifting toward exit with Sn > 0, and exit with Sn > 0 is sub-optimal. As a result, to the right

of the intersection of the zero-growth locus and the S(z, n) = ϑ locus, the exit frontier is flat.36

The stationary distribution of firms in the economy has support along the layoff frontier, and to its

left. The distribution has zero mass along the left exit frontier. Growing firms do not exit, but shrink-

ing firms may experience productivity shocks that force them to crossing the horizontal section of the

S(z, n) = 0 exit frontier. All firms—except those on the layoff frontier—post vacancies, and hire workers

both from employment and unemployment,and lose workers both to employment and unemployment.

The results derived in Section 4.6 regarding gross flows fully describe employment dynamics of the

firm when interior to these boundaries.37

4.8 Frictionless limits

The frictionless limit of our economy is identical to that of a competitive, Hopenhayn-style model of

firm dynamics with no dispersion in the marginal product of labor. Absent job-to-job mobility, this limit

36Note that the sufficient condition for this flat exit boundary to exist is that the Sn = 0 locus lies strictly below the dn = 0
locus. This is always the case, since if Sn = 0 the firm must always be shrinking and Snz > 0 (P3). Therefore, a higher Sn such
that the firm is not shrinking must be associated with a strictly higher z.

37One can think of Figure 4 as describing gross firm hiring along a straight horizontal line drawn in the (n, z) space of Figure
5 and running from the exit to the layoff frontier.
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cannot be obtained. This theoretical limiting behavior benchmarks our exercise in Section 6.2 where we

quantify the output effects of labor market frictions. In the rest of this section we offer an intuition for

these results. The formal proof is in Appendix E.

Frictionless limit without on-the-job-search. Let A be matching efficiency, the scalar in front of the

matching function, and take A → ∞. Unemployment decreases and, without on-the-job search, firms

can only hire from the shrinking pool of unemployed workers. From the perspective of the firm, the

increase in A raises meeting rates, while the decrease in unemployment reduces meeting rates. In equi-

librium these two forces exactly offset because the free entry condition uniquely pins down q(A), inde-

pendently of A. With q unaffected by the increase in A, the firm problem is unaltered, so firm employ-

ment dynamics are unchanged and, conditional on age, the dispersion in the marginal product of labor

is unchanged.38 Positive dispersion in marginal products is not a property of a frictionless competitive

economy, but that of a competitive economy with adjustment costs. We now show that

Frictionless limit with on-the-job search. As A → ∞ unemployment decreases but, with on-the-job

search, firms can still hire from the non-shrinking pool of employed workers. Worker search efficiency,

therefore, becomes constant, while aggregate feasibility ensures finite vacancies, so q(A) = A(s/v)−(1−α)

increases in A. The increase in q(A) accelerates labor reallocation from low to high marginal surplus

firms. With decreasing returns to scale, marginal surplus increases at firms that lose workers, and de-

creases at the firms that poach them. The limit features the hallmark of a competitive model: zero

dispersion in marginal surplus. Job-to-job mobility is the key equalizing force.39

In the limit firm behavior is described by the following Bellman equation

ρS(z) = max
n

y(z, n)− bn + µ(z)
∂S
∂z

(z) +
σ2(z)

2
∂2S
∂z2 (z) , S(z) ≥ ϑ (18)

which makes clear the key properties of the limit. Without dispersion in marginal surpluses the on-the-

job search terms drop out. The allocation is as if firms choose their optimal size each instant, where these

hires are realized through immediate job-to-job reallocation. The only state variable is therefore z, and

the productivity-size distribution is degenerate along (z, n∗(z)), where yn(z, n∗(z)) = b, and marginal

products are equalized. Firm exit is determined by a cut-off rule on productivity z. For new firms, the

38As A increases the only change in the distribution of marginal products in the economy comes from the shifting age
composition of firms as entry increases.

39The proof requires characterization of the limiting behavior of the entire general equilibrium. This involves (i) the Bell-
man equation of the coalition, and (ii) the Kolmogorov-Forward equation of the distribution of coalitions. These two partial
differential equations are coupled through the equilibrium distribution of marginal surplus and the firm vacancy policy. Given
this complexity, we keep the proof manageable by assuming some additional structure. In particular, we assume that the entry
productivity distribution has a sufficiently fat tail.
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Parameter Value Target

ρ Discount rate 0.004 5% annual real interest rate
β Elasticity of matches w.r.t. vacancies 0.5 Petrongolo and Pissarides (2001)
ϑ Scrap value 250 Normalization (= 1/ρ)
c Scalar in the cost of vacancies 100 Normalization
m Number of active firms (1-0.06)/22 Average firm size (BDS)

Table 1: Externally chosen parameters

value of jumping from n0 to n∗(z) upon entry is finite, positive, and still depends on market tightness θ.

Thus in the limit the model is isomorphic to Hopenhayn (1992) with respect to job reallocation and

firm exit. The only conceptual difference between the frictionless limit and Hopenhayn (1992) is that

free-entry determines θ in the former, while it pins down the wage in the latter.

5 Estimation

We estimate the model on U.S. data. Because the model is set and solved in continuous time, we can

construct correctly time aggregated measures at any desired frequency.

We make the following functional form assumptions. The vacancy cost function is c(v, n) =

c
( v

n

)γ+1 v as in Kaas and Kircher (2015), such that the per vacancy cost is increasing in the vacancy rate.

The production function is y(z, n) = znα. The matching function is Cobb-Douglas with vacancy elasticity

β: a worker meets a vacancy at rate p(θ) = Aθβ and a vacancy meets a worker at rate q(θ) = Aθ−(1−β).

The distribution of entrant productivity draws is Pareto with a minimum of one and shape parameter ζ.

We add exogenous firm exit at rate d.

We set two parameters exogenously and normalize three, as summarized by Table 1. The discount

rate ρ implies an annual real interest rate of five percent. The elasticity of the matching function β = 0.5

is based on standard values in the literature. Without loss of generality we normalize the scrap value, ϑ

and the scalar in the vacancy posting cost, c.40 The entry cost ce is always pinned down by an average

firm size of 22 in 2016 (U.S. Census Business Dynamics Statistics; BDS). We first identify a number of

active firms m that delivers an average firm size of 22 when there is a unit measure of workers and an

unemployment rate of six percent: m̃ = (1 − 0.06)/22 = 0.043. While m is an equilibrium outcome,

the fact that a higher m decreases the value of entry through a tighter labor market implies that there is

always a unique ce that satisfies the free-entry condition under m = m̃.

40Increasing the scrap value shifts up the exit frontier. Since productivity follows a geometric Brownian motion increasing
the exit frontier simply increases mean productivity, so normalizing the scrap value is isomorphic to normalizing productivity
which we are obviously free to do. The first order condition for vacancies obtained from (12) will have c multiply the marginal
cost of a vacancy and A multiply the marginal benefit of a vacancy. We therefore cannot identify c from A.
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5.1 Internally estimated - Minimum Distance

We estimate the 11 remaining parameters to minimize the objective function

G(ψ) =
(

m̂−m(ψ)
)′

W−1
(

m̂−m(ψ)
)

, ψ =
{

µ, d, σ, ζ, n0, α, γ, A, ξ, δ, b
}

,

where m̂ is a vector of empirical moments and m(ψ) are their model counterpart. The matrix W contains

squares of the data moments on the main diagonal and zeros elsewhere.41 We target 11 moments that are

relatively standard to firm dynamics and frictional labor market literatures. While ψ is jointly estimated,

some moments are particularly informative about some parameters. We briefly outline our logic then

study identification more formally. Table 2 summarizes the estimated parameter values and the model

fit with respect to the targeted moments.

Firm dynamics. The negative drift of productivity, µ, is informed by the exit rate of firms. The larger

the drift, the faster firms hit the exit threshold. However, most of these firms that exit are small. The

exogenous exit rate d induces large firms to exit and is informed by the employment-weighted exit rate.

The standard deviation of productivity shocks, σ, is informed by cross-sectional dispersion in TFP, while

the shape of the productivity distribution for entrants, ζ, affects productivity dispersion among young

firms (Decker, Haltiwanger, Jarmin, and Miranda, 2018).42 The size of initial firms n0 is informed by the

job creation rate of age one firms. Given a distribution of entrant productivity, a smaller n0 implies firms

start further to the left of the zero growth locus, implying a faster rate of job creation. A narrower span

of control parameter allows for fewer large firms, so α is informed by the employment share of firms

with more than 500 employees. Finally, curvature in vacancy costs, γ, is informed by cross-sectional

dispersion in annual employment growth (Elsby and Michaels, 2013). Conditional on σ, more convexity

lowers responsiveness to productivity shocks, reducing dispersion in growth rates. We note that the data

ask for both decreasing returns to scale and convexity in vacancy costs.43

Frictional labor market. Matching efficiency, A, is set to match the monthly UE rate. If matching is

more efficient, workers find jobs faster. The relative search efficiency of employed workers, ξ, is then set

to match the ratio of monthly EE rate to UE rate. The exogenous idiosyncratic separation rate δ maps

into the monthly EU hazard. Finally, we set b to target a standard value for the flow value of leisure

relative to average output per worker (Shimer, 2005).

41Our moments are taken from various data sources and in most instances we cannot compute variances of the moments,
let alone covariances with other moments.

42A natural alternative would have been to target the productivity gap between entrants (younger than 1 year old) and
incumbents. The model does well in this respect. At the estimated parameter vector, this gap is 27 (35) percent in the model
(data) (Gavazza, Mongey, and Violante, 2018).

43Similar degrees of convexity in vacancy costs have been estimated by Kaas and Kircher (2015) and Lise and Robin (2017).
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Parameter Value

µ Mean of productivity shocks -0.004
d Exogenous exit rate 0.001
σ Std. of productivity shocks 0.054
ζ Shape of entry distribution 3.735
n0 Size of entrants 2.058
α Curvature in production 0.587
γ Curvature of vacancy cost 6.023
A Matching efficiency 0.157
ξ Search efficiency of employed 0.142
δ Exogenous separation rate 0.017
b Flow value of leisure 0.295

Moment Model Data

Exit rate (unweighted) 0.084 0.076
Exit Rate (employment weighted) 0.019 0.020
Std. deviation of log TFP 0.484 0.500
Std. deviation of log TFP (age 1-5) 0.362 0.400
Job creation rate at age 1 0.237 0.244
Employment share 500+ 0.551 0.518
Std. deviation of employment growth 0.337 0.420
UE rate 0.243 0.242
EE rate / UE rate 0.068 0.076
EU rate 0.018 0.016
Value of leisure to average output 0.367 0.400

Table 2: Estimated parameters and targeted moments
Notes: Exit rates and size distribution of firms are from HP-filtered Census BDS data between 2013–2016, which refer to firms
(not establishments) and are annual. Moments specific to productivity dynamics and dispersion in productivity are taken from
Decker, Haltiwanger, Jarmin, and Miranda (2018) (cross-sectional dispersion). The standard deviation of annual growth rates
is taken from Elsby and Michaels (2013). The UE, EE and EU monthly mobility rates are averages of HP-filtered CPS data
between 2013–2016, estimated on matched micro data for workers 16 years and older. The flow value of leisure to average
output of 40 percent based on the average replacement rate reported in Shimer (2005).

5.2 Identification

To illustrate the identification of the model’s parameters, we conduct two exercises. First, we demon-

strate that, in a sizable hypercube around the estimated value of our 11-dimension parameter vector, the

model is globally identified. Our argument proceeds parameter by parameter. We move each parameter

ψi in steps in a wide range around ψ∗i . Fixing ψ′i we re-optimize all other parameters ψ−i to minimize

G (ψ−i, ψ′i). We argue that the model is identified if G
(
ψ∗−i(ψ

′
i
)

, ψ′i) plotted as a function of ψ′i , traces a

steep “U” with a minimum at ψ∗i . Figure 6 plots this exercise and gives us confidence that our parameter

vector is a global minimum.This is a straight-forward exercise for showing global identification.

Second, we show that our argument for identification is valid locally around ψ∗. We discussed how

each parameter is especially informed by a particular moment, despite the model being jointly identified.

To support this argument, Figure 7 plots each one of the 11 moments as a function of the corresponding

parameter in Table 2, keeping all other parameters at their estimated values. All panels show significant

variation in the moment of interest as a function of its respective parameter.

5.3 Non-targeted moments

The aim of our theory is to describe the mechanics behind the reallocation of workers, in particular

poaching flows, across the distribution of firms. Before exploring the importance of poaching flows

directly we show that the model is consistent with data on (i) the distribution of firms, (ii) job and

worker flows across the distribution, (iii) vacancy rates and vacancy yields, and (iv) the composition of

hires and separations in response to firm-level productivity shocks.
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Figure 6: Global identification

Notes For each parameter ψi ∈ {µ, . . . , b}, the black line plots the minima of the minimum distance function G
(
ψi
)

=

G(ψ−i, ψi). when ψi is fixed at ψi (plotted on the x-axis), and minimization is with respect to all other parameters ψ−i. The red
vertical line marks the estimated value ψ∗i listed in Table 2
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Figure 7: How informative specific moments are for individual parameters

Notes This figure plots the relationship between each parameter ψi ∈ {µ, . . . , b} and the moment aligned with the parameter
in Table 2. For each panel, the x-axis plots alternative values of the parameter. The y-axis plots the change in the corresponding
moment in the steady state of the model obtained when all other parameters are as in Table 2.
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A. Distributions of firms and employment

Group A. Firms B. Employment

Model Data Model Data

A. By firm size

0-19 0.909 0.881 0.182 0.180
20-49 0.053 0.075 0.069 0.097
50-249 0.032 0.036 0.133 0.154
250-499 0.004 0.004 0.065 0.057
500+ 0.003 0.004 0.551 0.512

A. By firm age

0-1 0.158 0.142 0.020 0.038
2-3 0.134 0.100 0.024 0.036
4-5 0.110 0.084 0.027 0.034
6-10 0.198 0.187 0.072 0.083
11+ 0.400 0.487 0.856 0.808

B. Model dynamics of employment-productivity

Figure 8: Distribution of firms in data and model

1. Distribution of firms. Figure 8A shows that the model reproduces the skewed firm distribution. By

size, in both data and model, around 90 percent of firms are small (less than 20 employees), but these

account for only around 18 percent of employment. Symmetrically, firms with more than 500 employees

represent around 0.4 percent of firms, but more than 50 percent of employment. By age, less than half of

firms are older than 10 years, but these account for more than 80 percent of employment.

Figure 8B plots the distribution of firms over size and productivity at ages 1, 5, 10 and 21+ firms.

Output is higher when the correlation between employment and productivity is higher. In our model

search frictions impede a perfect correlation and, thus, reduce output relative to the frictionless bench-

mark. Firms all start at n0, but with a sizable dispersion in productivity. After a year the correlation

between productivity and size is still low. Firms continue to grow rapidly during the first five years,

while productivity gradually drifts down. Despite this rapid growth, there is still a significant disper-

sion in employment conditional on productivity. As firms get older, the productivity-size correlation

increases, while the exit and layoff frontiers compress the dispersion in size conditional on productivity

from the left and right, respectively. These frontiers are clearly delineated in (n, z) space, verifying our

theoretical characterization of (n, z)-space (Figure 5).

2. Firm, job and worker reallocation. Table 3 shows that the model matches the key fact that worker

reallocation rates are around three times as large as job reallocation rates. This difference is generated
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A. Job reallocation B. Worker reallocation C. Firm reallocation

Job creation Job destruction Hires Separations Exit

Model Data Model Data Model Data Model Data Model Data

A. By firm size

0-19 0.045 0.049 0.038 0.038 0.116 0.122 0.109 0.110 0.023 0.020
20-49 0.029 0.033 0.029 0.029 0.104 0.106 0.105 0.102 0.003 0.009
50-249 0.031 0.031 0.031 0.027 0.105 0.102 0.105 0.097 0.003 0.008
250-499 0.032 0.031 0.033 0.025 0.105 0.101 0.107 0.096 0.003 0.006
500+ 0.029 0.029 0.031 0.024 0.103 0.087 0.106 0.084 0.003 0.002

A. By firm age

0-1 0.161 0.161 0.024 0.038 0.233 0.212 0.096 0.140 0.016 0.024
2-3 0.049 0.049 0.030 0.051 0.121 0.150 0.102 0.144 0.023 0.033
4-5 0.042 0.040 0.032 0.044 0.115 0.134 0.104 0.130 0.025 0.025
6-10 0.035 0.035 0.032 0.037 0.109 0.125 0.106 0.121 0.025 0.019
11+ 0.028 0.026 0.033 0.024 0.102 0.086 0.107 0.084 0.020 0.013

Table 3: Job, worker and firm reallocation by size and age
Notes: Data: Census BDS firm data for annual job creation, job destruction and exit. Quarterly rates constructed by dividing
by four. Census J2J firm data for quarterly hiring and separation rates. Authors aggregate data into bins given in table which
reflect the granularity of J2J data. Census J2J separations (hires) include separations to (hires from) non-employment. Model:
Time aggregated to a quarterly frequency.

entirely by the presence of job-to-job mobility. That the model appears to generate a steady-state level of

replacement hiring consistent with the data positions it well to understand the importance of job-to-job

mobility in the Great Recession.

In the cross-section, job flows display a degree of the empirical pattern of ‘up-or-out’ dynamics. Job

creation and exit rates peak for the young firms, albeit for exit the pattern is not as pronounced as in

the data. The model also accounts for job creation by age. In the data (model) 18 percent (16 percent) of

all jobs are created by new firm births and 26 percent (25 percent) by firms aged 1-10. We conclude that

our framework accounts for the distribution of firms across age and size, job flows across these types of

firms, as well as entry and exit dynamics.

Turning to worker flows, the data hiring rates display a negative relationship with both firm age and

firm size, but the slope with respect to age is much more pronounced. In line with these facts, hiring

rates are strongly decreasing in age whereas the rate at which gross flows decline with size is much more

moderate.

3. Vacancy rates and yields. As pointed out by Davis, Faberman, and Haltiwanger (2013), the rate at

which firms fill their vacancies varies systematically in the cross-section: firms with larger hiring rates

also have higher filling rates. Our model shares this implication. We compare the model to BLS micro-

data in Figure 9A, taking the same approach to data and model as Davis, Faberman, and Haltiwanger
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A. Vacancy rates and yields by gross hires B. Decomposing growth

Moment BFGT (2019) Model

A. Net flows
From/to employment 0.72 0.90
From/to unemployment 0.28 0.10

B. Gross flows
Increasing hires

From employment 0.44 0.51
From unemployment 0.14 0.10

Decreasing separations
To employment 0.28 0.39
To unemployment 0.14 —

Figure 9: Vacancy filling and decomposing response to shocks

Notes Panel A. Data: Establishment-month observations in JOLTS microdata 2002-2018 are pooled in bins, where bins are
determined by net monthly growth rate, and have a width of 1 percent. Growth rates computed as in DFH. Within bin b, total
hires hb, total vacancies vb, total employment nb are computed. From these, the gross hiring rate hb/nb, implied daily filling rate
fb and implied daily vacancy posting rate vrb = vb/(vb + nb) are computed using the daily recruiting model of DFH. Model:
The filling rate in the model is f (n, z) = q(θ)[φ + (1− φ)F(n, z)]. The daily vacancy rate is vr(n, z) = v(n, z)/(v(n, z) + n).
Points plotted are logs of these variables, differenced about the bin representing a one percent net growth rate. Panel B. Data:
Authors calculations from Table 8 of Bagger, Fontaine, Galenianos, and Trapeznikova (2019). Model: This column describes the
response of firm employment to a 20 percent increase in productivity in the model, split into each margin. Aggregating across
firms, the table gives the percentage of the increase in net job creation due to changes in different hiring margins. For example,
89.6 percent of the increase in net job creation is due to increased net poaching: (EE+ − EE−).

(2013).44 First we bin firms by their net growth rate, then within bins compute the average hiring rate h̃,

vacancy rate ṽ and filling rate f of vacancies:

h̃(z, n) =
h(z, n)

n
, ṽ(z, n) =

v(z, n)
n

, f (z, n) = q
(
θ
)[

φ + (1− φ)Hn(Sn(z, n))
]
.

The model replicates the key empirical observations of DFH: (i) both the vacancy rate and the filling rate

are increasing in the hiring rate, (ii) the relationships are essentially log-linear, and (iii) with respect to

the hiring rate, the filling rate is much more elastic than the vacancy rate.

In the model firms with high marginal surplus have higher hiring rates, post more vacancies and

fill them more quickly as they poach from more firms. The slope of the vacancy rate is mediated by the

degree of convexity of the vacancy cost γ. The fact that the model matches the data along this dimensions

gives us more confidence on the estimated value for this parameter. In our model, on-the-job search is

entirely responsible for the positive slope in the filling rate. Note, however, that in the data, nearly 80

percent of increases in the hiring rate are driven by changes in the filling rate, whereas in the model this

44Data is our own computations from BLS JOLTS microdata, in which we extend the sample period of Davis, Faberman,
and Haltiwanger (2013) from 2002-2006 to 2002-2018. The filling rate and vacancy rate are the daily filling rate and daily vacancy
flow rate implied by the model of daily hiring used in their paper.
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effect accounts for just above 60 percent. We conclude that there is residual scope for other sources of

firm’s search effort margins, collectively interpreted as recruiting intensity by DFH and Gavazza, Mongey,

and Violante (2018).

4. Firm-level response to productivity shocks The cross-sectional relationships documented above do

not address the extent to which the employment growth of a firm is attained through more hires from un-

employment, more poaching hires, fewer poaching separations or fewer separations to unemployment.

Our theory has sharp qualitative predictions for this decomposition of growth into changes in constituent

gross flows (Figure 4). A recent paper using Danish registry data by Bagger, Fontaine, Galenianos, and

Trapeznikova (2019) decomposes the response of firm-level net employment following a permanent value-

added shock into these margins. Their key finding is that job creation is achieved predominantly through

increasing poaching inflows and decreasing poaching outflows.45

We replicate the exercise underlying the empirics of Bagger, Fontaine, Galenianos, and Trapeznikova

(2019) and find that the model shares this central result. Table 9B shows that in Danish data 72 percent

of the net increase in employment following a value added shock is due to increasing net poaching, and

only 28 percent is due to increasing net hiring from unemployment. The model shares this feature, with

the bulk of the growth owing to increased net poaching. In terms of gross flows, around 60 percent of

growth comes from increasing hires and 40 percent from decreasing separations. Of these, poaching

hires from employment plays the dominant role in increased hiring.46

6 Three applications

We now exploit our model parameterized to the US labor market to address three questions that require

a model featuring proper notions of both firm dynamics and worker dynamics.

6.1 Net poaching by firm characteristics

The first question we ask is: who poaches from whom? What does the model tell us with respect to firms’

key characteristics that determine their rank on the job ladder? The direct answer is: marginal surplus.

Figure 10A plots the distribution of Sn together with the net poaching rate as a function of marginal

surplus. The CDF reveals that the equilibrium density h(Sn) displays quite a lot of mass in the middle

45The data burden on producing these results is beyond what is available in the U.S. Two ingredients are necessary: high
frequency data on (i) on job-to-job flows, (ii) firm value-added and employment. In the U.S., the LEHD contains the former,
but revenue data—which can be used to proxy for value added under certain assumptions—is only available annually in the
LBD. Data of this quality is, however, available in France and Sweden, for example.

46In the model the constant EU rate away from the layoff frontier means that separations can only fall on the EE margin.
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Figure 10: Net poaching and marginal surplus distribution

Notes: Panel A. Net poaching rate p(Sn) by log marginal surplus Sn and the CDF of log marginal surplus. Panel B. Decompo-
sition of the change in net poaching rate as Sn rises into three components: (i) higher vacancies (red line), (ii) more poaching
hires due to higher rank on the job ladder (green line), and (iii) lower poaching separations due to higher rank on the job ladder
(blue line).

and relatively long tails. As expected, net poaching is strictly increasing in Sn with a marked ‘S shape’.

What explains this particular shape? Figure 10B helps answering this questions.

Under our assumptions on vacancy costs, the vacancy rate of the firm (ṽ = v/n) depends only on

marginal surplus.47 The net poaching rate is:

p(Sn) = ṽ(Sn)q(θ)(1−φ)Hn(Sn)−λE(θ)Hv(Sn) , ṽ(Sn) = q(θ)1/γ
[
φSn +(1−φ)

� Sn

0
Sn−u dHn(u)

]1/γ
.

As Sn rises net poaching increases through three channels: (i) a higher return to vacancies leads to higher

vacancy posting, increasing EE hires (↑ ṽ(Sn)); (ii) conditional on any vacancy policy a greater fraction

of meetings result in a hire (↑ Hn(Sn)); (iii) firm incumbents bump into fewer vacancies that result in an

EE quit (↓ Hv(Sn)). Figure 10B plots these three forces using the following decomposition

p(Sn)− λE︸︷︷︸
p(0)

=

� Sn

0

[
∂ṽ(u)

∂u
q(θ)(1− φ)Hn(u)︸ ︷︷ ︸

Increasing ↑ ṽ(Sn)

+ q(θ)(1− φ)
∂Hn(u)

∂u
ṽ(u)︸ ︷︷ ︸

Increasing ↑ Hn(Sn)

− λE(θ)
∂Hv(u)

∂u︸ ︷︷ ︸
Decreasing ↓ Hv(Sn)

]
du.

Firms with very low marginal surplus basically do not hire and lose all their employees who are

successful in their search on the job, so net poaching for them approaches −λE. In the range of log Sn

between zero and two—any rise in marginal surplus increases net poaching almost entirely through

changes in marginal surplus rank. For a given percentage change in Sn, firms climb the ranks of the

job ladder especially fast in the middle of the distribution and this is reflected in the high slope of net

47To see this note that with c(v, n) ∝ (v/n)γv, marginal cost is cv(v, n) ∝ (v/n)γ and, as characterized in Section 4, the
marginal benefit of a vacancy depends only on Sn.
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Figure 11: Net poaching rates by size and age

poaching in that range (left panel).48 The vacancy rate initially rises slowly but high marginal surplus

firms want to grow fast and in order to achieve high growth post lots of vacancies.

Size and age. We now project this relationship between net poaching and marginal surplus onto ob-

servables in order to compare the model to empirical patterns documented by Haltiwanger, Hyatt, Kahn,

and McEntarfer (2018). A key result is a negligible gradient of net poaching by size, but a steep gradient

by age as young poach from old. Figure 11 shows that the model matches these patterns quite well. Size

is not a particularly good predictor of where a firm sits on the marginal surplus job ladder. Consider a

vertical slice of Figure 5. At a given size some firms are highly productive, have a high Sn, have positive

net poaching and create jobs on net. Meanwhile some firms are less productive, have a low Sn, negative

net poaching and destroy jobs on net. In contrast, young firms are on average small and productive,

sitting to the left of dn = 0 and having not yet had time to grow and are high in the marginal surplus job

ladder. They therefore display large, positive net poaching rates.

Figure 12 plots marginal surplus and net poaching as a function of two other observable firm char-

acteristics, labor productivity and net employment growth rate. The model predicts a much higher

gradient between these two variables and net poaching rates compared to size and age. Marginal sur-

48Hn and Hv are different distributions, but have strikingly similar properties given that vacancies are increasing in marginal
surplus and, under our cost function, scale with n conditional on Sn.
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Figure 12: Additional determinants of marginal surplus and net poaching

plus is highly correlated with the static marginal product of labor, and the latter is proportional to the

average product under our functional form for y(z, n).49 Finally, as documented in Table 8B, firms grow

mostly through hires from employment. Thus, the model implies a tight positive relation between net

growth rate and net poaching rate.

6.2 Misallocation cost of labor market frictions

Next, we ask the model to quantify the misallocation costs of search frictions. Recall that frictionless

limits do not make sense in models (i) with OJS but without DRS because they predict that the most

productive firm would hire the entire labor force, or (ii) with DRS but without OJS because, as explained

in Section 4.8, in these environments one does not recover a competitive economy in the limit.

In our counterfactual we shift the value of matching efficiency A holding all other parameters fixed

at our baseline calibration. In each case, we resolve the model and recompute key moments of interest.

In Figure 13A we focus our quantitative analysis on the range for A between -50% and +50% of our

point estimate, which roughly corresponds to observed differences in job finding rates across developed

countries (Engbom, 2017b), but Figure 13B plots model outcomes for a wider range as well.

As frictions vanish, unemployment falls, the dispersion of marginal products across firms shrinks

and the correlation between size and productivity rises. Doubling match efficiency (and roughly dou-

bling the UE rate) would increase aggregate output by 15 percent (7 percent net of the value of leisure).

To isolate the role of misallocation, we decompose the change in output into the component due to

the allocation of workers across firms, and the component due to more employment in the economy as a

49One generalization of the model that would weaken this relation is the addition of heterogeneity in the scale of production
parameter α, as in (Gavazza, Mongey, and Violante, 2018). This would create an additional source of cross-sectional variation
in marginal surplus that is orthogonal to z.
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A. Changes in A to half, double UE rate

Baseline Half Double
UE/U UE/U

∆ log A — -0.47 0.56
UE/U rate 0.22 0.11 0.44
EE/E rate 0.016 0.008 0.032

u rate 0.069 0.153 0.028
corr(n, z) 0.822 0.755 0.888

∆ log Y — -0.231 0.152
∆ log TFP — -0.175 0.126
∆ log TFP/∆ log Y — 75.8% 82.9%

B. Large changes in match efficiency
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Figure 13: Effect of increasing match efficiency

whole (the scale effect). Imposing an aggregate production function Y = Zn̄α, then across steady states

∆ log Y = ∆ log Z + α∆ log n̄ , Z :=
�
N×Z

z
(n
n̄

)α
dH(n, z).

The TFP term Z captures misallocation and is constant if the distribution of employment across pro-

ductive units is constant. Lower misallocation accounts for over 80 percent of the increase in output.

Interestingly, the relationship between frictions and output is concave because the unemployment rate is

convex in match efficiency. Hence doubling frictions leads to a larger output loss, relative to the symmet-

ric case, because of a stronger scale effect. Nonetheless, for both higher and lower labor market frictions

the dominant channel determining output is higher or lower TFP due to labor misallocation.

6.3 Firm and worker dynamics in the Great Recession

Two of the defining features of the U.S. Great Recession were: (i) a strong decline in firm entry, and (ii)

a sharp reduction in job-to-job worker reallocation associated with a failure of the job ladder. Firm entry

(measured as the number of firms less than 1 year old in the BDS) dropped by 25-30 percent between

2007 and 2009 and since then it remained below trend (Siemer, 2014). The EE rate also fell around 25-30

percent over the same period (Shigeru, Moscarini, and Postel-Vinay, 2019; Haltiwanger, Hyatt, Kahn,

and McEntarfer, 2018).
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Figure 14: Entry and job-to-job hiring rates over the Great Recession: Aggregate and Cross-section

Notes Both panels are constructed from the same data at the metro level. Establishment entry and number of establishments
are from the Census BDS data, and used to construct establishment entry rate. Job-to-job hires and employment are from the
Census J2J data, and used to construct EE hire rate. The data cover the subset of states that participate in these Census data
release programs. These cover more than half of the US population.

The decline in job to job transitions implied a marked slowdown of worker movements up the ladder.

Haltiwanger, Hyatt, Kahn, and McEntarfer (2018) document a decline in net poaching of high wage

firms, those who are presumably at the top of the job ladder. Similarly, Moscarini and Postel-Vinay

(2016) use a structural model to rank firms on the job ladder and estimate that high-rank firms curtailed

their demand for new labor in the recession. As a result, the process of upgrading to better jobs, through

job-to-job quits from low-rank to high-rank firms slowed down considerably. In short, as they put it: the

job ladder failed, starting from the upper rungs.

These two facts have not been connected in the literature. Our environment suggests a natural mech-

anism to establish a causal link between the two. New entrants and young firms account for a substantial

share of vacancies and have higher marginal surplus than other firms in the economy. Thus they account

for a large fraction of the poaching of employed workers. Following a drop in the number of entrants,

poaching would fall at the top of the ladder which reduces worker reallocation through the middle of

the ladder, and so on down to unemployment.

Figure 14 shows that drawing this link is also consistent with the cross-region patterns. We combine

newly released Census J2J data with Census BDS data at the metro level. The time-series decline in entry

and job-to-job mobility is mirrored in the cross-section of metropolitan labor markets: metro areas with

larger decline in establishment entry were associated with larger decline in job-to-job mobility.

The aggregate shock that best describes the Great Recession is one that worsens financial frictions.

To proxy for a financial shock in our framework, we solve the model under an unexpected temporary
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Figure 15: Response of aggregates following a discount rate shock

increase in the discount rate ρ (as in Hall, 2017). We calibrate the initial jump and the rate of convergence

of ρ to match the 5 ppt increase in the unemployment rate and the six years it took to return to pre-

recession levels. Appendix F provides more details on the computation.

Figure 15 describes the response of aggregates to the shock. The direct effect of the shock is to lower

the valuation of future revenues at all firms. As a result, both average and marginal surplus fall, leading

to an increase in EU separations from incumbents as well as from a spike in firm exit. Symmetrically, de-

clining marginal surplus reduces the return on vacancies (17): vacancies collapse, job creation contracts,

and so UE hires decrease. The combination of higher layoff rates and lower job finding rates induces

the observed dynamics of unemployment. Young firms, which have a disproportionate fraction of their

present value of revenues in the future, are especially hard hit, causing entry to collapses by almost 20

percent.

We illustrate the link between firm dynamics and the frictional labor market by plotting the dy-

namics of the job ladder in Figure 16. The top left panel shows that the job-to-job mobility rate drops

upon impact and slowly recovers. The size of the drop is in line with the data. As young firms are
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Figure 16: Response of job ladder following a discount rate shock

disproportionately affected and have high-marginal surpluses, the share of vacancies originating from

high-marginal surplus firms drops substantially. The decline of vacancies is much less pronounced in

other regions of the ladder because of a general equilibrium rise in the rate at which vacancies get filled.

With less vacancies and more unemployed workers, the aggregate vacancy yield rises. As in the data,

the vacancy yield grows much more for small firms (Moscarini and Postel-Vinay, 2016).

The shifting vacancy distribution causes net poaching to collapse at high-marginal surplus firms and

grow at low-marginal surplus firms. This compositional effect reduces the probability that a worker

moves to a high-marginal surplus firm relative to a low-marginal surplus firm causing the observed

‘failure’ of the job ladder.

The collapse in the job ladder grinds down aggregate productivity persistently. Consistent with the

data, aggregate output per worker increases for a short period. Initially, as low-productive firms shed

more workers than high-productive firms, and as average firm size falls, output per worker increases,

reflecting a short-lived cleansing effect of the recession. However, throughout the recession and its slow

recovery, job-to-job worker flows towards high-marginal surplus firms slow down, exacerbating the
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misallocation that arises from labor market frictions. The result is a persistent decline in productivity.

Note that, even after unemployment is back to trend, a decade after the onset of the recession, TFP is still

2.5 percent below steady state. The recovery of aggregate productivity is sluggish, with the scars of the

recession encoded in the slow moving dynamics of the employment-weighted firm distribution.

7 Conclusion

We have set out a new and tractable framework to jointly study firm dynamics and worker reallocation.

Consistent with the data—and novel with respect to existing multi-worker firm dynamics models with

random search—firms hire from both employment and unemployment. In the limit as frictions vanish,

our economy converges to a standard competitive firm dynamics model, in contrast to existing mod-

els with constant returns to scale in production where in the limit the most productive firm employs

the whole workforce. This limiting behavior allowed us to estimate the productivity loss from labor

misallocation due to labor market frictions.

The model features a marginal surplus ladder. Firms with higher marginal surplus attract workers

more easily, and thus post more vacancies and grow faster. According to the model, value added per

worker, firm growth, and age are tightly connected to marginal surplus, whereas firm size is only weakly

correlated. The model, estimated on US micro data on firm dynamics, job reallocation and worker flows,

produces the observed patterns of net poaching by size and age. Finally, the model offers a natural

interpretation for the collapse of the job ladder during the Great Recession: the sharp drop in firm entry

reduced the poaching from young and productive units and this weaker pull from the top trickled-down

and muted poaching across the entire job ladder.

There are three natural directions to expand the research agenda. First, incorporating wage deter-

mination into the model. In Bilal, Engbom, Mongey, and Violante (2019) we make a first step in this

direction. We plan to analyze data on the evolution of the wage distribution at the firm level (frequency

and size of wage cuts, correlation of wage changes across workers, etc.) in order to discriminate between

alternative protocols.

Second, adding aggregate uncertainty in order to analyze the cyclicality of labor market flows and

of net poaching. As shown, we can compute transitional dynamics very efficiently. Thus, exploiting the

impulse response as a numerical derivative (as in Boppart, Krusell, and Mitman, 2018) seems the most

direct way to study aggregate fluctuations.

Finally, we applied our model to the US economy, but publicly available data from other countries

(e.g., France, Germany, Italy, Sweden) would allow to compute poaching statistics by many additional
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firm characteristics. An interesting question is whether differences in stylized facts arise across countries

and whether such differences can be interpreted as the result of heterogeneity in the degree of labor

market frictions, institutions, technology, or other factors.

Because of the contemporaneous presence of a well defined notion of firm boundaries (through de-

creasing returns in technology or downward sloping demand) and a comprehensive model of workers’

frictional reallocation across firms, our framework can be potentially useful to study a number of ques-

tions in macroeconomics, labor and trade.
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APPENDIX

This Appendix is organized as follows. Section A studies the case of a hire from unemployment where

the internal firm negotiation involves multiple workers. Section B lays out the notation for the fully

dynamic model. Section C provides extensive details on the derivation of the joint surplus Ω(z, n).

Section D provides a characterization of the surplus function. Section E derives the limiting behavior of

our economy when frictions vanish. Section F details the algorithms used in the paper to compute and

estimate the model.

A UE hire when the internal renegotiation involves with multiple workers

In this section, we demonstrate that the case with one worker analyzed in the main text is not a special

case and describe internal renegotiation with multiple workers. It is sufficient to consider the case of two

incumbent workers, n = 2. Without loss of generality, assume that the second worker is paid more than

the first, w2 > w1. As in the approach taken earlier, suppose the firm has posted a vacancy that has met

an unemployed worker. We have three cases to consider which illustrate how the firm may use a worker

outside the firm to sequentially reduce wages of workers inside the firm.

First, the firm hires without renegotiation if:

y(z, 3)− w1 − w2 − b > y(z, 2)− w1 − b︸ ︷︷ ︸
No credible threat to w2

, y(z, 3)− w1 − w2 − b > y(z, 2)− w1 − w2︸ ︷︷ ︸
Optimal to hire under (w1, w2)

.

Hiring with current wages is preferred to replacing the most expensive incumbent—there is no credible

threat—, and given no renegotiation, hiring is optimal. Since w2 > w1, no credible threat to worker 2

implies no credible threat to worker 1.

Second, the firm hires with renegotiation with worker 2 if:

y(z, 2)− w1 − b > y(z, 3)− w1 − w2 − b > y(z, 2)− w2 − b︸ ︷︷ ︸
Credible threat for worker 2 only

, y(z, 3)− w1 − w∗2 − b > y(z, 2)− w1 − w∗2︸ ︷︷ ︸
Optimal to hire under (w1, w∗2)

.

The threat is credible for worker 2, but is not for worker 1, and, conditional on renegotiating to (w1, w∗2),

hiring is optimal.

Third, the firm hires with renegotiation with both workers if:

y(z, 2)− w1 − b > y(z, 2)− w2 − b > y(z, 3)− w1 − w2 − b︸ ︷︷ ︸
Credible threat for both workers

, y(z, 3)− w∗1 − w∗2 − b > y(z, 2)− w∗1 − w∗2︸ ︷︷ ︸
Optimal to hire under (w∗1 , w∗2)

.

In all three cases, the optimal hiring condition can be written as:

Ω(z, 3)−Ω(z, 2) > U. (19)
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This last inequality does not depend on the order of the internal negotiation between firm and work-

ers. In conclusion, the distribution of wages among incumbents again determines the patterns of wage

renegotiation, but is immaterial for the sufficient condition for hiring.

Assumption (A-LC-c) that was not present in the one worker example plays a role here. Sup-

pose that the renegotiated wage for worker 2 is pushed all the way down to b, making her indiffer-

ent between staying and quitting. Worker 1 could transfer a negligible amount to worker 2 in ex-

change of her quitting, which would raise the firm’s marginal product and, possibly, remove its own

threat. This is problematic for the representation because in this latter case the hiring condition becomes

y(z, 2)− y(z, 1)− w1 − b > y(z, 1)− w1, distinct from (19). Thus, to know whether a firm hires or not,

one would need to know the wage distribution inside the firm. (A-LC-c) is sufficient to rule out transfers

among workers and to prevent this scenario from happening.

Note that, this transfer scheme between workers occurring during the internal negotiation changes

the joint value, and hence one can think of (A-LC-c) as being subsumed into (A-IN) already.

B Notation for dynamic model

We first specify the value function of an individual worker i in a firm with arbitrary state x: V(x, i). We

then specify the value function of the firm: J(x). Combining all workers’ value functions with that of

the firm we define the joint value: Ω(x). We then apply the assumptions from Section 2.2 which allow

us to reduce (x) to only the number of workers and productivity of the firm, (z, n). Finally we take the

continuous work force limit to derive a Hamilton-Jacobi-Bellman (HJB) equation for Ω(z, n) Applying

the definition of total surplus used above, we obtain a HJB equation in S(z, n) which we use to construct

the equilibrium.

B.1 Worker value function: V

As in the static example, let U be the value of unemployment. It is convenient to define separately

worker i’s value when employed at firm x before the quit, layoff and exit decisions, V (x, i), and their

value after these decisions, V (x, i).50

Value of unemployment. Let hU (x) denote how the state of firm x is updated when it hires an un-

employed worker.51 Let A denote the set of firms making job offers that an unemployed worker would

50In terms of Figure 1, the value V is computed after the first stage of the flow chart, and the value V after the second stage,
in the case that the firm stays in operation.

51For example, size would be update from n to n + 1 and possibly some of the incumbent wages would be bargained down.
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accept. The value of unemployment U therefore satisfies

ρU = b + λU(θ)

�
x∈A

[V (hU (x) , i)−U] dHv (x)

where Hv is the vacancy-weighted distribution of firms. If x /∈ A, then the worker remains unemployed.

Stage I. To relate the value of the worker pre separation, V(x, i), to that post separation, V(x, i), we

require the following notation regarding firm and co-worker actions. Since workers do not form ‘unions’

within the firm, all of these actions are taken as given by worker i.

- Let ε(x) ∈ {0, 1} denote the exit decision of firm, and E = {x : ε(x) = 1} the set of x’s for which

the firm exits.

- Let `(x) ∈ {0, 1}n(x) be a vector of zeros and ones of length n(x), with generic entry `i(x),

that characterizes the firm’s decision to lay off incumbent worker i ∈ {1, . . . , n(x)}, and

L = {(x, i) : `i(x) = 1} the set of (x, i) such that worker (x, i) is laid off.

- Let qU (x) ∈ {0, 1}n(x) be a vector of length n(x), with generic entry qU
i (x) that characterizes an

incumbent workers’ decisions to quit, and QU =
{
(x, i) : qU

i (x) = 1
}

the set of (x, i) such that

worker (x, i) quits into unemployment.

- Let κ (x) = (1− ` (x)) ◦ (1− qU (x)) be an element-wise product vector that identifies workers that

are kept in the firm, and S = L ∪QU = {(x, i) : κi (x) = 0}, the set of (x, i) such that worker (x, i)

separates into unemployment.

- Let s(x, κ(x)) denote how the state of firm x is updated when workers identified by κ(x) are kept.

This includes any renegotiation.

Given these sets and functions, the pre separation value V (x, i) satisfies:

V (x, i) = ε(x)U︸ ︷︷ ︸
Exit

+(1− ε(x))
[

I{(x,i)/∈S}V(s(x, κ(x)), i)︸ ︷︷ ︸
Continuing employment

+ I{(x,i)∈S}U︸ ︷︷ ︸
Separations and Quits

]

Stage II. It is helpful to characterize the value of employment post separation decisions, V(x, i), in

terms of the three distinct types of events described in Figure 2. First, the value changes due to ‘Direct’

labor markets shocks to worker i, VD(x, i). These include her match being destroyed exogenously or

meeting a new potential employer. Second, the value changes due to labor market shocks hitting other

workers in the firm, VI(x, i), including their matches being exogenously destroyed or them meeting new
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potential employers. These events have an ‘Indirect’ impact on worker i. Third, the value changes due to

events on the ‘Firm’ side, VF(x, i), including the firm contacting new workers and receiving productivity

shocks. Combining events and exploiting the fact that in continuous time they are mutually exclusive,

we obtain the following, where w (x, i) is the wage paid to worker i:

ρV (x, i) = w (x, i) + ρVD (x, i) + ρVI (x, i) + ρVF (x, i) .

We note that the wage function w(x, i) includes the transfers between worker i and the firm that

may occur at the stage of vacancy posting (after separations and before the labor market opens), as

discussed in Section 3.3 in the context of the static example. These transfers can depend on the entire

wage distribution inside the firm which is subsumed in the state vector x.

Direct events. We first characterize changes in value due to labor market shocks directly to worker i

in firm x, VD(x, i). Exogenous separation shocks arrive at rate δ and draws of outside offers arrive at

rate λE(θ) from the vacancy-weighted distribution of firms Hv. If worker i receives a sufficiently good

outside offer from x′, she quits to the new firm. We denote by QE(x, i) the set of such quit-firms x′ for

i. Otherwise, the worker remains with the current firm but with an updated contract. Therefore VD(x, i)

satisfies

ρVD (x, i) = δ [U −V (x, i)]︸ ︷︷ ︸
Exogenous separation

+ λE(θ)

�
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

�
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

,

where hE (x, i, x′) describes how the state of a poaching firm x′ gets updated when it hires worker i from

firm x. Similarly, r (x, i, x′) updates x when—after meeting firm x′—worker i in firm x is retained and

renegotiates its value. In all functions with three arguments (x, i, x′), the first argument denotes the

origin firm, the second identifies the worker, and the third the potential destination firm.

Indirect events. We next characterize changes in value due to the same labor market shocks hitting

other workers in firm x, VI(x, i). The value VI(x, i) satisfies
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ρVI (x, i) =
n(x)

∑
j 6=i

{
δ [ V (d(x, j), i)−V (x, i)]︸ ︷︷ ︸

Exogenous separation

+ λE(θ)

�
x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

�
x′/∈QE(x,j)

[
V
(
r
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

}
,

where d(x, j) updates x when worker j exogenously separates, and qE (x, j, x′) when worker j quits to

firm x′.

Firm events. Finally, we characterize changes in value due to events that directly impact the firm and

hence indirectly its workers, VF(x, i). Taking as given the firm’s vacancy posting policy v(x) and other

actions, VF(x, i) satisfies

ρVF (x, i) =

UE Hire φq(θ)v (x) [V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threat +φq(θ)v (x) [V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
�

x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

�
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shock +Γz [V , V] (x, i)

where tU (x) updates x when an unemployed worker is met and not hired, but could be possibly used as

a threat in firm x. Similarly, tE(x′, i′, x) updates x when worker i′ employed at firm x′ is met, not hired,

but could be used as a threat. And, with a slight abuse of notation, Hn(x′, i′) gives the joint distribution

of firms x′ and worker types within firms i′.

Finally, Γz [V , V] (x, i) identifies the contribution of productivity shocks z to the Bellman equation.

At this stage we only require that the productivity process is Markovian with an infinitesimal generator.

Later we will specialize this to a diffusion process dzt = µ(zt)dt + σ(zt)dWt such that

Γz [V , V] (x, i) = µ (z) lim
dz→0

V ((x, z + dz) , i)−V (x, z, i)
dz

+
σ2 (z)

2
lim

dz→0

V ((x, z + dz) , i) + V ((x, z− dz) , i)− 2V (x, z, i)
dz2 (20)

In the case that V = V, this becomes the standard expression for a diffusion featuring the first and second
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derivatives of V with respect to z: Γz[V](x, i) = µ(z)Vz(x, z, i) + 1
2 σ(z)2Vzz(x, z, i).52

In the event productivity changes or n (x) changes because of exogenous labor market events, the

worker will want to reassess whether to stay with the firm or not. Additionally, the firm may want to

reassess whether to exit or fire some workers. Bold values V capture any case where the state changes.

B.2 Firm value function: J

Consistent with the notation we used for workers’ values, let J(x) and J(x) be the values of the firm at

the corresponding points of an interval dt. For now, we take the vacancy creation decision v (x) as given.

At the end of the section we describe the expected value of an entrant firm.

Stage I. Consistent with the first stage worker value function, we define the firm value before the

exit/layoff/quit decision, where we recall that ϑ is the firm’s value of exit, or scrap value:

J (x) = ε (x) ϑ + [1− ε (x)] J (s (x, κ (x))) .

Stage II. Given a vacancy policy v (x), let J (x) be the value of a firm with state x after the layoff/quit,

exit. It is convenient to split the value of the firm, as we did for the worker, into three components

ρJ (x) = y (x)−
n(x)

∑
i=1

wi (x, i)︸ ︷︷ ︸
Flow profits

+ ρJW (x)︸ ︷︷ ︸
Workforce events

+ ρJF (x)− c (v (x) , x)︸ ︷︷ ︸
Firm events net of vacancy costs

.

For a given policy v(x) there is a set of associated transfers between workers and the firm which, as

for the worker value function, are implicit in the wage function w(x, i).

The component JW (x) is given by

ρJW (x) =

Destruction δ
n(x)

∑
i=1

[J (d(x, i))− J (x)]

EE Quit + λE(θ)
n(x)

∑
i=1

�
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

Retention + λE(θ)
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

.

52Note that in (20) we abuse notation and write the state as (x, z) with some redundancy since z is clearly a member of x.
We also note that we are not constrained to a diffusion process. We could also consider a Poisson process where, at exogenous
rate η, z jumps according to the transition density Π(z, z′): Γz [V , V] (x, i) = η[∑z′∈Z V ((x, z′) , i)Π (z′, z)−V (x, z, i)].
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The component JF (x) is given by

ρJF (x) =

UE Hire φq(θ)v (x) [J (hU (x))− J (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [J (tU (x))− J (x)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
�

x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

�
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
Shock + Γz [J, J] (x)

It is useful to recall that, in continuous time at most one contact is made per instant. That is, either

one worker is exogenously separated, or one worker is contacted by another firm, or one worker is met

by posting vacancies (at rate q(θ)v(x)), or a shock hits the firm. Note also that we have bold J’s in each

line since after any of these events, the firm may want to layoff some workers or exit, and workers may

want to quit.

Entry. The expected value of an entrant firm is

J0 = −c0 +

�
J (x0) dΠ0 (z0) (21)

where x0 is the state of the entrant firm which includes only the random productivity value z0 drawn

from Π0 since we assumed the initial number of workers is 0. The argument of the integral is J, which

incorporates the firm’s decision to exit or operate after observing z0. Entry occurs when J0 > 0.
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C Derivation of the joint value function Ω

We define the joint value of the firm and its employed workers Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i). We also

define the joint value before exit/quit/layoff decisions: Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i).

C.1 Combinining worker and firm values

In this section, we show that summing firm and worker values, then applying these definitions delivers

the following Bellman equation for the joint value:

ρΩ (x) = y (x)− c (v (x) , x) (22)

Destruction +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retention + λE(θ)
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

EE Quit + λE(θ)
n(x)

∑
i=1

�
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hire + φq(θ)v (x) [Ω (hU (x))−U −Ω (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hire + (1− φ)q(θ)v (x)
�

x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ)q(θ)v (x)

�
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shock + Γz [Ω, Ω] (x) .

Note that this joint value is only written in terms of other joint values and worker values. However, it

involves both firm and worker decisions through the sets A,QE and the vacancy policy, v(x).

8



Derivation. We start by computing the sum of the workers’ values at a particular firm. Summing

values of all the employed workers

ρ
n(x)

∑
i=1

V (x, i) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ [U −V (x, i)]

Retentions +λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

))
−V (x, i)

]
dHv

(
x′
)

Incumbents +
n(x)

∑
i=1

ρVI(x, i)

Firm +
n(x)

∑
i=1

ρVD(x, i)

where the indirect term due to incumbents can be written as:

n(x)

∑
i=1

ρVI(x, i) =

Destructions
n(x)

∑
i=1

n(x)

∑
j 6=i

δ [V (d(x, j), i)−V (x, i)]

Retentions +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
�

x′/∈QE(x,j)

[
V
(
r
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
�

x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

and the indirect term due to the firm can be written as:
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n(x)

∑
i=1

ρVF(x, i) =

UE Hires qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

�
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

�
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)

We now collect terms.

Destructions. When worker i separates from firm x, the sum of the changes in values of all employed

workers at its own firm is given by:

Destructions = δ [U −V (x, i)] + δ
n(x)

∑
j 6=i

[V (d(x, i), j)−V (x, j)]

= δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions. When i renegotiates at firm x, the sum of the changes in values of all employed workers at

its own firm is given by:

Retentions = λE
�

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
−V (x, i)

]
dHv

(
x′
)

+λE
�

x′/∈QE(x,i)

n(x)

∑
j 6=i

[
V
(
r
(
x, i, x′

)
, j
)
−V (x, j)

]
dHv

(
x′
)

= λE
�

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
+

n(x)

∑
j 6=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

= λE
�

x′/∈QE(x,i)

[
n(x)

∑
j=1

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)
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Quits. Similarly, when i quits firm x, the sum of the changes in values of all employed workers at its

own firm is given by:

EE Quits = λE
�

x′∈Q(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

Combining terms. Before summing up all these terms, define for convenience the total worker value:

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions +λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

UE Hires +qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

�
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

�
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)
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Now sum, up all the previous terms, collect terms and use the definition of V (x):

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−V (x)

]

Retentions +λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
n(x)

∑
i=1

V (hU (x) , i)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
n(x)

∑
i=1

V (tU (x) , i)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

�
x∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

�
x/∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[V , V](x)
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Adding this last equation to the Bellman equation for J(x) yields

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ

[
J (d(x, i)) + U +

n(x)

∑
j 6=i

V (d(x, i), j)− J (x)−V (x)

]

Retentions +λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
+

n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
J
(
qE
(

x, i, x′
))

+ V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)− J (x)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)− J (x)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

�
x∈QE(x′ ,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

�
x/∈QE(x′ ,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[J + V , J + V](x)− J (x)−V (x)

Collecting terms and using the definition of Ω :

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retentions +λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ [Ω (hU (x))−U −Ω (x)] · I{x∈A}
UE Threats +qv (x) φ [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hires +qv (x) (1− φ)

�
x∈QE(x′ ,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

�
x/∈QE(x′ ,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shocks +Γz[Ω, Ω](x)
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C.2 Value sharing

To make progress on (22), we begin by stating seven intermediate results, conditions (C-RT)-(C-E) which

we prove from the assumptions listed in Section 2.2. These results establish how worker values V in (22)

evolve in the six cases of hiring, retention, layoff, quits, exit and vacancy creation. Next, we apply

conditions (C-RT)-(C-E) to (22).

To highlight the structure of the argument, we note a key implication our zero-sum game assumption

(A-IN): during internal negotiation, any value lost to one party must accrue to the other. This feature is

obvious in the static model, and extends readily to our dynamic environment. In other words, the joint

value of the firm plus its incumbent workers is invariant during the negotiation. We use this property

extensively in the proof. This generalizes pairwise efficient bargaining—commonly used in one-worker

firm models with linear production—to an environment with multi-worker firms and decreasing returns

in production.

We now state the seven conditions that we apply to (22). In section C.3 below, we prove how each of

them is implied by the assumptions of Section 2.2.

(C-RT) Retentions and Threats. First, if firm x meets an unemployed worker and the worker is not hired

but only used as a threat, then the joint value of coalition x does not change since threats only

redistribute value within the coalition. Second, when firm x uses employed worker i′ from firm x′

as a threat, the joint value of coalition x does not change. Third, when firm x meets worker i′ at x′

and the worker is retained by firm x′, the joint value of coalition x′ does not change. Formally,

Ω
(
r
(
x′, i′, x

))
= Ω(x′) , Ω (tU (x)) = Ω(x) , Ω

(
tE
(
x′, i′, x

))
= Ω(x).

Respectively, these imply that the Retention, UE Threat and EE Threat components of (22) are equal

to zero.

(C-UE) UE Hires. An unemployed worker that meets firm x is hired when x ∈ A. This set consists of firms

that have a joint value after hiring that is higher than the pre-hire joint value plus the outside value

of the hired worker. Due to the take-leave offer, the new hire receives her outside value, which is

the value of unemployment:

A = {x|Ω(hU(x))−Ω(x) ≥ U} , V (hU (x) , i) = U.

(C-EE) EE Hires. An employed worker i′ at firm x′ that meets firm x is hired when x ∈ QE (x′, i′). This set
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consists of firms that have a higher marginal joint value than that of the current firm:

QE (x′, i′
)
=
{

x
∣∣∣Ω (

hE
(
x′, i′, x

))
−Ω (x) ≥ Ω(x′)−Ω

(
qE
(
x′, i′, x

))}
.

Due to the take-leave offer, the new hire receives her outside value, which is the marginal joint

value at her current firm:

V
(
hE
(
x′, i′, x

))
= Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))
.

(C-EU) EU Quits and Layoffs. An employed worker i at firm x quits to unemployment when (x, i) ∈ QU .

This set consist of states x such that the marginal joint value is less than the value of unemployment:

QU =
{
(x, i)

∣∣∣Ω (ŝq1 (x, i)
)
+ U > Ω

(
ŝq0 (x, i)

)}
,

where ŝq1 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 1]) ◦ (1− ` (x))) ,

ŝq0 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 0]) ◦ (1− ` (x))) .

The first expression captures when worker i quits, and the second where worker i does not. Simi-

larly, an EU layoff will be chosen by the firm when (x, i) ∈ L:

L =
{
(x, i)

∣∣∣Ω (ŝ`1 (x, i)) + U > Ω (ŝ`0 (x, i))
}

,

where ŝ`1 (x, i) = s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) ,

ŝ`0 (x, i) = s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) .

The first expression captures when worker i is laid off, and the second when worker i is not.

(C-X) Exit. A firm x exits when x ∈ E . This set consists of the states in which the total outside value of

the firm and its workers is larger than the joint value of operation:

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U > Ω (s (x, κ (x)))

}
.

(C-V) Vacancies. The expected return to a matched vacancy R(x) depends only on the joint value, and

so the firm’s optimal vacancy policy v(x) depends only on the joint value. The policy v(x) solves

max
v

q(θ)vR(x)− c (v, x) ,
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where the expected return to a matched vacancy is

R(x) = φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}︸ ︷︷ ︸
Return from unemployed worker match

+ (1− φ)

�
x∈QE(x′,i′)

{[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]}
dHn

(
x′, i′

)
︸ ︷︷ ︸

Expected return from employed worker match

.

(C-E) Entry. A firm enters if and only if
�

Ω (x0) dΠ0(z) ≥ c0 + n0U.

Summarizing (C). The substantive result is that all firm and worker decisions and employed workers’

values can be expressed in terms of joint value Ω and exogenous worker outside option U.

C.3 Proof of Conditions (C)

C.3.1 Proof of C-UE and C-RT (UE Hires and UE Threats)

In this subsection, we consider a meeting between a firm x and an unemployed worker. Following A-IN

and A-EN, the firm internally renegotiates according to a zero-sum game with its incumbent workers

and makes a take-leave offer to the new worker. Intuitively, having the worker “at the door” is identical

to having her hired at value U for the firm and for all incumbent workers: the firm can always make new

take-leave offers to its incumbents after hiring the new worker. Hence, we expect the firm to make one

take-leave offer to the new worker and its incumbents at the time of the meeting, and not make a new,

different offer to is incumbents afer hiring has taken place.

We start by showing this equivalence formally. To do so, when meeting an unemployed worker, we

let the firm conduct internal renegotiation with its incumbent workers and make an offer to the new

worker. Then, we let a second round of internal offers take place after the hiring. We introduce some

notation to keep track of values throughout the internal and external negotiations. To fix ideas, we

denote by (IR1) the first round of internal negotiation, pre-external negotiation. We denote by (IR2) the

second round of internal negotiation, post-hire.

Post-hire and post-internal negotiation (IR2) values are denoted with double stars. Post-internal-
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negotiation (IR1) but pre-external-negotiation values are denoted with stars.

Ω∗∗ := J∗∗ +
n(x)

∑
j=1

V∗∗j + V∗∗i

Ω∗ := J∗ +
n(x)

∑
j=1

V∗j

Ω := J +
n(x)

∑
j=1

Vj

Proceeding by backward induction, under A-EN the firm makes a take-it-or-leave-it offer to the un-

employed worker, therefore

V∗∗i = U

We now divide the proof in several steps. We start by proving that for all incumbent workers j =

1...n(x), V∗∗j = V∗j . We then use A-IN to argue that Ω∗ = Ω. Once these claims have been proven, we

move on to proving C-UE (UE Hires) and the part of for threats from unemployment C-RT (UE Threats).

Finally, we show that our microfoundations for the renegotiation game deliver A-IN.

Claim 1: For all incumbents workers j = 1...n(x), we have V∗∗j = V∗j .

We proceed by backwards induction using our assumptions A-EN and A-IN. Immediately after (IR1)

has taken place, only the following events can happen:

1. Hire/not-hire

• Either the worker is hired from unemployment (H),

• Or the worker is not hired from unemployment (NH)

2. Possible new round of internal negotiation (IR2). This possible second round of internal negotia-

tion (now including the newly hired worker) leads to values V∗∗j .

We focus on subgame perfect equilibria in this multi-stage game. Therefore, after (IR1), workers

perfectly anticipate what the outcome of the hire/not-hire stage will be. That is, after (IR1), they know

perfectly what hiring decision (H or NH) the firm will make. Now suppose that internal renegotiation

(IR2) actually happens after the hire/not-hire decision, that is, that for some incumbent worker j ∈

{1, ..., n(x)}, V∗∗j 6= V∗j . Note that the firm has no incentives to accept a change in the new worker’s

value to anything above U, so by A-MC her value does not change in the second round (IR2).
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We construct the rest of the proof by contradiction. Consider for a contradiction an incumbent worker

j whose value changed in (IR2). Because of A-MC, her value can change only in the following cases:

• The firm has a credible threat to fire worker j, in which case V∗∗j < V∗j

• Worker j has a credible threat to quit, in which case V∗∗j > V∗j

In addition, those credible threats can lead to a different outcome than in (IR1), and thus V∗∗j 6= V∗j ,

only if the threat on either side was not available in (IR1). If that same threat was available in the first

round (IR1), then the outcome of the bargaining (IR1) would have been V∗∗j .

Recall that both incumbent worker j and the firm understand and anticipate which hire/not-hire

decision the firm will make after the first round (IR1). They also understand and anticipate that, in case

of hire, the value of the new worker will remain U in the second round (IR2).

Therefore, the firm can credibly threaten to hire the new worker in the first round if and only if it actually

hires her after the first round (IR1) is over. This implies that the firm can credibly threaten worker to fire

j in the second round (IR2), by A-LC, if and only if it could credibly threaten her with hiring the new

worker in the first round of internal renegotiation (IR1). This in turn entails that any credible threat the firm

can make in the second round (IR2) was already available in the first round.

On the worker side, quitting into unemployment is a credible threat when her value is below the

value of unemployment. So this threat does not change between the first round (IR1) and the second

round (IR2), because the equilibrium value to that worker will always be above the value of unemploy-

ment.

In sum, the set of credible threats both to the firm and to worker j does not change between the initial

round of internal renegotiation (IR1) and the post-hiring-decision round (IR2). This finally implies that

the outcome of the initial round of internal renegotiation (IR1) for any incumbent j remains unchanged

in the second round (IR2), that is:

V∗∗j = V∗j

which proves Claim 1.

We can now move on to proving C-UE.

Proof of C-UE. Using the definitions of Ω∗∗ and Ω, we can write

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j + V∗∗i

]
−
[

J +
n(x)

∑
j=1

Vj

]
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Now using V∗∗i = U, we obtain

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Using Claim 1: V∗∗j = V∗j , and adding and subtracting J∗ we obtain

Ω∗∗ −Ω = [J∗∗ − J∗] +

[
J∗ +

n(x)

∑
j=1

V∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Subsituting in the definition of Ω and of Ω∗,

Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω] + U

Finally recall that internal renegotiation is (1) individually rational, and (2) is a zero-sum game, according

to A-IN. Thus, all incumbent workers remain in the coalition after internal renegotiation, and the joint

value is unchanged: Ω∗ = Ω. Using Ω∗ = Ω

Ω∗∗ −Ω = [J∗∗ − J∗] + U

which can be re-written

J∗∗ − J∗ = [Ω∗∗ −Ω]−U

Now under A-LC, the firm will only hire if its value after hiring is higher than its value after internal

renegotiation: J∗∗ − J∗ ≥ 0. This inequality requires

Ω∗∗ −Ω ≥ U

Ω (hU (x))−Ω (x) ≥ U

The firm does not hire when its value of hiring is below its value of renegotiation J∗∗ < J∗. This inequality

implies

Ω∗∗ −Ω < U

When the firm does not hire, we obtain using again A-IN and Ω∗ = Ω:

Ω∗∗ −Ω∗ < U

which finally implies

Ω (hU (x))−Ω (tU(x)) < U
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Now, we argue that conditional on not hiring, Ω∗∗ = Ω∗ = Ω, where in this case Ω∗∗ denotes the

value of the coalition without hiring, and thus does not include the value of the unemployed worker. Just

as before, this is a direct consequence from A-IN and that the internal renegotiation game is zero-sum.

Therefore:

Ω (tU(x)) = Ω(x)

We have therefore shown C-UE and part of C-RT (UE Hires and UE Threats): An unemployed worker

that meets x is hired whenx ∈ QU , where

A =
{

x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
and upon joining the firm, has value

V (hU (x, i)) = U.

and

Ω(tU(x)) = Ω(x).

C.3.2 Proof of C-EE and C-RT (EE Hires, EE Threats and Retentions)

Consider firm x that has met worker i′ at firm x′. We first seek to determine QE (x′, i′). Under A-IN

and A-EN, upon meeting an employed worker, internal negotiation may take place at the poaching firm

x, and x makes a take-it-or-leave-it offer. Internal negotiation may take place at x′ with all workers

including i′.

Proceeding by backward induction, we again define intermediate values but here at x′, noting that

qE (x′, i′, x) gives the number of employees in x′ if the worker leaves:

Ω = J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

Ω∗ = J∗ +
n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

Ω∗∗ = J∗∗ +
n(qE(x′,i′,x))

∑
j=1

V∗∗j

Note, in the second line we are describing the values of the firm in renegotiation where i′ stays with the

firm, so V∗i′ is the outcome of internal negotiation. In the third line we consider the firm having lost the

worker. Under A-EN the firm will respond to an offer V from x with

V∗i′ = V
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The same result as in Claim 1 from section C.3.1 obtains: under A-EN and A-IN, the values accepted by

the incumbent workers after the internal renegotiation
(

V∗j
)

j
will be equal to the values they receive after

the external negotiation
(

V∗∗j

)
j
, that is

V∗∗j = V∗j

The argument are exactly the same.

Using these two results and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

=

[
J∗∗ + J∗ − J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j + V∗i′ −V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

= [J∗∗ − J∗] +

[
J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]
−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V

In this setup, A-IN again implies that any value lost to the firm must accrue to its workers, while any

value lost to a worker must accrue either to the firm, or to another worker, which we earlier formulated

as “the joint value stays constant before and after an internal negotiation”. Mathematically, this statement

translates into

Ω∗ = Ω

Subsituting into the equation that we obtained above Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω]−V, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V

Now under A-LC, the firm x′ will only try to keep the worker if J∗ > J∗∗, which requires

Ω−Ω∗∗ ≤ V

Ω
(
r(x′, i′, x

)
−Ω

(
qE
(
x′, i′, x

))
≤ V

This determined the maximum value that x′ can offer to the worker to retain them. Knowing that firm

x′ can counter at most with V = Ω (r(x′, i′, x)−Ω (qE (x′, i′, x)), then will firm x successfully poach the

worker?

First, note that the bargaining protocol implies that x firm will offer V if it is making an offer, since
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it need not offer more. For firm x the argument may proceed identically to the case of unemployment,

simply replacing U with V. The result is that the firm will hire only if

Ω
(
hE
(
x′, i′, x

))
−Ω (x) ≥ V

or

Ω
(
hE
(

x′, i′, x
))
−Ω (x) ≥ Ω

(
r(x′, i′, x)

)
−Ω

(
qE
(
x′, i′, x

))
Finally, when firm x does not hire, the same argument as in Claim 32 in Section C.3.1 applies: Ω∗∗ =

Ω∗ = Ω. This observation implies

Ω(tE(x′, i′, x)) = Ω(x)

Similarly, the same argument as in Claim 2 implies that when firm x′ does not lose its worker, Ω∗∗ =

Ω∗ = Ω, thereby implying

Ω(r(x′, i′, x)) = Ω(x′)

The combination of these conditions deliver C-UE and part of C-RT (EE Hires, EE Threats and Re-

tention):

1. The quit set of an employed worker is determined by

QE (x′, i′
)
=

{
x

∣∣∣∣∣Ω (
hE
(
x′, i′, x

))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

2. The worker’s value of being hired from employment from firm x′ is

V(hE(x, x′, i′)) = Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))
3. Worker i′s value of being retained at x′ after meeting x is53

V(r(x′, i′, x), i′) = Ω
(
hE
(
x′, i′, x

))
−Ω (x)

4. The joint value of the potential poaching firm x when the worker is not hired does not change:

Ω(tE(x′, i′, x)) = Ω(x)

53Because offers are made at no cost, both firms always make an offer, even when they know that they cannot retain/hire
the worker in equilibrium. This is exactly the same as in Postel-Vinay Robin (2002).
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5. The joint value of the potential poached firm x′ does not change when the worker stays:

Ω(r(x′, i′, x)) = Ω(x′)

C.3.3 Proof of C-EU (EU Quits and layoffs)

We first show that

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

from the firm side, then that

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

on the worker side.

Part 1: Firm side Consider a firm x who is considering laying off worker i for whom qU,i (x) = 0. As

above, we start with definitions, noting that n (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x)))) is the number

of workers if i is laid off.

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

Note that in the first line the coalition has still worker i in it. In the second line, the firm and the worker

i have negotiated (and internal negotiation has determined V∗i which is what i will get if they stay in the

firm). In the third line, the worker has been fired and another round of negotiation has occurred among

incumbents.

The same result as in Claim 1 from section C.3.1 obtains: under A-BP, the values accepted by the

incumbent workers after the internal renegotiation
(

V∗j
)

will be equal to the values they receive after the

external negotiation
(

V∗∗j

)
, that is V∗∗j = V∗j .
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Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ − J∗ + J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Using again A-IN to conclude that Ω∗ = Ω, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i

Now under A-LC, the firm x will only layoff the worker if J∗∗ > J∗, which requires

Ω−Ω∗∗ < V∗i

As long as V∗i > U the worker would be willing to transfer value to the firm to avoid being laid off,

implying

Ω−Ω∗∗ < U.

which we can re-write

Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i)+U > Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)

where the LHS is Ω∗∗ + U (under the layoff) and the RHS is Ω. This concludes the proof for the firm

side.

Part 2: Worker side Consider worker i in firm x who is considering quitting to un-

employment for whom `i (x) = 0. As above, we start with definitions, noting that
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n (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1]))) is the number of workers if i quits. As before,

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

The same result as in Claim 1 from section C.3.1 obtains V∗∗j = V∗j .

Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ + J∗ − J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i

Now under A-LC, worker i will quit into unemployment iff V∗i < U, which requires

J∗∗ − J∗ + [Ω−Ω∗∗] < U

As long as J∗∗ < J∗, the firm is willing to transfer value to worker i to retain her. Therefore, worker i

quits into unemployment iff the previous inequality holds at J∗∗ = J∗, i.e.

Ω−Ω∗∗ < U

Therefore, the worker quits iff

Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
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which concludes the proof of the worker side. This delivers C-EU.

C.3.4 Proof of C-X (Exit)

Consider a firm x who contemplates exit after all endogenous quits and layoffs, thus when its employ-

ment is n (s (x, κ (x))). As before we define values conditional on exiting:

Ω = J +
n(s(·))

∑
j=1

Vj

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j

Ω∗∗ = J∗∗ + 0

Notice that the joint value after exit is simply the value of the firm, since all other workers have left

because of exit. We can compute:

Ω∗∗ −Ω = J∗∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract J∗) = [J∗∗ − J∗] + J∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract
n(s(·))

∑
j=1

V∗j ) = [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj

]
−

n(s(·))

∑
j=1

V∗j

(definition of Ω, Ω∗) = [J∗∗ − J∗] + [Ω∗ −Ω]−
n(s(·))

∑
j=1

V∗j

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−
n(s(·))

∑
j=1

V∗j

The firm exits iff J∗∗ ≥ J∗, that is, ϑ ≥ J∗. This is equivalent to

Ω∗∗ −Ω ≥ −
n(s(·))

∑
j=1

V∗j

Using again that Ω∗∗ = J∗∗ = ϑ, the firm exits iff

ϑ +
n(s(·))

∑
j=1

V∗j ≥ Ω
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Since any worker is better off under V∗i ≥ U than unemployed, all workers are willing to take a value

cut down to U if ϑ ≥ Ω−∑
n(s(·))
j=1 V∗j because then the firm can credibly exit.

This implies that the firm exits if and only if

ϑ−Ω (s (x, κ (x))) + n (s (x, κ (x)))U ≥ 0

This proves C-X (Exit): the set of x such that the firm exits is given by

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U ≥ Ω (s (x, κ (x)))

}
C.3.5 Proof of C-V (Vacancies)

We split the proof in two steps. First, we show that workers are collectively willing to transfer value

to the firm in exchange for the joint value-maximizing vacancy policy function. Second, we show that

a single worker can create a system of transfers that achieves the same outcome. These transfers are

equivalent to wage renegotiation, which explains why we have subsumed them in the wage function

w(x, i) in the equations above. Similarly to wages, these transfers drop out from the expression for the

joint value.

Part 1: Collective transfers In this step, we show that workers are collectively better off transferring

value to the firm in exchange of the firm posting the joint value-maximizing amount of vacancies.

The vacancy posting decision vJ that maximizes firm value is:

cv
(
vJ (x) , n (x)

)
q

= φ [J (hU (x))− J (x)] · I{x∈A}+(1− φ)

�
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
.

Similarly, define vΩ be the policy that maximizes the value of the coalition, and vV be the policy that

maximizes the value of all the employees. Let Ωγ,Jγ, Vγ be the value of the coalition, firm and all workers

under the vγ, for γ ∈
{

Ω, J, V
}

. We now prove our claim in several steps.

Part 1-(a) Collective value gains. The policy vΩ will lead to VΩ ≥ V J
+ [J J − JΩ] where J J − JΩ ≥ 0.

Proof: By construction ΩΩ is greater than ΩJ : ΩΩ ≥ ΩJ . By definition: ΩΩ = JΩ + VΩ, and ΩJ =

J J + V J . Use those definitions to obtain inequality JΩ + VΩ ≥ J J + V J , which can be re-arranged into

VΩ − V J ≥ J J − JΩ. Since J J is the value under the optimal policy for J, then J J ≥ JΩ. The above then

implies that

VΩ −V J ≥ J J − JΩ ≥ 0
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This implies that workers would be prepared to transfer T = J J − JΩ ≥ 0 to the firm in order for the firm

to pursue policy vΩ instead of vJ . This concludes the proof of Part 1-(a).

Part 1-(b) Infeasibility of VV . There does not exist an incentive-compatible transfer from workers

to firm that will lead to VV .

Proof: Suppose workers consider transferring even more to induce the firm to follow policy vV that

maximizes their value. By construction ΩΩ ≥ ΩV . Using definitions for each of these, then JΩ + VΩ ≥

JV + VV . Rearranging this: JΩ − JV ≥ VV − VΩ. Since VV is the value under the optimal policy for V,

then VV ≥ VΩ. The above then implies that

JΩ − JV ≥ VV −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV causes a loss of JΩ − JV to the firm, which

is more than the gain of VV − VΩ to the workers. This implies that workers could transfer all of their

gains under vV to the firm, but the firm would still not choose vV over vΩ. This concludes the proof of

Part 1-(b).

Part 1-(c) Optimality of VΩ. There does not exist an incentive-compatible transfer from workers to

firm that will lead to V∗ ∈
(

VΩ, VV
)

.

Proof: Call such a policy vV∗. Then: ΩΩ ≥ ΩV∗ , and by definitions

JΩ + VΩ ≥ JV∗ + VV∗

JΩ − JV∗ ≥ VV∗ −VΩ

Since by definition V∗ ∈
(

VΩ, VV
)

, then VV∗ −VΩ ≥ 0. Therefore

JΩ − JV∗ ≥ VV∗ −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV∗ causes a loss of JΩ− JV∗ to the firm, which

is more than the gain of VV∗ −VΩ to the workers. This concludes the proof of Part 1-(c).

Part 1-(d) Conclusion. In summary, it is optimal for workers to transfer exactly T = J J − JΩ to the

firm, in order for the firm to pursue vΩ instead of vJ . Further transfers to the firm would be required to
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have the firm pursue a better policy for workers, but this is exceedingly costly to the firm and the workers

are unwilling to make a transfer to cover these costs. This concludes the proof of Step 1: Collective

transfers.

Part 2: Individual transfers In this step, we show that a single, randomly drawn worker can construct

a system of transfers that induces the firm to post vΩ instead of vJ , while leaving all agents better off.

Within dt, consider the single, randomly drawn worker j0. Consider the following system of trans-

fers. Worker j0 makes a transfer J J − JΩ to the firm, in exchange of what (i) the firm posts vΩ instead of

vJ , and (ii) the worker gets a wage increase that gives her all the differential surplus VΩ −V J .

Following the same steps as in Part 1: Collective transfers, the firm gets JΩ + [J J − JΩ] = J J and is

hence indifferent. Similarly, workers j 6= j0 do not get any value change, and are thus indifferent Finally,

worker j0 gets a value increase of

[VΩ −V J
]− [J J − JΩ] ≥ 0

where the inequality similarly follows from Part 1: Collective transfers. This concludes the proof of Part

2: Individual transfers.

Conclusion. The previous arguments show that a single worker has an incentive to and can induce the

firm to post vΩ. Notice also that the same argument holds starting from any vacancy policy function

ṽ 6= vJ together with a value of the firm J̃. Thus, even if some worker induces the firm to post a different

vacancy policy function which is not vΩ any other worker has an incentive to induce the firm to post vΩ.

Therefore, in equilibrium, the firm posts vΩ, which concludes the proof of C-V.

C.4 Applying Conditions (C)

Having established that Assumption (A) can be used to prove Conditions (C), we now apply conditions

(C) to the Bellman equation for the joint value. The goal of this section is to show that for x ∈ E c the

complement of the exit set, we can considerably simplify the recursion for the joint value:

ρΩ (x) = y (z(x), n (x))− c (v (x) , n (x) , z(x))

Destructions −δ
n(x)

∑
i=1

[Ω (x)−Ω (d(x, i))−U]

UE Hires +qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

EE Hires +qv (x) (1− φ)

�
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
Shocks +Γ[Ω, Ω]
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with the sets

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

E =
{

x
∣∣∣ϑ + n (s(x, κ(x))) ·U ≥ Ω(s(x, κ(x)))

}
A =

{
x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
QE (x′, i′

)
=

{
x

∣∣∣∣∣Ω (
hE
(
x′, i′, x

))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

and—as per (C-V)—the vacancy policy v (x) is given by the solution to the following:

cv (v (x) , n (x))
q

= φ [Ω (hU (x))−Ω (x)] · I{x∈A}

+ (1− φ)

�
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
In continuous time, the exit decision is captured by x ∈ E . The Bellman equation above holds exactly

for x ∈ E c. Exit is accounted for in the “bold” continuation values, which all include the possible exit

decision should the firm’s state fall into E after an event.

We first proceed one term at the time, working through (B.4.1) exogenous destructions, (B.4.2) re-

tentions, (B.4.3) EE (poached) quits, (B.4.4) UE hires, (B.4.5) UE threats, (B.4.6) EE (poached) hires, and

(B.4.7) EE threats.

C.4.1 Exogenous destructions

Destructions =
n(x)

∑
i=1

δ

[
J (d(x, i)) +

n(d(x,i))

∑
j=1

V (d(x, i), j) + U −Ω (x)

]

=
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

where we simply have used the definition Ω (d(x, i)) := J (d(x, i)) + ∑
n(d(x,i))
j=1 V (d(x, i), j).
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C.4.2 Retentions

Retentions = λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
+

n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

= λE
n(x)

∑
i=1

�
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

where we simply have used the definition Ω (r (x, i, x′)) = J (r (x, i, x′)) + ∑
n(x)
j=i V (r (x, i, x′) , j). Now

using the result in C-RT that

Ω
(
r
(
x, i, x′

))
= Ω(x′)

we obtain that

Retentions = 0

C.4.3 EE Quits

EE Quits = λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
+ V

(
qE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

Now by definition

Ω
(
qE
(

x, i, x′
))

= J
(
qE
(
x, i, x′

))
+

n(qE(x,i,x′))

∑
j=1

V
(
qE
(
x, i, x′

)
, j
)

= J
(
qE
(
x, i, x′

))
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)

Using this last equality in the term in square brackets

EE Quits = λE
n(x)

∑
i=1

�
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
−Ω (x) + V

(
qE
(
x, i, x′

)
, i
)]

dHv
(
x′
)

Using C-EE, the value going to the poached worker is V (qE (x, i, x′)) = Ω (x)−Ω (qE (x, i, x′)). Substi-

tuting this into the last equation, we observe that the term in the square brackets is zero, and so

EE Quits = 0

C.4.4 UE Hires

UE Hires = qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)−Ω (x)

]
· I{x∈A}
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Now by definition

Ω (hU (x)) = J (hU (x)) +
n(hU(x))

∑
i=1

V (hU (x) , i)

= J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) + V (hU (x) , i)

and so, re-arranging,

J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) = Ω (hU (x))− V (hU (x) , i)

Substituting this last equation into the term in the square brackets of the first equation,

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)− V (hU (x) , i)] · I{x∈A}

Following C-UE, the value going to the hired worker is V (hU (x) , i) = U. Substituting in:

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

C.4.5 UE Threats

UE Threats = qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)−Ω (x)

]
· I{x/∈A}

Using the definition of Ω(tU(x)), we can re-write this term as

UE Threats = qv (x) φ [Ω (tU (x))−Ω(x)] · I{x/∈A}

Now using our result in condition C-UE that Ω (tU (x)) = Ω(x), we can conclude that

UE Threats = 0

C.4.6 EE Hires

EE Hires = qv (x) (1− φ)

�
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−Ω (x)

]
dHn

(
x′, i′

)
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Now by definition

Ω
(
hE
(

x′, i′, x
))

= J
(
hE
(
x′, i′, x

))
+

n(hE(x′,i′,x))

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)

=

[
J
(
hE
(

x′, i′, x
))

+
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)]

+ V
(
hE
(
x′, i′, x

)
, i
)

which can be re-arranged into

J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(

x′, i′, x
)

, i
)
= Ω

(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i
)

Using this in the term in the square brackets

EE Hires = qv (x) (1− φ)

�
x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)− V

(
hE
(
x′, i′, x

)
, i
)]

dHn
(
x′, i′

)
Under C-EE, the value going to the hired worker is V (hE (x′, i′, x) , i) = Ω (x′)−Ω (qE (x′, i′, x)). Substi-

tuting this in:

EE Hires = qv (x) (1− φ)

�
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
C.4.7 EE Threats

EE Threats = qv (x) (1− φ)

�
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
Using the definition of Ω(tE(x′, i′, x)), we obtain

EE Threats = qv (x) (1− φ)

�
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω(x)

]
dHn

(
x′, i′

)
Now using the result in condition C-RT that Ω (tE (x′, i′, x)) = Ω(x), we obtain that

EE Threats = 0

C.5 Reducing the state space

Now that we obtained the simplified recursion, we are in a position to argue that the only payoff-relevant

states are (z, n), and that the details of the within-firm contractual structure do not affect allocations. The

goal of this section is to show that we can express the joint values pre- and post- separation and exit
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decisions as follows. First, the exit and separation decisions are characterized by

Ω(z, n) = I{(z,n)∈E}

{
ϑ + nU

}
+ I{(z,n)∈QU}

{
Ω(z, n− 1) + U

}
+ I{(z,n)/∈QU∪E}Ω(z, n), (23)

where E =
{

n, z
∣∣ϑ + nU > Ω(z, n)

}
,

QU =
{

z, n
∣∣Ω (z, n− 1) + U > Ω (z, n)

}
.

The first expression is the value of exit. A firm that does not exit, chooses whether to separate with a

worker or not. If separating with a worker, the firm re-enters (23) with Ω(z, n− 1), having dispatched

with a worker with value U, and again choosing whether to exit, fire another worker, or continue. Iter-

ating on this procedure delivers

Ω(z, n) = max
{

ϑ + nU , max
s∈[0,...,n]

Ω(z, n− s) + sU
}

. (24)

Second, the post-exit/separation decision joint value is given by the Bellman equation

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z)

Destruction + δn
{(

Ω (z, n− 1) + U
)
−Ω (z, n)

}
UE Hire + φq(θ)v · I{(z,n)∈A} ·

{
Ω (z, n + 1)−

(
Ω (z, n) + U

)}
EE Hire + (1− φ) q(θ)v

�
(z,n)∈QE(z′,n′)

{
[Ω (z, n + 1)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
z′, n′ − 1

)] }
dHn

(
z′, n′

)
Shock + Γz [Ω, Ω] (z, n) ,

where A =
{

z, n
∣∣Ω (z, n + 1) ≥ Ω (z, n) + U

}
,

QE (z′, n′
)

=
{

z, n
∣∣Ω (z, n + 1)−Ω (z, n) ≥ Ω

(
z′, n′

)
−Ω

(
z′, n′ − 1

) }
.

Finally, firms enter if and only if �
Ω (z, 0) dΠ0(z) ≥ ce. (25)

This condition pins down the entry rate per unit of time.54

We proceed in three steps. First, we isolate (z, n) in the state vector x by writing x = (z, n, χ) where

χ collects all other terms in x. Second, we introduce functions that update χ following events to the firm

and worker. Third, we argue that χ is a redundant state. This delivers the final Bellman equation for the

joint value function for the discrete workforce model, equation (25).

54Recall that J0 = −ce +
�

J(x0)dΠ(z0). Given Ω(z0, 0) = J(z0, 0), we have J0 = −ce +
�

Ω(z0, 0)dΠ(z0). Free-entry implies
J0 = 0, which delivers (25).
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C.5.1 Isolate (z, n) in the state vector

It is immediate that x should contain at least the pair (z, n). Call everything else χ. Then we express

x = (z, n, χ). Making this substitution into the above conditions:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (d (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ [Ω (hU (z, n, χ))−Ω (z, n, χ)−U] · I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

�
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +Γz[Ω, Ω](z, n, χ)

with sets

QU =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) , i) + U

> Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) , i)

}

L =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) , i) + U

> Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) , i)

}
E =

{
z, n, χ

∣∣∣ϑ + n (s(z, n, χ, κ(z, n, χ))) ·U ≥ Ω(s(z, n, χ, κ(z, n, χ)))
}

A =

{
z, n, χ

∣∣∣∣∣Ω (hU (z, n, χ))−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ) ≥ Ω

(
n′, z′, χ′, i′

)
−Ω

(
qE
(
z′, n′, χ′, i′, z, n, χ

))}
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and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ [Ω (hU (z, n, χ))−Ω (z, n, χ)] · I{(z,n,χ)∈A}

+ (1− φ)

�
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Finally, note that the contribution of shocks writes explicitly

Γz[Ω, Ω] = lim
dt→0

Et

[
Ω(zt+dt, nt+dt, χt+dt)

dt

]
To avoid introducing too much stochastic calculus notation, we will show that χ is a redundant state

under the special case that shocks z follow a multi-point Poisson jump process. The logic of the proof

with other stochastic processes would be exactly the same, at the expense of more notation. In the

Poisson case, we have

Γz[Ω, Ω] = τ(z)Ez

[
Ω(η, n, χ′(z, n, χ, η))−Ω(z, n, χ)

]
where τ(z) is the intensity at which the Poisson shocks hit, and η is a random variable following the

distribution of those shocks conditional on arrival and conditional on the initial productivity z.
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C.5.2 Introduce functions that update the residual χ

We define the following functions given that we know how n changes in each of the cases

s(z, n, χ, κ(z, n, χ)) = (N (z, n, χ), z, sχ(z, n, χ))

d (z, n, χ, i) = (n− 1, z, dχ (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) = (N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) = (N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ), z, η
χ
0 (z, n, χ, i))

hU (z, n, χ) =
(
n + 1, z, hχ

U (z, n, χ)
)

hE
(
z′, χ′, i′, z, n, χ, n′

)
=

(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
qE
(
z′, n′, χ′, i′, z, n, χ

)
=

(
n′ − 1, z′, qχ

E
(
n′, z′, χ′, i′, z, n, χ

))
Hn
(
z′, n′, χ′, i′

)
=

1
n′

Hn
(
z′, n′, χ′

)
gz (z, n, χ, η) =

(
η, n, gχ

z (z, n, χ, η)
)

The above uses the functionN (z, n, χ), which gives the number of workers the firm retains after endoge-

nous quits and layoffs. It solves

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

In addition, τ1(z, n, χ), η1(z, n, χ) ∈ {0, 1}. τ1(z, n, χ) = 0 if `i(z, n, χ) = 1. Similarly, η1(z, n, χ) = 0 if

qU,i(z, n, χ) = 1. Using these definitions in the Bellman equation above:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , z, n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (n− 1, z, sχ (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)−U

]
· I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

�
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +τ(z)Ez

[
Ω
(

η, n, gχ
z (z, n, χ, η)

)
−Ω (z, n, χ)

]
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and sets

E =
{

z, n, χ
∣∣∣ϑ +N (z, n, χ) ·U ≥ Ω(N (z, n, χ), z, sχ(z, n, χ))

}
QU =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

}

L =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, η
χ
0 (z, n, χ, i))

}

A =

{
z, n, χ

∣∣∣∣∣Ω (n + 1, z, hχ
U (z, n, χ)

)
−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
n + 1, z, hχ

E
(
z, n, χ, z′, n′, χ′, i′

))
−Ω (z, n, χ)

≥ Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, pχ

(
z′, n′, χ′, i′, z, n, χ

)) }

and the definition

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)

]
· I{(z,n,χ)∈A}

+ (1− φ)

�
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z, n, χ, n′, z′, χ′, i′

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
C.5.3 Argue that (χ, i) are a redundant state

The system above defines a functional fixed point equation. Inspection of the Bellman equation reveals

that χ has no direct impact on the flow payoff, continuation values, or mobility sets. Its only impact

is through the dependence of Ω on χ. This observation implies that χ is a redundant state, and can be

removed from the fixed point equation. The same argument ensures that the worker index i is redundant

as well.
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C.5.4 Bellman equation without (χ, i)

We can re-write our Bellman equation for (z, n) ∈ E c as:

ρΩ (z, n) = y (z, n)− c (v (z, n) , n)

Destructions −δ
n

∑
i=1

[Ω (z, n)−Ω (n− 1, z)−U]

Retentions +λE
n

∑
i=1

�
(n′ ,z′)∈R(z,n)

[Ω (z, n)−Ω (z, n)] dHv
(
x′
)

UE Hires +qv (z, n) φ [Ω (n + 1, z)−Ω (z, n)−U] · I{(z,n)∈A}

EE Hires +qv (z, n) (1− φ)

�
(z,n)∈QE(z′ ,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
z′, n′

)
Shocks +Γz[Ω, Ω](z, n)

with the sets

E c =

{
z, n

∣∣∣∣∣Ω(N (z, n)) ≥ ϑ +N (z, n)U

}

L = QU =

{
z, n

∣∣∣∣∣Ω(N (z, n), z)−Ω(N (z, n)− 1, z) ≤ U

}

A =

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ U

}

QE (z′, n′
)
=

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)}

and the definition

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

and the vacancy policy function:

cv (v (z, n) , z, n)
q

= φ [Ω (n + 1, z)−Ω (z, n)] · I{(z,n)∈A}

+ (1− φ)

�
(z,n)∈QE(z′,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
n′, z′

)
C.5.5 Expressing “bold” values

In this step we express “bold” values – that encode the optimal quit, layoff and exit decisions – as simple

functions of non-bold values.
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From the definition of the exit and quit sets E ,QU , we can express:

Ω(z, n) = max

{
Ω(z, n)︸ ︷︷ ︸
Operate

, Ω(n− 1, z) + U︸ ︷︷ ︸
Separate one worker and re-evaluate

, ϑ + nU︸ ︷︷ ︸
Exit

}

We can iterate on this equation. To see the logic, consider the first few steps.

Ω(z, n) = max

{
Ω(z, n) , Ω(n− 1, z) + U , ϑ + nU

}

= max

{
Ω(z, n) , max

{
Ω(n− 1, z) , Ω(n− 2, z) + U , ϑ + (n− 1)U

}
+ U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + (n− 1)U + U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + nU

}

By recursion, it is easy to see that

Ω(z, n) = max

{
Ω(N (z, n), z) + (n−N (z, n)) ·U , ϑ + nU

}

= max

{
max

k∈{0,...,n}
Ω(k, z) + (n− k)U , ϑ + nU

}

where recall that

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

C.6 Continuous workforce limit

Up to this point the economy has featured a continuum of firms, but an integer-valued workforce. We

now take the continuous workforce limit by defining the ‘size’ of a worker—which is 1 in the integer

case—and taking the limit as this approaches zero. Specifically, denote the “size” of a worker by ∆, such

that n = N∆ where N is the old integer number of workers. Now define Ω∆(z, n) := Ω(z, n/∆), and

likewise define y∆(z, n) := y(z, n/∆) and c∆(v, n, z) := c(v/∆, n/∆, z). We also define b∆ := b/∆ and

ϑ∆ := ϑ/∆. These imply, for example, that Ω(z, N) = Ω∆(z, N∆). Substituting these terms into (24) and

(25), and taking the limit ∆ → 0, while holding n = N∆ fixed, we would obtain a version of (26) in

which all functions have the ∆ super-script notation. We also specialize the productivity to a diffusion

process dzt = µ(zt)dt + σ(zt)dWt.
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The result is the joint value representation of section 2.3: a Hamilton-Jacobi-Bellman (HJB) equation

for the joint value conditional on the firm and its workers operating:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z) (26)

Destruction −δn[Ωn(z, n)−U]

UE Hire +φq(θ)v [Ωn(z, n)−U]

EE Hire +(1− φ)q(θ)v
�

max
{

Ωn(z, n)−Ωn(n′, z′) , 0
}

dHn
(
z′, n′

)
Shock +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n).

Boundary conditions for the firm and its workers operating require the state to be interior to the exit and

separation boundaries:

Exit boundary: Ω(z, n) ≥ ϑ + nU,

Layoff boundary: Ωn(z, n) ≥ U

Note the absence of Ω terms. Since the value we track is that of a hiring firm subject to boundary

conditions, then Ω = Ω. This admits the simplification of ‘Shock’ terms we noted when discussing (20).

We proceed in three steps:

(A.5.1) Define worker size and the renormalization

(A.5.2) Take the limit as worker size goes to zero

(A.5.3) Introduce a continuous productivity process.

C.6.1 Define worker size and the renormalization

We denote the “size” of a worker by ∆. That is, we currently have an integer work-force n ∈ {1, 2, 3, . . . }.

We now consider m ∈ {∆, 2∆, 3∆, . . . }. So then n = m/∆. We use this to make the following normaliza-

tions:

ω(z, m) = Ω
(m

∆
, z
)

Y(z, m) = y
(m

∆
, z
)

C(z, m) = c
( v

∆
,

m
∆

, z
)
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These definition imply

Ω(z, n) = ω(n∆, z)

y(z, n) = Y(n∆, z)

c(v, z, n) = C(v∆, n∆, z)

In addition, the value of unemployment solves

ρU = b

Define

U =
b

ρ∆
=

U
∆

and

θ =
ϑ

∆
Substituting these definitions into the Bellman equation, we obtain

ρω (n∆, z) = max
v∆≥0

Y (n∆, z)− C (v∆, n∆, z)

Destructions −δn∆
[

ω (n∆, z)−ωωω (n∆− ∆, z)
∆

−U
]

UE Hires +qv∆φ

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
−U

]
· I{(n∆,z)∈A}

EE Hires +qv∆ (1− φ)

�
(n∆,z)∈QE(n′∆,z′)

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
− ω (n′∆, z′)−ωωω (n′∆− ∆, z′)

∆

]
dH̃n

(
n′∆, z′

)
Shocks +Γz [ωωω, ω] (n∆, z)

with the set definitions

E =

{
n∆, z

∣∣∣∣∣ max
k∆∈{0,...,n∆}

ω(k∆, z) + (n∆− k∆)U < θ + n∆U
}

A =

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ U
}

QU =

{
n∆, z

∣∣∣∣∣ω (n∆, z)−ωωω (n∆− ∆, z)
∆

≤ U
}

QE (n′∆, z′
)
=

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ ω (n′∆, z′)−ωωω (n′∆− ∆, z′)
∆

}
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and the definition:

ωωω(n∆, z) = max

{
max

k∆∈{0,...,n∆}
ω(k∆, z) + (n∆− k∆)U , θ + n∆U

}

C.6.2 Continuous limit as worker size goes to zero

Now we take the limit ∆ → 0, holding m = n∆ fixed. We note v̂ = lim∆→0 v∆. We see derivatives

appear. We denote ωm(z, m) = ∂ω
∂m (z, m).

First, we note that the following limit obtains:

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + m∆U

}

In particular, the exit set limits to

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (m− k)U < θ + mU
}

In equilibrium, the ωωω(z, m) terns on the right-hand-side of the Bellman equation are the result of endoge-

nous quits, layoffs and hires. Because our continuous time assumption has been made before we take the

limit to a continuous workforce limit, we need only consider those changes in the workforce one at a

time. Hence, for any (z, m) ∈ Interior(E c ∩A), the interior of the continuation set, there is always ∆ > 0:

such that for any ∆ ≤ ∆:

ωωω(m± ∆, z) = ω(m± ∆, z)

Using this observation in the Bellman equation, we can obtain derivatives on the right-hand-side. We

obtain, for pairs (z, n) in the interior of the continuation set (z, n) ∈ Interior(E c ∩A):

ρω (z, m) = max
v̂≥0

Y (z, m)− C (v̂, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qv̂φ [ωm(z, m)−U ] · I{(z,m)∈A}

EE Hires +qv̂ (1− φ)

�
(z,m)∈QE(m′,z′)

[
ωm(z, m)−ωm(m′, z′)

]
dH̃n

(
m′, z′

)
Shocks +Γz [ωωω, ω] (z, n)
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with the set definitions

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (n− k)U < θ + mU
}

A =

{
z, m

∣∣∣∣∣ωm(z, m) ≥ U
}

QU =

{
z, m

∣∣∣∣∣ωm(z, m) ≤ U
}

= A , the complement of A

QE (z′, m′
)
=

{
z, m

∣∣∣∣∣ωm(z, m)−ωm(m′, z′) ≥ 0

}

and the definition

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + mU

}

Note that now, the only place where ωωω enters in the Bellman equation is the contribution of shocks. To

replace it with ω, we need to apply the same argument to z as the one we applied to n. We thus need to

specialize to a continuous productivity process.

C.6.3 Continuous productivity process

We now specialize to a continuous productivity process, as this makes the formulation of the problem

very economical. It allows to simplify the contribution of productivity shocks and get rid of the remain-

ing “bold” notation. We suppose that productivity follows a diffusion process:

dzt = µ(zt)dt + σ(zt)dWt

In this case, for any (z, m) in the interior of the continuation set, productivity shocks in the interval

[t, t + dt] cannot move the firm towards a region in which it would endogenously separate or exit, when

dt is small enough. In this case, we can write the following, where we have also replaced theQE set with

44



the max operator:

ρω (z, m) = max
v≥0

Y (z, m)− C (v, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qvφ [ωm(z, m)−U ]

EE Hires +qv (1− φ)

�
max

{
ωm(z, m)−ωm(z′, m′) , 0

}
dH̃n

(
m′, z′

)
Shocks +µ(z)ωz(z, m) +

σ(z)2

2
ωzz(z, m)

s.t.

No Exit ω(z, m) ≥ θ + mU

No Separations ωm(z, m) ≥ U

To make the notation more comparable, we slightly abuse notation and use the same letters as before,

but now for the continuous workforce case. We obtain finally:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, z, n)

Destructions −δn[Ωn(z, n)−U]

UE Hires +qvφ [Ωn(z, n)−U]

EE Hires +qv (1− φ)

�
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
Shocks +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n)

s.t.

No Exit Ω(z, n) ≥ ϑ + nU

No Separations Ωn(z, n) ≥ U

When the coalition hits Ωn(z, n) = U, it endogenous separates worker to stay on that frontier. It exits

when it hits the frontier Ω(z, n) = ϑ + nU.

In addition to these “value-pasting” boundary conditions, optimality implies necessary “smooth-

pasting” boundary conditions (see Stokey 2008): Ωz(z, n) = 0 if the firm actually exits at (z, n) following

productivity shocks, and Ωn(z, n) = 0 if the firm actually exits at (z, n) following changes in size. These
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are necessary and sufficient for the definition of our problem (Brekke Oksendal 1990). Its general formu-

lation terms of optimal switching between three regimes (operation, layoffs, exit) on the entire positive

quadrant, can be made as a system of Hamilton-Jacobi-Bellman-Variational-Inequality (see Pham 2009),

which we present here for completeness :

max

{
− ρΩ (z, n) + max

v≥0
−δn[Ωn(z, n)−U] + qvφ [Ωn(z, n)−U]

+qv (1− φ)

�
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
+ µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n) ;

ϑ + nU −Ω(z, n) ; max
k∈[0,n]

Ω(z, k) + (n− k)U −Ω(z, n)

}
= 0 , ∀(z, n) ∈ R2

+
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D Characterization of surplus function

First define the surplus as S(z, n) = Ω(z, n) − nU. Given that ρU = b, this implies that ρS(z, n) =

ρΩ(z, n)− nb. We also have that Sn(z, n) = Ωn(z, n)−U. Combining these with the Bellman equation

for Ω:

ρS(z, n) = max
v≥0

y(z, n)− c(v, z, n)− nb

+ [qφv− δn]Sn(z, n)

+ q(1− φ)v
� Sn(z,n)

0
[Sn(z, n)− s]dHn(s)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)

where we sligtly abuse notation and use Hn(s) to also denote here the employment-weighted cumulative

distribution function of marginal surpluses. The value-pasting conditions become

S(z, n) ≥ ϑ

Sn(z, n) ≥ 0

We now make a number of assumptions to characterize the surplus. They are not all strictly necessary

for each individual comparative static, but for convenience of exposition we present them all at the same

time.

• The production function y(z, n) satisfies ylog z, yn, ylog z,n > 0 > ynn.

• Productivity follows a geometric Brownian motion µ(z) = µz and σ(z) = σz.

• Vacancy costs depend only on v and are isoelastic: c(v) = c0v1+γ.

• The surplus function is twice continuously differentiable up to the boundary of the continuation

region.

We now proceed to show the comparative statics discussed in the main text.

D.1 S is increasing in n

The no-endogenous-separations condition Sn ≥ 0 immediately implies that the surplus is increasing in

n.
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D.2 S is increasing in z

Re-write the problem in terms of x = log z. Denote with a slight abuse of notation y(x, n) = y(ex, n).

Then, as a function of (x, n), the joint surplus solves

ρS(x, n) = max
v≥0

y(x, n)− c(v)− nb

+ [qφv− δn]Sn(x, n)

+ q(1− φ)vH(Sn(x, n))

+
(

µ− σ

2

)
Sx(x, n) +

σ2

2
Sxx(x, n)

where we integrated by parts, and denoted H(s) =
� s

0 Hn(r)dr. Denote ζ(x, n) = Sx(x, n). Differentiate

the Bellman equation w.r.t. x and use the envelope theorem to obtain

ρζ(x, n) = yx(x, n)

+
{[

q(1− φ)Hn(Sn(x, n)) + qφ
]
v∗(x, n)− δn

}
ζn(x, n)

+ µζx(x, n) +
σ2

2
ζxx(x, n)

Now consider the stochastic process defined by

dxt = µdt + σdWt

dnt =
{[

q(1− φ)Hn(Sn(xt, nt)) + qφ
]
v∗(xt, nt)− δnt

}
dt (27)

This correponds to the true stochastic process for productivity, but a hypothetical process for employ-

ment, that in general differes from the realized one. We can now use the Feynman-Kac formula (Pham

2009) to go back to the sequential formulation:

ζ(x, n) = E

[� T

0
e−ρtyx(xt, nt) + e−ρTζ(xT, nT)

∣∣∣ x0 = x, n0 = n, {xt, nt} follows (27)

]

and where T is the hitting time of either the separation of exit region. By assumption, yx > 0, so the

contribution of the first part is always positive. On the exit region, smooth-pasting requires that ζ = 0.

In the interior of the separation region, ζ = 0. Under our regularity assumption, we thus get ζ = 0 on

the layoff boundary. Thus,

ζ(x, n) = E

[� T

0
e−ρtyx(xt, nt)dt

∣∣∣ x0 = x, n0 = n, {xt, nt} follows (27)

]
> 0
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which concludes the proof.

D.3 S is concave in n

Denote s(z, n) = Sn(z, n). Differentiate the Bellman equation w.r.t. n on the interior of the domain, use

the envelope theorem and integrate by parts to obtain:

(ρ + δ)s(z, n) = yn(z, n)− b

+
{[

qφ + q(1− φ)Hn(s(z, n))
]
v∗(z, n)− δn]sn(z, n)

+ µ(z)sz(z, n) +
σ2(z)

2
szz(z, n)

Recall that

(1 + γ)c0[v∗(z, n)]γ = qφs(z, n) + q(1− φ)H(s(z, n))

In particular, differentiating w.r.t. n,

γ(1 + γ)c0[v∗(z, n)]γ−1v∗n(z, n) =
[
qφ + q(1− φ)Hn(s(z, n))

]
sn(z, n)

and so

γ
v∗n(z, n)
v∗(z, n)

=
φ + (1− φ)Hn(s(z, n))
φ + (1− φ)H(s(z, n))

sn(z, n)
s(z, n)

where H(s) = H(s)
s ≤ 1. Now denote ζ(z, n) = sn(z, n) = Snn(z, n). Differentiate the recursion for s w.r.t.

n to obtain (
ρ + 2δ− q(1− φ)H′n(s(z, n)v∗(z, n)sn(z, n)− q[φ + (1− φ)Hn(s(z, n))v∗n(z, n)

)
ζ(z, n)

= ynn(z, n)

+
{[

λφ + λ(1− φ)Hn(s(z, n)
]
v∗(z, n)− δn]ζn(z, n)

+ µ(z)ζz(z, n) +
σ2(z)

2
ζzz(z, n)

Now define the “effective discount rate”

R(z, n, sn(z, n)) = ρ + 2δ− q(1− φ)H′n(s(z, n)v∗(z, n)sn(z, n)− q[φ + (1− φ)Hn(s(z, n))]v∗n(z, n)

= ρ + 2δ− qv∗(z, n)sn(z, n)
{
(1− φ)H′n(s(z, n)) +

φ + (1− φ)Hn(s(z, n))
γs(z, n)

φ + (1− φ)Hn(s(z, n))
φ + (1− φ)H(s(z, n))

}
︸ ︷︷ ︸

≡P(z,n)>0
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where the second equality uses the expression for v∗n derived above. Define the stochastic process

dzt = µ(zt)dt + σ(zt)dWt

dnt =
{[

q(1− φ)Hn(Sn(zt, nt)) + qφ
]
v∗(zt, nt)− δnt

}
dt (28)

As before, we can use the Feynman-Kac formula to obtain

ζ(z, n) = E

[ � T

0
e−

� t
0 R(zτ ,nτ ,ζ(zτ ,nτ))dτynn(zt, nt)dt + e−

� T
0 R(zτ ,nτ ,ζ(zτ ,nτ))dτTζ(zT, nT)

∣∣∣ z0 = z, n0 = n, {zt, nt} follows (28)

]

for T the first hitting time of the exit/separation region. The contribution of the first term is always

negative. Note that ζ enters in the effective discount rate. Inside the separation region and in the exit

regions, ζ = 0. We restrict attention to twice continuously differentiable functions, so ζ = 0 on the exit

and separation frontiers. Then

ζ(z, n) = E

[ � T

0
e−

� t
0 R(zτ ,nτ ,ζ(zτ ,nτ))dτynn(zt, nt)dt

∣∣∣ z0 = z, n0 = n, {zt, nt} follows (28)

]
< 0

which concludes the proof.

D.4 S is supermodular in (log z, n)

Denote again s(x, n) = Sn(x, n), where x = log z. Recall

(ρ + δ)s(x, n) = yn(x, n)− b

+
{[

qφ + q(1− φ)Hn(s(x, n)
]
v∗(x, n)− δn]sn(x, n)

+ µsx(x, n) +
σ2

2
sxx(x, n)

and that

(1 + γ)c0[v∗(x, n)]γ = qφs(x, n) + q(1− φ)H(s(x, n))

In particular, differentiating w.r.t. x,

γ
v∗x(x, n)
v∗(x, n)

=
φ + (1− φ)Hn(s(x, n))
φ + (1− φ)H(s(x, n))

sx(x, n)
s(x, n)
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Now denote ζ(x, n) = sx(x, n) = Sxn(x, n). Differentiate the recursion for s(x, n) w.r.t. x to obtain(
ρ + δ− q(1− φ)H′n(s(x, n)v∗(x, n)sx(x, n)− q[φ + (1− φ)Hn(s(x, n))v∗x(x, n)

)
ζ(x, n)

= ynx(x, n)

+
{[

λφ + λ(1− φ)Hn(s(x, n)
]
v∗(x, n)− δn]ζn(x, n)

+ µζx(x, n) +
σ2

2
ζxx(x, n)

As before, define the “effective discount rate”

R(x, n, sx(x, n)) = ρ + δ− q(1− φ)H′n(s(x, n)v∗(x, n)sx(x, n)− q[φ + (1− φ)Hn(s(x, n))]v∗x(x, n)

= ρ + δ− qv∗(x, n)sx(x, n)
{
(1− φ)H′n(s(x, n)) +

φ + (1− φ)Hn(s(x, n))
γs(x, n)

φ + (1− φ)Hn(s(x, n))
φ + (1− φ)H(s(x, n))

}
︸ ︷︷ ︸

≡P(x,n)>0

where the second equality uses the expression for v∗n derived above. As before, define the stochastic

process

dxt = µdt + σdWt

dnt =
{[

q(1− φ)Hn(Sn(ext , nt)) + qφ
]
v∗(xt, nt)− δnt

}
dt (29)

As before, we can use the Feynman-Kac formula to obtain

ζ(x, n) = E

[ � T

0
e−

� t
0 R(xτ ,nτ ,ζ(xτ ,nτ))dτynx(xt, nt)dt + e−

� T
0 R(xτ ,nτ ,ζ(xτ ,nτ))dτTζ(xT, nT)

∣∣∣ x0 = z, n0 = n, {xt, nt} follows (29)

]

for T the first hitting time of the exit/separation region. The contribution of the first term is always

positive. Inside the separation region and in the exit regions, ζ = 0. We restrict attention to twice

continuously differentiable functions, so ζ = 0 on the exit and separation frontiers. Then

ζ(x, n) = E

[ � T

0
e−

� t
0 R(xτ ,nτ ,ζ(xτ ,nτ))dτynx(xt, nt)dt

∣∣∣ x0 = z, n0 = n, {xt, nt} follows (29)

]

which concludes the proof.
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D.5 Net employment growth

Net employment growth in the continuation region is

dnt

dt
= q

[
φ + (1− φ)Hn(Sn(z, n))

]
v∗(z, n)− λE(1− Hv(Sn(z, n)))n− δn ≡ g(z, n)

Using the expression above for v∗(z, n):

g(z, n) =
q1+1/γ

[(1 + γ)c0]1/γ

(
φ + (1− φ)Hn(Sn(z, n))

)(
φSn(z, n) + (1− φ)H(Sn(z, n))

)1/γ

−λE(1− Hv(Sn(z, n)))n− δn

From the previous comparative statics on Sn(z, n), it is straightforward to see that g(z, n) is increasing in

log z and decreasing in n.
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E Frictionless limits

E.1 Setup

Frictional problem. Start by recalling the Bellman equation for the joint surplus in the frictional case:

ρS(z, n) = max
v

y(z, n)− nb− c(v)− δnSn(z, n)

+ qv

{
φSn + (1− φ)

� Sn

0
Hn(s)ds

}
+ LS

s.t. S ≥ 0, Sn ≥ 0

where Hn is the employment-weighted cumulative distribution function of marginal surpluses. L is the

differential operator that encodes the continuation value from productivity shocks. For instance, for a

diffusion, LS = µ(z)Sz(z, n) + σ(z)2

2 Szz(z, n). Recall that φ = u
u+ξ(1−u) is the probability that a vacancy

meets an unemployed worker, and q is the vacancy meeting rate.

Note that we abstracted from exogenous separations for simplicity, but endogenous separations

when S(n, z) < 0 still occur: denote by ∆ the aggregate endogenous separation rate.

Inside the continuation region, the density function h(z, n) of the distribution of firms by productivity

and size is determined by the stationary KFE

0 = − ∂

∂n

(
h(z, n)g(z, n)

)
+ L∗h

where L∗ is the formal adjoint of the operator L, and

g(z, n) = qv∗(z, n)
[
φ + (1− φ)Hn(Sn(z, n))

]
− ξλUn

[
1− Hv(Sn(z, n))

]
(30)

is the growth of employment, λU is the meeting rate from unemployment, and ξ the relative search

efficiency of the employed.

Finally, the mass of entrant firms m0 is determined by the free-entry condition

ce = EEntry[max{S(z, n0), 0}] (31)

where EEntry is the expectation operator under the productivity (hence surplus) distribution for entrants.

The surplus is a function of m0 through the vacancy meeting rate q(θ), since θ is increasing in m0.
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Functional forms. For ease of exposition, we consider isoelastic vacancy cost functions

c(v) =
c0

1 + γ
v1+γ,

and normalize c0 = 1, but the result does not depend on the particular functional form nor on the

normalization. Also, we specialize to a Cobb-Douglas matching function m(s, v) = Asβv1−β, where A is

match efficiency, a proxy for labor market frictions.

Comparative statics. We consider the following limits when match efficiency A→ ∞.

1. No on-the-job-search: ξ = 0

2. On-the-job search: ξ > 0

Notation. We write B ∼ C when there are two strictly positive numbers r0, r1 such that 0 < r0 ≤ B
C ≤ r1,

as A → +∞. We write B ≈ C for a first-order Taylor expansion. Denote ||Sn|| = ESteady−state
[
S1/γ

n

]γ
,

where ESteady−state denotes the expectation under the steady-state distribution of marginal surpluses, and

is also the Lebesgue 1/γ-norm of Sn under the steady-state probability measure.

E.2 No on-the-job search

Since ξ = 0, φ = 1. From the FOC for vacancies,

v∗(z, n) =
(

qSn

)1/γ
.

using this optimality condition in the value function of hiring firms:

ρS(z, n) = y(z, n)− nb +
γ

1 + γ
· q

1
1+γ S

1
1+γ
n + LS

s.t. S ≥ 0, Sn ≥ 0

which now only depends on q as the sole aggregate. Hence, free-entry (31) uniquely pins down q to

the same value irrespectively of A. It follows that the value function always satisfies the same Bellman

equation, irrespectively of A. From the value function, S and Sn converge to finite values throughout the

state space. Hence, throughout the state space, marginal surpluses Sn(z, n) remain identical at a given

pair (z, n) as A varies. Moreover, the endogenous separation rate ∆ always remains finite.

We now study how aggregates v, u, θ evolve along this limiting path. For this, it is useful to note that,

by aggregate feasibility both m0 and v must remain finite, otherwise entry costs and vacancy costs would

blow up.
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E.2.1 Aggregates in the limit

Integrating both sides of the FOC for vacancies under the firm distribution, and given the finite mass of

entrant firms, aggregate vacancies are

v = m0q1/γ||Sn||1/γ,

which implies that ||Sn|| remains finite in the limit. Since the endogenous separation rate ∆ is finite, the

unemployment rate is u ≈ ∆
λU = ∆A−1θ−(1−β). Tightness satisfies

θ =
v

u
≈ m0

∆
· Aθ1−β A1/γθ−β/γ||Sn||1/γ

so that

θβ 1+γ
γ ≈ m0

∆
A

1+γ
γ ||Sn||1/γ.

Since m0, ∆, and ||Sn|| are finite, θ diverges with A. Therefore, λU diverges as well.

E.2.2 Invariant distribution of marginal surpluses

We now turn to the invariant distribution h(z, n). After substituting optimal vacancies into (30) evaluated

at ξ = 1− φ = 0, one obtains that the growth of employment in the hiring region is:

g(z, n) = q
(

qSn

)1/γ
.

The only term in the right-hand side – hires from unemployment – stays constant at finite values through-

out the state space. There are no losses to employment because there is no on-the-job search. Employ-

ment losses arise only when the coalition hits the endogenous separation region or the exit region.

Hence, the law of motion of employment is independent from A. Thus, the steady-state distribution

h(z, n) is also independent from A, so is the distribution of Sn.

E.2.3 Summary

Summarizing this case: as A → ∞, even though unemployment vanishes, the allocations in the search

model without on-the-job search do not converge to those of a competitive firm-dynamics model. The

free entry condition requires the vacancy meeting rate q to remain finite and thus a non degenerate dis-

persion of marginal products of labor survives even in the limit. In contrast, in the competitive bench-

mark, marginal products of labor are equalized across firms.
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E.3 On-the-job search with a fat-tailed entry distribution

We now turn to the case in which on-the-job search remains positive at some fixed value ξ > 0, and thus

φ < 1. We follow the same logic as before, with some additional steps due to on-the-job search. To keep

the arguments manageable, we introduce an additional assumption.

We require the entry productivity distribution to have a “fat enough” tail. We make the common as-

sumption of an unbounded productivity support for the productivity distribution at entry, and assume

that the production function is such that the optimal frictionless size grows without bound as produc-

tivity becomes large, at rate that is larger than the decay of the entry distribution. More precisely, we

assume that

lim
z↑+∞

(
arg max

n
y(z, n)− bn

)
hEntry(z, n0) = +∞

This is satisfied for the production function y(z, n) = znα and the entry distribution hEntry(z, n0) ∝ z−ζ

in our numerical implementation, when 1
1−α − ζ ≥ −1. In section E.4 below, we show that we can relax

this assumption if we replace it with a “spousal” or “godfather” shock assumption.

The value function writes:

ρS(z, n) = max
v

y(z, n)− nb− c(v) + qvR(Sn) + LS

s.t. S ≥ 0, Sn ≥ 0.

where

R(Sn) = φSn + (1− φ)

� Sn

0
Hn(s)ds

is the return to a vacancy. The growth of employment is

g(z, n) = qv∗(z, n) [φ + (1− φ)Hn(Sn(z, n))]− ξλUn
[
1− Hv(Sn(z, n))

]
E.3.1 Aggregates in the limit

Because of the employed jobseekers and because vacancies remain finite by aggregate feasibility, market

tightness θ remains finite as A→ ∞.55 Thus, both q and λU diverge with A.

We restrict attention to the economically meaningful case in which (1) output remains finite and

strictly positive in the limit, and (2) firms remain active on average for a strictly positive time period in

the limit.56 (1) implies that the mass of active firms m0 also remains finite. (2) implies that the rate at which

55Strictly speaking, free-entry then ensures that theta is pinned down to a strictly positive value. This proof is more lengthy
but does not require any additional assumptions and is available upon request.

56These restrictions can be seen as a guess and verify strategy. Both restrictions will hold in the limiting economy that
obtains.
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workers separate into unemployment limits to a positive constant ∆. Since u ≈ ∆
λU , the unemployment

rate (as well as φ) converges to zero. Moreover, since

v = m0q1/γ||R (Sn) ||1/γ,

||R (Sn) || goes to zero at the same rate at which A diverges.

E.3.2 Invariant distribution of marginal surpluses

We now show that the distribution of marginal surpluses degenerates to a single value on the support

of the invariant distribution.

From the KFE equation, the growth of employment inside the continuation region is:

g(z, n) = q (φ + (1− φ)Hn(Sn)) ·
(

qR(Sn)
)1/γ

− nλUξ
(

1− Hv(Sn(z, n))
)

Using the expression for v and u in the limit, we obtain that

q
1+γ

γ

λU ≈ ξm−1
0 ||R(Sn)||−

1
γ .

Using this expression and recalling that in the limit φ = 0 and that v = ξθ,

g(z, n) ≈ λU ·
{

ξm−1
0

(
Hn(Sn)

)( R(Sn)

||R(Sn)||

)1/γ

− ξn
(

1− Hv(Sn)
)}

.

Since λU diverges, at the points in the state space that have positive employment in steady state the

bracket must vanish in the limit, i.e.

m−1
0

(
Hn(Sn)

)
R(Sn)

1/γ = n
(

1− Hv(Sn)
)
||R(Sn)||1/γ

Now suppose for a contradiction that Hn, the cumulative distribution function of Sn, converges point-

wise to a non-degenerate limiting distribution H∞
n .57 Whenever H∞

n > 0, it must be that R(Sn) > 0, a

contradiction since the RHS of that expression is always zero. In other words R(Sn) = 0 on every point

on the state space, which implies that the invariant distribution of marginal surpluses concentrates on a

strip {z, n∗(z)}z where the limiting marginal surplus is equalized.58 We denote S∗n its common limit.

E.3.3 Unique value for S∗n on the limiting strip

We now characterize the limiting behavior of S∗n. We need to guess the following:

57So the probability measure of Sn in the cross-section would converge in distribution to a non-degenerate limit.
58We can argue that it is such a strip using the concavity properties shown in Appendix D.
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(?) n∗(z) = arg maxn y(z, n)− bn .

We will verify (?) below. From the concavity of marginal surplus, we have

S(z, n0) ≤ S(z, n∗(z)) + Sn(z, n∗(z))× (n0 − n∗(z))

Now, recall that Sn(z, n∗(z)) ≡ S∗n is equalized in the limit, and so is a constant. Therefore, in the limit,

we obtain an upper bound to the value of entry that involves the limiting marginal suplus S∗n,
�

S(z, n0)hEntry(z, n0)dz ≤
�

S(z, n∗(z))hEntry(z, n0)dz + S∗n

�
(n0 − n∗(z))hEntry(z, n0)dz

Now suppose for a contradiction that S∗n > 0. Then, from our assumption on the entry distribution, we

obtain that �
n∗(z)hEntry(z, n0)dz = +∞.

Therefore, using the previous inequality, we obtain that the value of entry must be negative infinity in

the limit: �
S(z, n0)hEntry(z, n0)dz→ −∞,

This arbitrarily large negative value of entry contradicts free-entry. Therefore, it must be that S∗n = 0.

Intuitively, a strictly positive marginal surplus S∗n reflects that firms are in excess supply relative to

the amount of workers. The fat tail assumption then implies that this excess supply translates into a very

negative value of entry, which cannot be an equilibrium in which firms enter freely.

E.3.4 Limiting value function

The value function evaluated on the strip {z, n∗(z)}z – where Sn = 0 in the limit – converges to the

solution of

ρS(z, n∗(z)) ≈ y(z, n∗(z))− n∗(z)b

+ µ(z)
∂S
∂z

(z, n∗(z)) +
σ2(z)

2
∂2S
∂z2 (z, n∗(z))

S(z, n∗(z)) ≥ 0

where recall that the continuation term vanishes for incumbent firms. We have made explicit the genera-

tor L. Recall that the candidate limiting competitive economy has a value function that depends only on

z. However, the continuation value terms here contain partial derivatives w.r.t. z, not total derivatives.

To argue that it is enough to focus on the value function evaluated on the strip, we must show that the
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partial derivatives approximate the total derivatives in the limit. To see this, compute

dS(z, n∗(z))
dz

=
∂S
∂z

(z, n∗(z)) +
∂S
∂n

(z, n∗(z)) · dn∗(z)
dz

But now recall that ∂S
∂n (z, n∗(z)) → 0. In addition, dn∗(z)

dz stays finite by definition of n∗(z). Therefore, as

A→ ∞,

dS(z, n∗(z))
dz

≈ ∂S
∂z

(z, n∗(z))

Therefore, in the limit, the exit behavior of an existing firm can be described by the firm’s realized value:

S(z) ≡ S(z, n∗(z))

ρS(z) = y(z, n∗(z))− n∗(z)b + LS(z)

S(z) ≥ 0

E.3.5 Optimal size

We now characterize the optimal size of incumbents in the limit and verify (?). We note that, for a small

period of time dt, away from the exit cutoff and close to the optimal size,

S(z, n) ≈
[
y(z, n)− bn

]
dt + e−ρdtE

[
S(zdt, n∗(zdt)|z0 = z

]
because the other contributions in n− n∗(z) scale with ||Sn|| = 0. Therefore,

Sn(z, n∗(z)) ≈
[
yn(z, n∗(z))− b

]
dt

and so it must be that yn(z, n∗(z)) = b. This confirms guess (?).59

E.3.6 Summary

With on-the-job search, as A → +∞, the value function converges to the one of the Hopenhayn model.

The mass of active firms converges to some finite value. Free-entry pins down the mass of firms, and

converges to a condition that differs from the Hopenhayn model’s. There is an additional term that stems

from the value gains that entrant realize along their (very fast) growth towards their optimal size. The

equilibrating variable is the limiting market tightness, that governs the size of these gains.

59To make this argument strictly formal, differentiate the Bellman equation and represent marginal surplus as an integral
with the Feynan-Kac formula as in Appendix D. The derivation details are available upon request.
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E.4 On-the-job search with godfather shocks

We can relax the assumption on the entry distribution if we replace it with a “spousal” or “godfather”

shock assumption. The alternative assumption is to assume that, at rate δGξλU , a worker’s spouse finds

a job in a different location, forcing the worker to switch firms and accept any job offer. Because these

relocation shocks follow from spouses’ job contacts, the rate at which they affect workers scales with the

overall contact rate λU .

We will consider the limit when the fraction of hires from spousal shocks is small, δG → 0. Formally,

we take A→ ∞ first, and next δG → 0. The derivations follow closely those in the previous section (E.3).

The value function writes:

ρS(z, n) = max
v

y(z, n)− nb− c(v)

+ qv

{
φSn + (1− φ)

� Sn

0
Hn(s)ds +

δGξλU(1− u)
qv

Sn

}
− δGξλUnSn

+ LS

s.t. S ≥ 0, Sn ≥ 0.

Define the return to a vacancy as

R(Sn) = φSn + (1− φ)

� Sn

0
Hn(s)ds +

δGξλU(1− u)
qv

Sn

The growth of employment becomes

g(z, n) = qv∗(z, n)
[

φ + (1− φ)Hn(Sn(z, n)) +
δGλU(1− u)

qv

]
− ξλUn

[
1− Hv(Sn(z, n))

]
− δGξλUn

E.4.1 Aggregates in the limit

The same arguments as in section E.3 apply. Because of the employed jobseekers and because vacancies

remain finite by aggregate feasibility, market tightness θ remains finite as A → ∞. Thus, both q and λU

diverge with A.

Here too, we restrict attention to the economically meaningful case in which (1) output remains fi-

nite and strictly positive in the limit, and (2) firms remain active on average for a strictly positive time

period in the limit. (1) implies that the mass of active firms m0 also remains finite. (2) implies that the

rate at which workers separate into unemployment limits to a positive constant ∆. Since u ≈ ∆
λU , the
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unemployment rate (as well as φ) converges to zero. Moreover, since

v = m0q1/γ||R (Sn) ||1/γ,

||R (Sn) || goes to zero at the same rate at which A diverges.

E.4.2 Invariant distribution of marginal surpluses

We now show that the distribution of marginal surpluses degenerates to a single value on the support

of the invariant distribution.

From the KFE equation, the growth of employment inside the continuation region is:

g(z, n) = q
(

φ + (1− φ)Hn(Sn) +
δGξθ(1− u)

v

)
·
(

qR(Sn)
)1/γ

− nλUξ
(
(1− Hv(Sn(z, n)) + δG

)
Using the expression for v and u in the limit, we again obtain that

q
1+γ

γ

λU ≈ ξm−1
0 ||R(Sn)||−

1
γ .

Using this expression and recalling that in the limit φ = 0 and that v = ξθ,

g(z, n) ≈ λU ·
{

ξm−1
0

(
Hn(Sn) + δG

)( R(Sn)

||R(Sn)||

)1/γ

− ξn
(

1− Hv(Sn) + δG
)}

.

Since λU diverges, at the points in the state space that have positive employment in steady state the

bracket must vanish in the limit, i.e.

m−1
0

(
Hn(Sn) + δG

)( R(Sn)

||R(Sn)||

)1/γ

= n
(

1− Hv(Sn) + δG
)

Now consider the limit in which the spousal shocks are small, δG → 0. Then we obtain

m−1
0 Hn(Sn)

(
R(Sn)

||R(Sn)||

)1/γ

= n
(

1− Hv(Sn)
)

Now suppose for a contradiction that Hn, the cumulative distribution function of Sn, converges point-

wise to a non-degenerate limiting distribution H∞
n .60 Then ||R(Sn)|| converges to a non-zero value.

Consider a firm at the top of the distribution, such that 1− Hv(Sn) = 0. For such firm R(Sn) > 0. With a

non-degenerate distribution, the left-hand-side cannot be zero in the limit, a contradiction.

We have again shown that the invariant distribution of marginal surpluses concentrates on a strip

60So the probability measure of Sn in the cross-section would converge in distribution to a non-degenerate limit.
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{z, n∗(z)}z where the limiting marginal surplus is equalized.61 We denote S∗n its common limit. In addi-

tion, to a second order, Sn(z, n∗(z)) = S∗n +O(δG)

E.4.3 Unique value for S∗n on the limiting strip, and finite value for labor market tightness θ

To pin down labor market tightness, we return to the maximized value. Given that firms jump to their

optimal size, we can evaluate R(Sn) at S∗n for each term that corresponds to a jump. We arrive at the

following expression62 up to a second order in δG,

ρS(z, n) = y(z, n)− nb

+
γ

1 + γ

{
κ0Sn + κ0 I0S∗n + ξδGΛ(θ)

θ

} 1+γ
γ

− ξδGΛ(θ)n

+ LS

where κ0 = ∆
ξ , I0 ≥ 0 and Λ(θ) = λUS∗n.

For the value of entry to remain finite, it must be that Λ(θ) remains finite as A→ +∞, for any δG > 0.

Since Λ(θ) = λUS∗n and λU → +∞, S∗n → 0 up to a second order in δG.

Using free-entry again, we can now draw two additional conclusions. First, ΛδG converges to a

constant as δG → 0. That constant may be positive, but may also be zero. Denote that constant

w− b ≡ lim
δG↓0

ξΛδG ≥ 0

Define also

C f (w, θ) = − lim
δG↓0

κ0γ

1 + γ

{
w− b

θ

} 1+γ
γ

.

Substituting these definitions into the Bellman equation, we obtain

ρS(z, n) = y(z, n)− nw− C f + LS .

61We can argue that it is such a strip using the concavity properties shown in Appendix D.
62The details of the derivation are available upon request.
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E.4.4 Limiting value function

The value function evaluated on the strip {z, n∗(z)}z – where Sn = 0 in the limit – converges to the

solution of

ρS(z, n∗(z)) ≈ y(z, n∗(z))− n∗(z)w− C f

+ µ(z)
∂S
∂z

(z, n∗(z)) +
σ2(z)

2
∂2S
∂z2 (z, n∗(z))

S(z, n∗(z)) ≥ 0

where recall that the continuation term vanishes for incumbent firms. We have made explicit the genera-

tor L. Recall that the candidate limiting competitive economy has a value function that depends only on

z. However, the continuation value terms here contain partial derivatives w.r.t. z, not total derivatives.

To argue that it is enough to focus on the value function evaluated on the strip, we must show that the

partial derivatives approximate the total derivatives in the limit. To see this, compute

dS(z, n∗(z))
dz

=
∂S
∂z

(z, n∗(z)) +
∂S
∂n

(z, n∗(z)) · dn∗(z)
dz

But now recall that ∂S
∂n (z, n∗(z)) → 0. In addition, dn∗(z)

dz stays finite by definition of n∗(z). Therefore, as

A→ ∞,

dS(z, n∗(z))
dz

≈ ∂S
∂z

(z, n∗(z))

Therefore, in the limit, the exit behavior of an existing firm can be described by the firm’s realized value:

S(z) ≡ S(z, n∗(z))

ρS(z) = y(z, n∗(z))− n∗(z)w− C f + LS(z)

S(z) ≥ 0

E.4.5 Optimal size

We now characterize the optimal size of incumbents in the limit. We note that, for a small period of time

dt, away from the exit cutoff and close to the optimal size,

S(z, n) ≈
[
y(z, n)− wn

]
dt + e−ρdtE

[
S(zdt, n∗(zdt)|z0 = z

]
because the other contributions in n− n∗(z) scale with ||Sn|| = 0. Therefore,

Sn(z, n∗(z)) ≈
[
yn(z, n∗(z))− w

]
dt
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and so it must be that yn(z, n∗(z)) = w.

E.4.6 Summary

With on-the-job search, as A → +∞, the value function converges to one of the Hopenhayn model, and

a wage w ≥ b. The mass of active firms converges to some finite value. Free-entry pins down the mass

of firms, and converges to a condition that differs from the Hopenhayn model’s. There is an additional

term that stems from the value gains that entrant realize along their (very fast) growth towards their

optimal size.

The presence of godfather shocks requires coalitions to pay the limiting marginal surplus S∗n very

frequently as they hire (or lose) many workers each instant. This extra value spending reduces the

optimal size of a coalition. As S∗n goes to zero in the limit, but coalitions must pay this small cost more

and more frequently, the total cost per worker stays finite. As a result, the frictionless limit resembles

the Hopenhayn economy, but with an endogenous cost of labor that reflects marginal surplus spending

by coalitions. This endogenous cost of labor plays the role of a limiting wage. Similarly, part of that

marginal surplus spending results in an endogenous contribution to the fixed cost.
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F Algorithm

Recall that the problem facing the coalition is to optimally separate, exit and post vacancies such as to

maximize the joint coalition value,

ρΩ(z, n) = max
v≥0

y (z, n)− δn [Ωn(z, n)−U] (32)

+ q

[
φ [Ωn(z, n)−U] + (1− φ)

�
max

{
Ωn (n, z)−Ωn

(
n′, z′

)
, 0
}

dHn
(
n′, z′

) ]
v

− c (v, n)

+ µ(z)Ωz(z, n) +
σ2(z)

2
Ωzz(z, n)

s.t.

Ω(z, n) ≥ nU + ϑ

Ωn(z, n) ≥ U

We can rewrite the term under the integral sign in (32) to integrate directly over Ω′n = Ωn (n′, z′)

� Ωn(n,z)

U
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n
)

where we used the fact that the lower bound of the support must be U, since Ω′n ≥ U and the upper

bound is given by the fact that a firm only hires if Ω′n ≤ Ωn (n, z), and we added and subtracted U in the

integrand. Since Ω′n ∈ [U, Ωn (n, z)] implies Ω′n −U ∈ [0, Ωn (n, z)−U], we can integrate over Ω′n −U

and adjust the bounds

� Ωn(n,z)−U

0
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n −U

)
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We can hence restate the problem (32) as

ρΩ(z, n) = max
v≥0

y (z, n)− δn [Ωn(z, n)−U] (33)

+ q

[
φ [Ωn(z, n)−U] + (1− φ)

� Ωn(n,z)−U

0
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n −U

) ]
v

− c (v, n)

+ µ(z)Ωz(z, n) +
σ2(z)

2
Ωzz(z, n)

s.t.

Ω(z, n) ≥ nU + ϑ

Ωn(z, n) ≥ U

Let S (z, n) be the surplus of the coalition, S (z, n) = Ω (z, n) − nU. Note that Sz (z, n) = Ωz (z, n),

Szz (z, n) = Ωzz (z, n) and Sn (z, n) = Ωn (z, n)−U. Substituting this in problem (33),

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ q

[
φSn (z, n) + (1− φ)

� Sn(z,n)

0
Sn (z, n)− S′n dHn

(
S′n
) ]

v

− c (v, n)

+ µ(z)Sz (z, n) +
σ2(z)

2
Szz (z, n)− ρnU

s.t.

S (z, n) ≥ ϑ

Sn (z, n) ≥ 0

Integrate by parts the expected value of a vacancy conditional on meeting an employed worker

� Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)

=
[
Sn (z, n)− S′n

]
Hn
(
S′n
) ∣∣∣∣Sn(z,n)

0
+

� Sn(z,n)

0
Hn
(
S′n
)

dS′n

= [Sn (z, n)− Sn (z, n)] Hn (Sn (z, n))

− [Sn (z, n)− 0] Hn (0) +
� Sn(z,n)

0
Hn
(
S′n
)

dS′n

The second term on the second line is equal to zero since the constraint on the firms’ problem Sn (z, n) ≥ 0

implies that the distribution of marginal surpluses at other firms must also be zero at zero

� Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)
=

� Sn(z,n)

0
Hn
(
S′n
)

dS′n
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Recall that we definedH (x) as the integral of the cdf Hn: H (x) =
� x

0 Hn (u) du

� Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)
= H (Sn (z, n))

Substituting this into the Bellman equation

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ q [φSn (z, n) + (1− φ)H (Sn (z, n))] v

− c (v, n)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

s.t.

S (z, n) ≥ 0

Sn (z, n) ≥ 0

We assume that the vacancy cost satisfies c (v, n) = c
( v

n

)
v, where c is iso-elastic with elasticity γ.

Define the functionH (x) byH (x) = q [φx + (1− φ)H (x)]. Substituting this into problem (33)

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ H (Sn (z, n)) v− c (v, n)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

Since c (v/n) is iso-elastic in (v/n), cv (v, n) = (γ + 1) c
( v

n

)
.63 Along with the first order condition

cv (v, n) = H (Sn (z, n)), this implies

c (v, n) = c
( v

n

)
v =

1
γ + 1

cv (v, n) v =
1

γ + 1
H (Sn (z, n)) v

Therefore the total value of vacancy posting is

H (Sn (z, n)) v− c (v, n) =
γ

γ + 1
H (Sn (z, n)) v

H (Sn (z, n)) v− c (v, n) =
γ

γ + 1
H (Sn (z, n))

( v
n

)
n
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cv = c′
v
n
+ c =

(
c′

c
v
n
+ 1
)

c = (γ + 1) c
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Letting c
( v

n

)
= κ

1+γ

( v
n

)γ and using c
( v

n

)
= 1

γ+1H (Sn (z, n)) then

v
n
= κ−1/γH (Sn (z, n))

1
γ

and

H (Sn (z, n)) v− c (v, n) =
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ n

Substituting this into the Bellman equation

ρS (z, n) = y (z, n)− δnSn (z, n)

+
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ n

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

Collecting terms and recognizing that ρU = b,

ρS (z, n) = y (z, n)− bn (34)

+

[
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ

Sn (z, n)
− δ

]
Sn (z, n) n

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)

subject to

S(z, n) ≥ 0

Sn(z, n) ≥ 0

H (Sn (z, n)) = q [φSn (z, n) + (1− φ)H (Sn (z, n))]

H (Sn (z, n)) =

� Sn(z,n)

0
Hn (s) ds

F.1 Algorithm

The algorithm consists of three steps, implemented in MATLAB called from master file MAIN.m.

Step 0: Construct an initial guess. Start by constructing a nz× nn grid for log productivity and log size.

Let π = y(z, n)− bn denote the stacked (nz ∗ nn)× 1 vector of flow payoffs on this grid. Guess an initial

surplus S0 on this grid (a (nz ∗ nn)× 1 column vector); a distribution of firms over productivity and size

h0 (a (nz ∗ nn)× 1 column vector); aggregate finding rates q0 and λ0; and an efficiency-weighted share of
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unemployed searchers, θ0. Construct marginal surplus. Construct exit regions, separation regions and

the vacancy policy. File InitialGuess.m does this.

Step I: Iterate to convergence the coalition’s problem for given aggregate states. For t ≥ 1, given

qt−1, θt−1, ht−1 and St−1, solve the coalition’s problem to update the coalition value to St. The solution

to the coalition’s surplus function is obtained in an inner iteration τ. Denote by St,τ the surplus in outer

iteration t during inner iteration τ, initiated with St,0 = St; Tn(z, n) a (nz ∗ nn)× (nz ∗ nn) matrix such that

St,τ
n = Tn(z, n)St,τ, where St,τ

n is the stacked (nz ∗ nn)× 1 vector of derivatives of S w.r.t. n during outer

iteration t and inner iteration τ; Tz a (nz ∗ nn)× (nz ∗ nn) matrix such that St,τ
z = TzSt,τ, where St,τ

z is the

stacked (nz ∗ nn)× 1 vector of derivatives of S w.r.t. z during outer iteration t and inner iteration τ; and

Tzz a (nz ∗ nn)× (nz ∗ nn) matrix such that St,τ
zz = TzzSt,τ, where St,τ

zz is the stacked (nz ∗ nn)× 1 vector of

second derivatives of S w.r.t. z during outer iteration t and inner iteration τ. Note that the matrix Tn(z, n)

depends on (z, n) in the sense that the approximation is done either forward or backward depending on

the endogenous drift for n at (z, n) (note that the drift of and innovations to z are independent of (z, n)).

Within each outer iteration t, we iteratively update St−1,τ for τ ≥ 1 following equation (34) based on(ρ +
1
∆

)
1−

γκ
− 1

γ

γ + 1

H
(

St−1,τ−1
n

) γ+1
γ

St−1,τ−1
n

− δ1

 . ∗ Tn (z, n)− µTz −
σ2

2
Tzz

 St−1,τ = π +
1
∆

St−1,τ−1

where ∆ is the step size, .∗ denotes the element-by-element product, and H
(

St−1,τ−1
n

) γ+1
γ

/St−1,τ−1
n is

a (nz ∗ nn) × (nz ∗ nn) matrix constructed using the previous iteration’s derivative of S stacked (nz ∗

nn) times in the column dimension. The step size cannot be too large for the problem to converge.

These iterations are performed by iterating on τ until convergence by file IndividualBehavior.m, and

the solution is assigned as the updated St. We also obtain from the converged solution the updated

separation, exit and a vacancy policies.

Step II: Iterate to convergence the aggregate states for given individual behavior. Given updated

individual behavior in outer iteration t, obtain through iteration in an inner loop τ the distribution of

firms ht, the aggregate meeting rates qt and λt, the share of unemployed searchers θt, the distribution

of workers over marginal surplus H t
n, and the distribution of vacancies over marginal surplus H t

v. File

AggregateBehavior.m proceeds to do this in four steps.

Initiate each aggregate object with the previous outer iteration solution, xt−1,0 = xt−1. Then:

Step II-a. Update the distribution of workers over marginal surplus to H t−1,τ
n given a distribution of

firms ht−1,τ−1 and marginal surplus St
n, where the latter was obtained in Step I above. This is done by
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file CdfG.m.

Step II-b. Update the distribution of vacancies over marginal surplus H t−1,τ
v given a distribution of

firms ht−1,τ−1, the vacancy policy vt and the ranking of firms in marginal surplus space. This is done by

file CdfF.m.

Step II-c. Update the finding rates qt−1,τ, λt−1,τ and θt−1,τ that is consistent with the vacancy policy vt

and the distribution of firms ht−1,τ−1. This is done by file HazardRates.m.

Step II-d. Given H t−1,τ
n , H t−1,τ

v , qt−1,τ, λt−1,τ and θt−1,τ, update the distribution of firms ht−1,τ follow-

ing the Kolmogorov forward equation in steady-state. This is executed by file Distribution.m.

Iterate over the four sub-steps Step II-a–Step II-d until convergence and assign the updated aggregate

states qt, λt, θt and ht. We subsequently return to step Step I and iterate on step Step I–Step II until both

the surplus function and the aggregate states have converged.

F.2 Estimation

The criterion function that we minimize is highly-dimensional and potentially has many local minima.

Furthermore, the equilibrium does not exist for some regions of the parameter space. For example, if

the drift in productivity is not sufficiently negative, there is no ergodic distribution for productivity.

For these reasons, using a sequential hill-climbing optimizer that updates its initial guess sequentially

through a gradient-based method is prohibitive. Our solution is to use an algorithm that we can easily

parallelize, that efficiently explores the parameter space, and for which we can ignore cases with no

equilibrium.

We set up a hyper-cube in the parameter space and then initialize a Sobol sequence to explore it.

A Sobol sequence is a quasi-random low-discrepancy sequence that maintains a maximum dispersion

in each dimension and far outperforms standard random number generators. We then partition the

sequence and submit each partition to a separate CPU on a high performance computer (HPC). From

each evaluation of the parameter hyper-cube, we save the vector of model moments. We then collect

them, splice them all together, and choose the one that minimizes the criterion function. Starting with

wide bounds on the parameters, we run this procedure a number of times, shrinking the hyper-cube step

by step until we achieve the global minimum.

Compared to standard optimizers, this procedure has the advantage that, as a byproduct of the esti-

mation, we can learn a lot about model identification. From an optimizer one may retrieve the moments

of the model only along the path of the parameter vector chosen by the algorithm. In our case, we retrieve

tens of thousands of evaluations, knowing that the low-discrepancy property of the Sobol sequence im-

plies that for an interval of any one parameter, the remaining parameters are drawn uniformly. Plotting
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each single moment against parameters therefore shows the effect of a parameter on a certain moment,

conditional on local draws of all other parameters.
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