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1 Introduction

The defining feature of business cycles is the comovement of production across different

sectors of the economy. However, recent work has shown that the degree of sectoral co-

movement has fallen since the early 1980s, suggesting that sector-specific shocks have be-

come more volatile relative to aggregate shocks.1 Of course, a large literature studies how

the input-output network of intermediate goods propagates such sector-specific shocks to

macroeconomic aggregates. But given the central role of investment in business cycle fluc-

tuations, our goal in this paper is to understand the role of the investment network — the

distribution of investment production and purchases across sectors — in propagating these

sector-specific shocks and therefore understanding the changing nature of business cycles

since the early 1980s.

We argue that the investment network is an important propagation mechanism for un-

derstanding business cycle fluctuations. We make this argument in three main steps. First,

we measure the investment network in the data and show that investment production is

dominated by a small number of investment hubs which are substantially more cyclical than

other sectors. Second, we embed our measured investment network into a multisector real

business cycle model and find that sector-specific shocks to investment hubs and their key

intermediates suppliers have large effects on aggregate employment, driving down labor pro-

ductivity. Third, we measure the realized time series of sector-level shocks in the data, feed

them into our model, and show that shocks to the hubs and their key suppliers account for a

large and increasing share of aggregate fluctuations over time. This fact allows the model to

generate the declining cyclicality of labor productivity and other changes in business cycle

patterns since the early 1980s — despite the fact that the model has flexible prices and

frictionless labor adjustment.

The first step in our analysis is to measure the investment network, which we define

as the amount of investment goods that are produced in sector i and subsequently sold to

sector j for each pair of sectors (i, j) in the economy in any given year t. While the BEA has

released this information in its capital flows tables, those tables are only available for a small
1See, for example, Foerster, Sarte and Watson (2011) or Garin, Pries and Sims (2018).
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subset of years, do not include the majority of intellectual property, and are not consistently

coded across time. We therefore perform our own measurement of the investment network

building on disaggregated asset-level data for each sector. Our network covers a 37-sector

disaggregation of the entire private nonfarm economy, is available each year between 1947-

2018, incorporates intellectual property, and is consistently coded over time. For most of our

analysis in this paper, we average the network over time and refer to the averaged network

as “the” investment network. We have constructed alternative investment networks which

incorporate the agriculture and government sectors, separate equipment, structures, and

intellectual property products, and make other adjustments that may be of interest to other

researchers. We have also constructed the network of capital rental services across sectors

consistent with the national accounting procedure suggested by Barro (2019).

Our measured investment network is extremely sparse: four investment hubs – construc-

tion, machinery manufacturing, motor vehicles manufacturing, and professional/technical

services – produce nearly 70% of total investment even though they only account for 15%

of value added, employment, or intermediates production. Production and employment in

these hubs are more volatile, more correlated with aggregates, and more strongly lead the

aggregate cycle than in non-hub sectors, consistent with their central role in our model.

The second step of our analysis is to incorporate this measured investment network into

a version of the multisector real business cycle framework from Horvath (2000). Each sector

in our model produces gross output using capital, labor, and a bundle of intermediate goods

consisting of other sectors’ output; this bundle is computed by a Cobb-Douglas aggregator

which characterizes the intermediates input-output network. Each sector also accumulates

new capital using another Cobb-Douglas aggregator of investment goods, which characterizes

our investment network. While other studies have also employed this basic model structure,

we discipline it with our new measurement of the investment network, explicitly study the

network’s role in propagating sector-specific shocks onto employment, and show that it quan-

titatively accounts for the declining cyclicality of labor productivity and other changes in

business cycle patterns over time.

Our main new result from this model is that shocks to investment hubs and their key

suppliers generate large changes in aggregate employment while shocks to other sectors do
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not. The key mechanism is that a sector-specific shock only affects employment if it increases

the production of investment goods in the economy; shocks that only affect the production of

consumption goods generate offsetting income and substitution effects, leaving employment

unchanged. We show that the importance of each sector in producing investment goods can be

summarized using the Leontief-adjusted investment network, which accounts for both directly

producing investment as well as indirectly supplying intermediates to investment producers.

Shocks to hubs and their key suppliers in this network act as aggregate investment supply

shocks, generating a large increase in employment.2 In contrast, shocks to other sectors act

as idiosyncratic investment demand shocks, which do not generate large changes in aggregate

employment.

Our third step is to quantify the importance of this mechanism in explaining the postwar

U.S. time series by feeding the realizations of sector-level productivity shocks into a calibrated

version of the model. Since the early 1980s, the covariance of productivity shocks across

sectors has fallen by much more than the variance of shocks within sectors. We interpret this

fact as reflecting a decline in the volatility of aggregate shocks, which affect all sectors, relative

to the volatility of sector-specific shocks, which affect particular sectors in isolation. This

change is consistent with the decline in aggregate volatility following the Great Moderation

(see, e.g., Foerster, Sarte and Watson (2011)). In order to isolate the role of this change in

the shock process in driving our results, we hold all other parameters of the model (including

the investment network) fixed over time.

The rising importance of sector-specific shocks, when propagated through the investment

network, quantitatively generates the declining cyclicality of labor productivity and other

business cycle changes since the 1980s. The pre-1980s sample is dominated by aggregate TFP

shocks, which generate procyclical labor productivity nearly by definition. However, since

sector-specific shocks become more important after the 1980s, shocks to investment hubs and

their suppliers account for an increasing share of employment fluctuations over time. These
2Our investment hub shocks are reminiscent of the investment-specific technology shocks studied in,

for example, Greenwood, Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010). A
common problem in that literature is that investment-specific shocks generate negative comovement between
investment- and consumption-producing sectors, decreasing the aggregate effect of these shocks. Our model
generates positive comovement through the intermediate inputs channel in this Leontief-adjusted investment
network.
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shocks drive down labor productivity because they increase aggregate employment by more

than GDP, thereby generating the declining cyclicality of labor productivity. Our model also

generates the observed decline in the volatility of GDP and the increase of the volatility of

employment relative to GDP over this period.

These quantitative results are robust to a number of model extensions. First, they are

robust to allowing for trend changes in the investment network and other structural param-

eters, indicating that the rising importance of sector-specific shocks is the key driving force

behind these changes in business cycle patterns. Second, our results also hold in a second-

order approximation with CES proudction functions and preferences, which allows for richer

nonlinearities (see, e.g. Baqaee and Farhi (2019)). Third, our results are robust to various

forms of adjustment frictions in labor and capital markets.

Finally, we document two new empirical results which support the role of the investment

network in accounting for the changes in business cycle patterns since the 1980s. First, we

show that the volatility of investment relative to the volatility of GDP has substantially

increased since the 1980s, consistent with the idea that sector-specific shocks to investment

suppliers play an increasingly important role over time. Second, we show that the changes in

business cycle patterns have not occurred within individual sectors but are due to changes

in the comovement of activity across sectors. For example, labor productivity is still highly

procyclical within sector; instead, the entire decline in the cyclicality of aggregate labor pro-

ductivity is due to changes in the covariance of value added and employment across sectors.

Our model matches these changing covariance patterns due to the declining importance of

aggregate shocks and the sparseness of the investment network. In contrast, existing ex-

planations for the declining cyclicality of labor productivity largely abstract from sectoral

heterogeneity and therefore do not speak to this empirical result.

Related Literature Our paper builds on three lines of existing research. The first uses the

multisector real business cycle model to study how connections between sectors propagate

sector-specific shocks to macroeconomic aggregates. Our model’s basic structure builds on

Horvath (2000), as do many others in the literature (see, for example, Foerster, Sarte and

Watson (2011) and Atalay (2017)). We make four main contributions to this literature. First,
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we focus on the investment network rather than on the input-output network of intermediate

goods. While a number of other papers also include an investment network, they do not

analyze its role in propagating sector-specific shocks.3 Thus, our paper is the first to analyze

the particular role of the investment network in propagating business cycle fluctuations.

Second, our new measurement of the investment network provides annual time series of

the network, includes all of intellectual property, and is consistently coded over the entire

postwar sample.4 Third, we study the joint dynamics of GDP and aggregate employment,

while most other papers focus on GDP. Fourth, we show that shocks to investment hubs and

their key suppliers decrease labor productivity and that their rising importance over time

accounts for the declining cyclicality of labor productivity.

The second line of related research is the fast-growing networks literature which studies

how richer input-output networks in intermediate goods propagate idiosyncratic shocks to

macroeconomic aggregates (see, for example, Acemoglu et al. (2012), Acemoglu, Ozdaglar

and Tahbaz-Salehi (2017), Baqaee and Farhi (2019), Baqaee and Farhi (2020), Bigio and

La’o (2020), or the survey in Carvalho and Tahbaz-Salehi (2019)). In order to allow for

rich network structures, these papers use static models which abstract from investment. A

natural benchmark in these models is a strong version of Hulten’s theorem: under Cobb-

Douglas preferences/production and competitive/ frictionless markets, the effect of a sector-

specific shock on real GDP is globally equal to the sector’s Domar weight. The literature

has shown how deviations from Cobb-Douglas production (e.g. Baqaee and Farhi (2019)) or

from competitive/frictionless markets (e.g. Baqaee and Farhi (2020) or Bigio and La’o (2020))

can break this version of Hulten’s theorem. We show that the presence of investment also

breaks Hulten’s theorem because the capital accumulation technology is not Cobb-Douglas.
3In a recent complementary paper, Foerster et al. (2020) use the same model structure to study how

changes in the trend growth of sector-level productivity affect aggregate trend growth (rather than studying
deviations from trend, as in our paper). Quantitatively, they find that capital accumulation in investment-
producing sectors plays an important role in aggregating sector-specific trends to the aggregate growth
rate, complementary with the role of investment hubs in propagating shocks which we study in this paper.
However, they take employment – our main outcome of interest – as exogenous. In addition, like other papers
in this literature, they measure the investment network using the 1997 capital flows table (see Footnote 4).

4Foerster, Sarte and Watson (2011) and Atalay (2017) calibrate the investment network using the BEA
capital flows data from 1997, which excludes the majority of intellectual property. They are also forced to
make an adjustment to ensure their model is invertible but which artificially reduces the importance of the
concentration of the network. We do not require any ad-hoc adjustment to our model.
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Furthermore, we characterize how the investment network interacts with the input-output

network using our Leontief-adjusted investment network.

The final line of related literature studies how business cycle patterns have changed since

the 1980s and whether the real business cycle framework can explain those patterns. A large

subset of this literature focuses on the declining cyclicality of labor productivity in particular

and has suggested roughly three sets of explanations. The first is that the aggregate shock

process has changed over time (see, for example, Galí and Gambetti (2009) or Barnichon

(2010)). The second set is that firms and/or workers can now more easily adjust labor

inputs in response to shocks (see, for example, Galí and Van Rens (2020), Koenders and

Rogerson (2005), Berger (2012), or Bachmann (2012)). The third is that there has been no

actual change in the cyclicality of labor productivity, but that mismeasurement of those

objects has changed (see, for exmaple, Fernald and Wang (2016), McGrattan and Prescott

(2014), or McGrattan (2020)). This literature typically constructs models without sectoral

heterogeneity and therefore cannot speak to our empirical finding that the entire decline in

the cyclicality of labor productivity is due to changes in the covariance of activity across

sectors.5 More generally, we show that the investment network can reconcile a real business

cycle framework with key features of business cycles since the 1980s.

Road Map Our paper is organized as follows. We measure the empirical investment net-

work and document the cyclical behavior of investment hubs in Section 2. We describe our

version of the multisector real business cycle model and calibrate it to match the measured

investment network in Section 3. In Section 4, we show that shocks to investment hubs

and their suppliers have large effects on aggregate employment, driving down labor pro-

ductivity, while shocks to other sectors have small aggregate effects. In Section 5, we feed

the realized time series of sector-level productivity into the model and show that the rising
5We are aware of one paper which studies the declining cyclicality of labor productivity in a model with

sectoral heterogeneity: Garin, Pries and Sims (2018). We view their paper as complementary to our paper;
we both study the rise of sector-specific shocks, but focus on different mechanisms which propagate those
shocks to the aggregate. In Garin, Pries and Sims (2018)’s two sector model, a negative sector-specific shock
induces costly worker reallocation to the other sector, so employment falls by more than value added and
labor productivity increases. This mechanism implies that employment in the two sectors comoves negatively,
especially post-1984; however, in the data, employment comovement is positive and stable pre- and post-1984.
Hence, to our knowledge, our model is the only explanation for the declining cyclicality of labor productivity
that is consistent with the empirical comovement of employment across sectors.
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importance of sector-specific shocks generates the declining cyclicality of labor productivity

since the 1980s. We provide empirical support for this mechanism in Section 6, which shows

that those aggregate changes have not occurred within sector but are driven by changes in

sectoral comovement (consistent with our model). Section 7 concludes.

2 Descriptive Evidence on the Investment Network

We combine three sources of sector-level data for our empirical work. We construct the

investment network using the BEA Fixed Assets and Input-Output databases for a sample

of 37 private non-farm sectors from 1947-2018 (our construction of the investment network

is described below). We use the BEA GDP-by-Industry database to obtain value added and

employment for the same set of sectors; however, since this data only records employment at

our level of disaggregation starting in 1977, we extend the data back to 1948 using historical

supplements to the data. Our combined dataset contains annual observations of value added,

investment, and employment for the 1948 - 2018 period. Appendix A.1 contains details about

the construction of our dataset.

Table 1 lists the sectors available in our dataset. The main advantage of this dataset is

that it covers the entire postwar sample, which is necessary to analyze changes in business

cycle patterns over time. In addition, the partition of sectors provides fairly detailed coverage

of the private nonfarm economy. We cannot disaggregate the sectors much more finely in a

consistently-defined way over time and retain coverage of the entire postwar time period.

2.1 Empirical Investment Network

We define the investment network in year t as the share of the total investment expenditure

of a given sector j that is purchased from another sector i for each pair of sectors (i, j) in

the economy. While the BEA capital flows tables provides information about these pairwise

flows, those tables have three key shortcomings for our analysis. First, the BEA tables are

only available for a handful of years, most recently 1997. Second, the sectoral disaggregation

used in the various BEA tables is not consistently defined over time. Finally, and most

importantly, the BEA tables do not include all of intellectual property; in fact, the 1997
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Table 1
The 37 Sectors Used in Our Analysis

Mining Utilities
Construction Wood products
Non-metallic minerals Primary metals
Fabricated metals Machinery
Computer and electronic manufacturing Electrical equipment manufacturing
Motor vehicles manufacturing Other transportation equipment
Furniture & related manufacturing Misc. manufacturing
Food & beverage manufacturing Textile manufacturing
Apparel manufacturing Paper manufacturing
Printing products manufacturing Petroleum & coal manufacturing
Chemical manufacturing Plastics manufacturing
Wholesale trade Retail trade
Transportation & warehousing Information
Finance & insurance Real estate and rental services
Professional & technical services Management of companies and enterprises
Administrative & waste management services Educational services
Health care & social assistance Arts & entertainment services
Accommodation Food services
Other services

Notes: list of sectors used in our empirical analysis. Sectors are classified according to the NAICS-based
BEA codes. See Appendix A.1 for details of the data construction.

table is the only one which records any intellectual property at all, but even that only

records software (which was a third of all intellectual property investment in that year).

We therefore construct our own measurement of the investment network which overcomes

these issues. Our construction is based on disaggregated asset-level data which records the

purchases of 33 types of capital goods for each sector in each year. We then use a “bridge

file” to allocate the production of these 33 types of capital goods to a mix of producing

sectors. Appendix A.2 describes our procedure for estimating this bridge file, which follows

BEA practice as closely as possible.6

To our knowledge, our investment network is the only version of the capital flows tables

that is available in every year 1948-2018, is consistently defined over that period, and is

consistent with modern national accounting practices regarding intellectual property. We
6Our measured investment network includes imports from outside of the U.S. and therefore accounts for

the fact that the share of imported capital has increased over time (see House, Mocanu and Shapiro (2017)).
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also provide a number of alternative tables which may be of interest to other researchers

(as well as the asset-level bridge files used to construct the network). First, we provide an

investment network which also includes agriculture, federal government, and state/local gov-

ernment sectors. Second, we provide an investment network that adds an ad-hoc adjustment

for estimates of maintenance investment following Foerster, Sarte and Watson (2011) and

Atalay (2017).7 Finally, we provide analogous tables for capital rental services, which may be

useful in calibrating static models with capital (but without investment) or in constructing

a measure of national income along the lines of Barro (2019).8

Investment Network is Highly Concentrated Figure 1 plots a heatmap of our invest-

ment network averaged over time. Four sectors supply the majority of investment goods to

the rest of the economy: construction, which supplies the majority of structures; machinery

manufacturing and motor vehicle manufacturing, which supply the majority of equipment;

and professional/technical services, which supplies a majority of intellectual property. We

refer to these four sectors as investment hubs. Together, these hubs produce approximately

70% of the investment goods produced in the economy, even though they only account for

approximately 15% of value added produced, intermediate goods produced, or workers em-

ployed. The fact that this small number of hubs produce the majority of investment indicates

that the investment network is highly concentrated; in fact, Appendix A shows that the in-

vestment network is two to three times more concentrated than the intermediates network

according the skewness of their eigenvalue centralities or weighted outdegrees.
7Foerster, Sarte and Watson (2011) and Atalay (2017) add an adjustment to the investment network

implied by the 1997 BEA capital flows table to ensure their models are invertible (though Horvath (2000)
does not). This adjustment is meant to account for maintenance investment that is done out of own-sector
output. While there is evidence that maintenance investment are sizable (see McGrattan and Schmitz Jr
(1999)), there are not estimates of which sectors produce this maintenance investment and maintenance
investment is not counted as part of GDP in national accounting anyway. Therefore, we prefer not to add an
artificial adjustment for maintenance investment in our baseline analysis; however, Appendix G shows that
our model results are robust to adding this correction.

8Barro (2019)’s measure of national income satisfies the natural requirement that the present value of
national income equals the present value of national consumption. GDP does not satisfy this requirement
because investment is counted once when it is produced and then again when the resulting capital is used
in production. Barro (2019) suggests measuring national income as the sum of non-capital income plus the
net rental services on the current capital stock because the present value of these rental services equals the
present value of the capital used in production. Our net capital rental services network provides the sectoral
flows of the capital income portion of Barro (2019)’s measure of national income.
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Figure 1: Heatmap of Empirical Investment Network
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Notes: heatmap of empirical investment network. Entry (i, j) computes share of total investment
expenditure in sector j that is purchased from sector i, averaged over the 1947 - 2018 sample.

Appendix A.3 analyzes how the investment network has changed over time. The primary

change has been the rising importance of professional/technical services as an investment

supplier, consistent with the rising importance of intellectual property products. While these

changes are important for long-run trends, we focus on the average investment network for

our business cycle analysis in this paper.

Investment Hubs are Highly Cyclical Table 2 shows that employment and real value

added produced at investment hubs are more volatile over the business cycle than those at

non-hubs. We measure business cycle volatility using log-first differences and the HP filter.

Under both transformations of the data, the investment hubs are approximately 1.5 - 2 times

as volatile as non-hub sectors in both subsamples.9 For the rest of the paper, we will use

log-first differences to analyze business cycle fluctuations in order to avoid the issues with

two-sided filters explained in e.g. Hamilton (2018). However, all our results are robust to

using the HP filter, and we present those results from time to time to help compare our
9We compute these statistics as the unweighted average across sectors in order to focus on the volatility

of the average sector. Of course, aggregate value added and employment, which we analyze in Section 5, will
also depend on the share of activity in the various sectors.
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Table 2
Volatility of Activity at Investment Hubs

Investment Hubs Non-Hubs
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yst) 9.13% 9.18% 6.63% 5.51%
σ(∆lst) 6.14% 4.83% 3.81% 3.14%

σ(yhpst ) 5.64% 6.29% 3.91% 3.40%
σ(lhpst ) 4.08% 3.21% 2.29% 1.91%

Notes: standard deviation of sector-level value added or employment. yst is logged real value added in
sector s and lst is logged employment in sector s. σ(∆yst) and σ(∆lst) refer to the standard deviation of
the first-differences of these variables, while σ(yhpst ) and σ(lhpst ) refer to the standard deviation of the
HP-filtered variables with smoothing parameter 6.25 for annual data. “Investment hubs” computes the
unweighted average of these statistics over s = construction, machinery manufacturing, motor vehicles
manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the
remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984”
performs this analysis in the 1984 - 2018 subsample. To avoid endpoint bias from the HP filter, we omit the
first and last three years of data of the entire sample in computing the HP-filtered statistics.

Figure 2: Correlogram of Sector-level Value Added with Aggregate Employment
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Notes: correlation of value added growth in sector s in year t+ h, ∆yst+h, with aggregate employment
growth in year t, ∆lt. Both yst+h and lt are logged and ∆ denotes the first-difference operator. The x-axis
varies the lead/lag h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average of these
statistics over s = construction, machinery manufacturing, motor vehicles manufacturing, and
professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors.
“Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in
the 1984 - 2018 subsample.

results to previous studies.

Figure 2 shows that investment hubs are also more correlated with the aggregate business

cycle. We compute the correlogram of sector-level real value added growth in year t+h with
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aggregate employment growth in year t.10 Investment hubs’ value added is more correlated

with aggregate employment at most horizons and the difference is larger in the post-1984

subsample, consistent with the idea that shocks to investment hubs have become more im-

portant for aggregate fluctuations over time. In addition, investment hubs more strongly lead

the aggregate cycle than do non-hubs.11

3 Model and Calibration

We now develop and calibrate a version of the multisector real business cycle model in order

to match our empirical investment network.

3.1 Model Description, Equilibrium, and Solution

The specification of the model is standard and follows Horvath (2000).

Environment Time is discrete and infinite. There are a finite number of sectors indexed

by j = {1, ..., N}, where N = 37 as in our data. Each sector produces gross output using

the production function

Qjt = Ajt

(
K

αj

jt L
1−αj

jt

)θj
M

1−θj
jt (1)

where Qjt is output, Ajt is total factor productivity, Kjt is capital, Ljt is labor, Mjt is a

bundle of intermediate goods, and αj and θj are parameters. Total factor productivity, Ajt,

follows the AR(1) process

logAjt+1 = ρj logAjt + εjt+1, (2)

where ρj is the persistence and εjt are innovations (which can be correlated across sectors).
10We use aggregate employment growth as our proxy for the aggregate cycle because our model predicts

that shocks at investment hubs have a stronger impact on aggregate employment than GDP. Nevertheless,
Appendix B shows that similar results hold when using GDP to proxy for the aggregate cycle.

11Appendix B shows that non-hub manufacturing sectors’ behavior is more similar to the non-hub sectors
than they are to the investment hubs. This result allays the concern that our results are driven by the
fact that two of our four investment hubs are manufacturing sectors, and that manufacturing may be more
cyclical than other sectors for reasons outside of our model. Furthermore, Appendix F shows that the extent
to which manufacturing sectors differ from other non-hub sectors is largely explained by their role as suppliers
of intermediate goods to the investment hubs, consistent with our model.
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The bundle of intermediate inputs Mjt consists of inputs produced from other sectors’

output, aggregated through the economy’s intermediates input-output network:

Mjt = ΠN
i=1M

γij
ijt , where

N∑
i=1

γij = 1, (3)

where Mijt is the amount of sector i’s output used by sector j and γij are parameters. Con-

stant returns to scale in intermediate bundling implies that, within sector j, the parameters

γij sum to one. Each period, each sector j observes the TFP shock Ajt, uses its pre-existing

stock of capital Kjt, hires labor Ljt from a competitive labor market, and purchases inter-

mediates Mijt in competitive markets in order to produce gross output Qjt.

After production, each sector accumulates capital for the next period using a bundle of

inputs that are aggregated through the economy’s investment network. The capital accumu-

lation technology is

Kjt+1 = (1− δj)Kjt + Ijt (4)

where δj is the depreciation rate of capital in sector j and Ijt is a bundle of investment goods.

The bundle is given by

Ijt = ΠN
i=1I

λij

ijt , where
N∑
i=1

λij = 1, (5)

where Iijt is the amount of sector i’s output used by sector j and λij are parameters. Invest-

ment hub sectors i have high λij for many purchasing sectors j. We denote the investment

network matrix as Λ = [λij]ij.

There is a representative household which owns all the firms in the economy and supplies

labor to those firms. The household’s preferences are represented by the utility function

E0

∞∑
t=0

βt

(
logCt − χ

L
1+1/η
t

1 + 1/η

)
, where Ct = ΠN

j=1C
ξj
jt and

N∑
j=1

ξj = 1 (6)

where β is the discount factor, χ controls the disutility of labor supply, η is the Frisch

elasticity of labor supply, and ξj are parameters governing the importance of each sector’s

consumption good in aggregate consumption.
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Equilibrium We study the competitive equilibrium, which is efficient. Output market

clearing for sector j ensures that gross output is used for final consumption, investment, or

an intermediate in production:

Qjt = Cjt +
N∑
i=1

Ijit +
N∑
i=1

Mjit. (7)

Labor market clearing ensures that aggregate labor demand equals labor supply:
∑N

j=1 Ljt =

Lt. We denote the price of sector j’s output by pjt, the rental rate on sector j’s capital by

rjt, and the wage rate by Wt (which is common across sectors since labor is perfectly substi-

tutable). We take the price index of the household’s consumption bundle as the numeraire.

See Appendix C for more details on the equilibrium conditions.

Solution Method We solve the model by log-linearization. A key advantage of lineariza-

tion is that it is efficient enough to handle a model of this size (with nearly one hundred

state variables). In addition, the linear solution features certainty equivalence, so that the

covariance matrix of these innovations does not affect the decision rules. This property allows

us to simply feed the empirical time series of realized shocks into the decision rules without

needing to estimate how the entire covariance structure of shocks has changed over time.

However, linearization implies that we do not capture potential nonlinearities, such as size-

or state- dependent responses to shocks. We show that our results are robust to allowing for

nonlinearities in Appendix G.

3.2 Remarks on Simplifying Assumptions

We have made a number of simplifying assumptions in our model specification. For example,

Cobb-Douglas preferences impose that the elasticity of substitution across different sectors’

output is one, while Cobb-Douglas production technologies impose that the elasticity between

capital, labor, and intermediates are also one.12 We have also assumed that there are no
12While purposely simple, we nevertheless view these assumptions as a useful benchmark, especially given

estimates of elasticities of substitution from the data. On the preference side, Oberfield and Raval (2020)
estimate the elasticity of substitution between finely disaggregated manufacturing sectors to be between 0.8
and 1.1. On the production side, most empirical estimates of the elasticity between capital and labor are less
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adjustment frictions to capital or labor, either across sectors or over time (though we will

add a simple capital reallocation friction in our quantitative analysis in Section 5).

As will become clear in Section 4, these stark assumptions allow us to clearly explain

the contribution of the investment network in propagating sector-specific shocks. In fact,

without investment, employment is constant in response to shocks and the effect of these

shocks on real GDP is given by the sector’s Domar weight. Hence, our model is a useful

benchmark for understanding the role of investment — and the investment network — in

driving employment fluctuations. Nevertheless, we show in Appendix G that our main results

are robust to relaxing these simplifying assumptions.

As discussed in the introduction, we also assume that all structural parameters of the

model are constant over time, so that the only force which generates changing business cycle

patterns is changes in the process generating sector-level shocks. We also show in Appendix G

that our results are robust to allowing these other structural parameters to change over time

as well. We interpret this finding as indicating that changes in these other parameters are of

secondary importance for understanding the aggregate business cycle fluctuations that we

study (though they may be important for understanding long-run changes or other business

cycle features).

3.3 Calibration

We calibrate the structural parameters of the model so that the model’s steady state matches

key empirical targets averaged over the postwar sample. A model period is one year. We

identify the N = 37 sectors in our model with those in our empirical work, and therefore

use the BEA input-output database to infer the parameters of the production function. The

share of primary inputs in production θj is given by the ratio of sector j’s value added

to its gross output, averaged over time. The labor share 1 − αj is given by average labor

compensation (adjusted for taxes and self employment) as a share of total value added. See

Appendix D for the calibrated values of these parameters.

The parameters of the intermediates input-output network γij are given by sector j’s

than one, but some estimates are greater than one. However, Atalay (2017) argues intermediates are much
more complementary with capital and labor than implied by Cobb-Douglas.
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Figure 3: Heatmap of Intermediates Network
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Notes: heatmap of intermediates input-output network γij constructed as described in Appendix D. The
(i, j) entry of each network corresponds to parameter γij , i.e. the share of intermediate expenditures by
sector j on goods produced by sector i averaged across the years 1947-2018.

expenditure on intermediates from sector i as a share of its total intermediates expenditure,

averaged over the years 1947-2018. Figure 3 plots the heatmap of our calibrated intermediates

network. It has a strong diagonal element, capturing firms’ purchases of intermediates from

within their own sector, but is also richly populated off the diagonal, capturing intermediates

purchased from other sectors.13

The parameters of the investment network, λij, are equal to the share of sector j’s total

investment expenditure that is purchased from sector i, averaged over time – already plotted

in Figure 1. Capital depreciation rates δj are the implied depreciation rates for each sector,

based on average annual depreciation of each capital good and the average amount of each

type of good used in sector j.

The consumption shares ξj are given by the average consumption expenditure on sector j
13Our measured intermediates and investment input-output networks account for goods that are imported

from sectors outside the U.S. Therefore, our model’s decision rules for factor demand correctly account for
trade with the result of the world; however, the model counterfactually assumes that all factor supply is
domestically produced. While extending our model to an open economy framework would be an interesting
exercise, it is outside the scope of this paper. Our measured productivity shocks, discussed in Section 5, are
derived from purely domestic sources, so the exogenous shocks fed into our model are not driven by changes
in foreign demand.
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output as a fraction of total consumption expenditure. We set the discount factor to β = 0.96.

We normalize the disutility of labor parameter to χ = 1. We take the Frisch elasticity η → ∞

to capture indivisible labor at the individual level, as in Rogerson (1988), since we analyze

fluctuations in employment rather than hours.

4 Role of Investment Network in Propagating Sector-

Specific Shocks

Before turning to our quantitative analysis, we explain the theoretical mechanisms through

which sector-specific shocks affect employment, GDP, and labor productivity.

4.1 Aggregation of Sector-Level Outcomes

Our first step is to define real GDP and aggregate employment in our multisector model.

While it is straightforward to compute aggregate employment Lt =
∑N

j=1 Ljt, it is more

difficult to compute real GDP because relative prices change over time. We follow national

accounting practices and define real GDP using a Divisia index. The Divisia index begins

with the definition of nominal GDP P Y
t Yt =

∑N
j=1 p

Y
jtYjt, where P Y

t and pYjt are price indices

for aggregate and sector-level value added and Yjt is sector-level real value added (defined

in Appendix C). The Divisia index then computes real GDP growth as the log-change in

nominal value added, holding prices fixed:14

d log Yt =
N∑
j=1

(
pYjtYjt

P Y
t Yt

)
d log Yjt. (8)

In our model, sector-level value added is equal to payments to the primary inputs because

there are no economic profits. Appendix C shows that these payments depend only on TFP

and the primary inputs themselves: d log Yjt =
1
θj
d logAjt + αjd logKjt + (1 − αj)d logLjt.

Plugging this expression into the Divisia index (8) implies the following proposition:
14The Divisia index is defined in continuous time while our model is in discrete time. For the purposes

of simplifying exposition here, we do not take a stance on the exact discrete time approximation to the
continuous time Divisia index used, but in our quantitative analysis, we use a Tornqvist index.
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Proposition 1. Up to first order, the impact effect of a sector-specific shock Ait on real

GDP Yt is determined by

d log Yt =
N∑
j=1

(
pjQj

P Y Y

)∗

d logAjt︸ ︷︷ ︸
≡d log TFPt

+(1− α∗)
N∑
j=1

(
Lj

L

)∗

d logLjt︸ ︷︷ ︸
≡d logLt

. (9)

where
(

pjQj

PY Y

)∗
is the ratio of sector j’s sales to nominal GDP in steady state (its Domar

weight),
(

Lj

L

)∗
is sector j’s employment share in steady state, and 1 − α∗ =

∑N
j=1(1 −

αj)
(

pYj Yj

PY Y

)∗
=
(

WL
PY Y

)∗ is the aggregate labor income share in steady state.

Proof. See Appendix E. ■

Proposition 1 shows that the effect of a sector-specific shock in some sector i, Ait, on the

Divisia index can be decomposed into the shock’s effect on aggregate TFP, d log TFPt, and

aggregate employment, d logLt (capital does not enter this expression since it is fixed upon

impact). Aggregate TFP is the sum of sector-level TFP weighted by the ratio of the sectors’

steady state Domar weights
∑N

j=1

(
pjQj

PY Y

)∗
(Hulten, 1978).15 The insight of Hulten’s theorem

is that the Domar weight is a sufficient statistic for capturing how a shock to a given sector

propagates to the other sectors through the input-output network of intermediate goods.

Since Hulten’s theorem for aggregate TFP is well understood, we will instead focus our

analysis on understanding the endogenous responses of aggregate employment. Under our

preference specification, equilibrium employment in sector j is given by

Ljt = (1− αj)θj
pjtQjt

Ct

. (10)

Employment is proportional to the household’s valuation of output pjtQjt

Ct
, which converts

gross sales into utility units by multiplying by the marginal utility of consumption.16

15In principle, the reallocation of activity across sectors may also affect aggregate TFP by changing the
distribution of Domar weights across sectors. However, Proposition 1 shows that these reallocation effects are
second order; up to first order, only the steady state Domar weights are relevant for computing aggregates.

16The expression (10) uses our assumption that the Frisch elasticity of labor supply 1
η → ∞. With a finite
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4.2 What Determines Fluctuations in Employment?

In order to understand the effect of a shock on the household’s valuation of output, and

therefore on employment, we must define two objects summarizing the intermediates network.

First, the input-output matrix summarizes the intermediates network across sectors:

Γ =


γ11(1− θ1) . . . γ1N(1− θN)

... ...

γN1(1− θ1) . . . γNN(1− θN)

 .

Second, the Leontief inverse is

L = (I − Γ)−1 = I + Γ + Γ2 + ...

As described by Carvalho and Tahbaz-Salehi (2019), the (i, j)-th element of this matrix,

ℓij, captures all the direct and indirect paths in the input-output matrix Γ through which

sector i supplies intermediate goods to sector j. The Leontief inverse is key in determining

the allocation of employment across sectors:

Proposition 2. The allocation of employment across sectors satisfies

Ljt ∝
N∑
k=1

ℓjk
pktCkt

Ct

+
N∑
k=1

ℓjk

N∑
m=1

λkm
pImtImt

Ct

. (11)

Furthermore, pktCkt

Ct
= ξk for all realizations of {Ait}Ni=1.

Proof. See Appendix E. ■

Proposition 2 shows that employment in a given sector j depends on how that sector

supplies consumption goods to the household and investment goods to other firms, either

Frisch elasticity, the expression becomes

Ljt = αjθj
pjtQjt

Ct

1

L
1/η
t

.

All of our results hold using this more general preference specification, but the expressions become more
complicated. Therefore, we prefer to use the 1

η → ∞ specification to keep this discussion as simple as possible.
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directly or indirectly through the intermediates network. The contribution to consumption

is characterized by the Leontief inverse, ℓjk, times the household’s valuation of consumption

produced by those sectors k, pktCkt

Ct
. The contribution to investment is characterized by the

Leontief inverse, ℓjk, times the contribution of those sectors k in supplying investment goods

to other sectors m through the investment network, λkm, times the household’s valuation of

investment purchased by those sectors, pImtImt

Ct
.

Due to the household’s Cobb-Douglas preferences, its valuation of consumption across

sectors is constant over time and equal to the preference parameter ξk; therefore, shocks

which only affect the household’s valuation of consumption goods do not affect employment

– regardless of the structure of the intermediates network. Because such shocks do not affect

investment, they generate generate equal-sized increases in the marginal product of labor

and in aggregate consumption. The resulting income and substitution effects on labor supply

exactly offset because our preferences are consistent with balanced growth in the aggregate.17

In contrast, the household’s valuation of investment goods pImtImt

Ct
may fluctuate over

time because investment is a dynamic problem and the capital accumulation technology is

not Cobb-Douglas.18 These fluctuations reflect the fact that investment weakens the income

effect on labor supply. Therefore, shocks affect employment in sector j only if they affect

the household’s valuation of investment goods pImtImt

Ct
in some sector m in the economy, and

sector j supplies investment goods to that sector m.
17It is fairly well-known in the one-sector RBC model that employment only responds to TFP shocks

because the household would like to produce more investment goods in order to smooth consumption over
time (see the discussion in Benhabib, Rogerson and Wright (1991), for example). Basu et al. (2013) extend
that logic to a two-sector model and show that shocks which only affect the production of consumption
goods have no effect on employment, while shocks which affect investment production have a strong effect on
employment. Our results further extend this logic to a multisector framework and show that the classification
of consumption- and investment-producing sectors interacts with the intermediates network through the
Leontief inverse.

18Appendix F shows that the linearity of the capital accumulation equation is the key departure from
Cobb-Douglas which generates employment fluctuations. In particular, we show that if the capital accumu-
lation equation is also Cobb-Douglas Kjt+1 = K

1−δj
jt I

δj
jt , then sector-level employment is constant over time

(similar to Rossi-Hansberg and Wright (2007)). In this case, the unitary elasticity of substitution implies that
investment is proportional to output, so shocks generate exactly offsetting income and substitution effects
(as they do for the household’s valuation of consumption). The linearity of the capital accumulation equation
Kjt+1 = (1 − δj)Kjt + Ijt breaks this result because flow investment becomes perfectly substitutable with
undepreciated capital in the production of new capital.
A related special case is our linear capital accumulation equation with full depreciation δj → 1. In this case,
one can view capital as an intermediate good with one period time to build. This specification also implies
constant employment because it falls within the Cobb-Douglas class.
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Figure 4: The Leontief-Adjusted Investment Network Ω
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Notes: left panel plots plots the elements of the Leontief-adjusted investment network ωij =
∑N

k=1 ℓikλkj ,
where ℓik are elements of the Leontief inverse and λkj are elements of the investment network. Right panel
plots the elements of our measured investment network λij (reproduced from Figure 1 for convenience).

Proposition 2 shows that the investment supply linkages between two sectors j and m are

determined by ωjm ≡
∑N

k=1 ℓjkλkm, which captures the role of sector j in supplying invest-

ment goods to sector m both directly through the investment network and indirectly through

the intermediates network. We call the matrix of these linkages the Leontief-adjusted invest-

ment network because it is the matrix product of the Leontief inverse with the investment

network: Ω = LΛ. The left panel of Figure 4 shows that the Leontief-adjusted investment

network is less concentrated than the raw investment network Λ (reproduced in the right

panel of the figure). This occurs because the density of the intermediates network implies

that many sectors supply intermediate goods to investment hubs. The durable manufactur-

ing sectors near the top of the heatmap – primary metals, fabricated metals, and computers

– as well as wholesale trade and transportation & warehousing are particularly important

intermediate suppliers of the investment hubs.

Since the Leontief-adjusted investment network Ω is fairly dense, shocks Ait which affect

the household’s valuation of investment throughout the sectors of the economy m will also

generate employment fluctuations in many sectors j. This result can be seen more clearly by

re-writing Proposition 2 in terms of log-deviations from steady state:

d logLjt =
N∑

m=1

ω̃jmd log

(
pImtImt

Ct

)
, (12)
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Figure 5: Elasticity of Aggregate Employment to Sectoral Shocks
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Notes: reduced-form elasticities of aggregate employment Nt to sector-specific shocks Ait. For each sector,
we simulate the model with σ(ϵit) = 1% shocks to that sector only. The bars plot the volatility of aggregate
employment σ(logNt) divided by the volatility of sector-specific TFP σ(logAit). Investment hubs are
highlighted in red.

where ω̃jm =
∑N

k=1 ℓjkλkm

(
pImIm
pjQj

)∗
is the Leontief-adjusted investment network further ad-

justed for steady state sector size and investment expenditures.

Which Shocks Generate Large Changes in Employment? Unfortunately, just as

with the one-sector RBC model, our model does not admit a closed-form solution to show ex-

actly how sector-specific shocks Ait affect the household’s valuation of investment d log
(

pImtImt

Ct

)
throughout the economy. Instead, we provide numerical results to show which sectors’ shocks

generate large changes and then use basic investment theory to explain those results.

Figure 5 shows that shocks to investment hubs and their key suppliers have large effects on

aggregate employment while shocks to other sectors do not. The figure computes a numerical

elasticity of aggregate employment with respect to a sector-specific shock Ait in each sector.19

The investment hubs have the four largest elasticities, particularly construction. The next

largest elasticities are in the key suppliers to hubs identified in the Leontief-adjusted invest-

ment network: durable manufacturing, wholesale trade, and transportation & warehousing.
19We assume that the persistence of the shocks ρj are the calibrated values from Section 5.

22



The remaining sectors have very small elasticities.

What’s Special About Investment Hubs and their Suppliers? By equation (12),

shocks to investment hubs and their suppliers have large effects on employment because

those shocks generate large changes in the household’s valuation of investment throughout

the economy (we also confirm this fact numerically in Appendix F). In order to understand

why that is the case, consider the Euler equation for investment in some sector m:

pImt

Ct

= βEt

[
αmθm

pm,t+1

Ct+1

Qm,t+1

Km,t+1

+ (1− δm)
pIm,t+1

Ct+1

]
. (13)

The marginal benefit of investment on the right-hand side of (13) is the present value of

next period’s marginal product of capital plus the value of undepreciated capital, relative

to the household’s marginal utility of consumption. The marginal cost of investment on the

left hand side of (13) is equal to its price index pImt ≡ ΠN
k=1

(
pkt
λkm

)λkm

, again relative to the

marginal utility of consumption.

Proposition 3. Up to first order, the effect of sector-specific shocks Ait on the investment

price index for sector m, pImt, holding primary input prices fixed, is:

d log pImt = −
N∑
i=1

ωimd logAit, (14)

where ωim are the elements of the Leontief-adjusted investment network.

Proof. See Appendix E. ■

Proposition 3 shows that shocks to investment hubs and their key suppliers Ait act as

investment supply shocks in the sense that they decrease the price index for investment

goods pImt for many sectors m. In fact, holding primary input prices fixed, the investment

price index is a sum of all sectors’ productivity, weighted by the sectors’ Leontief-adjusted

investment network connections ωim. A shock to one of these key sectors increases the supply

of investment goods in the economy, decreasing the price index. In response, sectors increase

their optimal quantity of investment Imt, and therefore the household’s valuation of their
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investment goods and ultimately employment.20

In contrast, shocks to other sectors act as idiosyncratic investment demand shocks in the

sense that they primarily affect the marginal product of capital in their own sector. While

these shocks may spill over to other sectors, Figure 5 shows that these spillovers are small

in terms of their impact on employment. Therefore, going forward, we focus on the role of

shocks to investment hubs and their key suppliers in driving employment fluctuations. We

define the key suppliers as durable manufacturing, wholesale trade, and transportation &

warehousing because these sectors have large weights in the Leontief-adjusted investment

network (displayed in Figure 4).

Relationship to Networks Literature These results are related to the recent networks

literature, which typically uses static models without investment to study how idiosyncratic

shocks affect macroeconomic aggregates. Without investment, our model implies that em-

ployment is literally constant because shocks do not affect the household’s valuation of

consumption in Proposition 2. In this case, the Domar weight is also a sufficient statis-

tic for the effect of the shock on real GDP: d log Yt =
∑N

j=1

(
pjQj

PY Y

)∗
d logAjt. In addition,

the Domar weights are constant over time, so Domar aggregation is no longer a first-order

approximation but instead is globally true.

Our results in this section show that investment, and the investment network, breaks this

strong version of Hulten’s theorem in two ways. First, the Domar weight is not a sufficient

statistic for the effect of a shock on real GDP because the shock also affects employment, and

the response of employment also is determined by the Leontief-adjusted investment network.

Second, the Domar weights fluctuate over time due to changes in the household’s valuation

of investment.21

20The sensitivity of investment Imt with respect to its relative price pImt is heterogeneous across sectors
given heterogeneity in depreciation rates and production parameters in our model. For example, investment
in sectors which purchase high-depreciation assets are less responsive to changes in the price. Appendix F
numerically explores these sources of heterogeneity.

21Of course, the investment network also shapes the distribution of Domar weights in steady state. Ap-
pendix F shows that the average Domar weights of the investment hubs are comparable to the Domar weights
of other sectors.
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Figure 6: Impulse Responses to Aggregate vs. Hub + Supplier Shocks
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Notes: impulse responses of real GDP, aggregate employment, aggregate TFP, and aggregate labor
productivity to combinations of sector-specific shocks Ait. Left panel: response to a 1% increase in Ait for
all sectors i. Right panel: response to a 1% increase in Ait for the investment hubs and their key suppliers
only.

4.3 Implications for Changing Business Cycles Since the 1980s

We now briefly discuss how the key insight of this section — employment fluctuations are pri-

marily driven by shocks to investment hubs and their suppliers — can qualitatively account

for a number of changes in business cycle patterns since the early 1980s; we will quantify

this mechanism in Section 5. We will show that the key change in the early 1980s was that

the correlation of shocks Ait across sectors fell dramatically. We interpret this change as

reflecting the fact that the pre-1980s sample is dominated by aggregate shocks, which affect

all sectors at once, while the post-1980s sample is dominated by idiosyncratic shocks, which

affect specific sectors in isolation.

The left panel of Figure 6 plots the impulse responses of real GDP, aggregate employ-

ment, aggregate TFP, and aggregate labor productivity to a 1% aggregate shock (which

increases TFP Ait by 1% in each sector). The shock increases employment because it in-

creases the productivity of investment hubs and their key suppliers, as discussed above. The

shock simultaneously increases productivity at the other sectors, raising their production and

therefore real GDP. The effect on these other sectors’ productivity is reflected in a roughly

2% increase in aggregate TFP, equal to the sum of Domar weights across all sectors in the

economy. Overall, real GDP increases by more than aggregate employment, so labor produc-

tivity rises upon impact of the shock — consistent with its procyclicality in the pre-1980s
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sample.

The right panel of Figure 6 plots the same impulse responses in response to a shock

which affects only the investment hubs and their suppliers. As before, aggregate employment

increases because these sectors are the primary suppliers of investment. But unlike before,

this increase in employment is not accompanied by an increase in productivity of the other

sectors. Therefore, TFP only increases by 0.5% (since these sectors’ Domar weights are

only about 1/4 of the aggregate). In total, aggregate employment increases by more than

real GDP upon impact of the shock, driving down aggregate labor productivity.22 Section 5

shows that this mechanism generates acyclical labor productivity in the post-1980s sample

because these idiosyncratic shocks account for a larger share of employment fluctuations over

time. In contrast, shocks to other sectors have small effects on aggregate employment.

4.4 Additional Results

Appendix F contains two sets of additional results. First, we relate our analysis to the

literature which studies the effects of investment-specific technical shocks (e.g. Greenwood,

Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). One can view

these models as a two-sector version of our model without the intermediates input-output

network. Of course, our model provides a richer classification of sectors in which the correct

concept of an “investment producer” is not only its direct production of investment goods but

also its role in supplying intermediate goods to the investment hubs. But our model also solves

the so-called “comovement” problem in this literature, which is that shocks to the investment-

producing sector do not generate positive comovement in the consumption-producing sector.

Our model generates comovement through the intermediates network, through which many

non-investment hubs indirectly produce investment goods (captured by the Leontief-adjusted

investment network).

The second set of additional results provides supporting evidence for key mechanisms
22Appendix F computes the cyclicality of labor productivity induced by each sectors’ shocks in isolation.

We show that shocks to nearly all of the investment hubs and their suppliers generate countercyclical labor
productivity. The only exceptions are professional/technical services, wholesale trade, and transportation
& warehousing. While shocks to these sectors have a large effect on employment, they are also important
suppliers in the intermediates network; hence, they have large Domar weights, generating a larger effect on
aggregate TFP and therefore real GDP.
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described above. Similar to Section 2, we show that the key suppliers to investment hubs

are more volatile and more correlated with the aggregate cycle than the non-suppliers. This

finding is consistent with the role of key suppliers in our model documented above.

5 Application: Changes in Business Cycles Since 1980s

We now apply the insights developed in Section 4 to study changes in business cycle patterns

since the early 1980s.

5.1 Quantifying the Effects of Changes in Sector-Level Productiv-

ity Shocks

In our model, the key force driving these changes in business cycle patterns is the fact

that sector-level productivity shocks have become less correlated across sectors. We measure

sector-level productivity as the Solow residual of real gross output net of the primary inputs:23

logAjt = logQjt − θjtαjt logKjt − θjt(1− αjt) logLjt − (1− θjt) logMjt. (15)

Of course, changes in the measured Solow residual may reflect changes in technology shocks

or changes in other non-technology forces, such as allocational efficiency or the utilization of

resources (see, for example, Basu, Fernald and Kimball (2006)). We view our simple exercise

as a natural first step in quantifying the role of the investment network in propagating

sector-specific shocks.24

We need to detrend sector-level TFP because our model does not feature trend growth.

However, a log-linear trend does not fit sector-level data well because sectors typically grow

and shrink in nonlinear ways. We therefore take out a log-polynomial trend in order to cap-

ture these nonlinearities. We choose degree 4 in order to strike a balance between flexibility
23We allow the factor shares αjt to change year-by-year to ensure that changes in our measured productivity

are not driven by changes in the production technology. This choice creates a slight inconsistency with our
model, in which the factor shares are constant over time. However, our main model results are virtually
unaffected by keeping these parameters fixed over time.

24These is also a practical reason that we do not correct for utilization: consistent measures of hours-per-
worker in each sector, which are required to perform the Basu, Fernald and Kimball (2006) correction, are
not available in our data.
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Table 3
Decomposition of Shock Volatility

Measured TFP Value Added
Pre-84 Post-84 Pre-84 Post-84

1000Var(xt) 0.41 0.10 1.01 0.39
Variances 0.08 0.06 0.12 0.08

Covariances 0.33 0.03 0.89 0.31

Notes: results of the decomposition (16) in the pre-1984 sample (1948-1983) and post-1984 sample
(1984-2018). “Variances” refers to the variance component 1000

∑N
j=1(ωjt)

2Var(∆ logAjt), weighted by
sector j’s average Domar weight in the relevant subsample. “Covariances” refers to the covariance
component 1000

∑N
j=1

∑
o̸=j ωjtωotCov(∆ logAjt,∆logAot). “Measured TFP” refers to performing this

analysis on log measured TFP growth ∆logAjt. “Value added” refers to performing this analysis on log
real value added growth; in this specification, we weight by value added shares rather than Domar weights.
Totals may not appear to be exact sums due to rounding.

in the trend and not overfitting the data; Appendix D shows how various degrees fit the data

and justifies our use of a fourth-order trend. Furthermore, Appendix G shows that our main

results hold for other degrees of this polynomial trend.

The left panel of Table 3 characterizes how TFP shocks have changed over time by

performing the following statistical decomposition:

Var(∆ logAt) =
N∑
j=1

(ωjt)
2Var(∆ logAjt)︸ ︷︷ ︸
variances

+
N∑
j=1

∑
o̸=j

ωjtωotCov(∆ logAjt,∆ logAot)︸ ︷︷ ︸
covariances

(16)

where logAjt is log TFP, ∆ denotes first differences, and ωjt is the average Domar weight of

sector j in the subsample. Table 3 shows that the volatility of aggregate TFP has fallen by

more than 70% since 1984, consistent with the “Great Moderation” of aggregate volatility.

Nearly the entire decline in aggregate volatility is accounted for by a decline in the covariance

of TFP across sectors; the within-sector variances component has declined by much less.

As we said, we interpret this result as reflecting a decline in the variance of aggregate

shocks together with a relatively stable variance of sector-specific shocks. A helpful special

case of our shock process to develop that intuition is

logAjt = logAt + log Âjt,
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where At is an aggregate shock common to all sectors and Âjt is independent across sectors.

In this special case, the only source of covariance is the aggregate shock At, so the decline in

covariances in the decomposition (16) maps directly into a decline in Var(∆At). Appendix D

performs a more general principal components analysis and yields a similar conclusion; the

volatility of the first principal component – the “aggregate shock” – declines substantially

since 1984 and accounts for the entire decline in volatility. Foerster, Sarte and Watson (2011)

and Garin, Pries and Sims (2018) make a similar argument based on the comovement patterns

of sector-level value added rather than measured productivity; the right panel of Table 3

shows that our results hold for value added as well.25

We use the following procedure to feed realized TFP shocks into our model. First, we

estimate the persistence ρj using maximum likelihood over the entire sample. These persis-

tence parameters, along with the others parameters calibrated in Section 3, are sufficient

to compute the linearized decision rules in our model because those decision rules do not

depend on the covariance matrix of shocks. Second, given the values of ρj, we compute the

innovations to our detrended productivity shocks in the data. We simulate the decision rules

given the realized history of shocks, starting from the non-stochastic steady state in 1948.

Investment Production Frictions If we feed these measured shocks directly into our

baseline model, the model produces counterfactually large volatility in the distribution of

investment expenditures across sectors. Table 4 measures this volatility as the average change

in sector j’s total investment expenditures as a fraction of aggregate investment expenditures,

E[∆| pIjtIjt∑N
k=1 p

I
ktIkt

|], or as the standard deviation of that change, σ
(

pIjtIjt∑N
k=1 p

I
ktIkt

)
. The left and

middle panels of Table 4 shows that these changes are around five times larger in the model

than in the data. This result occurs because, given the linearity of the market clearing

condition (30), an investment-producing sector i sees its potential customer sectors j as

perfect substitutes. Therefore, small changes in investment demand from these purchasing
25The “Great Moderation” literature has suggested two broad interpretations of this decline in aggregate

volatility. The first is good luck: aggregate shocks have simply become more volatile over time (for example,
oil shocks became less severe and less frequent). The second is good policy: either public policy (monetary
or fiscal) or private inventory management have allowed the economy to better absorb aggregate shocks. In
this paper, we simply take the decline in aggregate volatility as given, without taking a stand on why it has
occurred.
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Table 4
Volatility of Investment Expenditures Composition

Data Model w/o Frictions Model w/ Frictions

1000× E[∆| pIjtIjt∑N
k=1 p

I
ktIkt

|] 2.0 9.7 2.1

1000× σ
(

pIjtIjt∑N
k=1 p

I
ktIkt

)
2.7 14.1 2.7

Notes: measures of changes in the distribution of investment expenditures across sectors. “Data” refers to
value of the statistic in the data. “Model w/o Frictions” refers to the model described in Section 3. “Model
w/ frictions” refers to the model augmented with Huffman and Wynne (1999) frictions, as described in the
main text.

sectors generate counterfactually large changes in the composition of the producing sector’s

customers, and thus in the distribution of investment expenditures across sectors. In turn,

this excess volatility generates an excessively high volatility of aggregate investment to GDP.

We introduce a simple friction to bring this excess volatility in line with the data. Fol-

lowing Huffman and Wynne (1999), we modify the market clearing condition for sector j’s

output to be

Qjt = Cjt +
N∑
i=1

Mijt +

(
N∑
i=1

I−ρ
ijt

)− 1
ρ

, (17)

where ρ ≤ −1 controls the degree of the investment production friction. The baseline model

from Section 3 imposed ρ = −1, corresponding to an infinite elasticity of substitution between

different purchasing sectors. When ρ < −1, investment becomes imperfectly substitutable

across purchasing sectors, capturing the idea that the types of investment goods produced

by sector i are specific to its customers j, at least in the short run.26

We set the parameter ρ = −1.04 in order to match the changes in investment composition

in Table 4. Our calibrated ρ is similar to the value used in Huffman and Wynne (1999).

While all our quantitative results going forward use this extended version of the model,

Appendix G shows that our main results are even stronger without these additional frictions

because investment expenditures and, by Proposition 2, employment, are more responsive
26Importantly, this reallocation friction (17) does not affect the theoretical results derived in Section 4.

The only difference is that now the price of investment goods has an endogenous component which reflects
the imperfect substitution of capital goods and dampens large changes in the composition of investment
production. See Appendix G for more details.
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Table 5
Changes in Business Cycle Patterns Since 1984

Data Model
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.18% 1.98% 3.95% 2.42%
ρ(∆yt −∆lt,∆yt) 0.56 0.28 0.52 -0.01
σ(∆lt)/σ(∆yt) 0.83 1.01 0.90 1.03
σ(∆it)/σ(∆yt) 2.25 3.10 3.78 4.11

σ(yhpt ) 2.03% 1.24% 2.52% 1.80%
ρ(yhpt − lhpt , yhpt ) 0.52 0.14 0.53 0.01
σ(lhpt )/σ(yhpt ) 0.85 1.09 0.92 1.01
σ(ihpt )/σ(yhpt ) 2.41 3.50 3.86 4.04

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018).
“Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and
feeding in realizations of measured TFP over the sample. yt is log real GDP, lt is log aggregate
employment, and it is log real aggregate investment. ∆ denotes the first difference operator, and the hp

superscript denotes the HP-filtered series with smoothing parameter λ = 6.25. To avoid endpoint bias from
the HP filter, we omit the first and last three years of data of the entire sample in computing the HP
filtered statistics.

to investment supply shocks.

5.2 Changes in Aggregate Business Cycle Patterns in Calibrated

Model

In this subsection, we show that our model quantitatively matches a number of changes in

business cycle patterns since the early 1980s. In Section 5.3, we confirm that these results

are driven by the rising importance of sector-specific shocks to investment hubs and their

key suppliers, consistent with the theoretical discussion in Section 4.3.

The left panel of Table 5 documents the key changes in aggregate business cycle patterns

in the data. The top panel computes the statistics on first-differenced series while the bottom

panel uses the HP filter (for both the data and the model).27 Using either procedure, the
27The HP filter has the advantage of isolating business cycle frequencies, while first differences include

both high-frequency noise as well as low-frequency changes in average growth rates. The main disadvantage
of the HP filter is that its two-sided nature induces cyclical deviations that may not have been known to
agents at the time. We partially address this concern by HP-filtering both the model and data series in order
to ensure an apples-to-apples comparison. We also omit the first and last three years of data over the sample
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volatility of GDP is approximately 40% lower in the post-1984 sample than in the pre-1984

sample — again, consistent with the well-known Great Moderation of aggregate volatility.

The cyclicality of labor productivity, measured as the correlation of GDP per worker with

GDP, switched from being procyclical in the pre-1980s to being essentially acyclical in the

post-1980s. In addition, the volatility of employment rose by approximately 1/3 relative to

GDP over this time. Appendix H shows that this rising volatility of employment accounts

for the entire decline in the cyclicality of labor productivity; intuitively, since employment

and GDP are highly correlated in both subsamples, the time series behavior of their ratio

depends on the more volatile component.28

Finally, the left panel of Table 5 shows that the volatility of investment relative to GDP

has also risen substantially since 1984. This finding is consistent with the idea that the

rising importance of shocks to investment hubs and their suppliers in driving aggregate

fluctuations since 1984. To our knowledge, we are the first to note the increased relative

volatility of investment over this period.

The right panel of Table 5 shows that the model generates all of these changes in business

cycle patterns. The model matches the decline in the volatility of real GDP because TFP

shocks become less correlated over time, similar to the results in Foerster, Sarte and Watson

(2011). More novel to our study is the fact that the model’s cyclicality of aggregate labor

productivity also falls over this period; using first differences, the cyclicality of labor produc-

tivity in the model falls by 0.53 compared to 0.28 in the data, while using the HP filter it falls

by 0.52 compared to 0.38 in the data. Consistent with this fact, the standard deviation of

employment relative to GDP rises similarly in the model as in the data (again, see Footnote

28). Finally, the model’s relative volatility of investment also increases over time, consistent

with the rising importance of shocks to investment hubs and their suppliers.29

in order to avoid endpoint bias from the HP filter. We HP-filter the aggregate series directly, rather than
aggregating the HP-filtered sector-level series. As in Section 2, we use a smoothing parameter of λ = 6.25.

28One can see the source of this result using the identity (derived in Appendix H):

Corr(∆yt,∆yt −∆lt) =
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,t )√

1 + σ(∆lt)2

σ(∆yt)2
− 2 σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

. (18)

Since output and employment are highly correlated both before and after 1984, the decline in the cyclicality
of labor productivity is driven by the increase in the relative volatility of employment.

29The volatility of aggregate investment relative to GDP is somewhat higher in our model than in the
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Figure 7: 14-Year Forward-Looking Rolling Windows of Labor Productivity Cyclicality

Notes: 14-year forward-looking rolling windows of the cyclicality of labor productivity (e.g. 1950 data point
computes the cyclicality between 1950-1963). “Data” corresponds to aggregated version of our dataset.
“Model” corresponds to aggregated version of model simulation under measured realizations of sector-level
TFP shocks. Top panel computes the statistic using first differences: Corr(∆yt −∆lt,∆yt) where yt is log
aggregate value added, lt log aggregate employment, and ∆ denotes the first-difference operator. The
bottom panel computes the same statistic using the HP filter instead of first differences.

Figure 7 shows that the model also matches the timing of the decline in the cyclicality of

labor productivity. We compute the dynamics of this statistic using 14-year forward-looking

rolling windows in both the data and in our model. The two series track each other quite

closely using either first differences or the HP filter. The cyclicality of labor productivity

is fairly stable until the early 1980s, at which point it drops sharply following the Volcker

recession. The cyclicality further declines in the 2008 financial crisis and its aftermath; by

the end of the sample, it has fallen by a similar amount in the model and in the data.

The correlation between the model and data’s series of rolling windows is 0.76 using first

differences and 0.91 using the HP filter.

data, especially in the pre-1984 period. While in principle we could allow for adjustment costs to the accu-
mulation of capital within sector to match the overall level of volatility, we have found that these adjustment
costs generate counterfactually low volatility in the composition of investment spending across sectors and
counterfactually high comovement in investment fluctuations across sectors.
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More generally, Appendix G shows that the model matches the entire time series of

aggregate GDP, consumption, investment, and employment surprisingly well given that no

aggregate series were targeted in the calibration and the model does not feature nominal

rigidities or the host of other frictions emphasized in the DSGE literature. The average

correlation between model and data for these series is approximately 0.5 – 0.6.

5.3 Role of Investment Network and Sector-Specific Shocks in

Driving Changing Business Cycles

We now confirm that the changes in business cycles are quantitatively driven by the rising

importance of sector-specific shocks to investment hubs and their key suppliers, as discussed

in Section 4.3. Table 6 decomposes measured productivity in sector j into an aggregate

component and a residual sector-specific component using a principal components analysis

similar to that which we perform on the data in Appendix D.30 We then assess the contri-

bution of aggregate shocks or sector-specific shocks feeding in only the relevant shocks and

setting the remaining shocks to zero.

Consistent with the discussion in Section 4.3, aggregate shocks account for the majority of

employment fluctuations in the pre-1980s period and generate procyclical labor productivity

(as in the left panel of Figure 6). However, sector-specific shocks account for the majority of

employment fluctuations in the post-1980s period. Shocks to the investment hubs and their

suppliers drive most of these fluctuations since shocks to the other sectors have a small effect

on aggregate employment.31 Aggregate labor productivity is countercyclical in response to

these shocks, as in the right panel of Figure 6.
30Specifically, we identify the aggregate shock using the first principal component Ft of the innovations

to TFP across sectors εjt. We then compute sector-specific shocks as a residual of that factor using OLS.
This procedure yields the decomposition εjt = αFt + ejt, where αFt is the “aggregate shock” and eit is the
“sector-specific” shock. The results in Table 6 are not additively separable because the statistics reported
are not linear and the sector-specific shocks ejt are not orthogonal to Ft for all sectors j in both pre- and
post-1984 time periods. While this approach is not the only one to decomposing aggregate vs. sector-specific
shocks in our model, we use it because it is also commonly used in the data (see, for example, Foerster, Sarte
and Watson (2011) and Garin, Pries and Sims (2018)).

31Shocks to the investment hubs and their key suppliers account for more than 95% of the employment
fluctuations generated by all sectoral shocks reported here (details available upon request).
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Table 6
Decomposing the Effects of Aggregate vs. Sectoral Shocks

All Shocks Agg. Shocks Only Sectoral Shocks Only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.45% 1.67% 1.67% 1.40%
σ(∆lt) 3.55% 2.48% 2.74% 1.41% 1.82% 1.61%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.85 0.78 -0.18 -0.28
σ(∆lt)/σ(∆yt) 0.90 1.03 0.79 0.85 1.09 1.14
σ(∆it)/σ(∆yt) 3.78 4.11 3.31 3.48 4.44 4.52

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text. “Agg. shocks only”
refers to feeding in only the aggregate shocks (as identified following Footnote 30). “Sectoral shocks only”
refers to feeding in only the sector-specific shocks (again, as identified following Footnote 30).

Shocks vs. Propagation The theoretical discussion in Section 4.3 assumed that the size

of aggregate vs. sector-specific shocks were the same in order to focus on the role of the

investment network in propagating those shocks. However, the sizes of the shocks that we feed

in from the data may change over time, which may in principle drive some of our quantitative

results. The top right panel of Table 7 shows that this is not the case. We standardize the

size of shocks in each sector to be 1% in both the pre- and post-1984 subsamples; therefore,

the only change since 1984 is that the correlation of shocks fell by the level observed in the

data. While the overall level of volatility is obviously different in this version of the model,

the relative volatility of employment and cyclicality of labor productivity change by similar

amounts as in the baseline calibration.

The bottom left panel of Table 7 confirms that the concentrated structure of the empirical

investment network is the key propagation mechanism driving the changes in business cycle

patterns, again consistent with the discussion in Section 4.3. In this panel, we eliminate the

concentration of the network by instead assuming that Λ = I, i.e. each sector invests out

of its own output. Therefore, the large investment producers which we have argued drive

our results do not exist in this version of the model. In this case, the relative volatility of

employment and cyclicality of labor productivity do not significantly change since the 1980s.
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Table 7
Role of Investment Network in Driving Changing Business Cycles

Full Model Pre-84 Post-84 Uniform Variances Pre-84 Post-84

σ(∆yt) 3.95% 2.42% σ(∆yt) 1.76% 1.29%
σ(∆lt)/σ(∆yt) 0.90 1.03 σ(∆lt)/σ(∆yt) 0.88 1.03
Corr(∆yt −∆lt,∆yt) 0.52 -0.01 Corr(∆yt −∆lt,∆yt) 0.55 0.03

Identity Inv. Net. Pre-84 Post-84

σ(∆yt) 3.16% 1.72%
σ(∆lt)/σ(∆yt) 0.88 0.90
Corr(∆yt −∆lt,∆yt) 0.59 0.48

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Full model” corresponds to the model described in the main text. “Identity investment
network” assumes that sectors invest using only their own output, i.e. λii = 1 for all i and λij = 0 for all
j ̸= 1. “Uniform variances” standardizes the size of shocks to be 1% in both the pre- and post-1984 sample.

5.4 Robustness

Appendix G shows that our main results are robust to relaxing a number of simplifying

assumptions in our model.

Structural Change So far, we have held the parameters of the economic environment

fixed in order to focus on changes in the process of sector-specific shocks. Appendix G

allows for those parameters to change over time, specifically: the share of primary inputs in

production θjt, labor’s share in production αjt, the entries of the intermediates network γijt,

the entries of the investment network λijt, capital depreciation rates δjt, and the consumption

shares ξjt.

While these parameters have indeed changed in interesting ways, Appendix G shows that

our main results in this section are robust to allowing for these changes. We incorporate these

parameter changes in two ways. First, we allow agents to have perfect foresight over the path

of these parameter changes using the approach developed in Maliar et al. (2020). Second,

we compute the average values of the parameters in the pre-1984 and post-1984 subsamples

and compute the population moments of the model corresponding to those two parameter
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configurations. Our main results about changes in business cycle patterns continue to hold

in both of these exercises. Of course, a full analysis of the process of structural change, its

driving forces, and how much is expected by economic agents at the time is outside the scope

of our paper. The goal of these exercises is simply to show that allowing for these changes is

unlikely to overturn our results.

Non-Cobb Douglas Production and Preferences Appendix G also relaxes our as-

sumptions of Cobb-Douglas production and preferences by allowing for a constant elasticity

of substitution between capital, labor, and intermediate goods, as well as a constant elas-

ticity across goods in preferences. We discipline these elasticities using the estimates from

Atalay (2017) and Oberfield and Raval (2020) and show that our quantitative results are

similar in this extended model. We also solve the extended model using a second order ap-

proximation in order to capture the rich nonlinearities described in Baqaee and Farhi (2019).

This extended model produces changes in business cycle patterns very similar our baseline

analysis in the main text.

Other Robustness Checks Finally, Appendix H shows that our results are robust to a

number of other extensions. First, we vary the strength of the Huffman and Wynne (1999)

investment production frictions. Second, we allow for convex adjustment costs to capital in

order to better match the overall volatility of investment. Third, we allow for maintenance

investment in the investment network, as discussed in Footnote 7. Fourth, we allow for labor

reallocation frictions across sectors.

6 Changes in Aggregate Cycles Driven by Changes in

Sectoral Comovement

While we believe that our explanation for the changes in business cycle patterns since the

1980s is a natural one, there are many other possible explanations as well (such as those

surveyed in the related literature section). Therefore, in this section, we document a new

empirical fact which supports a key implication of our explanation over the others: the
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Table 8
Divergence of Aggregate and Sectoral Cycles

Aggregate Within-Sector
Data Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.18% 1.98% 5.42% 4.29%
ρ(∆yt −∆lt,∆yt) 0.56 0.28 0.69 0.67
σ(∆lt)/σ(∆yt) 0.83 1.01 0.76 0.81

Aggregate Within-Sector
Model Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 5.89% 4.93%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.79 0.85
σ(∆lt)/σ(∆yt) 0.90 1.03 0.52 0.43

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018).
“Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and
feeding in realizations of measured TFP over the sample. yt is log real value added, lt is log employment
and ∆ denotes the first difference operator. “Aggregate” refers to outcomes for aggregate variables.
“Within-sector” computes the statistics for each sector and then averages them weighted by the average
share of nominal value added within that sub-sample.

changes in business cycle patterns have not occurred within individual sectors of the econ-

omy but are instead due to changes in the comovement of activity across sectors. Our model

quantitatively matches this fact because shocks to investment hubs and their suppliers gen-

erate different comovement patterns across sectors than do aggregate shocks. In contrast,

most existing explanations for business cycle changes abstract from sectoral heterogeneity

and therefore do not make a prediction for this key feature of the data. We focus this section

on the cyclicality of labor productivity and relative volatility of employment because they

have attracted the most attention in the existing literature.

Sector-Level Cycles Stable Over Time Table 8 shows that sector-level business cycles

are stable over the postwar sample both in the data and in our calibrated model. These

within-sector business cycle statistics first compute the statistics for each sector in the econ-

omy and then average those statistics across all sectors (Appendix H shows that these findings

are robust to using various weighting schemes to compute the within-sector average and to

using the HP filter). The cyclicality of sector-level labor productivity – the correlation of
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sector-level value added per worker with sector-level value added – and the relative volatility

of sector-level employment are essentially constant across the two sub-samples. While the

volatility of sector-level value added falls somewhat post-1984, its magnitude is about half

as large as the decline in the volatility of GDP. In our model, the sector-level patterns are

relatively stable because sector-specific shocks are the dominant source of fluctuations within

sector and the volatility of those shocks has remained stable over time.

Changes Driven by Sectoral Comovement Since the changes in the aggregate cycle

do not occur within sector, they must be driven by changes in the covariances of activity

across sectors. We formalize this argument using the following decomposition:

Var(∆lt)

Var(∆yt)
≈ ωt︸︷︷︸

variance weight

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt)︸ ︷︷ ︸
variances

+(1− ωt)

∑N
j=1

∑
o̸=j ω

l
jtω

l
otCov(∆ljt,∆lot)∑N

j=1

∑
o̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)︸ ︷︷ ︸

covariances
(19)

where yjt is log real value added of sector j, ljt is employment of sector j, and yt and lt are

aggregate value added and employment. This decomposition, derived in Appendix H, breaks

down the variance of employment relative to the variance of GDP into two components. The

first “variances” component is the average variance of employment relative to the average

variance of value added within sectors. The second “covariances” component is the average

covariance of employment across all pairs of sectors relative to the average covariance of

value added across pairs. The “variance weight” ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt) ensures

that the averages of these ratios add up to the ratio of aggregate variances. We focus on

the increase in the relative volatility of employment because, as we argued in Section 5, this

increase accounts for the entire decline in the cyclicality of labor productivity.

The left panel of Table 9 shows that 85% of the increase in the relative volatility of

aggregate employment in the data is accounted for by an increase in the covariances term; in

contrast, the within-sector average variances are stable, consistent with the results in Table

8. Appendix H shows that the changes in covariances reflect two patterns in the data. First,

the covariance of value added across sectors fell in the post-1984 sample, decreasing the

volatility of aggregate GDP. Second, the covariance of employment across sectors remained
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Table 9
Decomposition of Relative Employment Volatility

Data Model
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.81 1.05 100%

Variances 0.41 0.48 15% 0.75 0.57 10%
Covariances 0.72 1.19 85% 0.82 1.15 90%

Variance Weight 0.12 0.21 0.10 0.17
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Data” refers to our empirical dataset. “Model” refers to model simulation starting from
steady state and feeding in realizations of measured TFP over the sample. “Variances” refers to the
variance component

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o̸=j ωl

jtω
l
otCov(∆ljt,∆lot)∑N

j=1

∑
o̸=j ωy

jtω
y
otCov(∆yjt,∆yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(∆yjt)/Var(∆yt). “Contribution of entire term” computes the contribution of the first
term of the decomposition (19) (in the variances row) or the contribution of the second term (in the
covariances row).

comparatively stable, stabilizing its aggregate volatility and therefore raising its volatility

relative to output.

The right panel of Table 9 replicates this decomposition on model-simulated data and

shows that, consistent with the data, the covariance terms account for approximately 90% of

the increase in the relative volatility of employment. As in the data, this result reflects two

patterns. First, the covariance of value added falls because the covariance of productivity

shocks themselves fall. Second, the covariance of employment across sectors is stable because

employment is primarily determined by shocks to the few investment hubs and their sup-

pliers in both the pre- and post-1980s subsamples.32 Together, these two facts drive up the

relative volatility of employment and therefore drive down the cyclicality of labor produc-

tivity. Appendix H provides more details about these comovement patterns and also shows

that our model does very well in explaining covariance changes at the individual sector-pair

level.
32Another reason that the covariance of employment is stable in our model is that the composition of

investment producers is similar across purchasing sectors in the economy; therefore, a shock to an investment
hub has a similar effect on most other sectors in the economy.
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Robustness Appendix H contains five additional pieces of analysis of this decomposition in

order to ensure that the results are robust features of the data. First, it shows that the changes

in covariance patterns we discuss are broad-based and not driven by outliers. Second, it shows

that the results also hold using the HP filter rather than first differences to detrend the

data. Third, it shows that the changes in covariances are reflected in changes in correlations,

rather than changes in variances. Fourth, it shows that the approximation inherent in the

decomposition (19) is accurate. Fifth, it shows that the results of this decomposition also

hold for a finer 450-sector disaggregation of manufacturing in the NBER-CES database.

7 Conclusion

In this paper, we have argued that the investment network plays an important role in prop-

agating sector-specific shocks to macroeconomic aggregates. Our argument had three main

components. First, we showed that the empirical investment network is dominated by four in-

vestment hubs that produce the majority of investment goods, are highly volatile at business

cycle frequencies, and are strongly correlated with the aggregate cycle. Second, we embed-

ded this concentrated network into a standard multisector business cycle model and showed

that shocks to the investment hubs and their key suppliers have large effects on aggregate

employment and drive down labor productivity. Third, we measured sector-level productiv-

ity shocks in the data, fed them into the model, and found that shocks to investment hubs

accounted for a large and increasing share of aggregate fluctuations. We also showed that

this shift accounts for the decline in the cyclicality of aggregate labor productivity and other

changes in business cycle patterns since the early 1980s.

Appendix I briefly studies the implications of this concentrated investment network for

investment stimulus policies such as the bonus depreciation allowance. We model these poli-

cies as an equal subsidy for investment purchases across sectors; however, their effects on

production – and therefore employment – are primarily concentrated in the investment hubs

and their intermediate suppliers. Therefore, the sparseness of the investment network distorts

a broad-based stimulus into something which more closely resembles industrial policy.

In order to isolate the role of the investment network in our analysis, we embedded it
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into a purposely simple multisector real business cycle model. A natural next step would be

to add the rich set of nominal and real rigidities which the DSGE literature has argued are

relevant for business cycle analysis. We have also kept our quantitative exercise simple by

focusing on sector-level productivity shocks measured as a simple Solow residual. While we

do not think that the role of the investment network as a propagation mechanism is specific

to productivity shocks – other non-technology shocks may have similar effects – another

next step would be to understand what drives the variation in our measured shocks, and

incorporate other shocks into the model as well.
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A Construction of Dataset and the Investment Net-

work

This Appendix describes the details of our data set and our construction of the investment

network.

A.1 Data Sources

Our analysis of business cycle fluctuations uses a dataset of gross output, intermediate inputs,

value added, employment, and investment for 37 non-government, non-farm sectors over the

1948 - 2018 sample. We define sectors using NAICS codes, resulting in the 37-sector partition

in Table 1. Data on nominal and real measures of gross output, intermediate inputs, and

value added are taken from the GDP by Industry database, while data on nominal and real

investment expenditures are from the BEA Fixed Asset database.

The main challenge in compiling this dataset is constructing consistent measures of sector-

level employment over the entire 1948 - 2018 sample. Starting in 1998, we observe sector-

level employment in NIPA Table 6.4D, which reports the total number of full-time and

part-time employees by sectors defined according to NAICS codes. Before 1998, the BEA

Industry Accounts provide historical employment data converted to NAICS codes for 1948-

1997. However, this data is only available for 17 out of the 37 sectors that we consider prior to

1977; the remaining sectors are in manufacturing, which the BEA collapses into broad durable

and non-durable sectors over this time period. Fortunately, the BEA provides disaggregated

manufacturing employment in SIC codes over this period in NIPA Tables 6.4B and 6.4C. We

convert these data to the NAICS classification using the Fort and Klimek (2018) crosswalk.

We ensure there is not a discontinuity at the 1977 breakpoint by cumulating the growth rates

from the converted data in each sector to compute the levels of employment in the pre-1977

period rather than relying on the levels in the raw data.
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Table A.1
Investment Flows Table Visualization

Investment Purchasers
Mining Utilities Construction · · · Total Production

Investment
Producers

Mining
Utilities

Construction
...

Total Expenditures

A.2 The Investment Network

Our investment network records the share of new investment expenditures of sector j that

were purchased from sector i for each pair of sectors (i, j) and for each year t in our sample.

While the BEA capital flows tables provide some relevant information in some years, those

tables are limited in three key ways for our analysis. First, they are only available for seven

of the 72 years from 1947-2018: 1963, 1967, 1972, 1977, 1982, 1992 and 1997.33 Second, they

are not consistently defined over time because they use different vintages of SIC or NAICS

codes. Finally, and most importantly for our analysis, the BEA tables do not include all of

intellectual property; in fact, the 1997 table is the only one which records any intellectual

property at all, but even that only records software (which was a third of all intellectual

property investment in that year). To our knowledge, our investment network is the only

version of the capital flows tables that is consistent with modern national accounting practices

regarding intellectual property.34

We construct our investment networks in order to overcome these limitations, but oth-

erwise try to follow the BEA methodology as closely as possible.35 To help explain our ap-

proach, Table A.1 visualizes the investment flows table, whose (i, j)th entry records the total

investment expenditures by sector j purchased from sector i in a given year. Summing across

columns for each row in this table generates total production of investment by each sector,
33Only the 1982, 1992, and 1997 tables are currently published on the BEA website, but older tables can

be obtained from archived issues of the Survey of Current Business.
34We have found that the presence of intellectual property is the key difference between the BEA 1997

capital flows table and our measured investment network in that year. Specifically, intellectual property
makes up more than a quarter of total investment spending in the vast majority of sectors in which our
network is significantly different from the BEA’s capital flows table.

35McGrattan (2020), particularly the replication materials, provide useful information on details regarding
the BEA methodology.

48



while summing across rows for each column generates total investment expenditures for each

sector. The investment network simply divides each column j of this table by total expen-

ditures in that sector in order to compute expenditure shares. We construct the investment

network in three steps: (i) separately construct the investment flows tables for residential

investment, non-residential structures, non-residential equipment, and intellectual property,

(ii) aggregate those four investment flows tables to total investment, and (iii) rescale them

to compute the aggregate investment network. Steps (ii) and (iii) are straightforward matrix

operations, so we focus this appendix to explaining how we perform step (i).

Unfortunately, there is no publicly available data on the pairwise investment flows be-

tween producers and purchasers necessary to fill in each element of Table A.1. Instead, we

will estimate these pairwise flows using the following data which the BEA does provide:

(i) Total investment expenditures by sector for each year from Table 3.7 of the Fixed

Assets data (the “total expenditures” row in Table A.1).

(ii) Total production by sector for each year from the annual use tables from the Input-

Output database (the “total production” column in Table A.1). Before 1997, these

tables separately record the total production of structures (both residential and non-

residential), equipment (both residential and non-residential), and intellectual prop-

erty. After 1997, the tables record the total production of residential investment, non-

residential structures, non-residential equipment, and intellectual property.

(iii) Aggregate residential structures and residential equipment expenditures for each year

from NIPA Tables 5.4.5 and 5.5.5. Because we assume that the real estate sector is the

sole purchaser of residential investment – following the BEA’s methodology – there is

no need for detailed residential investment expenditure data by sector.

(iv) Sector-level investment expenditure on 33 different types of assets for each year:

residential structures, residential equipment, two types of non-residential structures

(mining and all other), four different intellectual property assets, and 25 different

equipment assets. We construct this data from the expenditures on residential struc-

tures and equipment described in point (iii) above and detailed data for Fixed Assets
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by Industry, which provides expenditures on the other types of assets (available at

https://apps.bea.gov/national/FA2004/Details/Index.htm).

(v) Sector-level detail on the production of individual equipment assets for the years 1997-

2018 (available at https://www.bea.gov/products/industry-economic-accounts/

underlying-estimates), and 1987 and 1992 in SIC codes (available at https://

www.bea.gov/industry/historical-benchmark-input-output-tables), which we

convert to NAICS codes using the crosswalk in Fort and Klimek (2018).

Our approach primarily utilizes asset-level expenditure data to estimate the individual

entries in Table A.1. We estimate those pairwise investment flows as

Iijt =
A∑

a=1

ωiatI
exp
ajt , (20)

where Iijt is the (i, j)th element of the investment flows table in year t, Iexpajt is expenditures

by sector j on capital asset a in year t, and ωiat represents the fraction of capital asset a

produced by sector i in year t.36 The key assumption in equation (20) is that the the mix of

sectors producing a given asset a is the same for all sectors j which purchase that asset, i.e.

that ωiat is independent of the purchasing sector j. The BEA also makes this assumption in

constructing their capital flows tables.
36To be consistent with input-output methodology, our investment network represents expenditures on new

investment, not used or scrap transactions. However, the Fixed Assets investment expenditures data used
to construct Iexpajt in (20) does include net purchases of used assets, which often enter recorded investment
expenditure as a negative value. Thus, the reported expenditures may understate total expenditures on new
assets. In terms of measured investment expenditures, the addition of net used transactions is only a concern
for equipment assets; for structures and intellectual property, net used transactions are negligible. We adjust
total investment spending from the Fixed Assets data to eliminate used and scrap transactions as follows:

• For all equipment assets aside from autos, we scale up investment expenditures uniformly across
sectors in order to match the total production of new assets. In 1997-2018, the scaling factor ensures
that total expenditures equals total production of that asset as reported in sector-level detail on
the production of individual equipment assets. Before 1997, we use the median scaling factor from
1997-2018. Overall, this correction is non-negligible only for trucks and aircraft.

• For autos, we scale up expenditures on autos in the rental/leasing sector in order to be consistent
with the observation in Meade, Rzeznik and Robinson-Smith (2003) that net sales of used autos are
primarily from that sector to private households (the rental/leasing sector is part of real estate in our
37 sector partition). We again choose the scaling factor to ensure that total expenditures on autos
equals total expenditures in 1997-2018 (when production data is available), and choose the median
scale factor from that period for the pre-1997 data (when the production data is not available).
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The main challenge in our measurement procedure is to estimate the collection of ωiat

– which is called a bridge file – across assets a, sectors i, and years t. The remainder of

this subsection describes how we construct these annual bridge files ωiat separately for non-

residential structures, intellectual property, residential investment, and equipment.

Non-Residential Structures

We assume that all non-residential structures are produced by the construction sector except

for mining structures, which we assume are produced by the mining sector. Therefore, for

a = non-residential non-mining structures, we set ωiat = 1 if i = construction and zero

otherwise. For a = non-residential mining structures, we set ωiat = 1 if i = mining and zero

otherwise. This allocation rule is consistent with how the BEA constructs the capital flows

tables.37

Intellectual Property

We have data on four types of intellectual property assets: prepackaged software, own and

custom software, research and development, and artistic originals. We allocate the production

of these assets to sector i based on the BEA practices described in McGrattan (2020).

(i) We assume that own and custom software is produced by the professional/technical ser-

vices sector, i.e. for a = own and custom software, ωiat = 1 if i = professional/technical

services and zero otherwise.

(ii) We assume that R & D investment is also produced by the professional/technical

services sector, i.e. for a = R & D investment, ωiat = 1 if i = professional/technical

services and zero otherwise.

(iii) We assume that artistic originals are produced by the information sector (which in-

cludes radio & TV communication and motion picture publishing) and the arts &
37McGrattan (2020) follows this rule as well. In 1997-2018, the construction and mining sectors produce

99.9% of non-residential structures investment net of brokers’ commissions on structures (which are excluded
from our investment network following the BEA’s methodology for the 1997 capital flows table).
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entertainment services sector. We assume that artistic originals is the only type of in-

tellectual property produced by the arts & entertainment sector, and therefore estimate

its production of artistic originals as its total production of intellectual property from

the Input-Output tables. Hence, for a = artistic originals and i = arts & entertain-

ment, we set ωiat =
Iprodait∑N
j=1 I

exp
ajt

where Iprodait is the total production of intellectual property

by i = arts & entertainment and
∑N

j=1 I
exp
ajt are total economy-wide expenditures on

artistic originals. We then set ωiat = 1 − ωi′at for i = information (where i′ = arts &

entertainment) and ωiat = 0 for all other i.

(iv) Finally, we assume that all pre-packaged software is produced by the information

sector. However, we must also take into account the fact that the wholesale trade,

retail trade, and transportation & warehousing sectors play a role in delivering new pre-

packaged software to customers (these delivery expenses are called margin payments).38

We compute the margin payments on pre-packaged software as the total production of

intellectual property for those sectors as recorded in the Input-Output Tables. Hence,

for a = pre-packaged software and i = information, we set ωiat =
Iprodait∑N
j=1 I

exp
ajt

where i ∈

{wholesale trade, retail trade, transportation & warehousing } and
∑N

j=1 I
exp
ajt is total

economy-wide expenditure on pre-packaged software. We then set ωiat = 1−
∑

k ωakt for

i = information and k ∈ {wholesale trade, retail trade, transportation & warehousing}.

Finally, we set ωiat = 0 for all other sectors i.

Residential Investment

Residential investment is the sum of residential structures and residential equipment (such as

appliances or other consumer durables owned by landlords and included in residential leases).

As described above, the BEA directly reports the total production of residential investment

by sector in the Input-Output Tables between 1997-2018. However, that production data

also includes margin payments on used residential structures transactions, which we need to
38We assume that pre-packaged software is the only intellectual property product with margin payments

because that is the case in the benchmark 2007 and 2012 input-output tables, which has detailed observa-
tions on margin payments (available at https://www.bea.gov/products/industry-economic-accounts/
underlying-estimates).
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eliminate from our investment network. Our approach to estimating these margin payments

for the 1997-2018 period depends on the sector:

(i) We assume that some sectors – real estate, finance/insurance, and legal services (part of

professional/technical services) – only produce margin payments on residential struc-

tures and not on residential equipment.39 For these sectors, we assume that 13.2%

of their production of residential structures corresponds to margin payments on new

transactions, based on the estimated fraction of real estate broker margins that were

for new residential structure investment (as used in the 1997 BEA capital flows data

and reported in Meade, Rzeznik and Robinson-Smith (2003)).

(ii) Other sectors produce margin payments for both residential structures and equipment

(wholesale trade, retail trade, and transportation & warehousing). For these sectors, we

estimate their total margin payments as the sum of their total production of residen-

tial equipment (corresponding to margin payments on residential equipment, observed

in detailed equipment production data) and 13.2% of their production of residential

structures (corresponding to margin payments on new residential structures, assumed

to be the remainder of these sectors’ total production of residential investment).

Unfortunately, the BEA does not separately report production of residential investment

by sector prior to 1997. Our procedure to estimate residential investment in this period

depends on the sector:

(i) We assume some sectors (wood products manufacturing, finance/insurance and pro-

fessional/technical services) produce residential structures but do not produce non-

residential structures or residential equipment in the post-1997 data.40 We therefore

estimate these sectors’ total production of residential investment as their reported to-

tal production of structures pre-1997. We then eliminate margin payments on used

transactions following the same procedure described in the previous paragraph.
39This assumption is validated by the fact that these sectors do not contribute to the production of total

equipment (residential + non-residential) in the pre-1997 production data.
40This assumption is validated by the fact that these sectors report zero production of any equipment

investment pre-1996 and no production of non-residential structures post-1997 in the Input-Ouput tables.
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(ii) We estimate the other sectors’ production of residential investment using the following

procedure.

• Residential structures: in the 1997-2018 period, we can infer sector-level produc-

tion of residential structures directly in the Input-Output Tables (given that we

separately observe production of residential equipment in the detailed data de-

scribing production of equipment over this period). In the pre-1997 period, when

we do not observe production, we estimate it as the average share of residential

structures produced by that sector in the 1997-2018 data times the aggregate

spending on residential structures in a given year t < 1997.

• Residential equipment: we follow a similar procedure as for residential structures;

given observed sector-level production of residential equipment for later years,

we use the average share produced by each sector times aggregate spending on

residential equipment. Because we have detailed data on the sectoral production

of residential equipment for the years 1987 and 1992 as well, for years t < 1987,

we use 1987 data on the shares of sectoral production times the aggregate time

series for residential equipment spending. For years between 1987 and 1992, we

use a moving average of the residential equipment production shares from the

1987 and 1992 bridge files, and for years between 1992 and 1997, we use a moving

average of the data in 1992 and 1997.

Since these procedures define the bridge files ωiat recursively, we do not write out their

formulas here but rather refer the interested reader to the replication packet.

Non-Residential Equipment

Constructing the bridge files for equipment assets is the most involved task because there

are 25 detailed types of equipment assets reported in the Fixed Asset data. We describe our

procedure separately for three time periods which have different data availability from the

BEA:

(i) 1997 - 2018: The BEA already publishes detailed data on the production of individual
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equipment assets by each sector, i.e. we observe ωiat from the data directly.

(ii) 1987 and 1992: The BEA publishes bridge files for each of these assets in 1987 and

1992, but the sectors correspond to SIC codes rather than NAICS codes. Therefore,

we convert these bridge files from SIC to NAICS using the Fort and Klimek (2018)

crosswalk.41

(iii) Remaining years: in the years for which we have no publicly available bridge files, we

interpolate the existing bridge files and re-scale the interpolation so that it matches

the total production of equipment investment by sector from the input-output data.

To understand our procedure, first note that the total production of equipment capital

by sector i is:

Iprodit =
∑
a

ωiatI
exp
at , (21)

where Iexpat is total expenditures on equipment asset a in year t (from the Fixed Assets

data), Iit is the production of all equipment assets by sector i (from the input-output

data), and ωiat is our bridge file to be estimated.

We initialize our estimate of the bridge file, ω̂iat as either the bridge data from the

last available year or a moving average of the two nearest bridge files. This estimate

ω̂iat may not satisfy the relationship (21) given our observations of Iprodit and Iexpat .

Let αit =
Iprodit∑

a ω̂iatI
exp
at

denote the ratio of true equipment production of sector i to its

production implied by the bridge file estimate. We use αit to arrive at our final estimate

of the bridge file:

ωiat =
αitω̂iat∑N
j=1 αjtω̂jat

. (22)

Equation (22) ensures that the total investment production in each sector i implied by

the bridge file is equal to total investment production in the data. The key assumption
41If the converted bridge file implies that a sector produces an equipment asset that the sector is not

observed to produce in the detailed equipment production data in the years 1997-2018, we modify the
conversion of NAICS to SIC sectors such that this sector does not produce that good in the final converted
bridge file. However, these older bridge files only contain limited detail on margin sectors, making careful
conversion to NAICS sectors infeasible. In order to ensure that we do not have a discontinuous break in
margin payments by each sector at 1997, we take the total reported margins for each asset in these older
bridge files and multiply them by the share of margins produced by each margin sector for that asset from
the detailed equipment bridge files in 1997-2001.
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is that the production of assets a by sector i always occur in proportion to ω̂iat.

Additional Networks

Alternative sectoral disaggregation While we use a 37-sector disaggregation in the

main text, we can also incorporate the agriculture, state/local government, and federal gov-

ernment sectors. The agriculture sector can be incorporated following the same steps as

above without modification. We incorporate government sectors by using the Input-Output

tables directly because investment by federal and state/local governments is a final use.

Thus, for each year in our data, each sector’s contribution to final production of government

investment is directly observable in the data. We do not incorporate these sectors in the

main text in order to focus on the private nonfarm economy.

We can also disaggregate the mining and real estate sectors more finely than in the main

text. In particular, we can split the mining sector into oil & gas extraction, support activ-

ities for mining, and other mining, and we can split the real estate sector into real estate

and rental/leasing services. We do not use these additional sectors in our baseline analysis

because the way investment purchases and expenditures are allocated across these sectors is

unusual (e.g., most of investment purchases by mining are produced by the support activ-

ities for mining sector, and the purely real estate sector is largely owner-occupied housing

imputations). However, our results are robust to using this more detailed partition of sectors

for the private non-farm economy.

Capital Rental Services We also construct a capital rental services network, defined as

the fraction of capital rental service expenditures by sector j, RjtKjt, purchased from all

other sectors i in the economy in year t. This rental services network may be useful for

at least two reasons. First, as described in Footnote 8, it is consistent with the national

accounting procedure described in Barro (2019). Second, the rental services network may be

used to incorporate sectoral linkages in capital services in a static model.

As with the investment network, the rental services network combines rental expenditures

of sector j on asset a, Ra
tK

a
jt, with bridge files to infer from which sectors those assets were

purchased. We compute Ra
tK

a
jt using data on the nominal capital holdings of each sector j
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for each asset a in each year t, P a
t K

a
jt from the BEA Fixed Assets data.42 We then combine

that series with a time series for the real rental rate Ra
t

Pa
t

, which we construct following the

approach in Karabarbounis and Neiman (2019):

Ra
t

P a
t

=
1 + τxt
1− τ kt

[(
(1 + τxt−1)P

a
t−1

(1 + τxt )P
a
t

)
(1 + (1− τ kt )rt)− (1− δat )−

τ kt δ
a
t

1 + τxt

]
(23)

where τxt is the tax rate on investment, τ kt is the tax rate on capital income, rt is a measure

of the real rate of return on capital, P a
t is the price of a new unit of capital (investment)

of asset type a, and δat is the depreciation rate of asset a. We follow the same broad steps

as Karabarbounis and Neiman (2019) (on their more aggregated data) in order to measure

these objects:

(i) Real interest rate rt: measured as the nominal rate of return on 10 year Treasuries

net of expected inflation (measured as a five year moving average of observed PCE

inflation) plus a 3% risk premium (which avoids negative values of the rental rate for

particular sectors).

(ii) Price P a
t : directly observed in NIPA tables 5.4.4, 5.5.4, and 5.6.4.

(iii) Taxes τxt and τ kt : directly from McDaniel (2007), which have been updated through

2017.

We then take a seven-year moving average of the real rental rate Ra
t

Pa
t

in order to smooth out

high-frequency variations; Karabarbounis and Neiman (2019) use a five-year moving average,

which leaves more noise in our disaggregated data.

We use the same bridge files ωiat constructed above to allocate the production of new

rental services for asset a to various sectors i. Our key assumption is that the composition

of sectors which produce new capital of asset a is the same as the composition of sectors

which produced the existing capital stock in the past as well. This assumption may fail if the

sectors producing a particular capital asset a have substantially changed over time, but that

is unlikely to be an important issue for two reasons. First, we use a fairly detailed partition
42We assume that the rental rate of a given capital asset is specific to the asset a, not to the sector j

renting it. This assumption is consistent with BEA data showing that the price of capital assets is almost
identical for the same asset across sectors.
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of capital assets a whose production patterns have not changed much over time. Second,

the assets for which production has changed the most, such as computers and electronic

equipment, also have the highest depreciation rates, implying that our bridge files for new

investment correspond to a large fraction of the existing capital stock as well. That said,

we also provide each of our equipment bridge files year-by-year, so other researchers can

relax our assumption by cumulating the pairwise purchases of investment over time using

the perpetual inventory method.43

Given this modular approach, other researchers can construct rental services by asset in

different ways — for example, reflecting a different formulation of the rental rate — and

combine them with our bridge files to build their own rental services network. We provide

networks with and without taxes (given that our model does not include taxes) as well as a

network using rental rates net of depreciation.44 Figure A.1 plots the heatmap of our gross

rental services table without taxes and shows that it is very similar to our investment network

considered in the main text; the network with taxes and the network using net rental rates

is similar to this one.

A.3 Additional Analysis of Investment Network

This subsection presents two pieces of additional analysis of the investment network refer-

enced in Section 2 of the main text.

Changes in Network Over Time Figure A.2 compares the heatmaps of the investment

network in the pre and post 1984 samples. Our four investment hubs are the primary sup-

pliers of investment goods in each subsample. The main difference across subsamples is that

professional/technical services accounts for a larger share of investment production in the

post-1984 period.
43We do not make a correction for used goods when building the rental services tables because this

correction is significantly more complex when considering the stock of all capital and not the period flows
of investment.

44In the case of the net rental services matrix, net rental rates are measured without taxes, with Ra
t

Pa
t

=[(
Pa

t−1

Pa
t

)
(1 + rt)− 1

]
. We add an additional two percentage point risk premium and smooth changes in asset

prices, Pa
t−1

Pa
t

, using a five year moving average in order to avoid negative net rental rates.
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Figure A.1: Heatmap of Empirical Rental Services Network
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Notes: heatmap of empirical gross rental services network (without taxes). Entry (i, j) computes share of
total rental expenditures by sector j that are produced by sector i, averaged over the 1947 - 2018 sample.

We can further understand these changes by separately considering the investment net-

works for residential, non-residential structures, non-residential equipment, and intellectual

property investment. For both residential investment and non-residential structures, the in-

vestment network is almost identical pre- and post-1984. However, Figure A.3 shows that the

non-residential equipment and intellectual property networks have changed over time, reflect-

ing the rise of IT; the equipment network places greater weight on computer manufacturing

and professional/technical services, while the intellectual property network places greater

weight on information. There have also been large changes in the composition of investment

goods across these four broad categories. Pre-1984, the combination of residential invest-

ment and non-residential investment accounted for 54% of private investment; post-1984,

that share has fallen to 43%.45 Simultaneously, the share of intellectual property investment

in total private investment rose from 9% to 21%. The combination of these changes account
45This decline is roughly 20 percentage points between 1948 to 2018, and even larger in some sectors.
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Figure A.2: Heatmaps of Investment Network, Pre/Post 1984
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Notes: Heatmaps of the investment network λij are constructed as described in the main text. The (i, j)
entry of each network corresponds to parameter λij , i.e., the amount of sector i’s good used in sector j.
The pre-84 network corresponds to the years 1947-1983 and the post-84 network corresponds to the years
1984-2018.
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Figure A.3: Heatmaps of Equipment and Intellectual Property Investment Networks,
Pre/Post 1984
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Notes: Heatmaps of the non-residential equipment and intellectual property investment networks are
constructed from the bridge files as described in Appendix A.2. The pre-84 network corresponds to the
years 1947-1983 and the post-84 network corresponds to the years 1984-2018.

for the changes in the investment network over time.

Concentration of the Investment Network Table A.2 shows that the investment net-

work is significantly more concentrated than the intermediates input-output network, mea-

sured using two metrics of network skewness.46 Carvalho and Tahbaz-Salehi (2019) discuss

both of these metrics; intuitively, they compute a measure of centrality for each sector, which

determines how important of a supplier it is to other sectors, and then compute the skewness

of these centrality measures across sectors. A highly skewed set of centrality measures indi-

cates that the network is dominated by a small number of highly important sectors. Across
46We describe our measurement of the intermediates network, which follows standard procedure, in Section

3.
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Table A.2
Skewness of Investment and Intermediates Networks

Eigenvalue Centrality Weighted Outdegree
Investment network 3.32 2.70
Intermediates network 1.42 0.68

Notes: Eigenvalue centrality is defined as the eigenvector associated with the largest eigenvalue of the
matrix. The weighted outdegree is defined as the sum over columns of the network matrix. Skewness of
each of these centrality measures is computed as the sample skewness.

Table B.1
Volatility of Activity, Hubs vs. Manufacturing

Investment Hubs Non-Hubs Non-Hub Manuf.
Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84

σ(∆yst) 9.13% 9.18% 6.63% 5.51% 9.14% 6.97%
σ(∆lst) 6.14% 4.83% 3.81% 3.14% 5.12% 3.77%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added in sector s, lst is logged employment in sector s, and ∆ denotes the first difference
operator. “Investment hubs” compute the unweighted average the value of these statistics over s =
construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services.
“Non-hubs” compute the unweighted average over the remaining sectors. “Non-hub manufacturing”
computes the average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984”
performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 -
2018 subsample.

both measures of centrality, the investment network is on average roughly two to three times

more skewed than the intermediates input-output network.

B Additional Results on Descriptive Evidence of In-

vestment Hubs

This appendix present three pieces of additional analysis regarding the cyclical behavior

of investment hubs referenced in Section 2 in the main text. First, Figure B.1 presents

the correlogram between sector-level value added and aggregate GDP rather than aggregate

employment as in Figure 2. Consistent with Figure 2, hubs are more correlated with aggregate

GDP than are non-hubs, and this difference between hubs is larger in the post-1984 sample.
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Figure B.1: Correlogram of Sector-level Value Added with Aggregate GDP
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Notes: correlation of value added at sector s in year t+ h, ∆yst+h, with aggregate employment in year t,
∆yt. Both yst+h and yt are logged and ∆ denotes the first-difference operator. The x-axis varies the lead/lag
h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average the value of these statistics over
s = construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical
services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

Figure B.2: Correlogam of Sector-level Value Added with Aggregate Employment, Hubs
vs. Manufacturing
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Notes: correlation of log real value added in sector s in year t+ h, yst+h, with log aggregate employment in
year t, lt. ∆ denotes the first difference operator. The x-axis varies the lead/lag h ∈ {−2,−1, 0, 1, 2}.
“Investment hubs” compute the unweighted average the value of these statistics over s = construction,
machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs”
compute the unweighted average over the remaining sectors. “Non-hub manufacturing” computes the
average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

63



Second, we address the concern that the empirical behavior of investment hubs is driven

by the fact that two of four hubs are manufacturing sectors, and that manufacturing may

be more cyclical than other sectors for reasons outside our model. We present two pieces of

evidence against this concern. First, Table B.1 shows that non-hub manufacturing sectors

are less volatile than investment hubs. Although they are more volatile than non-hub non-

manufacturing sectors, we show in Section 4 and Appendix F that this result is consistent

with our model because durable manufacturing sectors are key suppliers to investment hubs.

Second, Figure B.2 shows that the correlation of non-hub manufacturing sectors with aggre-

gate employment is close to that of the other non-hubs and lower than the corresponding

correlation of the investment hubs.

C Equilibrium Conditions

This appendix collects the equilibrium conditions of our model.

Households We simplify the household’s problem in two ways. First, the intratemporal

consumption allocation decision implies that pjtCjt = ξjP
c
t Ct, where P c

t = ΠN
j=1

(
pjt
ξj

)ξj
is

the price index of the consumption bundle. We take the price of the consumption bundle

PC
t = 1 as our numeraire. Second, the intratemporal investment allocation decision for sector

j implies that pitIijt = λijp
I
jtIjt, where pIjt = ΠN

i=1

(
pit
λij

)λij

is the price index of the investment

bundle for sector j.

With these simplifications, the household’s problem is

max
Ct,Kjt+1,Ljt

E0

[
∞∑
t=0

βt (logCt − χLt)

]
s.t. Ct+

N∑
j=1

pIjt (Kjt+1 − (1− δj)Kjt) ≤ WtLt+
N∑
j=1

rjtKjt.

The first order conditions for this problem are

pIjt
Ct

= βEt

[
1

Ct+1

(
rjt+1 + pIjt+1(1− δj)

)]
(24)

χ =
Wt

Ct

. (25)
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Firms Before solving the firm’s profit maximization problem, we note that its cost-minimization

problem with respect to intermediate input mix implies that pitMijt = γijp
M
jt Mjt, where

pMjt = ΠN
i=1

(
pit
γij

)γij
is the price index of the materials bundle for sector j. The profit maxi-

mization problem is then

max
Ljt,Kjt,Mjt

pjtQjt −WtLjt − rjtKjt − pMjt Mjt.

where Qjt = Ajt

(
K

αj

jt L
1−αj

jt

)θj
M

1−θj
jt .

The first order conditions for this problem are

Wt = θj(1− αj)
pjtQjt

Ljt

(26)

rjt = θjαj
pjtQjt

Kjt

(27)

pMjt = (1− θj)
pjtQjt

Mjt

. (28)

Note that constant returns to scale implies

WtLjt + rjtKjt + pMjt Mjt = pjtQjt. (29)

Therefore, the accounting definition of nominal value added is simply pjtQjt − pMjt Mjt =

wtLt + rjtKjt, which is by definition pYjtYjt.

To obtain real value added, we use the Divisia index definition, which differentiates the

accounting definition of nominal value added holding prices fixed:

pYjtdYjt = pjtdQjt − pMjt dMjt

pYjtYjtd log Yjt = pjtQjtd logQjt − pMjt Mjtd logMjt

θjd log Yjt = d logQjt − (1− θj)d logMjt

d log Yjt =
1

θj
d logAjt + αjd logKjt + (1− αj)d logLjt

Integrating this expression yields that real value added is given by Yjt = A
1
θj

jt K
αj

jt L
1−αj

jt .
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Market Clearing Output market clearing for sector j ensures that gross output is used

for consumption, investment, or an intermediate in production:

Qjt = Cjt +
N∑
i=1

Ijit +
N∑
i=1

Mjit. (30)

Using the firms’ first order conditions for optimal investment and intermediates purchases,

we can rewrite this condition to avoid the need to keep track of each intermediate purchase

and consumption:

Qjt =
ξjCt

pjt
+

N∑
i=1

λjip
I
itIit

pjt
+

N∑
i=1

(1− θi)γjipitQit

pjt
(31)

D Details of Model Calibration

This appendix presents additional details on our model’s calibration. As discussed in the

main text, we choose all of the parameters other than the shock process so that the model’s

steady state corresponds to the average of the postwar U.S. economy. We then feed in the

measured productivity shocks from the data.

D.1 Steady State Parameters

Figure D.1 plots our calibrated primary input shares θj for each sector j. We calibrate the

share of intermediate inputs in production, 1 − θj, using the BEA input-output database.

Given the Cobb-Douglas structure of our production function, the shares θj are pinned down

by the ratio of value added to gross output at the firm level. We obtain this ratio for each

year in our 1947-2018 sample and then compute their average value over time.

Figure D.2 plots the calibrated labor shares 1 − αj for each sector, averaged over 1947

- 2018.47 We correct for the fact that sector-level compensation in the BEA data does not

include self-employed income by multiplying sectoral compensation by one plus the ratio

of self-employed employment to total part-time and full-time employment in the sector.48

47For years prior to 1987, we convert SIC based data to NAICS using the crosswalk in Fort and Klimek
(2018).

48This operation implicitly assumes that average compensation for self-employed workers is the same as
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Figure D.1: Calibrated Value Added Shares θj
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Notes: Values for the value-added shares θj are computed as the ratio of value added to gross output in
each sector, averaged across the entire sample, 1947-2018.

We then compute the labor share as the ratio of adjusted compensation to value added in

that sector minus indirect taxes and subsidies. Our results are also robust to making no

adjustments for self-employment.

Figure D.3 plots our calibrated depreciation rates, δj, which are equal to the average

implied depreciation rate reported in the Fixed Assets database from 1947-2018. Figure D.4

plots our calibrated Cobb-Douglas preference parameters weighting consumption in different

sectors’ output, ξj. We measure ξj as the share of total consumption expenditures purchased

from sector j.

non-self-employed workers. The BEA data on self-employment by sector covers a coarse set of sectors, so
we apply the self-employment to employment ratio to each sector based on the finest available sector in the
self-employed data. The one exception is for the management of companies and enterprises, for which we
assume that there is no self-employment. If we allowed for self-employment in that sector, the implied labor
share often exceeds one.
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Figure D.2: Calibrated Labor Shares 1− αj
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Notes: Values for the labor share 1− αj are computed from sectoral data on compensation (adjusted for
self-employment) divided by value added (with indirect taxes and subsidies removed), averaged across all
years in the data, 1947-2018.

D.2 Measured Sector-Level Productivity Series

We measure sector-level TFP using the Solow residual approach. In particular, we compute

TFP for sector j in year t as

logAjt = logQjt − θjtαjt logKjt − θjt(1− αjt) logLjt − (1− θjt) logMjt,

where the factor shares vary over time in order to capture changes in the production technol-

ogy that are outside our model (our results are robust to fixing the factor shares over time).

Annual sector value added, employment, and intermediates are measured as described in

Appendix A. We construct the capital stock for each sector in each year using the perpetual

inventory method using the nominal year-end capital stock for each sector in 1948 as our

starting point (from BEA Fixed Assets data). We then use the annual implied deprecia-

tion rates and real quantities of investment for each sector to iterate forward the capital

accumulation process and generate a time series of capital for each sector.
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Figure D.3: Calibrated Depreciation Rates δj
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Notes: Values for sector-level depreciation rates δj are taken as each sector’s average implied depreciation
rate from BEA Fixed Assets data, averaged from 1947-2018.

Figure D.4: Calibrated Consumption Shares ξj
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Notes: Values for consumption preference ξj are constructed as the fraction of total nominal consumption
expenditures on each sector’s goods or services, averaged over the entire sample 1947-2018.
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Figure D.5: Detrending Sector-Level Data
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Notes: The figure reports log sector level TFP for the Construction and Machinery Manufacturing sectors,
normalized to zero in the year 1948. We also report a fitted polynomial trend lines for polynomials of order
1, 2, and 4, estimated via OLS.

We detrend our model using a log-polynomial trend because log-linear trends provide

a poor fit to sector-level TFP. Figure D.5 plots the time series of sector-level TFP for

two example sectors, construction and machinery manufacturing. Construction TFP evolves

nonlinearly over time; a third or fourth order polynomial trend is required to capture these

nonlinearities.49 In contrast, machinery manufacturing evolves more linearly, but a poly-

nomial trend continues to fit better than a linear one. We choose a fourth order trend for

the main text in order to balance these nonlinearities against overfitting the data. However,

we show in Appendix G that our main results are robust to using lower-order polynomi-

als for detrending. Figure D.6 plots the persistence parameters ρj, which we estimate using

maximimum likelihood on detrended log-TFP.

Interpreting changes in productivity over time using principal components In

the main text, we interpreted the decline in the correlation of TFP across sectors as reflect-

ing a decline in the variance in the volatility of aggregate shocks which affect all sectors
49We do not present the third order trends in this figure for parsimony, but they are generally more similar

to fourth order trends than to the second order trends.
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Figure D.6: Calibrated Persistence Parameters ρj
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Notes: Persistence parameters ρj of sector-level TFP are estimated from detrended TFP using maximum
likelihood.

in the economy. We now provide further support for this interpretation using a principal

components decomposition similar to Garin, Pries and Sims (2018). Performing that prin-

cipal components exercise requires us to estimate a full rank covariance matrix for TFP

pre- and post-1984, which we cannot do with 37 sectors and less than 37 years of data in

each time period. We therefore collapse our data down to 30 sectors by condensing all non-

durable manufacturing sectors into one sector and then perform the principal components

decomposition on log TFP growth for 30 sectors pre- and post-1984.50

Table D.1 reports the results of this principal components exercise. The first principal

component – which can be loosely interpreted as the aggregate shock – accounts for 75%

of the variance of aggregate TFP in the pre-1984 sample, but only 35% of the variance in

the post-1984 sample. Furthermore, the variance of the residual component – which can be

loosely interpreted as the sector-specific shocks – declines by much less over time.
50We could have alternatively collapsed a different set of sectors, but we prefer this approach because:

(i) aggregating within non-durable manufacturing does not affect the investment hubs or their key suppli-
ers, (ii) many non-durable manufacturing sectors are small, (iii) and the aggregated sector of non-durable
manufacturing is more intuitive than aggregates of alternative sets of service sectors.
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Table D.1
Principal Components Analysis of Measured TFP

Sample period 1000Var(∆ logAt) Due to 1st component Residual
1949-1983 0.41 0.31 (75%) 0.10 (25%)
1984-2017 0.09 0.03 (35%) 0.06 (65%)

Notes: the aggregate shock is equal to the vector product of the loadings associated with the first principal
component with the vector of sector-level TFP. We then regress aggregate TFP on this constructed
aggregate shock and report the explained sum of squares and R2 (the variance attributable to the 1st
component) and the sum of squared errors (the variance attributable to the residual, interpreted as sectoral
shocks).

E Proofs

This appendix proves the three propositions in Section 4.

Proof of Proposition 1 Plug in the definition of sector-level real value added Yjt (omitting

capital, because it is fixed upon impact) to the Divisia index to get

d log Yt =
N∑
j=1

(
pYjtYjt

P Y
t Yt

)(
1

θj
d logAjt + (1− αj)d logLjt

)
. (32)

The intermediates first order condition (28) and the zero profit condition (29) imply that

θj is equal to the ratio of value added to gross output: θj =
pYjtYjt

pjtQjt
. Therefore, the weight on

TFP in the sum (32) is pYjtYjt

PY
t Yt

pjtQjt

pYjtYjt
=

pjtQjt

PY
t Yt

– the Domar weight.

The labor first order condition (26) can be rearranged to (1− αj)θjpjtQjt = WtLjt. But

again, the zero profits condition implies that θjpjtQjt = pYjtYjt, so this condition becomes

(1−αj)p
Y
jtYjt = WtLjt. Divide this expression by nominal GDP to get (1−αj)

pYjtYjt

PY
t Yt

=
WtLjt

PY
t Yt

.

Then sum over sectors j to get 1 − αt ≡
∑N

j=1(1 − αj)
pYjtYjt

PY
t Yt

= WtLt

PY
t Yt

, the aggregate labor

share. Then multiply this expression by Ljt

Lt
and combine with the previous expression to get

(1− αt)
Ljt

Lt
=

WtLjt

PY
t Yt

= (1− αj)
pYjtYjt

PY
t Yt

Lt

Ljt
.

Plugging all this into the expression for real GDP growth (32) gives

d log Yt =
N∑
j=1

((
pjtQjt

P Y
t Yt

)
d logAjt + (1− αt)

Ljt

Lt

d logLjt

)
.
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Under a first-order approximation fluctuations in either the Domar weight
(

pjtQjt

PY
t Yt

)
or the

employment share (1− αt)
Ljt

Lt
multiply TFP growth or employment growth, which are zero

in steady state. This insight yields the result in Proposition 1.

Proof of Proposition 2 The market clearing condition for sector j in terms of over-

all expenditures is pjtQjt = pjtCjt +
∑N

i=1 pjtIjit +
∑N

i=1 pjtMjit. Due to the Cobb-Douglas

production functions, sector i’s expenditures on intermediates from sector j is simply pro-

portional to sector i’s total sales: pjtMjit = (1−θi)γjipitQit. Similarly, sector i’s expenditures

on investment goods from sector j is pjtIjit = λjip
I
itIit, where pIit = ΠN

k=1

(
pkt
λki

)λki

is the price

index for investment (derived in Appendix C). Therefore, total expenditure on sector j is

pjtQjt = pjtCjt +
N∑
i=1

λjip
I
itIit +

N∑
i=1

(1− θi)γjipitQit. (33)

For notational convenience, define

Q̂t =


p1tQ1t

...

pNtQnt

 , Ĉt =


p1tC1t

...

pNtCnt

 , and Ît =


p1tI1t

...

pNtInt

 .

Then the market clearing condition (33) can be written in matrix form as Q̂t = Ĉt + Λ′Ît +

Γ′Q̂t, where Λ is the investment network matrix. Solve out this expression for Q̂t to get

Q̂t = (I − Γ′)
−1
(
Ĉt + Λ′Ît

)
.

Writing this equation for element j, dividing by aggregate consumption Ct, and noting that

(I − Γ′)−1 is the Leontief inverse yields Proposition 2 in the main text.
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Proof of Proposition 3 Using the first order conditions for the profit maximization

problem, equations (26)-(28)), we can write the price of each sector j’s final good as:

pjt =
1

Ajt

(
rjt
αjθj

)αjθj ( Wt

(1− αj)θj

)(1−αj)θj
(

pMjt
1− θj

)1−θj

=
1

Ajt

(
rjt
αjθj

)αjθj ( Wt

(1− αj)θj

)(1−αj)θj

∏N
i=1

(
pit
γij

)γij
1− θj

1−θj

using the fact that pMjt =
∏N

i=1

(
pit
γij

)γij
.

Taking the log of both sides gives us:

log pjt = − logAjt + αjθj log rjt + (1− αj)θj logWt +
N∑
i=1

(1− θj)γij log pit + Φj

where Φj = log

( 1
αjθj

)αjθj (
1

(1−αj)θj

)(1−αj)θj

∏N
i=1

(
1

γij

)γij

1−θj

1−θj
.

To assess the direct effect of a TFP shock on output prices, we totally differentiate the

above expression, holding fixed any response of the rental rates or wages, obtaining:

d log pjt = −d logAjt +
N∑
i=1

(1− θj)γijd log pit

Or in matrix notation,

d log pt = −d logAt + Γ′d log pt

d log pt = −L′d logAt

where d log pt is an N×1 vector of sector-level prices and d logAt is the vector of sector-level

productivity.

To relate this to the investment price index, we use the fact that pIjt =
∏N

i=1

(
pit
λij

)λij

and

74



thus:

d log pIt = Λ′d log pt

= −(LΛ)′d logAt

In non-matrix notation, this implies the result that d log pImt = −
∑N

i=1 ωimd logAit, yielding

the proposition in the text.

F Additional Results For Section 4

This appendix describes additional results mentioned in Section 4 of the main text.

F.1 Relationship to Investment-Specific Shock Literature

The role of investment hub shocks in driving fluctuations in our model is reminiscent of

the large literature on investment-specific technology shocks (see, for example, Greenwood,

Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). This litera-

ture typically works with two-sector models in which one sector produces only consumption

goods and the other only produces investment goods with no intermediate goods connec-

tions between them. Of course, our model provides a richer sectoral disaggregation to bring

the model to the data. It also shows that the correct notion of the “investment producers”

includes the key suppliers of investment hubs in the Leontief-adjusted investment network.

An equally important but more subtle issue is that the investment-specific shock litera-

ture struggles to generate positive comovement between the consumption- and investment-

producing sectors because it abstracts from intermediate goods. To help understand this

issue, rewrite equation (12) without the intermediates network:

d logLjt =
N∑

m=1

λjm

(
pI∗mI∗m
p∗jQ

∗
j

)(
d log pImtImt − d logCt

)
,

which is the same as (12) in the main text except that the Leontief-adjusted investment

network is equal to the raw network: Ω = Λ. Following the same logic in the main text, only
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Figure F.1: Elasticity of Aggregate Employment to Sectoral Shocks Without Intermediates
Network
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Notes: reduced-form elasticities of aggregate employment Nt to sector-specific shocks Ait in a version of the
model without intermediate goods (i.e. θj = 0 for all j). For each sector, we simulate the model with
σ(logAit) = 1% shocks to that sector only. The bars plot the volatility of aggregate employment σ(logNt).
Investment hubs are highlighted in red.

employment in the investment hubs will meaningfully fluctuate over time because the other

sectors have a small role in producing investment goods (i.e. λjm is small for non-hub sectors

j). In addition, only shocks to the investment hubs will generate employment fluctuations

because shocks to other sectors have a small effect on aggregate investment supply.

Figure F.1 illustrates these issues in the version of our model without the intermediates

network. Analogously to Figure 5, the figure computes the elasticity of aggregate employ-

ment with respect to a sector-specific shock Ait in each sector. Only the shocks to the

investment hubs, highlighted in red, have a meaningful impact on aggregate employment.

Furthermore, their effect on aggregate employment is primarily limited to employment in

the hubs themselves.51

51The fact that employment comovement between hubs and non-hubs approaches zero in this example,
rather than being negative, reflects our use of an infinite Frisch elasticity η → ∞. With finite Frisch η, an
increase in an investment hub sector also increases the marginal disutility of supplying labor to non-hub
sectors, which would decrease employment in those sectors and generate negative comovement. See Kim and
Kim (2006) for further discussion of the role of the Frisch elasticity η in determining sectoral comovement.
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Table F.1
Volatility of Activity, Hubs vs. Intermediate Suppliers

Investment Hubs Suppliers Others
Data Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84
σ(∆yst) 9.13% 9.18% 8.03% 6.72% 5.94% 4.90%
σ(∆lst) 6.14% 4.83% 6.04% 4.04% 2.70% 2.69%

Model Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84
σ(∆yst) 12.92% 9.63% 9.02% 7.03% 5.57% 4.93%
σ(∆lst) 9.37% 6.65% 5.93% 4.28% 1.68% 1.18%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added in sector s, lst is logged employment in sector s, and ∆ denotes the first difference
operator. “Investment hubs” compute the unweighted average the value of these statistics over s =
construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services.
“Suppliers” computes the weighted average over the non-hub sectors of durable manufacturing, wholsesale
trade, and transportation & warehousing. “Others” computes the unweighted average over the sectors not
classified as investment hubs or suppliers. “Pre-1984” performs this analysis in the 1948 - 1983 subsample
and “post-1984” performs this analysis in the 1984 - 2018 subsample.

Our model solves these comovement issues through the intermediates network; as dis-

cussed in the main text, intermediates connections to the investment hub generate em-

ployment fluctuations throughout the economy.52 In contrast, the investment-specific shocks

literature uses other nominal or real rigidities to overcome the negative comovement problem.

Another debate in this literature concerns how to measure investment-specific technology

shocks. One approach is to use the price of investment goods relative to consumption goods;

however, this price series is only weakly correlated with the aggregate cycle, so it is difficult to

generate large business cycle fluctuations with it. In our model, investment-specific shocks can

be directly measured as the productivity at investment hub sectors and their key suppliers.

Section 5 shows that these shocks generate substantial cyclical fluctuations.

F.2 Supporting Evidence for Mechanism in the Data

We present supporting evidence for the role of the key suppliers to investment hubs discussed

in 4. Table F.1 shows that the key suppliers to investment hubs are more volatile over the
52See Hornstein and Praschnik (1997) and Ascari, Phaneuf and Sims (2019) for related models which solve

the “Barro and King (1984) curse” using roundabout production.
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Figure F.2: Correlogram of Sector-level Value Added with Aggregate Employment, Hubs
vs. Intermediate Suppliers
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Notes: correlation of log real value added in sector s in year t− h, yst+h, with log aggregate employment in
year t, lt. ∆ denotes the first difference operator. The x-axis varies the lead/lag h ∈ {−2,−1, 0, 1, 2}.
“Investment hubs” compute the unweighted average the value of these statistics over s = construction,
machinery manufacturing, motor vehicles manufacturing, and professional/technical services. ”Intermediate
Suppliers” computes these statistics for the remaining durable manufacturing sectors, wholesale trade, and
transportation & warehousing. “Non-hubs” computes the unweighted average over the remaining sectors.
“Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in
the 1984 - 2018 subsample.

business cycle than other non-hub sectors, consistent with the role of the Leontief-adjusted

investment network in propagating shocks. The model provides a good fit for the behavior

of these sectors, especially for employment. The table also shows that the suppliers are less

volatile than the hubs themselves, again consistent with the model. Figure F.2 shows that

the key suppliers to investment hubs are more correlated with the aggregate business cycle

than other non-hub sectors, consistent with their role in propagating sector-specific shocks

to aggregates.

F.3 Cobb-Douglas Capital Accumulation

We now show that employment is constant in the version of the model in which we replace

the standard linear capital accumulation rule, Kjt+1 = (1−δj)Kjt+Ijt, with a Cobb-Douglas

one:

Kjt+1 = K
1−δj
jt I

δj
jt . (34)
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While this alternative rule (34) is inconsistent with national accounting practice, and thus

not suitable for a quantitative model, it is nonetheless useful in explaining how investment

drives our results. In particular, we will show that the Cobb-Douglas form (34) implies

that investment expenditure is proportional to total income, which in turn implies that

sector-specific shocks generate exactly offsetting income and substitution effects which leave

employment unchanged.53

The alternative capital accumulation rule changes the Euler equation for capital (24) into

pIjtIjt

Ct

1

δjKjt+1

= βEt

[
1

Ct+1

(
αjθj

pjt+1Qjt+1

Kjt+1

+
(1− δj)

δj

pIjt+1Ijt+1

Kjt+1

)]
.

which can be rearranged into

pIjtIjt

Ct

= βEt

[
δjαjθj

pjt+1Qjt+1

Ct+1

+ (1− δj)
pIjt+1Ijt+1

Ct+1

]
. (35)

We now guess and verify that the household’s valuation of output and investment are

constant over time. Denote those constants as I∗j =
pIjtIjt

Ct
and Q∗

j =
pjtQjt

Ct
. The Euler equation

(35) relates these two objects through

I∗j =
βδjαjθj

1− β(1− δj)
Q∗

j , (36)

Now define Bj =
βδjαjθj

1−β(1−δj)
and B to be the matrix with Bj on the diagonals and zero

off-diagonal.

We now plug (36) into the expression for the household’s value of output (11) in order

to solve for Q∗
j and I∗j . We will write the market clearing condition in matrix form using the

notation

Q∗ =


Q∗

1

...

Q∗
N

 and ξ̂ =


ξ1
...

ξN

 .

Using this notation, and plugging in our guesses, the household’s value of output from (11)
53We thank Matt Rognlie for pointing this property out to us in the one-sector RBC model.
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becomes

Q̂∗ = Lξ + βLΛ′BQ̂∗,

where the second term on the right-hand side uses the fact that I∗j = BjQ
∗
j from (36). Solving

this equation for Q∗ yields

Q∗ = (I − βLΛ′B)−1Lξ

=
∞∑
s=0

(βLΛ′B)
s Lξ (37)

Equation (37) shows that the household’s valuation of output equals the discounted sum of

its value of consumption, taking into account the ability to transfer resources over time using

investment.

The only condition we need to verify is that our guessed equilibrium is consistent with

constant labor supply. Given our growth-consistent preferences, we indeed have that L∗
j =

θj(1−αj)

χ
Q∗

j is constant over time.

Hence, the Cobb-Douglas capital accumulation equation (34) implies that investment —

and the investment network — are irrelevant for aggregate dynamics beyond their impact on

the steady state Domar weights. Intuitively, the Cobb-Douglas capital accumulation equation

implies that investment expenditures are proportional to total income, which in turn is

proportional to gross output. Therefore, sector-specific shocks generate equal-sized income

and substitution effects, just as in the model without investment.

Our full model with the linear capital accumulation rule breaks this irrelevance result

by increasing the elasticity of the capital stock with respect to current investment.54 In this

case, changes in current investment have a larger effect on the capital stock, breaking the

result that investment expenditures are proportional to output. This property allows the

household’s valuation of output, and therefore employment, to fluctuate over time.

Relationship to Full Depreciation It is well-known that the one-sector RBC model,

with the standard linear capital accumulation rule, admits a closed-form solution with con-
54Of course, with the linear accumulation rule, that elasticity becomes infinite; more generally, we conjec-

ture that increasing the elasticity beyond the Cobb-Douglas case will generate fluctuations in employment.
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Figure F.3: Stationary Distribution of Domar Weights

Notes: average values of the Domar weights E[pjtQjt

PY
t Yt

] in the model (the steady state) and the data
(averaged over the entire sample 1948-2018).

stant employment in the case of full depreciation. The discussion above makes clear that

full depreciation is just a special case of the Cobb-Douglas capital accumulation rule (34)

with δj = 1; indeed, it is the only value of δj for which the linear and Cobb-Douglas capital

accumulation rules are the same.

F.4 Other Analysis Mentioned in Main Text

This subsection collects a number of miscellaneous results referenced in Section 4.

Distribution of Domar weights Figure F.3 shows that the model fits the stationary

distribution of Domar weights fairly well. In the model, a sector’s Domar weight is equal to

its role in supplying consumption and investment goods. The Domar weights at investment

hubs are not abnormally large because investment is a smaller fraction of overall spending

than consumption.
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Figure F.4: Cyclicality of Labor Productivity Due to Sectoral Shocks
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Notes: cyclicality of labor productivity, Corr(log Yt − logLt, log Yt) in response to sector-specific shocks
Ait). For each sector, we simulate the model with σ(logAit) = 1% shocks to that sector only. Investment
hubs are highlighted in red.

Cyclicality of Labor Productivity Due to Sectoral Shocks Subtracting aggregate

employment from our expression for real GDP in Proposition 1, the impact effect of a sector-

specific shock Ait on aggregate labor productivity LPt is

d logLPt =
N∑
j=1

(
pjQj

P Y Y

)∗

d logAjt − α∗
N∑
j=1

(
Lj

L

)∗

d logLjt

All else equal, higher aggregate TFP increases labor productivity because it increases the

productivity of all factors; on the other hand, higher aggregate employment decreases labor

productivity because of decreasing returns to scale in labor (which implies that the aggregate

capital share α∗ > 0). Hence, shocks which increase weighted employment α∗d logLt by more

than the sector’s steady state Domar weight (which determines the response of aggregate

TFP) will decrease labor productivity.

Figure F.4 shows that shocks to nearly all of the investment hubs and their intermediate

suppliers decrease labor productivity. The figure plots the cyclicality of aggregate labor
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productivity in response to 1% sector-specific shocks to each sector in isolation. Shocks to

investment hubs and their suppliers generally increase aggregate employment substantially

more than their sectors’ Domar weights to decrease labor productivity. The exceptions are

professional/technical services, wholesale trade, and transportation & warehousing in the

right of the figure. While these sectors have sizeable effects on employment, the sectors

are also well-connected in the intermediates network and therefore also have large Domar

weights.

Numerical Exploration of Sectoral Investment Response to Shocks We now pro-

vide numerical comparative statics to understand the mapping from sectoral shocks to the

household’s valuation of aggregate investment, pIt It
Ct

=
∑

j p
I
jtIjt

Ct
(Proposition 2 shows how em-

ployment responds to changes in the household’s valuation of investment). Figure F.5 plots

the elasticity of the household’s valuation of aggregate investment in response to sector-

specific shocks to each sector. The blue bars show that this elasticity is very similar to the

elasticity of aggregate employment in response to the shocks plotted in Figure 5 in the main

text, consistent with Proposition 2.55

Figure F.5 also shows that the distribution of these elasticities across sectors is primarily

determined by the Leontief-adjusted investment network. In particular, the grey bars in

Figure F.5 plot the elasticities in which all these other parameters are set equal to the

average value across sectors.56 In this case, variation in these elasticities is solely determined

by heterogeneity in the Leontief-adjusted investment network. The blue and grey bars are

fairly similar, consistent with the idea that heterogeneity in the Leontief-adjusted investment

network is the primary source of differences across sectors. The main exception is the effect

of a shock to construction, which is also shaped by the low depreciation rate of residential

structures and the abnormally high capital share in real estate (detailed results available
55Given the result of Proposition 2, we can write changes in aggregate employment as dLt =

∑
j dLjt =∑

j

∑
m ωjmd

(
pI
mtImt

Ct

)
=
∑

m d
(

pI
mtImt

Ct

)∑
j ωjm. The result that the numerical response of aggregate em-

ployment is proportional to the numerical response of the aggregate household’s valuation of investment,
dLt = ϕd

pI
t It
Ct

will obtain if the row sums of ωjm are the same across sectors. This is exactly true in the
case where there are no intermediate goods, since in that case, the Leontief-adjusted network is equal to the
investment network, whose rows sum to 1 by construction.

56The parameters are depreciation rates (δj), capital shares (αj), value added shares of gross output (θj),
the persistence of TFP shocks (ρj), and consumption shares (ξj).
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Figure F.5: Elasticity of Household’s Valuation of Aggregate Investment to Sectoral Shocks
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Notes: reduced-form elasticities of the household’s valuation of aggregate investment, pI
t It
Ct

to sector-specific
shocks Ait. For each sector, we simulate the model with σ(ϵit) = 1% shocks to that sector only. The bars
plot the volatility of household’s valuation of aggregate investment σ(log

pI
t It
Ct

) divided by the volatility of
sector-specific TFP σ(logAit). The grey bars show this elasticity where all non-network parameters are set
to the mean across sectors.

upon request).

G Additional Results on Changing Business Cycles

We now provide several additional results referenced in Section 5 of the main text.

G.1 Investment Production Frictions

In this subsection, we detail how the investment production frictions from Section 5 impact

the equilibrium conditions of our model and then show that our results are robust to varying

the strength of these frictions.
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Equilibrium conditions The investment production frictions change the output market

clearing condition to be:

Qjt = Cjt +
N∑
i=1

Mijt +

(
N∑
i=1

I−ρ
ijt

)− 1
ρ

(38)

Define the total production of investment goods by sector j as Zjt =
(∑N

i=1 I
−ρ
jit

)− 1
ρ . Then

the intratemporal investment allocation decision becomes:

pit

(
Zjt

Iijt

)1+ρ

= λijp
I
jtIjt (39)

The corresponding cost-minimization problem implies that the price index of a new unit of

investment for sector j is now:

pIjt =
N∏
i=1

(
pit
λij

)λij N∏
i=1

(
Zit

Ijt

)(1+ρ)λij

(40)

Therefore, the price of purchasing an investment good is now specific to the producer-

purchaser pair; an increase in investment demand from a given sector will put upward

pressure on its price index for investment goods, dampening fluctuations in investment.

Importantly, this extension of the model does not change the results in any of the propo-

sitions presented in Section 4. Proposition 1 only relies on the definition of value added,

which is unaffected by this friction. Proposition 2 does rely on the resource constraint, which

has now been modified, but that modification does not change those results; to see this fact,

note that we can solve for Zjt using equation (40) above:

Zjt =

(
N∑
i=1

I−ρ
jit

)− 1
ρ

=

(
N∑
i=1

λjip
I
itIit

pjtZ
1+ρ
jt

)− 1
ρ

=
N∑
i=1

λjip
I
itIit

pjt
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Table G.1
Robustness with Respect to Investment Production Frictions

Baseline No Frictions Large Frictions
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.97% 2.64% 3.86% 2.38%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.38 -0.31 0.57 0.10
σ(∆lt)/σ(∆yt) 0.90 1.03 0.93 1.13 0.88 1.00
σ(∆it)/σ(∆yt) 3.78 4.11 5.63 9.22 3.74 4.16

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text, which uses
ρ = −1.04. “No Reallocation Frictions” refers to the model without reallocation frictions, i.e. ρ = −1.
“Large Reallocation Frictions” refers to the model with ρ = −1.5.

This result, together with equation (17), implies that we can still write the resource con-

straint as in equation (33) in the proof for Proposition 2. Essentially, because investment

expenditures by each sector remain Cobb-Douglas over each intermediate investment good

and markets are competitive, the expenditures on each intermediate investment good remain

proportional to total expenditure.

Finally, the result in Proposition 3 is also unchanged as long as the conditions for isolating

the direct effect of TFP shocks on investment prices are extended to include holding fixed

investment production and expenditures.

Robustness to varying ρ In our baseline results, we set the parameter ρ = −1.04 to

match movements in the distribution of investment expenditures across sectors. Table G.1

that without these frictions (setting ρ = −1), investment is more volatile than in the base-

line model, especially in the post-1984 sample. This excess volatility in turn implies higher

volatility of employment by (12), so the cyclicality of labor productivity falls by nearly 0.7

and becomes countercyclical in the post-1984 sample. On the other hand, Table G.1 shows

that increasing ρ to −1.5 does not materially impact our primary findings. Taken together,

these results indicate that while breaking the perfect substitutability matters for our results,

the precise degree of imperfect substitutability does not.
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G.2 Time Series Fit of the Model

We now show that the model provides a good fit to the observed time series of real GDP,

aggregate employment, aggregate investment, and aggregate consumption. No features of

these series were targeted in our calibration; instead, we simply fed in the realized series

of sector-level TFP shocks and let the model endogenously produce these macroeconomic

outcomes.

Figure G.1 plots the first-differenced series and Figure G.2 plots the HP-filtered ones.

In both cases, the fit is impressive; the average correlation between the model’s and data’s

series is 0.5 − 0.6.57 Importantly, aggregate consumption comoves with the business cycle,

which is a challenge in models primarily driven by shocks to investment; as we discuss

in Appendix F, our model generates comovement through the intermediates network. The

model fits the first-differenced series less well than the HP-filtered series in the post-1980s

sample due to changes in average growth rates over time. In particular, the model predicts

robust recoveries following the post-1980s recessions which did not materialize in the data

because the average growth rate fell over this period. The HP filter eliminates this change

in trend growth, bringing the model closer to the data.

G.3 Structural Change

Our baseline analysis focuses on how changing shock structure has changed observed busi-

ness cycles by holding the parameters of the economy fixed over time. However, there have

been substantial trend changes in many of these parameters over time: the decline in man-

ufacturing, the rise of services, the rise of intellectual property products, and the decline in

labor share, to name a few. While a full analysis of the impact of these structural changes on

business cycle fluctuations is beyond the scope of this paper, we present two complementary

exercises to show that our results are robust to accounting for structural change impacting

the parameters of our model.
57The weakest correlation between model and data is in employment, although this largely seems to be

due to a timing difference in the model and the data; if the model time series is shifted one time period
forward, the correlation between model and data is much higher.
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Figure G.1: Aggregate Time Series in Model and Data: First Differences

Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the
data. Each series has been logged and first-differenced.
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Figure G.2: Aggregate Time Series in Model and Data: HP Filter

Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the
data. Each series has been logged and HP filtered with smoothing parameter λ = 6.25. To avoid endpoint
bias from the HP filter, we omit the first and last three years of data of the entire sample.
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Transition Path Our first exercise allows for the structural parameters to change smoothly

over time along a perfect foresight transition path. In particular, we assume that, starting

in 1948, agents become aware of the trend path of all structural parameters of the economy

over the 1948-2018 period.58 We further assume that these trends continue through 2043 and

then gradually converge to their new steady state by 2068.59

We solve for the equilibrium over this path using a variant of the solution algorithm

developed in Maliar et al. (2020). This algorithm assumes that, while agents have perfect

foresight over the changes in the parameters of the economy, there is still uncertainty over

the realization of TFP shocks each period. We first solve for policy functions for log capital

at T , when parameter changes have ceased and the economy is stationary. We then iterate

backwards, solving for the policy functions in T − 1, taking the policy function in period T

as given. We iterate over this procedure until we have policy functions for the entire sample

(vom Lehn (2020) implements this algorithm in a similar way). We assume that the initial

condition of the economy is the steady state corresponding to the parameter values observed

in the year 1948.

We use a Smolyak grid of points to solve for the decision rules. Given the size of our state

space, we limit ourselves to a first-order Smolyak grid and approximate the policy function

for the log of capital as linear in the state variables. For tractability, and given that our

policy functions for capital are log-linear, we assume that certainty equivalence holds and

evaluate expectations with a first-order quadrature. We solve for the capital accumulation

policy functions in each period and then feed in the time series of measured TFP shocks

used in our baseline analysis.60

58We identify the trends in parameter values using a fourth-order polynomial, consistent with our approach
to detrending TFP in Section 5. Since the consumption share, investment network, and intermediate network
parameters must sum to 1, we do not compute trends for those parameters directly. Instead, we first compute
trends in the levels of consumption expenditures, intermediates expenditures, and investment expenditures,
and then compute expenditure shares based on those trends.

59We project forward these trends conservatively, on the basis of linear trends for the moving averages of
parameters for the last 5, 10, 15, or 20 years of data, selecting which yields the smallest trend growth in
absolute value. We do this to minimize the likelihood of extreme trends following the last year of observed
data.

60We set the parameter governing the investment production frictions to ρ = −1.3 because the changes
in parameter values increase the volatility of investment. Our approximated decision rules imply negative
investment in 1% of observations, which is inconsistent with our investment production frictions. In these
cases, we set investment to 10% of the depreciated capital stock in that period; our results are robust to
varying this boundary value.
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Table G.2
Allowing for Structural Change via Transition Path

Baseline Model Structural Change
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 4.57% 2.10%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.50 0.05
σ(∆lt)/σ(∆yt) 0.90 1.03 0.89 1.02
σ(∆it)/σ(∆yt) 3.78 4.11 5.43 4.66

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” corresponds to the model described in the main text. “Structural change”
corresponds to the results from the transition path exercise. “No shocks” corresponds to the results from
the transition path exercise where there are no shocks and all fluctuations are due to the trend changes in
model parameters.

Table G.2 shows that our main results continue to hold along this transition path: the

cyclicality of labor productivity falls by 0.45 (compared to 0.53 in the baseline) and the

relative volatility of employment rises by 0.13 (the same as in the baseline). The main

difference from our baseline result is that the relative volatility of investment is higher than

in the baseline analysis, reflecting the fact that our forward-looking agents change their

investment decisions in response to changes in the path of structural parameters (as well as

the simple fact that nonlinearities in the solution method increase volatility as well).

Simulation Exercises While the previous exercise allowed for smooth changes in struc-

tural parameters over time, it relied on strong assumptions regarding how firms adjust to

these parameter changes, including an unrealistic degree of foresight on the part of agents.

Our second exercise sidesteps these issues by simply simulating the model separately for

parameterizations corresponding to the pre- and post-1984 period. In particular, instead of

feeding in the realized time series of sectoral TFP shocks as in the main text, we estimate

the covariance matrix of these shocks separately for the pre vs. post 1984 subsamples and

compute population moments from those two estimates. The main challenge with this exer-

cise is that we cannot estimate a full-rank covariance matrix with 37 sectors and less than 37

years of data both pre- and post-1984 subsamples. Therefore, following the same procedure

described for the principal components analysis in Appendix D, we collapse our data to 30
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Table G.3
Allowing for Structural Change via Simulation

Baseline Model Simulation Structural Change
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.63% 2.13% 4.07% 2.04%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.76 0.42 0.80 0.43
σ(∆lt)/σ(∆yt) 0.90 1.03 0.83 0.92 0.83 0.92
σ(∆it)/σ(∆yt) 3.78 4.11 3.54 3.79 3.76 3.71

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” corresponds to the model described in the main text with 37 sectors.
“Simulation” corresponds to the simulation exercises based on estimated covariance matrices for 30 sectors.
“Structural change” corresponds to the simulation exercises, where model parameters are estimated
separately for the pre-1984 and post-1984 period.

sectors by aggregating all non-durable manufacturing sectors into a single sector. We then

estimate the covariance matrix of innovations to TFP separately for each subsample and

simulate the model for 10,000 periods for each subsample, discarding the first 100 periods

in each case. The middle panel of Table G.3 shows that, if we hold all the structural pa-

rameters fixed over time, this simulation approach generates similar changes in aggregate

business cycle patterns to feeding in the realized series as in the main text.

The right panel of Table G.3 allows for the following structural parameters to differ in

the pre- and post-1984 simulations: the investment network (λij), the intermediates network

(γij), depreciation rates (δj), capital shares (αj), the share of primary inputs in production

(θj), the persistence of TFP shocks (ρj), and the consumption shares (ξj). We compute

the average value of these parameters separately for the pre vs. post 1984 subsamples and

compute simulated moments given the covariance matrix of shocks estimated as above. The

right panel of Table G.3 shows that our key outcomes of interest do not change very much

relative to the simulation benchmark when we allow for these changes. The main exceptions

are that the model no longer generates an increase in the volatility of investment over time

and implies a somewhat larger decline in the volatility of GDP.
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G.4 Non-Cobb Douglas Production and Preferences

While our baseline analysis imposed Cobb-Douglas production and utility functions for an-

alytical tractability, we now show numerically that our results are robust to allowing for

constant elasticity of substitution (CES) functional forms. Specifically, we generalize the

production function to become

Qjt =

[
θ

1
σy

j Y
σy−1

σy

jt + (1− θj)
1
σy M

σy−1

σy

jt

] σy
σy−1

(41)

where

Yjt = Ajt

[
α

1
σk
j K

σk−1

σk
jt + (1− αj)

1
σk
j L

σk−1

σk
jt

] σk
σk−1

(42)

and

Mjt =

(
N∑
i=1

γ
1

σm
ij M

σm−1
σm

jt

) σm
σm−1

. (43)

We assume that productivity shocks affect the primary inputs because, as shown in Sato

(1976), there would otherwise not exist a unique function for real value added. Therefore,

in these exercises, we feed in productivity measured as value added net of primary inputs

(rather than measured as gross output net of all inputs as in the main text).

We also generalize the consumption aggregate which enters utility to be:

Ct =

(
N∑
j=1

ξ
1
σc
j C

σc−1
σc

jt

) σc
σc−1

. (44)

We choose values for the elasticities of substitution from Oberfield and Raval (2020) and

Atalay (2017). We set the elasticity of substitution between consumption goods to σc = 0.75,

which is on the low end of the range of values considered in Oberfield and Raval (2020) (0.75-

1.15).61 We set the elasticity between intermediate inputs to Atalay (2017)’s preferred value

σm = 0.1. We set the elasticity between primary inputs and intermediates to the midpoint of

the range of estimates in Oberfield and Raval (2020) (0.6-1), i.e., σy = 0.8. Finally, we set the
61We choose the low end of this range because Oberfield and Raval (2020) looks at finely disaggregated

manufacturing industries, which have greater similarity, and thus potentially a higher degree of substitutabil-
ity, than the 37 sectors we consider covering the entire private non-farm economy.
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Table G.4
Allowing for Non-Cobb Douglas Functional Forms

CD All CES σc only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.89% 2.79% 4.31% 2.94% 3.87% 2.79%
ρ(∆yt −∆lt,∆yt) 0.52 -0.15 0.30 -0.38 0.54 -0.14
σ(∆lt)/σ(∆yt) 0.90 1.05 0.96 1.08 0.89 1.04
σ(∆it)/σ(∆yt) 3.78 4.09 3.73 4.17 3.79 4.11

σk only σy only σm only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 4.43% 2.98% 3.85% 2.76% 3.86% 2.79%
ρ(∆yt −∆lt,∆yt) 0.24 -0.35 0.50 -0.20 0.55 -0.12
σ(∆lt)/σ(∆yt) 0.97 1.08 0.90 1.06 0.89 1.04
σ(∆it)/σ(∆yt) 3.71 4.01 3.81 4.13 3.77 4.14

CD (2nd order) All CES (2nd order) Ident Inv., CES, 2nd
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.87% 2.74% 4.38% 3.07% 3.71% 2.23%
ρ(∆yt −∆lt,∆yt) 0.52 -0.11 0.29 -0.43 0.57 0.45
σ(∆lt)/σ(∆yt) 0.89 1.04 0.96 1.10 0.92 0.92
σ(∆it)/σ(∆yt) 3.98 4.45 3.98 4.52 2.78 2.76

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “CD” corresponds to the baseline model, but instead measuring productivity shocks as
value added net of primary inputs rather than gross output net of all inputs. “All CES” corresponds to the
model with all functional forms (as described in the text) allowed to be CES. “σc only” corresponds to only
having a CES nest in consumption aggregation. “σk only” corresponds to only having a CES nest in capital
and labor. “σv only” corresponds to only having a CES nest between value added and intermediates. “σm

only” corresponds to only having a CES nest in intermediate bundling. “CD (2nd order)” corresponds to
solving the model using a 2nd order approximation when using value added based measures of TFP. “All
CES (2nd order)” corresponds to solving the model with a second order approximation with all functional
forms are CES, as described in the text. “Ident Inv., CES, 2nd” corresponds to solving the model with a
second order approximation with all functional forms are CES and where the investment network is set to
the identity matrix.

elasticity between capital and labor to Oberfield and Raval (2020)’s midrange of σk = 0.6.62

Given these parameter values, we then re-calibrate the share parameters in the production

function in order to match the expenditure shares in the model’s steady state to the data.

Table G.4 reports a number of results using these alternative functional forms. First, for

the sake of comparability, the top left panel shows the results from our baseline Cobb-Douglas
62We have also tried using Karabarbounis and Neiman (2014)’s estimate σk = 1.25 and found that this

higher elasticity does not substantially impact our results (available upon request).
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model are very similar when we measure productivity as value added net of primary inputs

(which we must do in the CES case given (42)).63 Second, the top middle panel shows that

allowing for the CES production and utility functions barely affect the changes in business

cycle statistics over time; for example, the cyclicality of labor productivity declines by 0.64

with CES functional forms compared to 0.61 with Cobb-Douglas. However, the overall level

of employment and GDP volatility is higher with the CES functional forms, consistent with

the idea that complementarity amplifies overall volatility.

The next four panels of Table G.4 decompose the role of each elasticity of substitution in

isolation, and show that the higher volatility of the CES model is driven by the complemen-

tarity between capital and labor. This finding indicates that, in the CES model, investment

fluctuations have a large impact on labor demand, which mirrors our main result in the

Cobb-Douglas model that they have a large impact on labor supply.

Finally, the bottom panels of Table G.4 investigate the role of nonlinearities by computing

a second-order approximation of the model.64 Baqaee and Farhi (2019) show how a second-

order approximation allows the model to capture rich substitution patterns which exist with

CES production functions. However, we find that these nonlinearities do not have a large

effect on the changes in aggregate fluctuations on which we focus in this paper. In fact, with

an identity investment network, there is almost no change in aggregate fluctuations, as was

the case in the first-order Cobb-Douglas specification of the main text.

G.5 Other Robustness Checks

Adding Other Frictions We now show that our results are robust to allowing for frictions

to reallocating labor across sectors and to accumulating capital within sectors. The labor

reallocation frictions we consider modify the disutility of labor to become
(∑

j L
τ+1
τ

jt

) τ
τ+1

(as in Horvath (2000)), which implies that workers are imperfect substitutes across sectors.
63Of course, the two notions of productivity are theoretically isomorphic under Cobb-Douglas production:

Ãjt = A
1
θj

jt where Ãjt is TFP measured as value added net of primary inputs and Ajt is measured as
gross output net of all inputs. However, this relationship may not hold in the data if production is not
Cobb-Douglas or there is measurement error.

64We need to specify the covariance matrix of TFP shocks in order to solve for the decision rules because
certainty equivalence does not hold in a second-order approximation. We use the sample covariance matrix
for our measured innovations to TFP for the entire period 1948-2018.
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Table G.5
Robustness with Respect to Other Frictions

Baseline Labor Reallocation Convex AC only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.63% 2.21% 3.75% 2.27%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.71 0.33 0.70 0.36
σ(∆lt)/σ(∆yt) 0.90 1.03 0.83 0.95 0.83 0.94
σ(∆it)/σ(∆yt) 3.78 4.11 3.49 3.81 3.56 3.88

All Capital Frictions
Pre-1984 Post-1984

σ(∆yt) 3.59% 2.19%
ρ(∆yt −∆lt,∆yt) 0.72 0.40
σ(∆lt)/σ(∆yt) 0.81 0.93
σ(∆it)/σ(∆yt) 3.54 3.90

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text. “Labor reallocation”
refers to adding labor reallocation frictions from Horvath (2000). “Convex AC only” refers to adding only
quadratic capital adjustment costs without investment production frictions (i.e. setting ρ = −1). “All
Capital Frictions” corresponds to including both investment production frictions and convex adjustment
costs.

We set the value of τ = 4.5 to match the volatility of employment relative to GDP in the

pre-1984 period. The capital adjustment costs modify the capital accumulation equation in

each sector to take the following form:

Kjt+1 = (1− δj)Kjt + Ijt −
ϕ

2

(
Ijt
Kjt

− δj

)2

Kjt (45)

We calibrate the size of adjustment costs ϕ to match the volatility of investment within

sectors using a decomposition for aggregate investment variance like the one for employment

in Equation (19), in a model without investment production frictions (i.e. ρ = −1). This

generates a value of ϕ = 0.5. We also consider results where we use this value for the

adjustment costs and include investment production frictions with ρ = −1.04.

Table G.5 shows that including these frictions does not significantly impact our main

findings. While both of sets of frictions decrease the relative volatility of employment – and

therefore increase the overall cyclicality of labor productivity – the cyclicality still falls over
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Table G.6
Robustness with Respect to Maintenance Investment

Baseline 12.5% Maintenance
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.51% 2.10%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.70 0.33
σ(∆lt)/σ(∆yt) 0.90 1.03 0.82 0.95
σ(∆it)/σ(∆yt) 3.78 4.11 4.02 4.38

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text, which uses
ρ = −1.04. “12.5% maintenance” adjusts the investment network to allow for an additional 12.5% of
investment expenditures to be purchased from within each sector.

time by as much in the data.

Maintenance As discussed in footnotes 4 and 7, some previous studies using the 1997

BEA capital flows table were forced to make a correction to the investment network in order

to ensure the model is invertible.65 A motivation for this correction is to account for “mainte-

nance investment” that may be a large part of investment activity but which is not accounted

for in the BEA data (see McGrattan and Schmitz Jr (1999)). However, a key challenge in

adjusting for maintenance is that the mix of sectors which produce this maintenance invest-

ment is not observable in the data. One extreme assumption is that maintenance is produced

by the same mix of sectors as the new investment recorded in our investment network; in this

case, the investment network would not change. The opposite extreme assumption is that all

maintenance investment is produced using own-sector output. We follow Foerster, Sarte and

Watson (2011) and assume that 50% of maintenance investment is produced proportionally

to the investment network process and 50% is produced using own-sector resources. Given

that McGrattan and Schmitz Jr (1999) identify maintenance expenditures to be, on average,

30% as big as new investment in national accounts (and thus roughly 20-25% of a combi-

nation of all new and maintenance investment), we account for maintenance investment by

adding a correction to the diagonal amounting to 12.5% of total investment. Table G.6 shows
65In numerical simulations we have done, it appears a key reason this correction may be necessary is

because TFP shocks are assumed to follow a random walk.
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Table G.7
Robustness with Respect to Other Levels of Detrending

Baseline (4th order) 2nd order trend 5th order trend
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.75% 2.30% 3.88% 2.66%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.66 0.23 0.47 0.07
σ(∆lt)/σ(∆yt) 0.90 1.03 0.85 0.98 0.92 1.01
σ(∆it)/σ(∆yt) 3.78 4.11 3.65 3.95 3.87 4.07

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. Different columns present results for different degrees of the polynomial trend that we
take out of measured TFP before feeding it into the model. “Baseline (4th order)” refers to the baseline
model described in the main text, detrends using a fourth-order polynomial. “2nd order trend” refers to
using a quadratic trend and “5th order trend” refers to using a 5th order polynomial.

that with this adjustment to the investment network our results continue to hold. The fact

that each sector now uses its own output for investment somewhat weakens the strength of

the investment hubs, but quantitatively, the model still generates a sizable decrease in the

correlation of labor productivity and aggregate GDP.

Detrending As discussed in the main text, we detrend measured TFP using a log-polynomial

trend before feeding it into our model. Table G.7 shows that our main results are robust to

using a second-order or fifth-order polynomial trend, rather than a fourth-order one as in

the main text.66

H Changes in Aggregate Cycles Driven by Changes in

Sectoral Comovement

This Appendix contains additional results referenced in Section 6 in the main text.
66Our results are very similar when using a third-order trend as well; we omit those results for parsimony.
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H.1 Proof of Footnote 28

We first show that the decline in the cyclicality of aggregate labor productivity is entirely

accounted for, in a statistical sense, by the increase in the volatility of employment relative to

the volatility of output (as shown in equation Footnote 28 in the main text). Of course, the

definition of the correlation between labor productivity and output is Corr(∆yt,∆yt−∆lt) =

Cov(∆yt,∆yt−∆lt)
σ(∆yt)σ(∆yt−∆lt)

where yt denotes logged and GDP and lt is logged aggregate employment (the

proof also holds for logged and HP filtered data). Using the linear properties of covariance

and rearranging, we can write this as:

Cov(∆yt,∆yt −∆lt)

σ(∆yt)σ(∆yt −∆lt)
=

Cov(∆yt,∆yt)

σ(∆yt)σ(∆yt −∆lt)
− Cov(∆yt,∆lt)

σ(∆yt)σ(∆yt −∆lt)
=

σ(yt)

σ(∆yt −∆lt)
− σ(∆lt)

σ(∆yt −∆lt)
Corr(∆yt,∆lt) =

σ(yt)

σ(∆yt −∆lt)

(
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

)

We can write σ(∆yt −∆lt) as:

σ(∆yt −∆lt) =
√

σ(∆yt)2 + σ(∆lt)2 − 2Cov(∆yt,∆lt)

= σ(∆yt)

√
1 +

(
σ(∆lt)

σ(∆yt)

)2

− 2

(
σ(∆lt)

σ(∆yt)

)
Corr(∆yt,∆lt)

Combining this expression with the previous one yields:

σ(yt)

σ(∆yt −∆lt)

(
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

)
=

1− σ(∆lt)
σ(∆yt)

Corr(∆yt,∆lt)√
1 + σ(∆lt)2

σ(∆yt)2
− 2 σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

which is expression (18) in the main text. This expression makes clear that the correlation of

labor productivity with GDP depends only on two statistics: the correlation between output

and employment (Corr(∆yt,∆lt)) and the relative standard deviation of employment and

GDP ( σ(∆lt)
σ(∆yt)

).

Table H.1 shows that the correlation of employment and GDP is stable over time; there-

fore, the rising volatility of employment relative to GDP accounts for the entire decline in

the cyclicality of labor productivity. Intuitively, since GDP and employment are so highly

correlated, the time series behavior of their ratio just depends on which component is more
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Table H.1
Components of Aggregate Labor Productivity Cyclicality

Pre-1984 Post-1984
Corr(∆yt −∆lt,∆yt) 0.56 0.28
Corr(∆yt,∆lt) 0.80 0.83
Corr(∆yt,∆lt) only 0.56 0.56
σ(∆lt)/σ(∆yt) 0.83 1.01
σ(∆lt)/σ(∆yt) only 0.56 0.30

Notes: decomposition of the cyclicality of labor productivity in the pre-1984 sample (1948 - 1983) and
post-1984 sample (1984-2018). yt is log aggregate value added, lt is log aggregate employment, and ∆ is the
first-difference operator. “Corr(∆yt,∆lt) only” computes the cyclicality of labor productivity from (18)
using the actual value of Corr(∆yt,∆lt) in each subsample but holding fixed σ(∆lt)/σ(∆yt) at its value in
the pre-1984 subsample. “σ(∆lt)/σ(∆yt) only” computes labor productivity from (18) using the actual
value of σ(∆lt)/σ(∆yt) in each subsample but holding fixed Corr(∆yt,∆lt) at its value in the pre-1984
subsample.

volatile.

H.2 Robustness of business cycle moments

We now show that the aggregated and within sector business cycle moments from Table

8 are robust to various choices in the statistical methodology. Table H.2 show that those

results, in both the model and the data, continue to hold using the HP filter rather than first

differences to detrend the data. Table H.3 shows that the average value of the within sector

statistics is similar when using fixed weights or no weights, compared to using time-varying

weights (as in the main text).

H.3 Derivation of Decomposition (19)

To derive the decomposition presented in equation (19), we start by decomposing the variance

of aggregate employment into within-sector variances and between-sector covariances. We

take a first-order Taylor approximation of aggregate employment growth, which yields

∆lt ≈
N∑
j=1

ωl
jt∆ljt
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Table H.2
Changes in Business Cycles, HP Filter

Data Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.03% 1.24% 3.27% 2.62%
ρ(yt − lt, yt) 0.52 0.14 0.63 0.66
σ(lt)/σ(yt) 0.85 1.09 0.83 0.77

Model Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.52% 1.80% 3.66% 3.22%
ρ(yt − lt, yt) 0.53 0.01 0.78 0.82
σ(lt)/σ(yt) 0.92 1.01 0.55 0.47

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log value added and lt is log employment. “Aggregated” aggregates value added across sectors using a
Tornqvist index weighted by nominal value added shares, aggregates employment as the simple sum,
HP-filters both series with smoothing parameter λ = 6.25, and computes the statistics. “Within-sector”
HP-filters each sector-level series with smoothing parameter λ = 6.25, computes the statistics, and then
averages them weighted by the average share of nominal value added within that sub-sample. To avoid
endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in
computing these figures.

Table H.3
Within-Sector Business Cycle Statistics with Different Weights

Time-Varying (Baseline) Fixed Weights Unweighted
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 5.42% 4.29% 4.98% 4.62% 6.90% 5.90%
ρ(∆yt −∆lt,∆yt) 0.69 0.67 0.68 0.69 0.76 0.76
σ(∆lt)/σ(∆yt) 0.76 0.81 0.78 0.78 0.66 0.63

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log value added, lt is log employment, and it is log investment. “Baseline” first-differences each variable,
computes the statistics, and then averages them weighted by the average share of nominal value added
within that sub-sample. In “Fixed Weights,” we use each sector’s value added share averaged for the entire
sample window to weight sectoral moments both pre- and post-1984. In “Unweighted,” we construct
moments as the simple mean across all sectors.
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where ωl
jt is the average share of sectoral employment in the aggregate for the time period

studied, lt is log aggregate employment, and ljt is log sector-level employment. The approx-

imation reflects the facts that the log of the sum is not equal to the sum of the logs and

that the shares ωl
jt are not constant over time. Given this linear expression for aggregate

employment, standard rules of variance and covariance imply the following decomposition

of aggregate employment variance:

Var(∆lt) ≈
N∑
j=1

(ωl
jt)

2Var(∆ljt) +
N∑
j=1

∑
o̸=j

ωl
jtω

l
otCov(∆ljt,∆lot)

We perform a similar decomposition for aggregate GDP, and then we consider the ratio

of these two decompositions.67 This ratio is given by:

Var(∆lt)

Var(∆yt)
≈

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt) +
∑N

j=1

∑
o̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)

+

∑N
j=1

∑
o̸=j ω

l
jtω

l
otCov(∆ljt,∆lot)∑N

j=1(ω
y
jt)

2Var(∆yjt) +
∑N

j=1

∑
o̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)

This expression can be rewritten as:

Var(∆lt)

Var(∆yt)
≈
∑N

j=1(ω
y
jt)

2Var(∆yjt)

Var(∆yt)

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt)

+

∑N
j=1

∑
o̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)

Var(∆yt)

∑N
j=1

∑
o̸=j ω

x
jtω

l
otCov(∆ljt,∆lot)∑N

j=1

∑
o̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)

And then, defining the “variance weight” as ωt =
∑N

j=1(ω
y
jt)

2Var(∆yjt)/Var(∆yt), we

obtain the final relationship (19) in the main text.

H.4 Additional Quantitative Results

Accuracy of the Decomposition Table H.4 shows that the approximate decomposition

(19) is accurate in our data. In particular, the relative variance and the standard deviation
67Since aggregate GDP is obtained via a Tornqvist index, log changes in GDP are already given as a

weighted sum of log changes in sectoral value added. Thus, the approximation only reflects the fact that the
weights are not constant over time.
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Table H.4
Accuracy of the Decomposition

Pre-84 Post-84
Actual, variance 0.68 1.02
Approximation, variance 0.68 1.04
Actual, standard deviation 0.83 1.01
Approximation, standard deviation 0.83 1.02

Notes: variance and standard deviation of real GDP to aggregate employment. “Actual” refers to the actual
values of those statistics in the aggregate data. “Approximation” refers to the right-hand side of the
decomposition (19).

Table H.5
Average Pairwise Correlations, Model vs. Data

Data Model
Employment Value added Employment Value added

Pre-1984 0.50 0.29 0.98 0.32
Post-1984 0.49 0.17 0.95 0.14
Difference -0.01 -0.12 -0.03 -0.18

Notes: average pairwise correlations ρxτ in (46). “Pre-1984” computes ρxτ in the 1948-1983 subsample and
“post-1984” computes ρxτ in the 1984-2017 subsample. “Data” refers to the data and “Model” to the model.

of employment implied by the decomposition are close to their actual values in the data.

Changes in Comovement Patterns In the main text, we asserted that the comovement

of value added across sectors fell in the post-1980s data but the comovement of employment

did not. We now support this assertion by computing the change in the average correlation

of value added and employment growth across pairs of sectors:

ρxτ ≡
∑N

i=1

∑N
j=i+1 ω

x
i ω

x
jCorr(∆xjt,∆xjt|t ∈ τ)∑N

i=1

∑N
j=i+1 ω

x
i ω

x
j

(46)

where xjt is either employment or value added and ωj are value added or employment shares.

Table H.5 shows that the correlation of value added falls nearly in half, generating most

of the decline in the covariances in the decomposition (19); in contrast, the correlation of

employment is essentially stable, generating the stability of the between sector covariances
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Figure H.1: Scatterplot of Changes in Sector-Pair Covariances
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Notes: This figure plots changes in the covariance for each pair of sectors (j, o) in our dataset. The
horizontal axis computes the change in the covariance of value added Cov(yjt, yot) in the post-1984 sample
(1984-2018) relative to the pre-1984 sample (1948-1983). Each point is weighted by the product of the two
sector-pair’s average nominal value added share over the whole sample. The blue solid line is the OLS
regression line. Employment and value added are in log first differences.

as well.68 To our knowledge, our model is the only explanation for the declining cyclicality

of aggregate labor productivity that is consistent with these facts in the data.

Sector Pair Covariance Changes In the main text, we asserted that the changes in

covariance patterns are broad-based and not driven by outliers. We illustrate these patterns

in Figure H.1, which provides a scatter plot of the change in employment and value added

covariances for each sector pair. The covariance of value added declines for most pairs of sec-

tors in the data. Further, while there is substantial heterogeneity in changes in the covariance

of employment, these changes are generally of a smaller magnitude than the changes in value

added covariance. The figure also shows that these patterns are not driven by outliers but

are occurring across many sector pairs.
68The fact that the correlation of employment across sectors is higher in our model than the data is driven

by our choice of an infinite Frisch elasticity η → ∞; this assumption implies that the marginal disutility of
labor supply is constant, so an increase in one sector’s employment does not affect the incentives to supply
labor to other sectors. With a finite Frisch elasticity η < ∞, an increase in one sector’s employment increases
the disutility of supply labor to other sectors, decreasing the level of employment comovement. However,
allowing for a finite Frisch still implies that the correlation of employment across sectors is constant over
time (details available upon request).
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Figure H.2: Model Fit of Sector-Pair Level ∆Cov(ljt, lot)−∆Cov(yjt, yot) (R2 = 53%)
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Notes: model fit to sector-pair (j, o) value of ∆Cov(ljt, lot)−∆Cov(yjt, yot), where ∆Cov(ljt, lot) is the
covariance of log first differenced employment in the post-1984 sample relative to the pre-1984 sample, and
∆Cov(yjt, yot) is the covariance of log first differenced value added in the post-1984 sample relative to the
pre-1984 sample. Horizontal axis is the value of that statistic in the data while the vertical axis is the value
in the model. The solid line is the regression line across all sectors, which has an R2 of 0.53. The dashed
line is the 45-degree line. In the plot, circle size is proportional to the product of the pair’s share of value
added over the entire sample.

Model Fit to Covariance Changes across Sector Pairs We now show that the model

also matches changes in covariance patterns across individual sector pairs well. We summarize

the sector-pair level change with the “diff-in-diff” ∆Cov(ljt, lot)−∆Cov(yjt, yot). On average,

this object is positive because employment covariances change by less than the value added

covariances, and larger values correspond to a larger divergence between employment and

value added covariances over time. We plot this diff-in-diff in the data and in the model in

Figure H.2. Although neither of these objects were targeted in the calibration, the model

explains 50% of the cross-sectional variation in the data.69

69The weighted regression line for the data and the model is slightly less steep than the 45-degree line (a
regression coefficient of 0.85), indicating that the magnitude of the differences in differences is slightly larger
in the model than in the data. However, even the R2 of the 45-degree line remains high at R2 = 0.33.
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Table H.6
Decomposition of Relative Employment Volatility, NBER-CES

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.37 0.57 100%

Variances 0.33 0.21 1.4%
Covariances 0.37 0.60 98.6%

Variance Weight 0.03 0.06
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (19) using NBER-CES data for 462 manufacturing sectors. “Variances”
refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” computes the contribution of the first
term of the decomposition (19) (in the variances row) and the contribution of the second term (in the
covariances row). Real value added is constructed using the gross output price deflator.

Decomposition in Finer Disaggregation of Manufacturing Table H.6 shows that

our results hold using a finer disaggregation of sectors within the manufacturing sector only.

These data are from the NBER-CES database, which covers 462 manufacturing sectors from

1958-2011.70 We still observe at this finely disaggregated level that the rise in the relative

variance of employment to GDP is almost exclusively due to changes in the covariance of

activity across sectors.

Equal Weights in the Decomposition Since our decomposition (19) is weighted by

sector size, the changes over time may be driven by changes in the distribution of weights

rather than changes in comovement patterns. However, H.7 shows that this is not the case;

the results are nearly identical if we use constant, equal weights over time.

HP Filter Table H.8 shows that the decomposition results are robust to using the HP

filter rather than first-differences.
70There are seven sectors which we omit because they report zero employment at some point in the sample

frame.
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Table H.7
Decomposition of Relative Employment Volatility, Equal Weights

Baseline Equal Weights
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.72 0.94 100%

Variances 0.41 0.48 15% 0.45 0.41 11%
Covariances 0.72 1.19 85% 0.76 1.06 89%

Variance Weight 0.12 0.21 0.12 0.19
( ωt =

∑N
j=1(ω

y
jt)

2Var(∆yjt)/Var(∆yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2018). “Baseline” refers to the decomposition from the main text. “Equal weights” sets all the
weights ωy

jt = ωl
jt = 1.

Table H.8
Decomposition of Relative Employment Volatility, HP Filter

First Differences HP Filter
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.72 1.09 100%

Variances 0.41 0.48 15% 0.48 0.49 13%
Covariances 0.72 1.19 85% 0.75 1.25 87%

Variance Weight 0.12 0.21 0.11 0.20
( ωt =

∑N
j=1(ω

y
jt)

2Var(∆yjt)/Var(∆yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “First differences” refers to first differencing the data as in the main text. “HP filter” refers to
using HP-filtered data. To avoid endpoint bias with the HP filter, we eliminate the first and last three
years of the sample.
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Table I.1
Effects of 1% Investment Purchase Subsidy

Baseline No intermediates
∆it 6.52% 5.25%
∆nt 1.85% 1.59%
∆nhubs

t 4.63% 5.06%
∆nnon-hubs

t 1.21% 0.48%

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text.
“Baseline” refers to full model and “No intermediates” refers to model without intermediate goods (i.e.
θj = 1 for all sectors j). ∆it is the percentage change in aggregate investment, ∆nt is the percentage
change in aggregate employment, ∆nhubs

t is the percentage change in employment at the investment hubs,
and ∆nnon-hubs

t is the percentage change in employment at the non-hubs.

I Implications of Network for Stimulus Policy

The analysis in the main text focused on how the investment network propagates sector-

specific productivity shocks; in this appendix, we briefly study how it propagates investment

stimulus policies, such as investment tax credits or the bonus depreciation allowance. We

model investment stimulus as an exogenous shock to the cost of capital:

(1− subt)× νjt, (47)

where νjt is the marginal cost of producing investment goods and subt is the policy shock.

Winberry (2020) shows that a number of actual policies map into this reduced-form shock.71

We assume that the policy shock is financed from outside the economy in order to focus on

how it affects investment incentives.72

Table I.1 shows that the investment stimulus increases employment in many sectors of

the economy. A 1% subsidy shock increases aggregate investment by more than 6%. Most

of this increased investment is produced by investment hubs, whose employment increases

by about 4.6%. Employment at non-hubs also increases by about 1.2% in order to supply
71The key intuition behind this result is that, without financial frictions, the present value of tax savings

per unit of investment is a sufficient statistic to capture the effects of these policies on investment.
72Of course, the equilibrium of our model is efficient. We think it nevertheless provides useful insights

about the positive effects of these policies, which will be important forces in a normative exercise using
richer models in which the policies may be welfare-improving.
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Figure I.1: Distributional Effects of Investment Stimulus

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text. Each
bar plots the change in employment at that particular sector, divided by the change in aggregate
employment. The sum of all the bars equals 100% of the change in aggregate employment. Red bars are the
investment hubs’ response in our baseline model, blue bars are the non hubs’ response in our baseline
model, and transparent grey bars are the responses in a version of the model in which we eliminate the
investment network by assuming all investment is done out of own-sector output.

intermediates to the investment hubs through the Leontief-adjusted investment network. The

right column of Table I.1 shows that, without these linkages from the intermediates network,

employment at the non-hubs increases by about half as much.73

Figure I.1 shows that the effects of the stimulus shock on employment are unevenly

distributed across sectors of the economy. Nearly half of the increase in aggregate employment

is concentrated in the four investment hubs because they produce the majority of investment.

There is also a sizable increase in employment in the key suppliers to investment hubs.

However, the sectors which do not supply intermediates to the hubs see virtually no change

in their employment.
73The fact that non-hubs’ employment increases even without the intermediates network reflects the fact

that they also produce some investment goods.
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Figure I.2: Distributional Effect of Investment Stimulus

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text. Each
bar plots the percentage change in employment at that particular sector. Red bars are the investment hubs’
response in our baseline model, blue bars are the non hubs’ response in our baseline model, and
transparent grey bars are the responses in a version of the model in which we eliminate the investment
network by assuming all investment is done out of own-sector output.

Figure I.1 also shows that, in a counterfactual version of the model without the investment

network (setting Λ = I), the effect of the policy is more uniformly distributed across sectors.

Without the investment network, the service sectors (in the right of the plot) account for a

larger share of the aggregate response than the non-service sectors. This result simply reflects

the fact that service sectors are larger and therefore mechanically account for a larger share of

employment fluctuations; Figure I.2 shows that the percentage change in employment within

sectors, which is not mechanically related to size, is fairly uniformly distributed across sectors

in the model without the investment network.
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