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ABSTRACT

This paper develops a sufficient-statistic formula for the unemployment gap-the difference 
between the actual unemployment rate and the efficient unemployment rate. While lowering 
unemployment puts more people into work, it forces firms to post more vacancies and to devote 
more resources to recruiting. This unemployment-vacancy tradeoff, governed by the Beveridge 
curve, determines the efficient unemployment rate. Accordingly, the unemployment gap can be 
measured from three sufficient statistics: elasticity of the Beveridge curve, social cost of 
unemployment, and cost of recruiting. Applying this formula to the United States, 1951-2019, we 
find that the efficient unemployment rate averages 4.3%, always remains between 3.0% and 
5.4%, and has been stable between 3.8% and 4.6% since 1990. As a result, the unemployment 
gap is countercyclical, reaching 6 percentage points in slumps. The US labor market is therefore 
generally inefficient and especially inefficiently slack in slumps. In turn, the unemployment gap 
is a crucial statistic to design labor-market and macroeconomic policies.
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1. Introduction

Research question. Does the labor market operate efficiently? If not, how far from effi-
ciency is it? To answer this question, we develop a new measure of the unemployment
gap—the difference between the actual unemployment rate and the efficient unem-
ployment rate. A reliable measure of the unemployment gap is necessary to a good
understanding of the labor market and macroeconomy: it guides how we model the
labor market and macroeconomy; and it is a key determinant of optimal labor-market
policies, such as unemployment insurance, and of optimal macroeconomic policies,
including monetary policy and fiscal policy.

Existing measures of the unemployment gap. Two measures of the unemployment gap
are commonly used: the difference between the unemployment rate and its trend; and
the difference between the unemployment rate and the non-accelerating-inflation rate
of unemployment (NAIRU). Although these two measures are easy to use, neither is an
ideal measure of the unemployment gap because neither the unemployment-rate trend
nor the NAIRUmeasure the efficient unemployment rate.

Our measure of the unemployment gap. This paper proposes a new measure of the
unemployment gap. The measure is based upon the theory of efficiency in modern
labor-market models (Hosios 1990; Pissarides 2000). Such models feature both unem-
ployed workers and job vacancies, each inducing welfare costs: more unemployment
means fewer people at work so less output; more vacancies means more labor devoted
to recruiting and also less output. Furthermore, these models feature a Beveridge curve:
a negative relation between unemployment and vacancies. Because of the Beveridge
curve, unemployment and vacancies cannot be simultaneously reduced: less unemploy-
ment requires more vacancies, and fewer vacancies create more unemployment. Our
analysis resolves this unemployment-vacancy tradeoff by characterizing the efficiency
point on the Beveridge curve.

To obtain an unemployment-gap measure that is easy to use, we express the un-
employment gap in terms of sufficient statistics (Chetty 2009). The sufficient-statistic
formula is simple, involving only three statistics. The formula is also easy to apply
because the statistics are estimable. Finally, the formula is valid in a broad class of
models, including in the widely used Diamond-Mortensen-Pissarides (DMP) model.
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Unemployment-gap formula. To characterize the efficient unemployment rate, we solve
the problem of a social planner who allocates labor between production, recruiting, and
unemployment subject to the Beveridge curve. We then express the efficient unemploy-
ment rate as a function of three sufficient statistics: elasticity of the Beveridge curve,
social cost of unemployment, and cost of recruiting. The difference between the actual
unemployment rate and the efficient unemployment rate gives the unemployment gap.

Comparison with the Hosios (1990) condition. We apply our efficiency condition to the
DMP model in order to compare it with the well-known Hosios condition. The two
might differ because they solve different planning problems: in the Hosios planning
problemunemployment follows a differential equation, whereas in ours unemployment
is always on the Beveridge curve. We find that when the discount rate is zero, the two
conditions coincide. When the discount rate is positive, the two conditions differ, but
they produce almost identical allocations.

Estimates of the sufficient statistics in the United States. Next we estimate the three suf-
ficient statistics in the United States. Although the Beveridge curve is stable for long
periods, it also experiences sudden shifts. To estimate the Beveridge elasticity in the
presence of these structural breaks, we use the algorithm proposed by Bai and Perron
(1998, 2003). We find that between 1951 and 2019, the Beveridge curve experiences 5
structural breaks, but the Beveridge elasticity remains stable between 0.84 and 1.02.
Next, we estimate the social cost of unemployment from the experimental evidence pre-
sented by Borgschulte and Martorell (2018) and Mas and Pallais (2019). We find that the
value from home production and recreation during unemployment only replaces 26%
of the marginal product of labor—implying a substantial social cost of unemployment.
Last, following Villena Roldan (2010), we estimate the recruiting cost from the 1997
National Employer Survey. We find that firms allocate 3.2% of their labor to recruiting.

Unemployment gap in the United States. Using the estimated statistics, we compute the
efficient unemployment rate and unemployment gap in the United States from 1951 to
2019. The efficient unemployment rate averages 4.3%, and it always remains between
3.0% and 5.4%. It started at 3.5% in 1951, climbed to 5.4% in 1978, fell to 4.6% in 1990,
and remained between 3.8% and 4.6% thereafter.

As the efficient unemployment rate remains within a narrow band while the actual
unemployment rate fluctuates widely, the unemployment gap is almost never zero.
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Hence, the US labor market is generally inefficient. In fact, the unemployment gap is
generally positive, averaging 1.4 percentage points, so the US labor market is generally
inefficiently slack. Furthermore, just like the unemployment rate, the unemployment
gap is countercyclical. For instance, the unemployment gap reached 6.2 percentage
points in 2009, in the aftermath of the Great Recession. Therefore, the US labor market
is especially inefficiently slack in slumps.1

Robustness. We explore the sensitivity of the US unemployment gap to alternative
values of the sufficient statistics. We find that for all plausible estimates of the sufficient
statistics, the unemployment gap remains within 1.2 percentage points of its baseline.
Thus our conclusions that the US labor market is generally inefficient and inefficiently
slack in slumps are robust to alternative calibrations.

2. Beveridgeanmodel of the labor market

We introduce the model of the labor market used to compute the unemployment gap.
The main feature of the model is a Beveridge curve: a negative relation between the
number of unemployed workers and the number of job vacancies.

2.1. Notations and definitions

The unemployment rate u ∈ (0, 1) is the number of unemployed workers divided by the
size of the labor force. The vacancy rate v ∈ (0,∞) is the number of vacancies divided
by the size of the labor force. The labor-market tightness θ = v/u is the number of
vacancies per unemployed worker. The employment rate n ∈ (0, 1) is the number of
employed workers divided by size of the labor force. Since the labor force consists of all
employed and unemployed workers, employment and unemployment rates are related
by n = 1 – u.

1These findings are consistent with those in Landais, Michaillat, and Saez (2018a, figure 3). They find
that the US labor market is generally inefficient, and is inefficiently slack in slumps. However, by using a
simpler model without insurance considerations, we are able to obtain further results. First, we derive a
formula for the unemployment gap and measure the gap, instead of just signing it. Second, our formula
applies to any Beveridgean model, not just the matching model. Third, we obtain a diagrammatical
representation of efficiency, which clarifies conceptual issues.

3



2.2. Beveridge curve

The only restriction imposed on the labor market is that unemployment and vacancy
rates are related by a Beveridge curve:

ASSUMPTION 1. The vacancy rate is given by a differentiable, strictly decreasing, and strictly
convex function of the unemployment rate, denoted v(u).

Beveridge curve in the data. The Beveridge curve appears in many countries (Jackman,
Pissarides, and Savouri 1990; Blanchard and Diamond 1989; Nickell et al. 2003; Diamond
and Sahin 2015; Elsby, Michaels, and Ratner 2015). As an illustration, we construct
the Beveridge curve in the United States, 1951–2019. We use the standard measure of
unemployment rate, constructed by the Bureau of Labor Statistics (2021f) from the
Current Population Survey (figure 1A). We measure the vacancy rate from two different
sources, because there is no continuous vacancy series over the period. For 1951–2000,
we use the vacancy proxy constructed by Barnichon (2010). Barnichon starts from the
help-wanted advertising index constructed by the Conference Board. He then corrects
the Conference Board index, which is based on newspaper advertisements, to take into
account the shift from print advertising to online advertising in the 1990s. Finally, he
rescales the index into vacancies and and divides it by the size of the labor force to
obtain a vacancy rate. For 2001–2019, we use the number of job openings measured by
the Bureau of Labor Statistics (2021b) in the Job Opening and Labor Turnover Survey,
divided by the civilian labor force constructed by the Bureau of Labor Statistics (2021a)
from the Current Population Survey. We then splice the two series to obtain a vacancy
rate for 1951–2019 (figure 1B).

The Beveridge curve appears in scatterplots of the unemployment and vacancy rates
(figures 1C–1F). The Beveridge curve is stable for long periods, during which unemploy-
ment and vacancies move up and down along a clearly defined branch. Furthermore,
until the mid-1980s, the Beveridge curve shifts outward at the end of each period of
stability. After the mid-1980s, the Beveridge curve shifts back inward to positions that
were typical in the 1960s and 1970s. On a logarithmic scale, each branch of the Beveridge
curve is close to linear; hence, each branch is close to isoelastic.

Microfoundations for the Beveridge curve. The Beveridge curve may arise from several
microfoundations (Elsby,Michaels, andRatner 2015). Labor-marketmodels built around
a matching function feature a Beveridge curve: for instance, the DMPmodel (Pissarides
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FIGURE 1. Beveridge curve in the United States, 1951–2019

A: The unemployment rate is constructed by the Bureau of Labor Statistics (2021f). B: For 1951–2000, the
vacancy rate is constructed by Barnichon (2010); for 2001–2019, the vacancy rate is the number of job
openings divided by the civilian labor force, both measured by the Bureau of Labor Statistics (2021a,b).
Unemployment and vacancy rates are quarterly averages of monthly series. The shaded areas are NBER-
dated recessions. C–F: Unemployment and vacancy rates come from panels A and B. For readability, we
separately plot the 1951–1969, 1970–1989, 1990–2009, and 2010–2019 periods.
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2000; Shimer 2005) and its variants with rigid wages (Hall 2005b; Hall and Milgrom
2008), large firms (Cahuc, Marque, andWasmer 2008; Elsby and Michaels 2013), and job
rationing (Michaillat 2012). Macroeconomic models in which self-employed workers
sell labor services to consumers on a matching market also feature a Beveridge curve
(Michaillat and Saez 2019, 2021). Othermicrofoundations for the Beveridge curve include
mismatch (Shimer 2007) and stock-flow matching (Ebrahimy and Shimer 2010).

It is true that in many matching models, unemployment follows a law of motion,
and the Beveridge curve is defined as the locus of unemployment and vacancies where
unemployment remains steady. Yet Pissarides (2009a, p. 236) notes that

“Perhaps surprisingly at first, but on reflection not so surprisingly, we get
a good approximation to the dynamics of unemployment if we treat unem-
ployment as if it were always on the Beveridge curve.”

Hence, many matching models assume that the Beveridge curve holds at all times, as
we do here (Pissarides 1986, 2009b; Hall 2005b,a; Elsby, Michaels, and Solon 2009).

Fluctuations along the Beveridge curve. Over the business cycle, unemployment and
vacancy rates move along the Beveridge curve (figure 1). What causes such fluctuations?
In the DMP model, shocks to workers’ bargaining power lead to fluctuations along
the Beveridge curve (Shimer 2005, table 6). Shocks to labor productivity also lead to
fluctuations along the Beveridge curve, but these are much smaller than empirical
fluctuations (Shimer 2005, table 3). In the variants of the DMPmodel by Hall (2005b),
Hall and Milgrom (2008), and Michaillat (2012), real wages are rigid, and shocks to
labor productivity generate realistic fluctuations along the Beveridge curve. In the
mismatch model by Shimer (2007) and stock-flowmatching model by Ebrahimy and
Shimer (2010), shocks to labor productivity also generate sizable fluctuations along the
Beveridge curve. Finally, in the macroeconomic models by Michaillat and Saez (2019,
2021), aggregate-demand shocks generate fluctuations along the Beveridge curve.

2.3. Beveridge elasticity

The Beveridge curve governs the tradeoff between unemployment and vacancies. The
elasticity of the Beveridge curve therefore plays a central role in the analysis.

DEFINITION 1. The Beveridge elasticity is the elasticity of the vacancy rate with respect to the
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unemployment rate along the Beveridge curve, normalized to be positive:

(1) ϵ = –
d ln(v(u))
d ln(u)

= –
u
v
· v′(u).

2.4. Social welfare

The unemployment-vacancy tradeoff is a the core of our analysis because both unem-
ployment and vacancies induce welfare costs. Consider for instance the DMPmodel
(Pissarides 2000). The labor force is composed of L > 0 workers with linear utility func-
tion. Employed workers have a productivity p > 0. Unemployed workers engage in home
production but they are less productive than employed workers; their productivity is
p · z < p.2 Firms incur a flow recruiting cost p · c > 0 for each vacancy. Hence, flow social
welfare is given by the linear function

(2) W(n,u, v) = p (n + zu – cv)L.

However, it is possible to be more general:

ASSUMPTION 2. Flow social welfare is a function of the employment rate, unemployment
rate, and vacancy rate, denotedW(n,u, v). The functionW is differentiable, strictly increasing
in n, strictly decreasing in v, and less increasing in u than n (so ∂W/∂u < ∂W/∂n). As a
result, the alternate welfare function Ŵ(u, v) =W(1 – u,u, v) is strictly decreasing in u and v.
Furthermore, the function Ŵ is quasiconcave.

Employed workers contribute to social welfare through market production, which
is why ∂W/∂n > 0. Unemployed workers contribute to social welfare through home
production and recreation (Aguiar, Hurst, and Karabarbounis 2013); this contribution is
diminished if people suffer psychic pain from being unemployed (Brand 2015; Hussam
et al. 2021). However, unemployed workers contribute less to welfare than employed
workers, so ∂W/∂u < ∂W/∂n. Vacancies reduce social welfare because to fill a vacancy,
labor and other resources must be diverted frommarket production toward recruiting.

The alternatewelfare function Ŵ(u, v) is obtained from thewelfare functionW(n,u, v)
by substituting the employment rate n by 1 – u. The property that the alternate welfare

2While Pissarides (2000, pp. 13, 21, 72, 74) initially specifies the productivity of unemployed workers
as constant—independent of the productivity of employed workers—he subsequently considers specifi-
cations in which the productivity of unemployed workers is proportional to that of employed workers.
We model the productivity of unemployed workers as proportional to that of employed workers to be
consistent with the evidence presented by Chodorow-Reich and Karabarbounis (2016).
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function decreases with the unemployment and vacancy rates captures the welfare
costs of unemployment and vacancies. We assume that the alternate welfare function
is quasiconcave to ensure that the social planner’s problem is well behaved.

2.5. Social value of nonwork

To measure the welfare cost induced by unemployment, we introduce the following
statistic:

DEFINITION 2. The social value of nonwork is the marginal rate of substitution between
unemployment and employment in the welfare function:

ζ =
∂W/∂u
∂W/∂n

< 1.

The social cost of unemployment is

(∂W/∂n) – (∂W/∂u)
∂W/∂n

= 1 – ζ > 0.

The social value of nonwork ζmeasures the marginal contribution of unemployed
workers to welfare, relative to that of employed workers. It is less than 1 because unem-
ployed workers’ contribute less to welfare than employed workers (assumption 2). The
social cost of unemployment 1 – ζ > 0 measures the welfare loss from having a person
unemployed rather than employed. Such loss comprises foregone market production
and the psychological pain of being unemployed, net of home production and the value
of recreation when unemployed.

2.6. Recruiting cost

To measure the welfare cost induced by vacancies, we introduce the following statistic:

DEFINITION 3. The recruiting cost is the marginal rate of substitution between vacancies
and employment in the welfare function, normalized to be positive:

κ = –
∂W/∂v
∂W/∂n

> 0.

The recruiting cost κmeasures the number of recruiters allocated to each vacancy.
These workers are tasked with writing and advertising the vacancy; reading applications
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and finding suitable candidates; interviewing and evaluating selected candidates; and
drafting and negotiating job offers.

3. Beveridgean unemployment gap

We solve the problem of a social planner who chooses the unemployment and vacancy
rates tomaximize welfare subject to the Beveridge curve. The solution gives the efficient
unemployment rate. To understand the tradeoffs at play, we represent efficiency in a
Beveridge diagram. To be able to measure the efficient unemployment rate empirically,
we express it with sufficient statistics. The difference between the actual unemployment
rate and the efficient unemployment rate then gives the unemployment gap.

3.1. Social planner’s problem

To find the efficient unemployment rate, we solve the problem of a social planner who
is subject to the Beveridge curve:

DEFINITION 4. The efficient unemployment and vacancy rates, denoted u∗ and v∗, maximize
social welfare Ŵ(u, v) subject to the Beveridge curve v = v(u). The efficient labor-market
tightness is θ∗ = u∗/v∗, and the unemployment gap is u – u∗.

The social planner’s problem generalizes the problem in Hosios (1990), in that it
covers any model with a Beveridge curve, not just those with a matching function, and
any quasiconcave welfare function, not just linear ones.

Comparison of the planning and decentralized solutions. The planning solution is de-
scribed by two variables: unemployment and vacancies. These variables are given
by two equations: the Beveridge curve, and the first-order condition of the planner’s
problem. By contrast, the decentralized solution is usually given by three variables: un-
employment, vacancies, andwages. These variables are usually givenby three equations:
the Beveridge curve; a wage equation; and an equation describing vacancy creation,
such as the free-entry condition in the DMPmodel.

Inmany Beveridgeanmodels, unlike inWalrasianmodels, the decentralized solution
does not overlap with the planning solution. This is because most wage mechanisms do
not ensure efficiency. For instance, in matching models, the wage is determined in a
situation of bilateral monopoly, so a range of wages is theoretically possible. A wage
mechanism picks one wage within the range. There is only an infinitesimal chance that
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FIGURE 2. Efficient unemployment rate and unemployment gap

The Beveridge curve has slope v′(u). The isowelfare curve has slope –(1 – ζ)/κ, where ζ is the social value
of nonwork and κ is the recruiting cost. The tangency of the Beveridge and isowelfare curves gives the
efficient labor-market allocation. Other allocations along the Beveridge curve are inefficient and feature
a nonzero unemployment gap.

this wage is the one ensuring efficiency (Pissarides 2000, p. 185). Accordingly, theory
does not guarantee that the unemployment gap is zero.

3.2. Efficiency in the Beveridge diagram

To illustrate the tradeoffs facing the social planner, we represent labor-market efficiency
in a Beveridge diagram (figure 2).

Beveridge diagram. The Beveridge diagram features unemployment rate on the x-axis
and vacancy rate on the y-axis. The diagram displays the Beveridge curve: the locus
of unemployment and vacancy rates that are feasible in the economy. The Beveridge
curve is downward-sloping and convex. The diagram also displays an isowelfare curve:
the locus of unemployment and vacancy rates such that social welfare Ŵ(u, v) remains
constant at some level. Since Ŵ(u, v) is decreasing in both arguments, the points inside
the isowelfare curve yield higher welfare, so the green area is an upper contour set of
Ŵ(u, v). Since the function Ŵ is quasiconcave, the upper contour sets are convex.

Efficiency condition. The efficient unemployment and vacancy rates can easily be found
in the Beveridge diagram (figure 2A). First, they have to lie on the Beveridge curve.
Second, since both unemployment and vacancies reduce welfare, they must lie on an
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isowelfare curve that is as close as possible to the origin. The closest the isowelfare
curve can be while maintaining contact with the Beveridge curve is at their tangency
point. Hence, the efficient unemployment and vacancy rates are found at the point
where the Beveridge curve is tangent to an isowelfare curve.

Furthermore, the slope of the Beveridge curve is v′(u). The slope of the isowelfare
curve is minus the marginal rate of substitution between unemployment and vacancies
in the welfare function Ŵ(u, v):

–
∂Ŵ/∂u
∂Ŵ/∂v

= –
(∂W/∂u) – (∂W/∂n)

∂W/∂v
= –

1 – (∂W/∂u)/(∂W/∂n)
–(∂W/∂v)/(∂W/∂n)

= –
1 – ζ
κ

.

We infer the following result:

PROPOSITION 1. In a Beveridge diagram, efficiency is achieved at the point where the Bev-
eridge curve is tangent to an isowelfare curve. Hence, the efficient unemployment rate is
implicitly defined by

(3) v′(u) = –
1 – ζ
κ

,

where ζ < 1 is the social value of nonwork and κ > 0 is the recruiting cost.

Formula (3) says that when the labor market operates efficiently, welfare costs and
benefits frommoving one worker from employment to unemployment are equalized.
Moving one worker from employment to unemployment reduces welfare by the social
cost of unemployment, 1 – ζ. Having one more unemployed worker also means having
–v′(u) > 0 fewer vacancies. Each vacancy reduces welfare by the recruiting cost, κ, so
welfare improves by –v′(u)κ. When welfare costs and benefits are equalized, we have
1 – ζ = –v′(u)κ, which is equivalent to (3).

Deviations from efficiency. The labor market may not operate efficiently (figure 2B).
The labor market may be above the efficiency point, where unemployment is too low,
vacancies are too high, tightness is too high, and the unemployment gap is negative. It
may also be below the efficiency point, where unemployment is too high, vacancies are
too low, tightness is too low, and the unemployment gap is positive. As both allocations
are inefficient, they lie on a worse isowelfare curve than the efficiency point.

Comparative statics. Weuse the Beveridge diagram to derive several comparative statics
(figure 3). We first consider a compensated increase in the Beveridge elasticity (analo-
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FIGURE 3. Comparative statics for the efficient unemployment rate

Each panel reproduces figure 2A before and after an increase in one of the statistics. A: The efficient
unemployment rate increases when the Beveridge elasticity increases, keeping welfare constant. B: The
efficient unemployment rate increases when the social value of nonwork increases. C: The efficient
unemployment rate increases when the recruiting cost increases.

gous to a compensated price increase in the context of Hicksian demand). This is an
increase in the Beveridge elasticity, ϵ, compensated by a shift of the Beveridge curve
so that it remains tangent to the same isowelfare curve. Such increase steepens the
Beveridge curve (figure 3A). At the previous efficiency point, the Beveridge curve is
steeper than the isowelfare curve. Therefore, the new efficiency point must be lower
than the old one on the isowelfare curve, and the Beveridge curve must shift out to
maintain welfare at the same level. Thus, the efficient unemployment rate is higher
than before. The intuition is simple: when a rise in unemployment triggers a larger drop
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in vacancies, the unemployment-vacancy tradeoff is more favorable to unemployment.
Next, we consider an increase in the social value of nonwork, ζ. The isowelfare curve

has slope –(1–ζ)/κ, so it becomesflatter everywhere (figure 3B). At the previous efficiency
point the isowelfare curve is flatter than the Beveridge curve, so the new efficiency
point is lower on the Beveridge curve. Hence, the efficient unemployment rate is higher
than before. Intuitively, when unemployment is less costly, the unemployment-vacancy
tradeoff is more favorable to unemployment.

Finally, we consider an increase in recruiting cost, κ. The isowelfare curve is flatter
everywhere, so the efficient unemployment rate is higher (figure 3C). Intuitively, when
recruiting is more costly, the unemployment-vacancy tradeoff is more favorable to
unemployment.

The following corollary summarize the comparative statics:

COROLLARY 1. The efficient unemployment rate increases after a compensated increase in the
Beveridge elasticity (increase in elasticity keeping welfare constant), after an increase in the
social value of nonwork, and after an increase in the recruiting cost.

3.3. Efficient labor-market tightness

Toward obtaining a sufficient-statistic formula for the unemployment gap, we rework
efficiency condition (3) and derive a sufficient-statistic formula for the efficient tightness.
We begin by introducing the Beveridge elasticity (1), which satisfies ϵθ = –v′(u). With
this expression, we rewrite (3) as θ = (1 – ζ)/(κϵ). In figure 2B, we see that any point
on the Beveridge curve above the efficiency point has –v′(u) > (1 – ζ)/κ, and any point
below it has –v′(u) < (1 – ζ)/κ. Using again ϵθ = –v′(u), we infer that any point above the
efficiency point satisfies θ > (1 – ζ)/(κϵ); and any point below the efficiency point has
θ < (1 – ζ)/(κϵ).

Hence we can assess the efficiency of tightness from three sufficient statistics:

PROPOSITION 2. Consider a point on the Beveridge curve with tightness θ, Beveridge elasticity
ϵ, social value of nonwork ζ, and recruiting cost κ. Tightness is inefficiently high if θ >
(1 – ζ)/(κϵ), inefficiently low if θ < (1 – ζ)/(κϵ), and efficient if

(4) θ =
1 – ζ
κϵ

.

Since the statistics ϵ, ζ, and κ generally depend on tightness θ, formula (4) only
characterizes the efficient tightness implicitly. This limitation is typical of the sufficient-
statistic approach (Chetty 2009).
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3.4. Efficient unemployment rate and unemployment gap

To compute the efficient unemployment rate and unemployment gap, we must address
the endogeneity of the sufficient statistics in (4). We use a workaround developed by
Kleven (2021):

ASSUMPTION 3. The Beveridge elasticity ϵ, social value of nonwork ζ, and recruiting cost κ
do not depend on the unemployment and vacancy rates.

How realistic is this assumption? Figure 1 suggests that the Beveridge curve is isoelas-
tic, so the assumption on the Beveridge elasticity seems valid in the United States. We do
not have comparable evidence on the social value of nonwork and recruiting cost, but
at least in the DMPmodel, these two statistics are independent of the unemployment
and vacancy rates (equation (2)).

Under assumption 3, the Beveridge curve is isoelastic:

v(u) = α · u–ϵ,

where the parameter α > 0 determines the location of the curve. On the Beveridge
curve, tightness and unemployment are related by θ = v(u)/u = α · u–(1+ϵ), and efficient
tightness and unemployment are related by θ∗ = α · (u∗)–(1+ϵ). Moreover, α can be
computed from the vacancy and unemployment rates: α = v/u–ϵ. Hence, the efficient
unemployment rate is given by

u∗ =
(
1
θ∗

· v
u–ϵ

)1/(1+ϵ)
.

Under assumption 3, formula (4) also explicitly determines the efficient tightness:

θ∗ =
1 – ζ
κϵ

.

Combining the last two equations, we obtain the following result:

PROPOSITION 3. Under assumption 3, the efficient unemployment rate u∗ can be measured
from current unemployment rate u, vacancy rate v, Beveridge elasticity ϵ, social value of
nonwork ζ, and recruiting cost κ:

(5) u∗ =
(

κϵ

1 – ζ
· v
u–ϵ

)1/(1+ϵ)
.
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The unemployment gap u – u∗ can be measured from (5).

The proposition gives an explicit formula for the unemployment gap, expressed in
terms of sufficient statistics.3 The formula is valid in any Beveridgean model, irrespec-
tive of the microfoundations for the Beveridge curve, of firms’ production functions,
of workers’ utility functions, and of wage setting. Another advantage of the formula is
that we do not need to keep track of all the shocks disturbing the labor market; we only
need to keep track of the sufficient statistics.

4. Application to the DMPmodel

We now apply sufficient-statistic formula (4) to the most widely used Beveridgean
model—the DMP model. In particular, we compare the efficient allocation given by
our formula to that given by the well-known Hosios (1990) condition. We base our
application on the DMPmodel presented by Pissarides (2000, chapter 1).

4.1. Beveridge elasticity

Matching function. We assume a Cobb-Douglas matching function:

(6) m(u, v) = ωuηv1–η,

whereω > 0 is the matching efficacy, and η ∈ (0, 1) is the matching elasticity.

Unemployment dynamics. The unemployment rate evolves according to the following
differential equation:

(7) u̇(t) = λ[1 – u(t)] –m(u(t), v(t)),

where λ is the job-separation rate. The term λ[1 – u(t)] gives the number of workers who
lose or quit their jobs and enter unemployment during a unit time. The termm(u(t), v(t))
gives the number of workers who find a job and leave unemployment during a unit time.
The difference between inflowand outflowdetermines the change in the unemployment
rate, u̇.

3We could obtain a formula for the unemployment gap without assumption 3, but we would need
three additional statistics: the elasticities of ϵ, ζ, and κ with respect to unemployment (Kleven 2021).
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Equation (7) can be expressed as a linear differential equation:

(8) u̇(t) + (λ + f )[u(t) – ub] = 0,

where f = m(u, v)/u = ωθ1–η is the job-finding rate, and

(9) ub =
λ

λ + f

is the Beveridgean unemployment rate—the critical point of the differential equation. At
the Beveridgean unemployment rate, the inflow into unemployment equals the outflow
from unemployment. To solution to differential equation (8) is

(10) u(t) – ub = [u(0) – ub]e–(λ+ f )t.

Half-life of the deviation from Beveridgean unemployment. Equation (10) shows that the
distance between the unemployment rate u(t) and the Beveridgean unemployment
rate ub decays at an exponential rate λ + f . In the United States, the rate of decay is
really fast: between 1951 and 2019, the job-finding rate averages f = 58.7% per month,
the job-separation rate averages λ = 3.4% per month, so the rate of decay averages
λ + f = 62.1% per month (appendix B). Accordingly, the half-life of the deviation from
the Beveridgean unemployment rate, u(t) – ub, is ln(2)/0.621 = 1.1 month. Since about
50% of the deviation evaporates within one month, and about 90% within one quarter,
the unemployment rate is always close the Beveridgean unemployment rate—as already
noted by Elsby, Michaels, and Solon (2009, p. 88).4

Beveridge curve. Given such short half-life, it is accurate to assume that the inflow into
unemployment equal the outflow from unemployment at all times: λ(1 – u) = m(u, v).
Then the labor market is always on the Beveridge curve

(11) v(u) =
(
λ

ω
· 1 – u
uη

)1/(1–η)
.

The function v(u) satisfies assumption 1; in particular, it is strictly convex (appendix A).
4Appendix B computes the Beveridgean unemployment rate in the United States and confirms that it

is almost indistinguishable from the actual unemployment rate.
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Beveridge elasticity. From the Beveridge curve (11), we obtain the Beveridge elasticity:

(12) ϵ =
1

1 – η

(
η +

u
1 – u

)
.

The Beveridge elasticity is closely related to the matching elasticity, η.
Unlike what assumption 3 postulates, the Beveridge elasticity depends on the unem-

ployment rate, u. However, in practice, the unemployment rate is an order ofmagnitude
smaller than thematching elasticity, so the termu/(1–u) is an order ofmagnitude smaller
than the term η. Hence, the Beveridge elasticity is approximately independent from the
unemployment rate.5

4.2. Social value of nonwork and recruiting cost

The welfare function is given by (2). From it, we see that the social value of nonwork ζ
and recruiting cost κ correspond to parameters of the model:

(13) ζ = z and κ = c.

4.3. Efficiency condition

We now use (12) and (13) to express efficiency condition (4) in terms of parameters of
the DMPmodel:

θ =
1 – η

η + u/(1 – u)
· 1 – z

c
.

On the Beveridge curve, labor flows are balanced, so λ(1 – u) = f (θ)u, where f (θ) =
ω(θ)1–η is the job-finding rate. This means that u/(1 – u) = λ/ f (θ). Accordingly, the
efficient tightness θ∗ is implicitly defined by

(14) ηθ∗ +
λ

q(θ∗)
= (1 – η)

1 – z
c
,

where q(θ) = ω(θ)–η is the vacancy-filling rate.6

5Appendix C shows that in a DMP model calibrated to US data, the endogeneity of the Beveridge
elasticity has almost no effect on the efficient unemployment rate. The efficient unemployment rate
obtained with the elasticity (12) never deviates by more than 0.18 percentage point from the baseline
obtained with a constant elasticity.

6The left-hand side of (14) is continuous and strictly increasing from 0 to∞when θ∗ goes from 0 to∞.
Since the right-hand side is a positive number, equation (14) admits a unique solution.
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4.4. Comparison with the Hosios condition

In the DMP model, workers negotiate their wages with firms via Nash bargaining.
When workers’ bargaining power β equals the matching elasticity η, the labor market is
guaranteed to operate efficiently (Hosios 1990).7Wenow compare the tightness θ∗ given
by efficiency condition (14) with the tightness θh stemming from the Hosios condition.
These two tightnesses may differ because they solve different planning problems: in
our planning problem the Beveridge curve holds at all times, whereas in the Hosios
planning problem the unemployment rate follows differential equation (8).

In the DMPmodel, tightness is determined by the job-creation curve

(15) (1 – β)(1 – z) –
[
r + λ
q(θ)

+ βθ
]
c = 0,

where r is the discount rate (Pissarides 2000, equation (1.24)). This expression holds
even if the labor market is temporarily away from the Beveridge curve (Pissarides 2000,
pp. 26–32). It is obtained by combining the wage equation, which describes the wages
obtained by Nash bargaining, and the free-entry condition, which says that vacancies
are created until all profit opportunities are exploited.When the Hosios condition holds,
β = η, so the tightness θh satisfies

(16) ηθh +
r + λ
q(θh)

= (1 – η)
1 – z
c
.

Comparing (16) with (14), we find that the tightnesses θ∗ and θh are almost identical:

PROPOSITION 4. In the DMPmodel with zero discount rate, the tightness θ∗ given by efficiency
condition (4) is the same as the tightness θh given by the Hosios condition. In the DMP model
with positive discount rate, the two tightnesses are different, but the difference is minor for
realistic discount rates. To a first-order approximation, the relative deviation between the two
tightnesses is

θ∗ – θh

θ∗
=

r
η(λ + f )

.

7Hosios (1990, p. 281) proves the result by assuming that the discount rate is zero and therefore that
the social planner maximizes steady-state welfare. But the result continues to hold when the discount
rate is positive and the social planner maximizes the present-discounted sum of flow social welfare
(Pissarides 2000, pp. 183–185).
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Under the calibration in Shimer (2005, table 2),

θ∗ – θh

θ∗
= 1.1%.

The proof is relegated to appendix A, but the intuition is simple. When the discount
rate is zero, equations (14) and (16) coincide, so they give the same tightness. When
the discount rate is positive, the two tightnesses differ; but the difference just like the
discount rate is small.8

4.5. Efficiency in the Beveridge diagram

We now illustrate the efficiency properties of the DMPmodel in a Beveridge diagram
(figure 4).

Efficiency condition. We first plot the Beveridge curve of the DMP model, given by (11).
To find the efficient allocation, we add an isowelfare curve. From (13), we see that the
isowelfare curves are linear with slope –(1 – z)/c. The efficient allocation is the point on
the Beveridge curve that is tangent to an isowelfare curve.

The solution of theDMPmodel is given by the intersection of the Beveridge curve and
job-creation curve (15). Since the job-creation curve determines a tightness θ, without
involving unemployment and vacancies, it is represented by a ray through the origin of
slope θ.

When the labor market operates efficiently, the job-creation curve runs through the
efficiency point on the Beveridge curve (figure 4A). When the discount rate is zero, our
efficiency condition coincides with the Hosios condition, so workers’ bargaining power
in the job-creation curve is β = η. When the discount rate is positive, the two conditions
differ but the difference is minuscule, so β ≈ η.

Deviations from efficiency. The labor market may not operate efficiently, however. If
workers’ bargaining power is too high, the job-creation curve is too low: unemployment
is too high, vacancies are too low, and the unemployment gap is positive (figure 4B).
Conversely, if workers’ bargaining power is too low, the job-creation curve is too high:

8In appendix D, we simulate a DMP model to compare the unemployment rate given by the sufficient-
statistic formula (5) with the unemployment rate implied by the Hosios condition. We find that the two
unemployment rates are close: the average absolute distance is only 0.17 percentage point.
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FIGURE 4. Efficient unemployment rate and unemployment gap in the DMPmodel

The Beveridge curve is given by (11). The isowelfare curve has slope –(1 – z)/c, where z is the relative
productivity of unemployment workers, and c is the recruiting cost. The job-creation curve is given by (15).
The point of tangency between the Beveridge curve and isowelfare curve gives the efficient allocation.
The intersection of the Beveridge curve and job-creation curve gives the solution of the DMPmodel.

unemployment is too low, vacancies are too high, and the unemployment gap is negative
(figure 4C).

5. Unemployment gap in the United States, 1951–2019

Next we use sufficient-statistic formula (5) to measure the unemployment gap in the
United States between 1951 and 2019. The first step is to estimate the sufficient statistics:
Beveridge elasticity, social value of nonwork, and recruiting cost.
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5.1. Beveridge elasticity

We estimate the Beveridge elasticity in the United States by regressing log vacancy rate
(from figure 1B) on log unemployment rate (from figure 1A). The data are quarterly
from 1951Q1 to 2019Q4, so the sample contains 276 observations. Since the Beveridge
curve shifts at multiple points in time, we use the algorithm proposed by Bai and Perron
(1998, 2003) to estimate linear models with multiple structural breaks.

Statistical model. We consider a statistical model withm breaks andm + 1 regimes:

ln(v(t)) = ln(αj) – ϵj · ln(u(t)) + z(t) t = Tj–1 + 1, . . . ,Tj

for j = 1, . . . ,m + 1. The observed dependent variable is the log vacancy rate, ln(v(t)).
The observed independent variable is the log unemployment rate, ln(u(t)). The error
term is denoted z(t). Them break dates are denoted T1, . . . ,Tm; moreover, T0 = 0 and
Tm+1 = 276. The parameter αj determines the intercept of the linear model in regime j.
Finally, the parameter ϵj is the Beveridge elasticity in regime j.

We jointly estimate the parametersα1, . . . ,αm+1 and ϵ1, . . . , ϵm+1 and the break dates
T1, . . . ,Tm with the Bai-Perron algorithm. The algorithm first determines the number
of structural breaks,m. It then estimates the parameters by least-squares and the break
dates by minimizing the sum of squared residuals. It finally computes confidence
intervals for the parameters and break dates.

Algorithm setup. We begin by setting up the Bai-Perron algorithm. First, we allow for
autocorrelation in the errors, and for different variances of the errors across regimes.9

To obtain standard errors robust to autocorrelation and heteroskedasticity, the algo-
rithm uses a quadratic kernel with automatic bandwidth selection based on an AR(1)
approximation, as proposed by Andrews (1991). Second, we allow for different distri-
butions of the independent and dependent variables across regimes. Third, we set the
trimming parameter to 0.15, as suggested by Bai and Perron (2003, p. 15); hence each
regime has at least 0.15× 276 = 41 observations. Fourth, we set the maximum number
of breaks to 5, as required by Bai and Perron (2003, p. 14).

9Temporary deviations from the balanced-flow assumption in the data appear in the errors. This is
why we allow the errors to be autocorrelated and heteroskedastic. Ahn and Crane (2020) impose more
structure on labor-market flows, which allows them to quantify the deviations from the balanced-flow
assumption and to estimate the Beveridge elasticity more finely.
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B. Second branch: 1961Q2–1971Q4
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C. Third branch: 1972Q1–1989Q1
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D. Fourth branch: 1989Q2–1999Q2
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E. Fifth branch: 1999Q3–2009Q3
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F. Sixth branch: 2009Q4–2019Q4

FIGURE 5. Beveridge-curve branches in the United States, 1951–2019

The Beveridge curve comes from figure 1. The number of structural breaks and their dates are estimated
with the algorithm of Bai and Perron (1998, 2003). The 5 break dates delineate 6 Beveridge-curve branches.
The wide, transparent lines depict the 95% confidence intervals for the break dates.
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Number of breaks. Next, we determine the number of structural breaks. We first exam-
ine whether a structural break exists. We run supF tests of no structural break versus
m breaks, for m = 1, . . . , 5. The tests reject the null hypothesis of no break at the 1%
significance level. We also run double-maximum tests of no structural break versus an
unknown number of breaks. Again, the tests reject the null hypothesis of no break at
the 1% significance level. Thus, at least one break is present. To estimate the number
of breaks, we consider two information criteria: the Bayesian Information Criterion
proposed by Yao (1988), and the modified Schwarz criterion proposed by Liu, Wu, and
Zidek (1997). Both criteria select 5 breaks.

Break dates. Next we estimate the 5 break dates.We find that the breaks occur in 1961Q1,
1971Q4, 1989Q1, 1999Q2, and 2009Q3. The break dates are precisely estimated as all their
95% confidence intervals cover less than 2.5 years. The 6 branches of the Beveridge
curve delineated by the break dates, together with the 95% confidence intervals for the
dates, are represented in figure 5.

Beveridge elasticity. Finally, we estimate the Beveridge elasticity in the 6 different
regimes. The elasticity estimates remain between 0.84 and 1.02, averaging 0.91 over
1951–2019 (figure 6). The elasticity estimates are fairly precise: the standard errors
remain between 0.06 and 0.15. The fit of the model is R2 = 0.91. Such good fit confirms
that unemployment and vacancy rates travel in the vicinity of an isoelastic curve that
occasionally shifts.

Comparison with estimates of the matching elasticity. In the DMPmodel, the Beveridge
elasticity is directly related to the matching elasticity. Using (12), we find that our es-
timates of the Beveridge elasticity translate into estimates of the matching elasticity
between 0.39 and 0.49, with an average of 0.44 over 1951–2019 (figure A4). These estimates
of thematching elasticity fall squarely in the range of estimates obtained with aggregate
US data, which spans 0.30–0.76.10

10Blanchard and Diamond (1989, table 1) obtain estimates of the matching elasticity between 0.32
and 0.60. Bleakley and Fuhrer (1997, table 1) obtain estimates between 0.54 and 0.76. Shimer (2005,
p. 32) obtains an estimate of 0.72. Rogerson and Shimer (2011, p. 638) obtain an estimate of 0.58. Last,
Borowczyk-Martins, Jolivet, and Postel-Vinay (2013, p. 444) obtain an estimate of 0.30.
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FIGURE 6. Beveridge elasticity in the United States, 1951–2019

The Beveridge elasticity (thick purple line) is estimated by applying the Bai and Perron (1998, 2003)
algorithm to the log vacancy and unemployment rates from figure 1. The 95% confidence interval for
the elasticity (purple area) is computed using standard errors corrected for autocorrelation in the error
terms, as well as heterogeneity in the data and in the error terms across regimes. The shaded areas are
NBER-dated recessions.

5.2. Social value of nonwork

Wemeasure the social value of nonwork in the United States from revealed-preference
estimates.

Revealed-preference estimates. Using administrative data from theUSmilitary, Borgschulte
andMartorell (2018) study how servicemembers choose between reenlisting and leaving
the military. The choices allow them to estimate the utility loss caused by unemploy-
ment during the transition to civilian life. They find that home production, recreation,
and public benefits during unemployment offset between 13% and 35% of the earnings
loss caused by unemployment.

Using a large field experiment in the United States, Mas and Pallais (2019) study
how unemployed job applicants choose between randomized wage-hour bundles. The
choices imply that home production and recreation during unemployment are worth
58% of predicted earnings.

Translating revealed-preference estimates into social values of nonwork. Next, we translate
these estimates into social values of nonwork. We ignore the fact that employed and un-
employed workers value consumption differently, which allows us to measure workers’
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contribution to welfare directly from their productivity, at home or at work.11 For unem-
ployed workers, the contribution to social welfare should not include unemployment
benefits, which are just transfers.

We begin by expressing the estimates relative to the marginal product of labor
rather than to earnings. The marginal product of labor is higher than earnings for
several reasons. First, firms usually pay less than the marginal product of labor. In
a matching model, the marginal product of labor is about 3% higher than the wage
(Landais, Michaillat, and Saez 2018b, equation (1)). In amonopsonymodel, themarginal
product of labormay be 25% higher than the wage (Mas and Pallais 2019, p. 121). Second,
in the United States, workers earn less than the wage paid by firms because of the 7.7%
employer-side payroll tax. Third, Mas and Pallais discount predicted earnings by 6% to
capture the wage penalty incurred by workers who recently lost their jobs; we undo the
discounting because the penalty does not apply to the marginal product of labor (Davis
and von Wachter 2011). To conclude, to obtain a marginal product of labor, Borgschulte
and Martorell’s earnings must be adjusted by a factor between 1.03× 1.077 = 1.11 and
1.25× 1.077 = 1.35, and Mas and Pallais’s earnings must be adjusted by a factor between
1.03× 1.077× 1.06 = 1.18 and 1.25× 1.077× 1.06 = 1.43. Accordingly, to obtain an estimate
relative to the marginal product of labor, Borgschulte and Martorell’s numbers must
be adjusted by a factor between 1/1.35 = 0.74 and 1/1.11 = 0.90, and Mas and Pallais’s
number must be adjusted by a factor between 1/1.43 = 0.70 and 1/1.18 = 0.85.

Additionally, we subtract the value of public benefits from Borgschulte and Mar-
torell’s estimates. All servicemembers are eligible to unemployment insurance (UI).
Chodorow-Reich and Karabarbounis (2016, pp. 1585–1586) find that UI benefits amount
to 21.5% of the marginal product of labor. But this quantity has to be reduced for several
reasons: the UI takeup rate is only 65%; UI benefits and consumption are taxed, impos-
ing a factor of 0.83; the disutility from filing for benefits imposes a factor of 0.47; and UI
benefits expire, imposing another factor of 0.83. In sum, the average value of UI benefits
to servicemembers is 21.5×0.65×0.83×0.47×0.83 = 5% of themarginal product of labor.
Servicemembers are also eligible to other public benefits, which Chodorow-Reich and
Karabarbounis quantify at 2% of the marginal product of labor. Hence, to account for
benefits, we subtract 5% + 2% = 7% of the marginal product of labor from Borgschulte
and Martorell’s estimates.

11Landais and Spinnewijn (2021) provide revealed-preference evidence on the difference between
the marginal values of consumption for unemployed and employed workers. This evidence could be
combined with the methodology of Landais, Michaillat, and Saez (2018a) to measure the social value of
nonwork when unemployed workers are imperfectly insured.
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Overall, we find that Borgschulte and Martorell’s estimates imply a social value of
nonwork between (0.13× 0.74) – 0.07 = 0.03 and (0.35× 0.90) – 0.07 = 0.25, and that Mas
and Pallais’s estimates imply a social value of nonwork between 0.58× 0.70 = 0.41 and
0.58× 0.85 = 0.49. The range of plausible social values of nonwork therefore is 0.03–0.49.
We set the statistic to its midrange value: ζ = 0.26.

Fluctuations in the social value of nonwork. In some models, the productivities of unem-
ployed and employed workers do not move in tandem over the business cycle, which
generates fluctuations in the social value of nonwork. However, Chodorow-Reich and
Karabarbounis (2016, pp. 1599–1604) find no evidence of such fluctuations in US data.
Instead, they establish that the value of home production and recreation during unem-
ployment moves proportionally to labor productivity—which implies that the social
value of nonwork is acyclical. Accordingly, we keep the social value of nonwork constant
over the business cycle.12 The social value of nonwork could also exhibit medium-run
fluctuations; we omit them by lack of evidence.

Other contributors to the social value of nonwork. Here we measure the social value of
nonwork by revealed preferences. This approach captures the value of nonwork that
transpires from people’s choices, but it might miss externalities imposed by nonwork.

For instance, higher unemployment might lead to more crime. If the externality
was strong, the social value of nonwork would be less than that given by the revealed-
preference approach. However, unemployment appears to stimulate crime only weakly
(Freeman 1999). Hence, as a first pass, we do not deduct the cost of crime from our
estimate of the social value of nonwork.

Higher unemployment might also impede upward mobility and raises inequality
(Okun 1973; Aaronson et al. 2019). When the social planner dislikes inequality, this
externality reduces the social value of nonwork. As a first pass, we ignore the externality;
but it could be included in future estimates of the social value of nonwork.

5.3. Recruiting cost

Following Villena Roldan (2010), we measure the recruiting cost in the United States
from theNational Employer Survey conducted by the Bureau of the Census (1997) in 1997.
The survey asked thousands of establishments across industries about their recruiting

12In any case, appendix E shows that the efficient unemployment rate is virtually unchanged if the
social value of nonwork fluctuates in response to variations in labor productivity.

26



practices (Cappelli 2001). In the public-use files of the survey, 2007 establishments
report the fraction of labor costs devoted to recruiting; the mean response is 3.2%. If all
workers are paid the same, the establishments allocate 3.2% of their labor to recruiting,
so κv = 3.2%× (1 – u). In 1997, the vacancy rate is 3.3% and the unemployment rate is
4.9% (figure 1). Hence, the recruiting cost in 1997 is κ = 3.2%× (1 – 4.9%)/3.3% = 0.92.

We do not know how the US recruiting cost varies over time because there is no
other comprehensive measure of it. However, in matching models, the recruiting cost
is usually assumed to be constant over time. Lacking evidence, we follow this tradition
and assume that the recruiting cost remains at its 1997 value from 1951 to 2019.

This lack of evidence is not ideal to measure past unemployment gaps, but it could
be remedied in the future by adding a question to the Job Opening and Labor Turnover
Survey. The recruiting cost could be measured every month by asking firms to report
howmanyman-hours they devote to recruiting in addition to their number of vacancies.

5.4. Unemployment gap

We now use our estimates of the Beveridge elasticity, social value of nonwork, and
recruiting cost to measure the unemployment gap in the United States from 1951 to 2019.

Efficient labor-market tightness. We begin by computing the efficient tightness from
formula (4). The efficient tightness fluctuates between 0.79 and 0.96, mirroring the
fluctuations of the Beveridge elasticity, and it averages 0.89 (figure 7A).

Efficient unemployment rate. Next we compute the efficient unemployment rate from
formula (5). The efficient unemployment rate averages 4.3%, and it always remains
between 3.0% and 5.4% (figure 7B). It hovered around 3.5% in the 1950s and around 4.5%
in the 1960s, and it climbed to 5.4% at the end of the 1970s. This steady increase was
caused by a steady outward shift of the Beveridge curve (figures 5A–5C). The efficient
unemployment rate then declined to 4.6% at the end of the 1980s. The decline was
caused by an inward shift of the Beveridge curve (figures 5C–5D). Last, the efficient
unemployment rate remained stable through the 1990s, 2000s, and 2010s, hovering
between 3.8% and 4.6%. The efficient unemployment rate did not increase after the
Great Recession, despite an outward shift of the Beveridge curve (figures 5E–5F). This is
because the Beveridge curve also became flatter after 2009: the Beveridge elasticity fell
from 1.0 to 0.84 (figure 6). The flattening offset the outward shift, leaving the efficient
unemployment rate almost unchanged.
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FIGURE 7. Unemployment gap in the United States, 1951–2019

A: The efficient tightness is computed using (4) with ϵ from figure 6, ζ = 0.26, and κ = 0.92. The actual
tightness is the vacancy rate from figure 1B divided by the unemployment rate from figure 1A; it is
displayed as a benchmark. B: The efficient unemployment rate is computed using (5) with ϵ from figure 6,
ζ = 0.26, κ = 0.92, and the unemployment and vacancy rates from figure 1. The actual unemployment
rate comes from figure 1A; it is displayed as a benchmark. C: The unemployment gap is the difference
between the actual unemployment rate and the efficient unemployment rate from panel B. D: The
efficient unemployment rate comes from panel B; NAIRU and trend unemployment rate come from
Crump et al. (2019, figure 8B); the natural unemployment rate is constructed by the Congressional Budget
Office (2021). The shaded areas are NBER-dated recessions.

Unemployment gap. We finally compute the unemployment gap by subtracting the
efficient unemployment rate from the actual unemployment rate (figure 7C). First, the
unemployment gap is almost never zero, so the US labormarket is almost never efficient.
Second, the unemployment gap is almost always positive, so the US labor market is
almost always inefficiently slack. The unemployment gap averages 1.4 percentage points
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over 1951–2019. And it was only negative during four episodes: 1951–1953, during the
Korean war; 1965–1970, at the peak of the Vietnam war; 1999–2000, during the dot-com
bubble; and 2018–2019. Third, the unemployment gap is sharply countercyclical, so
inefficiencies are exacerbated in slumps. The unemployment gap is close to zero at
business-cycle peaks: 0.4 percentage point in 1979, –0.3 percentage point in 2000, or
0.3 percentage point in 2007. But it is highly positive at business-cycle troughs: 6.1
percentage points in 1982, 3.2 percentage points in 1992, or 6.2 percentage points in 2009.
Unsurprisingly, the largest unemployment gaps occurred after the Volcker Recession
and after the Great Recession.

5.5. Relaxing assumption 3

Although assumption 3 is required to compute theunemployment gap,we candetermine
whether unemployment is inefficiently high or low without it. Indeed, unemployment
is inefficiently high whenever tightness is inefficiently low, which happens whenever
θ < (1 – ζ)/(κϵ) (proposition 2). Since (5) can be rewritten

u∗

u
=
[

θ

(1 – ζ)/(κϵ)

]1/(1+ϵ)
,

we infer that θ < (1–ζ)/(κϵ) whenever u∗ < u. That is, unemployment is inefficiently high
whenever the unemployment gap in figure 7C is positive; conversely, unemployment
is inefficiently low whenever the unemployment gap in figure 7C is negative. In other
words, without assumption 3, the size of the unemployment gap in figure 7C may be
inaccurate, but its sign is valid.

5.6. Comparisons with other unemployment gaps

To provide some context, we compare our efficient unemployment rate to other unem-
ployment rates that are commonlyused to construct unemployment gaps: unemployment-
rate trend, NAIRU, and natural rate of unemployment (figure 7D). The unemployment-
rate trend andNAIRU are constructed by Crump et al. (2019, figure 8B) using state-of-the-
art techniques. The natural rate of unemployment is constructed by the Congressional
Budget Office (2021).

Although these unemployment rates feature prominently in policy discussions, they
are not designed to measure efficiency. In most models unemployment is not efficient
on average, so the unemployment-rate trend cannot mark efficiency (Hall 2005c). The
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NAIRU is obtained by estimating a Phillips curve, so it is not meant to indicate labor-
market efficiency (Rogerson 1997). The natural rate of unemployment blends trend and
NAIRU considerations (Shackleton 2018); it does not indicate efficiency either.

Nevertheless, the four unemployment series share similarities. First, the four series
are slow-moving. As the actual unemployment rate is sharply countercyclical, the four
series produce countercyclical unemployment gaps. Another similarity is that the four
unemployment series were higher in the 1970s and 1980s, and lower after that.

The main difference is that our series is lower than the three others. On average the
efficient unemployment rate is 1.5 percentage points below the unemployment-rate
trend, 1.2 percentage points below the NAIRU, and 1.6 percentage points below the
natural rate of unemployment. As a result, the unemployment gap constructed with
the efficient unemployment rate is higher than that constructed with the other series.
However, the four series converge in the 2010s, and as of 2018, they are close: between
3.8% and 4.5%.

5.7. Alternative calibrations of the sufficient statistics

To assess the robustness of our findings, we explore the sensitivity of the efficient un-
employment rate to alternative calibrations of the sufficient statistics. We also compute
the inverse-optimum values of the sufficient statistics—which ensure that the labor
market is always efficient (Hendren 2020). The distance between the inverse-optimum
and calibrated statistics is another measure of labor-market inefficiency.

Beveridge elasticity. We construct the efficient unemployment rate when the Beveridge
elasticity takes any value in its 95% confidence interval (figure 8A). When the elasticity
is at the bottom end of the confidence interval, the efficient unemployment rate follows
the same pattern as under the baseline calibration but is on average 0.6 percentage
point lower (bottom pink line). When the elasticity is at the top end of the confidence
interval, the efficient unemployment rate follows the same pattern as under the baseline
calibration but is on average 0.5 percentage point higher (top pink line). For any elasticity
inside the confidence interval, the efficient unemployment rate is somewhere between
these two extremes (pink area). The width of the pink area shows that for any elasticity
inside the confidence interval, the efficient unemployment rate never deviates by more
than 1.2 percentage points from its baseline.

Nextwe compute the inverse-optimumBeveridge elasticity fromproposition 2. Given
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A. Beveridge elasticity: ϵ in 95%confidence interval

1951 1970 1985 2000 2019
 0%

 3%

 6%

 9%

12%

U
ne

m
pl

oy
m

en
t r

at
e

Efficient

Actual

B. Social value of nonwork: 0.03 < ζ < 0.49
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C. Recruiting cost: 0.61 < κ < 1.23

FIGURE 8. US efficient unemployment rate for a range of sufficient statistics

The figure reproduces figure 7B, and adds the ranges of efficient unemployment rates obtained when
the sufficient statistics span all plausible values (pink areas). A: The 95% confidence interval of ϵ comes
from figure 6. The bottom pink line corresponds to the bottom-end value of ϵ, and the top pink line to
the top-end value of ϵ. B: The bottom pink line corresponds to ζ = 0.03, and the top pink line to ζ = 0.49.
C: The bottom pink line corresponds to κ = 0.61, and the top pink line to κ = 1.23.

the other sufficient statistics, actual tightness is efficient if the Beveridge elasticity is

(17) ϵ∗ =
1 – ζ
κθ

.

The inverse-optimum Beveridge elasticity ϵ∗ is strongly countercyclical: it varies be-
tween 0.5 in booms and 5.0 during the Great Recession, with an average value of 1.6
(figure 9A). It is generally above the 95% confidence interval of the estimated Bev-
eridge elasticity, and very far above it in slumps—confirming that the labor market is

31



1951 1970 1985 2000 2019
0

2

4

6
Be

ve
rid

ge
 e

la
st

ic
ity

Calibrated

Inverse 
optimum

A. Inverse-optimum Beveridge elasticity

1951 1970 1985 2000 2019
-0.5

0

0.5

1

So
ci

al
 v

al
ue

 o
f n

on
w

or
k

Calibrated

Inverse 
optimum

B. Inverse-optimum social value of nonwork

1951 1970 1985 2000 2019
0

2

4

6

R
ec

ru
iti

ng
 c

os
t

Calibrated

Inverse 
optimum

C. Inverse-optimum recruiting cost

FIGURE 9. Inverse-optimum sufficient statistics in the United States, 1951–2019

A: The inverse-optimum Beveridge elasticity is obtained from (17). The calibrated Beveridge elasticity
comes from figure 6; it is displayed as a benchmark. B: The inverse-optimum social value of nonwork is
obtained from (18). The calibrated social value of nonwork is ζ = 0.26, with a plausible range 0.03–0.49; it
is displayed as a benchmark. C: The inverse-optimum recruiting cost is obtained from (19). The calibrated
recruiting cost is κ = 0.92, with a plausible range 0.61–1.23; it is displayed as a benchmark. The shaded
areas are NBER-dated recessions.

inefficiently slack in slumps.

Social value of nonwork. Next we construct the efficient unemployment rate when the
social value of nonwork spans the range of values given by Borgschulte and Martorell
(2018) and Mas and Pallais (2019): 0.03 < ζ < 0.49 (figure 8B). When ζ = 0.03, the efficient
unemployment rate follows the same pattern as under the baseline calibration but is
on average 0.6 percentage point lower (bottom pink line). When ζ = 0.49, the efficient
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unemployment rate follows again the same pattern as under the baseline calibration but
is on average 0.9 percentage point higher (top pink line). In fact, for any ζ between 0.03
and 0.49, the efficient unemployment rate never deviates by more than 1.2 percentage
points from its baseline. This is reassuring as the range of plausible social values of
nonwork is quite wide.

Next we compute the inverse-optimum social value of nonwork from proposition 2.
Actual tightness is efficient if the social value of nonwork is

(18) ζ∗ = 1 – κϵθ.

The inverse-optimum social value of nonwork ζ∗ is immensely countercyclical: as low
as –0.32 in booms and as high as 0.88 during the Great Recession, with an average value
of 0.48 (figure 9B). Under the inverse-optimum social value of nonwork, recessions are
mere vacations.

Recruiting cost. We do not have enough evidence to construct a plausible range of
recruiting costs. Instead we construct an artificial range, which we use to assess the
sensitivity of the efficient unemployment rate to the recruiting cost (figure 8C). We
consider recruiting costs between two thirds and four thirds of our estimate, so between
κ = 2/3×0.92 = 0.61 and κ = 4/3×0.92 = 1.23. When κ = 0.61, the efficient unemployment
rate follows the same pattern as under the baseline calibration but is on average 0.8
percentage point lower (bottom pink line). When κ = 1.23, the efficient unemployment
rate follows the same pattern as under the baseline calibration but is on average 0.7
percentage point higher (top pink line). For any κ between 0.61 and 1.23, the efficient
unemployment rate remains within 1.1 percentage points of its baseline.

Finally, we compute the inverse-optimum recruiting cost from proposition 2. Actual
tightness is efficient if the recruiting cost is

(19) κ∗ =
1 – ζ
ϵθ

.

The inverse-optimum recruiting cost κ∗ is strongly countercyclical, varying between 0.5
in booms and 5.5 during the Great Recession, with an average value of 1.7 (figure 9C).
Hence, for unemployment fluctuations to be efficient, recruiting must require ten times
more labor in slumps than in booms, which seems implausible.
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FIGURE 10. US unemployment gap when the social value of nonwork is ζ = 0.96

The figure reproduces figure 7B but uses ζ = 0.96—as in Hagedorn and Manovskii (2008)—instead of
ζ = 0.26.

Conclusion. There remains clear uncertainty about the values of the sufficient statistics.
Yet, for all plausible values, the unemployment gap remains within 1.2 percentage point
of its baseline. Furthermore, the inverse-optimum values of the statistics are generally
far away from the calibrated values. Thus our findings—that the US labor market is
generally inefficient and is inefficiently slack in slumps—seem robust.

Aside on some macro-labor calibrations of the social value of nonwork. We find that the
social value of nonwork is much below 1: ζ = 0.26. In contrast, somemacro-labor papers
argue that it is very close to 1. A well-known calibration, due to Hagedorn andManovskii
(2008), is ζ = 0.96. Such calibration pushes the efficient unemployment rate above 14.9%,
and sometimes as high as 26.3%, with an average value of 20.2% (figure 10). In that case,
the US unemployment rate is always inefficiently low, even at the peak of the Great
Recession. This result is implausible, which implies that Hagedorn and Manovskii’s
calibration overstates the social value of nonwork.

6. Summary and Implications

To conclude, we summarize the results of the paper and discuss their implications.

34



6.1. Summary

This paper develops a new measure of the unemployment gap—the difference be-
tween the actual unemployment rate and the socially efficient unemployment rate. We
consider a framework with only one structural element: a Beveridge curve relating
unemployment and vacancies. This Beveridgean framework nests many modern labor-
market models, including the DMPmodel. We find that the unemployment gap can be
measured from three sufficient statistics: elasticity of the Beveridge curve, social cost
of unemployment, and cost of recruiting. Applying the formula to the United States,
1951–2019, we find that the unemployment gap is countercyclical: close to zero in booms
but highly positive in slumps. We infer that the US unemployment rate is generally
inefficiently high, and that such inefficiency worsens in slumps.

6.2. Implications for labor-market models

Our Beveridgean framework is quite general: it allows for a broad range of assumptions.
But the finding that US unemployment gap is sharply countercyclical is not consistent
with all of them. We now discuss which assumptions can generate such countercyclical
unemployment gap.

DMP model with Hosios condition. In the DMP model, workers’ bargaining power is
customarily set at the level given by the Hosios condition (Mortensen and Pissarides
1994; Shimer 2005; Costain and Reiter 2008). Such calibration is convenient because
the bargaining power is difficult to estimate empirically (Pissarides 2000, p. 229); but it
implies that unemployment is efficient at all times. Given that the US unemployment
rate is almost never efficient, theDMPmodelwithHosios conditionmight not accurately
describe the labor market. This inaccuracy is particularly problematic when the model
is used to design policies.

Models with competitive search. The DMP model assumes that search is random. An
alternative assumption is that search is directed, so jobseekers target submarkets offer-
ing advantageous employment conditions. Most directed-search models then apply the
competitive-search equilibrium developed by Moen (1997). This equilibrium concept is
tractable, but because it implies that the labor market is efficient, it may not be realistic.
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DMP model with bargaining-power shocks. By contrast, a DMP model with shocks to
workers’ bargaining power easily generates the patterns observed during US business
cycles (Shimer 2005, table 6; Jung andKuester 2015). Under such shocks, the job-creation
curve rotates up and down, while the Beveridge and isowelfare curves are fixed (fig-
ure 4). Unemployment travels up and down the Beveridge curve, while the efficient
unemployment rate is constant, which generates a countercyclical unemployment gap.

Variant of the DMP model with fixed wages. The patterns observed during US business
cycles can also be generated by a variant of the DMPmodel with fixed wages instead
of bargained wages (Shimer 2004; Hall 2005b). In such variant, the job-creation curve
is obtained by inserting a fixed wage w > 0 into the free-entry condition of the DMP
model (Pissarides 2000, equation (1.22)):

(20) 1 –
w
p
–
(r + λ)c
q(θ)

= 0.

When labor productivity is low, the unit labor cost w/p is high, so the tightness given by
(20) is low (figure 4B). Conversely, when labor productivity is high, the unit labor costw/p
is low, so the tightness given by (20) is high (figure 4C). At the same time, the Beveridge
and isowelfare curves are unaffected by labor productivity. Thus, in response to labor-
productivity shocks, unemployment travels up and down the Beveridge curve while
the efficient unemployment rate does not change, which produces a countercyclical
unemployment gap. The same results hold if wages are not fixed but merely rigid
(Michaillat 2012).

6.3. Implications for policy

The countercyclicality of the US unemployment gap has numerous policy implications.

Distance from full employment. In the United States, the 1978 Humphrey-Hawkins Full
Employment Act mandates the government to stabilize the economy at full employ-
ment. Because achieving zero unemployment is physically impossible, reaching full
employment should not be interpreted as bringing unemployment to zero. Rather, it
should be interpreted as reaching a socially efficient amount of unemployment. Viewed
in this light, US policymakers are mandated to close the unemployment gap. They could
use our unemployment-gap measure—which can be calculated in real time—to monitor
how far from full employment the economy is.
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Optimal monetary policy. The mandate to eliminate the unemployment gap is optimal
if stabilization policies have no side effects. Monetary policy is such a policy if it has no
effect on inflation, or if the divine coincidence holds—such that inflation reaches its
target when the unemployment gap vanishes (Blanchard and Gali 2007). For instance,
in a matching model with unemployment and fixed inflation, Michaillat and Saez (2021)
find that it is optimal to eliminate the unemployment gap by setting the nominal interest
rate appropriately. As the unemployment gap is countercyclical, and a reduction in
interest rate lowers unemployment (Bernanke and Blinder 1992; Coibion 2012), it is
optimal to lower the interest rate in slumps, when the unemployment gap is high, and
to raise it in booms, when the unemployment gap turns negative.

When monetary policy affects inflation and the divine coincidence fails, monetary
policy faces a tradeoff between closing the unemployment gap and bringing inflation
to its target. It is no longer optimal to eliminate the unemployment gap, but the un-
employment gap remains useful to design policy. In a New Keynesian model with
unemployment and no divine coincidence, Blanchard and Gali (2010, p. 23) find that
a monetary-policy rule responding to the unemployment gap and inflation achieves
almost the same welfare as the optimal policy. According to that almost-optimal rule,
the nominal interest rate should fall when the unemployment gap increases.

Optimal fiscal policy. If the government has only access to stabilization policies with
side effects—policies that affect social welfare not only through unemployment but
also through other channels—it is not optimal to eliminate the unemployment gap.
Nevertheless, the unemployment gap remains a key determinant of optimal policy. This
is because the unemployment gap measures the policy’s impact on welfare through
unemployment, keeping constant the policy’s impact onwelfare through other channels.

Government spending is such a policy. It can reduce the unemployment gap; but in
doing so, it shifts household consumption form private goods to public goods (Mankiw
andWeinzierl 2011). In amodel with unemployment and government spending,Michail-
lat and Saez (2019) find that optimal government spending deviates from the Samuelson
(1954) rule to reduce—but not eliminate—the unemployment gap. Since the unem-
ployment gap is countercyclical, and an increase in government spending reduces
unemployment (Ramey 2013), optimal government spending is countercyclical.

Optimal unemployment insurance. Even policies designed to alleviate the hardship from
unemployment without reducing unemployment should be adjusted when the labor
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market operates inefficiently. Unemployment insurance is one such policy. Landais,
Michaillat, and Saez (2018b) show that when the labor market is inefficient, optimal
unemployment insurance deviates from the Baily (1978)-Chetty (2006) rule to reduce the
tightness gap. Since the tightness gap is procyclical (figure 7A), and an increase in un-
employment insurance raises tightness (Landais, Michaillat, and Saez 2018a, section 3),
optimal unemployment insurance is countercyclical.

Policies for disaggregated labor markets. We compute the unemployment gap for the
aggregate US labor market, but the method could also be applied to local labor markets.
Local unemployment gaps could be used to design local policies: to target government
spending to the areas that need it most; or to tailor unemployment insurance to local
labor-market conditions.

The method could also be applied to other disaggregated labor markets, such as
labor markets for specific education levels. Education-specific unemployment gaps
would make it possible to customize policies by education group. Hiring subsidies and
firing taxes effectively modulate labor demand (Pissarides 2000, chapter 9); thus, they
could be tailored to eliminate education-specific unemployment gaps.
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Appendix A. Proofs

This appendix provides proofs that are omitted in the main text.

A.1. Proof that the DMPmodel’s Beveridge curve is strictly convex

In the DMPmodel, the Beveridge curve u 7→ v(u) is given by (11):

v(u) =
(
λ

ω
· 1 – u
uη

)1/(1–η)
.

Since (1 – u)/uη = u–η – u1–η, the derivative of the Beveridge curve is

v′(u) =
v(u)η

1 – η
· λ

ω
·
[
–ηu–η–1 – (1 – η)u–η

]
.

Reshuffling terms, we obtain

(A1) v′(u) = –
λ

ω
·
[
v(u)
u

]η
·
(
1 +

η

1 – η
· 1
u

)
.

From (A1) we verify that the Beveridge curve is strictly decreasing, because v′(u) < 0.
From (A1) we also establish that the Beveridge curve is strictly convex, because v′(u)

is strictly increasing in u. Indeed, the second factor in (A1) is strictly decreasing in u
because v(u) is strictly decreasing in u and η > 0. The third factor in (A1) is also strictly
decreasing in u because η ∈ (0, 1). Since both factors are positive, their product is strictly
decreasing in u. Given that –λ/ω < 0, v′(u) is actually strictly increasing in u.

A.2. Proof of proposition 4

We prove the proposition using the auxiliary function

(A2) G(r, θ) = ηθ +
r + λ
q(θ)

.

Since η > 0, λ > 0, and q(θ) = ωθ–η withω > 0, G(r, θ) is strictly increasing in θ for any
r ≥ 0.
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Characterization of the tightnesses θ∗ and θh. Equation (14) shows that the tightness θ∗

given by efficiency condition (4) satisfies

G(0, θ∗) = (1 – η)
1 – z
c
.

And (16) shows that the tightness θh given by the Hosios condition satisfies

G(r, θh) = (1 – η)
1 – z
c
.

Thus, for any discount rate r,

(A3) G(0, θ∗) = G(r, θh).

Zero discount rate. We begin by considering the case r = 0. Equation (A3) implies that
G(0, θ∗) = G(0, θh), so θ∗ = θh.

Positive discount rate. Next we consider the case r > 0. We assess the gap between θ∗

and θh by linearizing the function G(r, θ) around (0, θ∗). Up to a second-order term, we
have

(A4) G(r, θ) = G(0, θ∗) +
∂G
∂r

· r + ∂G
∂θ

· (θ – θ∗),

where the partial derivatives are evaluated at (0, θ∗). We obtain the partial derivatives
from (A2):

∂G
∂r

=
1

q(θ∗)
∂G
∂θ

= η +
λ

q(θ∗)
· η

θ∗
.

Using these partial derivatives, we evaluate (A4) at (r, θh):

G(r, θh) = G(0, θ∗) +
r

q(θ∗)
+ η

[
θ∗ +

λ

q(θ∗)

]
θh – θ∗

θ∗
.
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Given that G(r, θh) = G(0, θ∗), we find the relative difference between θ∗ and θh:

(A5)
θ∗ – θh

θ∗
=

r
η · ( f + λ)

,

where f = θ∗q(θ∗) is the job-finding rate at θ∗.

Shimer calibration. Last, we quantify the relative difference between θ∗ and θh using
the calibration provided by Shimer (2005, table 2): η = 0.72, r = 0.012 per quarter, λ = 0.1
per quarter, and f = 1.35 per quarter. Plugging these numbers into (A5), we find that

θ∗ – θh

θ∗
=

0.012
0.72× (1.35 + 0.1)

= 1.1%.

Appendix B. Beveridge curve in the DMPmodel

Section 4 argues that in the DMPmodel the labor market is never far from its Beveridge
curve. That is, the actual unemployment rate (given by differential equation (8)) is
never far from the Beveridgean unemployment rate (the critical point of (8), given by
equation (9)).We now illustrate this result using US data for 1951–2019. First, we compute
the job-finding rate f (t) and job-separation rate λ(t) that through (8) produce the US
unemployment rate. Then we compute the corresponding Beveridgean unemployment
rate from (9):

(A6) ub(t) =
λ(t)

λ(t) + f (t)
.

We confirm that the actual unemployment rate closely tracks the Beveridgean unem-
ployment rate.

B.1. Job-finding rate

To compute the job-finding rate, we follow Shimer (2012, pp. 130–133). We first construct
the monthly job-finding probability:

(A7) F(t) = 1 –
u(t + 1) – us(t + 1)

u(t)
,
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FIGURE A1. Quarterly job-finding rate in the United States, 1951–2019

The job-finding rate is constructed from equations (A7) and (A8), as in Shimer (2012). The shaded areas
are NBER-dated recessions.

where u(t) is the number of unemployed persons in month t, and us(t) is the number
of persons who have been unemployed for less than 5 weeks in month t (Bureau of
Labor Statistics 2021d,e). Assuming that unemployed workers find a job according to a
Poisson process with monthly arrival rate f (t), we infer the job-finding rate from the
job-finding probability:

(A8) f (t) = – ln(1 – F(t)).

Multiplying this monthly rate by 3, we obtain the quarterly job-finding rate in the United
States (figure A1). Over 1951–2019, the job-finding rate averages 1.76 per quarter, or 0.587
per month.

B.2. Job-separation rate

To compute the job-separation rate, we continue to follow Shimer (2012, pp. 130–133).
The monthly job-separation rate λ(t) is implicitly defined by

(A9) u(t + 1) =
{
1 – e–[ f (t)+λ(t)]

} λ(t)
f (t) + λ(t)

h(t) + e–[ f (t)+λ(t)]u(t),

where f (t) is the monthly job-finding rate (given by (A8)), and h(t) and u(t) are the
numbers of persons in the labor force and in unemployment (Bureau of Labor Statistics
2021a,e). Each month t, we solve (A9) to compute λ(t). Multiplying this monthly rate
by 3, we obtain the quarterly job-separation rate in the United States (figure A2). Over
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FIGURE A2. Quarterly job-separation rate in the United States, 1951–2019

The job-separation rate is constructed from (A9), as in Shimer (2012). The shaded areas are NBER-dated
recessions.

1951–2019, the job-separation rate averages 0.10 per quarter, or 0.034 per month.

B.3. Beveridgean unemployment rate

Finally, we construct the Beveridgean unemployment rate using equation (A6), the job-
finding rate from figure A1, and the job-separation rate from figure A2. The Beveridgean
unemployment rate is indistinguishable from the actual unemployment rate (figure A3).
While the maximum absolute distance between the two series is 1.5 percentage points,
the average absolute distance is only 0.2 percentage point, and the average distance is
0.01 percentage point.

Appendix C. Endogenous Beveridge elasticity in the DMPmodel

When we derive the sufficient-statistic formula for the efficient unemployment rate
(formula (5)), we assume that the sufficient statistics do not depend on the unemploy-
ment and vacancy rates (assumption 3). In the DMP model, however, the Beveridge
elasticity depends on the unemployment rate (equation (12)). But in section 4 we argue
that the formula should remain accurate because the dependence is weak. Here we
confirm this assertion. We calibrate the parameters of the DMPmodel from US data,
1951–2019. We then compute the efficient unemployment rate in the calibrated DMP
model, accounting for the endogeneity of the Beveridge elasticity. We find that the com-
puted efficient unemployment rate is almost identical to the efficient unemployment
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FIGURE A3. Beveridgean unemployment rate in the United States, 1951–2019

The Beveridgean unemployment rate is the unemployment rate on the Beveridge curve of the DMPmodel.
It is constructed using equation (A6), the job-finding rate from figure A1, and the job-separation rate
from figure A2. The actual unemployment rate comes from figure 1A; it is displayed as a benchmark.
The shaded areas are NBER-dated recessions.

rate given by formula (5).

C.1. Efficient unemployment rate with endogenous Beveridge elasticity

In the DMPmodel, when the endogeneity of the Beveridge elasticity is accounted for,
formula (14) gives the efficient tightness θ∗:

(A10) ηθ∗ +
λ

ω
(θ∗)η = (1 – η)

1 – z
c
.

Through the Beveridge curve (9), the efficient tightness θ∗ and parameters of the model
determine the efficient unemployment rate u∗:

(A11) u∗ =
(λ/ω)

(λ/ω) + (θ∗)1–η
.

C.2. Application to the United States

Toward applying formulas (A10) and (A11), we calibrate the parameters of the DMP
model from US data, 1951–2019.

Social value of nonwork and recruiting cost. As in section 5, we set the social value of
nonwork to z = 0.26 and the recruiting cost to c = 0.92.
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FIGURE A4. Matching elasticity in the United States, 1951–2019

The matching elasticity is computed using equation (A12), the Beveridge elasticity from figure 6, and the
unemployment rate from figure 1A. The shaded areas are NBER-dated recessions.

Matching elasticity. By inverting equation (12), we express the matching elasticity η as
a function of the Beveridge elasticity ϵ:

(A12) η =
1

1 + ϵ

(
ϵ –

u
1 – u

)
.

We then compute the matching elasticity from the Beveridge elasticity in figure 6 and
the unemployment rate in figure 1A. Between 1951 and 2019, the matching elasticity
averages 0.44, and it always remains between 0.39 and 0.49 (figure A4).

Separation-efficacy ratio. As we assume that unemployment is always on the Beveridge
curve, labor flows are balanced, so λ(1 – u) = f (θ)u = ωθ1–ηu. Therefore, the ratio of the
job-separation rate λ to the matching efficacyω satisfies

λ

ω
=

u
1 – u

· θ1–η.

We compute the ratio λ/ω from this relation, the unemployment rate in figure 1A, the
tightness in figure 7A, and the matching elasticity in figure A4.

Efficient unemployment rate. Plugging the parameter values into formulas (A10) and
(A11), we compute the efficient unemployment rate in the DMP model (figure A5). This
efficient unemployment rate accounts for the endogeneity of the Beveridge elasticity
that arises in the DMP model. Yet it closely tracks the baseline efficient unemployment
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FIGURE A5. US efficient unemployment rate with endogenous Beveridge elasticity

The efficient unemployment rate with endogenous Beveridge elasticity accounts for the endogeneity
of the Beveridge elasticity that appears in the DMPmodel. It is constructed by solving equations (A10)
and (A11). The efficient unemployment rate with exogenous Beveridge elasticity comes from figure 7B; it
is displayed as a benchmark. The shaded areas are NBER-dated recessions.

rate, which takes the Beveridge elasticity as exogenous. Themaximumabsolute distance
between the two series is 0.5 percentage point, and the average absolute distance is only
0.1 percentage point.

Appendix D. Hosios condition in the DMPmodel

Proposition 4 establishes that in the DMPmodel, the efficient tightness given by the Ho-
sios condition is almost identical to the efficient tightness arising from our Beveridgean
approach. Here we simulate a DMP model calibrated to US data, 1951–2019, and we
show that the efficient unemployment rates given by the Hosiosian and Beveridgean
approaches also are almost identical.

D.1. Efficient unemployment rate given by the Hosios condition

In the DMPmodel, the efficient tightness θh given by the Hosios condition satisfies (16):

(A13) ηθh +
λ + r
ω

(θh)η = (1 – η)
1 – z
c
.

Then, the efficient unemployment rate uh given by the Hosios condition solves differen-
tial equation (8), where the job-finding rate is f = f (θh). Accordingly, we compute uh(t)
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FIGURE A6. Matching efficacy in the United States, 1951–2019

The matching efficacy is constructed using equation (A15), the labor-market tightness from figure 7A,
the job-finding rate from figure A1, and the matching elasticity from figure A4. The shaded areas are
NBER-dated recessions.

recursively. We initialize uh(1) = u(1). We then iterate (10):

(A14) uh(t + 1) = ub(θh) + [uh(t) – ub(θh)]e–[λ+ f (θ
h)],

where f (θh) = ω(θh)1–η and ub(θh) = λ/[λ + f (θh)].

D.2. Application to the United States

To apply formulas (A13) and (A14), we calibrate the parameters of the DMP model from
US data, 1951–2019.

Social value of nonwork, recruiting cost, and matching elasticity. As in appendix C, we set
the social value of nonwork to z = 0.26 and the recruiting cost to c = 0.92, and we take
the matching elasticity η from figure A4.

Job-separation rate. We take the quarterly job-separation rate λ from figure A2.

Discount rate. As in Shimer (2005, table 2), we set the quarterly discount rate to r = 0.012,
which corresponds to an annual discount rate of 5%.
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FIGURE A7. Hosiosian efficient unemployment rate in the United States, 1951–2019

The Hosiosian efficient unemployment rate accounts for the dynamics of unemployment in the DMP
model. It is constructed by solving equation (A13) and iterating equation (A14). The Beveridgean efficient
unemployment rate comes from figure A5; it is displayed as a benchmark. The shaded areas are NBER-
dated recessions.

Matching efficacy. With the matching function (6), the job-finding rate is f = ωθ1–η, so
the matching efficacy satisfies

(A15) ω =
f

θ1–η
.

We compute the matching efficacy from (A15), the tightness in figure 7A, the quarterly
job-finding rate in figure A1, and the matching elasticity in figure A4; the result is
displayed in figure A6.

Efficient unemployment rate. Plugging the parameter values into formulas (A13) and
(A14), we compute the efficient unemployment rate given by the Hosios condition.
We find that this Hosiosian efficient unemployment rate is close to the Beveridgean
efficient unemployment rate computed in appendix C (figure A7). While the maximum
absolute distance between the two series is 1.1 percentage point, the average absolute
distance is only 0.2 percentage point, and the average distance is 0.03 percentage point.
Moreover, the difference between the two series is not due to differences in the efficient
tightnesses; rather, it is due to the conversion of tightness into unemployment.
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Appendix E. Fluctuating social value of nonwork in the DMPmodel

When we compute the US unemployment gap (figure 7), we keep the social value of
nonwork constant. This choice is justified by the work of Chodorow-Reich and Karabar-
bounis (2016), who find that the social value of nonwork is acyclical. In some versions
of the DMPmodel, however, the productivities of unemployed and employed workers
do not move in tandem over the business cycle, which generates fluctuations in the
social value of nonwork. Here we show that such fluctuations have virtually no effect
on the efficient unemployment rate.

E.1. Efficient unemployment rate with fluctuating social value of nonwork

In the DMP model, the social value of nonwork is constant when the productivity of
unemployed workers is proportional to the productivity of labor (equation (13)). While
such proportionality necessarily holds in the long run, it could fail in the short run.
In that case, short-run fluctuations in labor productivity are nonneutral: they create
fluctuations in the social value of nonwork and in the efficient unemployment rate
(Shimer 2005).

To introduce fluctuations of the social value of nonwork in the DMP model, we
assume that the productivity of unemployed workers is proportional to the trend of
labor productivity, p̄, instead of actual labor productivity, p. Under this specification,
the welfare function (2) becomes

(A16) W(n,u, v) = (pn + p̄zu – pcv)L.

The social value of nonwork becomes

ζ =
z
p̂
,

where p̂ = p/p̄ is detrended labor productivity. Formula (5) therefore becomes

(A17) u∗ =
[

cϵ
1 – (z/p̂)

· v
u–ϵ

]1/(1+ϵ)
.
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FIGURE A8. Labor productivity in the United States, 1951–2019

A: Labor productivity is the index of real output per worker constructed by the Bureau of Labor Statistics
(2021c). The trend of productivity is produced by a HP filter with smoothing parameter 1600. B: Detrended
labor productivity is the labor productivity from panel A divided by its trend. The shaded areas are
NBER-dated recessions.

E.2. Application to the United States

To apply formula (A17), wemeasure detrended labor productivity and the other statistics
in the United States.

Detrended labor productivity. Wemeasure labor productivity (p) in the United States
from the real output per worker constructed by the Bureau of Labor Statistics (2021c).
We compute the trend of productivity (p̄) using a HP filter; since the productivity series
has quarterly frequency, we set the filter’s smoothing parameter to 1600 (Ravn and Uhlig
2002). We compute detrended labor productivity as p̂ = p/p̄ (figure A8).

Other statistics. As in section 5, we set the average social value of nonwork to z = 0.26
and the recruiting cost to c = 0.92, and we take the Beveridge elasticity ϵ from figure 6.
We also take the vacancy rate v and unemployment rate u from figure 1.

Efficient unemployment rate. Finally, using formula (A17), we compute the efficient
unemployment rate in the United States when the social value of nonwork fluctuates
over the business cycle (figure A9). We find that the efficient unemployment rates with
and without fluctuations of the social value of nonwork are indistinguishable. The
maximum absolute distance between the two series is only 0.03 percentage point.
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FIGURE A9. US efficient unemployment rate with fluctuating social value of nonwork

The efficient unemployment rate with fluctuating social value of nonwork incorporates the fluctuations
of the social value of nonwork that appear in the DMP model when social welfare is given by (A16).
It is constructed using equation (A17) and the detrended productivity from figure A8. The efficient
unemployment rate with constant social value of nonwork comes from figure 7B; it is displayed as a
benchmark. The shaded areas are NBER-dated recessions.
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