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1. Introduction 

In designing any causal study, steps must be taken to address both internal and 

external threats to its validity (see Campbell, 1957, and Cook and Campbell, 1979). 

Researchers tend to focus primarily on threats to internal validity, i.e., determining 

whether it is valid to infer that, within the context of a particular study, the 

differences in the dependent variables are caused by the differences in the relevant 

explanatory variables. External validity, on the other hand, concerns the extent to 

which a causal relationship holds over variations in persons, settings, and time. It is 

important to underscore the fact at the outset that external validity does not extend 

to modifications in the treatment, although in practice, researchers often try to 

generalize their results by conflating the two levels of generalization into a question 

of external validity.  

 

Randomized controlled trials solve the problem of selection bias in the identification 

of causal effects. Thus, theoretically, cause-effect constructs identified by means of 

randomized controlled trials are internally valid, that is, they permit the 

identification of causal effects for the population from which the random sample used 

in the estimation was drawn. The outcomes of such experiments are interesting in 

their own right, but researchers sometimes explicitly assume external validity (EV), 

i.e., that the internally valid estimates obtained for one population can be 

extrapolated to other populations. In fact, it is not uncommon that after researchers 

have established a cause-and-effect relationship in a specific population, they proceed 

to discuss its implications based on the assumption that this relationship is generally 

valid. In this paper, we formalize the concept of external validity and show that in 

general, it is unlikely that any given study will be externally valid in any general 

sense. This is one reason why Manski (2013) says that the current practice of policy 

analysis “hides uncertainty”.  

 

Once researchers have conducted an internally valid analysis, that analysis yields an 

established set of  findings for the specific case in question. As for the future 
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usefulness of  that result, however, what matters is its degree of  EV. The most 

commonly held view in this regard is that the EV problem hinges on assumptions 

about the relationship between the population for which internally valid estimates 

have been obtained and another, different population. Apart from researchers who 

are focusing on EV in a specific context, many researches either ignore the EV 

problem altogether or approach it subjectively. In this paper, we provide a formal 

and general reflection on the EV problem and propose a simple and generally 

applicable method for evaluating the external validity of randomly controlled trials 

(RCTs). 

 

In this paper we define external validity as the stability of  the conditional 

distribution p(outcomes | treatment) across different populations. We then formalize 

the degree to which we can make judgments about a new population (density) 

generated as a subpopulation from an overarching population that also generates the 

“original” population for which there is an internally valid estimate. Without loss of  

generality, assume that we have data that allows estimation of  the joint distribution 

p(outcomes, treatment). We then have p(outcomes, treatment) = p(outcomes | 

treatment) × p(treatment). We say that there is external validity if, for other data 

with a potentially different joint distribution of  outcomes and treatment, the 

conditional distribution p(outcomes | treatment) stays the same.  

 

Our definition of  external validity is the same as that of  Janzing, Peters, and 

Schölkopf (2017). Admittedly, this seems quite stringent. It might be thought that, 

even with a moderate change of p(outcome | treatment) across different populations, 

external validity could be maintained. But what exact degree of  change in 

p(outcome | treatment) leads to EV or external invalidity cannot be precisely 

defined. We need an operationalizable definition of  EV, so, in line with a small body 

of  literature (Janzing, Peters, and Schölkopf, 2017), we err on the side ofcaution, 

although we admit that there are other ways of  defining EV that provide interesting 

and important insights, e.g., Meager (2019). 

 

Based on our theoretical framework, we then propose two alternative measures of  

external validity. To the best of  our knowledge, we are the first to propose formal 

mathematical definitions of  external validity and, on that basis and in the context of  

an RCT, to propose purely data-driven measures related to theoretical constructs. 
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The measures of  EV we propose in this paper can take advantage of  multiple trials 

to evaluate the degree to which certain empirical conclusions are valid across 

different populations. Needless to say, ultimately, the external validity of  all causal 

estimates is established by replication in other datasets (Angrist, 2004).2  

 

We would like to determine whether a given study or a given set of  studies can be 

generalized to other populations in general.3 In order to do that, we propose a 

method that applies to RCTs, but it should be noted that the issue of  external 

validity is general and not restricted to RCTs, as shown in our formal and general 

reflection below. 

 

The rest of  this paper is structured as follows. In Section 2, we provide a formal and 

general reflection on the EV problem. Based on the model described in that section, 

in Section 3 we propose a simple and generally applicable method for assessing the 

external validity of RCTs. Finally, we present final remarks. 

      

2. External Validity 

A single experiment (or a set of  experiments regarded as a single experiment)4 

allows us to arrive at a point estimate for the population of  cause-effect parameters. 

Assessing the EV of  one causal parameter entails estimating treatment effects as a 

function of  different populations. Thus, evaluating the EV of  an internally valid 

estimate of  a cause-effect parameter entails assessing a distribution of  cause-effect 

                                                             
2 In the areas of  labor and development economics, a number of  studies use similar multi-
country strategies to generalize cause-and-effect constructs. For example, Cruces and Galiani 
(2007) examine the effects of  fertility on labor outcomes in three countries; Dehejia, Pop-
Eleches, and Samii (2019) examine the causal effects of  sibling sex composition on fertility and 
labor supply across many countries and years and characterize how its effects vary in terms of  
available covariates; Banerjee et al. (2015) study microcredit in six countries; Galiani et al. (2017) 
study the effects of  sheltering the poor in three countries; Gertler et al. (2015) study health 
promotion in four countries; and Dupas et al. (2016) examine the effects of  opening savings 
accounts in three different countries.  
3 For example, Deaton (2010) writes: “We need to know when we can use local results, from 
instrumental variables, from RCTs, or from nonexperimental analyses, in contexts other than 
those in which they were obtained.”  
4 When we have a set of  experiments and we reach a conclusion from them, we have to find a 
way to aggregate their outcomes from the experiments so they can be regarded as a single 
experiment (correspondingly, behind that single experiment there would be a single population 
formed by a mixture of  the populations underlying the different original experiments). However, 
in this paper we do not discuss how to aggregate outcomes form different experiments, which we 
consider an issue that is specific to each research project. We instead simply assume that each 
sample point in each experiment have the same weight in the aggregation process.  
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parameters based on a single draw from it.  

 

In this section, we formalize the concept of  EV. We develop our framework in terms 

of  the stability of  density functions across populations because nearly all sample 

analyses are intended to characterize an underlying population. To explore EV, we 

assume internal validity has been achieved, that is, it is always possible to obtain 

consistent estimates of  the joint density of  outcomes and treatment status or the 

conditional density of  outcomes conditional on treatment status.  

 

Focusing on population densities might seem unnecessary, since most researchers 

need to model only the first and second moments of  a population (density) to obtain 

their parameters of  interest. The first moment is needed for a point estimate, while 

the second moment is used for evaluating sampling variability. Nevertheless, both 

moments are a function of  a population density, i.e., a density of  outcomes 

conditional on treatment status. We focus on population densities here because we 

want to emphasize that the nature and difficulty of  assessing EV lies in the 

differences among populations. In addition, at a conceptual level, this simplifies the 

analysis, since it is necessary to make comparisons for only one entity (the density) 

instead of  two (the first and second moments).  

     

2.1. From one population to another 

Conducting external inference from internally valid estimates entails switching the 

population under study. Assume that there is an overarching population that consists 

of  all vectors (y, z, w) from the probability density D(y, z, w; θ). Also assume that 

we obtain a sample from a subpopulation defined by the density D(y, z; w = w0, θ). 

When we say something, based on estimates from this sample, about another 

subpopulation defined by the density D(y, z; w = w1, θ), for some w1 ≠ w0, we are 

conducting external inference.  

 

This is the general setup: w defines, in a general way, the difference between 

populations; internally valid inferences will usually yield different estimates of the 

cause-effect constructs of interest. θ governs how the differences in w affect those 

constructs across populations. Alternatively, we could define different populations by 

assuming that their w’s are distributed in different ranges instead of assuming that 
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they take different point values, but this change would not add any insight to the 

analysis. Actually, the assumptions are conceptually equivalent. 

 

w0 is a given realization of  w and is constant for the subpopulation for which the 

sample is used to conduct the empirical analysis. For example, if  we draw a sample 

within a country, all different sample points have the same country identity (w0). 

With the sample drawn from D(y, z; w = w0, θ), whether we estimate the joint 

density of  (y, z) or a conditional density of  y on z, we always conduct inference 

under the condition w = w0. Then, conducting external inference implies assessing 

whether such estimates are valid for a different population (in our example, from 

another country), characterized by w = w1.  

 

Researchers generally do not have information about how changing w would change 

the density D(y, z, w; θ). Usually, they have to make assumptions in this regard in 

order to conduct external inference. We now explore this question formally. It is 

informative to express D(y, z; w = w0, θ) as follows:  

 

D(y, z; w = w0, θ) = D(y|z; θ1(w0, θ) × D(z; θ2(w0, θ)) 

 

Assume that the estimand is the conditional density D(y|z; θ1(w0, θ)). In the case 

of  an RCT, the marginal density D(z; θ2(w0, θ)) can be ignored, since z is 

randomly assigned. Thus, assume we estimate D(y|z; θ1(w0, θ)) and then want to 

know how well we would assess another population characterized as w = w1 if  we 

rely only on our internally valid estimate. Assuming the conditional density function 

is differentiable almost everywhere with respect to w and applying the mean value 

theorem, we obtain:   

 

∫[D(y|z;  θ1(w0, θ)) − D(y|z;  θ1(w1, θ))]
2

𝑑𝑦

= (w1 − w0)2 ∫ (
∂D(y|z;  θ1(wb, θ))

∂θ1

∂θ1

∂wb
)

2

𝑑𝑦 

 

where wb takes a value between w1 and w0. If  w1 is not known but can be 

assumed to be close to w0, we can approximate wb by w0 (where the higher order 



6 
 

residual in a Taylor expansion is negligible). Then, for a close w1, the more 

sensitive the conditional density with respect to w is, the more we will miss the 

target while conducting external inference by relying only on an internally valid 

estimate of  the estimand of  interest in our sample. Importantly, this is independent 

of  the sample size.  

  

Relying on this setup, we define: 

 

(1) Punctual local external validity when w1 = w0; 

(2) Local external validity as ∫(
∂D(y|z; θ1(w1, θ))

∂θ1

∂θ1

∂w1
)2𝑑𝑦 = 0 for all w1 

within a small interval of  w0; 

(3) External validity as ∫(
∂D(y|z; θ1(w, θ))

∂θ1

∂θ1

∂w
)2𝑑𝑦 = 0 for all w1; 

(4) Indirect external validity where there exist 𝑓(w; θ1) =

∫(
∂D(y|z;  θ1(w, θ))

∂θ1

∂θ1

∂w
)2𝑑𝑦, either known or estimable that can be used to adjust 

D(y|z;  θ1(w0, θ)) to calculate D(y|z;  θ1(w1, θ)). 

 

In the literature, researchers conducting external inference have attempted to either 

test (1), (2), or (3) or to exploit (4). As our discussion makes clear, the question of 

external validity rests on the relationship between the population for which we have 

an internally valid estimate and the population about which we are to make 

judgments. The function 𝑓(w; θ1) = ∫(
∂D(y|z; θ1(w, θ))

∂θ1

∂θ1

∂w
)2𝑑𝑦 formalizes this 

relationship.  

 

2.2. From one population to any population 

We now extend our analysis. The estimand is a conditional model based on data 

generated from the density D(y, z;  w = w0, θ). We denote the conditional model by 

D(y | z;  w = w0, θ1), where θ1 is the parameter governing the conditional model 

and is a function of  w0 and θ. Applying Bayes’ law and assuming z is weakly 

exogenous (see Engle, Hendry, and Richard, 1983) for θ (this is always the case 

when z is randomly assigned), we have:  
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D(y | z;  w = w0, θ1) =
D(y,z; w=w0,θ2)

D(y,z; θ)
× D(y|z; θ3), 

 

where D(y|z; θ3) = ∫ D(y| z, w; θ) 𝑑𝑤, D(y, z;  θ) = ∫ D(y, z, w; θ) 𝑑𝑤, and θ3 is 

a function of  θ. Note that here we use D(y, z;  w = w0, θ2), where θ2 is a 

function of  θ, rather than D(y, z;  w = w0, θ), because we want to emphasize that, 

when moving from D(y, z, w; θ) to D(y, z;  w = w0, θ2), the parameter vector θ 

may change. θ2 can be seen as a function of  θ and w. However, there is nothing 

wrong with using the general notation D(y, z;  w = w0, θ)  instead. External 

inference in this setting entails assessing D(y|z; θ3) based on the estimation of  

D(y | z;  w = w0, θ1) (i.e., from a subpopulation to the overarching population). 

Note also that θ2 and θ3 are not variation-free (Engle, Hendry, and Richard, 1983), 

so θ3, estimated by optimizing a loss function based on D(y | z;  w = w0, θ1), 

generally does not coincide with the result obtained by estimating on the basis of  an 

optimization of  a loss function based on D(y|z; θ3), which researchers cannot 

optimize in any event, since the available data is generated only from the 

subpopulation with w = w0. Taking these considerations into account, we define:  

 

(1) Overarching external validity as 
D(y,z; w=w0,θ2)

D(y,z; θ)
= 1.  

(2) Indirect overarching external validly when the function g(θ) =
D(y,z; w=w0,θ2)

D(y,z; θ)
 is 

either known or estimable and can be used to adjust a loss function based on 

D(y | z;  w = w0, θ1) that makes it possible to estimate D(y|z; θ3). Clearly, 

this requires a known (or assumed) relationship between the subpopulation under 

study, D(y, z;  w = w0, θ2), and the overarching population, D(y, z;  θ), which 

is given by D(y, z;  θ) = ∫ D(y, z, w; θ) 𝑑𝑤.  

 

From the above discussion, it is clear that it is more likely that an internally valid 

estimate will have punctual or local external validity than external validity or 

overarching external validity. Thus, not surprisingly, the existing literature has 

focused on specific populations for extrapolation, making specific assumptions about 

the relationship between the population for which there are internally valid 

estimates and the target population. Next, we review that literature.  



8 
 

 

Remark: In the above framework, we provide insights on EV based on the stability 

and equivalence of  population densities, either of  densities from two sub-

populations or of  densities from a sub-population and an overarching population. It 

could be said that his is unnecessarily stringent. But in order to provide useful 

insights on the EV problem, we decided to err on the side of  being stringent to 

make things operationalizable. Every model is wrong, but some are useful (Box, 

1976).  

 

2.3. Literature Review 

One reason why internally valid estimates of causal constructs might lack external 

validity is changes in the population over time. We could posit, for example, that w 

in the above framework varies over time. In such a setup, Rosenzweig and Udry 

(2018) provide an innovative way of conducting external inference. Using repeated 

cross-sections, they estimate the causal effect of interest over time, where in each 

period the vector w is fixed at some specific value. They focus on one dimension of w 

for which they have a measurement, i.e., rainfall. They then estimate the response of 

the casual construct of interest to rainfall. Using the empirical distribution of the 

underlying shock (rainfall), they can infer both how the causal parameter of interest 

varies with this shock and its average effect. Thus, they also estimate the effect for 

the overarching population. This method requires that other time-varying 

unobservable variables in w are not correlated with the observable one, which, in 

their application, may be the case, since rainfall is determined outside the economic 

system, although it still might trigger adjustments in some unobservable variables. 

 

Andrews and Oster (2019) propose a method for estimating the average treatment 

effect (ATE) for a target population based on another population (often a trial 

population) for which a researcher is assumed to have an internally valid estimate. 

They assume that the conditional ATE-given covariates and unobservables are the 

same in the trial and target populations (and that the covariates and unobservables 

are uncorrelated). First, they adjust the ATE by differences in covariates between 

the trial and the target populations. Second, they model how unobservables and 

covariates simultaneously affect individual treatment effects and the likelihood that 

individuals in the target population were also in the trial population. Relying on this 

model, they derive a formula to adjust the ATE for differences in unobservables.  
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Other papers have dealt with the issue of non-compliance in instrumental variables 

estimation. One line of discussion about external validity relates to the local average 

treatment effect (LATE) (Angrist, Imbens, and Rubin, 1996). The standard setup 

assumes the presence of a binary endogenous treatment variable instrumented with a 

binary ignorable variable (for example, random assignment to treatment). Assuming 

monotonicity, the population is divided into three groups: (1) compliers, whose 

treatment status is affected by the instrument; (2) always-takers, who always receive 

treatment regardless of the value of the instrumental variable; and (3) never-takers, 

who never receive treatment regardless of the value of the instrumental variable. 

The second and third groups are usually combined and labeled as non-compliers. 

The variation (information) in the instrument only makes a difference for compliers. 

Since, in this setting, internally valid estimates are derived from the variation in the 

instrument, the estimates do not provide a basis for internally valid inferences about 

the whole population, but only about a hypothetical population of compliers. The 

question with regard to external validity that usually arises in this setting has to do 

with when and how estimates for compliers can be used to infer the parameter of 

interest for the whole population. Naturally, the first step in answering this question 

is to understand the relationship between compliers and non-compliers. Examples in 

the literature include Angrist (2004) and Angrist and Fernandez-Val (2010). Angrist 

(2004) examines a few possible relationships between compliers and non-compliers 

that yield externally valid inferences and then estimates the ATE using information 

for the LATE under each relationship. Angrist and Fernandez-Val (2010) assume 

that the instrumental variables, conditional on covariates, are as good as if they were 

randomly assigned and that observable covariates fully determine covariate-specific 

treatment effects. The relationship between compliers and non-compliers is then 

reduced to different compositions of observable covariate values. Since the LATE 

and ATE are both weighted sums of (observable) covariate-specific treatment effects, 

the EV problem of differentiating the ATE from the LATE becomes one of 

modifying the weights used in the LATE to align them with the weights used in the 

ATE. 

 

Another line of analysis concerning external validity involves regression 

discontinuity methods. A regression discontinuity estimator is, by definition, a local 

estimator: it only identifies causal constructs for the subpopulation of subjects whose 
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forcing variable values are near a discontinuity threshold (and are also compliers in 

the case of a fuzzy design). The external validity question usually asked in such a 

setting is how estimates for the subjects near the threshold (and that are also 

compliers) apply to the sample population. Naturally, the first step in assessing 

external validity in this setting is to understand the difference between the subjects 

whose treatment effect can be identified and other subjects. Dong and Lewbel (2015) 

exploit the sensitivity of estimates of the forcing variable to shed light on the 

relationship between subjects with different forcing variable values. Angrist and 

Rokkanen (2015) advocate testing whether the forcing variable and the “treatment” 

outcome are uncorrelated conditional on variables, which, if it were the case, would 

be informative about the relationship between subjects with different forcing 

variable values and, in turn, could be of use in addressing external validity questions. 

Bertanha and Imbens (2018) focus on the fuzzy regression discontinuity design and 

provide a test to determine whether compliers are systematically different from non-

compliers conditional on the forcing variable as well as exogenous covariates. They 

argue that external validity requires the null hypothesis of no differences in order to 

be valid.  

 

These studies share a common feature: the pivotal element in approaching the issue 

of external validity is assumptions about the relationship between the population for 

which there are internally valid estimates of causal parameters and the population 

for which the researcher would like to make an external inference. The relationships 

exploited in the above-cited studies are the one between compliers and non-

compliers, the one between subjects with different forcing variable values, and the 

one between different periods. The effectiveness of any practical evaluation of 

external validity is determined by these relationships, as we explain in Sections 2.1 

and 2.2.  

 

These papers focus on specific populations as basis for extrapolations and do not 

explore EV in any general form. This is natural enough, since, for any given 

population, the relationship between it and the population that was originally studied 

can be easily assumed or modeled, while it is very hard to undertake an evaluation of  

EV in general. Thus, in terms of  our analysis, the literature has focused mostly on 

methods relating to the concept of  local external validity.  
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In the next section, we propose a method for assessing EV both for specific 

populations and generally. Our method is based on the insights derived from 

Sections 2.1 and 2.2. The focus is on determining the likelihood that an internally 

valid estimate could be generalized not only to the overarching population 

(overarching external validity) but also to specific populations, starting from those 

close (local external validity) to the one studied and then moving away from it to 

more different populations (external validity).  

 

3. Assessing external validity 

We propose a method for evaluating the degree to which a conclusion based on a 

given population applies to populations represented by samples that have been 

formed by randomly reweighting the original sample. Our method is therefore both 

data-driven and generally applicable. It is important to note that for researchers with 

several experiments and underlying populations at hand, they still need to ponder on 

to what degree their conclusions from the several experiments can carry on 

generally. So, they can take advantage of  our proposed measures by regarding their 

experiments as a single experiment and the underlying populations as a single 

population. In the following discussion and examples, we always start from a single 

sample or experiment (i.e. single population).  

 

In order to maintain consistency with the theoretical framework outlined in Section 

2, we assume that each reweighting of the original sample corresponds to a value of 

w, that is, represents a new population. After defining and constructing new samples 

by reweighting, we propose a way of measuring the extent to which the conclusion 

reached about the original sample holds true for the reweighted samples (or the new 

populations). This is a global measure of EV (based on the concept of overarching 

external validity). We also propose a local measure of EV (based on the concepts of 

local external validity and external validity) by grouping new populations based on a 

specific criterion and then measuring the degree to which the conclusion for the 

original sample still holds for each group.  

 

Reweighting is usually conceptualized as a way to explore within population 

sampling variability. But this is largely an epistemological stance based on a mental 

construction that treats a sample as an empirical “estimator” of a population, rather 

than an identity in nature. As we get into more details, we will explain why certain 
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reweighting works for our purpose of generating new populations, as well as how we 

take account of within populations sampling variability.  

 

Next, we provide the details and examples of our proposed measures of EV. It is 

very important to notice now that we are proposing measures of EV, not statistical 

tests of it.  

 

3.1 Defining new populations and constructing representative samples 

We assume that a researcher starts from a randomized controlled trial (RCT) 

dealing with a given population and then wants to assess the degree of EV of the 

causal constructs that have been estimated. We provide a general method for doing 

this. Our method, inspired by our formal and general reflection above, takes 

advantage of RCTs as shown below. However, it should be noted that the problem of 

external validity is general and not restricted to RCTs. 

 

Assume that the sample size of the control group is m and the sample size of the 

treatment group is l, so the sample size analyzed is n=l+m. Assume also that there is 

baseline pre-treatment information (Y, X)’, which is usually the case. We pair each 

observation in the treatment group with its nearest observation in the control group 

in terms of the Mahalanobis distance5 using the baseline information (the 

Mahalanobis distance between vectors of baseline information (Y, X)’). We thus 

choose the nearest neighbor in the control group to each observation in the 

treatment group as a counterfactual and pair the two observations. Repetitive use of 

observations from the control group are allowed, and unused observations from the 

control group are discarded after all observations from the treatment group are 

paired. For each pair, we assign an index i∈{1,2,…l}.  

 

We define a reweighting vector P for the indices: P = (p
1
, p

2
, … , p

l
)′ =

(G1,G2,…,Gl)
′

∑ Gi
l
1

, 

with p
i

≥ 0 and ∑ p
i

l
1 = 1. (G1, G2, … , Gl)

′ is a random vector, with each element 

drawn independently from the Gama(1,1) distribution. Reweighting the original 

                                                             
5 The Mahalanobis distance can be defined as the Euclidean distance with each variable rescaled 
to have unit variance. Though this distance is the most commonly used measure in the literature, 
there are many alternative matching criteria (Rosenbaum, 2010) that researchers can use for 
their specific purposes. In addition, researcher can match one sample point for a group (treatment 
or control group) with many sample points from the other group. 
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sample based on the Gama(1,1) generates reweighting vectors uniformly distributed 

over all possible reweighting vectors (Efron and Hastie, 2016), so our exploration of 

how the original conclusions apply to new populations treats every possible 

population evenly. For each reweighting P = (p
1
, p

2
, … , p

l
)′ =

(G1,G2,…,Gl)
′

∑ Gi
l
1

 of the 

original sample, we create a reweighted sample in which p
i
 is the weight for the 

pair indexed by i=1, 2, … , l. We do multiple reweighting (as many as 1,000 times), 

and we regard each reweighting outcome as a sample representing a new population. 

Weighting the actual sample by (
1

l
,

1

l
, … ,

1

l
)

′

is a consistent estimator of the original 

population. Therefore, each weighting vector corresponds to a (consistent estimate 

of ) a new population.  

 

Though it should be obvious, for those who strongly believe that reweighting can 

only be used to evaluate within population sampling variability, we have the 

following argument for using reweighting to generate new populations:  

  

(1) Reweighting the original sample based on the Gama(1,1) generates reweighting 

vectors uniformly distributed over all possible reweighting vectors (Efron and 

Hastie, 2016), so our exploration of how the original conclusions apply to new 

populations treats every possible population evenly. 

(2) For example, if you have a sample with 50 men and 50 women, and then you 

generate a reweighted sample with 20 man and 80 women, it’s a matter of 

perspective choice to see the new sample as representing a new population. 

Using reweighted sample to evaluate within population sampling variability is 

largely an epistemological stance based on a mental construction that treats a 

sample as an empirical “estimator” of a population, rather than an identity in 

nature.  

(3) Also a reweighted sample, though not drawn form a new population, can be 

regarded to represent a new population in the light of  the following observation 

by Fisher: “[…] the only populations that can be referred to in a test of  significance 

have no objective reality, being exclusively the product of  the statistician’s imagination 

[…].”  (Fisher, 1956) 

 

3.2 A global measure of EV 
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We now propose a global measure of EV for the average treatment effect (ATE), but 

our measure can be applied to any estimand obtained by contrasting treatment and 

control groups in an RCT. For each reweighted sample, we calculate the ATE and 

its standard error. Our proposed global measure of EV for the original internally 

valid analysis is based on the percentage of new populations for which the original 

conclusion still holds true. We say that the original conclusion holds when one of 

the following holds: if, in the original sample, the estimate was not statistically 

significant at a certain level, then the same is true for the reweighted sample or, if 

the estimate for the original sample was statistically significant at a certain level, 

then, in the reweighted sample it is also significant, at least at that level, and with 

the same coefficient sign as in the original population. Framing things this way, we 

also account for within-population sampling variability while trying to measure EV. 

 

The above is how we operationalize whether the original conclusion holds. Some 

may argue that a given case will be scored as externally valid where the original 

estimate takes a value of 1 with a standard error of 0.45 and the reweighted estimate 

takes a value of 10 with a standard error of 2, but the original estimate will not be 

scored as externally valid if the reweighted estimate takes a value of 0.99 with a 

standard error of 0.55, even though this is extremely close to the original estimate.  

 

In terms of number magnitude, the people who make this argument have a point, but 

what happens in practice? In cases where there is a value of 0.99 with a standard 

error of 0.55, the researcher will usually report no effect, that is, the original 

conclusion of a positive significant effect does not hold. In cases where there is a 

value of 10 with a standard error of 2, the researcher will usually report a significant 

positive effect, that is, the original conclusion of a positive significant effect does 

hold, although the effect magnitude is a question that calls for further exploration. 

While the above argument makes a point, we have preferred our method of 

operationalization because it can lead to something that we think is useful. What is 

more, we are by no means suggesting that this should generally be the only method 

of  operationalization. 

 

We start from an RCT and estimate the new populations by means of a matching 

estimator with replacement. Abadie and Imbens (2006) set out conditions for the 
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consistency of this matching estimator.6 However, in finite samples, there are two 

sources of bias due to imperfect matching on observables and non-matching on 

unobservable. For the second source of bias, researchers can perform a sensitivity 

analysis as introduced by Rosenbaum (2010) and Imbens and Rubin (2015).  

 

Correcting the first source of bias can be done using the methods discussed in 

Imbens and Rubin (2015, sect. 18.8). We use one of those methods to adjust the 

estimates for new populations and therefore, from now on, when we refer to the 

estimated ATE for new populations, we are referring to bias-adjusted estimates, as 

follows:  

 

1. With the data from the original control group, we have regressed the 

outcomes on observable variables and recorded coefficients for baseline 

variables as B. 

2. We have adjusted each pair’s treatment-minus-control outcome by  

– (observable variables of the treated in the pair)*B + (observable variable of the 

control in the pair)*B.  

 

Up until now, we had assumed that all the subjects were compliers in the original 

sample, or we had focused on the intention-to-treat effect (ITT). However, there is no 

problem with including non-compliers in the analysis and focusing on a parameter 

such as the LATE since the reweighted samples are expected to be balanced for non-

compliers, especially when the sample size is large.  

 

Alternatively, one possibility is to estimate the average effect on compliers. Under 

standard assumptions, we know who the never-takers in the treatment group are. In 

their case, we can improve on the matching with the control group because we can add 

the residuals of  the treatment effect analysis (in addition to the baseline variables 

already used) to the matching variables. Thus, we can also match on unobservables. 

                                                             
6 The data and treatment assignment from an RCT satisfy the conditions required for 
consistency given in Abadie and Imbens (2006). The matching estimator here is a weighted sum, 
but given our way of  generating reweighting vectors, when the sample size goes to infinity, the 
probability that a finite number of  pairs receive all the weight goes to zero, so by applying a law 
of  large numbers, such as Chebychev’s weak law of  large numbers, consistency is proved. 
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This matching strategy does not work for compliers, since their residuals are affected 

by their heterogeneous treatment effects. Always-takers can be matched in the same 

fashion. After matching, researchers can restrict their analysis to compliers both in 

the original sample and in the EV exercises proposed in this paper.  

 

3.3 Local measures of EV 

With a large number (e.g., 1,000) of reweighted samples, each representing a new 

population, these populations can be grouped based on a given criterion. We now 

have a vector of treatment-control matched pairs from the original sample. Each pair 

yields a treatment-minus-control outcome, adjusted as proposed in the previous 

section based on Imbens and Rubin (2015). First, we calculate the correlation 

between the vector of these adjusted treatment-minus-control outcomes and each 

reweighting vector. The higher this correlation is, the more weight a reweighting 

vector gives to pairs with high treatment-minus-control outcomes. Second, we 

calculate 1 minus this correlation for each reweighting vector (i.e., for each new 

population); this calculation gives the distance of a new population from the 

population with the largest effect magnitude. Note that the original population has a 

distance of 1 because the above correlation for the original population is zero, so the 

extent of the difference between other populations and the original population can be 

summarized by how their distance measure differs from 1.  

 

Intuitively, populations with a distance measure close to 1 give similar weights to 

pairs with high or low adjusted treatment-minus-control outcomes, so they are 

“near” the original population, which gives equal weight to every pair. Populations 

with a distance measure greater (smaller) than 1 have a weighting vector that is 

negatively (positively) correlated with the vector of the adjusted treatment-minus-

control outcomes, so they give more weight to pairs with small (large) effect 

magnitudes.  

 

With the above definition of distance, we then also propose using the EV curve to 

measure the degree to which the conclusion regarding the original population holds 

for new populations as their distance from the population with the largest effect 

magnitude (moving away from distance zero) or from the original population 

increases (moving away from distance 1). The EV curve is defined below, with 
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distance denoted by d. 

 

EV(d) =
Number of new populations for which the original result holds at distance ∈ [d, d + ϵ]

Number of new populations at distance ∈ [d, d + ϵ]
 

 

In the definition of the EV curve, the original result holds when, as above, one of the 

following holds: if, in the original sample the estimate was not statistically 

significant at a certain level, then the same is true for the reweighted sample or, if 

the estimate was originally significant at a certain level, then it is also significant, at 

least at that level, and with the same coefficient sign as the new population.   

 

Before we provide examples illustrating the two methods proposed above, we need to 

add a caveat that applies to both of  them. If  the sample (or multiple samples) at 

hand or the population (or populations) represented by the sample (or samples) being 

studied does not contain characteristics that would generate a new population and 

are relevant for the statistical inference, then our method is moot. One cannot make 

bricks without straw. Any statistical method can be useful only up to the point that 

its information inputs allow. Our method is designed to provide the best possible 

assessment of  EV purely based on the data that researchers have, without theoretical 

or structural assumptions being involved. 

 

3.4. Two Simulated Examples 

We now provide two simulated examples to illustrate our method for assessing EV. 

First, we start from an internally valid analysis assumed to have a significantly 

positive ATE. We then calculate the global measure of  EV and present the EV curve 

to be used to assess EV locally. Second, we do the same exercise starting from an 

internally valid analysis that is assumed to have an ATE that is not significantly 

different from zero. 

 

 

3.4.1 Assessing EV for an internally valid significant positive result 

In the first simulated example, the sample size is 100, with 50 observations in the 

treatment group and 50 in the control group. There are two observable variables, x1 

and x2, and one unobservable variable, u. For each of  these three variables, 100 

values are drawn independently from the standard normal distribution. The 
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(potential) heterogeneous treatment effect for each observation, whether it is in the 

treatment group or control group, is given by τi = x1i + x2i + ui + vi + 10 ∗ 1{ci >

0.8}, where vi is drawn from a unit-variance normal distribution with a mean=-1, 

and ci is drawn from the 0-1 uniform distribution. 

 

We define the treatment status vector, a vector with a length of  100, as D, of  which 

the first 50 elements are equal to 1 and the other 50 elements are equal to 0. Di=1 

indicates that observation i is in the treatment group; Di=0 indicates that 

observation i is in the control group. The outcome variable is thus defined as: yi =

1 + τi ∗ Di + x1i + x2i + ui. The internally valid estimate of  ATE in our simulation 

is 1.52 with a standard error equal to 0.677 and a p-value for a test of  the null 

hypothesis (ATE equals 0) equal to 0.027. 

 

We generate 1,000 reweighting vectors over the pair indices as explained in Section 

3.1 and calculate the global measure of  EV introduced in Section 3.2. In this case, 

this measure is the proportion of  these 1,000 new populations for which the lower 

bound of  the confidence interval is greater than zero. Since the original analysis is 

significant at the 95% level, we choose the lower bound associated with two standard 

errors. The value of  the global measure of  EV in our simulated example is 0.584. 

This means that the conclusion reached in the original internally valid analysis holds 

for 58.4% of  the uniformly generated new populations. 

 

Now we compute the EV curve, EV(d), introduced in Section 3.3. To apply the 

definition of  EV(d)7, we note that when the original result holds for a new 

population, this means that the confidence interval lower bound for the new 

population is greater than zero. Since the original analysis is significant at the 95% 

level, we choose the lower bound for new populations as point estimates minus two 

standard errors. If we look at the curve starting from a distance equal to 1, we see 

the positions of the new populations relative to the original population, whose 

distance measure equals 1. (Remember that the distance is a measurement of  the 

distance of a new population from the population with the largest possible effect 

                                                             
7 With respect to the choice of  ϵ in the definition of EV(d), we choose a value of 0.05 in both 
this and the next example in order to make the curve smooth. This works like a moving average 

that smooths out a graph. Note that if ϵ is too small, the curve will be very rugged locally; if it 
is too large, the curve will not be locally informative, since it will simply be an overall average.  
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magnitude.) In Figure 1 below, we see that the original conclusion of  positive 

significance is very likely to hold at a small distance (around 1 and smaller than 1) 

and it is very unlikely to hold at a large distance. Intuitively, new populations with 

small distances have more weights on pairs with large effect magnitudes and those 

with large distances have more weights on pairs with small or even negative effect 

magnitudes. In this example, EV is assessed locally by seeing how quickly EV(d) 

drops as the distance moves to the right and away from distance 1 (the distance for 

the original population), around which EV(d) is about 80%.  

 

 

 

3.4.2 Assessing EV for an internally valid result without a significant difference 

from zero 

In the second simulated example, the setup is the same as in the first example except 

that the (potential) heterogeneous treatment effect is instead given by τi = x1i +

x2i + ui + wi + 10 ∗ 1{ci > 0.8}, where wi, instead of  vi as in the previous 

example, is drawn from a unit-variance normal distribution with a mean=-2. x1i, 

x2i, ui, ci, Di, and yi are generated in the same way as in the previous example. 

The internally valid estimate of  ATE in our simulation is then 0.52 with a standard 

error equal to 0.677 and a p-value for a test of  the null hypothesis (ATE equals 0) 

that equals 0.446. 
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We generate 1,000 reweighting vectors over the pair indices as explained in Section 

3.1 and calculate the global measure of  EV introduced in Section 3.2. In this case, 

this measure is the proportion of  the new populations with confidence intervals 

including zero in these 1,000 new populations. Since the original analysis yields an 

estimate not significantly different from 0 at the 95% significance level, we choose 

the lower bound of  the confidence interval associated with two standard errors. The 

value of  the global measure of  EV in our simulated example is 0.908. This means 

that the conclusion reached in the original internally valid analysis holds for 90.8% 

of  the uniformly generated new populations from reweighting the original sample. 

 

Now we compute the EV curve, EV(d), introduced in Section 3.3. Applying the 

definition of  EV(d), we note that when the original result holds for a new 

population, this means that the new population’s confidence interval includes zero. 

Since the original analysis yields an estimate not significantly different from 0 at the 

95% significance level, we choose the range of  confidence intervals for new 

populations as point estimates ± two standard errors. In Figure 2 below, as 

expected, we see that the original conclusion of  no significance (neither significantly 

positive nor significantly negative) is very unlikely to hold at very large or very 

small distances. We also see that, as new populations move closer to the original 

population, whose distance measure is equal to 1, EV(d) increases. In Figure 2, we 

see that EV(d) is 100% in the small neighborhood of the original population and that 

EV(d) eventually drops as the distance measurement moves away from 1. 
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3.4.3 Monte Carlo exercises 

We have proposed a measure for use in a given analysis, not an estimator for a fixed 

parameter in the population or a test. Continuing with the above examples, in this 

section we perform a simple Monte Carlo exercise to see how the EV curves and the 

global EV measures vary across 50 repetitions.8 

 

Now we repeat the simulated example given in 3.4.1 50 times. Specifically, we start 

from the same sample used in 3.4.1, repeat the 1,000-reweighting 50 times, and 

calculate the global measures and the EV curves 50 times. Note that we start from the 

same sample rather than generating 50 samples from the population to start with 

because analyses based on different samples from the same population have different 

levels of  EV, and our measures are being used to evaluate EV for given analyses. 

Figure 3 and Figure 4 below show how the global EV measure and the EV curve vary. 

The takeaway is that they do not vary much. 

                                                             
8 Why 50 times? We obtain quite similar results when we repeat the example 100 times or 200 
times, but at those levels the results, although consistent with the results obtained with 50 
repetitions, simply appear as black blotches. 
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Now we repeat the simulated example in 3.4.2 50 times. Figure 5 and Figure 6 below 

show how the global EV measure and the EV curve vary. The takeaway is that they 

do not vary much. 
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3.5 A comment regarding multiple samples 

Nowadays researchers can obtain data from multiple samples, but they still need to 

determine to what degree the conclusions that they draw from several different 

experiments or samples are generally applicable. In order to deal with this question, 

they can take advantage of  our proposed measure by regarding their several 

experiments as a single big experiment and the underlying populations as a single 

population (as a mixture9). The above discussions assume a single sample, but they 

                                                             
9 Of  course, there is the problem of  determining the weightings when dealing with a mixture, 
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can be straightforwardly extrapolated to apply to cases involving multiple samples.10 

Actually, in the above simulated examples, we use τi = x1i + x2i + ui + vi +

10 ∗ 1{ci > 0.8} and τi = x1i + x2i + ui + wi + 10 ∗ 1{ci > 0.8} to generate data, 

and the last term in each equation shows that the simulated examples can also be 

regarded as having been derived from two different samples from the perspective of  

an EV evaluation. 

 

4. Final Remarks 

Our method of  evaluating EV is based on our theoretical definitions of  external 

validity. It has become clear that, in order to achieve external validity in a practical 

sense, we need to identify new populations whose relationship with the population (or 

the population as a mixture of  several populations) represented by the original sample 

(or multiple original samples) is reasonable and workable. In particular, we assume 

that each specific w which defined new populations in Section 2 corresponds to a new 

weighting. 

 

Our method of  evaluating external validity is purely data-driven, but theory can 

play an important role in valid extrapolation (Deaton, 2010; Wolpin, 2013). As 

discussed above, our method goes only as far as the information contained in the 

sample(s) (or original population(s)) allows it to go. When a researcher wants to say 

something about a new population with inference-relevant characteristics that are 

absent from the original population, he or she needs to make further assumptions 

and to model certain mechanisms. One fruitful line of  future work could be to use a 

combination of  theoretical and experimental approaches to measure the 

generalizability of  those mechanisms. 

 

Once researchers have conducted an internally valid analysis, that analysis yields an 

established set of  findings for the specific case in question. As for the future 

usefulness of  that result, however, what matters is its degree of  EV. To design for 

EV, what is wanted is a sample that includes as many different subjects as possible, 

ones that do not necessarily represent the original population. Specifically, if, for the 

                                                             
but that is a research-specific issue that is outside the scope of  this paper. 
10 For example, matching can be done within each sample/experiment and then the reweighting 
can be done across matched pairs from all samples. Pairs from a specific sample can also be given 
more weight than other pairs, as the researcher sees fit, depending on the purpose of  the 
research.  
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population studied in an internally valid analysis, very small weights or no weight at 

all are assigned to some kinds of  subjects, then a random sample at hand may 

include very few such subjects or even none at all; if  this is the case, such subjects 

will have very little chance of  being represented in new populations. This limitation 

of  the original sample limits the assessment of  EV. Thus, stratification at sampling 

may enhance EV analysis. Similarly, the use of  non-representative samples may also 

facilitate EV analysis. This issue requires further investigation, however.    
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