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Abstract

Estimates of productivity growth in the dairy sector attribute as much as half of observed
growth to genetic improvement. Unobserved match quality, however, is an important determi-
nate of genetic selection by dairy farmers that confounds attribution to genetic improvement
alone. Using data from a large sample of Wisconsin dairy farms, and national-level data on sire
rankings, we develop and estimate a model that accounts for selection behavior, and decom-
pose total productivity change into separate effects for genetic improvement and endogenous
selection. We find that selection accounts for as much as 75 percent of the total productivity
improvement in our sample. Our results provide evidence for positive assortative matching,
whereby farmers who adopt above-average yield genetics also perform better than average for
their chosen genetics. Further, we find that management behavior accounts for a significant
portion of within-herd cow-level heterogeneity, suggesting that dairy farmers manage their
herds at the level of individual cows. Overall, our results indicate that a large portion of pro-
ductivity growth in dairy farming can be explained by farmers’ ability to identify and select
genetics well suited to their production environment.

Introduction
Biological innovation is an important driver of productivity growth in the agricultural sector (Olm-
stead and Rhode, 2008). This is especially so in the dairy sector where milk yield has grown 3-4
percent per year during the past century, and where 50 percent of this growth is typically attributed
to genetic improvement (Pryce and Veerkamp, 2001). However, the vast majority of “experimenta-
tion” undertaken to identify high performing genetics takes place in non-experimental conditions.
Gestation and growth-to-maturity for a dairy cow typically takes as many as 3 years, which evi-
dently is too long for formal experimentation to be economically viable. Instead, genetic selection
has occurred over time through a market-mediated mechanism.

Starting in 1908, the U.S. Department of Agriculture initiated a program, in partnership with
land-grant universities and local associations of dairy farmers, to measure and record animal-level
performance (Council on Dairy Cattle Breeding, 2019). This partnership, which eventually came
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to be known as the Dairy Herd Improvement (DHI) program, continues to this day. Data from
commercial dairy herds that participate in the DHI program (roughly half of all U.S. dairy herds)
are used to generate public estimates of relative “genetic merit” for individual male dairy cattle
(sires). Artificial insemination (AI) technologies, widely adopted beginning in the 1960s, expanded
significantly opportunities to track and identify the performance of sires. Modern AI technologies
permit a single sire to produce hundreds of thousands of offspring, and each female offspring
(birthed on the farm of a DHI program participant) contributes new sire evaluation data, improving
estimates of genetic merit. Genetic merit in turn strongly influences the market price AI companies
receive for their genetic material.

However, the very thing that makes dairy unique also makes isolating the contribution of genet-
ics tricky. Using on-farm data to calculate genetic merit of different sires runs the risk of entangling
the management savvy of dairy farmers with the quality of the genetics. A considerable body of
research by economists has shown that productivity gains can be over attributed to technology
when there is “positive assortative matching” in technology adoption, meaning the very ones that
benefit the most from technology are the ones who will adopt it. Hybrid seeds, for example, were
adopted into their most productive environments in the US (Griliches, 1957) as well as in Kenya
(Suri, 2011).

Our research bridges two scientific domains, both indebted to the seminal work of Sewall
Wright, that diverged early in the 20th century in their approach to explaining the contribution of
genetics in the farm production function. In particular, we modify the canonical modeling frame-
work used by quantitative geneticists for determining genetic merit by accounting for the selection
behavior of dairy farmers. Using a control function approach, we find that the average returns to
adoption of high-yield genetics on dairy farms is as much as 75 percent lower after accounting for
confounding factors. We find evidence of positive assortative matching at the cow level and the
herd level, suggesting that dairy farmers manage their herds at the level of individual cows. Our
work makes a novel contribution to the literature on technology adoption by investigating a level
of detail in selection behavior previously unexplored in the agricultural sector.

Overestimation of benefits from technology adoption can occur when benefits from adopting
a particular technology are idiosyncratic and observable to relevant decision makers, but unob-
servable in the data researchers use to estimate productivity. Half of milk productivity gain is the
result of technologies other than genetics, such as quality of housing, feed, and general manage-
ment. Each of these can complement or substitute with genetic performance in ways that are not
well captured by the data available to researchers. Models used in the dairy science and animal
breeding communities universally ignore economic behavior that may be confounding estimates
of genetic merit.

We start with the idea that farmers select genetics based on their ex-ante returns to the tech-
nology which will cause them to “match” sire genetics to cows in a specific way. We assume
further that some of the factors affecting match quality are observed by farmers but not be re-
searchers. Using the framework of the Correlated Random Coefficients model, we explore the
effect of this selection behavior on returns to production traits in dairy cattle and test whether cor-
recting for selection behavior affects the estimation of the average effect. We use random variation
in country-wide, genetic evaluations as an instrument to identify the effect of choosing dairy sires
with high Predicted Transmitting Ability (PTA) indices for fat and protein yield in the cow’s pro-
duction function, and use the residual from the first stage to identify the heterogeneity in the effect.
We find that the average return from increasing the index one unit, which is a one unit increase in
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pounds of fat or protein production, is .6 and .4 for fat and protein without controlling for selection
behavior. These estimates drop to .15 and .18 after controlling for selection behavior, which means
as much 75% of the return to high-yield genetics is explained by matching. Finally, we find that
the heterogeneity in returns is over both farms and animals; this implies the high productivity gains
are being driven by animal-level matching, and not just farm-level matching. This changes the nar-
rative of farm productivity in the dairy industry quite drastically: instead of solely the triumph of
animal breeders and scientists alone, it is growth accomplished by a partnership between farmers
and breeders.

Related Literature
Though seldom pointed out, the estimation of breeding values in quantitative genetics and produc-
tion function estimation in economics share a common history. The roots of both can be traced
back to Sewall Wright who pioneered work in population genetics, paving the way for the field
of modern quantitative genetics (Gianola and Rosa, 2015). Wright also conceptualized the notion
of “path analysis,” which later evolved to be known as “instrumental variables”; Wright applied
this method to supply and demand systems as well as simultaneous equation models of commod-
ity prices (Wright, 1928, 1925). From this common origin, economics and quantitative genetics
diverged in point of focus with respect to estimating the following equation:

y = Zµ +Xβ + ε, (1)

where y is the output, for example butterfat production of a dairy cow or yield of a strain of maize,
Z is an incidence matrix of genetic technologies or types, X is a matrix of “environment” covariates
unrelated to genetics, and ε is the unexplained component of y.

In quantitative genetics, the parameters β are modeled as fixed, but the parameter µ is treated
as the outcome of a genetic process and thus considered a random variable with a covariance matrix
mapping all the relationships among genotypes. Nowhere has this genetic model developed quite
the importance it has in animal breeding as a result of the work of C.R. Henderson (Henderson,
1953, 1973). Prior to Henderson’s work, there was no widely used method for attributing the
performance of different livestock to its parents. The Henderson Mixed Model (HMM), still used
in the U.S. national DHI program, models breeding values as draws from the random variable µ

(Henderson, 1975).
The HMM has become integral to the dairy genetics industry because estimates of µ for each

sire, µ̂ , strongly influence market prices for dairy genetics. “Predicted Transmitting Ability”
(PTA), (usually reported as µ̂/2), is roughly interpreted as the value that a sire has for a par-
ticular trait y, which is predicted to be “transmitted” to the offspring (Van Vleck, 1987).1 The
national DHI program produces PTA values for a wide variety of traits including milk yield, fat
yield, fertility, longevity, and “conformance” (elements of body structure such as udder size and
height). Once published, these values influence adoption decisions, which then result in new data
that feeds back into the DHI program as raw data. The data is then used to create breeding values
for new sires and to update estimates for breeding values of existing sires. Building from Sewall
Wright, the HMM has become an important source of genetic progress for the dairy industry.

1The division by two to obtain PTA from µ̂ is to take into account the fact that a sire contributes only half of its
genetic material to an offspring.
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The field of economics developed in parallel to Henderson’s work, but focused on a different set
of estimation issues with respect to equation (1). In particular, the production function literature
in economics has centered attention on the assumptions needed to identify the estimate µ . If
adoption of certain genetics is associated with unobserved components of y, this means Cov(Z,ε) 6=
0 and standard regression approaches yield biased estimates of µ . This bias was more generally
referred to by Mundlak (1961) as “management bias,” which was the presence of unobserved
management decisions (or conditions of the decision environment) that influence input choice by
farmers (genetic selection in this context). Griliches (1957) specifically suggested in the case of
hybrid corn that genetic technology was historically adopted into the environment where it was
the most profitable. Solutions to this problem have evolved from the simple fixed effects approach
of Mundlak (1961) to invoking Sewall Wright’s “path analysis” and using exogenous variation
to identify structural parameters of production functions (see Griliches and Mairesse (1995) for a
review of identification of production functions).

More recently, labor economists have developed new frameworks for thinking about this identi-
fication issue. The Roy Model (Roy, 1951) posited that occupation decisions, much like technology
adoption decisions, are not chosen randomly; instead, they are generated from behavior that takes
into consideration ex ante idiosyncratic returns that are difficult to measure. This implies that mea-
suring the returns to some decision on an outcome, such as the effect of adoption of technology on
firm output, is subject to a “selection bias” which must be dealt with in something like equation (1)
(Heckman and Vytlacil, 1998). A similar logic can be applied to choice of genetics, since farmers
likely observe or know something ex ante, unobserved to researchers which affects relative returns
across relevant genetic profiles. Suri (2011) formalized the link between labor economics and pro-
duction function estimation by using the Roy model to study selection bias in technology adoption.
Her study found that farmers in Kenya adopted hybrid maize if their personal, unobserved return
was high, suggesting “positive assortative matching.” This has in turn helped spur a growing liter-
ature aimed at quantifying the heterogeneous returns to agricultural technology adoption in other
contexts (Foltz et al., 2014; Michler et al., 2018; Zeitlin et al., 2010).

Our analysis circles back to an empirical question that has been studied for nearly one-hundred
years: how do we evaluate the performance of animal genetics from observational data? We unite
two divergent fields of study, economics and quantitative genetics, by bringing the insights and
theory of economic analysis to the wealth of data on dairy animal performance and genetics and
its associated modeling approaches. Returning to the basic structure of the HMM, we focus on
estimating the effects of the genetic indices, PTA’s, for production traits in dairy cattle, and whether
estimation suffers from selection bias. If PTA’s are affected by selection behavior, this indicates
that part of dairy farm productivity usually attributed to genetic progress should also be attributed
to farmer skill at matching genetics to their environments.

In the next section, we provide a theoretical framework for thinking about heterogeneous re-
turns to dairy genetics and how their effect on productivity can be investigated using the Correlated
Random Coefficient (CRC) model of Wooldridge (2015).

Theory and Methodology
To begin, consider the case where choosing genetics is equivalent to choosing to increase or de-
crease a single trait by purchasing a sire with a particular PTA value. Every sire can be described as
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a vector of PTA index values for various traits, and in this case we can think of genetic selection as
choice of a vector of index values. In reality, the decision over which sire to choose is discrete, as
the farmer faces some choice set of sires from various AI companies. We assume in what follows
that the space of PTA’s is “dense enough” that a farmer can choose any level of the trait they want
from their choice set independently of other traits. We further assume this decision is only based
on the trait itself and not on the sire’s identity or on the AI company that is offering it for sale.

Studying adoption via a continuous variable is preferable to the discrete approach in this case
because it is not known which sires are in the farmer’s choice set. There are more than ten-thousand
unique sires in our data, and much more than that actually available to farmers. Future analysis of
the space of sires may be able to find a reduced dimensionality representation suitable for discrete
choice analysis. As a first attempt, we study only adoption of the traits via the PTA index to be
able to apply a wider range of econometric tools.

Theoretical Framing
The following simple model demonstrates the role of farm and animal level heterogeneity in es-
timating the average returns to genetic investments via a continuous index. Unlike other input
decisions, the decision to invest in genetics by choosing a certain sire happens three years before
the animal starts producing. Assume that there is only one trait, z, which the producer has to choose
three years before the cow begins production to maximize ex-ante expected return:

maxz π̄(z,x,v)−wz

where x and v are observable and unobservable management at the farm level, π̄ is expected lifetime
profit, and w is the price of purchasing one more unit of a trait.

In this model, the choice of z is only affected by farm level heterogeneity v and x. This is the
level at which heterogeneity is usually analyzed based on the notion that management decisions
operate at the level of an entire farm (Mundlak, 1961; Suri, 2011). What the above does not
consider is that the characteristics of the mate, that is the animal that is bred with the sire, should
also affect returns to z.

Call these unobserved, animal level characteristics u. We can modify the above model only
slightly to show why these characteristics are important. Instead of z affecting π̄ directly, it instead
operates indirectly through a transmission function f (z,u) which takes the traits of the sire (z) and
the traits of the dam (u) and maps to a new trait value, z′:

maxz π̄(z′,x,v)−wz
s.t. z′ = f (z,u)

Now the optimal choice of z depends on the current period price that is to be paid versus the
expected increase in profit weighted by how well the trait transmits. Adding this transmission
function implies that unobserved heterogeneity affecting the adoption of z operates at the farm
and animal levels. This is an important distinction and departure from the assumptions of both
economic and animal science models of the returns to adoption. Economic models of the effect
of technology adoption consider heterogeneity at the firm or farm level due to the assumption
that confounding variation is from management behavior affecting all plots and animals. Animal
science models refer to confounding variation at the animal level as “preferential treatment,” and
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generally only control for farm level effects because the literature does not find substantive evi-
dence of animal level decision making that would bias evaluations (Graham et al., 1991; Tierney
and Schaeffer, 1994).

Despite the lack of attention in the literature, animal-level heterogeneity can play its own part
in biasing evaluations. If the manager observes components of u that are unobserved in data, then
he or she may invest z with animals where the return is highest. Our next step is to investigate
how the existence of unobserved u will affect our empirical evaluations of the returns to z in a
production function.

Empirical Model
In data, we observe farms j and cows i during time period t. The PTA value of the sire chosen for
an animal, zi j, is time-invariant. Using the above framework, we assume that there are animal-level
(ui j) and farm-level (v j) “match quality” components that affect return to adoption of zi j. Assume
further that the total return is linearly separable, such that the total return is ui j + v j. Define this
payoff as relative to some average expected return µ̄ , so that ui j and v j are the farm’s known
deviation from this average, µ̃i j = ui j + v j. The returns to zi j for a given animal i and farm j are
thus µi j = µ̄ + µ̃i j.

Heterogeneity in the production function manifests in the coefficients for zi j:

yi jt = µi jzi j +βXi jt + εi jt

Assuming a constant slope to identify µ̄ has the following effect on the equation:

yi jt = (µ̄ + µ̃i j)zi j +βXi jt + εi jt

= µ̄zi j +βXi jt +(µ̃i jzi j + εi jt)

= µ̄zi j +βXi jt +ξi jt

Because µ̃i j is unobserved match quality, then Ordinary Least Squares will not identify an unbiased
µ̄ . It is biased because the variable return to a trait µ̃i jzi j is in the error term so that E(zi jξi jt) 6=
0. Instrumental variables will also not identify µ̄ because anything correlated with z must be
correlated with ξ (Cornelissen et al., 2016).

Our identification strategy in this paper uses instead the control function method and its spe-
cific approach to random coefficients, the “Correlated Random Coefficients” model. With this
approach, we approximate input demand with a linear function of observed covariates plus an ex-
cluded variable. We then use the residual from the approximation to proxy for match quality in the
production function. Wooldridge (2015) spells out two main conditions for the control function
method to identify µ̄ and uncover heterogeneity in the effect of a trait. Defining ηi j as the residual
term from a linear approximation of trait demand for zi j, the two conditions for the CRC model
are:

A1: E(εi jt |ηi j) = ρηi j
A2: E(µ̃i j|ηi j) = ψηi j
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These are both strong assumptions about how informative the residual ηi j is in capturing bias
and match quality. A1 is a standard assumption for control function methods, and says that selec-
tion bias take a particular form: the conditional expectation of unobserved components of output
are linear in ηi j. A2 says that the heterogeneous slope coefficient defined across cows must be
proportional to the input demand residual ηi j. The unobserved components to technology adop-
tion must include µ̃i j if the manager considers their ex ante returns when choosing zi j, but this
assumption restricts their relationship to be proportional. Using A2, we can use ηi j interacted with
zi j to proxy for an estimate of µ̃i j. Either of these assumptions can be relaxed to be non-linear,
but explicit functional forms must be given so that we know how to include η in the production
function. In our analysis, we maintain the linear functional forms.

We also need an exogenous shifter of zi j that is uncorrelated with εi jt . Our instrument is the
difference between the sire’s PTA at the time it was chosen and its PTA value at its next evaluation
four months after the adoption date (t ′): ∆zi j = zt ′

i j− zi j.2 PTA’s for every sire are updated by the
Council on Dairy Cattle Breeding (CDCB) every four months using herd testing data from around
the country. The change in PTA from one evaluation to the next ∆zi j is linearly related to zi j and
so is a relevant predictor, but the size of the deviation has to do with the performance of the sire’s
daughters all across the country. This deviation is likely unrelated to unobserved production εi jt
because it is based on the performance of other offspring of the sire before εi jt is ever realized.
It is also unlikely that the updates happening right after the use of the genetics will somehow
influence future management of that offspring; if this were the case, the PTA value of that sire at
the time the offspring i j starts producing would be the more actionable information rather than the
intermediate updates. For these reasons, we believe ∆zi j satisfies the exclusion restriction needed
for an instrument. Our approach shares similarities to the control function approaches of Levinsohn
and Petrin (2003) and Olley and Pakes (1996) which also use dynamic input lags as an exogenous
source of variation to identify production function parameters.

Using A1 and A2 and the instrument ∆zi j, we can adjust the production function for the bias
resulting from heterogeneous returns. Defining η̂i jt as the estimated residual from the first stage
input demand, we now write our empirical model as two equations:

zi j = α0 + γ∆zi j +β0Xi jt +ηi jt

yi jt = α1 + µ̄zi j +ρη̂i jt +ψη̂i jt× zi j +β1Xi jt + εi jt ,

where

• yi jt : dairy cow performance for butterfat/protein in a given lactation.

• zi j: the value of PTA butterfat/protein of the sire chosen at conception.

• ∆zi j: the deviation in trait value in the next updated evaluation.

• Xi jt : time varying management decisions affecting y (a full list can be found in the appendix).

• ηi jt : input demand residual.

Our main research question has to do with the parameters µ̄ , ρ , and ψ . The hypothesis of
“perfect transmission” of a trait is that µ̄ = 1, so a one unit increase in PTA causes a one unit

2Special thanks to our discussant Paul Scott for this suggestion.

7



increase in the offspring’s performance (Kearney et al., 2004). How much this parameter differs
from 1 before and after our bias correction indicates whether unobserved management decisions
affect the average return to a trait in our sample. Testing for ρ different than zero tests whether our
bias correction was necessary, and is also a Hausman test of the hypothesis that zi j is exogenous
(Wooldridge, 2015).

Finally, ψ indicates the relationship between match quality and returns to z. If ψ > 0, then cows
matched with a sire that has higher than expected PTA will also have a higher marginal return to
PTA in their production function. This is consistent with the “positive assortative matching” story,
which is that farmers adopt traits that work particularly well on their farms.

Heterogeneity Distribution
An output of the above model is an estimate of µi j, µ̂i j = µ̄ +ψη̂i jt .3 Assuming our theoretical
framework from before, this estimate is one component ui j and one component v j. The farm-
specific component v j has been the focus of most studies in economics and is controlled for in
animal science using fixed effects (termed “contemporary groups” in the animal science literature).
However, we may also be interested in how much of the distribution in returns is driven by the
animal specific component ui j. If there are heterogeneous returns at the animal level, then this
means that the returns to adoption of genetics are diverse even within a given farm environment.
It also implies that sire evaluation models using farm fixed effects do not completely control for
confounding factors, and that there is evidence of managers matching specific genetics to specific
animals which could bias estimates of the return to genetics.

After estimating the parameters µ̄ , ρ , and ψ , we estimate the distribution µ̂i j using the CRC
model with three different specifications: no fixed effects, herd fixed effects, and herd-by-time
fixed effects. The first specification estimates a distribution that contains both ui j and v j, and
the second nets out v j. The third specification mimics the fixed-effects strategy of many genetic
evaluation models, which use a herd fixed effect interacted with the time of the observation to soak
up dynamic management decisions affecting the returns to genetics.

Data
As described above, the market for dairy sires makes heavy use of CDCB evaluations which are
calculated from DHI data. In addition to milk yield and somatic cell count, the DHI program tracks
the number of times per day each cow is milked (usually 2, sometimes 3), their calving and birth
dates, and their “lactation number” (the number of lactation cycles a cow has been through at the
given point in time). Unfortunately, no other management decisions are observed. Our current data
set covers DHIA herds served by one Dairy Records Processing Center in the state of Wisconsin
from June 2011 to January 2015, which is representative of about 40% of Wisconsin dairy herds.
At the lactation level, there about 1 million lactation records for approximately 277 thousand dairy
cows on 1,500 dairy farms.

3Note that this is in contrast to HMM which would assume a normal distribution for such an effect and center it at
zero. We gain flexibility with the distribution of the coefficient only because we specify exactly what determines the
distribution, which is the unobserved variation in input demand.
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Table 1: Records Description

Herds 1,459
Sires 7,628
Sires w/ Company ID 1,982
Dairy Cows 277,695
Number of Lactations 424,910
Lactation Records 1,065,308

Because of the lack of management decisions observed in DHI data, the HMM includes in
X a number of fixed effects to attempt to control for the confounding impact of management
on genetics. In this model, we control for lactation length, lactation number, and proportion of
lactation milked three times a day in our specification. This is also a “cohort” effect, which is an
interaction between herd id and test month, which is a herd specific time trend. There are also
biological factors such as birth year, calving month, and breed that are included as fixed effects. In
addition to these controls, we also include prices such as the milk price, the ration cost, and price
of replacement heifers. In our main specification we use only herd fixed effects, but also estimate
the model with herd-by-time effects as a robustness check when looking at relevant distributions.

Every cow that shows up in DHI data has an ID which connects back to a sire and associated
evaluation available from the CDCB. The CDCB updates evaluations four times a year, and these
PTA values are the ones that will appear to the farmer when choosing genetics. Sire evaluations
are publicly available on the CDCB’s website and are reported by AI companies when selling
sires. These evaluations also are updated four times a year. Using the sire id’s in our data set, we
recovered all available records of these sires throughout time and matched them to cow records.
Thus, for each cow in our data, we know the PTA value of its parent sire at the time the choice of
sire was made. The “time they were chosen” is calculated as 10 months prior to the cow’s birth
date to account for the gestation period of a dairy cow. Our data set contains more than 7 thousand
unique dairy sires matched to our 1 million lactation records.

As price covariates we use a measure of ”income over feed cost,” a relationship between milk
price and ration cost determined by the 2006 farm bill, the price of 16% dairy ration, a proxy for
feed cost, and the cost of replacement, which we calculate as the beef price per pound times 1400,
the typical weight of a dairy cow, minus the cost of a replacement heifer.

In addition to issues discussed thus far, analysis of dairy cow lactation records is complicated
by survival bias for cows on their second lactation onward. Managers may remove cows from
their herd if they do not produce past some threshold of production during the first lactation. This
selection issue is discussed in detail in Henderson (1975), and often lactation records of cows past
lactation one are not used in sire evaluations for this reason. Keeping this in mind, we implement
practices commonly followed in dairy science literature when analyzing lactation data. We do not
consider cows that are lactation six or higher (about .1% of the data) and we analyze “primiparous”
(first lactation) cows separately from “multiparous” cows. Primiparous should not be subject to
survival bias, while multiparous cows are a subset of the first group that were not culled. It should
be the case that multiparous cows are more subject to the management bias we discuss and we
analyze this group separately to see how our bias correction works differently in this group. If bias
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Table 2: Covariate Description

mean s.d.
Continuous Variables
PTA Fat 28.79 27.12
PTA Protein 21.46 20.48
Proportion Milked 3x 0.58 0.49
Lactation Length 310.44 23.48
Herd Size 157.35 232.99
Binary Variables (%)
Lactation Number

1st 45.73
2nd 28.71
3rd 15.35
4th 7.34
5th 2.87

is severe in multiparous cows, this suggests an interaction between the behavior affecting genetic
selection and the behavior affecting culling decisions.

Using our matched data, we graph the kernel densities of PTA values for butterfat and protein
chosen in this sample with dotted lines indicating their average. Recall that the HMM used to pro-
duces PTA measures fixes the distribution to be normal and mean zero for the relevant population.
The densities are not centered at zero, however, and are not symmetric; both densities have very
long, left tails which shifts averages to the left.

Figure 1: Distributions of PTA’s in the Data

This does not give any indication of what level the selection is occurring, however. For exam-
ple, do farmers simply choose the same PTA value for all of their animals in a month? At what
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Table 3: Proportion of SST Explained

PTA Fat PTA Protein
Herd 0.9549 0.9552
Herd by Time 0.8111 0.7978

level is there variation in the chosen traits? A quick calculation of within-group sum of squares can
shed a little light on how variable each selected trait is within a given herd versus between herds.
For example, if a farmer simply chooses the same trait value for all of their cows, then the sum of
squares within herds should be zero. The farmer may choose the same trait in all time periods or,
within a certain month, choose the same value for all cows. The difference between herd-month
and herd essentially approximates the importance of time variant factors, likely prices and other
economic factors. We calculate the ratio between the within sum of squares for these two groups,
herd-adoption month and herd, and the total sum of squares.4

The proportion of SST explained by within herd variation in choices of both traits is quite large:
about 80% for herd-month and around 95% for herd. This is evidence that the largest amount of
variation in trait choices is within a herd and not between herds, or a large variation at the cow
level. This is not consistent with a model where heterogeneity in selection behavior is driven at
the herd level. Given this indicative evidence, we proceed to our empirical model to explore the
impact of this heterogeneity in selection on the average return to high-yield genetics.

Results
We study the traits protein and butterfat, which are the components of milk most important to
profitability for dairy farmers in Wisconsin. The PTA index is in units of pounds of fat and protein,
and represent the expected increase in yield of a dairy cow using the given sire, relative to a base
sire (whose PTA is zero). Specifically, they are predictions of a statistical model, the HMM, which
are interpreted as increase in fat or protein for the specific sire that is chosen. Since the outcome yi jt
is measured in the same units as PTA, if µ̄ = 1 then increases in sire ability correspond one-to-one
with increases in the offspring’s ability.

For each trait, we estimate several different specifications to examine how the coefficient on
z changes with different corrections. We estimate OLS, OLS with herd fixed effects, two-stage
least squares, two-stage least squares with herd fixed effects, and correlated random coefficients
(that is, including η̂i jt and η̂i jt × zi j as regressors in a fixed effects regression). If heterogeneity is
only at the herd level, then according to Wooldridge (2005) herd fixed effects alone should identify
the average treatment effect. Including the control function terms (η̂i jt and η̂i jt × zi j) in the fixed
effects model identifies the heterogeneity within herds specifically, so the difference between these
specifications provides evidence regarding the importance of cow heterogeneity in determining the
average effect.

4Calculated as ∑
G
g=1 ∑

I
i=1(yig− ȳg)

2/∑
G
g=1 ∑

I
i=1(yig− ȳ)2, where G is either herd groups or herd-adoption month

group.
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Finally, noting that the marginal benefit of a trait is given by

µ̂i jt = µ̄ + ψ̂η̂i jt ,

we can graph the resulting distribution to examine variability of returns across the entire sample.
The tables include estimates from the specifications on all lactations and then on first lactation and
later lactation cows. The first lactation cows are studied separately because they are not subject
to survival bias as later lactation cows possible are. Estimates of the first stage of the model from
which the input demand residual is calculated are presented in Appendix B. Standard errors are
calculated clustered at the herd level and cluster bootstrapped for the CRC model.

Average Returns
For both OLS and FE, the average return to increasing the butterfat of a sire is positive and dif-
ferent than zero. It is around 0.6, meaning a one unit increase in a pound of PTA causes a 0.6
pound increase in offspring. The correction, however, attenuates the effect towards zero by a large
amount. When using instrumental variables and a constant coefficient on zi j, the coefficient is near
zero, implying the correction takes away most of the productivity gain that would otherwise be
(mis)attributed to the choice of PTA. The average effect identified in the CRC model is higher,
about 0.14, with a positive and significant ρ (meaning there was significant selection bias in the
OLS specification). The CRC specification also tells us that cows with a higher than predicted
amount of the trait have a higher marginal return to the trait, that is ψ > 0. At all levels, we reject
the hypothesis that ρ = ψ = 0, that is that our correction was unnecessary and that the input de-
mand residual has no effect on the marginal return to genetic investment. These results imply that
the average effect of investing in high fat genetics is reduced by 75% after taking into account con-
founding factors. More than half of the return to PTA Fat is explained by unobserved, confounding
variables.

Table 5 shows a similar pattern to the whole sample, and further indicates large differences in
first and later lactation cows for average returns. There is strong evidence of selection behavior
that affects the returns to genetics, as the average return for first lactation cows is half that of later
lactation cows. If this difference is generated by culling, it indicates that farmers cull cows in their
first lactation that have low marginal return to the high-yield genetics.

Table 6 shows estimates for investments in protein. Similar to fat, the average returns to pro-
tein are much lower when accounting for confounding factors. Using simple OLS, the return to
protein is 0.427, and indistinguishable from zero when using instrumental variables. Using the
CRC model, the effect is different than zero, but is less than half of the OLS coefficient when con-
trolling for confounding factors: estimate change from 0.43 to 0.18. The direction of ψ suggests
positive assortative matching for adoption of high protein genetics, just as for high fat genetics.
When looking at different lactations in Table 7, there is less evidence of culling based on returns
to protein. There are slightly lower returns for first lactation cows than later lactation cows, but it
is a much smaller difference compared to the differences for fat.

Distributions
Below we estimate the resulting distributions from the CRC specification, µ̂i jt = µ̄ + ψ̂η̂i jt . Figure
2 shows the distribution of returns across all lactations for fat and protein. Figure 3 shows the
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Table 4: Fat, All Lactations

(1) (2) (3) (4) (5)
OLS FE IV IV + FE CRC + FE

PTA Fat 0.6040∗∗∗ 0.5440∗∗∗ 0.0325∗∗∗ 0.0355∗∗∗ 0.1490∗∗∗

(0.0321) (0.0134) (0.0072) (0.0043) (0.0083)

η̂ 0.5630∗∗∗

(0.0236)

η̂×PTA Fat 0.0066∗∗∗

(0.0004)
N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308
adj. R2 0.351 0.562 0.345 0.557 0.564
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Fat, Across Lactations

(1) (2) (3)
All First Lactation Later Lactation

PTA Fat 0.1493∗∗∗ 0.1059∗∗∗ 0.1980∗∗∗

(0.0083) (0.0083) (0.0130)

η̂ 0.5627∗∗∗ 0.5391∗∗∗ 0.5881∗∗∗

(0.0236) (0.0245) (0.0309)

η̂× PTA Fat 0.0066∗∗∗ 0.0060∗∗∗ 0.0072∗∗∗

(0.0004) (0.0004) (0.0004)
N 1,065,308 511,446 553,859
adj. R2 0.564 0.537 0.514
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Protein, All Lactations

(1) (2) (3) (4) (5)
OLS FE IV IV + FE CRC + FE

PTA Protein 0.427∗∗∗ 0.358∗∗∗ 0.0088 0.0165∗∗∗ 0.21724∗∗∗

(0.0343) (0.0109) (0.0060) (0.0038) (0.0110)

η̂i jt 0.2525∗∗∗

(0.0102)

η̂i jt× PTA Protein 0.0098∗∗∗

(0.0004)
N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308
adj. R2 0.451 0.669 0.448 0.667 0.671
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Protein, Across Lactations

(1) (2) (3)
All First Lactation Later Lactation

PTA Protein 0.2172∗∗∗ 0.1901∗∗∗ 0.2383∗∗∗

(0.0110) (0.0110) (0.0134)
η̂ 0.2525∗∗∗ 0.2472∗∗∗ 0.2665∗∗∗

(0.0225) (0.0227) (0.0288)
η̂× PTA Protein 0.0098∗∗∗ 0.0100∗∗∗ 0.0097∗∗∗

(0.0004) (0.0004) (0.0005)
N 1,065,308 511,446 553,859
adj. R2 0.671 0.632 0.622
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Distributions of Marginal Returns

Fat Protein
Mean Std Dev Mean Std Dev

All Lactations 0.150 0.151 0.218 0.164
First Lactations 0.106 0.133 0.191 0.161
Later Lactations 0.199 0.168 0.239 0.166
No Fixed Effects 0.170 0.185 0.249 0.197
Herd Fixed Effects 0.150 0.151 0.218 0.164
Herd by Time Fixed Effects 0.132 0.146 0.187 0.158
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Figure 2: Distributions of Returns

distributions of both traits across different lactations and across different levels of fixed effects. In
addition to using herd fixed effects, we also use a combination of herd, test month, and calving
month effect typically referred to as a “contemporary group” in a genetic evaluation model. Table
8 shows the means and standard deviations of all of the distributions.

While different in their average effect, both traits have about the same standard deviation. For
fat, a part of the distribution actually has a negative coefficient for adoption. For that farm or ani-
mal, the returns from adopting the technology may in fact be negative because of a combination of
management environment and unobserved animal-level factors. In this case, however, it is hard to
justify why increasing a trait in one parent would actually decrease that same trait in the offspring.
The reason for this may be that high fat or protein genetics are correlated with another trait that
may negatively affect milk production under certain environments. We made the assumption that
traits could be chosen independent of one another, but in reality traits have genetic correlations.
For example, high milk yield and health are negatively correlated, so increasing production traits
could negatively impact health, causing a decrease in phenotypic yield. A more advanced model
of adoption would need to find a way to model their adoption together and explicitly include these
correlations as part of the choice problem.

Figure 3 shows the differences in returns across lactations and across different fixed effects
specifications. The distributions across lactations support the results in Tables 5 and 7; for fat
there are differences across lactations, possibly reflecting a survival bias, whereas for protein the
difference is much smaller. There is also evidence in the first stage regressions that cows with
low PTA values of fat are culled at earlier ages, which is supported by these distributions (see
Appendix B). However, given the large amount of variance in each distribution, the distributions
do not appear to be statistically different than one another.
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Figure 3: Fat and Protein Distributions

The goal of using different fixed effects specifications was to look at the effects of parsing out
herd-level unobserved factors v j versus animal-level unobserved factors ui j from the distribution
µ̂i j. Without any fixed effects, the effect sizes are 0.17 and 0.25 for fat and protein respectively.
After netting out time-invariant herd effects, the effect drops to 0.15 and 0.218. Finally, when
netting out all herd level variation using herd by time effects, the effect drops to 0.132 and 0.187.
The resulting distributions are entirely generated by variation in input demand at the animal-level,
meaning dairy farm managers consider animal-level returns that they use to choose genetics. These
results imply that, on average, these returns make up 77% and 75% of the variable returns to
investment in high-yield genetics. A sizable portion of the selection process therefore appears to
happen at the level of animals rather than at the level of farms.

Discussion and Conclusion
We examine the effect of economic selection behavior on the returns to adoption of genetic technol-
ogy for dairy farms in Wisconsin. Previous literature has attributed a large amount of productivity
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growth on dairy farms to improvements in genetics without considering the possibility that traits
are selected into environments because of unobserved (to the researcher) farm or animal specific
returns to a given trait. Using the theoretical framework of the Roy model, we argue that farm and
animal level heterogeneity may bias estimates in the returns to genetic traits such as butterfat and
protein through the selection process. We use herd testing association data on dairy cows and the
evaluations of their sires at the time they were chosen to estimate a Correlated Random Coefficient
model. Our estimation approach permits us to examine the effects of correcting for bias when
estimating 1) the impact of genetic improvement on productivity, 2) the effect of selection behav-
ior as a source of heterogeneity in returns to traits, and 3) the relative importance of cow-level
heterogeneity versus farm-level heterogeneity.

We find that correcting for selection bias lowers the estimated contribution of genetic improve-
ment to productivity differences across cows by an average of 50 percent. We estimate average
returns to adopting genetics with one more pound of fat or protein to be about 0.6 pounds and 0.4
pounds before the correction, and 0.15 pounds and 0.2 pounds after correction for selection bias.
Our model also indicated positive assortative matching, meaning farms with the highest return to
adopting a given set of traits are the ones that adopt. This finding supports the idea that dairy farm
productivity growth is over-attributed to quality of genetics. We also found that first lactation cows
had the lowest average return to high-yield genetics, indicating that farmers tend to cull cows with
lower-than-expected ex post marginal return to the traits. This implies that the factors confound-
ing the returns to genetics are also at the animal level; cows with different trait investments are
managed differently in ways not controlled for using farm-level fixed effects.

This study has several limitations that should be addressed in future work. First, we modeled
trait adoption as though each trait could be chosen independent from other traits. This may not be
reasonable assumption to the extent that traits are correlated with one another. Accounting for this
possibility would require modeling a system of equations with cross equation restrictions limiting
trait selection possibilities to those that are feasible given relevant empirical context. Implementing
such a model might be able to explain why there are negative returns to high-yield genetics for
some animals and farms. Second, we treated trait investment as continuous even though farms
choose sires discretely. This assumes that the trait values are dense enough to treat the variable as
continuous, whereas the adoption decision is discrete over a choice set of individual bulls. One way
to model this as a discrete problem while also taking into account correlations between traits would
be to use a lower dimensionality representation of sires determined from the data. Unsupervised
machine learning methods such as K-means clustering could be used to characterize an implied
grouping of sires which have certain traits in common. The problem would then change to being
one of choosing traits to instead choosing “bull types.” The matching decision itself also needs
further elaboration. In future work, we hope to turn our attention to data on breeding decisions
where we have additional data that may permit more detailed investigation of the selection decision.
We also aim to develop a more sophisticated modeling approach that will take into account that
farmers select a portfolio of traits rather than choosing one at a time.

Despite these shortcomings, our results point to new possibilities for studying technology adop-
tion, and suggest the need for reinterpretation and further research on the expansive literature that
examines the contribution of genetic progress to productivity growth in the dairy sector. For the
economics field tackling technology adoption, animal level heterogeneity is important and should
not be overlooked. Appendix B shows the first stage results of the model which shows that cows
with higher trait investment are milked more frequently and survive to more lactations. If such

17



behavior happens at the animal level it is important to take this into account when thinking of
sources of farm productivity that farmers may act on in the context of the Roy Model. Previous
studies of farm productivity usually identify “unobserved” returns at the farm level, and for this
reason many papers studying dairy farms or animal operations sum production to the herd level.
This assumption also suggests reevaluation of extension programming developed to advise farmers
about herd level management. Our work shows that a large amount of the heterogeneity in returns
is driven by animal level variation, meaning there are ample opportunities to increase productivity
be emphasizing management on this level. Agricultural data are becoming more granular and no
doubt there will be increasing opportunities for economics research to take selection of genetics
by farmers into account. We consider only animal agriculture, where every animal must be bred,
but the approach we develop here may also be used at some scale in crop agriculture.

Overall, we find that selection behavior biases estimates of the effect that genetic improvement
alone has on productivity growth. An important component of productivity change depends on
farmers choosing genetics that work particularly well in conditions that are idiosyncratic to their
individual farming operations. This changes the narrative regarding the source of farm productivity
in the dairy industry from one where science alone is the source of gains from new technology, to
one where growth is the result of complementary inputs provide by farmers and scientists. Indeed,
the success of the dairy industry thus far depends critically on collaboration among farmers and
scientists via institutions often taken for granted, such as the DHI program, land-grant universities,
and a wide variety of industry collaborators (represented collectively by the Council on Dairy
Cattle Breeding). The interplay between these organizations, and the remarkable record of success
(as measured by productivity growth) they have achieved, make the dairy industry a unique model
of research and innovation in agriculture that merits further analysis and critique in the economics
field.
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Appendix A Regression Controls
To select controls for the animal equation, we draw on the animal science literature to inform
controls we include in the model.

Inside Xi jt :

• Economic Controls

– Cost of 16% dairy ration

– Income over feed cost

– Replacement cost (Beef Price $/lb × 1400 - Cost of Replacement Heifer)

– Time Trend

• Biological Controls

– Calving Month (Indicator)

– Test Month (Indicator)

– Birth Year (Indicator)

– Lactation Number (Indicator)

– Holstein (Indicator)

• Management Controls

– Proportion of Lactation Milked Three Times in a Day

– Herd Size (deviations from average)

– Lactation Length (Days in Milk of record)
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Appendix B First Stage Estimates
The first stage equation for our model uses past variation in a sire’s evaluation which occurs at the
national level as a source of exogenous variation:

zi j = α0 j + γ∆zi j +β0Xi jt +ηi jt

While this prediction is time-invariant (selection occurs only once), the residual ηi jt will still be
time-variant because of the term Xi jt . Due to the presence of Xi jt , the first stage essentially treats
the same cow at different points in time as entirely separate cows who happen to have the same
values of zi j. This means that when we examine the PTA investment for one cow at two different
lactations, it essentially treats these as two adoption decisions; by deciding to let the animal keep
producing, the manager implicitly adopts the genetics again. This is not necessarily problematic,
but does necessitate throwing out anything above first lactation to properly understand how the
culling decision interacts with adoption of genetics.

One implication of this approach is that the first stage will helps us understand the trait in-
vestments for animals that survive. Table 9 shows the results of the first stage and the coefficients
on animal level variables. Both OLS and fixed effects are shown to get a sense for what level of
variation is important. For example, lactation length and lactation number are both significant in
predicting z, which implies that cows that have a larger trait investment are milked longer and are
more likely to not be culled in their first year. Milking the cow three times per day is significant
in the OLS specification but not in the fixed effects, implying that farms that choose higher in-
vestments in production traits also milk more intensively at the herd level. Holstein cows are also
most likely to have the highest investment in production traits, which is to be expected given their
comparative advantage in high volume production.

Differences across production traits is mostly seen in the culling decision. Without herd fixed
effects, cows that are kept past the first lactation have higher trait investment for both fat and
protein. Once herd fixed effects are used, fewer differences are seen across lactations. For fat, only
second lactation cows have marginally more fat investment than first lactation cows. For protein, all
later lactation cows have higher investments in protein (on the order of one pound more). One thing
that can be learned from these results is that adoption decisions and other management decisions
are inextricably linked. Specifically, cows that have a high PTA investment are more likely to be
kept, milked longer, and milked more intensively.
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Table 9: First Stage Regression

PTA Fat PTA Protein
OLS FE OLS FE

∆zi j 0.499∗∗∗ 0.500∗∗∗ 0.495∗∗∗ 0.496∗∗∗

(0.0006) (0.0006) (0.0005) (0.0005)

Lactation No.=2 1.589∗∗∗ 0.368∗ 1.793∗∗∗ 0.954∗∗∗

(0.265) (0.207) (0.193) (0.157)

Lactation No.=3 2.220∗∗∗ -0.195 2.789∗∗∗ 1.132∗∗∗

(0.519) (0.409) (0.376) (0.310)

Lactation No.=4 3.164∗∗∗ -0.393 3.675∗∗∗ 1.254∗∗∗

(0.766) (0.594) (0.569) (0.461)

Lactation No.=5 3.839∗∗∗ -0.787 4.718∗∗∗ 1.610∗∗∗

(0.999) (0.786) (0.746) (0.605)

Proportion Milked 3x 1.528∗∗∗ -0.310 1.210∗∗∗ -0.0692
(0.481) (0.687) (0.351) (0.382)

Herd Size 0.000015 -0.00072 -0.000061 -0.00066
(0.00026) (0.00057) (0.00020) (0.00052)

Lactation Length (Days) 0.0064∗∗∗ 0.0056∗∗∗ 0.0056∗∗∗ 0.0052∗∗∗

(0.0011) (0.0009) (0.0008) (0.0007)

Holstein 1.475 3.191∗∗∗ 3.260∗∗∗ 2.707∗∗∗

(1.475) (0.561) (0.791) (0.656)
Observations 1,641,022 1,641,022 1,641,022 1,641,022
Adjusted R2 0.249 0.303 0.281 0.333
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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