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1 Introduction

It is common in economic modeling to assume that, when presented with a choice set, a
decision maker (DM) will choose the option that is ranked highest according to a coherent
preference ordering. However, observed choices in experimental settings often appear to
be random, and while this could reflect random variation in preferences, it is often more
sensible to view choice as imprecise. Models of rational inattention (such as Matêjka et al.
[2015]) formalize this idea by assuming that the DM chooses her action based on a signal
that provides only an imperfect indication of the true state. The information structure that
generates this signal is optimal, in the sense of allowing the best possible joint distribution
of states and actions, net of a cost of information. In the terminology of Caplin and Dean
[2015], models of rational inattention make predictions about patterns of state-dependent
stochastic choice. These predictions will depend in part on the nature of the information
cost, and several recent papers have attempted to recover information costs from observed
behavior in laboratory experiments (Caplin and Dean [2015], Dean and Neligh [2019]).

However, in both laboratory experiments and real-world economic settings, decisions
take time, and the time required to make a decision is likely to be informative about the
nature of information costs.1 In this paper, we develop a framework to study rational inat-
tention problems in which decisions take time, providing a means of connecting decision
times to information costs and state-dependent stochastic choice.

There is an extensive literature in mathematical psychology that focuses on these is-
sues. Variants of the drift-diffusion model (DDM, Ratcliff [1985], Ratcliff and Rouder
[1998], Wagenmakers et al. [2007]) also make predictions about stopping times and state-
dependent stochastic choice.2 In particular, these models are designed to match the em-
pirical observation that hasty decisions are likely to be of lower quality.3 However, these
models are not based on optimizing behavior, and this raises a question as to the extent
to which they can be regarded as structural; it is unclear how the parameters of the DDM

1On the usefulness more generally of data on response times for drawing inferences about the nature of
the random error involved in choices, see Alós-Ferrer et al. [2021].

2DDM models were originally developed to explain imprecise perceptual classifications. See Woodford
[2020] for a more general discussion of the usefulness of the analogy between perceptual classification errors
and imprecision in economic decisions.

3The existence of a speed-accuracy trade-off is well-documented in perceptual classification experiments
(e.g., Schouten and Bekker [1967]). Variants of the DDM that have been fit to stochastic choice data include
Busemeyer and Townsend [1993] and more recently Krajbich et al. [2014] and Clithero [2018]; see Fehr
and Rangel [2011] for a review of other early work. Shadlen and Shohamy [2016] provide a neural-process
interpretation of sequential-sampling models of choice.
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model should be expected to change when incentives or the costs of delay change, and
this limits the use of the model for making counter-factual predictions. The framework
we develop includes as a special case variants of the DDM model, while at the same time
making predictions about state-dependent stochastic choice that match those of a static ra-
tional inattention (RI) model. Consequently, our framework is able to both speak to the
relationship between stopping times and state-dependent stochastic choice (unlike standard
RI models) and make counter-factual predictions (unlike standard DDM models).

We propose a class of rational inattention models in which the DM’s imprecise percep-
tion of the decision problem evolves over time, and an optimization problem determines
a joint probability distribution over stopping times and choices. We then demonstrate that
the resulting state-dependent stochastic choice probabilities of our continuous-time model
are equivalent to those of a static RI model. Any cost function for a static RI model in the
uniformly posterior-separable family (in the terminology of Caplin et al. [2019]) can be
interpreted using our framework. This result offers both a justification for using such cost
functions in static RI problems and a means of connecting those cost functions to dynamic
processes for beliefs, and in particular to data on decision times.

We focus our analysis on a limit in which decision times are short relative to the rate
of time preference. In this case, beliefs follow a Markov process and move in a space
whose dimensionality is one less than the number of actions (e.g. a line in the case of a
binary decision problem, as assumed in the DDM). We also give conditions under which
the dynamics of the belief state prior to stopping will be a pure diffusion (as assumed
in the DDM), or alternatively will be a pure jump process (as in the models of Che and
Mierendorff [2019] and Zhong [2019]). Our results therefore contribute to the literature
on DDM-style models by presenting a model with many features of the DDM, but that —
because it is developed as an optimizing model — makes predictions about how decision
boundaries and choice probabilities should change in response to changes in incentives.

We also characterize the boundaries of the stopping regions and the predicted ex ante
probabilities of different actions, as functions of model parameters including the opportu-
nity cost of time. The key to this characterization is a demonstration that in a broad class
of cases, both the stopping regions and the ex ante choice probabilities for any given initial
prior are the same as in a static RI problem with an appropriately chosen static information
cost function. Thus in addition to providing foundations for interest in DDM-like models
of the decision process, our paper provides novel foundations for interest in static RI prob-
lems of particular types. For example, we provide conditions under which the predictions
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of our model will be equivalent to those of a static RI model with the mutual-information
cost function proposed by Sims [2010]) — and thus equivalent to the model of stochastic
choice analyzed by Matêjka et al. [2015] — but the foundations that we provide for this
model do not rely on an analogy with rate-distortion theory in communications engineering
(the original motivation for the proposal of Sims).

More generally, as noted above, we show that any cost function for a static RI model
in the uniformly posterior-separable family studied by Caplin et al. [2019] can be justified
by the process of sequential evidence accumulation that we describe. This includes the
neighborhood-based cost functions discussed in Hébert and Woodford [forthcoming], that
lead to predictions that differ from those of the mutual-information cost function in ways
that arguably better resemble the behavior observed in experiments such as those of Dean
and Neligh [2019]. Our result provides both a justification for using such cost functions in
static RI problems, and an answer (not given by static RI theory alone) to the question of
how the cost function should change as the opportunity cost of time changes.

The connection that we establish between the choice probabilities implied by a dynamic
model of optimal evidence accumulation and those implied by an equivalent static RI model
holds both in the case that the belief dynamics in the dynamic model are described by a pure
diffusion process and in the case that they are described by a jump process; thus we also
show that with regard to these particular predictions, these two types of dynamic models
are equivalent. However, the predictions of the two types of model differ with regard to the
distribution of decision times, so that it is possible in principle to use empirical evidence to
determine which better describes actual decision making.

The key to our analysis is a continuous-time model of optimal evidence accumulation,
in which beliefs are martingales (as implied by Bayes’ rule). The evolution of beliefs in
our model is limited only by a constraint on the rate of information arrival, specified in
terms of a posterior-separable cost function. This flexibility is consistent with the spirit of
the literature on rational inattention, but with some noteworthy differences. Much of the
previous literature considers a static problem, in which a decision is made after a single
noisy signal is obtained by the DM. This allows the set of possible signals to be identified
with the set of possible decisions, which is no longer true in our dynamic setting.

Steiner et al. [2017] also discuss a dynamic model of rational inattention. In their
model, because of the assumed information cost, it is never optimal to acquire information
other than what is required for the current action. As a result, in each period of their
discrete-time model, the set of possible signals can again be identified with the possible

3



actions at that time. We instead consider situations in which evidence is accumulated over
time before any action is taken, as in the DDM; this requires us to model the stochastic
evolution of a belief state that is not simply an element of the set of possible actions.4

Our central concerns are to study the conditions under which the resulting continuous-
time model of optimal information sampling gives rise to belief dynamics and stochastic
choices similar to those implied by a DDM-like model, and to study how variations in the
opportunity cost of time or the payoffs of actions should affect stochastic choice.

A number of prior papers have endogenized aspects of a DDM-like process. Moscarini
and Smith [2001] consider both the optimal intensity of information sampling per unit of
time and the optimal stopping problem, when the only possible kind of information is given
by the sample path of a Brownian motion with a drift that depends on the unknown state,
as assumed in the DDM.5 Fudenberg et al. [2018] consider a variant of this problem with
a continuum of possible states, and an exogenously fixed sampling intensity.6 Woodford
[2014] takes as given the kind of stopping rule posited by the DDM, but allows a very
flexible choice of the information sampling process, as in theories of rational inattention.
Our approach differs from these earlier efforts in seeking to endogenize both the nature of
the information that is sampled at each stage of the evidence accumulation process and the
stopping rule that determines how much evidence is collected before a decision is made.7

Section 2 introduces our continuous-time evidence-accumulation problem, and presents
some preliminary results. In section 3, we define two special conditions that information
costs may satisfy: a “preference for gradual learning” or a “preference for discrete learn-
ing.” These properties represent the conditions under which we can show that the optimal
belief dynamics will evolve either as a diffusion (in the former case) or a pure jump pro-
cess (in the latter). In section 4 we demonstrate that the state-dependent choice probabili-

4Our model differs from the one analyzed by Steiner et al. [2017] in several respects. First, as just noted,
we study a setting in which the DM takes an action only once, and chooses when to stop and take an action.
Second, we consider a much more general class of information costs, as opposed to assuming the mutual
information cost. And third, we assume that the DM has a motive to smooth her information gathering over
time, rather than learn all of the relevant information at a single point in time.

5Moscarini and Smith [2001] allow the instantaneous variance of the observation process to be freely
chosen (subject to a cost), but this is equivalent to changing how much of the sample path of a given Brownian
motion can be observed by the DM within a given amount of clock time.

6See also Tajima et al. [2016] for analysis of a related class of models, and Tajima et al. [2019] for an
extension to the case of more than two alternatives.

7Both Morris and Strack [2019] and Zhong [2019] adopt our approach, and obtain special cases of the
relationship between static and dynamic models of optimal information choice that we present below. Che
and Mierendorff [2019] and Zhong [2019] both differ from our treatment in not considering conditions under
which beliefs will evolve as a diffusion process.
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ties predicted by our continuous-time model (in both the diffusion case and the jump case)
are equivalent to those predicted by a static rational inattention model with a uniformly
posterior-separable cost function. In section 5 we discuss how the diffusion and jump cases
can nonetheless be distinguished using data on response times. Section 6 concludes.

2 Dynamic Models of Rational Inattention

Let X be a finite set of possible states of nature. The state of nature is determined ex-ante,
does not change over time, but is not known to the DM. Let qt ∈P(X) denote the DM’s
beliefs at time t ∈ [0,∞), where P(X) is the probability simplex defined on X . We will
represent qt as vector in R|X |+ whose elements sum to one, each of which corresponds to the
likelihood of a particular element of X , and use the notation qt,x to denote the likelihood
under the DM’s beliefs at time t over the true state being x ∈ X .

At each time t, the DM can either stop and choose an action from a finite set A, or
continue to acquire information. Let τ denote the time at which the DM stops and makes a
decision, with τ = 0 corresponding to making a decision without acquiring any information.
The DM receives utility ua,x if she takes action a and the true state of the world is x, and
pays a flow cost of delay per unit time, κ ≥ 0, until an action is taken. Let û(qτ) be the
payoff (not including the cost of delay) of taking an optimal action under beliefs qτ :

û(qτ) = max
a∈A

∑
x∈X

qτ,xua,x.

We assume ua,x is strictly positive, and discuss the implications of this assumption below.
If the DM does not stop and act, she can gather information. We adopt the rational

inattention approach to information acquisition and assume that the DM can choose any
process for beliefs satisfying “Bayes-consistency,” subject to a further constraint (specified
below) on the rate of information acquisition. In a single-period model, Bayes-consistency
requires that the expectation of the posterior beliefs be equal to the prior beliefs. The
continuous-time analog of this requirement is that beliefs must be a martingale.

Let the DM’s initial beliefs be q̄0 ∈P(X). We allow the DM to choose any filtered
probability space (Ω,F ,{Ft}t∈R+,P) and stochastic process q : Ω×R+→P(X), such
that qt is a càd1àg {Ft}-martingale and q0 = q̄0, subject the constraint specified below.
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Example. A Markovian diffusion: The DM could choose

dqt = Diag(qt−)σ(qt−) ·dBt (1)

where Diag(qt−) is a diagonal matrix with qt− on the diagonal, σ is an |X | × (|X | − 1)
matrix-valued function and Bt is an (|X | − 1)-dimensional Brownian motion. To ensure
that qt remains in the simplex, we must have qT ·σ(q) =~0 for all q ∈P(X).

Example. K Markovian jump processes: The DM could choose, for some integer K > 0,

dqt =−
K

∑
k=1

ψk(qt−)zk(qt−)dt +
K

∑
k=1

zk(qt−)dJk
t , (2)

where each Jk
t is an independent Poisson process with intensity ψk(qt−). To ensure that

beliefs remain in the simplex and satisfy Bayes-consistency, the zk must be such that, for
all q ∈P(X), q+ zk(q) is also in the simplex and absolutely continuous with respect to q.

These two examples could also be combined, to generate a jump-diffusion process. And
the quantities σt and zk,t can be allowed to vary with time in a more complex way, rather
than having to be functions of the current belief qt− as specified above.8

We assume that DM is subject to a constraint on how fast her beliefs can evolve,
specified in terms of a “posterior-separable” cost function (as in the static rational inat-
tention problems considered by Caplin et al. [2019]). Posterior-separable cost functions
are defined in terms of a divergence, D : P(X)×P(X)→ R+, which is defined for all
(q′,q) ∈P(X)×P(X) such that q′� q.9 By the definition of a divergence, D(q′||q) is
zero if and only if q′ = q, and strictly positive otherwise. We extend D to R|X |+ ×P(X) by
assuming the function to be homogenous of degree one. We also assume that it is strongly
convex in its first argument and twice continuously-differentiable in both arguments.10

We require the DM’s belief process to satisfy

limsup
h↓0

1
h

EP[D(qt ||q(t−h)−)|F(t−h)−]≤ χ, (3)

8We show, however, that Markovian optimal policies exist.
9We assume here that D is finite for q′,q on the boundary of the simplex, provided that q′� q, as is true

for example of the widely-used Kullback-Leibler divergence. But our results could readily be extended to
cover the case in which D is infinite for such values.

10Strong convexity, in this context, implies that D(q′||q)≥ m|q′−q|2 for some constant m > 0.
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where χ > 0 is a finite constant. This constraint can be understood as the continuous-time
analog of requiring that Et−h[D(qt ||qt−h)]≤ χh in a discrete time model with time interval
h. Note also that in what follows, we will use the notation Et [·] to indicate EP[·|Ft ]. We il-
lustrate the implications of this constraint in the context of our examples; these implications
follow from Ito’s lemma (for a proof, see Lemma 6 in the appendix).11

Example. A Markovian diffusion: in the context of the diffusion process (1), the constraint
(3) requires that σ(q) satisfy the additional condition

1
2

tr[σ(q)T Diag(q)k̄(q)Diag(q)σ(q)]≤ χ (4)

for all q ∈P(X), where k̄(q) is an |X |× |X | matrix defined on the interior of the simplex,

k̄x,x′(qt−) =
∂ 2D(q||qt−)

∂qx∂qx′
|q=qt−

, (5)

and extended to the boundary by continuity.

Example. K Markovian jump processes: in the context of the jump process (2), the con-
straint (3) requires that, for all q ∈P(X),

K

∑
k=1

ψk(q)D(q+ zk(q)||q)≤ χ. (6)

We have specified the possible belief processes in this way to emphasize the connec-
tion between our approach in continuous time and the standard, discrete-time approach to
rational inattention.12 The constraint (3) implies a tradeoff between more frequent but less
informative movements in beliefs and rarer but larger movements in beliefs. Suppose that
the DM would like her beliefs to follow a jump process of the kind specified in (2). The
DM can choose rare but informative signals (small ψk(q), large D(q+ zk(q)||q)) or more
frequent but less informative signals (larger ψk(q), smaller D(q+ zk(q)||q)). In fact, there
exists a limit in which jumps become very likely and very small (|zk| → 0,ψk → ∞) and
the stochastic process of beliefs and the information constraint for the jump process (2)

11Technical footnote: we require only that (3) hold for all (ω, t) ∈Ω×R+ outside of an evanescent set i.e.
that the process qt is indistinguishable from a process for which the constraint holds everywhere.

12The working paper version of this paper (Hébert and Woodford [2019]) derives a version of our
continuous-time problem by considering the limit of a sequence of discrete-time problems.
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converge to the stochastic process and constraint for a diffusion process (1). That is, the
constraint (3) ensures continuity between the cost of a continuous belief process and the
cost of a belief process with very small jumps.

Let A denote the set of feasible policies (i.e. filtered probability spaces, stochastic
processes for beliefs consistent with (3), and stopping times), and let ρ ≥ 0 denote the
DM’s rate of time preference. We will assume that at least one of ρ or κ is strictly positive,
so that the DM faces some cost of delay.

Definition 1. The DM’s problem given initial belief q̄0 ∈P(X) is

V (q̄0) = sup
((Ω,F ,{Ft},P),q,τ)∈A

E0[e−ρτ û(qτ)−κ

ˆ
τ

0
e−ρsds].

We next discuss in more detail several features of our modeling approach.

2.1 Remarks on the Model

Generality of the Beliefs Process. Our model allows the DM to choose from large space
of possible beliefs processes, which we view as consistent with the spirit of the rational
inattention paradigm. However, as we will show in our preliminary analysis below, the
DM’s problem can be restricted to a smaller and more tractable set of beliefs processes
without reducing the utility achieved in the DM’s problem.

Discounting and Strictly Positive Utility. Much of our analysis will focus on the case
without discounting (ρ = 0), or on the limiting case in which ρ → 0+. Many decisions
are made over short periods of time (seconds or minutes). With conventional rates of time
preference, ρτ should be extremely close to zero. As we will demonstrate, in the ρ = 0,
κ > 0 case, the model is tractable and we are able (under certain additional assumptions)
to characterize the value function. Consequently, provided that behavior is continuous in
the limit as ρ approaches zero, holding fixed κ > 0 (and we will show that it is), we believe
that it is reasonable to focus on the predictions when ρ = 0.

We assume in our model (following Zhong [2019]) that the utility function is strictly
positive. In the ρ = 0, κ > 0 case, this assumption is unnecessary, and considering negative
utilities would not change any results. In the ρ > 0, κ = 0 case, the value of never making
a decision is zero. The economic implication of the assumption of strictly positive utility
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is that any action taken in finite time dominates never making a decision. This condition,
which is stronger than necessary, ensures that optimal stopping times are well-behaved.

Information Constraints vs. Information Costs. We have described our model in terms
of a constraint on rate at which information can be acquired. However, we would have
reached identical results had we instead treated the cost of information as entering the utility
function. Both approaches are common in the rational inattention literature, and equivalent
for our purposes, although they make different predictions in certain settings (e.g. with
respect to the effect of “scaling up” the utility function u on behavior). In the working paper
version of this paper (Hébert and Woodford [2019]), we discussed both primal (constraints)
and dual (utility costs) problems, and provided some equivalence results.

In the case of no discounting (ρ = 0), whether the information cost is treated as a utility
cost or constraint is irrelevant: the optimal policies are identical across the two cases. This
property comes from the fact that the cost of delay is constant. In the case with discounting
(ρ > 0), the cost of delay depends in part on the current level of the value function, which
generates variation in the amount of information acquired when information costs are utility
costs, but not when information costs are constraints. Our results, however, are not sensitive
to the differences between the optimal policies in these two cases.

Conditional vs. Unconditional Dynamics and the DDM Model. The continuous time
problem just described uses the “unconditional” dynamics for the beliefs qt , meaning that
beliefs are martingales. That is, by the usual Bayesian logic, the DM can never expect to
revise her beliefs in any particular direction. In contrast, DDM models (see, e.g., Fudenberg
et al. [2018]) are usually expressed in terms of the conditional dynamics of beliefs. A
“decision variable” zt is assumed to follow a process

dzt = δ|xdt +αdBt|x, (7)

where δ|x is a drift that depends on x ∈ X , and Bt|x is a Brownian motion conditional on
x ∈ X . In the classic DDM, the decision variable zt is assumed to be one-dimensional, and
the DM is assumed to stop and choose from a set of two possible actions when zt reaches
one of the two ends of a line segment (each corresponding to one of the available actions).

To understand the relationship between our optimizing model and DDM-style models,
suppose that the DM chooses a diffusion process for beliefs, as in (1). (We establish con-
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ditions below under which this will be optimal.) Conditional on the true state being x ∈ X ,
the DM’s beliefs qt follow a diffusion of the form the process13

dqt = Diag(qt−)σ(qt−)σ(qt−)
T ex dt + Diag(qt−)σ(qt−)dBt|x, (8)

where ex is a vector equal to one in the element corresponding to x and zero otherwise.
Note that this implies that, if we write µt−|x for the drift rate of qt,x in (8),

µt−|x = eT
x Diag(qt−)σ(qt−)σ(qt−)

T ex ≥ 0.

Thus, the DM will tend to assign more probability to the true state as evidence accumulates.
Thus if the DM chooses the kind of gradual evidence accumulation described by (1),

the belief process qt in our model has properties similar to those posited for the “decision
variable” zt in the DDM model: it is a diffusion process with a drift that depends on the true
state x, and an instantaneous variance that is independent of the state. Below, we establish
conditions under which it will be optimal for the belief process to be a diffusion of this
kind. Moreover, we establish conditions under which, in the case of a choice between only
two possible actions, it is optimal for the DM in our model to choose a belief process that
diffuses on a line until it reaches one of two stopping boundaries, as posited by the DDM.14

2.2 Preliminary Analysis

We begin by showing that optimal policies exist. A key concern is the possibility of se-
quences of policies that involve increasingly frequent but small jumps and converge in the
limit to diffusions. In this case, the stochastic processes for beliefs will converge to a con-
tinuous martingale, even though no martingale in the sequence is continuous. Nevertheless,
the constraint in (3) is continuous in this limit, and the limiting policy is feasible.

Lemma 1. There exists a set of optimal policies in the DM’s problem.

Proof. See the appendix, section A.1.

13This expression follows from Bayes’ rule and the Girsanov theorem.
14It is well known that optimal Bayesian decision making would imply a process of this kind in the special

case that (i) there are only two possible states x, so that the posterior necessarily moves on a line, and
(ii) the only possible kind of information sampling is observation of a particular Brownian motion with
state-contingent drift, so that the DM’s only decision is when to stop observing and choose an action, as in
Fudenberg et al. [2018]. The novelty of our result is that we allow a flexible choice of the kind of information
that is sampled, subject to (3), and that our result applies regardless of the number of states in X .
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This result ensures that the questions we hope to address, such as when optimal policies
involve jumps or diffusions, in fact have answers.

Next we show that the value function for our problem must satisfy a Hamilton-Jacobi-
Bellman (HJB) equation. This is not trivial, because in our context, the value function
need not be twice continuously-differentiable, and consequently the HJB equation cannot
be derived in the usual fashion. We take an alternative approach using viscosity techniques
to show that the value function is once continuously-differentiable, and that it is a solution
to an HJB equation of a simpler problem.

To simplify our notation, we extend the definition of V to the set of positive measures
(R|X |+ ) by assuming homogeneity of degree one, and define the gradient of V , ∇V , in the
usual way. Also, for any belief q ∈P(X), let Q(q) be the subset of P(X) consisting of all
beliefs q′ such that q′ 6= q,q′� q (the set for which D(q′||q) is defined and non-zero).

Proposition 1. Let V (q) be the value function that solves the DM’s problem (Definition 1).

This value function is continuously differentiable on the interior of P(X) and the interior

of each face of P(X), and satisfies, for all q ∈P(X),

max{ sup
q′∈Q(q)

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

−ρV (q)−κ, û(q)−V (q)} = 0.

Proof. See the appendix, section A.3

This is the HJB equation of a restricted version of our problem in which the DM is
constrained not to diffuse and to jump to only one destination (a process of the form (2)
with K = 1). That is, imposing such a restriction on the belief dynamics does not reduce the
DM’s value function. Note that optimal policies may not exist in this restricted problem, if
it is in fact strictly optimal to diffuse in the original problem; in such a case, a sequence of
“pure jump” policies involving ever-smaller and more frequent jumps achieves the supre-
mum. The useful general characterization of the value function in Proposition 1 allows us
to establish further properties of optimal belief dynamics in a variety of special cases.

3 Preferences for Gradual and Discrete Learning

We next study the relationship between properties of the divergence D and properties of
beliefs under optimal policies. We consider two cases: when there is a “preference for
gradual learning” and when there is a “preference for discrete learning,” terms we define
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below. These two classes of divergences lead, respectively, to beliefs that move in small
increments and beliefs that move in large increments. In the case of zero discounting, a
preference for gradual learning leads to beliefs that diffuse, as in the DDM model.

3.1 Gradual Learning

We begin by defining what we call a “preference for gradual learning.” This condition
describes the relative costs of learning via jumps in beliefs vs. continuously diffusing
beliefs, which are governed by the properties of the divergence D.

Definition 2. The divergence D exhibits a “preference for gradual learning” if, for all
q,q′ ∈P(X) with q′� q,

D(q′||q)≥ (q′−q)T · (
ˆ 1

0
(1− s)k̄(sq′+(1− s)q)ds) · (q′−q). (9)

This preference is “strict” if the inequality is strict for all q′ 6= q, and is “strong” if, for some
δ > 0 and some m > 0,

D(q′||q)≥ (1+m|q′−q|δ )(q′−q)T · (
ˆ 1

0
(1− s)k̄(sq′+(1− s)q)ds) · (q′−q). (10)

Note that, to second order, D(q′||q) = (q′−q)T k̄(q)(q′−q)+o(|q′−q|2). A preference
for gradual learning requires that the higher-than-second-order terms be positive, a strict
preference requires that they be strictly positive as q′ approaches q, and a strong preference
requires that they be of order |q′−q|2+δ .

One special case of particular interest involves Bregman divergences (such as the Kullback-
Leibler divergence commonly used in the rational inattention literature). A Bregman diver-
gence can be written, using some convex function H : P(X)→ R, as

DH(q′||q) = H(q′)−H(q)− (q′−q)T ·∇H(q), (11)

where ∇H(q) denotes the gradient. For a Bregman divergence, k̄(q) is the Hessian of H(q),
and (9) is an equality for all q,q′ ∈P(X).

Divergences exhibiting a (strict or strong) preference for gradual learning can be easily
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constructed from Bregman divergences. Suppose that

D(q′||q) = f (DH(q′||q)),

where f : R+→R+ is a twice continuously-differentiable, strictly increasing, convex func-
tion with f (0)= 0, f ′(0)= 1, and DH is a Bregman divergence. The Hessian of D evaluated
at q′ = q is the same as that of DH , and by convexity

D(q′||q)≥ DH(q′||q),

implying that D also exhibits a preference for gradual learning. This preference is strict if
f (·) and H(·) are strictly convex, and strong if H(·) and f (·) are strongly convex.

We begin our analysis with a lemma, showing that the value function’s curvature is
limited by the possibility of diffusing along a line. Note that this lemma holds regardless
of whether D exhibits a preference for gradual learning.

Lemma 2. For all q,q′ ∈P(X) such that q′� q and q′ 6= q,

V (q′)−V (q)− (q′−q) ·∇V (q)≤

(q′−q)T · (
ˆ 1

0
(1− s)χ−1(ρV (sq′+(1− s)q)+κ)(k̄(sq′+(1− s)q)ds) · (q′−q).

Proof. See the appendix, section A.4.

Lemma 2 and the HJB equation in Proposition 1 together show that the curvature of
the value function (V (q′)−V (q)− (q′− q) ·∇V (q)) is limited by both the possibility of
directly jumping from q to q′ and the possibility of attempting to diffuse from q to q′. In
the case of a strong preference for gradual learning, the bound arising from the possibility
of diffusing is tighter for sufficiently large values of |q′−q|. The intuition behind this result
comes from a “race” between the strong preference for gradual learning of the divergence,
which makes jumping as opposed to diffusing increasingly costly as |q′−q| becomes large,
and the potentially increasing cost of delay under a diffusion policy (ρV (sq′+(1− s)q)

vs. ρV (q)). Because the value function is bounded, the cost of delay can increase only so
much, and consequently for |q′−q| sufficiently large, the diffusion bound must be tighter
than the direct jump bound.
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Lemma 3. Let umax = maxq∈P(X) û(q) and umin = minq∈P(X) û(q). If D exhibits a strong

preference for gradual learning, then

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

< χ
−1(ρV (q)+κ) (12)

for all q,q′ ∈P(X) such that q′� q, q′ 6= q, and

|q′−q|δ >
ρ(umax−umin)

m(κ +ρumin)
.

Proof. By contradiction: suppose the reverse inequality holds for some q′ satisfying this
condition. Then by Lemma 2 and the definition of a strong preference for gradual learning,

D(q′||q)
1+m|q′−q|δ

(ρumax+κ)χ−1≥V (q′)−V (q)−(q′−q)·∇V (q)≥ χ
−1(ρumin+κ)D(q′||q),

which yields ρ(umax−umin)
κ+ρumin

≥ m|q′−q|δ , a contradiction.

A consequence of this result is that when D exhibits a strong preference for gradual
learning, there exists an optimal policy such that the probability of a jump of size greater
than (ρ(umax−umin)

m(κ+ρumin)
)δ−1

is zero.15

Proposition 2. Define ∆qt = qt − lims↑t qs and ∆Vt = V (qt)− lims↑t V (qs). If D exhibits a

strong preference for gradual learning, then there exists an optimal policy such that

Pr{ sup
t∈R+

|∆qt |> (
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}= 0,

and such that all jumps increase the value function (∆Vt ≥ 0, almost surely strictly wherever

|∆qt |> 0).

Proof. See the appendix, section A.5.

The optimal policy in this case features upward (in the sense of the value function)
jumps and downward drift. The fact that jumps only increase and never decrease the value
function is a consequence of the exponential discounting. Exponential discounting can be

15We conjecture that a stronger result here is possible (at the expense of additional technicalities)– that the
probability of such large jumps is zero under any optimal policy.
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thought of as a penalty for delay that is increasing in the current level of the value function.
For this reason, drifting upward and jumping downward is sub-optimal, because the former
causes information to be acquired at a time when the cost of delay is high, and the latter
acquires information at a time when the cost of delay is high rather than waiting for the
cost of delay to decrease.16

In the particular case of no discounting (ρ = 0,κ > 0), we can reach stronger con-
clusions. The sub-optimality of a jump, (12), must hold for all q′ 6= q. Consequently, an
optimal diffusion policy exists. The following proposition extends this result to the case
of a (possibly non-strong or non-strict) preference for gradual learning.17 Recall that the
matrix-valued function k̄(q) is defined in (5).

Proposition 3. If ρ = 0 and D exhibits a preference for gradual learning, then V is a

viscosity solution (see e.g. Crandall et al. [1992]) to the HJB equation

max{ sup
σ∈R|X |×R|X |−1:qT σ=~0

tr[σT Diag(q)(∇2V (q)− κ

χ
k̄(q))Diag(q)σ ], û(q)−V (q)}= 0,

(13)
where ∇2V denotes the Hessian of V , and there exists an optimal policy such that qt is a

diffusion without jumps.

Proof. See the appendix, section A.6.

Under an additional assumption (described in the next section), a preference for gradual
learning is not only sufficient but necessary for beliefs to follow a diffusion process in the
ρ = 0 case. In particular, we will demonstrate that if, for all utility functions, an optimal
belief process in the continuous time limit is a diffusion, then the divergence must exhibit
a preference for gradual learning. However, to make this statement, we must be able to
characterize the belief dynamics, which we are able to do given an additional assumption.
We therefore postpone our proof of necessity to the next section.18

Lastly, let us note that there is a kind of continuity between the ρ > 0 but small and
ρ = 0 cases (assuming κ > 0). As ρ converges towards zero, with a strong preference for

16This intuition is reminiscent of a related result in Zhong [2019], discussed below.
17As before, to avoid technicalities, we do not prove a stronger claim that we conjecture holds: that in the

case of a strict preference for gradual learning and ρ = 0, all policies involve diffusions.
18The difficulty of extending this result (without our additional assumption, or with ρ > 0) is as follows.

We know in these cases that if beliefs always diffuse or jump in small increments, then such behavior must be
preferable to larger jumps within the continuation region of a given problem. But because we cannot construct
explicit solutions in these cases, we cannot be certain that this preference holds on the entire simplex.
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gradual learning, the magnitude of jumps becomes increasingly small, and in the limit no
jumps occur. Let us note also a remarkable result from Zhong [2019], which shows that
with ρ > 0, the optimal policy involves jumps outside of a nowhere-dense set. These two
results are compatible: the jumps in this case are small but not infinitesimal.

Zhong [2019] also shows, in the particular case of ρ > 0 and Bregman divergence costs
(equality in (9)), that the beliefs jump all the way to stopping points, a result we restate
below. This is striking in light of proposition 3, which shows that with these same costs
and ρ = 0, beliefs can follow a diffusion process. These results can be reconciled using
results we will present in the next section: with Bregman divergence costs and ρ = 0, there
are optimal policies that generate both pure diffusion and pure-jump belief processes.

3.2 Discrete Learning

We next provide conditions under which the DM jumps immediately to stopping beliefs,
as a contrast to our previous gradual learning results. We define what we call a “preference
for discrete learning” if the divergence D satisfies a kind of “chain rule” inequality.19

Definition 3. The divergence D exhibits a “preference for discrete learning” if it satisfies,
for all finite sets S, πs ∈P(S) and q,q′,{qs}s∈S ∈P(X) such that ∑s∈S πsqs = q′ and
q′� q,

D∗(q′||q)+∑
s∈S

πsD∗(qs||q′)≥∑
s∈S

πsD∗(qs||q). (14)

Here, S is an arbitrary a finite set; it is useful to think of each s∈ S as a signal realization,
and to interpret {qs} as a set of posteriors consistent with a prior q′. If (14) holds, it is
preferable to jump from q directly to the posteriors {qs} instead to the prior q′.

Bregman divergences satisfy (14) with equality (a result that follows from the definition
(11)). One might expect that other classes of cost functions also exhibit a preference for
discrete learning. However, as the following lemma demonstrates, under our regularity
assumptions,20 only the Bregman divergences exhibit a preference for discrete learning.

Lemma 4. The divergence D exhibits a preference for discrete learning if and only if D is

a Bregman divergence.
19When this inequality holds with equality, the divergence is said to satisfy the chain rule property (Cover

and Thomas [2012]).
20Our regularity assumptions are important here; it is possible that non-differentiable, non-Bregman diver-

gences exhibiting a preference for discrete learning exist.
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Proof. See the appendix, section A.7. The proof builds on Banerjee et al. [2005].

Consequently, if D exhibits a preference for discrete learning, it also exhibits a (non-
strict) preference for gradual learning. In contrast, many cost functions exhibit a strict or
strong preference for gradual learning and therefore do not exhibit a preference for discrete
learning, and many others fall into neither category (e.g. if they have a strict preference for
gradual learning in some parts of the parameter space and discrete learning in others).

If the cost function satisfies a preference for discrete learning, it its cheaper for the
DM to jump to beliefs {qs} rather than visit the beliefs q′. Unsurprisingly, if this holds
everywhere, it leads to optimal policies that stop immediately after jumping. We first show
in the case of ρ = 0 that an optimal policy always involves jumping into the stopping region.

Proposition 4. Define ∆qt = qt − lims↑t qs, and assume ρ = 0. If D exhibits a preference

for discrete learning, then there exists an optimal policy that does not diffuse and such that

if |∆qt |> 0, then t = τ (the DM stops immediately after any jump).

Proof. See the appendix, section A.8. This is proven using Proposition 7 below.

The statement of Proposition 4 shows that if D is a Bregman divergence, is without loss
of generality to assume that the DM stops immediately after a jump in beliefs. But in this
case, there is also an optimal policy that diffuses (Proposition 3). This observation implies
that the solutions to the HJB equations in Propositions 1 and 3 must be identical, despite
one being written as controlling a diffusion process and the other a pure jump process. We
revisit this observation in the next section.

We next restate a result of Zhong [2019] (see appendix A.3 of that paper) that covers
the ρ > 0 case.21 With a preference for discrete learning, as with a preference for gradual
learning, jumps will increase the value function. The intuition is essentially the same as
the gradual learning case, and comes from the observation that with discounting, delay is
particularly costly when the value function is high. However, unlike the gradual learning
case, in which jumps are of bounded size, with a preference for discrete learning jumps are
always immediately following by stopping. Zhong [2019] also shows that optimal policies
do not involve diffusion (subject to some technical caveats).

Proposition 5. (Zhong [2019]) Define ∆qt = qt − lims↑t qs and ∆Vt =V (qt)− lims↑t V (qs)

and assume ρ > 0. If D exhibits a preference for discrete learning, then in any optimal

21The result from Zhong [2019] applies when κ = 0; but with ρ > 0, the κ > 0 problem is equivalent to a
problem in which the utility function is shifted upwards by κρ−1 and κ is set to zero (by Proposition 1).
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policy, if |∆qt | > 0, then t = τ (the DM stops after jumping) and ∆Vt > 0 (jumps increase

the value function). In any optimal policy, diffusion occurs only on a nowhere-dense set.

Moving beyond the results of Zhong [2019], we provide the “only-if” result: if a diver-
gence always results in large jumps and immediate stopping, then it must satisfy a prefer-
ence for discrete learning. The intuition is that if it is always optimal to jump outside the
continuation region, it cannot be less costly under the divergence D to jump to an inter-
mediate point. Otherwise, there would be some utility function for which such behavior is
optimal. To formalize this result, we say that the beliefs process qt “does not diffuse” if the
continuous part of the martingale qt has zero quadratic variation.22

Proposition 6. Define ∆qt = qt − lims↑t qs. Suppose the divergence D is such that, for all

action spaces A, strictly positive utility functions ua,x, and priors q̄0 ∈P(X), there exists

an optimal policy that does not diffuse on the interior of the continuation region outside of

a nowhere-dense set and such that |∆qt | > 0 implies t = τ (the DM stops after jumping).

Then D exhibits a preference for discrete learning (i.e. is a Bregman divergence).

Proof. See the appendix, section A.9.

Combining this result with Theorem 6, we have demonstrated that the jump-and-immediately-
stop result of Zhong [2019] holds for all utility functions if and only if D is a Bregman
divergence. Such cases are knife-edge, in that if one uses instead any strongly convex
transformation of the Bregman divergence, then the optimal policy will involve bounded
jumps (by Proposition 2) that converge to diffusion processes as ρ becomes close to zero.

3.3 Gradual vs. Discrete Learning

We summarize the differences between gradual and discrete learning before proceeding.
With ρ > 0 and a strong preference for gradual learning, the DM will optimally choose
to have beliefs that jump in small increments. In the limit as ρ → 0+, these jumps will
become infinitesimal, and the DM will optimally choose to have beliefs that diffuse. In
contrast, with ρ > 0 and a preference for discrete learning, the DM will optimally choose
have beliefs that jump immediately into the stopping region. In the limit as ρ → 0+, this
will continue to be case; however, when ρ = 0 and the DM has a preference for discrete
learning, an optimal policy involving only diffusions also exists.

22See e.g. theorem 4.18 of chapter I of Jacod and Shiryaev [2013] on the decomposition of martingales
into a continuous martingale and discontinuous martingale.
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We interpret these results as follow. In the ρ→ 0+ limit, which we view as empirically
relevant (as most decision-making experiments involve small time periods), beliefs will
either jump or diffuse, depending on whether the divergence D exhibits a strong preference
for gradual learning or a preference for discrete learning. However, the value functions in
these two cases might be identical. These results naturally lead to the question of whether
these differences in belief dynamics lead to different predictions about the DM’s behavior.
We explore this question in the next two sections.

4 The Equivalence of Static and Dynamic Models

In this section, we analyze the ρ = 0 continuous time model under a preference for gradual
learning and a preference for discrete learning. The main result of this section is that,
both with a preference for gradual learning and a preference for discrete learning (under
an integrability assumption in the case of a preference for gradual learning), the value
function with ρ = 0 is equivalent to a static rational inattention problem with a uniformly
posterior-separable cost function (i.e. a cost function defined from a Bregman divergence,
see Caplin et al. [2019] or (16) below). Moreover, any twice continuously-differentiable
uniformly posterior-separable cost function can be justified through either of these routes.
Our equivalence result extends to policies as well, in the sense that the joint distribution of
actions and states induced by optimal policies in the continuous time model is also optimal
in the static model, and vice-versa.

This result has several implications. First, it demonstrates that both jump and diffusion-
based models are tractable and that the value functions can be characterized without directly
solving the associated partial differential equation. Second, it provides a micro-foundation
for the uniformly posterior-separable cost functions that have been emphasized in the liter-
ature. Third, it proves that the two approaches are equivalent in terms of the predicted joint
distribution of states x ∈ X and actions a ∈ A. That is, any joint distribution of (x,a) that
could be observed under discrete learning could be observed under gradual learning.

On this last point, however, we do not mean to imply that the diffusion and jump pro-
cesses are equivalent. Both of them endogenously will result in the same joint distribution
of actions and states, but will have different predictions about the joint distribution of ac-
tions, states, and stopping times. As a consequence, considering stopping times can help
differentiate the two models, and we consider this in the next section.

Our results in the case of gradual learning depend on an additional integrability assump-
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tion that does not hold generically. Consequently, equivalence with static models holds for
all cost functions with a preference for discrete learning but only some cost functions for a
preference for gradual learning, and all cost functions with a preference for discrete learn-
ing generate the same joint distribution of actions and states as some cost function with a
preference for gradual learning, but the reverse is not true.

4.1 Gradual Learning

To prove our equivalence result, we restrict our attention to information-cost matrix func-
tions that are “integrable,” in the sense described by the following assumption.23

Assumption 1. There exists a twice continuously-differentiable function H :R|X |+ →R such

that, for all q in the interior of the simplex,

k̄(q) = ∇
2H(q), (15)

where ∇2H(q) denotes the Hessian of H evaluated at q and k̄(q) is define as in (5).

Any Bregman divergence has this property; as a result, the class of divergences sat-
isfying this property includes the standard KL divergence and the “neighborhood-based”
function that we introduce in Hébert and Woodford [forthcoming]. Our earlier examples
of divergences with a strong preference for gradual learning, which are not Bregman di-
vergences themselves but were constructed by applying a convex function to a Bregman
divergence, also satisfy this property. In these cases, the H function is the function used
to define the Bregman divergence. This assumption is also automatically satisfied in the
two state case, |X | = 2. However, this assumption imposes some restrictions if |X | > 2.
It rules out, for example, the prior-invariant LLR cost functions of Pomatto et al. [2018]
(a hypothetical H would have asymmetric third-derivative cross-partials). We refer to the
function H as the “entropy function,” for reasons that will become clear below. Note that
H(q) is convex, by the positive semi-definiteness of k̄(q), and homogenous of degree one.

The problem we are analyzing is the HJB equation of Proposition 3 (the problem with
ρ = 0 and a diffusion process for beliefs). We describe our equivalence result below.

23Mathematically, this assumption ensures that the integral
´ 1

0 (q
′− γ(s))T · k̄(γ(s)) · dγ(s)

ds ds is the same for
all differentiable paths of integration γ : [0,1]→P(X) with γ(0) = q and γ(1) = q′. That is, the straight-line
path of integration used to define a preference for gradual learning (Definition 2) is without loss of generality.
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Proposition 7. If ρ = 0, D exhibits a preference for gradual learning, and Assumption 1

holds, the value function is

V (q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

∑
x∈X

πaqa,xua,x−
κ

χ
∑
a∈A

π(a)DH(qa||q0),

subject to the constraint that ∑a∈A π(a)qa = q0, where DH is the Bregman divergence asso-

ciated with the entropy function H that is defined by Assumption 1, and this value function

can be achieved by a pure diffusion process.

There exist maximizers π∗ and q∗a such that π∗ is the unconditional probability, in

the continuous time problem, of choosing a particular action, and q∗a, for all a such that

π∗(a)> 0, is the unique belief the DM will hold when stopping and choosing that action.

Proof. See the appendix, Section section A.10.

Let S be a set of possible signal realizations, and let p : X →P(S) be a “signal struc-
ture” that defines the conditional distribution of signal realizations in each state x ∈ X .
Taken as given a prior q0 ∈P(X), and let π̂s(p,q0) and q̂s(p,q0) denote the unconditional
signal probabilities and posteriors, respectively, given the prior and signal structure. Our
continuous time problem is equivalent to a static rational inattention problem in which the
DM chooses S and p, given a prior q0 ∈P(X), with a particular uniformly posterior-
separable (UPS) cost function,

C(p,q0; S) =
κ

χ
∑
s∈S

π̂s(p,q0)DH(q̂s(p,q0)||q0), (16)

and with the signal space S identified with the set of possible actions A. The equivalence
between our (seemingly complex) continuous time model and this static model renders the
former tractable, both in the special cases in which analytic solutions to the static model
are available and computationally (because the static model is straightforward to study
numerically). The cost scalar κ

χ
parametrizes the tradeoff between stopping and acquiring

more information, which is governed by the rate at which information can be acquired (χ)
and the cost of delay (κ).

The mutual information cost function proposed by Sims is one example of a UPS cost
function. In this case, the entropy function H is the negative of Shannon’s entropy, the
corresponding Bregman divergence is the Kullback-Leibler divergence, and the informa-
tion cost defined by (16) is mutual information. Thus Proposition 7 provides a foundation
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for the standard static rational inattention model, and hence for the same predictions re-
garding stochastic choice as are obtained by Matêjka et al. [2015]. On the other hand,
Proposition 7 also implies that other cost functions can also be justified. Indeed, any (twice
continuously-differentiable) uniformly posterior-separable cost function (16) can be given
such a justification, by choosing the k̄ function defined by equation (15).

We conclude that all continuous time models with gradual learning that also satisfy our
integrability condition are equivalent to a static model with a uniformly posterior-separable
cost function, and that any such static model can be justified from some model with gradual
learning. We next show that the same set of static models can be justified from a model
with discrete learning. Before proceeding, however, we observe that this result allows us to
demonstrate that a preference for gradual learning is necessary for beliefs to always result
in a diffusion process, provided that Assumption 1 holds.

Corollary 1. Assume ρ = 0. If, given a divergence D, Assumption 1 is satisfied and, for all

strictly positive utility functions ua,x, there exists an optimal policy such that beliefs follow

a diffusion process, then D exhibits a preference for gradual learning.

Proof. See the appendix, section A.11.

4.2 Discrete Learning

The result with a preference for discrete learning is an immediate corollary of Lemma 4
and the preceding Proposition 7 (the result with gradual learning).

Corollary 2. Assume ρ = 0 and that D exhibits and preference for discrete learning (i.e.

is a Bregman divergence). Then the value function that solves the continuous time prob-

lem is the value function that solves the static rational inattention problem described in

Proposition 7, with D in the place of DH .

Proof. Immediate from Lemma 4, Proposition 3, and Proposition 7.

Given any uniformly posterior-separable cost function in a static rational inattention
model, by setting D equal to the Bregman divergence associated with that cost function,
we can justify that static model as the result of a dynamic model with a preference for
discrete learning. We therefore conclude that models with a preference for gradual learning
satisfying our integrability condition and models with a preference for discrete learning
are indistinguishable from the perspective of their predictions about the joint distribution
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of states and actions.24 In the next section, we begin to explore how information about
stopping times can be used to distinguish the models.

5 Implications for Response Times

Because our model is dynamic, it makes predictions not only about the joint distribution of
actions and states, but also the length of time that should be taken to reach a decision, and
how this may vary depending on the action and the state. In the experimental literature on
the accuracy of perceptual judgments, it is common to record the time taken for a subject to
respond along with the response, as this is considered to give important information about
the nature of the decision process (e.g., Ratcliff and Rouder [1998]).

Here we propose that data on response times can in principle be used to discriminate
between alternative information-cost specifications. We will show that divergences that
are equivalent in the sense of implying the same state-contingent choice probabilities —
and hence the same value function in the case that discounting is negligible — nevertheless
make different predictions about the stopping time conditional on taking a particular action.
Consequently, data on response times can inform us about whether there is a preference for
gradual learning or for learning through discrete jumps. Interestingly, it is possible to
distinguish between these two hypotheses even when (as in the problems considered here)
actions are taken only infrequently.25

5.1 The Two-Action Case

To illustrate this possibility, we consider a simple example, in which there are two possible
actions (A = {L,R}). We will consider the ρ → 0+ limit and impose Assumption 1. We
compare behavior with a divergence D exhibiting a strict preference for gradual learning to
the behavior generated by the Bregman divergence DH (as defined in Proposition 7), which
exhibits a preference for discrete learning. By Proposition 7, these two divergences will
generate identical value functions V (q); but with a strict preference for gradual learning,
beliefs will diffuse, whereas with a preference for discrete learning beliefs will jump.

24In situations in which the static rational inattention problem does not itself have a unique solution, we
have not ruled out the possibility that the models with discrete and gradual learning will make different
predictions. However, we have no reason to believe this is the case.

25It would obviously be easier to tell whether beliefs evolve continuously or in discrete jumps in a case
where the DM is required to continuously adjust some response variable that can provide an indicator of her
current state of belief.
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With both of these divergences, by Proposition 7, beliefs will move on a line; this is
a consequence of the “locally invariant posteriors” property of Caplin et al. [2019] and
the fact that there are only two actions. Let q∗L and q∗R be the optimal posteriors given the
prior q̄0 in the static rational inattention problem described in Proposition 7, and let π∗L
be the optimal unconditional probability of action L. We will assume some information is
acquired, which is to say q∗L 6= q∗R 6= q̄0, and that all of these beliefs are on the interior of
the simplex (to avoid technicalities). Under the optimal policy, beliefs will move (either
diffusing or jumping/drifting) on the line segment connecting q∗L and q∗R in the simplex,
which necessarily runs through q̄0.

For this reason, it is convenient in the two-action case to express the dynamics of beliefs
in terms of the state variable πL,t ∈ [0,1], which corresponds to the beliefs

qt = q(πL,t) ≡ q∗R +πL,t(q∗L−q∗R), (17)

with πL,0 = π∗L . When πL,t reaches one, the DM chooses L; when πL,t reaches zero, the
DM chooses R. Our interest is in characterizing the conditional (on the true state x ∈ X)
likelihood of stopping and choosing L or R at each time t.

Before proceeding, let us observe from Proposition 7 that the value function (in terms
of the state variable πL,t) can be written as

V (πL,t) = πL,tVL +(1−πL,t)VR +
κ

χ
H(q(πL,t)),

with VL =∑x∈X q∗L,xuL,x− κ

χ
H(q∗L) and VR =∑x∈X q∗R,xuR,x− κ

χ
H(q∗R). It follows by the strict

convexity of H(q) and the linearity of q(πL) that V (πL,t) is strictly convex on πL,t ∈ [0,1].
As a consequence of this convexity, there are three possible shapes of the value function
V (πL,t): it could be increasing on [0,1], decreasing on [0,1], or decreasing on [0, π̃L) and
increasing on (π̃L,1] for some π̃L ∈ (0,1). In the first two of these cases, we will say π̃L = 0
and π̃L = 1, respectively; thus in each case, π̃L is the value of πL at which V (πL) reaches its
minimum. We will show below that the shape of the value function is closely related to the
properties of the stopping time distribution in the case of a preference for discrete learning.

5.2 Distributions of Stopping Times

We begin by introducing some notation with which to describe our models’ predictions
regarding the distribution of observed response times. For any time τ, let Fx

a (τ) be the
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cumulative probability of a decision a by time τ, conditional on the state being x. For
the state x, and either action a, this is a right-continuous non-decreasing function, with
a maximum equal to the overall probability of choosing a in state x. The sum Fx(τ) =

Fx
L (τ)+Fx

R(τ) is the cumulative distribution function of decision times when the state is x.
It will be useful to state our theoretical predictions, not in terms of these distributions

for the decision time τ , but rather in terms of corresponding distributions for the response-
time quantile τ̂. (The quantile τ̂ of the response time τ is the fraction of all responses in
that state for which the response time is no greater than τ .) This has two key advantages.
First, it allows us to state predictions that are independent of time units. The state- and
response-contingent distributions for τ depend on the values of both κ and χ; instead, the
predicted distributions for τ̂ depend only on their ratio.

Second, the response time observed in a laboratory experiment should not be identified
with the decision time τ in our theoretical model. Instead, empirical estimation of stochas-
tic models like the DDM always interprets the measured response time as an observation
of t0 + τ , where t0 (the “non-decision time,” NDT) is a positive constant to be estimated.26

The NDT may represent an unavoidable time lag between the experimenter’s presentation
of a stimulus to the subject and the beginning of the evidence-accumulation process, or a
lag between the time τ at which the latent decision variable first reaches a stopping region
and the subject’s overt response. Predictions for the distributions of response-time quan-
tiles τ̂ are instead independent of the value of t0, as long as we assume that the NDT is a
constant (or more precisely, that its variance is vanishingly small, as discussed below).

For any quantile 0≤ τ̂ ≤ 1, let Gx
a(τ̂) be the fraction of all decisions in state x for which

the decision is a and the response-time quantile is no greater than τ̂ . In the case of any τ̂

such that τ̂ = Fx(τ) for some τ, we define, for either action a,

Gx
a(τ̂) = Fx

a (τ). (18)

In some cases, however, the theoretical distribution of decision times τ has an atom at
some particular decision time τ̄ . In this case, there is a jump in the c.d.f. at this point,
Fx(τ̄−) = τ̂1 < τ̂2 = Fx(τ̄), which raises a question as to how Gx

a(τ̂) should be defined
for quantiles τ̂1 ≤ τ̂ < τ̂2.

Let us suppose that, rather than a constant, the NDT on each trial is an independent

26For example, in Ratcliff and Rouder [1998] and Wagenmakers et al. [2007] this parameter is denoted Ter,
while in Clithero [2018] it is written as ndt.

25



draw from a distribution with mean t0, and a continuous distribution (albeit one with a
vanishingly small variance).27 The c.d.f. of the distribution of observed response times
(counting the NDT) will then be continuous but steep around the value t0 + τ̄. We can then
define Gx

a(τ̂) for all τ̂ using (18), and define, in the case of an atom at τ̄ ,

Gx
a(τ̂) = Fx

a (τ̄−) +
(

τ̂− τ̂1

τ̂2− τ̂1

)
(Fx

a (τ̄)−Fx
a (τ̄−)) (19)

for all quantiles τ̂a ≤ τ̂ ≤ τ̂2. This definition preserves the property that each Gx
a(τ̂) is a

non-decreasing function and that ∑a∈A Gx
a(τ̂) = τ̂ .

The empirical correlate of the functions Gx
a(τ̂) can be computed using an experimental

dataset in which on each trial, the true state x, the response a, and the response time have
been recorded. An especially interesting feature of these functions is what they imply
about how the relative probability of an L response as opposed to an R response varies
with the rapidity of the decision (early decisions versus late decisions, as measured by the
response-time quantile τ̂). For each state-response pair (x,a), let us define gx

a(τ̂) as the
right derivative of the function Gx

a(τ̂); we must have

gx
a(τ̂) ≥ 0, gx

L(τ̂)+gx
R(τ̂) = 1

for each quantile τ̂. The relative probability of an L response, conditional on state x, is then
given by gx

L(τ̂). In the discussion below, we focus on the predicted shapes of gx
L(τ̂).

5.3 Response Times with a Preference for Discrete Learning

In the case of a preference for discrete learning, the functions gx
L(τ̂) are simple to describe.

In the previous sections, we have presented two relevant theoretical results. First, as dis-
cussed above, beliefs will drift on a line segment in the simplex, until jumping to either
q∗L or q∗R. Second, as emphasized by Zhong [2019], jumps must always increase the value
function, and the drift of beliefs will reduce the value function.28

Suppose, to simplify the exposition, that the minimum of the value function on the line
segment, V (πL), occurs at some π̃L < π∗L. For any πL,t > π̃L, the optimal policy is to jump

27We assume that the random NDT on any given experimental trial is independent of both the true state x
and the sequence of evidence collected on that trial, and hence also independent of the decision that is made.

28The fact that the drift of beliefs will reduce the value function follows by applying the envelope theorem
to the HJB equation of Proposition 1; see Zhong [2019].

26



towards πL,t = 1 with the maximum possible intensity and drift downwards. Eventually,
πL,t will drift downwards and equal π̃L, at which point the DM will randomize between
jumping to πL,t = 1 and πL,t = 0 with unconditional probabilities π̃L and (1− π̃L). In the
particular case of an upward-sloping value function (π̃L = 0), the DM will choose R with
certainty after reaching π̃L.

Regardless of the state, in the absence of a jump, πL,t will reach π̃L at a predictable
time, as beliefs drift downwards at a rate determined by the constraint (6),

µ(πL,t) = −
χ(1−πL,t)

DH(q∗L||q(πL,t))
.

Let τ̃ be the time at which πL,t = π̃L in the absence of a jump.
The unconditional likelihood of a jump prior to that time is determined by the constraint

(6); the conditional likelihood is then pinned down by Bayes’ rule. Suppose that the true
state is x, and let q̃ = q(π̃L) be the beliefs the DM will hold if there has been no jump before
the time τ̃ . By Bayes’ rule, if her posterior must be qL conditional on jumping before time
τ̃ , the probability of such a jump must satisfy

Pr{supt∈[0,τ̃) |∆πL,t |> 0 |x}
Pr{supt∈[0,τ̃) |∆πL,t |> 0}

=
q∗L,x
q̄0,x

.

Moreover, by the martingale property of the unconditional belief process,

Pr{ sup
t∈[0,τ̃)

|∆πL,t |> 0}q∗L,x + (1−Pr{ sup
t∈[0,τ̂)

|∆πL,t |> 0})q̃x = q̄0,x,

which yields

τ̂
x = Pr{ sup

t∈[0,τ̃)
|∆πL,t |> 0|x} =

q∗L,x
q̄0,x

(
q̄0,x− q̃x

q∗L,x− q̃x
) =

q∗L,x
qx(π∗L)

π∗L− π̃L

1− π̃L
.

Intuitively, the likelihood of a jump conditional on x increases as the relative likelihood of
L given x increases. We can now observe that Pr{supt∈[0,τ̃) |∆πL,t | > 0|x} = τ̂x is also the
likelihood of a decision before time τ̃ . Consequently, the quantile at which πL,t = π̃L is τ̂x,
and gx

L(τ̂) = 1 for all τ̂ < τ̂x.
After time τ̃, πL,t = π̃L until a jump occurs, and the relative likelihoods of jumping to

L and R are constant over time. Consequently, gx
L(τ̂) is constant on τ̂ ≥ τ̂x, and determined

27



again by Bayes’ rule:

gx
L(τ̂) =

q∗L,x
q̃x

(
q̃x−q∗R,x

q∗L,x−q∗R,x
) =

π̃Lq∗L,x
qx(π̃L)

.

We thus obtain strong predictions about the functional form for gx
L(τ̂): it is equal to

one for all τ̂ < τ̂x and constant for τ̂ ≥ τ̂x. States in which L is more likely (
q∗L,x
q∗R,x

larger)
feature larger quantiles τ̂x and higher values of gx

L(τ̂) for τ̂ ≥ τx. Note that if we had instead
assumed π∗L < π̃L, we would reach similar conclusions with the roles of R and L reversed.

Figure 1 below illustrates these results. The first row considers the case of a symmetric
value function, π̃L = 1

2 , the second an asymmetric case in which π̃L ∈ (0, 1
2), and the third

the case of a monotonically increasing value function (π̃L = 0). The first column plots the
value function. The second column considers gG

L (τ̂) for a state G with q∗L,G > q∗R,G, and the
third column considers gB

L(τ̂) for a state B with q∗L,B < q∗R,B.
We obtain even stronger predictions in the case that H is the Shannon entropy func-

tion, H(q) = ∑x qx lnqx, as assumed in many models of rational inattention following Sims
[2010]. In this case, it is well-known that in the solution to the static rational inattention
problem, the optimal information structure does not distinguish between states except to
the extent that the difference between them is payoff-relevant.29 For example, suppose
that, as in many perceptual experiments, the reward ua,x for a particular response a in a
state x (say, when a stimulus of type x is presented) depends only on whether a was the
“correct” or “incorrect” response in that state, and let Xa be the subset of states for which
a is the correct response. Then because the utility differential uL,x−uR,x is the same for all
states x ∈ XL, it follows that q∗L,x/q∗R,x will be the same for every state x ∈ XL; and similarly
for every state x ∈ XR. It then follows from our formulas above that both τ̂x and gx

L (the
constant value for all τ̂ ≥ τ̂x) will be the same quantities for all x ∈ XL (“G states”), and
will similarly be the same quantities for all x ∈ XR (“B states”). Thus there will only be two
functions gx

L(τ̂), the two functions shown as gG
L (τ̂) and gB

L(τ̂) in Figure 1.
The numerical examples shown in Figure 1 are calculated for an example of this kind.

H(q) is Shannon entropy, and ua,x depends only on whether x belongs to XL or XR (so that
we can write ua,G in the case of a “G state” and ua,B in the case of a “B state”). In the top row
(Case I), we further assume that the reward depends only on whether a response is correct
or not (so that uL,G = uR,B > uR,G = uL,B). In this case, the symmetry of the problem results
in a symmetric value function, as shown, with π̃L = 1/2. If we write q∗a,G = ∑x∈XL q∗a,x for

29This follows from the property that Caplin et al. [2019] call “invariance under compression.”
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Figure 1: Predicted response-time distributions with a preference for discrete learning.
Each row shows the value function V (πL), the function gx

L(τ̂) for states x in which L is the
correct response (“G states”), and the function gx

L(τ̂) for states x in which R is the correct
response (“B states”), under a particular assumption about the relative payoffs in G and B
states. In the first row (Case I), the rewards for correct or incorrect responses are the same
in G and B states; in the lower rows, the utilities associated with B states are made progres-
sively lower relative those associated with G states. In all numerical calculations shown in
this figure, H(q) is assumed to be the Shannon entropy function. Information costs are pa-
rameterized so that the predicted accuracy rate (Pr{L|G}= Pr{R|B}) is a = 0.84, and the
figures are drawn for the case of a prior q̄0,G = 0.75. These parameter choices are match
the experimental data in Figure 3, but are also arbitrary, in the sense that the qualitative
relationships illustrated in the graph will hold regardless of these choices, provided that the
prior implies that π̃L < π∗L < 1.
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the probability of a G state under the posterior q∗a, and similarly q∗a,B for the probability of
a B state, then the symmetry of the problem also implies that q∗L,G = q∗R,B, a quantity that
we denote a (the predicted overall fraction of correct responses). Then since we must have

q∗L,x
q∗R,x

=
q∗L,G
q∗R,G

=
a

1−a
∀x ∈ XL,

q∗L,x
q∗R,x

=
q∗L,B
q∗R,B

=
1−a

a
∀x ∈ XR,

the gradient of H (and hence the derivative of V (πL)) at each of the stopping posteriors is
completely determined by the value of a. Thus the value of a determines the value function
V (πL), up to an additive constant. The value functions shown in Figure 1 assume that
a = 0.84, the average accuracy rate in the experimental data shown in Figure 3.

In the second and third rows, we continue to assume the same utility differential be-
tween the correct and incorrect responses in any state as in the top row: uL,G− uR,G =

uR,B−uL,B = ∆ > 0. However, we no longer assume that the reward for a correct response
is the same in G and B states. If we let uL,G− uR,B = uR,G− uL,B = δ , then δ = 0 cor-
responds to Case I, shown in the top row. If instead 0 < δ < ∆, we have an asymmetric
value function and 0 < π̃L < 1/2 (Case II), as shown in the second row of the figure. (The
numerical solution shown in the second row is for δ = ∆/2.) Finally, if δ ≥ ∆, the value
function is monotonically increasing and π̃L = 0 (Case III), as shown in the bottom row.
(The numerical solution shown is for δ = ∆.) We obtain similarly asymmetric solutions if
δ < 0, but with the roles of states G and B reversed.

The functions gx
L(τ̂) shown in the other two panels of each row depend only on the

accuracy rate a and the values of π̃L, and π∗L (which depends on the prior). In the cases
shown in Figure 1, we assume a prior under which G states are more likely than B states,
and let the prior probability of some G state be q̄0,G = 0.75 (matching the experiment of
Kelly et al. [2021], discussed below); this corresponds to π∗L ≈ 0.87.30

The result that the function gx
L(τ̂) for any state x is necessarily one of the two functions

shown in Figure 1 depends on the special assumption that H(q) corresponds to Shannon
entropy. However, if we assume that there are only two states (that is, that it is possible to
collect information directly about whether L or R is the correct response), then the numeri-
cal solution for the functions gx

L(τ̂) for the two states x = G,B does not depend on any de-
tails of the function H(q), apart from a symmetry assumption: that H(qG,qB) = H(qB,qG).

30If instead we were to assume that B states were more likely ex ante and that q̄0,B = 0.75, the function
gB

L(τ̂) would look like the function gG
L (τ̂) shown in Figure 1, and the function gG

L (τ̂) would look like the
function gB

L(τ̂) shown in Figure 1; hence we do not display additional figures for this case.
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Under this assumption, the numerical values assumed for a, π̃L, and q̄0,G again completely
determine the numerical specification of the functions gG

L (τ̂) and gB
L(τ̂), and will exactly

match the ones shown in Figure 1.

5.4 Response Times with Gradual Learning and the DDM Model

Let us now consider instead the dynamics of the belief state πL,t , conditional on the true
state being x∈X , under a strict preference for gradual learning. Note first that the constraint
for a diffusion process, (4), will bind in any solution to the HJB equation (13). Because
diffusion takes place on a line (17), the unconditional belief dynamics are of the form

dqt = (q∗L−q∗R)σ̄(πL,t)dBt ,

where σ̄(πL) is scalar-valued and dBt is a one-dimensional Brownian motion. The con-
straint (4) implies that

σ̄(πL,t)
2 =

2χ

(q∗L−q∗R)T ·∇2H(q(πL,t)) · (q∗L−q∗R)
.

It then follows from (8) that the conditional dynamics of beliefs will be given by

dqt = (q∗L−q∗R)
q∗L,x−q∗R,x

qt,x
σ̄(πL,t)

2dt + (q∗L−q∗R)σ̄(πL,t)dBt|x,

conditional on any true state x. From this, we can derive the conditional dynamics for the
univariate belief state πL,t :

dπL,t =
q∗L,x−q∗R,x
qx(πL,t)

σ̄(πL,t)
2dt + σ̄(πL,t)dBt|x. (20)

This process resembles the conditional beliefs process of a DDM in several respects.
The state variable πL,t diffuses until reaching one of two fixed boundaries (zero or one),
which correspond to the two action choices. States for which L is relatively more likely
(

q∗L,x
q∗R,x

positive) feature upward drift, and the strength of this drift is stronger in states for
which the relatively probability of choosing L is higher. The only difference between these
dynamics and those of the standard DDM is that in general, neither the drift term nor the
variance term in (20) is constant.

However, under a particular assumption about information costs, the belief dynamics
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implied by our model with a strict preference for gradual learning are exactly like those
assumed in the standard DDM. Let us suppose that there are only two states, G and B, so
that the posterior can be represented by a single real number, qt,G, and the unconditional
belief dynamics (until a decision is made) are of the form dqt,G = σ(qt,G)dBt , where σ(qG)

is a scalar. And suppose that instead of the Shannon entropy function, H(q) is what Bloedel
and Zhong [2020] call a “total information” (TI) cost function:31

H(q) = (qG−qB)(ln(qG)− ln(qB)).

The maximum rate of information accumulation consistent with (4) is then given by

σ(qG) =
√

2χqG(1−qG),

from which it follows, using (8), that the state-contingent belief dynamics are of the form

dqt,G = µx(qt,G)dt + σ(qt,G)dBt|x (21)

for x = G,B, where

µG(qG) = 2χqG(1−qG)
2, µB(qG) = −2χq2

G(1−qG).

Since πL,t is a linear transformation of qt,G, the dynamics of the belief state πL,t still
have a non-constant drift and instantaneous variance in this case. But suppose that we
instead parameterize the belief state by the posterior log odds, zt = ln(qt,G/qt,B). The is
just a smooth nonlinear transformation zt = Z(qt,G) of the posterior probability of state G;
we can then use Ito’s lemma together with (21) to show that the state-contingent dynamics
of this variable are given by

dzt = χdt +
√

2χdBt|G, dzt = −χdt +
√

2χdBt|B.

These are just the kind of dynamics postulated in the standard DDM, with the difference
between the drifts associated with the two states determined by the information bound
χ. A decision will be made when the variable zt first reaches one or the other of two
stopping values z∗a, which are just the log-odds transformations of the stopping posteriors

31Desirable properties of this alternative to the Shannon measure of information costs are also discussed in
Hébert and Woodford [forthcoming].
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q∗a determined by the solution to the static rational inattention problem associated with the
TI cost function.

We turn now to the implications of a strict preference for gradual learning for the pre-
dicted distribution of stopping times. These can be derived via standard dynamic program-
ming arguments. Let φ x

L(πL,s) be the probability of hitting πL,t = 1 or at or before time s

(and before reaching the other decision boundary), if at time t no decision has been made
and πL,0 = πL. Note that this function has the same form regardless of the time t ow-
ing to the Markovian property of the optimal belief dynamics, and must satisfy the partial
differential equation

1
σ̄(πL)2 φ

x
L,s(πL,s) =

q∗L,x−q∗R,x
qx(πL)

φ
x
L,π(πL,s) +

1
2

φ
x
L,ππ(πL,s), (22)

where φ x
L,s, φ x

L,π , and φ x
L,ππ

are the first and second-order partial derivatives with respect to
s, π , and π-twice. The associated boundary conditions are φ x

L(1,s) = 1, φ x
L(0,s) = 0, and

φ x
L(πL,0) = 0 for all π ∈ (0,1).

By definition, Fx
L (τ) = φ x

L(π
∗
L,τ), and consequently solving this PDE allows us to com-

pute Fx
L . The same PDE, with different boundary conditions, can be used to compute Fx

R ,
and from these we can compute the slope as a function of the quantile, gx

L(τ̂).
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Figure 2: Predicted response-time distributions with a preference for gradual learning. The
panels correspond to the same three columns as in Figure 1. Each of the functions is shown
for two alternative choices for the entropy function H(q): Shannon entropy (as in Figure 1,
solid lines), and the entropy that results in a total information cost function (dashed lines).
The accuracy rate a and prior probability of a G state are parameterized as in Figure 1; the
value functions are drawn for the case of symmetric payoffs (Case I in Figure 1).

Figure 2 plots the recovered value of gx
L(τ̂) for two cases with a strict preference for

gradual learning. In one of these (shown by the solid lines), our numerical assumptions
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are the same as in the first row of Figure 1, except that we now assume a strict preference
for gradual learning. In particular, we again assume a function H(q) given by Shannon
entropy; we assume that rewards depend only on whether the DM’s response is correct (so
that the value function is symmetric); and we assume the same numerical values for a and
q̄0,G as in Figure 1. We show the figures only for the symmetric case (Case I) from Figure
1, because as just explained, the utilities enter into the calculation of the functions gx

L(τ̂) in
the case of a strict preference for gradual learning only through their effect on the values
of the stopping posteriors q∗a. Since the stopping posteriors are unaffected by a change in
the value of δ (holding fixed the utility differential ∆), the predicted functions gx

L(τ̂) under
a strict preference for gradual learning will be the same in all three of the cases shown in
Figure 1; hence we show only a single row in Figure 2.

As explained earlier, in the limit as ρ→ 0+, the value function is the same in the case of
a preference for gradual learning (PGL) as in the case of a preference for discrete learning
(PDL); hence in the case of the cost function based on Shannon entropy (shown by the
solid line), the value function shown in Figure 2 is identical to the one shown in the upper
left panel of Figure 1. The dashed line shows the corresponding value function in the case
of a two-state model with the “total information” cost function discussed above. In this
alternative case, the model is again parameterized so as to imply the same values for a and
q̄0,G as in the Shannon case (and as in Figure 1), and the value function is again shown
for the symmetric case (Case I in Figure 1). In the PDL model, the functions gx

L(τ̂) would
continue in this alternative case to be the ones shown in the top row of Figure 1, as discussed
above. In the case of a strict preference for gradual learning, instead, the functions gx

L(τ̂)

are slightly different in the case of the total information cost function than in the case of
the Shannon cost function. This is because in the PGL case the local curvature of the
value function matters for the belief dynamics, and this is slightly different for the two cost
functions, as shown in the left panel of Figure 2.

Nonetheless, there are not large quantitative differences between the distributions of
response times implied by the two alternative cost functions, when these are parameterized
to imply the same accuracy rate a. Since the belief dynamics and stopping times implied
by the PGL model with the total information cost are identical to those of a particular
parameterization of the DDM, we see that the distributions of response times implied by
the PGL model in either case are similar to those implied by the DDM. The differences
between the predictions of either version of the PGL model and the predictions for the
PDL case are instead more notable.
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5.5 Discriminating Between Discrete and Gradual Learning

A first important difference between the predictions of the discrete learning model and
those of the gradual learning model concerns the effects of varying the parameter δ in
Figure 1. In the gradual learning model, transformations of the utility function that shift
utilities in a state contingent (but not action-contingent) fashion have no effect on behavior.
To see this, suppose we shift the utility function ua,x to some u′a,x = ua,x + vx. It is im-
mediately, from Proposition 7, that the value function will be shifted by ∑x∈X qxvx for any
q∈P(X). However, this will have no effect on behavior, as the level and slope of the value
function did not enter our analysis above of the case of gradual learning; only the second
derivatives of the value function at each point matter. In contrast, in the case of discrete
learning, changes in the level and slope of the value function determine the location of the
minimum, π̂L, and hence influence predicted behavior, as shown by a comparison of the
different rows of Figure 1. This generates a testable difference between the two models:
changes in payoffs conditional on states by not actions should affect behavior in the dis-
crete learning case but not the gradual learning case. At present, however, we are not aware
of any experiments that would test this proposition.

A second difference, of course, is that the response-time densities in the discrete learn-
ing case are step functions (as shown in Figure 1), whereas in the gradual learning case
(and the DDM) they are sigmoid curves (as shown in Figure 2). This is also a difference
in the models’ predictions that should be testable. In fact, many experimental studies in
the perceptual literature record distributions of response times, and these are often argued
to be at least roughly consistent with the predictions of some version of the DDM (the pa-
rameters of which are estimated from such distributions). Figure 3 shows an example of
the kind of data obtained in such studies, reported in Kelly et al. [2021]. This perceptual
experiment is of particular interest for purposes of the present discussion, because the au-
thors provide subjects with an informative cue which ought to give rise to an asymmetric
prior of the kind assumed in Figures 1 and 2 (the case in which the PDL model, but not the
PGL model, predicts that there should be a discontinuity in the function gx

L(τ̂) at a critical
quantile τ̂x for each state).

In the experiment of Kelly et al. [2021], subjects view a visual image of moving dots,
and must decide whether the dominant direction of motion is leftward or rightward. Thus,
as in the situation analyzed above, there are thus two possible responses L or R (indicating
that the motion is leftward or rightward). Subjects’ rewards in the experiment (and most
likely any “psychic rewards” that they receive as well) depend only on whether a response
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is correct or not, and not on whether the true direction was left or right; hence the utilities
should satisfy the symmetry property assumed in “Case I” above. In the trials of interest
to us here, the subject also observes a color cue on each trial, before presentation of the
visual image, which indicates that one direction of motion is more likely than the other.
Depending which cue is received on a given trial, the subject’s prior should therefore be
either q̄0,G = 0.75 or q̄0,B = 0.75. (The cue is said to have a “75 percent validity” in either
case.) Each type of cue is presented equally often.

Figure 3: The relative frequency of cue-consistent and cue-inconsistent responses, as a
function of the speed of the response, in the experiment of Kelly et al. [2021]. The curves
shown in the left panels represent empirical versions of the function gG

L (τ̂) shown in the
middle column in Figures 1 and 2, while those in the right panel represent empirical ver-
sions of the function gB

L(τ̂) shown in the right columns of the earlier figures. The top row
presents estimates of the two curves obtained by pooling the data of all 20 subjects, while
the bottom row shows the estimated curves for each of the individual subjects.

The data shown in Figure 3 indicate subjects’ responses under what the authors call
the “deadline” condition, which is the one under which subjects are under the greatest
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time pressure; this is the condition of most interest for our purposes, because the limited
evidentiary basis for subjects’ decisions is clearest in this case. (Under the “deadline”
condition, subjects’ responses are correct only 84 percent of the time; average accuracy is
much higher in the other experimental conditions.)

The PDL model makes sharp predictions about how the functions gx
L(τ̂) should look in

such an experiment, under the assumption of a cost function based on Shannon entropy, as
proposed by Sims [2010] and Matêjka et al. [2015]. Because of the symmetry of the exper-
imental setting as between the two possible directions of motion, the predictions should be
those of Case I in Figure 1. As explained above, the predicted functions gx

L(τ̂) then depend
solely on the numerical values of two parameters, the accuracy rate a and the prior proba-
bility of a G state, q̄0,G. If we assume equal information costs for all of the experimental
subjects (and hence a common value for a), then a should correspond to the overall accu-
racy rate observed on trials with informative cues (the value a = 0.84 assumed in Figure 1),
while if we assume that subjects correctly understand the implications of the cues, on each
trial q̄0,G should be either 0.25 or 0.75 (the latter case being the one assumed in Figure 1).

Furthermore, for all trials on which the cue indicates that G states are more likely (as
assumed in Figure 1), the function gx

L should be the same for all G states (i.e., all trials
on which the correct response would be L), and equal to the function shown in the middle
panel of the top row of Figure 1. Moreover, this same function is what gx

R should be
like for all B states (all trials on which the correct response would be R), on trials on
which the cue indicates that B states are more likely. In other words the function shown
in the top middle panel is what gx

a should be like whenever x is a cue-consistent state
(the correct answer is in fact the one indicated by the cue as more likely to be correct)
and a is the cue-consistent response. Hence we should be able to pool all of the trials
on which the state is cue-consistent,32 classifying them according to whether the response
is cue-consistent on each trial, and estimate a single joint distribution of responses and
response times, which should correspond to the function in the top middle panel of Figure
1. (Pooling the trials in this class, despite their differing priors and other differences in the
exact stimuli presented, has the advantage of allowing a larger sample to be used to estimate
the conditional probabilities of the two responses at different quantiles of the response-time
distribution.) Similarly, we should be able to pool all of the trials on which the state is cue-
inconsistent, classifying them according to whether the response is cue-consistent on each
trial. The predicted conditional probability of a cue-consistent response on all such trials is

32Kelly et al. [2021] call these the “valid cue” trials, and pool their experimental data in exactly this way.
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given by the function shown in the upper right panel of Figure 1.
The top row of Figure 3 (reproduced from Figure 3a of Kelly et al. [2021]) shows the

empirical correlates of the two functions gG
L (τ̂) and gB

L(τ̂) in the top row of Figure 1, when
we pool the data of all 20 experimental subjects. Even when we pool the data of all subjects
and sort the trials only on the basis of cue-consistency, we still have only a finite number
of responses, each with a specific response time; in order to estimate the conditional prob-
ability of a cue-consistent response, it is necessary to average over sufficiently wide ranges
of quantiles. Thus in Figure 3 we group the responses into seven bins of approximately
equal size: the 1/7 fastest responses, the 1/7 next-fastest, and so on. In the top row, the
dot for each bin indicates the overall fraction of cue-consistent responses in that bin, as
an estimate of the probability of a cue-consistent response; the vertical line indicates a
range of estimates corresponding to this mean estimate plus or minus one standard error of
measurement.33

The resulting estimates of the functions gG
L (τ̂) and gB

L(τ̂) do not look at all like the
step functions shown in Figure 1. In particular, under the parameter values appropriate to
the experiment, the discontinuity in the cue-inconsistent case (the right panel of Figure 3)
should fall within the middle range of quantiles: one should observe a constant probability
of cue-consistent responses (100 percent) in each of the first three bins, and another (much
lower) constant probability in each of the last three bins, with an intermediate average
probability in the central bin. Instead one sees what looks more like a steadily decreasing
probability of cue-consistent responses the slower the response, as predicted by the PGL
model (even under the Shannon entropy cost function) and the DDM.

While it is common to fit pooled data of this kind to some version of the DDM, we
cannot necessarily reject the PDL model simply on the basis of the curves shown in the
top row of Figure 3. It is possible that the appearance of a gradually declining curve in the
top right panel of the figure could reflect pooling of the data of individual subjects, each
of whose response-time distribution was a step function of the kind predicted by the PDL
model, but with very different values of the critical quantile τ̂B, because of their differing
information costs. In the second row of the figure, we consider this possibility by separately
plotting the response frequencies by quantile for each of the 20 subjects. We do indeed
observe in the lower right panel that there are significant differences across subjects with

33Here (following Kelly et al. [2021]) we treat the fraction of cue-consistent responses for each of the 20
subjects as an independent noisy observation of their common probability of giving a cue-consistent response,
allowing a standard error to be computed for the estimate of that common probability.
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regard to the fraction of responses on cue-inconsistent trials that are made too soon for the
subject’s response to be more likely to be correct than incorrect. Nonetheless, even when
we disaggregate the data by subject, and allow for the possibility that the discontinuity in
the response probability might occur earlier than the middle range of quantiles, it does not
appear that a subject’s probability of a cue-consistent response is constant once it drops
below some very high value, as predicted by the PDL model. Instead, cue-inconsistent
(i.e., correct) responses are more frequent in the case of the slowest responses, as predicted
by the PGL model or the DDM.34

Nonetheless, a subtle issue remains with regard to testing for the discontinuity predicted
by the PDL model. In the case of the Shannon cost function, our model of optimal evidence
accumulation implies that the fraction of correct responses at any time delay τ should be
the same in any state x for which the cue-consistent response is incorrect; hence we should
be able to estimate the function gx

a(τ̂), and observe the predicted discontinuity, using data
that pool all cue-inconsistent states x, as is done in Figure 3. This would also be true, even
under a different cost function (such as the total information cost function), if we suppose
that it is possible to obtain signals conditioned only upon payoff-relevant information —
so that in an experiment where the subject’s reward depends only on whether a response L

or R is correct, there are only two states (G or B). But one might well assume a different
kind of information costs, in which the cost of discriminating between two states x1,x2

depends on their perceptual similarity — which may correspond to their proximity in some
“psychological space,” as in the “neighborhood-based cost functions” discussed in Hébert
and Woodford [forthcoming] — as a result of which states x with the same implications
for payoffs may nonetheless result in different conditional distributions for responses and
response times.35 In the context of the Kelly et al. [2021] experiment, the states x ∈ X can
be distinguished not only based on the dominant direction of motion for the moving dots
but also based on the nature of the randomly moving dots overlaid on top.

34For each subject, we let n be the largest quantity (less than or equal to 4) such that cue-consistent re-
sponses are more frequent than cue-inconsistent choices in each of the bins prior to bin n; thus if the subject’s
relative-frequency curve is a step function, the discontinuity may be inferred to occur in bin n. We find that
for 15 of the subjects, the fraction of cue-consistent choices is lower on average in the last two bins (the slow-
est 2/7 of the subject’s choices) than in bin n+ 1 (the first one in which all choices should be at percentiles
greater than the one at which the discontinuity occurs). There are instead only two subjects for whom the
inequality is reversed, making it unlikely that the difference between earlier and later decisions (among all
those later than bin n) is due merely to random sampling from the same probability distribution in each bin.

35For evidence that this is the case, and hence that the Shannon cost function is empirically implausible,
at least for perceptual tasks like those in the study of Kelly et al. [2021], see discussions in Dean and Neligh
[2019] and Hébert and Woodford [forthcoming].

39



If we assume that the sets XL and XR each consist of many states, and that the entropy
function H(q) is not Shannon entropy, then the PDL model continues to predict that for
each state x, the function gx

L(τ̂) should be a step function of the form shown in Figure
1. However the critical stopping time at which the discontinuity occurs will in general
differ for different states x that are perceptually distinct though payoff-equivalent. Hence
if we pool the states for which a given response is correct, we could obtain an estimated
relative-frequency curve that is progressively decreasing over some significant range of
quantiles. In the absence of additional data — differentiated according to each of the per-
ceptually distinguishable states x, and with a sufficient quantity of data for each x to allow
a clear conclusion about how gx

L varies with the quantile τ̂ — we cannot reach a conclusive
judgment about whether response times in experiments like that of Kelly et al. [2021] are
inconsistent with discrete learning. We can however with greater confidence rule out the
joint hypothesis of a preference for discrete learning and Shannon information costs.

6 Discussion and Conclusion

We have proposed a continuous-time model of optimal evidence accumulation, and estab-
lished conditions under which the state-contingent stochastic choices predicted by such a
model coincide with those of a static rational inattention model. Our result provides both
a potential interpretation for the use of certain types of information-cost functions in static
rational inattention models, and a useful approach to solving for the predictions (including
predictions about response times) of the dynamic model.

Our general framework is flexible enough to allow beliefs to evolve either as a continu-
ous diffusion or in discrete jumps. We establish conditions under which beliefs necessarily
evolve in only one of these ways. In particular, we establish conditions under which both
the evolution of beliefs prior to a decision, and the stopping rule that determines the time
taken for a decision and its accuracy, are similar to the assumptions of the drift-diffusion
model in mathematical psychology. In this case, the DM’s belief state can be represented
as a diffusion on a line, the drift of which depends on the external state, and a decision
is made at whatever time the belief state first reaches one of two time-invariant bound-
aries. Whether the conditions under which beliefs should evolve in this way are in fact
characteristic of actual decision situations deserves further study; we show that at least in
principle, it is possible to determine this on the basis of a study of the state-contingent joint
distributions of responses and response times.
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A Proofs

A.1 Proof of Lemma 1

We will prove that from any sequence of policies achieving the value function in the limit,
we can construct a feasible policy that achieves the value function. Consequently, because
a sequence achieving the supremum exists (by definition), an optimal policy exists. We
phrase the main result in terms of the lemma below to facilitate re-using the result in the
proof of Proposition 2 below.

Lemma 5. For all n ∈ N, let qt,n be a martingale and τn be a stopping time defined on

(Ωn,Fn,{Ft,n},Pn), such that q0,n = q̄0 and the constraint (3) is satisfied, and suppose

that

V (q̄0) = lim
n→∞

EPn[e−ρτn û(qn,τn)−κ

ˆ
τn

0
e−ρsds|F0,n],

where V (q̄0) is the value function of the DM’s problem. Then there exists a stochastic basis

(Ω∗,F ∗,{F ∗
t },P∗), martingale q∗t , and stopping time τ∗ such that q∗0 = q̄, the constraint

(3) is satisfied, and

V (q̄0) = EP∗[e−ρτ∗ û(q∗τ∗)−κ

ˆ
τ∗

0
e−ρsds|F ∗

0 ].

Moreover, there exists a sub-sequence such that the laws of (qt,n,τn) converge in law to the

law of (q∗t ,τ
∗).

Proof. See the technical appendix, section B.1.

We outline the steps of the proof of this lemma below.

1. Define a variable xn = f (τn), and show it is integrable (ρ = 0) or bounded (ρ > 0)

2. Show the processes qt,n and xn are tight, and converge in law to some (q∗t ,x
∗).

3. Construct a stochastic basis such that τ∗ = f−1(x∗) is a stopping time and q∗t is a
martingale

4. Show that (q∗t ,τ
∗) achieves the value function V (q̄0).

5. Show that q∗t is feasible.
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The proof itself is quite technical and contains almost no economics. Interested readers are
advised to have copies of Jacod and Shiryaev [2013] and Silvestrov [2012] at hand.

We should also point out that our results could be reformulated to avoid assuming the
existence of optimal policies. Proposition 2 could be modified to claim that there exists
a sequence of policies satisfying the stated conditions and achieving the value function
in the limit, as opposed to stating that an optimal policy satisfies the stated conditions.
Likewise, our proof that the value function must be a viscosity sub-solution to the asso-
ciated HJB equation (Lemma 10) could be reformulated to avoid assuming the existence
of maximizing policies (as in, for example, the proof in Pham [2009]). Of course, it is
more straightforward, in light of the existence of optimal policies, to simplify the matters
by referring to such policies.

In our proof and in the proof of Lemma 10 below, we rely on the following lemma,
which translates the constraint (3) into a constraint on the characteristics of the martingale.

Lemma 6. Suppose a beliefs process is a quasi-left-continuous martingale. Then the pro-

cess is a semi-martingale with characteristics (B,C,ν), where Bt = 0,

Ct =

ˆ t

0
σsσ

T
s ds

and

ν(ω;dt,dz) = ψt(dz;ω)dt,

where σsσ
T
s is a predictable, symmetric positive-definite matrix-valued process and ψt(dz;ω)

is a predictable positive measure on R|X | for each (ω, t) ∈ Ω×R+. If the beliefs process

satisfies (3), then

1
2

tr[σsσ
T
s k̄(qs−)]+

ˆ
R|X |\{0}

D(qs−+ z||qs−)ψt(dz)≤ χ.

Proof. By proposition 2.9 of chapter II of Jacod and Shiryaev [2013], there exists charac-
teristics (B,C,ν) such that

Bt =

ˆ t

0
bsdAs,

Ct =

ˆ t

0
σ̂sσ̂

T
s dAs
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and
ν(ω;dt,dz) = Kt(dz;ω)dAt ,

for predictable processes bs,σs and a transition kernel K, and an increasing, predictable
process A that is continuous with respect to the Lebesgue measure on R+. Because A is
continuous with respect to the Lebesgue measure, we can define

σsσ
T
s = σ̂sσ̂

T
s

dAs

ds

and
ψt(dz;ω) = Kt(dz;ω)

dAt

ds
.

By theorem 2.21 of chapter II of Jacod and Shiryaev [2013], because qt−q0 is a martingale,
B = 0.

Lastly, let us prove that the stated constraint is satisfied if (3) is satisfied. Applying Ito’s
lemma (see theorem 2.42 of chapter II of Jacod and Shiryaev [2013]), for any h̄≥ h,

E(t−h)−[D(qt ||q(t−h)−)] =
1
2

E(t−h)−[

ˆ t

t−h
tr[σsσ

T
s ∇

2
1D(qs−||q(t−h)−)ds]

+E(t−h)−[

ˆ t

t−h

ˆ
R|X |\{~0}

(D(qs−+z||q(t−h)−)−D(qs−||q(t−h)−)−zT ·∇1D(qs−||q(t−h)−))ψs(dz)ds].

By the predictability of the characteristics (which ensures left-continuity), the twice continuous-
differentiability of D in its first argument, and the mean-value theorem,

lim
h→0+

h−1E(t−h)−[D(qt ||q(t−h)−)] =
1
2

tr[σt−σ
T
t−∇

2
1D(qt−||qt−)]

+

ˆ
R|X |\{~0}

(D(qt−+ z||qt−)−D(qt−||qt−)− zT ·∇1D(qt−||qt−))ψt(dz),

where ∇1 and ∇2
1 denote the gradient and Hessian with respect to the first argument. By

the definition of k̄ and the divergence,

D(qt−||qt−) = zT ·∇1D(qt−||qt−) = 0

and
∇

2
1D(qt−||qt−) = k̄(qt−)
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which is the result.

A.2 A useful lemma

As preparation for the proof of Proposition 1, we first derive a lemma that is useful in
simplifying the optimization problem stated in Definition 1. Starting from any belief q ∈
P(X), consider a deviation from the optimal policy that involves either jumping in one
direction or in exactly the opposite direction, with the intensities of the two possible jumps
balanced so as to imply that beliefs will be a martingale even if they do not change in the
absence of a jump; the policy is maintained until a jump occurs, or some fixed amount of
time passes. (Suppose that the jumps in each direction are small enough to be feasible, and
that the intensities with which they occur are chosen so that (6) binds. Then this represents
a feasible policy.) If no jump has occurred by the fixed time, one then follows the optimal
policy starting from beliefs q from then onward. Such a deviation from the optimal policy
cannot possibly increase the value function relative to the one achieved by the optimal
policy. This allows us to establish the following result.

Lemma 7. For any q∈P(X), α ∈ (0,1), and z∈R|X | such that q±z∈P(X) and q±z�
q,

χ
−1(ρV (q)+κ)(αD(q+(1−α)z||q)+(1−α)D(q−αz||q))≥

αV (q+(1−α)z)+(1−α)V (q−αz)−V (q).

Proof. The result holds trivially for z =~0. Suppose z 6=~0.
Consider a K = 2 Poisson process, with jump directions z1 = (1−α)z and z2 = −αz

and intensities ψ1 = αψ̄ and ψ2 = (1−α)ψ̄ , where

ψ̄ =
χ

αD(q+(1−α)z||q)+(1−α)D(q−αz||q)
.

By assumption, ψ̄ is strictly positive and finite. Observe by construction under this policy
that qt does not drift and this this policy is feasible.

Suppose the DM chooses this policy starting from beliefs q until h units of time have
passed or a jump occurs. If a jump occurs before h time has passed, suppose the DM
gathers no information until h time has passed, and that after time h the DM resumes her
optimal policies.
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The discounted expected utility of such a strategy must be less than the utility achieve
by an optimal strategy, which yields

V (q)≥ e−ρh{αV (q+(1−α)z)(1− e−ψ̄h)+(1−α)V (q−αz)(1− e−ψ̄h)+ e−ψ̄hV (q)}

−κ

ˆ h

0
e−ρsds.

We can rewrite this as

(
κ

ρ
+V (q))(eρh−1)eψ̄h ≥ (exp(ψ̄h)−1)(αV (q+(1−α)z)+(1−α)V (q−αz)−V (q)).

Taking the limit as h→ 0+,

(κ +ρV (q))
1
ψ̄
≥ αV (q+(1−α)z)+(1−α)V (q−αz)−V (q).

We can write the expression as

χ
−1(κ +ρV (q))(αD(q+(1−α)z||q)+(1−α)D(q−αz||q))≥

αV (q+(1−α)z)+(1−α)V (q−αz)−V (q),

which is the result.

A.3 Proof of Proposition 1

We begin by proving, using Lemma 7, that the value function is locally Lipschitz-continuous.

Lemma 8. The value function V (q) is locally Lipschitz-continuous on the interior of the

simplex and the interior of each face of the simplex.

Proof. See the technical appendix, section B.2.

We next prove that V (q) is continuously differentiable on the interior of the simplex.
The argument adapts lemma 1 of Benveniste and Scheinkman [1979] to the Lipschitz-
continuous setting using the generalized derivatives approach of Clarke [1990].

Lemma 9. The value function V (q) is continuously differentiable on the interior of the

simplex and the interior of each face of the simplex.
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Proof. See the technical appendix, section B.3.

Armed with this differentiability result, let us revisit Lemma 7. Defining z = 1
1−α

z̄ and
ε = α

1−α
,

χ
−1(ρV (q)+κ)(D(q+ z̄||q)+ ε

−1D(q− ε z̄||q))≥

V (q+ z̄)−V (q)+ ε
−1(V (q− ε z̄)−V (q)).

Note that this holds for all q in the interior of the simplex, z̄ ∈ R|X |, and ε > 0 such that
q+ z̄� q and q−ε z̄� q. Considering the limit as ε→ 0+, and assuming z̄ 6=~0 and hence
that D(q+ z̄||q)> 0,

χ
−1(ρV (q)+κ)≥ V (q+ z̄)−V (q)− z̄T ·∇V (q)

D(q+ z̄||q)
.

This result can be rephrased as: for all q in the interior of the simplex,

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

≤ χ
−1(ρV (q)+κ). (23)

We next argue, via a viscosity solution approach, that

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

= χ
−1(ρV (q)+κ) (24)

on the intersection of the interior of the simplex and the continuation region. We begin by
proving that V is a viscosity sub-solution of the HJB associated with the original problem.
The proof adapts the approach of Pham [2009] to our setting; that textbook is also a useful
reference on viscosity solutions in an HJB context. Let S|X |,(|X |−1) be the set of |X |×(|X |−
1) matrices and M+(R|X |) be the space of positive measures on R|X |.

Lemma 10. Let φ : R|X |+ → R be a function that is homogenous of degree one, twice

continuously-differentiable on the interior of the simplex, and satisfies φ(q) ≥ V (q) for
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all q ∈P(X) and φ(q0) =V (q0) for some q0 on the interior of the simplex. Then

max{ sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0 + z)−φ(q0)− zT ·∇φ(q0))ψ0(dz)

−ρV (q0)−κ, û(q0)−V (q0)} ≥ 0,
(25)

where A(q0) is the set of (σ ,ψ) ∈ S|X |,(|X |−1)×M+(R|X |) satisfying

1
2

tr[σ0σ
T
0 k̄(q0)]+

ˆ
R|X |\{0}

D(q0 + z||q0)ψ0(dz)≤ χ

and such that q0 + z ∈P(X) for all z ∈ supp(ψ0).

Proof. See the technical appendix, section B.4. Analogous results can be derived for each
face of the simplex.

Now define the test function

φ(q;q0,α) = αD(q||q0)+V (q0)+(q−q0)
T ·∇V (q0)

for some α ∈ (0,χ−1(ρV (q0) + κ), given any q0 on the relative interior of the simplex
such that V (q0)> û(q0). By the twice continuously-differentiability of D, this test function
is twice continuously-differentiable in q, and by construction, it satisfies φ(q0;q0,α) =

V (q0). Noting, by the homogeneity of degree one of V and of D in its first argument, that
V (q0) = qT

0 ·∇V (q0), this function is homogenous of degree one.
It also satisfies

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q+ z)−φ(q)−∇φ(q))dψ0(z) =

α

2
tr[σ0σ

T
0 k̄(q)]+α

ˆ
R|X |\{0}

D(q+ z||q)dψ0(z),

and therefore

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q+ z)−φ(q)−∇φ(q))dψ0(z) = αχ
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and thus (25) cannot hold as
αχ < ρV (q0)+κ.

We therefore conclude that there exists some qα ∈P(X) \ {q0} with qα � q (because q,
being in the interior, has full support) such that

αD(qα ||q0)+V (q0)+(q−q0)
T ·∇V (q0)<V (qα).

Considering a sequence of α converging to χ−1ρV (q0)+κ from below yields

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

≥ χ
−1(ρV (q)+κ).

Combining this with (23) proves that (24) holds for all q0 in the interior of the simplex such
that V (q0)> û(q0).

Repeating the argument for each face extends the result to the interior of each face of
the simplex. At the extreme points of the simplex, V (q) = û(q) (as it is impossible for
beliefs to move away from the extreme points, and hence stopping is optimal), and the
result extends vacuously. It follows that for all q ∈P(X) , either V (q0) = û(q0) or (24)
holds, proving the result.

A.4 Proof of Lemma 2

Assume q and q′ are in the interior of the simplex.
By Proposition 1,

V (q2)−V (q1)− (q2−q1)
T ·∇V (q1)≤ χ

−1(ρV (q1)+κ)D(q2||q1)

for any q1,q2 on the line segment connecting q and q′. Applying this in reverse,

(q2−q1)
T · (∇V (q2)−∇V (q1))≤ (ρV (q1)+κ)D(q2||q1)+(ρV (q2)+κ)D(q1||q2).

Let q1 = q+ m
n s(q′−q) and q2 = q+ m+1

n s(q′−q) for some integers m,n such that 0≤m< n

52



and s ∈ [0,1]. It follows that

s(q′−q)T · (∇V (q+ s(q′−q))−∇V (q)) =

s(q′−q)T ·
n−1

∑
m=0

(∇V (q+
m+1

n
s(q′−q))−∇V (q+

m
n

s(q′−q)))≤

nχ
−1

n−1

∑
m=0
{(ρV (q+

m
n

s(q′−q))+κ)D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q))}+

nχ
−1

n−1

∑
m=0
{(ρV (q+

m+1
n

s(q′−q))+κ)D(q+
m
n

s(q′−q)||q+ m+1
n

s(q′−q))}.

Apply Taylor’s theorem (a first-order Taylor expansion, using the Lagrange form of the
remainder):

(n)2D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q)) =

1
2

s2(q′−q)T ·∇2
1D(q+

m+ cm,n,s

n
s(q′−q)||q+ m

n
s(q′−q)) · (q′−q)

for some cm,n,s ∈ [0,1], where ∇2
1 denotes the Hessian with respect to the first argument.

Define, for r ∈ [0,1),

fn(r,s) =
χ−1

2
(ρV (q+

bnrc
n

s(q′−q))+κ)s2

×(q′−q)T · (∇1)
2D(q+

bnrc+ cbnrc,n,s
n

s(q′−q)||q+ bnrc
n

s(q′−q)) · (q′−q).

By the continuity of the second derivative of D, and the boundedness of the value function,
fn(r,s) is bounded uniformly on (n,r). We have

lim inf
n→∞

n
n−1

∑
m=0
{(ρV (q+

m
n

s(q′−q))+κ)D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q))}=

lim inf
n→∞

n−1
n−1

∑
m=0

fn(
m
n
,s) =

lim inf
n→∞

ˆ 1

0
fn(r,s)dr,
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and by the dominated convergence theorem,

lim inf
n→∞

ˆ 1

0
fn(r,s)dr =

χ−1

2
(q′−q)T ·{

ˆ 1

0
s2(ρV (q+rs(q′−q))+κ)k̄(q+rs(q′−q))dr}·(q′−q).

Similarly, define, for r ∈ [0,1),

gn(r,s) =
χ−1

2
(ρV (q+

bnrc+1
n

s(q′−q))+κ)s2

×(q′−q)T · (∇1)
2D(q+

bnrc+ ĉbnrc,n,s
n

s(q′−q)||q+ bnrc+1
n

s(q′−q)) · (q′−q)

for some ĉm,n,s ∈ [0,1].
By an identical argument,

lim inf
n→∞

ˆ 1

0
gn(r,s)dr =

χ−1

2
(q′−q)T ·{

ˆ 1

0
s2(ρV (q+rs(q′−q))+κ)k̄(q+rs(q′−q))dr}·(q′−q).

Therefore,

(q′−q)T · (∇V (q+ s(q′−q))−∇V (q))≤

χ
−1(q′−q)T · {

ˆ 1

0
s(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))dr} · (q′−q).

Integrating,

V (q′)−V (q)− (q′−q)T ·∇V (q) = (q′−q)T ·
ˆ 1

0
(∇V (q+ s(q′−q))−∇V (q))ds.

≤ (q′−q)T · {
ˆ 1

0

ˆ 1

0
sχ
−1(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))drds} · (q′−q)

and

ˆ 1

0

ˆ 1

0
s(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))drds =

ˆ 1

0

ˆ s

0
(ρV (q+ l(q′−q))+κ)k̄(q+ l(q′−q))dlds =

ˆ 1

0
(1− l)(ρV (q+ l(q′−q))+κ)k̄(q+ l(q′−q))dl,
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which is the result.
This result extends immediately to q′ on the boundary of the simplex by continuity, and

to each face of the simplex by repeating the argument on each face.

A.5 Proof of Proposition 2

This proof is essentially a “verification” proof. We construct a sequence of sub-optimal
policies that converge to the optimal policy, and then shows that such a sequence does not
involve large jumps.

We being by constructing an ε-sub-optimal policy. Suppose the DM chooses a K = 1
jump process of the form

dqt =−
χ

D(qt−+ z∗ε(qt−)||qt−)
z∗ε(qt−)dt + z∗ε(qt−)dJt ,

where Jt is a poisson process with intensity χ

D(qt−+z∗ε (qt−)||qt−)
and z∗ε : P(X)→ R|X | \{~0}

is a feasible optimal policy constructed in the following manner.
1). Anywhere a maximizer of

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

on q′ ∈ Q(q) exists, z∗ε(q) is a maximizer. By Proposition 1, in this case,

V (q+ z∗ε(q))−V (q)− z∗ε(q) ·∇V (q)
D(q+ z∗ε(q)||q)

= χ
−1(ρV (q)+κ),

and by Lemma 3,

|z∗ε(q)|δ ≤
ρ(umax−umin)

m(κ +ρumin)
.

Note that we must have, for any α ∈ (0,1],

V (q+αz∗ε(q))−V (q)−αz∗ε(q) ·∇V (q)≤ D(q+αz∗ε(q)||q)χ−1(ρV (q)+κ)

and consequently (by the strict convexity of D)

(V (q+αz∗ε(q))−V (q))< α(V (q+ z∗ε(q))−V (q)).
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It follows that if V (q+ z∗ε(q)) ≤ V (q), then V (q+αz∗ε(q)) ≤ V (q) for all α ∈ [0,1]. Ap-
plying Lemma 2 and a strong preference for gradual learning in this case,

V (q′)−V (q)− (q′−q) ·∇V (q)< (ρV (q)+κ)D(q+ z∗ε(q)||q),

a contradiction. We conclude that V (q+ z∗ε(q))>V (q).
2). Anywhere no such maximizer exists (diffusing is optimal), by Proposition 1 there

must exist a sequence q′n converging to q and such that

lim
n→∞

V (q′n)−V (q)− (q′n−q)T ·∇V (q)
D(q′n||q)

= χ
−1(ρV (q)+κ).

Choose any z∗ε(q) such that |z∗ε(q)| ≤min{ε,(ρ(umax−umin)
m(κ+ρumin)

)δ−1} and

V (q+ z∗ε(q))−V (q)− z∗ε(q) ·∇V (q)
D(q+ z∗ε(q)||q)

≥ χ
−1(ρV (q)+κ− ε).

Assume the stopping policy is to stop immediately upon exiting the region V (q)> û(q).
Let τε be the associated stopping time under these policies, τε = inf{t ≥ 0 : V (qt)≤ û(qt)}.

Under such policies,

d(e−ρtV (qt)) =−ρe−ρtV (qt)dt+

− χe−ρt

D(qt−+ z∗(qt−)||qt−)
z∗(qt−)

T ·∇V (qt−)dt

+ e−ρt(V (qt−+ z∗(qt−))−V (qt−))dJt ,

and consequently

Et [e−ρ(τ−t)V (qτ)]−V (qt) = Et [

ˆ
τε

t
e−ρ(s−t)

χ
V (qs−+ z∗(qs−))−V (qs−)− z∗(qs−)

T ·∇V (qs−)

D(qs−+ z∗(qs−)||qs−)
ds]

−Et [

ˆ
τε

t
e−ρ(s−t)

ρV (qs−)ds],

which is
Et [e−ρ(τε−t)V (qτε

)]−V (qt)≥ (
κ− ε

ρ
)Et [1− e−ρ(τε−t)]. (26)
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Now observe that

dV (qt) =−
χ

D(qt−+ z∗(qt−)||qt−)
z∗(qt−)

T ·∇V (qt−)dt

+(V (qt−+ z∗(qt−))−V (qt−))dJt ,

and therefore by

V (q+ z∗ε(q))−V (q)− z∗ε(q) ·∇V (q)
D(q+ z∗ε(q)||q)

≥ χ
−1(ρV (q)+κ− ε)

we have
Et [V (qτε

)]−V (qtε )≥ (ρumin +κ− ε)Et [τε − t].

Consequently, for ε ∈ (0,ρumin +κ), we must have

Et [τε − t]≤ umax−umin

ρumin +κ− ε
. (27)

The utility under this sub-optimal policy is

V ε(qt) = Et [e−ρ(τε−t)V (qτε
)]− κ

ρ
Et [1− e−ρ(τε−t)].

By (26),
V ε(qt)≥V (qt)−

ε

ρ
Et [1− e−ρ(τε−t)],

and by the inequality
1− e−x ≤ x

for x≥ 0, it follows by (27) that

V ε(qt)≥V (qt)− ε
umax−umin

ρumin +κ− ε
.

Hence in the the limit as ε → 0+, the sequence of policies just constructed achieves the
value function.

By Lemma 5, there exists a subsequence of these policies that converges in law to the
law of an optimal policy. Let qs,n denote the stochastic process for beliefs along this sub-
sequence, and let q∗ denote the limit. Define g(∆qs) = max{|∆qs|− (ρ(umax−umin)

m(κ+ρumin)
)δ−1

,0}.
By proposition 3.16 of section VI of Jacod and Shiryaev [2013], the law of ĝs,n = g(∆qs,n)
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converges to the law of ĝs = g(∆q∗s ), and by construction ĝs,n is everywhere zero. It follows
immediately that ĝs is zero P-almost-everywhere.

We prove the second claim by a similar argument. By essentially the same argument,
for any ω > 0, ht,n,ω = hω(qt−,n,∆qt,n) = (V (qt−,n +∆qt,n)−V (qt−,n)max{|∆qt,n|−ω,0}
converges in law to h∗t,ω = hω(q∗t−,∆q∗t ). Because the ht,n,ω are everywhere positive for suf-
ficiently large n (as the jumps approximating the diffusion become smaller than ω), strictly
so wherever |∆qt,n| > ω, it follows that h∗t,ω shares these properties P-almost-everywhere,
for all ω > 0.

A.6 Proof of Proposition 3

We first prove the claim concerning the HJB equation (which involves proving the viscosity
sub- and super- solution properties) and then argue for the existence of an optimal diffusion
process.

Viscosity Sub-Solution By Proposition 1, anywhere V (q0)> û(q0) there exists a vector
{v ∈ R|X | : |v| = 1 & vT q0 = 0} such that either, for some ε > 0 with q0 + εDiag(q0)v ∈
P(X),

V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
= χ

−1
κ,

or

lim
ε→0+

sup
V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
= χ

−1
κ.

We begin by proving that the latter must in fact hold under a preference for gradual learning.
Suppose not; then for some δ > 0, ε̄ > 0 and all α ∈ (0, ε̄),

α(V (q0 + εDiag(q0)v)−V (q0))−αχ
−1

κD(q0 + εDiag(q0)v||q0)≥

(V (q0 +αεDiag(q0)v)−V (q0))−χ
−1

κD(q0 +αεDiag(q0)v||q0)+δ

This can be written as

V (q0 + εDiag(q0)v)−V (q0)−
1
α
(V (q0 +αεDiag(q0)v)−V (q0))≥

χ
−1

κD(q0 + εDiag(q0)v||q0)−
1
α

χ
−1

κD(q0 +αεDiag(q0)v||q0)+δ .
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Considering the limit as α → 0+, and applying Lemma 2 and a preference for gradual
learning,

χ
−1

κD(q0 + εDiag(q0)v||q0)≥V (q0 + εDiag(q0)v)−V (q0)− εvT Diag(q0)∇V (q0)

≥ χ
−1

κD(q0 + εDiag(q0)v||q0)+δ

a contradiction. We must therefore have

lim
ε→0+

supε
−2(V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)) =

1
2

κ

χ
vT Diag(q0)k̄(q0)Diag(q0)v.

for some v ∈ R|X | : |v|= 1 & vT q = 0. Consequently, any twice continuously-differentiable
test function satisfying

φ(q0) =V (q0)

and φ(q)≥V (q) must satisfy ∇φ(q0) =V (q0) and

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v≥ 0

which is the viscosity sub-solution property, as we must have

max{ max
{v∈R|X |:|v|=1 & vT q=0}

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v, û(q0)−φ(q0)} ≥ 0.

Viscosity Super-Solution By Proposition 1, for any vector {v ∈ R|X | : |v| = 1 & vT q0 =

0},

lim
ε→0+

V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
≤ χ

−1
κ,

and therefore for all such v,

lim
ε→0+

ε
−2(V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0))≤

1
2

κ

χ
vT Diag(q0)k̄(q0)Diag(q0)v.

59



Consequently, any twice continuously-differentiable test function satisfying

φ(q0) =V (q0)

and φ(q)≤V (q) must satisfy

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v≤ 0,

and by V (q0)≥ û(q0) we must have

max{ max
{v∈R|X |:|v|=1 & vT q=0}

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v, û(q0)−φ(q0)} ≤ 0.

Diffusion Process Consider a version of the DM’s problem in which the DM is restricted
to choose processes of the form

dqt = Diag(qt)σtdBt ,

subject to the constraint

1
2

tr[σT
t Diag(qt)k̄(qt)Diag(qt)σt ]≤ χ,

as in the example given in the text. Call the associated value function V R. By standard
arguments (see, e.g., Pham [2009]), V R is the unique viscosity solution to the HJB equation
described in this proposition, and hence V R =V and the optimal policies implementing V R

also implement V .

A.7 Proof of Lemma 4

Recall the definition of a preference for discrete learning: for all q,q′,{qs}s∈S with q′� q

and ∑s∈S πsqs = q′,

D(q′||q)+∑
s∈S

πsD(qs||q′)≥∑
s∈S

πsD(qs||q)
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Therefore, for all z ∈ R|X | with support on the support of q′ and ε sufficiently small,

D(q′||q′+ εz)+∑
s∈S

πsD(qs||q′)≥∑
s∈S

πsD(qs||q′+ εz).

At ε = 0, this inequality is satisfied by construction. Differentiating the left-hand side
(using the assumption that D is differentiable),

∂

∂ε
[D(q′||q′+ εz)+∑

s∈S
πsD(qs||q′)]|ε=0 = 0,

because D(q′||q′+ εz) is minimized at ε = 0. It follows that the inequality requires that

∑
s∈S

πs
∂

∂ε
D(qs||q′+ εz)|ε=0 = 0,

as otherwise the inequality would be violated for some sufficiently small ε .
By step 1 in the proof of theorem 4 of Banerjee et al. [2005], it follows immediately

that
D(q′||q) = H(q′)−H(q)− (q′−q)T ·∇H(q)

for some convex function H, where ∇H denotes the gradient. Note that theorem 4 of
Banerjee et al. [2005] is stated as requiring that

∑
s∈S

πsD(qs||q′+ εz)

be minimized at ε = 0 for all z, but step 1 of the proof in fact only requires that ε = 0
correspond to a critical value for all z. Step 2 of that proof relaxes slightly the regularity
conditions, but we have simply assumed these. Minimization is only required to establish
the last step of the proof, step 3, which proves strict convexity of H. Strict convexity of
H(q) on the support of q follows in our setting immediately from our assumptions on D.

A.8 Proof of Theorem 4

Because D is a Bregman divergence, it satisfies a preference for gradual learning, and the
value function described in Proposition 7 is the value function for the DM’s problem.

That value function can be implemented in the following way. Let π∗ ∈P(A) and
{q∗i ∈P(X)}|A|i=1 be optimal policies in the static problem described in Proposition 7, given
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some arbitrary assignment of the actions to the numbers {1,2, . . . , |A|}. Consider the dy-
namic K jumps example policy, with K = |A|, zk = q∗k−q0, and

ψk = π
∗
k

χ

−H(q0)+∑
|A|
i=1 π∗i H(q∗i )

.

Observing that ∑
K
k=1 zkψk = 0, under such a policy beliefs do not drift, and that the policy

is feasible, as
k

∑
k=1

ψkD(q∗i ||q0) = χ.

Assume the DM immediately stops after the first jump. The utility achieved is

E0[û(qτ)−κτ] =
K

∑
k=1

π
∗
k û(q∗k)−κ

ˆ
∞

0
e−s∑

K
k=1 ψkds

=
K

∑
k=1

π
∗
k û(q∗k)−

κ

χ
(−H(q0)+

|A|

∑
i=1

π
∗
i H(q∗i )),

which is the value function of Proposition 7. It follows that this policy is an optimal policy.

A.9 Proof of Theorem 6

We divide this proof into three steps. First, we establish necessary optimality conditions.
Second, we construct a utility function for which a particular set of policies is optimal.
Third, we show that the optimality of this set of policies implies a preference for discrete
learning.

Step 1: Necessary Optimality Conditions Under the assumption that there is no
continuous martingale component of qt (note that qt is equivalent to a purely discontinuous
martingale by the assumption that it does not diffuse outside of a nowhere-dense set), by
Lemma 6, we can characterize the martingale qt entirely by the predictable compensator

ν(ω;dt,dz) = ψt(dz;ω)dt

such that ˆ
R|X |\{~0}

D(qt−+ z||qt−))ψt(dz)≤ χ.
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Because the martingale qt is of finite variation, we have, for any stopping time τ ,

Et [e−ρτV (qτ)]− e−ρtV (qt) = Et [

ˆ
τ

t

ˆ
R|X |\{~0}

e−ρl(V (ql−+ z)−V (ql−)− zT ·∇V (ql−))ψl(dz)dl]

−Et [

ˆ
τ

t
e−ρl

ρV (ql−)dl]

= Et [κ

ˆ
τ

t
e−ρldl]

and consequently by Proposition 1,

ˆ
R|X |\{~0}

(V (ql−+z)−V (ql−)−zT ·∇V (ql−)−χ
−1(ρV (ql−)+κ)D(ql−+z||ql−))ψl(dz)= 0.

By assumption, this must hold from any initial qt in the continuation region.
It follows that there must exist some z∗(ql−) ∈ R|X | \{~0} such that

V (ql−+z∗(ql−))−V (ql−)−z∗(ql−)
T ·∇V (ql−) = χ

−1(ρV (ql−)+κ)D(ql−+z∗(ql−)||ql−),

(28)
and moreover that by the immediate stopping result that

V (ql−+ z∗(ql−)) = û(ql−+ z∗(ql−)),

and for all feasible z,

V (ql−+ z)−V (ql−)− zT ·∇V (ql−)≤ χ
−1(ρV (ql−)+κ)D(ql−+ z||ql−). (29)

To facilitate what follows, we write these conditions in the following manner, akin to a
static rational inattention problem:

0 = sup
µ∈int(P({1,2,3})),{qi∈P(X)}i∈{1,2,3}:∑

3
i=1 µiqi=ql−

(30)

µ1û(q1)+µ2V (q2)+µ3V (q3)−V (ql−)−χ−1(ρV (ql−)+κ)∑
3
i=1 µiD(qi||ql−)

µ1
.

Choosing µ3 = µ2 = 1
2(1− µ1) and q3 = q2 = ql− −

µ1
1−µ1

z∗(ql−) is feasible for π1 suffi-
ciently small and achieves (28) in the limit as µ1→ 0+. The numerator is always weakly
negative by (29), and hence (30) must hold.
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Step 2: Construct a utility function with certain optimal policies Let us take as
given any interior q,q′,q1,q2 ∈P(X) and π ∈ (0,1) such that

πq1 +(1−π)q2 = q′,

and construct a utility function such that z = q1−q and z = q2−q are both optimal policies
from q, meaning that

û(q1)−V (q)− (q1−q)T ·∇V (q) = χ
−1(ρV (q)+κ)D(q1||q),

û(q2)−V (q)− (q2−q)T ·∇V (q) = χ
−1(ρV (q)+κ)D(q2||q),

and for which V (q)> û(q) and
V (q′)≤V (q).

The basic idea behind this proof is to construct the utility function in such a way as to
ensure that the value function is the solution to a static rational inattention problem, in that
the optimal policy is to jump to one of three beliefs with intensities such that beliefs do not
drift.

Define, for some ξ = (0,1), an interior q3 ∈P(X) such that

ξ q3 +(1−ξ )q′ = q.

Note that such a q3 exists by the assumption that q is in the interior of the simplex.
Let v ∈ R|X | be a vector and let k1,k2,k3,K be constants. Define

θ = χ
−1(ρK +κ).

Suppose there are three actions, and let their utilities satisfy, for a ∈ A = {1,2,3},

ua = θ∇1D(qa||q)+ v+ |X |−1
ιka,

where ua ∈ R|X | are the payoffs associated with action a, ∇1D(qa||q) is the gradient with
respect to the first argument and ι ∈ R|X | is a vector of ones. This gradient exists by the
differentiability of D in its first argument and the assumption that qa is interior. Define

ka = θD(qa||q)−θqT
a ·∇1D(qa||q)+K−qT v
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so that
θD(qa||q) = qT

a ·ua−K− (qa−q)T v.

Note that, to satisfy the requirement that ua,x be positive, we will require that K be suffi-
ciently large given v (we provide an explicit expression below).

Observe that, for any a,a′, that

qT
a (ua−ua′) = θD(qa||q)+K− (q−qa)

T v

−θD(qa′ ||q)−K +(q−qa′)
T v

− (qa−qa′)
T ·ua′,

and by the convexity of D that
qT

a (ua−ua′)≥ 0,

and therefore û(qa) = qT
a ua.

By the convexity of D, for any q′′� q and any a ∈ {1,2,3},

θD(q′′||q)≥ θD(qa||q)+(q′′−qa)
T ·θ∇1D(qa||q),

which is
θD(q′′||q)≥ max

a∈{1,2,3}
(q′′)T ua− (q′′−q)T · v−K. (31)

By the strict convexity of D, this inequality must be strict for all q′′ ∈ {q1,q2,q3}, and must
be an equality for q′′ ∈ {q1,q2,q3}. Note that this implies K > û(q).

Let us now consider the “static rational inattention problem”

max
µ∈P(A),{q̂i∈P(X)}i∈A

∑
i∈A

µi{û(q̂i)−θD(q̂i||q)}

subject to ∑i∈A µiq̂i = q. By the “Lagrangian lemma” of Caplin et al. [2019] applied to the
vector v, the above conditions show that µ∗ = (π(1− ξ ),(1−π)(1− ξ ),ξ ) and q̂∗i = qa

are optimal, noting by construction that

π(1−ξ )q1 +(1−π)(1−ξ )q2 +ξ q3 = q.

Note by construction that the maximized value is K = ∑a∈A µ∗a{û(qa)−θD(qa||q)}. Note
also that the optimal policy is unique (up to a permutation of the assignment of i to A) by
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the strictness of (31) for q′′ /∈ {q1,q2,q3} and the uniqueness of the weights µ∗ satisfying

∑i∈A µ∗i qa = q.
Consider the value function associated with this utility function, V (q′′;v,K). We must

have, by sub-optimality, for any q′′� q,

V (q′′)−V (q;v,K)− (q′′−q)T ·∇V (q;v,K)≤ χ
−1(ρV (q;v,K)+κ)D(q′′||q). (32)

Applying this to q′′ ∈ {q1,q2,q3} and using V (q′′)≥ û(q′′),

K−V (q;v,K)− (qa−q)T · (∇V (q;v,K)− v)≤ χ
−1

ρ(V (q;v,K)−K)D(qa||q). (33)

Summing by µ∗, we find that V (q;v,K)≥ K, and consequently V (q;v,K)> û(q).
Now consider any policy in the static problem, (µ ∈ int(P(A)),{q̂i ∈P(X)}i∈A).

Observe that, by (31) and (32),

∑
i∈A

µi(V (q̂i)− û(q̂i))+K−V (q;v,K)≤∑
i∈A

µiχ
−1

ρ(V (q;v,K)−K)D(q̂i||q).

strictly if q̂i /∈ {q1,q2,q3} for any i ∈ A.
Using this equation and û(q̂1)≤V (q̂1), we have

µ1û(q̂1)+µ2V (q̂2;v,K)+µ3V (q̂3;v,K)−V (q;v,K)−χ−1(ρV (q)+κ)∑
3
i=1 µiD(q̂i||q)

µ1
≤

∑
3
i=1 µi{V (q̂i;v,K)− û(q̂i)+K−V (q;v,K)−χ−1ρ(V (q;v,K)−K)D(q̂i||q)}

µ1
+

−K +∑
3
i=1 µi{û(q̂i)−θD(q̂i||q)}

µ1
,

and therefore by µ1 ∈ (0,1] and −K +∑
3
i=1 µi{û(q̂i)−θD(q̂i||q)} ≤ 0,

µ1û(q̂1)+µ2V (q̂2;v,K)+µ3V (q̂3;v,K)−V (q;v,K)−χ−1(ρV (q)+κ)∑
3
i=1 µiD(q̂i||q)

µ1
≤

−K +
3

∑
i=1

µi{û(q̂i)−θD(q̂i||q)} ≤ 0.
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Consequently, the sequence of policies (µn ∈ int(P(A)),{q̂i,n ∈P(X)}i∈A) achieving

lim
n→∞

µ1,nû(q̂1,n)+µ2,nV (q̂2,n;v,K)+µ3,nV (q̂3,n;v,K)−V (q;v,K)

µ1
−

χ−1(ρV (q;v,K)+κ)∑
3
i=1 µi,nD(q̂i,n||q)

µ1
= 0

(which exists by (30)) must achieve

lim
n→∞
−K +

3

∑
i=1

µi,n{û(q̂i,n)−θD(q̂i,n||q)}= 0.

By the boundedness of the simplex, this sequence has a convergent subsequence, and by
the uniqueness (up to a permutation) of the optimal policy in the “static problem,” this
convergent subsequence must converge to some permutation of µ∗,{q1,q2,q3}. Supposing
without loss of generality that limn→∞ q̂1,n = q1,

µ1û(q1)+µ2V (q2;v,K)+µ3V (q3;v,K)−V (q;v,K)−χ
−1(ρV (q;v,K)+κ)

3

∑
i=1

µ
∗
i D(qi||q)= 0

and that û(q1) = V (q1;v,K). It follows immediately that jumping to za = qa − q with
probability µ∗a is an optimal policy of the dynamic problem, and by the uniqueness of
the optimal policy in the “static problem,” this must be the only optimal policy. By the
assumption of immediate stopping, û(q2) =V (q2;v,K) and û(q3) =V (q3;v,K).

Therefore,

K−V (q;v,K)−χ
−1

ρ(V (q;v,K)−K)
3

∑
i=1

µ
∗
i D(qi||q) = 0,

which yields V (q;v,K) = K. Plugging this into (33),

(qa−q)T · (∇V (q;v,K)− v)≥ 0,

implying that q is a local minima of V (q;v,K)− vT ·q over the set

{q̃ ∈P(X) : ∃π̂ ∈P(A) s.t. ∑
a∈A

π̂aqa = q̃},

and thus that (qa−q)T · (∇V (q;v,K)− v) = 0.

67



This result holds regardless of the values of v,K. Choose

v =−θ∇1D(q′||q),

and by sub-optimality of jumping to q′ from q we have

V (q′;v,K)≤V (q;v,K)+(π1q1 +(1−π)q2−q)T ·∇V (q;v,K)+θD(q′||q),

recalling that π1q1 +(1−π)q2. Using (qa−q)T · (∇V (q;v,K)− v) = 0, this is

V (q′;v,K)≤V (q;v,K)−θ(q′−q)∇1D(q′||q)+θD(q′||q).

By the convexity of D,
V (q′;v,K)≤V (q;v,K),

as required.
To establish positive utilities, choose for some ε > 0

−K = min
x∈X ,a∈{1,2,3}

eT
x · (θ∇1D(qa||q)−θ∇1D(q′||q))+θD(qa||q)

−θqT
a ·∇1D(qa||q)−θqT ·∇1D(q′||q)− ε,

which ensures that
min

x∈X ,a∈A
ua,x = ε.

Step 3: Prove the inequality We begin by proving that a preference for discrete
learning exists for two-signal alphabets, and assuming that all of the relevant elements of
the simplex are interior. We then extend the result to prove the full preference for discrete
learning.

Proof by contradiction: suppose there exists an interior q,q′,q1,q2 ∈P(X) and π ∈
(0,1) such that

πq1 +(1−π)q2 = q′

and
D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)< πD(q1|q)+(1−π)D(q2||q).

By the results of the previous step, there exists an action space A and utility function u
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such that z = q1−q and z = q2−q are both optimal policies from q, and for which

V (q′)≤V (q),

where V denotes the value function given those utilities (i.e. the V (q;v,K) in step 2 above,
for the particular values of v,K chosen above).

Then we must have, for a ∈ {1,2},

V (qa)−V (q)− (qa−q)T ·∇V (q) = (ρV (q)+κ)D(qa||q),

V (q′)−V (q)− (q′−q)T ·∇V (q)≤ (ρV (q)+κ)D(q′||q),

V (qa)−V (q′)− (qa−q′)T ·∇V (q′)≤ (ρV (q′)+κ)D(qa||q′)≤ θ(ρV (q)+κ)D(qa||q′),

Putting these together,

(ρV (q)+κ)(D(q′||q)+D(qa||q′)−D(qa||q))≥−(qa−q′)T · [∇V (q′)−∇V (q)].

Summing over a ∈ {1,2} weighted by π and (1−π), and using (ρV (q)+κ)> 0,

D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)≥ πD(q1|q)+(1−π)D(q2||q),

a contradiction.
We conclude that for all interior q,q′,q1,q2 ∈P(X) and π ∈ (0,1),

D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)≥ πD(q1|q)+(1−π)D(q2||q).

The result extends immediately to more than two {qs} by adding this expression for differ-
ent pairs. The result extends to the boundary of the simplex by continuity.

A.10 Proof of Theorem 7

Define φ(qt) as the static value function in the statement of the theorem (we will prove
that it is equal to V (qt), the value function of the dynamic problem). We first show that
any strategy for the DM achieves weakly less utility than φ(q0). We then show that φ(qt)

satisfies the HJB equation of Proposition 3 (at least in a viscosity sense), and construct a
diffusion strategy with the properties described that achieves the value φ(q0).
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Step 1: Show that all other feasible policies achieve a lower utility First, we verify that
alternative policies achieve less utility than φ(q0). Observe that for any feasible process,
by the definition of gradual learning and Assumption 1, we must have

lim
h→0+

h−1Et−h[H(qt)−H(qt−h)]≤ lim
h→0+

h−1Et−h[D(qt ||qt−h)]≤ χ,

and consequently

E0[û(qτ)−κτ]≤ E0[û(qτ)−
κ

χ
H(qτ)+

κ

χ
H(q0)].

Let a∗(q) be a selection from argmaxa∈A ∑x∈X ua,xqx. We can write this as

E0[û(qτ)−κτ]≤ ∑
a∈A

πaE0[qT
τ ·ua−

κ

χ
H(qτ)+

κ

χ
H(q0)|a∗(qτ) = a],

where πa = E0[1{a∗(qτ) = a}]. By the convexity of H,

E0[qT
τ ·ua−

κ

χ
H(qτ)+

κ

χ
H(q0)|a∗(qτ) = a]≤ qT

a ·ua−
κ

χ
H(qa)+

κ

χ
H(q0),

where
qa = E0[qτ |a∗(qτ) = a].

By the martingale property of beliefs, we must have ∑a∈A πaqa = q0. We conclude that

E0[û(qτ)−κτ]≤ max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

πa{qT
a ·ua−

κ

χ
H(qa)+

κ

χ
H(q0)},

which is the result.

Step 2: φ(qt) satisfies the HJB equation in a viscosity sense We begin by observing,
by the homogeneity of degree one of D in its first argument, that

(q′)T ·∇2
1D(q′||q) =~0,

and consequently
qT ·∇2H(q) = qT · k̄(q) =~0,
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and therefore converse of Euler’s homogenous function theorem applies. That is, ∇H(qt)

is homogenous of degree zero, and H(qt) is homogeneous of degree one.
We start by showing that the function φ(qt) is twice-differentiable in certain directions.

Substituting the definition of a Bregman divergence into the statement of theorem,

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

∑
x∈X

π(a)ua,xqa,x +
κ

χ
H(q0)−

κ

χ
∑
a∈A

π(a)H(qa),

subject to the constraint (∑a∈A πaqa = q0). Define a new choice variable, q̂a = π(a)qa. By
definition, q̂a ∈ R|X |+ , and the constraint is ∑a∈A q̂a = q0. By the homogeneity of H, the
objective is

∑
a∈A

uT
a · q̂a +

κ

χ
H(q0)−

κ

χ
∑
a∈A

H(q̂a),

where ua ∈ R|X | is the vector of {ua,x}x∈X . Any choice of q̂a satisfying the constraint can
be implemented by some choice of π and qa in the following way: set π(a) = ιT q̂a, and (if
π(a)> 0) set

qa =
q̂a

π(a)
.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,

∑a∈A π(a)= 1, and the fact that the elements of qa are weakly positive will ensure π(a)≥ 0.
Similarly, ιT qa = 1 for all a ∈ A, and the elements of qa are weakly greater than zero.
Therefore, we can implement any set of q̂a satisfying the constraint ∑a∈A q̂a = q0.

Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X |}a∈A

min
ξ∈R|X |,{νa∈R

|X |
+ }a∈A

∑
a∈A

uT
a · q̂a +

κ

χ
H(q0)

− κ

χ
∑
a∈A

H(q̂a)+ξ
T (q0−∑

a∈A
q̂a)+ ∑

a∈A
ν

T
a q̂a.

Observe that φ(q0) is convex in q0. Suppose not: for some q = λq0 + (1− λ )q1, with
λ ∈ (0,1), φ(q) < λφ(q0)+ (1−λ )φ(q1). Consider a relaxed version of the problem in
which the DM is allowed to choose two different q̂a for each a. Because of the convexity of
H, even with this option, the DM will set both of the q̂a to the same value, and therefore the
relaxed problem reaches the same value as the original problem. However, in the relaxed
problem, choosing the optimal policies for q0 and q1 in the original problem, scaled by
λ and (1− λ ) respectively, is feasible. It follows that φ(q) ≥ λφ(q0) + (1− λ )φ(q1).
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Note also that φ(q0) is bounded on the interior of the simplex. It follows by Alexandrov’s
theorem that is is twice-differentiable almost everywhere on the interior of the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine
and a feasible point exists. Therefore, the KKT conditions are necessary. The objective
function is continuously differentiable in the choice variables and in q0, and therefore the
envelope theorem applies. We have, by the envelope theorem,

∇φ(q0) =
κ

χ
∇H(q0)+ξ ,

and the first-order conditions (for all a ∈ A with q̂a 6=~0),

ua−
κ

χ
∇H(q̂a)−ξ +νa = 0. (34)

If q̂a =~0, we must have qT (ua− ξ ) ≤ κ

χ
H(q) for all q, meaning that ua− κ is a sub-

gradient of H(q) at q = 0. In this case, we can define νa =~0 and observe that the first-order
condition holds. Define q̂a(q0), ξ (q0), and νa(q0) as functions that are solutions to the
first-order conditions and constraints.

We next prove the “locally invariant posteriors” property described by Caplin et al.
[2019]. Consider an alternative prior, q̃0 ∈P(X), such that

q̃0 = ∑
a∈A

α(a)q̂a(q0)

for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), ξ (q̃0) = ξ (q0), and νa(q̃0) =

νa(q0). By the homogeneity property,

∇H(α(a)q̂a(q0)) = ∇H(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is
satisfied, the complementary slackness conditions are satisfied, and q̂a and νa are weakly
positive. Therefore, all necessary conditions are satisfied, and by the concavity of the
problem, this is sufficient. It follows that the locally invariant posteriors property is verified.

Consider a perturbation
q0(ε;z) = q0 + εz,

with z ∈ R|X |, such that q0(ε;z) remains in P(X) for some ε > 0. If z is in the span of
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q̂a(q0), then there exists a sufficiently small ε > 0 such that the above conjecture applies. In
this case that ξ is constant, and therefore ∇φ(q0(ε;z)) is directionally differentiable with
respect to ε . If q0(−ε;z) ∈P(X) for some ε > 0, then ∇φ is differentiable (let ∇z denote
the gradient with respect to z), with

∇z∇φ(q0) =
κ

χ
∇

2H(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span
of q̂a(q0) is strictly larger than the line segment connecting zero and q0 (in other words, all
q̂a(q0) are not proportional to q0). Within this region, the strict convexity of H(q0) in all
directions orthogonal to q0 implies that, as required of the continuation region,

φ(q0)> max
a∈A

uT
a ·q0.

Outside of this region, all q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uT
a ·q0,

as required for the stopping region.
Now consider an arbitrary perturbation z such that q0(ε;z) ∈ R|X |+ and q0(−ε;z) ∈ R|X |+

for some ε > 0. Observe that, by the constraint,

εz = ∑
a∈A

(q̂a(ε;z)− q̂a(q0)).

It follows that

(ξ T (q0(ε;z))−ξ
T (q0))εz = ∑

a∈A
(ξ T (q0(ε;z))−ξ

T (q0))(q̂a(ε;z)− q̂a(q0)).

By the first-order condition,

(ξ T (q0(ε;z))−ξ
T (q0))(q̂a(ε;z)− q̂a(q0)) =

[
κ

χ
∇H(q̂a(q0))−

κ

χ
∇H(q̂a(ε;z))+ν

T
a (q0(ε;z))−ν

T
a (q0)](q̂a(ε;z)− q̂a(q0)).
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Consider the term

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0))= ∑

x∈X
(νT

a (q0(ε;z))−ν
T
a (q0))exeT

x (q̂a(ε;z)− q̂a(q0)).

By the complementary slackness condition,

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0)) =−ν

T
a (q0(ε;z))q̂a(q0)−ν

T
a (q0)q̂a(ε;z)≤ 0.

By the convexity of H,

κ

χ
(∇H(q̂a(q0))−∇H(q̂a(ε;z)))(q̂a(ε;z)− q̂a(q0))≤ 0.

Therefore,
(ξ T (q0(ε;z))−ξ

T (q0))εz≤ 0.

Thus, anywhere φ is twice differentiable (almost everywhere on the interior of the simplex),

∇
2
φ(q)� κ

χ
∇

2H(q) = k̄(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost every-
where in the continuation region. Moreover, by the convexity of φ ,

κ

χ
(∇H(q0(ε;z))−∇H(q0))

T
εz≥ (∇φ(q0(ε;z))−∇φ(q0))

T
εz≥ 0,

implying that the “Hessian measure” (see Villani [2003]) associated with ∇2φ has no pure
point component. This implies that φ is continuously differentiable.

Step 2: Show this value function can be achieved Next, we show that there is a strategy
for the DM in the dynamic problem which can implement this value function. Suppose
the DM starts with beliefs q0, and generates some q̂a(q0) as described above. As shown
previously, this can be mapped into a policy π(a,q0) and qa(q0), with the property that

∑
a∈A

π(a,q0)qa(q0) = q0.

Claim: it is without loss of generality to assume that the set A∗ = {a∈ A : π(a,q0)> 0}
satisfies |A∗| ≤ |X |. To see this, note that if |A∗|> |X |, there must exist some a0 ∈ A∗ such
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that, for some weights wa ∈ R|A∗|−1,

(qa0−q0) = ∑
a∈A∗\{a0}

wa(qa−q0),

as either {qa− q0}a∈A∗\{a0} forms a basis on the tangent space of the simplex or itself
contains a redundant basis vector. By optimality, we must have

uT
a0

qa0−
κ

χ
H(qa0) = ∑

a∈A∗\{a0}
wa{uT

a qa−
κ

χ
H(qa)}.

If qa0 = q0, the policy

π̃(a,q0}=

0 a /∈ A∗ \{a0}
π(a,q0)

1−π(a0,q0)
a ∈ A∗ \{a0}

is also optimal (with the same choices of {qa}a∈A}). If not, we must have w 6=~0.
Now consider a policy that sets, for some ε > 0,

π̃(a,q0}=


0 a /∈ A∗

π(a,q0)− ε ∑a∈A∗\{a0}wa a = a0

π(a,q0)+ εwa a ∈ A∗ \{a0}

.

The maximum feasible ε , ε̄ , must set π̃(a,q0) = 0 for some a ∈ A∗ and achieve the same
utility (again with the same choices of {qa}a∈A}). Repeating this argument, it is without
loss of generality to suppose |A∗| ≤ |X |.

We will construct a policy such that, for all times t,

qt = ∑
a∈A∗

πt(a)qa(q0)

for some πt(a) ∈P(A∗). Let C (which will be the continuation region) be the set of qt

such that a πt ∈P(A∗) satisfying the above property exists and πt(a) < 1 for all a ∈ A∗.
The associated stopping rule will be the stop whenever πt(a) = 1 for some a ∈ A∗.

For all qt ∈ C , there is a linear map from P(A∗) to C , which we will denote Q(q0):

Q(q0)πt = qt .
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Let us suppose the DM chooses a process such that

Q(q0)dπt = Diag(qt)σtdBt .

By the assumption that |X | ≥ |A∗|, there exists a |A∗|× |X | matrix σπ,t such that

Q(q0)σπ,t = Diag(qt)σt

and dπt = σπ,tdBt . Define φ̃(πt) = φ(Q(q0)πt). As shown above,

QT (q0)∇
2
φ(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)−
κ

χ
H(Q(q0)πt)

is a martingale. We scale σπ,t to respect the constraint,

1
2

tr[σtσ
T
t Diag(qt)k̄(qt)Diag(qt)] = χ > 0.

This can be rewritten as

1
2

tr[σπ,tσ
T
π,tQ

T (q0)k̄(Q(q0)πt))Q(q0)] = χ,

Note that we will always have tr[σπ,tσ
T
π,t ]> 0.

By the positive-definiteness of k̄ in all directions except those constant in the support of
Q(q0)πt , Under the stopping rule described previously, the boundary will be hit a.s. as the
horizon goes to infinity. As a result, by the martingale property described above, initializing
π0(a) = π(a,q0),

φ̃(π0) = E0[φ̃(πτ)−
κ

χ
H(Q(q0)πτ)+

κ

χ
H(Q(q0)π0)].

By Ito’s lemma,

κ

χ
H(Q(q0)πτ)−

κ

χ
H(Q(q0)π0) =

ˆ
τ

0
κdt = κτ.
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By the value-matching property of φ , φ̃(πτ) = û(Q(q0)πτ). It follows that, as required,

φ(q0) = φ̃(π0) = E0[û(qτ)−κτ].

A.11 Proof of Corollary 1

We begin by observing that Proposition 7 characterizes the solution to the HJB equation of
Proposition 3 (irrespective of whether D exhibits a preference for gradual learning or not).
The only place gradual learning is used in the proof of Proposition 7 is to show that

lim
h→0+

h−1Et−h[H(qt)−H(qt−h)]≤ lim
h→0+

h−1Et−h[D(qt ||qt−h)]

for any feasible policy; but if policies are restricted to continuous martingales, this equation
holds (with equality) by Ito’s lemma and Assumption 1.

Now consider in particular utility functions with only two actions, L and R (all other
action in A are dominated by those two and hence will never occur with positive proba-
bility). Using the first-order conditions for the static problem, we have, assuming interior
solutions,

uL−
κ

χ
∇H(q∗L(q0)) = uR−

κ

χ
∇H(q∗R(q0))

and
π
∗
L(q0)q∗L(q0)+(1−π

∗
L(q0))q∗R(q0) = q0.

Now pick any q0,qL,qR such that q0 = πqL +(1−π)qR for some π ∈ (0,1). Set

uL =
κ

χ
∇H(qL))−

κ

χ
∇H(q0)+Kι

and
uR =

κ

χ
Hq(qR))−

κ

χ
Hq(q0)+Kι

for some K such that both uL and uR are strictly positive, where ι is a vector of ones.
Observe that if the solution is interior, qL, qR, and π are optimal policies.
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If the solution is not interior, stopping must be optimal. By the convexity of H,

qT
L ·uL−

κ

χ
H(qL)+

κ

χ
H(q0)+

κ

χ
(qL−q0)

T Hq(q0))−qT
0 ·uL =

κ

χ
(qL−q0)

T Hq(qL)−
κ

χ
H(qL)+

κ

χ
H(q0)≥ 0,

and likewise for qR. It follows that the q0 is in the continuation region, and therefore that
(qL,qR,π) are indeed optimal policies in the static problem.

By the “locally invariant posteriors” property described by Caplin et al. [2019], it fol-
lows that for any q = αqL+(1−α)qR with α ∈ [0,1], (qL,qR,α) are optimal policies given
initial prior q0.

As in the proof of Theorem 7, this implies that the value function is twice-differentiable
on the line segment between qL and qR, with

(qL−q0)
T ·∇2V (q) · (qL−q0) =

κ

χ
(qL−q0)

T k̄(q)(qL−q0)

for all q on that line segment (this is a slight abuse of notation, as V (q) may not be twice-
differentiable in all directions, but is guaranteed to be twice-differentiable in the relevant
direction). Integrating,

V (qL)−V (q0)− (qL−q0)
T ·∇V (q0) =

κ

χ
(qL−q0)

T · (
ˆ 1

0
(1− s)k̄(sqL +(1− s)q0)ds) · (qL−q0) =

κ

χ
H(qL)−

κ

χ
H(q0)−

κ

χ
(qL−q0)

T ·∇H(q0)).

By the sub-optimality of jumping directly from q0 to qL, it must be the case that

V (qL)−V (q0)− (qL−q0)
T ·∇V (q0)≤

κ

χ
D(qL||q0)

and therefore a preference for gradual learning holds between the points q0 and qL.
This argument can be repeated for all (q0,qL) in the relative interior of the simplex.

By the convexity of D and H, we can extend the result to the entirety of the simplex by
continuity, proving that a preference for gradual learning must hold.
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B Technical Appendix

B.1 Proof of Lemma 5

Recall the outline of the proof steps:

1. Define a variable xn = f (τn), and show it is integrable (ρ = 0) or bounded (ρ > 0)

2. Show the processes qt,n and xn are tight, and converge in law to some (q∗t ,x
∗).

3. Construct a stochastic basis such that τ∗ = f−1(x∗) is a stopping time and q∗t is a
martingale

4. Show that (q∗t ,τ
∗) achieves the value function V (q̄0).

5. Show that q∗t is feasible.

Step 1: Define the variable xn = f (τn), and show it is integrable/bounded. The pur-
pose of this step is to deal with the following issue: when ρ > 0, it is not immediate that
EPn[τn|F0,n]< ∞.

Define
umax = max

a∈A,x∈X
ua,x,

and define the random variable xn : Ωn→ R+ by xn = f (τn),

f (τ) =

τ ρ = 0

(1− e−ρτ)umax ρ > 0

and observe that it is Fn-measurable, and x ∈ [0,umax] if ρ > 0. We have

f−1(x) =

x ρ = 0

−ρ−1 ln(1− x
umax

) ρ > 0

and by convention define f−1(umax) = ∞ if ρ > 0.
If ρ = 0, by the definition of limits, for any ε > 0, there exists an nε ∈ N such that, for

all n≥ nε ,
EPn[û(qτn,n)−κτn|F0,n]≥V (q0)− ε.
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Consequently, we must have (for all n≥ nε ), by V (q0)≥ umin = mina∈A,x∈X ua,x,

EPn[τn|F0,n]≤
umax−umin + ε

κ
, (35)

In the ρ > 0 case, xn is bounded.

Step 2: The processes qt,n and xn are tight By theorem 4.13 of chapter VI of Jacod
and Shiryaev [2013], it is sufficient to show that the predictable quadratic variation of qt,n, j

(for some j ∈ {1, . . . , |X |}, < qt,n, j,qt,n, j >, is C-tight (tightness as defined for a continuous
process, see definition 3.25 of chapter VI of Jacod and Shiryaev [2013]). By the constraint
(3) and the strong convexity of D, we must have, for some m > 0,

lim
h→0+

mh−1EPn[|qt−qt−h|2|Ft−h,n]≤ χ,

which implies

m−1
χt−

|X |+1

∑
j=1

< qt,n, j,qt,n, j >

is an increasing process. Trivially, the sequence of processes yn,t = m−1χt is C-tight (see
Proposition 3.26 of chapter VI of Jacod and Shiryaev [2013]), and therefore by Proposition
3.35 ∑

|X |+1
j=1 < qt,n, j,qt,n, j > is C-tight, and consequently qt,n is tight. Note that this result

also demonstrates that the processes qt,n are quasi-left-continuous.
Let us now show that the xn variables are tight. If ρ > 1, this is immediate by xn ∈

[0,umax]. If ρ = 0 (and thus κ > 0), we show tightness via integrability. Recall the definition
of tightness: the laws of τn are tight if, for any ε̂ > 0, there is a compact set Kε̂ ⊂ R̄+ such
that, for all n, EPn [1{xn ∈ Kε̂}] > 1− ε̂. In the ρ = 0 case, by (35) above, for some ε > 0
and all n≥ nε ,

κ
−1(umax−umin+2ε)>EPn[τn|F0,n]≥EPn[

umax−umin +2ε

ε̂κ
1{xn >

umax−umin +2ε

ε̂κ
}|F0,n],

which proves tightness for Kε̂ = [0, umax−umin+2ε

ε̂
] on the subsequence n≥ nε .

Let D(P(X)) be the space of all càdlàg functions R+ →P(X), endowed with the
Skorokhod topology; we have shown that a subsequence of (qt,n,xn) is tight on D(P(X))×
R+ endowed with the product topology. It follows by Prokhorov’s theorem that there exists
a subsequence of this subsequence such that the laws of (qt,n,xn), Ln ∈P(D(P(X))×
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R+) converge weakly to some L ∗ ∈P(D(P(X))×R+). In what follows, consider only
this subsequence of the subsequence.

Step 3: Construct the stochastic basis, martingale, and stopping time By the Sko-
rokhod representation theorem, there exists an (Ω∗,F ∗,P∗) and random variables (q∗t,n,x

∗
n)

and (q∗t ,x
∗) with laws Ln and L ∗ such that, P∗-almost-surely, (q∗,x∗) = limn→∞(q∗n,x

∗
n).

Define τ∗ : Ω∗ → R+ ∪{∞} by τ∗(ω) = f−1(x∗(ω)), recalling that f−1 was defined
above in step 1, and let the process y∗t be defined by y∗t (ω) = 1{τ∗(ω) ≤ t}, adopting
the convention that y∗t (ω) = 0 if τ∗(ω) = ∞. Define {F ∗

t } as the natural filtration of the
process (q∗t ,y

∗
t ). Applying proposition 1.10 of section IX of Jacod and Shiryaev [2013],

the process q∗t is a martingale adapted to this filtration, and by construction τ∗ is a stopping
time (as y∗t is F ∗

t -measurable).
Thus constructed, the collection ((Ω∗,F ∗,{F ∗

t },P∗),q∗t ,τ∗) is our candidate optimal
policy.

Step 4: The process (q∗t ,τ∗) achieves the value function The key step here is proving
that the law of qτn,n converges to the law of q∗

τ∗ . For this purpose, we rely on results from
Silvestrov [2012]. We first consider the ρ > 0 case, which is more complex due to the
possibility of not stopping, and then consider the ρ = 0 case.

Step 4a: the ρ > 0 case We start by proving that qmin{τn,T},n converges in law to q∗min{τ∗,T}
for any T > 0. It is immediate, from the boundedness and continuity of min{ f−1(x),T} and
the continuous mapping theorem, that (qn,min{ f−1(xn),T}) converges in law to (qn,min{ f−1(x∗),T}).
In the the context of Silvestrov [2012], condition A20 holds.

By Definition 1.6.7 and Theorem 1.6.6 of Silvestrov [2012], the Skorokhod topology
compactness condition J4 of Silvestrov [2012] must hold (this is essentially the tight-
ness condition shown above). By the quasi-left-continuity of the qt,n, for any δ > 0 and
t ∈ [0,T ], EPn[max{|∆qt,n|− δ ,0}|F0,n] = 0, and by weak convergence EP∗ [max{|∆q∗t |−
δ ,0}|F0,n] = 0. It follows that q∗t is quasi-left-continuous, and consequently that condition
C4 of Silvestrov [2012] holds. By theorem 2.3.2 and lemma 2.3.1 of Silvestrov [2012],
(qmin{τn,T},n,min{τn,T}) converges in law to (q∗min{τ∗,T},min{τ∗,T}).

Define

Vn,T (q0) = EPn[e−ρ min{τn,T}û(qn,min{τn,T})−
κ

ρ
(1− e−ρ min{τn,T})|F0,n].
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By the definition of convergence in law and the continuity of û,

lim
n→∞

Vn,T (q0) =

EP∗[e−ρ min{τ∗,T}û(qmin{τ∗,T})−
κ

ρ
(1− e−ρ min{τ∗,T})|F ∗

0 ].

Note that

Vn,T (q0) = EPn[e−ρτn û(qn,τn)−
ˆ

τn

0
e−ρs

κds|F0,n]

− e−ρT EPn[1{τn > T}(e−ρ(τn−T )û(qn,τn)− û(qn,T )−κ

ˆ
τn

T
e−ρ(s−T )ds)|F0,n].

By û(q) ∈ [umin,umax] for umax as defined above and umin = mina∈A,x∈X ua,x > 0, and κ ≥ 0,
we have

Vn,T (q0)≥ EPn [e−ρτn û(qn,τn)−
ˆ

τn

0
e−ρs

κds|F0,n]

− (umax−umin)e−ρT EPn[1{τn > T}|F0,n].

Recall (by assumption) that

lim
n→∞

EPn[e−ρτn û(qn,τn)−
ˆ

τn

0
e−ρs

κds|F0,n] =V (q0),

and consequently

EP∗ [e−ρ min{τ∗,T}û(qmin{τ∗,T})−
κ

ρ
(1− e−ρ min{τ∗,T})|F ∗

0 ]≥

V (q0)− (umax−umin)e−ρT .

Taking the limit as T → ∞,

EP∗[e−ρτ∗ û(qτ∗)−
κ

ρ
(1− e−ρτ∗)|F ∗

0 ]≥V (q̄0),

and hence this policy must be optimal if feasible.

Step 4b: the ρ = 0 case In this case we don’t need to worry about never stopping, and
hence don’t need the previous limit approach. By step 2, (qn,τn) converges in law to
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(q∗,τ∗), which implies that Silvestrov [2012] condition A20 holds. By Definition 1.6.7 and
Theorem 1.6.6 of Silvestrov [2012], the Skorokhod topology compactness condition J4

of Silvestrov [2012] must hold. By the quasi-left-continuity of the qt,n, for any δ > 0 and
t ∈ R+, EPn[max{|∆qt,n| − δ ,0}|F0,n] = 0, and by weak convergence EP∗[max{|∆q∗t | −
δ ,0}|F0,n] = 0. It follows that q∗t is quasi-left-continuous, and consequently that condition
C4 of Silvestrov [2012] holds. By theorem 2.3.2 and lemma 2.3.1 of Silvestrov [2012],
(qτn,τn) converges in law to (q∗

τ∗,τ
∗). It is immediate that

lim
n→∞

EPn[û(qτn)−κτn|F0,n] =V (q̄0) = EP∗[û(q∗τ∗)−κτ
∗|F ∗

0 ].

Step 5: prove feasibility Here we rely on the following lemma:
Using this lemma, define for any h > 0

Fn(t,h) = EPn[D(qt,n||q(t−h)−,n)|F(t−h)−,n],

and observe that Fn(t,h) = 0 be the quasi-left-continuity of qt,n.
By Ito’s lemma (see theorem 2.42 of chapter II of Jacod and Shiryaev [2013]), for any

h̄≥ h,

EPn[Fn(t,h)|Ft−h̄,n] =
1
2

EPn[

ˆ t

t−h
tr[σs,nσ

T
s,n∇

2
1D(qs−,n||q(t−h)−,n)ds|Ft−h̄,n]

+EPn[

ˆ t

t−h

ˆ
R|X |\{~0}

{D(qs−,n + z||q(t−h)−,n)−D(qs−,n||q(t−h)−,n)−

zT ·∇1D(qs−,n||q(t−h)−,n)}ψs,n(dz)ds|Ft−h̄,n],

where ∇1 and ∇2
1 denote the gradient and hessian with respect to the first argument. By the

predictability of σs,n, ψs,n, and q(t−h)−,n,

EPn[
∂

∂h
Fn(t,h)|Ft−h̄,n] = EPn[

1
2

tr[σt−h,nσ
T
t−h,nk̄(q(t−h)−,n)]

+

ˆ
R\{0}

D(q(t−h)−,n + z||q(t−h)−,n)dψt−h,n(z)|Ft−h̄,n]≤ χ,

where we have used the definition

∇
2
1D(q(t−h)−,n||q(t−h)−,n) = k̄(q(t−h)−,n)
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and that
D(q(t−h)−,n||q(t−h)−,n) = 0, ∇1D(q(t−h)−,n||q(t−h)−,n) =~0.

Considering the limit as h̄→ h,

∂

∂h
Fn(t,h)=

1
2

tr[σt−h,nσ
T
t−h,nk̄(q(t−h)−,n)]+

ˆ
R\{0}

D(q(t−h)−,n+z||q(t−h)−,n)dψt−h,n(z)≤ χ.

It follows that
Fn(t,h)≤ χh.

By the continuity of D and the convergence in law of qt,n to q∗t , for any t ∈ R+ and h > 0,

lim
n→∞

EPn[Fn(t,h)|F0,n] = EP∗[F(t,h)|F ∗
0 ]

where
F(t,h) = EP∗[D(q∗t ||q∗(t−h)−)|F

∗
(t−h)−],

and therefore, P∗-a.s. and for all h > 0,

h−1(F(t,h)−F(t,0))≤ χ.

Because F(t,h) is left-continuous by construction, this property must hold outside of an
evanescent set (see the remark after 1.10 of chapter I of Jacod and Shiryaev [2013]). It
follows immediately that

lim sup
h→0+

h−1(F(t,h)−F(t,0))≤ χ,

which is the result.
Combining steps 4 and 5, the candidate optimal policy achieves a utility greater than or

equal to V (q̄0) and is feasible, and therefore optimal.

B.2 Proof of Lemma 8

Let qt be any point on the interior of P(X), and let Bδ = {q′ ∈P(X) : |q′− qt | ≤ δ}
a δ > 0 ball around qt . Choose some δ̄ > 0 such that B3δ̄

is contained in interior of the
simplex. We will prove that V is Lipschitz-continuous on B

δ̄
.

Choose z̄ ∈ R|X | \ {~0} such that |z̄| ≤ δ̄ , and apply Lemma 7, defining z = 1
α

z̄ and
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ε = 1−α

α
,

χ
−1(ρV (qt)+κ)(ε−1D(qt + ε z̄||qt)+D(qt− z̄||qt))≥

ε
−1(V (qt + ε z̄)−V (qt))+V (qt− z̄)−V (qt). (36)

for all ε ∈ (0,1).
Define ū = maxa∈A,x∈X ua,x and note that 0 < V (q) ≤ ū for all q. Note also that D is

(twice) continuously-differentiable in its first argument and D(q||q) = 0. Taking limits,

lim sup
ε→0+

ε
−1(V (qt + ε z̄)−V (qt))≤ ū+χ

−1(ρ ū+κ)D(qt− z̄||qt).

Now apply Lemma 7 at q = qt + ε z̄, defining z =− 1
α

z̄ and ε = 1−α

α
,

χ
−1(κ +ρV (qt + ε z̄))(ε−1D(qt ||qt + ε z̄)+D(qt +(1+ ε)z̄||qt + ε z̄))≥

ε
−1(V (qt)−V (qt + ε z̄))+V (qt +(1+ ε)z̄)−V (qt + ε z̄),

for all ε ∈ (0,1). By the convexity of D,

ε
−1D(qt ||qt + ε z̄)+ z̄ ·∇1D(qt ||qt + ε z̄)≤ ε

−1D(qt + ε z̄||qt + ε z̄),

where ∇1 denotes the gradient with respect to the first argument, and the inequality can be
written as

χ
−1(κ +ρV (qt− ε z̄))(D(qt +(1+ ε)z̄||qt + ε z̄)− z̄ ·∇1D(qt ||qt + ε z̄))≥

ε
−1(V (qt)−V (qt + ε z̄))+V (qt +(1+ ε)z̄)−V (qt + ε z̄),

By the continuity of the gradient and the arguments above,

lim inf
ε→0+

ε
−1(V (qt + ε z̄)−V (qt))≥−ū−χ

−1(ρ ū+κ)D(qt + z̄||qt).

Define
K = max

q′∈B
δ̄

ū+χ
−1(ρ ū+κ)D(q′||qt),

noting that D is finite on the interior of the simplex and hence by the compactness of B
δ̄

, a
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finite maximum exists. We conclude that the Dini derivatives in the direction z̄ are bounded
by K. It follows (see, e.g., Royden and Fitzpatrick [2010] section 6.2) that V is locally
Lipschitz continuous on B

δ̄
.

Repeating the argument for each face of the simplex, using balls defined only the sup-
port of qt , extends the result to all non-extreme points of the simplex.

B.3 Proof of Lemma 9

Note: this proof refers heavily to results from Clarke [1990].
By Lemma 8, V is locally Lipschitz on the interior of the simplex and on the interior of

each face.
Let qt be any point on the interior of P(X), and let Bδ = {q′ ∈P(X) : |q′−qt | ≤ δ}

a δ > 0 ball around qt . Choose some δ̄ > 0 such that B4δ̄
is contained in interior of the

simplex. We will prove that V is continuously differentiable on B
δ̄

.
Choose z̄ ∈ R|X | \ {~0} such that |z̄| ≤ δ̄ , and apply Lemma 7, defining z = ν

α
z̄ and

ε = 1−α

α
, to q = qt + ẑ for some ẑ ∈ R|X | such that |ẑ|< δ̄ ,

χ
−1(ρV (qt)+κ)(ε−1D(qt + ẑ+ ε z̄||qt + ẑ)+D(qt + ẑ− z̄||qt + ẑ))≥

ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))+V (qt + ẑ− z̄)−V (qt + ẑ).

for all ε ∈ (0,1) (which ensures that qt + ẑ+ ε z̄ ∈ B3δ̄
).

By the convexity of D,

ε
−1D(qt + ẑ+ ε z̄||qt + ẑ)− z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)≤ ε

−1D(qt + ẑ||qt + ẑ),

where ∇1 denotes the gradient with respect to the first argument, and the inequality can be
written as

χ
−1(ρV (qt)+κ)(z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)+D(qt + ẑ− z̄||qt + ẑ))≥

ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))+V (qt + ẑ− z̄)−V (qt + ẑ).
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Considering the limits

lim
ν→0+

sup
ẑ∈R|X |:|ẑ|<ν ,ε∈(0,ν)

χ
−1(ρV (qt)+κ)(z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)+

D(qt + ẑ− z̄||qt + ẑ))− ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))−V (qt + ẑ− z̄)+V (qt + ẑ)≥ 0,

we have
χ
−1(ρV (qt)+κ)D(qt− z̄||qt)≥V (qt− z̄)−V (qt)+V ◦(qt ; z̄),

where
V ◦(qt ; z̄) = lim

ν→0+
sup

ẑ∈R|X |:|ẑ|<ν ,ε∈(0,ν)
ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))

is the Clarke generalized derivative in the direction z̄, which exists by proposition 2.1.1 of
Clarke [1990] and the local Lipschitz property.

By proposition 2.1.2 of Clarke [1990], a generalized gradient exists; let x(q)∈ ∂V (q)⊆
R|X | denote a selection of such gradients with the property that

|x(q)− x(qt)| ≤ K|q−qt |

for some K > 0 and all q ∈ B
δ̄

, which is possible by proposition 2.1.5 of Clarke [1990]. By
proposition 2.1.2 of Clarke [1990],

V ◦(qt ; z̄)≥ z̄T · x(qt),

and therefore

χ
−1(ρV (qt)+κ)D(qt− z̄||qt)≥V (qt− z̄)−V (qt)+ z̄T · x(qt).

Apply this equation in the opposite direction of z̄, scaled by some ε ∈ (0,1), for some
point qt + ẑ, again for some ẑ ∈ R|X | such that |ẑ|< δ̄ . We have

χ
−1(ρV (qt)+κ)ε−1D(qt + ẑ+ε z̄||qt + ẑ)+ z̄T x(qt + ẑ)≥ ε

−1(V (qt + ẑ+ε z̄)−V (qt + ẑ)),

and by the convexity of D as above,

χ
−1(ρV (qt)+κ)z̄T ·∇1D(qt + ẑ+ε z̄||qt + ẑ)+ z̄T x(qt + ẑ)≥ ε

−1(V (qt + ẑ+ε z̄)−V (qt + ẑ))
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It follows, taking the limit superior as above, that

z̄T x(qt)≥V ◦(qt ; z̄).

This can only hold if V ◦(qt ; z̄) = z̄T x(qt), and as this must hold for all z̄, ∂V (qt) is a single-
ton. Applying this argument to all q ∈ B

δ̄
, it follows by proposition 2.2.4 of Clarke [1990]

and the unnumbered corollary following that proposition that V is continuously differen-
tiable on B

δ̄
. Repeating this argument for all qt on the interior of the simplex, it follows

that V is continuously differentiable on the interior of the simplex. By identical arguments,
V is continuously differentiable on each face of the simplex.

B.4 Proof of Lemma 10

Proof by contradiction: suppose

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0+z)−φ(q0)−zT ·∇φ(q0))ψ0(dz)< ρφ(q0)+κ

and V (q0)> û(q0).

Step 1: Prove this inequality must hold in some neighborhood around q0. We must
have, for some ε > 0,

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0 + z)−φ(q0)− zT ·∇φ(q0))ψ0(dz)≤

ρφ(q0)+κ− ε

and
V (q0)≥ û(q0)+ ε.

Consider diffusion-only policies of the form

σ0σ
T
0 =

vvT

χ−1 1
2vT k̄(q0)v
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for some vector v ∈ R|X | with |v|= 1. We must have

max
v∈R|X |:|v|=1

vT ∇2φ(q0)v
vT k̄(q)v

≤ χ
−1(ρφ(q0)+κ− ε).

Now consider policies without diffusion and for which ψ0 is a point mass on av, where
v ∈ R|X | with |v| = 1 and a ∈ (0, |X | 12 ]. Note that |q′−q0| ≤ |X |

1
2 for any q′ ∈P(X). For

such policies,

sup
a,v∈(0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)≤ χ
−1(ρφ(q0)+κ− ε)

where
F(q0,a,v) =

φ(q0 +av)−φ(q0)−av ·∇φ(q0)

D(q0 +av||q0)
.

Define

F(q0,0,v) = lim
a→0+

F(q0,a,v) =
vT ∇2φ(q0)v

vT k̄(q)v

to combine these two conditions, which yields

max
a,v∈[0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)≤ χ
−1(ρφ(q0)+κ− ε).

Now observe that F(q0,a,v) is continuous in its arguments, and that the correspondence

Γ(q0) = {a,v ∈ [0, |X |
1
2 ]×R|X | : |v|= 1 & q0 +av ∈P(X)}

is a closed and bounded subset of R|X |+1 (and hence compact-valued), and is upper hemi-
continuous.

It follows by the theorem of the maximum that

F∗(q0) = max
a,v∈[0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)

is continuous in q0.
Hence, there exists some δ > 0 such that for all q ∈P(X) with |q−q0|< δ ,

F∗(q)≤ χ
−1(ρφ(q0)+κ− ε

2
).
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It follows that for all such q and all (σ0,ψ0) ∈A (q),

1
2

tr[σ0σ
T
0 ∇

2
φ(q)]+ˆ

R|X |\{0}
(φ(q+ z)−φ(q)− zT ·∇φ(q))ψ0(dz)≤

−χ
−1(ρφ(q)+κ− ε

2
)(

1
2

tr[σ0σ
T
0 k̄(q)]+

ˆ
R|X |\{0}

D(q+ z||q)ψ0(dz))≤ ρφ(q)+κ− ε

2
.

By the continuity of V and û, there exists a δ2 > 0 such that for all |q−q0|< δ2,

V (q)− û(q)≥ ε

2
.

Consequently, for |q−q0|< min{δ ,δ2}, both inequalities hold.

Step 2: Apply Ito’s Lemma Suppose the DM initially holds beliefs qt = q0. Let τh =

min{{infs∈[t,t+h] : |qs−q0| ≥min{δ ,δ2}},h}, which is to say the stopping time associated
with h > 0 units of time passing or exiting the region just described, whichever comes
first. Note that this region lies within the continuation region under the optimal policy, by
construction.

Under the optimal policy,

V (qt) = Et [e−ρ(τh−t)V (qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds],

and therefore by φ(q)≥V (q) and φ(q0) =V (q0),

φ(q0)≤ Et [e−ρ(τh−t)
φ(qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds].

Recall by Lemma 6 that for any feasible beliefs process (and hence for any optimal
policy), the beliefs process is a (semi-)martingale described by the σs and ψt defined in
that lemma. The following essentially restates Ito’s lemma for (semi-)martingales.
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Lemma 11. For any twice continuously-differentiable function φ : R|X |→ R,

φ̂s = e−ρs
φ(qs)− e−ρt

φ(qt)+
1
2

ˆ s

t
e−ρl{ρφ(ql−)−

1
2

tr[σlσ
T
l ∇

2
φ(ql−)]}dl

−
ˆ s

t
e−ρl
ˆ
R|X |\{~0}

(φ(ql−+ z)−φ(ql−)− zT ·∇φ(ql−))ψl(dz)dl

is a martingale.

Proof. See theorem 2.42 of chapter II of Jacod and Shiryaev [2013].

Note by the quasi-left-continuity of qt that beliefs cannot jump by |z|> δ with positive
probability at any time t, and hence Pr{τh > t}> 0.

By the martingale property of φ̂s defined in the above lemma,

Et [e−ρτhφ(qτh)]− e−ρt
φ(qt) = Et [

1
2

ˆ
τh

t
e−ρltr[σlσ

T
l ∇

2
φ(ql−)]dl]

+Et [

ˆ
τh

t
e−ρl
ˆ
R|X |\{~0}

(φ(ql−+ z)−φ(ql−)− zT ·∇φ(ql−))ψl(dz)dl]

−Et [

ˆ
τh

t
e−ρl

ρφ(ql−)dl],

which yields, by the fact that |qs−q0|< δ for all l ∈ [t,τh),

κEt [

ˆ
τh

t
e−ρ(s−t)ds]≤ Et [e−ρτhφ(qτh)]− e−ρt

φ(qt)≤ (κ− ε

2
)Et [

ˆ
τh

t
e−ρ(s−t)ds],

a contradiction by the observation that Pr{τh > t}> 0.
We conclude that

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0+z)−φ(q0)−zT ·∇φ(q0))ψ0(dz)≥ ρφ(q0)+κ.
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