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1 Introduction

People are inattentive, forgetful, impulsive, and otherwise “cognitively constrained.” They overlook some

pieces of information and overreact to others. They use simplifications and heuristics.

In such circumstances, it is natural to question the efficacy of the market mechanism. Recent reviews

by Maćkowiak, Matĕjka, and Wiederholt (2018) and Gabaix (2019), for instance, take for granted that the

Welfare Theorems fail if people are inattentive.1 This is true when comparing the outcomes obtained in

the presence of inattention to those attainable in its absence. But if inattention is an unavoidable fact of

life, the right question is whether welfare can be improved by means other than eliminating inattention.

A related question concerns Hayek’s (1945) classic argument about the informational optimality of the

price system. In his words:

We must look at the price system as a mechanism for communicating information if we want

to understand its real function. [...] The most significant fact about this system is the economy

of knowledge with which it operates, or how little the individual participants need to know in

order to be able to take the right action.

This argument presumes not only that markets are complete (Grossman, 1981) but also that prices are

observed and decoded perfectly and costlessly. But if attention is a scarce resource, what exactly is the

“economy of knowledge” achieved by markets? And, could welfare then be improved by regulating markets

or even replacing them with other mechanisms?

We address these questions by augmenting the Arrow-Debreu framework with a generalized form of

rational inattention and revisiting the two Fundamental Theorems of Welfare Economics.

Following Sims (1998, 2003) and the related literature, we treat “attention,” “information processing,”

and “cognition” as interchangeable notions and model them as the choice of a signal subject to a cost. We

allow great flexibility on what these signals and costs may be, as well as on how attention choices interact

in general equilibrium.2 The amended notion of Pareto optimality maps to a planner who may regulate

people’s choices and replace markets with other mechanisms but internalizes cognitive limitations.

The main results can be summarized as follows. If attention is modeled as the choice of a signal about

the exogenous state of nature, as often done in the literature, the appropriately amended Welfare The-

orems hold necessarily. If instead people pay attention directly to prices, market data, or the behavior

of others, as seems plausible in practice, the amended Welfare Theorems require that attention satisfy a

certain invariance condition.

This condition holds in the familiar benchmark that ties the cost of attention to Shannon mutual in-

formation. Away from this benchmark, though, a cognitive externality is possible: one agent’s ease of

decoding equilibrium objects can be endogenous to others’ choices. Welfare may then be improved by

various, context-specific policies, including both “noising up” and “stabilizing” prices—or, relatedly, by

introducing new means of communication in addition to or in place of complete markets.

1In a similar vein, Sims (2010) writes: “If both sides of the market react to prices with rational inattention, then neither side is

reacting precisely and immediately. Prices therefore cannot play their usual market-clearing role.”
2We thus connect two disparate strands of the literature: one that focuses on decision theory and behavioral puzzles (Caplin

et al., 2018; Köszegi and Matĕjka, 2018; Steiner and Stewart, 2016; Woodford, 2019), and another that focuses on equilibrium

interactions and policy (Colombo et al., 2014; Maćkowiak and Wiederholt, 2015; Myatt and Wallace, 2012; Tirole, 2015).
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Example and main ideas (Section 3). We prove our main results in a modified Arrow-Debreu model with-

out functional form restrictions. But we start with a closed-form example to build intuition.

There are two goods and a continuum of consumers. The demand for “coconuts” is subject to ratio-

nal inattention; the consumption of “money” adjusts so as to meet the consumer’s budget. The aggregate

endowment of coconuts is the economy’s only random fundamental. The cost of attention is (some trans-

formation of) the Shannon mutual information between a noisy, idiosyncratic signal and a primitively

specified tracked object. The latter is either the coconut endowment or their price.

An equilibrium of this “inattentive economy” exists, is unique, and is invariant to which of the two

objects agents track. This equilibrium features various “pathologies” relative to the first best, including

misallocation in coconuts and, in the case of endogenous production, excess volatility in aggregate output.

But the equilibrium is constrained efficient in the sense that any attempt to manipulate the market of

coconuts or the agents’ attention choices can only reduce welfare.

The generality of this lesson cannot be fully addressed until the second part of our paper. Two exercises,

however, provide intuition for what assumptions can open the door to inefficiency.

Suppose first that people struggle to discern smaller price changes. This is true, for example, under

the axiomatic foundations of attention costs proposed by Pomatto et al. (2018), as adapted to our context.

In this case, a policy that induces larger fluctuations in the price of coconuts is optimal. Conversely, if

people struggle to track volatile or “complex” objects, welfare can be improved by stabilizing or “simplify-

ing” prices. And, there can exist cognitive traps, or multiple Pareto-ranked equilibria in which suboptimal

prices and suboptimal attention choices reinforce each other.

Consider next the possibility that cognitive mistakes can be correlated at zero or small enough cost.

This opens the door to an inefficiency of a subtler, yet related, form. The equilibrium described earlier,

with uncorrelated mistakes, continues to exist. But it is now Pareto dominated by other equilibria which

economize cognitive resources by correlating mistakes and “noising up” prices.

The common thread behind these instances of inefficiency is the externality that emerges in cognition

when the objects agents try to track and decode are endogenous to others’ behavior. But why was efficiency

preserved under some conditions? It must be these conditions were muting the cognitive externality. To

clarify this logic, and identify general conditions for efficiency, we move on to the second part of our paper.

General framework (Section 4). Our rational-inattention extension of the Arrow-Debreu framework is

extremely flexible. On the one hand, we let costs depart from the Shannon benchmark, nesting recent

developments in decision theory. On the other hand, we accommodate rich equilibrium interactions and

higher-oder uncertainty, connecting to the macroeconomic and game-theory literatures on rational inat-

tention. What is crucial for our purposes is only the question of what objects people track. We say that “an

agent tracks object z ” if his cognitive cost is a functional C of the joint density of her signal and z . We then

structure the formal arguments by considering different specifications for z .

Welfare Theorems for state-tracking economies (Section 5). We start with a case that is ubiquitous in

the literature: we let z be the state of nature.

In this case, an appropriate amendment of the First Welfare Theorem is provided under arbitrary C .

Any equilibrium of the inattentive economy is shown to coincide with the allocation preferred by a planner

free to regulate people’s choices but banned from eliminating or disregarding their cognitive costs.
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The converse, or our version of the Second Welfare Theorem, also holds provided that the relevant

convexity requirements are extended from the (familiar) domain of goods to the (new) domain of atten-

tion strategies. This is immediately guaranteed if C belongs in the class of posterior separable costs of

information (as defined in Caplin and Dean, 2015).

What is going on? As long as people track directly the state of nature, all externalities are pecuniary.

It is well known that the pecuniary externalities that pertain to consumption and production choices net

out thanks to complete markets. Here we show that the same logic extends to the additional externalities

that originate in attention choices, even though these choices are not directly priced.

This result clarifies the following points. First, attention does not give rise to the inefficiencies asso-

ciated with information discovery, or innovation, because it is effectively a rival, non-transferable good.

Second, the instances of inefficiency documented in Colombo, Femminis, and Pavan (2014) and Tirole

(2015) derive not from inattention per se but rather from its interaction with other distortions, such as

missing or non-competitive markets. And third, the failure of Welfare Theorems claimed in Gabaix (2014)

depends on the use of either an irrational form of inattention or the “wrong” efficiency benchmark.

Importantly, this result also serves as a stepping stone for the next part of our analysis, which gets to

the heart of Hayek’s (1945) argument.

Welfare Theorems for price-tracking economies (Section 6). Consider now the case in which people

have the option to obtain a signal directly about the prices they care about as opposed to the state of nature,

and attention costs are appropriately adjusted to factor in the joint distribution of the signal and the prices.

This maps to letting z contain the equilibrium price vector (the relevant endogenous outcome).

Because z is now endogenous to others’ choices, the cost of observing or decoding it is also (generically)

endogenous to others’ choices. This opens the door to the cognitive externality mentioned earlier on. It

also means that the price system plays a dual role. It not only clears markets but also has the potential for

reducing cognitive costs, providing new formal meaning to Hayek’s “economy of knowledge.”

This begs the question of whether welfare could be improved by complementing or even replacing

markets with other means of encoding and communicating the socially optimal course of action, in direct

contradiction of Hayek’s (1945) thesis. For instance, could welfare be improved by introducing a statistical

agency that collects and disseminates data about the behavior of others? Or, could a “mediator” do better

by directly instructing people what to do?

These questions make little sense in an Arrow-Debreu world without inattention, because a complete

price system conveys all relevant information even if the state of nature is not directly observed (Grossman,

1981). But they become meaningful once inattention is added to the picture, even if markets are complete.

A related issue is that, in such circumstances, taxes (on goods) may not only regulate people’s attention to

prices but also expand the very set of objects people can, or have to, pay attention to.

Addressing these issues requires a further amendment of the efficiency concept: the planner continues

to internalize attention costs but may now send arbitrary messages in place of prices and/or the state of

nature. The planner’s problem thus resembles an information-design problem à la Bergemann and Morris

(2013, 2019) and Kamenica and Gentzkow (2011), freed of incentive compatibility but ridden with costly

information processing.3

3Recent contributions on Bayesian persuasion with an inattentive receiver have a similar flavor but are focused on substantially
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The amended Welfare Theorems now hold under a certain restriction on the costs of attention, which

is stated as Assumption 3 in the main text and can be informally summarized as follows:

INFORMATIONAL INVARIANCE. Adding or subtracting irrelevant information in the tracked object z , or tak-

ing any invertible transformation of the relevant information, has no effect on attention costs.

In other words, any excess information can be freely disposed of and the scaling or “framing” of the

essential information does not matter. This restriction is necessarily satisfied if attention costs are mea-

sured by Shannon mutual information, but not more generally. It has the same basic, positive content

as the axiom of “invariance under compression” defined by Caplin, Dean, and Leahy (2017) for decision

problems, but plays a new, normative role in our equilibrium context: it guarantees both that there are no

gains from manipulating the informational content of prices, or replacing them with arbitrary messages,

and that there no losses from forcing people to track the entire state of nature.

Bottom line. Consider the following two questions:

Q1. Are free markets the best mechanism for utilizing scarce attention in society?

Q2. Are there attention gains from tracking the relevant prices instead of the underlying state of nature?

If the answer to Q2 is negative, which is the case implicitly imposed by Sims’s original formulation of ratio-

nal inattention, then the answer to Q1 is also negative. But if the answer to Q2 is positive, which seems more

plausible in reality, then there is room for policies that aim at regulating markets and attention choices,

even if markets are competitive and complete.

A corollary of this lesson is that, once the “economy of knowledge” is formalized in terms of rational

inattention, Hayek’s (1945) argument appears to contain an oxymoron: markets are the best mechanism

for economizing on scarce attention only when they are no better than a direct mechanism that tells people

the entire state of nature. When instead markets strictly economize on attention costs, there is generally

room for further improvement.

Another corollary is a new perspective on the growing decision-theoretic and experimental literature

exploring departures from Shannon mutual information. This literature focuses on how such departures

are needed in order to capture certain choice patterns. Here we have shown how these departures are also

necessary for making sense of prices’ role in economizing cognitive costs.

2 Related Literature

The literature on rational inattention spurred by Sims (1998, 2003) is voluminous. Some works focus on

single-agent behavior (Matĕjka, 2016; Matĕjka, Steiner, and Stewart, 2015); others study specific macroeco-

nomic models (Maćkowiak and Wiederholt, 2009, 2015) or games (Colombo, Femminis, and Pavan, 2014;

Myatt and Wallace, 2012). Our paper’s contribution vis-à-vis all this literature is to adapt the analysis of ra-

tional inattention to the Arrow-Debreu framework, to develop the appropriate amendments of the Welfare

Theorems, and to identify a new kind of inefficiency.

different questions. See the discussion in Section 2.

4



By modeling a general form of rational inattention, we encompass a growing literature that recasts

various behavioral “anomalies” as the product of rational choice under noisy internal representations of

the relevant objects. See, inter alia, Köszegi and Matĕjka (2018) and Lian (2018) on mental accounting;

Woodford (2012) and Steiner and Stewart (2016) on prospect theory and winner’s curse; da Silveira and

Woodford (2019) and Kohlhas and Walther (2018) on overreaction; Ilut and Valchev (2017) on imperfect

perception of the optimal policy rule; and Woodford (2019) on the broader agenda. While all these works

focus on decision theory, we focus on equilibrium and efficiency; and while some of them depart from

the Shannon benchmark in order to account for various experimental evidence, we highlight how such

departures may also have important normative ramifications in equilibrium.

The condition that guarantees equilibrium efficiency in our setting has a similar flavor as the axiom of

“invariance under compression” in Caplin, Dean, and Leahy (2017), as described earlier. But whereas that

paper, like those cited in the previous paragraph, studies choice in a single-agent context, here we study

efficiency in a general-equilibrium context.

Letting people track prices in our market environment is akin to letting players obtain information

about the actions of others in a game. Denti (2016) studies the equilibria of such a game, but not its nor-

mative properties. The link between information acquisition and efficiency in games is further explored

in a recent, complementary paper by Hébert and La’O (2019). They establish that an invariance condition

on information costs similar to ours is necessary and sufficient for efficiency in a class of games in which

payoff externalities net out and players can track the average action of others.

Closely related are also Angeletos and La’O (2018), Colombo, Femminis, and Pavan (2014) and Gul et al.

(2017). These works identify conditions for efficiency in, respectively, a macroeconomic model in which

firms are rationally inattentive, a game in which players choose their attention to different signals, and

an endowment economy in which consumers’ information is a coarsening of the true state space. These

works specialize the model of inattention in various ways, most notably the exclude the possibility that

people track and decode endogenous objects such as prices. We instead allow this possibility and proceed

to shed light on when the ensuing cognitive externality may or may not be muted.

The same point distinguishes our paper from Myatt and Wallace (2012), Llosa and Venkateswaran

(2017), Paciello and Wiederholt (2014), and Tirole (2015). In particular, our results clarify that the in-

stances of inefficient information acquisition found in these papers derive from distortions such as non-

competitive markets and nominal rigidity. By the same token, our “cognitive traps” borrow their name

from, but are of a different origin than, those in Tirole (2015).

Our analysis brings to mind the literature on noisy rational-expectations equilibria (Grossman and

Stiglitz, 1980; Kyle, 1985; Laffont, 1985; Vives, 2017). In that literature, agents perfectly observe, and effort-

lessly extract information from, prices; and inefficiency emerges only because of missing markets and/or

monopoly power. In our context, instead, markets are complete and competitive; agents are optimally

inattentive to prices; and inefficiency is of a different origin.

Finally, Vives and Yang (2018) share our emphasis on inattention and prices but model a different fric-

tion: they let inattention interfere with how people extract information from prices about fundamentals.

In our context, learning about fundamentals from prices is allowed but is not essential for the results. In-

stead, the key friction is that people are inattentive to prices themselves.
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3 An Inattentive Economy

We start with a tractable example that foreshadows our subsequent and more general Welfare Theorems

and also sheds light on when inefficiency can be obtained.

3.1 Frictionless Benchmark

There are two goods, “coconuts” and “(real) money,” and a continuum of agents, indexed by i 2 [0, 1]. Each

agent has linear-quadratic preferences, represented by

U (x1, x2) = x1� 1
2 x 2

1 + x2, (1)

where x1 2 R and x2 2 R denote the consumption of, respectively, coconuts and money. Each consumer

receives respective endowments ⇠ and 1, where ⇠⇠N (µ,�2). Let ⇡(·) denote the associated prior density.

For now, ⇠ is also the entire state of nature.

We let markets operate after ⇠ is realized, normalize the price of money to 1, and denote the (relative)

price of coconuts by p . Momentarily, we also abstract from inattention.4

An equilibrium is an allocation (x1i (⇠), x2i (⇠))i2[0,1],⇠2R and prices (p (⇠))⇠2R such that: each i maximizes

(1) subject to her budget, p (⇠)x1i +x2i  p (⇠)⇠+1; and markets clear, or
R 1

0 x1i (⇠)di = ⇠ and
R 1

0 x2i (⇠)di = 1.

Because of the symmetry in preferences and endowments, it is clear that “autarky” is the only equi-

librium: x1i (⇠) = ⇠ and x2i (⇠) = 1 for all i 2 [0, 1]. And because the agent’s first-order conditions give her

demand for coconuts as x1i = 1�p , the equilibrium price is p = P (⇠) = 1�⇠.

3.2 Adding Rational Inattention

Now suppose agents cannot perfectly observe either ⇠ or p . Instead, each agent i conditions her demand

of coconuts on a noisy signal, denoted by!.

Each agent chooses a joint density �(·) over signal realizations ! 2 R and state realizations ⇠ 2 R.

Let D2 denote the set of continuous probability distributions in R2. The agent with unrestricted signal

technology can freely consider any such distribution that agrees with the prior on the second dimension,

or an element from the set �⌘
�
� 2D2 :

R
�(!,⇠)d!=⇡(⇠),8⇠ 2R

 
.

For the present example, we will put more structure on the problem by restricting the signal to be

!i = ⇠+ r "i ,

where "i ⇠N (0, 1) is noise, independently distributed across agents, and r is a coefficient under i ’s control.

Thus the agents’ choice set of distributions is a strict subset of the set � defined above.

Attention costs. The agent incurs a non-pecuniary, or “cognitive,” cost for generating any signal. Let C :

D2!R be some arbitrary cost functional that “scores” any joint distribution �(·) 2 D2. As a leading case,

we may consider cost functionals that can be expressed as the reduction in the “perceived complexity” of

⇠, measured in some information units.

4In standard Arrow-Debreu fashion, our general framework (Section 4) assumes that markets operate before the realization of

uncertainty, allowing agents to insure. In the present example, insurance is not an issue due to the quasi-linearity of preferences.
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Formally, we let H :D1!R, mapping one-dimensional densities to real numbers, be one such measure

of complexity, and we take C :D2!R to equal the expected reduction in H after observing!:

C [�(·)] =E
⇥
H [⇡(·)]�H [�(· |!)]

⇤
(2)

where ⇡(·) is the prior about the underlying state (here ⇠), �(· | !) is the posterior given ! (obtained via

Bayes rule), and the expectation is over signal realizations.

When H [·] returns the Shannon entropy of a random variable, expression (2) is the Shannon mutual

information between the signal and state. This is the form favored by Sims (1998, 2003) and much (but not

all) of the subsequent literature.

In the present example, with Gaussian fundamentals and signals, the mutual information cost has the

following, even simpler representation in terms of the signal-to-noise ratio, or equivalently the correlation

� between the signal and the state:

C [�(·)] = c (�)⌘� log(1��) (3)

where �⌘�2/(�2+ r 2). To start with, we will contemplate attention costs that can be written as a function

only of �, and no other features of the distribution�(·).

The consumer problem. Because the noise in !i is idiosyncratic, the aggregate demand and the price

of coconuts are functions of only ⇠. Thus let p = P (⇠), for some P (·) to be determined in equilibrium. The

consumer’s problem can then be expressed as follows:

max
x1i (·),x2i (·),�i

Z ✓
x1i (!i )�

x1i (!i )2

2
+ x2i (!i ,⇠)

◆
�(!i ,⇠)d!i d⇠� c (�i )

s.t. P (⇠)x1i (!i ) + x2i (!i ,⇠)w (⇠),8(!i ,⇠)
(4)

where w (⇠) ⌘ P (⇠)⇠+ 1 represents the consumer’s wealth. Note that this problem contains, not only the

optimal consumption of coconuts conditional on!i , but also the optimal choice of the joint distribution

�, the joint distribution of!i and ⇠, as parametrized by the scalar�i . Also note that, because of the quasi-

linearity in preferences, the consumer does not care to condition his consumption of coconuts on his

wealth—from his perspective, any signal about ⇠ is merely a signal about the price.

3.3 Equilibrium: Definition and Characterization

We introduce the following equilibrium concept, which is self-explanatory.

Definition. An inattentive equilibrium is a collection
�
�, [x1(!), x2(!,⇠)]!,⇠ , [P (⇠)]⇠

 
, such that:

1. � and [x1(!), x2(!,⇠)]!,⇠ solve the consumer’s problem;

2. all markets clear, orZ
x1(!)�(!|⇠)d!= ⇠ and

Z
x2(!,⇠)�(!|⇠)d!= 1 8⇠,

where�(!|⇠) denotes the likelihood of! conditional on ⇠, as implied by the equilibrium �.

For a given � (i.e., information structure), one can guess and verify the following solution for the equi-

librium price and consumption plan:

p = P (⇠)⌘ 1�
Å

1� 1
�

ã
µ� 1
�
⇠, x1i =!i , and x2i = 1+P (⇠)⇠�P (⇠)!i . (5)

Two properties are worth noting.
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First, the consumption of coconuts is no more equated across agents: it is as if there is uninsured

idiosyncratic risk, or mis-allocation of coconuts. However, as shown below, this phenomenon ceases to be

a a call for market regulation once the “right” efficiency benchmark is considered.

Second, because there are only supply shocks at the aggregate level, the inverse of the price function

identifies the aggregate demand function. This is true whether inattention is present or not. However,

as shown in Appendix D, the area below the identified aggregate demand properly measures consumer

surplus only in the absence of inattention. The same applies to producer surplus (in an extension with

inattentive production). In a nutshell, Harberger triangles are no longer meaningful.

These properties illustrate how rational inattention invalidates standard calculations of the compen-

sating transfers associated with any simple market correction (e.g., tax or quota). And yet, we shall show

that a key normative property of the frictionless benchmark—that such corrections, as well as other ma-

nipulations of individual choices, are undesirable—remains true.

To this goal, we must compare the equilibrium to the relevant planner’s problem not only in terms of

the allocation of coconuts obtained for given� but also in terms of the value of� itself. We characterize the

equilibrium value of � in the rest of this subsection and the planner’s counterpart in the next subsection.

In equilibrium, the individual’s attention choice reduces to the following problem:

max
�i

{b (�i ,�)� c (�i )}
where b (�i ,�) is the expected utility, evaluated along the equilibrium consumption plan and the equi-

librium price function seen in (5), when others choose � and the individual chooses �i . Computations,

detailed in the appendix, show that up to scaling constants

b (�i ,�) =
�2�i

2�2
� �

2

�
(6)

Think of b as the reduced-form benefit of attention and c as its cost. The dependence of b (�i ,�) on �

captures the dependence of the individual’s utility on the attentiveness of others. Clearly, an equilibrium

corresponds to any �⇤ such that

�⇤ 2 argmax
�

�
b (�,�⇤)� c (�)

 
(7)

From an individual’s perspective, more attention is always better (b1 > 0), because it reduces the mistakes

in consumption choices. But the private returns to attention are higher when others are less attentive

(b12 < 0), implying that attention choices are strategic substitutes: precisely when others are inattentive,

and hence market prices are very volatile, there are high gains to making accurate predictions.

This substitutability property guarantees that the equilibrium is unique, provided that it exists. Exis-

tence follows from the continuity of c and uniqueness from c 0(·) increasing with lim�!1 c 0(�) =1:

Proposition 1 (Equilibrium). The equilibrium exists and is unique. The equilibrium level of attention, �⇤ 2
(0, 1), is the unique solution to (7). The equilibrium price and allocation are as in (5), with �=�⇤.

3.4 Welfare and Efficiency

The following casual argument might suggest that there is room for inefficiency. Consider the problem of

a benevolent planner who cannot intervene in the market of coconuts, and therefore takes the function b

as given, but can dictate agents’ attention choices. This planner solves the following problem:

� 2 arg max{b (�,�)� c (�)} . (8)
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On the margin, this planner equates c 0(�) with b1(�,�) + b2(�,�), where b1(�,�) and b2(�,�)measure, re-

spectively, the marginal private value of attention and the externality imposed on others. In equilibrium,

the agents instead equate c 0(�)with b1(�,�) alone. It follows that, for generic b (·), the equilibrium and the

planner’s solution won’t coincide.

This argument is meaningful if the function b (·) is “free” for the modeler to choose, as in the class of

games studied in Tirole (2015). But b (·) is not arbitrary in our context.

Proposition 2 (Efficiency). The fixed point to (7) coincides with the solution to (8). That is, the equilibrium

level of attention coincides with the socially optimal one.

Why is this true? As anticipated in the Introduction, the relevant externalities are (so far) purely pe-

cuniary: one’s attention enters others’ welfare via prices only. But as long as utility is transferable (as in

the present example) or markets are complete (as in our upcoming general analysis), pecuniary external-

ities do not create a wedge between the private and the social value of attention. They net out on average,

guaranteeing that b2(�,�) is zero for all �.

Appendix A illustrates this logic within the present example. Section 5 establishes its greater appli-

cability. And while the argument made above precludes the planner from intervening in the market of

coconuts, the argument applies more generally in the following sense: when the planner has the option

to tax or otherwise regulate the market of coconuts, b2(�,�)may cease to be zero because of such an inter-

vention, but such an intervention is not worthwhile in the first place, for it only reduces b (�,�). In other

words, laissez-faire both minimizes the wedge in the marginal value of attention and maximizes the total

value of attention.

3.5 Correlated Noise and Non-Fundamental Volatility

So far, we have equated the state of nature with the payoff-relevant fundamental, namely the endowment

of coconuts, ruling out aggregate noise or correlation devices. We now sketch how one could incorporate

such variables and explain why they do not, by themselves, upset the efficiency of the equilibrium.

Retain that ⇠ ⇠ N (µ,�2) and introduce aggregate white noise ⌫ ⇠ N (0, 1). The state of nature is now

given by ✓ ⌘ (⇠,⌫). Next, let the signals take the following form:

!i = ⇠+ ri "i + si⌫,

where "i ⇠N (0, 1) is i.i.d. and the pair (ri , si ) is chosen by the agent, subject to some cost.

If we make no other change in the environment, there cannot exist an equilibrium in which a non-zero

mass of agents set si > 0. Such an equilibrium would have aggregate demand move with v, which would

violate market clearing given that supply is fixed at ⇠. If, however, we let the supply be elastic and make

appropriate assumptions about c , we can support an equilibrium in which all agents choose si = s > 0

and, as a result, non-fundamental volatility emerges in both prices and quantities.5

Still, the equilibrium remains efficient, for the same reason as before: all externalities, including those

associated with the choice of the optimal load on the aggregate noise, are purely pecuniary. The same

5First, introduce a technology that allows the second good to be transformed to the first and by letting an attentive firm to

operate it. And second, suppose the cost of attention is decreasing in both si and ri but more steeply so in si than in ri (costs can

be economized by substituting idiosyncratic for aggregate noise).
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logic applies if we consider the more flexible information structures proposed in Myatt and Wallace (2012),

Colombo, Femminis, and Pavan (2014) and Tirole (2015) These structures allow for rich, endogenous cor-

relation in noise, but do not alone upset the efficiency of the equilibrium. They are all nested in our sub-

sequent, more general analysis of state-tracking economies (Section 5).

3.6 Price-tracking Economies and Cognitive Externality

So far, we have focused on an economy in which agents collect signals about the state of nature. In equi-

librium, such signals serve also as signals about the price. But the cost of any given signal was specified

as a function of its joint density with the underlying state. This case defines what we call “state-tracking

economies.” The complement, referred to as “price-tracking economies,” allows the cost to depend on

the joint density of the signal and the price itself, capturing the idea that the difficulty of tracking prices

depends on their stochastic properties.

In this variant, agents collect a signal! directly about p .6 Their cognitive cost remains some C :D2!
R, but now the chosen�(·) has to agree with the prior on p , which itself is endogenous to equilibrium. Our

leading specification has C [�(·)] be the mutual information between! and p . But other specifications will

also be considered.

When choosing �, or equivalently the likelihood for ! given p , the agent treats the marginal for p as

given. But this marginal distribution is itself determined in equilibrium by the choices of others. And

because this enters C [·], a non-pecuniary, or “cognitive,” externality emerges: by affecting the equilibrium

price mapping, one’s choices can affect the cognitive costs and the attention choices of others.

This has a similar flavor as the informational externality found in the literature that follows the tra-

ditions of Grossman and Stiglitz (1980), Grossman (1981) and Laffont (1985). But it differs from it in two

ways. First, it does not derive from missing markets. And second, its bite depends crucially on the “units”

of information as embedded in the specification of C [·]. We illustrate this point in the rest of this section by

providing first a benchmark in which this externality is muted and then two examples in which it is active.

3.7 An Efficient Price-Tracking Economy

Assume the following two restrictions on the primitives of the economy.

A1. The entire state is ✓ = ⇠, which rules out correlated noise.

A2. The cognitive cost is an increasing, convex function of the mutual information between ! and p as

long as both objects are Gaussian, and infinite otherwise.

By A1, p must be a function of ⇠. By A2, (!, p )must be jointly Normal. It follows that p must be a linear

function ⇠. And because the mutual information between! and any monotone function of ⇠ is the same

as the mutual information between! and ⇠ itself, it is as if agents are tracking ⇠ instead of p .

Proposition 3. Under restrictions A1 and A2, the equilibrium of the price-tracking economy coincides with

that of the corresponding state-tracking economy.

6In the present example, agents care to know only the price of coconuts: because of the quasi-linearity in preferences, their

endowment of coconuts (“their wealth”) is irrelevant for their optimal consumption of coconuts. Of course this is not a generic

property, and in our more general analysis we will let agents track at least their “own” fundamentals in addition to prices.
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Introduce now a planner. Suppose, for the present purpose, that this planner cannot replace the mar-

ket mechanism. But let him manipulate, via taxes or other instruments, the agents’ consumption and

attention choices, subject to A1: the state cannot be expanded to include variables other than ⇠.

By manipulating the consumption and attention choices of all agents, the planner can induce a differ-

ent mapping from ⇠ to p , thus also manipulating agents’ prior about p . In general, this could have allowed

the planner to economize cognitive costs and improve upon the equilibrium. This is, however, not the case

here due to A2. First, any non-linear mapping from ⇠ to p cannot be optimal, because it induces infinite

cognitive costs. Second, any (non-flat) linear mapping from ⇠ to p entails the same cognitive costs as the

equilibrium one. We thus reach the following conclusion.

Proposition 4. Under restrictions A1 and A2, the equilibrium of the price-tracking economy coincides with

the solution to the planner’s problem described above.

In a nutshell, A1 and A2 make sure that the cognitive externality is muted and, hence, that efficiency is

preserved (at least in the sense described above). But what if we relax these assumptions?

3.8 Inefficiency I: Externalities and “Complexity”

Let us now return to the more general form of “reduction in uncertainty or perceived complexity” captured

by (2), without committing to the specific “units” imposed by Shannon entropy.

Say agents are performing physical experiments that have a fixed precision in the problem’s cardinal

units: it is easier to tell p = 1 from p = 2 than p = 1 from p = 1.1. Pomatto et al. (2018) show how to

construct a large family of cost functionals that embody this intuition and obey a sensible set of other

axioms for information acquisition or cognition.7 One particularly convenient form, which is their leading

case and also a common “reduced-form” choice in the literature (e.g., Wilson, 1975; Van Nieuwerburgh and

Veldkamp, 2010) is cost proportional to the precision of the generated signal (i.e., 1/r 2). In our notation

from (2), this is tantamount to having H [·] return the precision (inverse variance) of the random variable

represented by the given density. It follows that the cost of attention can be expressed as

c (�z ,�2
z ) =

1
�2

z

�z

1��z

where �2
z is the variance of the tracked object and �z is, as before, the correlation of the signal with the

tracked object (or, up to a monotone transformation, the signal-to-noise ratio).

Similarly to the benchmark with Shannon mutual information, attention costs are increasing and con-

vex in �z (i.e., c1 > 0 and c11 > 0). But unlike that benchmark, both the total and the marginal cost are now

decreasing in variance�2
z (i.e., c1 < 0 and c12 < 0).

When z is the state of nature, this dependence is irrelevant. But when z is the equilibrium price, it

creates both a negative externality and a source of strategic substitutability in attention choices. Higher

levels of aggregate attention translate into less variable prices, which in turn translate to higher total cog-

nitive costs and higher marginal costs of paying attention. The latter property preserves the uniqueness of

the equilibrium, the former upsets its efficiency. A planner internalizing the externality would favor taxing

attention and/or noising up prices.

7These include constant returns to scale in running additional physical or “cognitive” (thought) experiments, and appropriate

notions of monotonicity and continuity.
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We can generalize these ideas by allowing for cost representation c (·) to depend arbitrarily on (�z ,�2
z ).

The opposite case than that studied above, or c1 > 0 and c12 > 0, seems quite plausible as well: on the

margin, it may be harder to pay attention when prices are more volatile or more erratic, because larger

changes across states are confusing.

This case switches the sign of the cognitive externality and of the desirable policy intervention: the

planner favors corrections that reduce price volatility, for instance, by introducing a tax on the consump-

tion of coconuts that increases with ⇠. This case also introduces strategic complementarity in attention

choices: “when others pay less attention, prices are more confusing, and I find it harder to pay attention

myself.” If this force is sufficiently strong to overcome the substitutability described in equation (6), the

“game” of choosing � may admit multiple equilibria. Low � equilibria have more price volatility, larger

cognitive externalities, and lower welfare than high � equilibria. Hence the former are “cognitive traps”:

Proposition 5 (Cognitive Traps I). There exist c , with c2 > 0 and c12 > 0, such that the economy admits

multiple, Pareto-ranked equilibria, each corresponding to a different value for �⇤.

These results illustrate how departures from the Shannon benchmark open the door to a particular

kind of inefficiency, one that lets the “complexity” of the price system matter. The particular examples

considered above tied “complexity” to the variance of p . But one can also think of examples that tie “com-

plexity” to “sparsity” (Gabaix, 2014), “perceptual distance” (Hébert and Woodford, 2018), and other traits

that describe how easy it is for people to track and decode decision-relevant objects such as prices.

3.9 Inefficiency II: Correlated Mistakes

Let us re-embrace the units of Shannon entropy but allow “cognitive noise” to be correlated across agents.

We shall show that this, too, allows for inefficiency and cognitive traps, although of a more subtle kind.

We shall also discuss why this may depend on whether the correlated noise is interpreted as internal or

external to the cognitive process.

First, let the state be ✓ = (⇠,⌫) and express the signal as

!= p + r "i + s⌫+ t ⇠ (9)

where v is aggregate noise, " is idiosyncratic noise, and (r, s , t ) are scalars under the control of the agent

(we are henceforth suppressing the i index). Second, let the cost depend only on the mutual information

between! and p . Under the Gaussian restriction, this means that the cost can be written as c (�p ), where

�p is the signal-to-noise ratio between! and p .

Conjecture now that prices depend on both elements of the state:

p =�g⇠+h v,

for some scalars g and h . An equilibrium is indexed by (r, s , t , g , h ,�p ). In Appendix A, we show that equi-

librium imposes only five restrictions over these six scalars: there is a one-dimensional continuum of equi-

libria. The lessons are even sharpest if the cost takes the form of a “hard” capacity constraint on the mutual

information between! and p , which amounts to fixing �p exogenously.

Proposition 6 (Cognitive Traps II). Fix any �p 2 (0, 1). There exist a continuum of equilibria, indexed by

h 2 [0, h̄ ], such that (i) non-fundamental volatility and welfare both increase in h and (ii) when h = h̄ , the

allocation of goods is first-best.
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The Appendix works out the math. It also extends the argument to the case in which c (·) is a smooth

increasing function of the mutual information between! and p . This boils down to letting different equi-

libria be associated with different values for�p . Here, we sketch the main ideas treating�p as given. Clearly,

there exists an equilibrium in which s = t = h = 0 and r > 0. This equilibrium coincides with that of the

baseline, state-tracking economy studied in the beginning of this section.

Let us now show that there is another equilibrium, which attains the first best. Set r = 0. This gives

!= p + s⌫+ t ⇠= p0+(t �g )⇠+(s +h )v . In equilibrium, the cross-sectional average of! has to equal ⇠, or

else aggregate demand would not equal ⇠. It follows that g = 1 and s = �h , and hence! perfectly reveals

⇠ and p = p0 � ⇠+ h v. This occurs for a unique level of non-fundamental volatility, h = h̄ ⌘ �
q
��1

p �1,

which intuitively increases with the fundamental variance.

Not surprisingly, there also exist intermediate equilibria, mixing the previous two. All of them, as well

as the one that replicates the state-tracking outcomes, are inferior equilibria, or “cognitive traps.”

The logic can be summarized as follows. Correlated noise is used to simultaneously reduce the mutual

information between signals and prices and increase the mutual information between the signals and the

underlying fundamentals. When cognitive costs come only from tracking prices, the first property econo-

mizes cognitive costs, while the second brings allocations closer to their first-best counterparts.

This begs the question of whether the correlated noise itself could be costly. The previous scenario, in

which ⌫ was costless, may make sense if this “common mistake” is internal to people’s cognitive process.

But if v is an external impulse (e.g., a literal or metaphorical “sunspot”), it may require effort to learn about.

In Appendix A we work out an extension in which there are costs to tracking both p and ⌫. Whereas

in the above example an individual was happy to noise up his signal of p with either "i or v , she strictly

prefers "i once v is costly. This selects the equilibrium with h = 0 as the unique equilibrium.8 But it does

not guarantee its efficiency. In particular, if the cost of tracking v is small enough relative to the cost of

tracking p , the unique equilibrium is dominated by an allocation that features h > 0. Furthermore, the

planner can implement this allocation by introducing a subsidy that varies with v. That is, even though

the multiplicity disappears, the argument for “noising up” prices remains.

When does this argument cease to hold? Only when the cost of tracking v is “comparable” to the cost

of tracking prices. In particular, if the total cognitive costs can be expressed as the mutual information of

an individual’s signal with the pair (p , v ), the efficiency of the equilibrium is restored. The same is true if

the cost depends on the mutual information of the individual’s signal with the pair (p ,✓ ), where ✓ = (⇠, v )
is the entire state of nature, inclusive of both fundamental and non-fundamental shocks. This anticipates

a more general result, which we develop in the second part of the paper.

3.10 Taking Stock

The inefficiency documented in the last example does not require v to be a “true” sunspot or “pure” noise;

v could have been a fundamental affecting some other, un-modeled market, or even the market under

consideration. What opened the door to inefficiency is an asymmetry in the costs of attention: v was

8This brings to mind Yang (2015) and Morris and Yang (2016). The former shows that equilibrium multiplicity survives in

a global game in which players are rationally inattentive but correlated noise is effectively costless. The latter selects a unique

equilibrium by making such correlation costly.
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cheaper to track, or more “salient,” than p or ⇠.

This logic extends to our first example of inefficiency, which featured ✓ = ⇠ and C [·] = c (�z ,�2
z ), for

z 2 {✓ , p}. As long as c2 = 0 (the textbook scenario), the cost of tracking p was the same as that of tracking

✓ . But once c2 6= 0 (the scenario allowing for “complexity” or “perceptual distance”), this symmetry was

broken, and inefficiency obtained.

This discussion hints at two insights. First, when agents are allowed to track not only the exogenous

state of nature but also endogenous objects such as prices or the choices of others, efficiency requires that

the costs of attention satisfy some kind of symmetry, or invariance, with respect to the various objects

agents can track. Second, behavioral notions such as “complexity,” “salience,” and “framing” may be open

the door to inefficiency within the rational-inattention framework if they are interpreted as violations of

this kind of invariance. The precise form of this invariance, and its relation to mutual information, are

made clear in Section 6.

4 General Framework

Do the preceding normative lessons extend to more general competitive economies? Does it matter what

preferences are, which consumption or production choices are subject to inattention, how budgets are

met, or how markets clear? What if people can track taxes or other objects in addition to prices? What if

the planner could complement or even replace market prices with other means of communication?

This section lays the groundwork for clearly answering these questions by augmenting the standard

Arrow-Debreu framework with a generalized form of rational inattention. The adopted formulation not

only nests multiple specifications found in the literature but also helps zero in on the only modeling choices

of essence for our purposes: whether people track the exogenous state of nature or the endogenous objects

of interest, and whether doing the latter economizes costs relative to doing the former.

4.1 Frictionless Benchmark

The state of nature is represented by a random variable ✓ , drawn from a finite set ⇥ ⇢ R according to

probability distribution⇡ 24(⇥). This variable is meant to contain not only payoff-relevant fundamentals,

like the endowment ⇠ in the example of Section 3, but also aggregate noise or correlation devices, like ⌫ in

that example.9

There is a finite number of underlying, non-contingent commodities, indexed by n 2 {1, ..., N }. In the

standard Arrow-Debreu fashion, markets are complete and operate ex ante, before ✓ is revealed. We let

p (✓ ) =
�
pn (✓ )

�N
n=1 2RN

+ be the price vector for state ✓ , where p :⇥!RN
+ .

In the frictionless benchmark, we could easily redefine the commodity space to include all combina-

tions of goods and states. But the separate notation for goods and states does matter in our formalization

of rational inattention. For that reason, we use consistent notation here.

9At the present level of abstraction the distinction between fundamentals, noise and sunspots can be quite fuzzy. Suppose for

instance that the economy is the union of two “islands” entirely disconnected from one another. Then, one island’s fundamentals

could serve as the other island’s sunspot. This qualifies our stylized example, but does not interfere with the more general results

we provide in the sequel.

14



Consumers. There is a unit-measure continuum of households, split into a finite number J of distinct

types indexed by j = {1, ..., J }. Preferences and endowments can differ across types, but consumers of the

same type are identical. The mass of type j is given by µ j 2 (0, 1), with
P

j µ
j = 1.

Let x j (✓ ) =
�
x j

n (✓ )
�N

n=1 2⇥n Xn ⌘ X ⇢RN
+ denote the consumption bundle for the typical household of

type j in state ✓ , where x j :⇥! X ⇢RN
+ . We assume that preferences are given by expected utility:X

✓

u j
�
x j (✓ ) ,✓

�
⇡ (✓ ) .

where u j : X ⇥⇥!R is a type-specific, state-contingent, Bernoulli utility. We next write the budget asX

✓

p (✓ ) · x j (✓ )
X

✓

�
p (✓ ) · e j (✓ ) +a j⇧(✓ )

�

where e j (✓ ) is the endowment of type j in state ✓ ,⇧(✓ ) are any state-contingent firm profits, and a j is the

profit share of household type j .

Firms. There is a unit-measure continuum of identical firms. We let y (✓ ) =
�
yn (✓ )

�N
n=1 2⇥n Yn ⌘ Y ⇢RN

denote the production plan, or input-output vector, of the typical firm in state ✓ . By convention, we allow

outputs to enter as positive numbers and inputs to enter as negative numbers.

The technology is given by production transformation frontier F :RN ⇥⇥!R such that the production

plan y (✓ ) is feasible in state ✓ if and only if F
�
y (✓ ),✓

�
 0.

4.2 Generalized Rational Inattention

We now introduce our general form of rational inattention.

Signals, tracked objects, and attention costs. Let ! be a random variable representing an individual’s

“cognitive state,” or an internally generated signal about z . To ease notation, we suppress the indexing of

! on the identity of the individual.

For a fixed individual, we will allow different decisions to possibly depend on different (sub)signals.

To this end, we write ! = (!n )Nn=1, where N is the number of goods, and !n is the sub-component of !

upon which the demand of good n is conditioned. As discussed later on (Section 4.6), this formulation

serves a dual purpose. First, it accommodates an arbitrary specification of how budgets are satisfied in

the presence of inattention. And second, it helps capture “narrow thinking” and mental accounting, as in

Lian (2018). For now, we assume that each sub-signal is a real number in a discrete-valued set ⌦n , for all

n 2 {1, . . . , N }. Thus,!✓⌦⌘⇥n ⌦n ✓RN.

Let z be a “tracked object,” a random variable that a given agent tries to learn or reason about. In a

leading case (“state-tracking economies”), z will coincide with the exogenous state of nature, or z = ✓ . But

we will also consider cases in which z contains market prices, the trades of others, or policy instruments

such as taxes. In all such cases, z will ultimately be some transformation of ✓ , taking value in (a subspace

of) RW for some finite W . To accommodate all these cases, we fix a primitive, but essentially irrelevant,

W and define the set of all subspaces of RW asZ ⌘ {Z : Z ✓RW }.10

10Our only primitive requirement is W � N + 1. This allows us to nest the case in which z = (✓ , p ), namely the case in which

agents are tracking the state ✓ 2⇥ ⇢R along with the price vector p 2RN
+ ⇢RN .
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Costs of attention are a non-pecuniary cost of choosing a certain joint distribution between the signal

! and the tracked object z . These costs are controlled by a type-specific functional C j that is well-defined

on such distributions for any given identity of z and its co-domain Z :

C j :
[

Z2Z
�(⌦⇥Z )!R[ {1} (10)

The possibility of infinite costs exists to capture any possible restrictions on the space of admissible signals

and/or tracked objects (e.g., distributional requirements, if desired).

State of nature. Strictly speaking, the entire state of nature is now given by the combination of ✓ with

the idiosyncratic draws of ! for each and every individual. But since we shall assume that a law of large

number applies within each type of agents, ✓ remains the only aggregate state variable for the economy

as a whole, because all type-specific average quantities are ultimately measurable in it, as well as the only

relevant state variable for the problem of any individual, because all prices and fundamentals are also

measurable in it. With these qualifications in mind, we henceforth refer to ✓ simply as the state of nature.

Additional useful notation. For any given type j agent, any chosen joint distribution � j (·) over (!, z )
implicitly defines also a joint distribution over (!, z ,✓ ), given by

f j (!, z ,✓ )⌘� j (!, z ) · I{z (✓ ) = z } (11)

where I{·} is the 0-1 indicator function that takes the value 1 if and only if {·} is true, and, in some abuse

of notation, z (·) is the function that maps the value of the underlying state to the values of tracked object.

Note that this embeds the restriction that an individual’s cognitive state! depends on the state of nature

✓ only through its relationship with the tracked object.

The implied marginal density for the pair (!,✓ ) and the conditional likelihood of ! given ✓ are then

given by, respectively,

g j (!,✓ )⌘
X

z2Z

f j (!, z ,✓ ) and g j (! | ✓ )⌘ g j (!,✓ )
⇡(✓ )

(12)

4.3 New Consumer and Firm Problems

Fix a tracked object, and hence the space Z in which z takes values. Let⇡z 24(Z ) be the prior distribution

for this object, which of course individual agents take as given. For any such object, the consumer and

firm problems can be formulated as follows.

Each agent chooses two objects: a distribution � that represents the obtained signal about z ; and a

mapping of the realization of the signal to an action. For type any type- j consumer, this mapping is a con-

sumption strategy x j :⌦! X ; and for firms, it is a production strategy y :⌦! Y . By construction of! and

its sub-components, these strategies can be written as “separable” across goods, or x j (!) = (x j
n (!n ))Nn=1

and y (!) = (yn (!n ))Nn=1 for all ! and for some collection of functions x j
n : ⌦n ! Xn and yn : ⌦n ! Xn ,

respectively. Let us denote the sets of all such strategies as

X ⌘
�

x (·) = (xn (·))Nn=1 , for some xn :⌦n ! Xn ,8n
 

Y ⌘
¶

y (·) =
�
yn (·)

�N
n=1 , for some yn :⌦n ! Yn ,8n

©
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Pick a consumer of type j . The optimal attention choice and the optimal consumption strategy can

then be expressed as the solution to the following problem:

max
x (·),�(·)

X

!,✓

u j (x (!),✓ )g (!,✓ )�C j [�(·)]

s.t. (x (·),�(·)) 2B(p (·), e j (·), a j⇧(·))
(13)

where

B(p (·), e j (·), a j⇧(·))⌘
⇢

functions x (·) 2X and�(·) 24(⌦⇥Z ) such that :

X

!,✓

(p (✓ ) · x (!))g (! | ✓ )
X

✓

�
p (✓ ) · e j (✓ j ) +a j⇧(✓ )

�

X

!

�(!, z ) =⇡z (z ), 8z 2 Z
©

(14)

This set encodes the budget constraint, the measurability (inattention) constraints, and the natural restric-

tion that the marginal on z agree with the prior. Also, in all the above expressions, g should be read as a

transformation of �: the joint density g (!,✓ ) and the conditional likelihood g (!|✓ ) vary with the agent’s

choice of�, and is computed in the same fashion as in the objects seen in expression (12).

Each firm, on the other hand, solves the following problem:

max
y (·),�(·)

X

!,✓

(p (✓ ) · y (!))g (!,✓ )

s.t. (y (·),�(·)) 2 F

(15)

where
F⌘

¶
functions y (·) 2Y and�(·) 24(⌦⇥Z ) such that :

F
�
y (!),✓ f

�
+C f [�(·)] 0,8(!,✓ ) s.t. g f (!,✓ )> 0

X

!

�(!, z ) =⇡z (z ), 8z 2 Z
© (16)

Note that “attention” enters as an additive cost to the production possibilities frontier. And as in the con-

sumer’s problem, g should be read as the joint distribution of ! and ✓ implied by the firm’s attention

choice.

4.4 Inattentive Equilibrium

Let the previous constructions of consumer and firm programs, indexed still by a tracked object z 2 Z ,

constitute an “inattentive economy” We now define general equilibrium in this context:11

Definition 1 (Inattentive Equilibrium). An equilibrium is a profile of consumption-production strategies,Ä
[x j (·)]Jj=1, y (·)

ä
, attention choices,

Ä
[� j (·)]Jj=1,� f (·)

ä
, and prices, p (·), such that the following are true.

1. Consumers optimize: for each j , (x j (·),� j (·)) solves program (13), fixing prices and the stochastic

process for tracked object z j .

2. Firms optimize: (y (·),� f (·) solves program (15), fixing prices and the stochastic process for tracked

object z f .

11Throughout, we focus on equilibria in which strategies are symmetric within types. But this is without serious loss of gener-

ality, because we can partition types into sub-types with the opportunity to make different decisions. Same point applies to our

efficiency concept in the sequel.
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3. Markets clear: for all ✓ 2⇥,
JX

j=1

µ j x̄ j (✓ ) =
JX

j=1

µ j e j (✓ ) + ȳ (✓ )

where

x̄ j (✓ )⌘
X

!

x j (!)g j (! | ✓ ) and ȳ (✓ )⌘
X

!

y (!)g f (! | ✓ ).

are, respectively, the aggregate demand of type- j consumers and the aggregate supply of firms.

This definition is self-explanatory. The only notable subtlety is that the tracked objects (z j ) j={1,...,J , f } are

potentially endogenous and form part of the equilibrium fixed point. The definition of these tracked ob-

jects indexes the “type” of equilibrium being studied.

4.5 On the Tracked Object

The sense of “agents’ tracking some object” relates to the identity of z and, thus, to how the cost functional

C penalizes learning. In the stylized example of Section 3, z was variously the aggregate endowment of

coconuts or their price. Here, we have allowed for a flexible specification of z . For our main analysis,

though, we shall concentrate on the two scenarios described in the following definitions:

Definition 2. A state-tracking economy is an economy in which z = ✓ for all j , and Z =⇥ ✓R.

Definition 3. A price-tracking economy is an economy in which z = (✓ , p ) for all j , and Z =⇥⇥RN ✓RN+1.

As mentioned in the Introduction, the first scenario captures the vast majority of the existing macroe-

conomic and game-theoretic applications of rational inattention.

The second scenario is more subtle. In a given equilibrium, p will always be some function of the

state ✓ . What the second scenario accommodates is the possibility that the particular transformation p (✓ )
obtained in equilibrium may have a different cost to track than ✓ itself, and that this aspect of the cost

endogenously changes across different equilibria (either multiple equilibria of the same primitive set-up,

or equilibria indexed by policy interventions that manipulate attention choices and/or market prices).

The same subtlety applies if we consider cases in which z contains other equilibrium objects, such at

the trades of other agents, or policy instruments, such as taxes. Although all these objects are ultimately

functions of the state of nature, the costs of tracking the could be different than the cost of tracking the

state of nature itself.

Finally, a modification of the second scenario that feels even more natural in our context is one in which

each agent tracks only the sub-component of (✓ , p ) that directly enters her decisions (e.g., a consumer’s

own endowment and the prices of the particular basket of goods she consumes). As discussed at the end

of Section 6, this scenario can either be treated as a separate primitive case (by redefining z accordingly),

or be obtained as an equilibrium implication of our invariance condition within the more flexible price-

tracking scenario defined above (by exploiting free disposal of any irrelevant information in z ).

4.6 Clarifications and Remarks

We close this section with a couple of clarifying examples of what our formulation can accommodate and

a few additional remarks.
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Information acquisition. Here we provide a specialization of our setting that clarifies how it connects to

the growing decision-theoretic literature on rational inattention.

Suppose that all agents (consumers and firms) have no measurability constraints on their choice of

the last good, n =N . This is an “adjustment good,” like the second good in our simple example or saving

(tomorrow’s consumption) in Sims (2003, 2006) Suppose further that the choice of all other goods must

be jointly measurable in a single (scalar) cognitive state s drawn from some set S ✓R. The cognitive state

thus has the restriction!n ⌘ s for n <N and!N = (s , z ).
In this case, it is natural to write the cognitive cost in terms of the joint density between s and z . Further-

more, we can use the budget to solve out for the consumption of the last good and to express the realized

utility as a function of the remaining goods, which are all measurable in s . We can thus transform our con-

strained optimization problem to the kind of unconstrained optimization problems typically found in the

more abstract, decision-theoretic literature on rational inattention.

We can then also allow C [·] to fall into a number of familiar forms for cost of information. Consider first

the class of posterior-separable costs introduced by Caplin and Dean (2015) and Caplin et al. (2017), and

axiomatized by Denti (2018) and Mensch (2018). Let�(· | s ) 24(Z ) denote the posterior distribution over a

specific tracked object space induced by a specific signal; ⇡(·) 24(Z ) denote the prior; �(s ) 2�(S ) denote

the marginal likelihood of a given cognitive state realization; and G : 4(Z )⇥4(Z ) ! R be a functional

strictly convex in the first argument for any value of the second.12 We can write a posterior-separable cost

functional as

C [�(·)] =
X

s2S
G [�(· | s ),⇡(·)]�(s )�G [⇡(·),⇡(·)]

When G [·]has no dependence on the second argument, the form is uniformly posterior separable and also

admits a “reduction in complexity” representation like (2). This posterior separable class nests both Shan-

non mutual information and several attractive deviations thereof (e.g., Tsallis, 1988; Hébert and Woodford,

2018; Morris and Strack, 2019).

Modeling decision-specific learning. The aforementioned decision-theoretic works allow multiple ac-

tions but constrain them to depend on the same signal. Our formulation relaxes this constraint in part

because this is needed for budget constraints to be satisfied and in part because this helps capture an

imperfection in how the same agent coordinates his different decisions (Lian, 2018).

To fix ideas, consider the following functional form that merges costs of information with “cross-decision

restrictions.” Let C n :4(⌦n ⇥Z )!R be a decision-specific cost of information and let X :�(⌦)!R[1
be a functional that rewards or penalizes certain relationships between the cognitive states themselves.

Assume the cognitive cost can be written as

C j [�(·)] =
NX

n=1

C j n [�n (·)] +X j [�!(·)] (17)

where �n (·) is the joint density of !n with z , and �!(·) is the marginal density over !. The first term

captures arbitrary costs for collecting each internal signal!n , which could even be zero (to nest the “ad-

justment good” example). The second flexibly rewards or penalizes various correlation structures between

the signals—for instance, to reward (or punish) high correlation between the signals.

12It is simple, but notationally cumbersome, to extend all of these definitions to arbitrary spaces of the tracked objects.
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Different specifications could encode how budgets are met in the more elaborate fashion assumed in

Gabaix (2014), by returning infinite cost when signal realizations are in conflict with the budget constraint.

Alternatively, they could help capture “narrow bracketing” and “mental accounting” as in (Lian, 2018). We

omit precise “constructions” of C [·] to match these or other behavioral models. But we hope to convey

that our model is quite general.

Markets and games. Because firms and consumers make their choices under imperfect observation of

prices, they effectively play a game of incomplete information. See Angeletos and Pavan (2007) and An-

geletos and La’O (2010) for concrete examples of how competitive economies with informational frictions

can be mapped to games of incomplete information.

In such a “competitive” game, actions (demands or supplies) can be either strategic substitutes or

strategic complements. This may affect attention choices in the ways indicated by Hellwig and Veldkamp

(2009) and Myatt and Wallace (2012). Furthermore, because ✓ is arbitrary, the environment may feature

rich higher-order uncertainty, as in the literature spurred by Morris and Shin (1998, 2002) and Woodford

(2003) and reviewed in Angeletos and Lian (2016).

As it will become clear, none of these elements are relevant for understanding efficiency in our class of

economies. At the same time, thinking of the class of economies we study as games hints at how some of

our results can be extended to games. We return to this point in the concluding section.

5 State-Tracking Economies

In this section, we focus on the scenario in which agents track only the exogenous state of nature (z = ✓
and Z =⇥). We first define an efficiency concept that imposes that all agents track the state of nature and

show that, relative to such a benchmark, state-tracking economies are efficient.

5.1 Constrained Efficiency

We envision a planner who cannot alter the underlying physical environment (inclusive of the cognitive

costs and the restriction that agents only track the exogenous state), but can freely control people’s con-

sumption and production choices as well as their attention strategies. This is formalized by modifying the

familiar feasibility and efficiency concepts as follows.

Definition 4 (Feasibility). A profile of consumption-production choices, ([x j (·)]Jj=1, y (·)), and attention

strategies, ([� j (·)]Jj=1,� f (·)), is feasible in a state-tracking economy if it satisfies the following restrictions:
JX

j=1

µ j
X

!

x j (!)� j (! | ✓ ) =
JX

j=1

µ j e j (✓ ) +
X

!

y (!)� f (! | ✓ ),8✓ 2⇥ (18)

F (y (!),✓ ) +C [� f (·)] 0, 8(!,✓ ) s.t. � f (!,✓ )> 0 (19)

x j 2X ,8 j 2 {1, . . . , J } and y 2Y (20)

� j (·) 24(⌦⇥⇥), 8 j 2 {1, . . . , J , f } (21)X

!

� j (!,✓ ) =⇡(✓ ), 8✓ 2⇥,8 j 2 {1, . . . , J , f } (22)
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Definition 5 (Efficiency). A profile of consumption-production choices and attention strategies is efficient

in a state-tracking economy if there exists no other such profile that is feasible in the sense of Definition 4,

strictly preferred by a positive mass of agents, and weakly preferred by all other agents.

The first two restrictions in Definition 4 give the economy’s resource constraints and production tech-

nology. The third captures the choice-specific measurability constraints. The fourth gives the domain of

the available information structures. The fifth clarifies that the information structures need to agree with

the prior. A final restriction, implicit in the adopted notation but of critical importance, is that each agent’s

decision have to be measurable in her own, noisy signal. By the same token, Definition 5 thus departs

from standard Pareto optimality in two ways. First, it embeds the informational constraints through the

amended notion of feasibility. And, second, it counts the cognitive costs of any informational structure in

the evaluation of welfare by respecting the agents’ own preferences over different information structures.13

Our version of the First Welfare Theorem will establish that, regardless of the cost functional C , any

inattentive equilibrium in a state-tracking economy is an efficient allocation in the sense of the above

definition. Our version of the Second Welfare Theorem will establish that the converse is also true under

additional convexity restrictions. Efficiency can then be represented in the following planner’s problem.

PLANNER’S PROBLEM. An efficient allocation is a solution to the following problem:

max
[x j (·),� j (·)]Jj=1,(y (·),� f (·))

NX

j=1

� jµ j

2
4
X

!,✓

u j (x j (!),✓ )� j (!,✓ )�C j [� j (·)]

3
5

s.t. (18), (19), (20), (21), and (22).

(23)

for some Pareto weights (� j )Jj=1.

Had information been exogenous (i.e., had C j [·] been infinite but for a single� j for all j ), the planner’s

problem would be similar to that studied in Angeletos and Pavan (2007). In that benchmark, the planner

dictates how agents use their dispersed information, but has not control over the information structure

itself. The key novelty here is precisely that the planner chooses a socially optimal information structure,

taking into account the associated information costs.

5.2 Intuition with First-order Conditions

Our proofs of the amended Welfare Theorems do not require differentiability with respect to either the

goods or the attention choices. Differentiability of C with respect to� is not even well defined at the level

of generality we have afforded so far. But to gain intuition we start with a simple, informal argument in

terms of first-order conditions.

Consider first the planner’s first-order condition for a specific good n , type j , and cognitive state!:

E

@ u j (x j (!),✓ )

@ xn
|!

�
=E

ï
�i (✓ )
� j |!

ò
(24)

13This means that the following is true: although a first-best allocation of goods may be feasible in the sense of Definition 4, it

does not have to efficient in the sense of Definition 5. Intuitively, this is true whenever a signal perfectly revealing of ✓ is available

(i.e., has finite cost for all j ) but too costly to be optimally chosen.
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where �n (✓ ) is the Lagrange multiplier on the resource constraint for good n . Consider next the corre-

sponding equilibrium condition of a type- j household:

E

@ u j (x j (!),✓ )

@ xn
|!

�
=E

⇥
m j pi (✓ ) |!

⇤
(25)

where m j is the marginal value of wealth for type j (the Lagrange multiplier on type j ’s budget constraint).

Clearly, these two conditions coincide if�n (✓ ) = pn (✓ ) and� j = 1
m j , meaning that the planner’s shadow

value coincides with equilibrium prices and that the Pareto weights equal the reciprocal of the equilibrium

marginal values of wealth. Both of these requirements are satisfied here in the exact same manner as in

the textbook version of the Welfare Theorems. The only novelty is the presence of the expectation operator

in conditions (24) and (25). This reflects the informational, or cognitive, friction.

In the language of Angeletos and Pavan (2007), the coincidence of conditions (24) and (25), which ob-

tains holding � j constant, means that the equilibrium use of information is efficient. We now show that

efficiency extends to equilibrium acquisition of information.

Suppose that C j is a differentiable function of each� j (!,✓ ), evaluated at a pair (!,✓ ) 2⌦⇥⇥. We can

then write the planner’s first-order condition for the choice of attention as follows:

u j (x j (!),✓ )� @ C j

@ � j (!,✓ )
=
�(✓ )
� j · x

j (!) (26)

This again parallels the consumer’s first-order condition. We can do a similar exercise for the choices of

firm production and attention.

As long as first-order conditions and feasibility constraints, at equality, are sufficient for characterizing

a solution to (23), we have a basic proof of the Welfare Theorems. Of course, in asserting the sufficiency

of first-order conditions, we are presuming convexity with respect to both the goods and the attention

strategies. But such convexity is actually needed only for the Second Welfare Theorem. Furthermore, while

the above argument requires differentiability of the cost function with respect to the attention choice, our

actual proofs dispense with it and thus bypass the need to even define what such differentiability means

in the space of arbitrary attention choices.

5.3 The First Welfare Theorem

In a standard Arrow-Debreu economy, one proves that competitive equilibria are Pareto efficient using

only local non-satiation in preferences. A sufficient extension of this condition to our case is the following:

Assumption 1. For every j 2 {1, . . . , J }, x (·) : ⌦! RN , �(·) 2 4(⌦⇥⇥), and " > 0, there exists some x 0(·) 2
B"(x (·))⌘ {x 00(·) :

��[x 00(!)� x (!)]!2⌦
��< "} and some �0(·) 24(⌦⇥⇥) such that j strictly prefers (x 0(·),�0(·))

to (x (·),�(·)) .

Under the maintained simplification that attention costs are separable from the utility of goods, this

assumption is immediately satisfied if u j itself features non-satiation. In any event, with this assumption

in hand, we can extend the First Welfare Theorem to the presence of rational inattention.

Theorem 1 (First Welfare Theorem for state-tracking economy). Let Assumption 1 hold. Then, any inat-

tentive equilibrium that has strictly positive prices is efficient (in the sense of Definition 5).

It is obvious from our reformulation of the consumer problem that, in any inattentive equilibrium, re-

sources are optimally allocated across different realizations of !, within each type. The problem that
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remains, of allocating resources across the types j , is familiar to the analogue without rational inatten-

tion. Generating a Pareto improvement requires expanding the budget sets of all agents; combining this

with the result of profit maximization generates the familiar contradiction and proves the result. More suc-

cinctly, inefficiency is ruled out because all externalities, inclusive of the new ones that pertain to attention

choices, are purely pecuniary and net out thanks to complete, competitive markets.

Seen from this perspective, Theorem 1 is not terribly surprising. Indeed, our reformulations of con-

sumer’s and firm’s problems equates the choice attention to, respectively, a form of “home production”

and the use of an non-traded, firm-specific input. This in turn clarifies why rational inattention is quite

different from information discovery or innovation, each of which is generally associated with inefficiency

in otherwise competitive GE settings.

Theorem 1 also clarifies the following points about the existing literature on inattention. First, the

failure of the Welfare Theorems observed in Gabaix (2014) rests on a deviation from rational attention.

Second, the related point made by Maćkowiak et al. (2018) is valid only if one moves away from settings in

which agents only track the exogenous state of nature (as we do in Section 6 below). Third, Sims’s (2010)

concern that “prices cannot play their usual market-clearing role” may be relevant for the existence of the

equilibrium but not for its efficiency. And fourth, the instances of inefficiency found in Colombo, Femmi-

nis, and Pavan (2014) and Tirole (2015) derive, not from rational inattention (or imperfect cognition) per

se, but rather from its interaction with other distortions, such as missing or non-competitive markets.

5.4 The Second Welfare Theorem

The standard version of the Second Welfare Theorem requires convexity of preferences and production

sets. These convexity assumptions can be dispensed within our setting, because there is a continuum of

agents per type and because the planner can use the noise in the agents’ signals to replicate lotteries. But

because different signals induce different costs, a convexity assumption is required in their domain.

Assumption 2. The cognitive cost is (weakly) convex over the distribution of posteriors induced by any given

signal! about the physical state ✓ .

Theorem 2 (Second Welfare Theorem for state-tracking economy). Impose Assumption 2. Any efficient

allocation in the sense of Definition 5 can be supported as a state-tracking equilibrium.

Note that the required convexity is naturally tied to convexity of the cost of information.14 Moreover,

assuming convex costs of information is also the most natural way to assume compatibility with the Black-

well ordering of experiments.15 All posterior separable representations (as discussed in Subsection 4.6)

have this property.

14This is immediate when we have a representation like (17), the information cost functionals C j n [·] are convex, and and the

cross-state restriction functional X j [·] is also convex for all agents j .
15The reason follows from Jensen’s inequality—a Blackwell garbling, in this context, is a mean-preserving spread of the distri-

bution of posteriors, and this increases costs because of convexity.
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6 Price-tracking Economies

We now extend the analysis to price-tracking economies (Definition 3). To simplify the exposition, we shut

down production and focus on pure exchange economies.

6.1 Constrained Efficiency Revisited: Adding Messages

In the present context, the notion of efficiency introduced in the previous section is unappealingly re-

strictive. Insofar as markets allow agents to economize on cognitive costs by tracking prices rather than

the underlying state of nature, it seems natural to give the planner also a larger toolkit to expand or even

replace such “market communication.”

We capture this idea by allowing the planner to send a message m j , which arbitrarily depends on the

state of nature, to each agent of type j . The collection of these messages, m = (m j ) j2{1,...,J , f }, replaces

the market prices, or more generally the “tracked object” z j , in each individual’s information-processing

problem. In an nutshell, where the price-tracking equilibrium has each agent of type j tracking z j = (✓ , p ),
the planner’s problem has that agent tracking z j =m j .

We assume effectively no restrictions on what these messages are. To be more concrete, we letM , the

common feasible set of message choices to send to any agent type, be

M =
�

m :⇥! Z for any Z 2Z
 

(27)

where, to recall previous notation, Z indicates all possible subsets of RW for some primitive and finite

(but arbitrarily large) W . Thus the planner is choosing mappings from the state to real vectors, which are

precisely the tracked objects for which we have defined agents’ costs of attention.

Why is this a natural formulation of the problem? We suggest two reasons. The first relates to Hayek’s

(1945) argument about the role of the price system as a communication mechanism. If we manage to show

that the planner cannot improve upon market outcomes by complementing or even replacing prices with

any other conceivable combination of messages, then we will have shown the robustness of Hayek’s (1945)

argument to rational inattention.

The second reason is more practical. When we study the equilibrium of a competitive economy with-

out policy intervention, it is natural to restrict attention to the scenario in which people track the prices

they care about. But when taxes, regulations, and government spending are added, there is no immediate

and natural extension to allow “automatic” tracking of these objects.

To illustrate, suppose that the policy maker may impose a rich set of state-, type- and good-specific

ad valorem taxes, but cannot communicate anything but these taxes. Then, it would be natural to study a

restricted version of our planner’s problem where the messages are constrained to satisfy, for all j and ✓ ,

m j (✓ ) = (✓ , p (✓ ),⌧ j (✓ ))

where⌧ j (·) is the tax schedule faced by type j . This would not only have restricted the space of the available

messages, but also tie the instrument used for communication with the one used for incentives. By ignor-

ing all such restrictions and letting the planner send arbitrary messages, we are solving a relaxed problem.

If we manage to show that the equilibrium in the absence of policy intervention coincides with the solution

to this relaxed problem, then we will have also guaranteed that no conceivable policy intervention can be

welfare improving, regardless of how this policy affects incentives and/or cognition.
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Social Planner

�1(! |m 1) garbling �2(! |m 2) garbling

Type 1 Type 2

✓ 7!m 1 ✓ 7!m 2

!signal !signal

x 1(·) x 2(·)

Figure 1: The planner’s problem as a communication problem.

6.2 The Planner’s Problem as a Communication Problem

The messages introduced above summarize how the aggregate state ✓ determines the agents’ signals and

actions. Put differently, there can be no correlation in signals! between two distinct agents (either within

or across types) conditional on the messages. For certain specification of C , this may provide a potential

trade-off for the planner: too much information could confuse agents, while too little would render them

unable to make good decisions.16

Figure 1 illustrates the planner’s problem in a two-type example. The choices in red, and the “inner”

part of the diagram, represents the planner’s communication. But there is an additional step, in which the

planner recommends allocations (x 1(·), x 2(·)). These are effectively free from any incentive-compatibility

or implementability constraints, because the planner is implicitly assumed to have an arbitrarily rich

toolkit of tax instruments. But allocations must be measurable in !, because people receive noisy sig-

nals of the planner’s messages. The planner can effectively choose these signals, but fully internalizes the

associated cognitive costs.

All in this, this problem can be thought of as a multi-agent information-design problem (Bergemann

and Morris, 2019), freed of any mis-alignment of incentives between the principal and the agents but aug-

mented with costly communication.17 A key question is then whether cognitive costs can be economized,

and better, more informed, choices can be induced, by sending different messages than those correspond-

ing to market prices. This is the new angle we offer to Hayek’s (1945) classic argument.

These ideas are formalized by amending the earlier notions of feasibility and efficiency as follows:

Definition 6 (Feasibility with arbitrary message). A combination of messages, [m j (·)]Jj=1, attention choices,

[� j (·)]Jj=1, and consumption choices, [x j (·)]Jj=1, is feasible if it satisfies the following restrictions:

16Formally, this restriction is nested in the construction of the joint densities�(·) and g (·) in Definition 6 below.
17This recalls a few recent contributions that study Bayesian persuasion with an inattentive receiver (Lipnowski et al., 2019;

Wei, 2018; Bloedel and Segal, 2018). These works have a similar flavor as ours but are focused on a substantially different ques-

tion: how the sender’s optimal communication depends on the misalignment of incentives between him and the receiver. Such

misalignment could be present even in the absence of inattention (as in Kamenica and Gentzkow, 2011). But inattention itself

becomes the source of mis-alignment in these papers because the sender does not internalize the receiver’s attention cost. In our

context, there is no incentive problem to start with (thanks to complete, competitive markets) and the planner fully internalizes

people’s attention costs. The last point also distinguishes our paper from Farhi and Gabaix (2019).
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g j (! | ✓ ) =
P

m �
j (!, m ) · I{m j (✓ ) =m}

⇡(✓ )
,8 j 2 {1, . . . , J , f } (28)

JX

j=1

µ j

✓X

!

x j (!)g j (! | ✓ )
◆
=

JX

j=1

µ j e j (✓ ) +
✓X

!

y (!)g f (! | ✓ )
◆

,8✓ 2⇥ (29)

F (y (!),✓ ) +C f [� f (·)] 0, 8(!,✓ ) s.t. � f (!, m f (✓ ))> 0 (30)

x j (·) 2X ,8 j 2 {1, . . . , J } and y (·) 2Y (31)

m j (·) 2M , 8 j 2 {1, . . . , J , f } (32)

� j (·) 24(⌦⇥M j ), M j =m j (⇥), 8 j 2 {1, . . . , J , f } (33)X

!

� j (!, m ) =
X

✓

⇡(✓ )I{m j (✓ ) =m}, 8m 2M j ,8 j 2 {1, . . . , J , f } (34)

Definition 7 (Efficiency with messages). A profile of messages, [m j (·)]Jj=1, attention choices, [� j (·)]Jj=1,

and consumption choices, [x j (·)]Jj=1, is efficient if there is no other profile that is feasible in the sense of

Definition 6, strictly preferred by a positive mass of agents, and weakly preferred by all other agents.

Definition 6 is the same as Definition 4 but with the added flexibility about how people’s signals and

hence their decisions can depend on ✓ through the messages that the planner sends in place of prices.

The efficiency concept from Definition 5 carries over with the same amendment, yielding Definition 7.

Provided convexity, we can then represent efficiency as the solution to the following problem.

PLANNER’S PROBLEM. An efficient profile is a solution to the following problem:

max
[m j (·)]Jj=1,[x j (·),� j (·,·)]Jj=1

NX

j=1

� jµ j

2
4
X

!,✓

u j (x j (!),✓ )g j (!,✓ )�C j [� j (·)]

3
5

s.t. (28), (29), (30), (31), (32), (33), and (34)

(35)

for some Pareto weights (� j )Jj=1.

Compared to the planner’s problem we considered earlier on for state-tracking economies, the one

stated above is more relaxed. The old problem amounts to restricting m j (·) to be the identity function for

all j . The new problem allows the planner to send different messages, including any of the following: the

prices that would have obtained in equilibrium; the aggregate quantities of all types; and any other trans-

formation, or coarsening, of the state. Whether this extra option affords a welfare improvement ultimately

depends, as shown in the sequel, on the properties of the cost functional C .

Intuitively, if agents can effortlessly dispose of any decision-irrelevant information, and can readily

go back back and forth between different transformations of the state that contain the same information

vis-à-vis their decisions, there should be no gain from sending a message different than ✓ . But if that’s

the case, there should also be no gain in equilibrium from tracking prices rather than tracking the entire

state itself. This logic suggests that the efficiency of price-tracking equilibria is tied to the coincidence of

price-tracking and state-tracking equilibria. We make these ideas precise in the remainder of this section.
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6.3 Burden of Tracking and Informational Invariance

Let!be a signal of some particular z = f (✓ ), with joint density�(!, z ). Let z̃ = h (z ) = h ( f (✓ ))be a different

object, which has to be weakly “coarser” than z . Let us define !̃ as the “projection” of! that gives the best

signal of z̃ . The precise construction of the density �̃(!̃, z̃ ) is

�̃(!̃, z̃ ) =
X

z

�(!̃, z ) · I {z̃ = h (z )} (36)

The new signal !̃ has the same domain as! and induces the same posteriors about z̃ . It also depends on

z (and the state ✓ ) only through its relationship with z̃ . In this way it obeys our restrictions on attention

choice for consumers and firms, conditional on tracking z̃ . But it may not induce the same posteriors

about z (or ✓ ), because it contains strictly less information about these objects.

We can now ready to state our invariance condition:

Assumption 3 (Informational Invariance). Let z be a random variable that can be defined as z = f (✓ ) for

some f :⇥! Z and Z 2Z , and! be some signal of z with joint density�(·, ·). Let z̃ 2 Z̃ be a second random

variable that can be defined as z̃ = h (z ) for some h : Z ! Z̃ and Z̃ 2 Z . Construct !̃ and �̃(·) as in (36).

Then C [·] satisfies informational invariance if

(i) C j [�(·)]�C j [�̃(·)] always;

(ii) C j [�(·)] =C j [�̃(·)] if and only if z̃ is a sufficient statistic for z about!.

The first part of this assumption imposes that tracking a coarser object yields weakly lower cognitive

cost. This is highly plausible, but not sufficient for our purposes.

In the price-tracking example of Section 3, the key observation was that costs were identical when writ-

ten with respect to the state or the prices. How does this reconcile with the above logic about coarsening?

There must be an upper bound to the “value” of coarsening z for a fixed cognitive state!. This bound is

formalized by the second part of the assumption. Intuitively, this is exactly the condition under which the

construction of !̃ in (36) looses no information.18

The same argument, since ✓ is always a sufficient statistic for any z = f (✓ ), implies that the agent

is equally burdened by tracking z̃ or the entire vector ✓ . Any additional information in ✓ can be freely

disposed of. Agents’ choices and payoffs, by implication, are invariant to expanding the state space in

ways that do not affect decision-relevant variables (and hence payoffs).

As mentioned in the Introduction, our invariance condition brings to mind the axiom of “invariance

under compression” from Caplin, Dean, and Leahy (2017). But whereas that paper shows how the combi-

nation of this axiom with another one (“uniform posterior separability”) provides a foundation for mutual-

information costs in a single-agent, decision-theoretic context, here we shall show how our invariance

condition suffices for efficiency in a general-equilibrium context.

6.4 “Free Disposal” in Action

It is simple to show that, under the invariance condition formalized above, the equilibria of price- and

state-tracking economies naturally coincide.

18Finally, on a more technical level, the combination of the two conditions ensures that any restrictions on the signal space (i.e.,

existence of signals that return infinite cost) are properly “nested” as one changes the tracked object z .
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Theorem 3 (Coincidence of price-tracking and state-tracking equilibria). Impose Assumption 3.

(a) Let

A =
�

x j (·),� j (·), p (·)
 

j2{1,...,J }
be the equilibrium of a price-tracking economy, where z = (✓ , p (✓ )) Next, let ' j (!,✓ ) be the induced

joint distribution between ! and ✓ in this equilibrium. Then, the following is an equilibrium of a

state-tracking economy with the same endowments, preferences, and cognitive costs:

A0 =
�

x j (·),' j (·), p (·)
 

j2{1,...,J }
(b) Conversely, let

B =
�

x j (·),� j (·), p (·)
 

j2{1,...,J }
be an equilibrium of a state-tracking economy and let ' j (!, z ) be the induced joint distribution with

respect to z = (✓ , p (✓ )). Then, the following is an equilibrium of a price-tracking economy with the

same endowments, preferences, and cognitive costs:

B 0 =
�

x j (·),' j (·), p (·)
 

j2{1,...,J }

An almost identical argument shows that the social planner would never strictly want to send a message

different from m j ⌘ ✓ for all types j .

Corollary 1 (Restricting messages is without loss). Impose Assumption 3. Let A =
�

x j (·),� j (·), m j (·)
 

be ef-

ficient in the sense of Definition 7 (i.e., with messages) and let' j (·) be the induced joint distribution between

! and ✓ . Then, A0 =
�

x j (·),' j (·)
 

is efficient in the sense of Definition 5 (i.e., without messages).

This suggests a simple strategy of adapting the previously proven Welfare Theorems to this context.

6.5 Welfare Theorems for Price-tracking Economies

We now state our main results for price-tracking economies, starting with the following version of the First

Welfare Theorem.

Theorem 4 (First Welfare Theorem for price-tracking economies). Impose Assumptions 1 and 3. Any inat-

tentive equilibrium with positive prices is efficient in the sense of Definition 7.

Proof. Let

A =
Ä
[x j (·)]Jj=1, [� j (·)]Jj=1, p (·)

ä

be an equilibrium of the price-tracking economy and let 'i (!,✓ ) be the associated density with respect

to the state. By Theorem 3, the pair
Ä
[x j (·)]Jj=1, [' j (·)]Jj=1

ä
is part of an equilibrium of an equivalent state-

tracking economy. From the previously proven First Welfare Theorem, this pair is a solution to problem

(23), where the planner is restricted to sending the entire state as the only message. But this also solves the

unrestricted problem, in which the planner can send arbitrary messages, by Corollary 1. É
Similar logic allows a version of the Second Welfare Theorem.

Theorem 5 (Second Welfare Theorem for price-tracking economies). Impose Assumptions 2 and 3. Let

A =
Ä
[x j (·)]Jj=1, [� j (·)]Jj=1, (m j (·))Jj=1

ä

be an efficient combination of messages, attention plans, and consumption plans in the sense of Definition

8. The attention and consumption plans are implementable as a price-tracking equilibrium.
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Proof. From Corollary 1, A is efficient in the sense of (23). From Theorem 2, A0 can be implemented

as an equilibrium with transfers in a state-tracking variant of the same economy. From Theorem 3, the

allocations and prices in this state-tracking economy equilibrium are also part of an equilibrium in the

equivalent price-tracking economy given the same endowments (i.e., including transfers). É

Theorems 4 and 5 together generalize the logic of Proposition 2 along two dimensions that were not

available in the toy model of Section 3: for optimality relative to the planner’s arbitrary choice of messages,

and no constraints on the price system for implementation. The formal argument also makes clear how

a generalized version of Proposition 3 (in the form of Theorem 3) directly implies a generalized version

of Proposition 4 (in the form of Theorems 4 and 5). Basically, the same conditions that guarantee the

coincidence of price-tracking and state-tracking equilibria also guarantee the efficiency of the former.

6.6 Optimal Messages

While the previous results do formally answer our original question, they do not provide an immediately

satisfying answer about implementation. Efficiency is provided precisely because the social planner has

no strict preference for sending a more economized message than: “this is the entire state ✓ , from which

you can compute all relevant equilibrium quantities.”

Can the planner send any (subjectively, in these authors’ view) more “natural” message? As a first step,

let us introduce some new terminology for what parts of the state of nature are directly relevant to a given

agent type j . Let ✓ j denote the subset of the state vector that summarizes agent type j ’s preferences and

endowment. First, one can show as a result that a consumer with information cost satisfying the invariance

properties described above would weakly prefer to learn just about this ✓ j and the price p , the latter of

which summarizes all useful information about other parts of ✓ :

Lemma 1 (Agents track prices). Impose Assumption 3. Let the bundle (x j (·),� j (·)) solve the state-tracking

endowment economy consumer problem given some prices p (✓ ). Then the signal associated with this bundle

is such that (p (✓ ),✓ j ) is a sufficient statistic for ✓ in the joint distribution� j (!,✓ ).

Proof. Let (x (·),�(·)) be a proposed solution of the state-tracking consumer problem that does not have

the sufficient statistic property. The state ✓ enters the problem only via ✓ j and p (✓ ), the former de-

fined to capture the agent’s own preferences and endowments. By Assumption 3, there is a strictly lower

cognitive cost to another feasible bundle with the same consumption choice and new attention choice

�̃(!̃, (p (✓ ),✓ j )), defined by (36). ThusU (x (·),�̃(·))>U (x (·),�(·)), which is a contradiction to the optimal-

ity of the first bundle. É

This is like an extension of the logic in Section 3.9, in which we showed that adding small but nonzero

costs of tracking aggregate noise variables immediately induced agents to obtain purely private signals

of the decision-relevant variable (which, in that case, was the price p ). Idiosyncratic randomization is

cheaper, cognitively, than randomization based on (payoff-irrelevant) entries of ✓ .

Assumption 3 guarantees there is actually no loss from sending this economized signal (✓ j , p ) in the

planner’s implementation of one of the previously described optimal allocations:
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Corollary 2 (Prices as the Planner’s Signal). To implement the optimal allocation of a price-tracking econ-

omy with price function p (·), the social planner can send the following messages: m j (✓ ) = (✓ j , p (✓ )) and

m f (✓ ) = (✓ f , p (✓ )).

In this sense, the “invisible hand” both optimally allocates goods and produces an informally efficient

message about that implementation.

Tracking only prices. We can flip this and also speculate about whether efficiency extends when agents

in equilibrium are tracking “smaller” objects than the joint of the full state of nature and prices. This is

necessarily true as long as agents track something complex enough to implement the planner’s preferred

allocation in the way described by Corollary 2.

In particular consider an economy in which all agents, in some sense, fully internalize the previous con-

straint and worry only about tracking ✓ j and p . Let us introduce this scenario as a “price-only-tracking”

economy, in the following sense.

Definition 8. A price-only-tracking economy is an economy in which z j = (✓ j , p ) for all j . and a type- j

agent’s signal, conditional on z j , cannot be correlated with the signal of any other agent.

This is, of course, an implementation in the optimal set of the planner with unrestricted messages ac-

cording to Corollary 2. So, after verifying that the restriction on messages does not change competitive

equilibria, it is simple to show an extension of our theorems to this context.

Corollary 3. Consider a price-only-tracking economy in the sense of Definition 8. Theorems 4 and 5 continue

to hold.

From the perspective of cognitive externalities, this is perhaps a more subtle result than Theorems 4

and 5. Even with the invariance condition on cognitive costs, the cost of an arbitrary attention strategy

depends on the actions of others. For instance, if all agents coordinated on some strategy that made prices

constant across states of nature, everyone would enjoy cognitive savings. But the externality is muted ex-

actly at the optimum attention strategy. Lemma 1 showed that this strategy has a very specific structure,

which we could exploit in the proof to show equivalence with state-tracking economies, extending Theo-

rem 3, and ultimately extend the welfare theorems.

The informational role of policy. We can finally revisit the thought experiment of Subsection 6.1 regard-

ing how the taxes or other policy messages could themselves play the role of “messages.” So far we have

shown that, under our invariance condition, the equilibria in which z is the state of nature coincides with

the equilibria in which z is the equilibrium prices. What if agents can also track any taxes or other policy

tools that a government may have in its disposal? If tracking such objects was easier than tracking prices,

then equilibria with policy intervention could improve welfare, not by regulating the price system so as to

influencing the costs of decoding it, but rather by letting policy tools themselves serve as better means of

communication than market prices. Our invariance condition makes sure that this is not the case.

6.7 The Role of Mutual-Information Costs

How do the results presented here relate to those obtained in Section 3, particularly with regard to the

conditions under which (Shannon) mutual-information costs ensure efficiency?
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In that section, we highlighted that mutual information alone does not suffice for efficiency: when we

specified the cognitive costs as a function of the mutual information of the decisions and only the price,

there was room for multiple Pareto-ranked equilibria, supported by different levels of correlation in the

agents mistakes. We complemented that sect with an extension in the Appendix, which let costs be

C [�(·)] = (1�K )I [!, p ] +K I [!, (p , v )],

for some K 2 [0, 1] and where each mutual information functional is evaluated with respect to the “right”

transformation of the joint distribution �(·). When K = 0, this reduces to C = I (!, p ), which is the speci-

fication considered in the Section 3. When instead K = 1, this reduces to C = I [!i , (p , v )] and defines the

sense in which the cost of tracking v is the “same” as that of tracking p . We can then show that inefficiency

survives for K < 1 but disappears when K = 1.

These results can be understood through the lens of our more general findings as follows. In the ex-

ample under consideration, p is always a linear combination of ✓ = (⇠, v ), implying that I [!, (p , v )] =
I [!, (p ,✓ )] and therefore

C [�(·)] = (1�K )I [!, p ] +K I [!, z ],

with z = (p ,✓ ). When K = 1, the cost satisfies our invariance condition and, as a result, efficiency is guaran-

teed. When instead K = 0, or more generally K 2 [0, 1), our invariance condition is violated and inefficiency

is possible.

The next result generalizes these ideas and explains a more precise condition under which mutual-

information costs suffice for efficiency:

Corollary 4. Consider an economy in which cognitive costs for all types have form (17) such that, for all types

j , (i) each C j n [·] across goods n 2 {1, . . . , N } is a transformation of Shannon mutual information; and (ii)

X j [·] is a transformation of the (multidimensional) Shannon mutual information of the tuple (!1, . . . ,!N ).
Our invariance condition is guaranteed and the Welfare Theorems hold for state-tracking and price-tracking

variants of the same setting.

Theorems 4 and 5 show the path to efficiency when the cognitive cost is the mutual information of

the signal with the joint of prices and the full state of nature. Here, the cost of tracking any any non-

fundamental information is “just right.” Corollary 3 allows for the possibility of mutual information with

only prices (and one’s own, directly-relevant fundamentals) when correlated randomization is infeasible.

Here, the same cost is infinite.

What if we depart from Shannon mutual information altogether? Section 3 illustrated how this can

open the door to inefficiency by letting “scale” or “complexity” to matter. But not every relaxation of Shan-

non mutual information does this. The precise characterization of the broader class of costs that satisfy

our invariance condition and their axiomatic underpinnings are outside the scope of our paper.

7 Discussion

This paper’s main result connected the efficiency of markets when attention is a scarce resource, and

Hayek’s (1945) casual argument about the informational optimality of the price system, with a sharp con-

dition on the units of attention. Our position is that this condition, much like market completeness, is an
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unrealistic but intellectually useful benchmark. In this final section we discuss how this benchmark helps

contextualize ongoing debates about policy intervention to “correct” inattention and suggests avenues for

future research.

Revisiting the price system’s “economy of knowledge.” Consider the following thought experiment in

the spirit of Hayek. A central planner wants to improve upon the laissez-faire outcome, which corresponds

to a price-tracking equilibrium as studied above. To learn the state ✓ , the planner first surveys all agents

in the economy about their own preferences, endowments, and technologies. Armed with this knowledge,

the planner crafts messages m j (✓ ) to send back to the agents. Such messages encode instructions about

what each agent oughts to do.19

Agents are obedient but inattentive. An optimal mechanism takes this into account and fine tunes the

messages so as to utilize the agents’ scarce attention as efficiently as possible. This is true regardless of

whether the invariance condition of Assumption 3 holds or or not. But whenever it holds, the following is

also true: free markets is an optimal mechanism (and prices are optimal messages).

Markets “economize on knowledge” relative to many feasible but suboptimal alternatives. For in-

stance, consider a specific contingency that is essentially irrelevant for decisions, like whether US GDP

measured in whole dollars is an even or odd number. In equilibrium, agents may optimally choose to pay

no attention to this contingency, and hence completely “dry up” the associated contingent claims market

that would have otherwise operated. By contrast, a centrally planned allocation that forced agents to very

precisely learn about this contingency would be suboptimal because it allocates people’s scarce attention

to the wrong target.

But the perhaps paradoxical additional result is that the same condition that guarantees the optimality

of markets also implies that such optimality is weak, not strict. Corollary 1 showed that, if the central

planner sent every agent a message equal to the entire state of nature, there would be no difference in

welfare. And while we did not develop formal tools to show the generic necessity of Assumption 3, our

intuition about cognitive externalities and the narrow situations in which they might cancel out suggests

that this is essentially the only case in which free-market prices are informationally optimal.

Away from our invariance property, central planning can do better than the invisible hand, or markets

can be improved upon. For example, a planner can contemplate the removal of unnecessarily confusing

markets as strictly welfare-improving. Alternatively, the planner might internalize the value of “improving”

both price and non-price data (e.g., macroeconomic aggregates) so as to contribute to better decisions.

Engaging these issues substantially requires departing from either complete markets (this is known) or

mutual-information costs (this is novel).

On the units of information. Herbert Simon, in his early work on information processing in organiza-

tions (Simon, 1971), highlighted the importance of “attention management” for efficient allocations:

In an information-rich world, the wealth of information means a dearth of something else:

a scarcity of whatever it is that information consumes. [. . . ] Hence a wealth of information

19For simplicity, we assume that agents know for free their own preferences, endowments, and technologies (i.e., each agent of

type j knows ✓ j ). But the argument extends even if agents must incur a cost in order to figure out such information.
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creates a poverty of attention and a need to allocate the attention efficiently among the over-

abundance of information sources that might consume it.

Simon recognized also the delicate relationship between this intuition and an appropriate “measurement”

of information or attention:

To formulate an allocation problem properly, ways must be found to measure the quantities

of the scarce resource; and these quantities must not be expandable at will.

Our paper shares Simon’s goal of understanding how the micro problem of measuring attention relates

to the macro problem of social efficiency. And it offers a sharp answer for competitive economies.

Borrowing Simon’s language, our results say the following. If the units of attention are such that our

invariance condition is satisfied, there is no mismatch between where the social planner would direct at-

tention and where agents naturally direct it. Furthermore, manipulating that set of learnable things, by

altering the messages in central planning or refining policy instruments like taxes in a market implemen-

tation, does not help economize on the scarce resource of attention. This is a subtle, and non-generic,

property of measuring cognition in particular units. Recall the general form of “reduction in perceived

complexity” introduced as expression (2) and restated here:

C [�(·)] =E
⇥
H [⇡(·)]�H [�(· |!)]

⇤
(37)

For such costs, the condition underlying our Welfare Theorems is that payoff-irrelevant manipulations of

the state-space uniformly shift the two terms, leaving their expected difference constant. This property

causes any intuition about externalities changing the “cost of paying attention” to fail. This is the pre-

cise sense in which Shannon’s formulation might be a poor model of “attention scarcity” in the aggregate

economy, to use Simon’s language.20

We hope these insights contribute to the decision-theoretic (e.g., Caplin et al., 2017; Pomatto et al.,

2018; Hébert and Woodford, 2018) and experimental (e.g., Dewan and Neligh, 2017; Dean and Neligh,

2017) literature on measuring attention costs that push beyond the Shannon benchmark. One applica-

tion that we highlighted in the simple, closed-form example of Section 3 was the importance of attention

costs with some notion of continuity, or difficulty of distinguishing numerically close states (e.g., Pomatto

et al., 2018; Hébert and Woodford, 2018). But we were not able to provide a full taxonomy of how this or

other deviations behave in substantially more general settings. This is a promising area for future research.

Markets for information. We considered no explicit markets for information, for sale by experts or news

media (e.g., as in Grossman and Stiglitz, 1980; Admati and Pfleiderer, 1990; Veldkamp, 2006). This was nat-

ural in our formalism of signals as internal cognition, and indeed there was a formal link between cognition

20Simon arrives at a similar conclusion for the different (but compatible) reason that Shannon’s measure is motivated by too

narrow a context:

Can we use the bit [the unit of Shannon entropy] as a measure of an information-processing system’s capacity

for attention? Unfortunately, it is not the right unit. Roughly the trouble is that the bit capacity of any device

(or person) for receiving information depends entirely on how the information is encoded. Bit capacity is not an

invariant, hence is an unsuitable measure of the scarcity of attention.
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in our models and private consumption (and home production) in a classic Arrow-Debreu framework. We

conjecture that, in a world of tradable information, one could extend our invariance condition to become

also a restriction on the technology of producing this commodity sufficient for the related production ex-

ternality to be muted—the information supply twin of our present conditions for information demand.

Of course, it is possible that this model of an efficient “informational economy” would be quite unin-

teresting. Our invariance condition for cognitive costs already encodes zero preference for simplification

of messages or external “oracles” providing useful recommendations. We hope that this negative result

provides guidance on how to contemplate a more sophisticated theory of information markets and the

scope for policy intervention.

Incomplete markets. In many dimensions, our conditions for constrained efficiency may be “loose.”

Consider first the assumption of complete markets. Our main intuition was that pecuniary externalities

induced by attention choice net out. This netting out generically fails in incomplete market models, but

there exist appropriate conditions, identified in Geanakoplos and Polemarchakis (1986), under which it

still holds. We conjecture that a version of their constrained-efficiency results (i.e., holding fixed available

markets) could hold after our constraints on cognitive costs are applied.

From markets to games. Had information or attention been exogenous, the economies studied here

could have been mapped to a class of games in which the equilibrium use of information is efficient in

the sense of Angeletos and Pavan (2007). Indeed, the condition on payoffs that guarantees efficiency in

that paper corresponds to our setting’s property that pecuniary externalities net out (see Appendix E for a

direct analogy to the closed-form example from Section 3).

Under this lens, our results hint to a possible link between the efficiency of the use of information and

that of the acquisition of information in games. This link is further explored in a recent paper by Hébert

and La’O (2019). These authors show that efficiency obtains in a large game in which players choose how

much information to collect about the state of nature and the average action of others if a generalization

of the condition on payoffs provided in Angeletos and Pavan (2007) is complemented by an invariance

condition similar to ours. The combination of our paper and that of Hébert and La’O (2019) thus provide

a unified approach to the welfare implications of rational inattention in markets and games alike.

The case for policy intervention. Our benchmark case clarifies that inattention is not by itself a justifi-

cation for correcting markets in an economy that would otherwise be efficient (i.e., with competitive and

complete markets). But, as we have already discussed, the benchmark case fails on many intuitive levels

when confronted with real-life experience—from the “smell test” of whether individuals can truly dispose

of additional information for free, to the experimental evidence that requires a departure from mutual-

information costs, to the basic observation that people do demand simplified information. In practice,

then, our results open a new door to corrective policy.

We have offered a few concrete examples what this could mean. If people economize cognitive costs by

tracking objects that are less uncertain or more coarse, there can be room for stabilizing prices or “simpli-

fying” markets. And if people can pay attention to certain objects (e.g., noisy news in the media) at a lower

cost than others (e.g., big data or expert opinion), equilibria in which market outcomes are “noisy” could

be superior to equilibria in which market outcomes are more tightly connected to “hard” fundamentals.
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Of course, a more direct justification for policy intervention can be made if inattention is irrational, as

in a segment of the behavioral literature (Chetty et al., 2009; Gabaix, 2014, 2019). But our analysis also hints

at how some lessons from that literature could be fruitfully recast and studied in a rational-inattention

context. For instance, the notions of “salience” and “context dependence” (Bordalo et al., 2013; Köszegi

and Szeidl, 2012) may be accommodated within the rational-inattention framework as violations of our

invariance condition. Similarly, a “desire for sparsity” à la Gabaix (2014), recast in a rational-inattention

manner, could open the door for regulation without the form of irrationality assumed in that paper.

These ideas circle back to our earlier point about the value of departing from mutual-information costs

within the rational-inattention framework. Such departures offer the promise of understanding jointly

choice data, the focus of the growing decision-theoretic and experimental literatures we cited earlier on,

and efficiency, the focus of our paper.
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Appendices

A Proofs for Section 3

Proofs of Propositions 2, 3, and 4

Solving for competitive equilibrium. Let us first specialize to agents’ tracking the random variable ⇠.

Agents solve
max

x1i ,x2i ,�i

E
⇥
Ei

⇥
x1i � x 2

1i /2+ x2i
⇤⇤
� c (�i )

s.t. p x1i + x2i  p⇠+1
(38)

where�i is the “attention level” for agent i . The informational precision� is now a choice variable, and c (·)
is an increasing and differentiable cost function. The outer expectations reflects the fact the information

level is chosen before the revelation of the signal.

Carry over all the previous “shortcuts” which allowed for easy computation of the (ultimately unique)

equilibrium. The equilibrium price function remains affine, p = p0 � g⇠, and agents choose symmetric

strategies in equilibrium. Substituting in the budget constraint at equality gives the expression

max
X1i ,X2i ,�i

E

(1�p )x1i �

x 2
1i

2
+p⇠+1

�
� c (�i )

The first order condition in terms of X1i is

E[1�p � x1i ] = 0

and the measurability constraint, which was suppressed in the short-hand notation of the main text, is

that x1i is measurable in some i -specific information set (or Ei [x1i ] = x1i ). An equivalent formulation of

this first-order condition is thus

E[Ei [1�p ]� x1i ] = 0

Thus x1i =Ei [1�p ].
Let � denote the information choice of other agents. The resource constraint is

R
x1i di = ⇠. These are

the same two equations by which we earlier derived the expressions:

x1i =µ+
�i

�
((⇠�µ) + "i )

p = 1�µ� ⇠�µ
�

where we have been careful to differentiate the attention choice �i of a given agent i from the attention

choice � of all other agents.

Each term of the objective is:

E[(1�p )x1i ] =µ2+
�i

�2
�2

E[�x 2
1i /2] =�

1
2

✓
µ2+

Å
�i

�

ã2

(�2+ r 2
i )
◆
=�1

2

Å
µ2+

�i

�2
�2

ã

E[p⇠] =µ(1�µ)� �
2

�
Collecting these terms, it is convenient to write the objective, up to a constant, as

b (�i ;�)� c (�i )
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with the first part defined as

b (�i ,�)⌘ �
2�i

2�2
� �

2

�
(39)

b (�,�) is exactly the welfare in an economy with exogenously incomplete information and signal-to-noise

ratio �.

To get the value of � in competitive equilibrium, we take the first order condition and subsequently

substitute �=�i . In math, that is
@

@ �i
b (�i ,�)|�=�i

= c 0(�)

which becomes
�2

2�2
= c 0(�) (40)

This has a unique solution for � 2 (0, 1) if costs satisfy the stated “Inada” conditions are satisfied.

State-tracking efficiency (Proposition 2). We first prove the result by brute force. We then illustrate how

it relates to pecuniary externalities, anticipating our subsequent, more general version of the First Welfare

Theorem.

Consider a planner that can dictate the agents what� to choose, but cannot otherwise regulate markets

or replace them without mechanisms. Optimality requires that
d

d�
b (�,�) = c 0(�) (41)

with a total, not partial, derivative on the left hand side. Using our earlier characterization of B , we get
d

d�
b (�,�) =

d
d�


��

2

2�

�
=
�2

2�2
,

which is the same as the first partial of b evaluated in equilibrium. Thus, the equilibrium choice of�coincides

with the planner’s solution.

Let us now under the broader logic behind this “coincidence.” Take� as the given action of other agents

and consider the ex ante utility an agent after optimization:

Vi (�)⌘max
�i

{b (�i ,�)� c (�i )} ,
or, equivalently,

Vi (�) = max
x1i (·),�i

Z

!

Z

⇠

[u (x1i (!)) + (1+p (⇠;�)(⇠� x1i ))]�(!,⇠;�i )d⇠d! (42)

By the standard envelope-theorem argument, the total derivative of Vi is given by the corresponding partial

derivative of the objective, or
dVi (�)

d�
=
Z

!

Z

⇠

dp (⇠,�i )
d�

(⇠� x1i (!)(!))�(!,⇠;�i )d⇠d!

Since p (⇠,�i ) does not depend on!,
dVi (�)

d�
=
Z

⇠

dp (⇠,�i )
d�

⇢Z

!

(⇠� x1i (!))�(!,⇠;�i )d!
�

d⇠.

In equilibrium, �i = � and x1i (!) = x1(!) by symmetry, and
R
!
(⇠ � x1(!))�(!,⇠;�)d! = 0 by market

clearing. It follows that
dVi (�)

d�
= 0,

which verifies that the pecuniary externalities induced by the choice of attention net out.
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Price-tracking efficiency (Propositions 3 and 4). The calculations of A continue to hold when agents

track p , because the signal-to-noise ratio is the same between signals and ⇠ or between signals and p .

This continues to define the competitive equilibrium, proving 3. Similarly, for the planner, the thought ex-

periment of manipulating the attention of others exactly corresponds to the thought experiment outlined

prior to the statement of Proposition 4. Hence this Proposition is proved by the same calculation.

Proof of Proposition 5

Consider the cost-benefit calculation of Appendix section A, but with the altered cost function described

above:

@

@ �i
b (�i ,��i )|��i=�i

=
@

@ �i
c (�i ,�2

p )|��i=�i

Note that, in the class of linear equilibria, �2
p = �

2/�2
�i and is decreasing in ��i . For the sake of generat-

ing an example, let c (�i ,�2
p ) = k (�2

p )c (�i ) for some convex c (·) and increasing k (·). The right-hand-side

argument is then
@

@ �i
c (�i ,�2

p )|��i=�i
= k

✓
�2

�2
i

◆
c 0(�i )

which is not necessarily upward sloping. This means there could be two intersections with the marginal

benefits curve, both of which define possible equilibria.

To be even more concrete, let k (y ) = k0(1 � y �1/2�) and c (y ) = y 2/2. Then the condition defining

equilibria is

k0�(1��) =
�2

2�2

A sufficient condition for this to have two solutions within [0, 1] is k0 > 8�2.

Proof of Proposition 6

This section first proves claims in an environment with exogenously fixed signal precision and mutual

information costs between actions and p , and then discusses a generalization with endogenous signal

precision and and/or different costs of information.

Exogenous signal precision. Conjecture that the price has the form

p = p0� g⇠+h⌫

for some scalars (c , d ), and the signal has the form

!i = p + r "i + s⌫+ t ⇠

= p0+ (t � g )⇠+ (s +h )⌫+ r "i

Note that, given a fixed “budget” of precision, it is optimal to get a signal whose residual is orthogonal to

p . This means that E[(!i �p )(p �p0)] = 0, or

� g t�2+ s h = 0. (43)

The signal-price correlation is then given by

�p =
g 2�2+h 2

(t � g )2�2+ (s +h )2+ r 2
(44)
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and the capacity constraint I [!i , p ]M reduces to�p  �̄⌘ 1�exp�M . Since expected utility is increasing

in �p , this amounts to fixing �p exogenously, to the value �p = �̄.

Finally, in equilibrium, market clearing is

1� Ē[p ] = 1��
⇥
p0+ (t � g )⇠+ (s +h )⌫

⇤
= ⇠ (45)

This implies that p0 = 1/�, t = �1/� + g , and s = �h . The last implies that !i does not move with ⌫,

because the noise in the signal and price cancel each other out.

It remains only to solve for the triplet (g , h , r ). Equations (43) and (44) re-arrange as follows:
h 2

�2
= g

Å
1
�
� g

ã

1
�
+

r 2

�2
�= g 2+

h 2

�2

(46)

Obviously the signs of r and h are indeterminate (and meaningless, since each loads on a zero-mean noise

term); without loss, we let r, h � 0. Furthermore, because there are two equations and three unknowns,

there are generally multiple solutions; let us index the solutions by c . which means solving the above equa-

tions for r and h as functions of g . It is then immediate that a solution exists if and only if g 2 [1, 1/�], and

that the solution is then given by

h =�
«

g
�

1/�� g
�

and r = �/�
p

g �1.

Note that g = 1 yields r = 0 and h = hf b ⌘ �
p
(1/��1). This identifies the equilibrium that replicates the

first-best allocation. Also note that, as we vary g within the admissible range, h reaches its maximum at

g = ḡ ⌘max{1, 1/2�} and this maximum is given by h = h̄ ⌘ �
q

ḡ
�

1/�� ḡ
�
. Finally, note that hf b = h̄ for

�� 1/2 but hf b < h̄ for �< 1/2. Either way, the result holds with h̄ = hf b .

Choice of �. To find whether the previous can be supported as a symmetric competitive equilibrium, it

is sufficient to check whether a given � is a best response to all others’ having signal precision �.

Let g (�) denote the equilibrium slope of prices as a function of others’ attention level �. The value of

information for the agent, up to scale, is

b (�i ;�) =
�i

�2
+�2g (�)

�i

�
� �

2
i

2�2

�
1+�2

�

The marginal benefit of paying a little more attention (cost of paying a little less) is

b1(�i ,�) =
1
�2
+
�2g (�)
�
� �i

�2

�
1+�2

�

which, evaluated at the fixed-point condition, is

b 01(�i ,�)|�i=� =�
�1(��1�1) +� ·�2��2(g (�)�1) =��1(��1�1) +�r 2 (47)

Meanwhile, the marginal cost of information continuously increases from 0 to infinity on the domain � 2
(0, 1).

Generalization to other information costs. First consider the case h = 0. In this case, g (�) = 1/� from

solving (46). The marginal benefits curve when h = 0 is imposed, r 2 is solved for as a function of �, is

(1+�2)��1(��1�1)
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which is continuously decreasing from1 to 0 and thus has one (unique) intersection with the marginal

cost curve, defining an equilibrium with uncorrelated noise.

Consider now imposing r 2 = 0. From the previous subsection, assuming the derivative of the cost

function is invertible, then there exists a unique equilibrium attention level which solves C 0[�̂] = �̂�1(�̂�1�
1).

Note that increasing r 2 unambiguously shifts down the marginal benefits curve defined by (47). Hence

the equilibrium associated with any intermediate r 2 features strictly more attention. We cannot say ex-

actly, however, whether these cases feature more or less non fundamental-volatility, because of the delicate

interaction with changing equilibrium �.

Positive costs of tracking ⌫. Consider now the case in which the agent pays to track the vector (p ,⌫).
Assume that the cognitive cost has the following representation

C [�(·)] = (1�K ) · I [!i , p ] +K · I [!i , (p , v )],

for some K 2 [0, 1] and where I [x , y ] denotes the mutual information between random variables x and

y , as induced by the specified joint distribution between ! and the state. When K = 0, this reduces to

C = I [!i , p ], which is the specification considered in the main text. When instead K = 1, this reduces to

C = I [!i , (p , v )] and defines the sense in which the cost of tracking v is the “same” as that of tracking p . By

the same token, K 2 (0, 1) represents a situation in which the cost of tracking v is positive but lower than

that of tracking p .

Expressing the signal in the form (9), we obtain

C = c (r, s , t ; g , h , K ) =� log
�
1��p (r, s , t ; g , h )

�
�K log

✓
r 2

r 2+ s 2+�2t 2

◆

The first term is the mutual information of !i and p . The second term captures the “marginal” cost of

tracking v, or the mutual information between!i and v conditional on p .

Fix (g , h ) and consider how an individual decides to construct her signal. The capacity constraint is

C (r, s , t ; g , h )M , for some constant M . This can be re-written as

�p  1� e M

✓
r 2+ s 2+�2t 2

r 2

◆K

(48)

The agent can freely pick (�p , r, s , t ) subject to 43 and 44. For any K > 0, picking s 6= 0 or t 6= 0 strictly tight-

ens the above constraint, thus reduces the highest attainable value of �p . Since utility is strictly increasing

in �p , it follows that the agent find its strictly optimal to set s = t = 0. By market clearing, h = 0, which

selects the equilibrium with no correlation as the unique equilibrium.

This equilibrium, however, need not be efficient. To see this, consider a planner that dictates agents

what combination of (�p , r, s , t ) to choose, subject to (43), (44) and (48), and that internalizes the market

clearing conditions. Take now the limit as K # 0. The marginal effect on �p of increasing s 2 and t 2, while

decreasing r 2, is approximately zero around the point s 2 = t 2 = 0. Meanwhile, the planner’s objective can

be shown to be proportional to ��1
p � r 2

2 , so there is a first-order benefit to decreasing r . It follows that,

at least around the point s 2 = 0, social welfare is increasing in s 2 and hence the optimal s 2 is greater than

0. For K positive but small enough, the unique equilibrium is therefore dominated by an allocation with

s < 0 and h =�s > 0.

44



B Proofs for State-Tracking Economies

Proof of Theorem 1

Let ((x j (!))Jj=1, y (!)) be the competitive equilibrium allocation of goods and ((� j )Jj=1) be the levels of at-

tention. Assume (counterfactually) that there exists some ((x 0 j (!))Jj=1, y 0(!)) and ((�0 j )Jj=1,�0) 2 (�(⌦⇥
⇥))J+1 that is feasible and Pareto dominates the previous. This means there exists some j such that (x 0 j (!),�0 j )� j

(x j (!),� j ). For all other i 6= j , (x 0i (!),�0i )•i (x i (!),�0i ).
Because of consumer optimization, it must be that (x 0 j (!),�0 j ) /2 B(p (✓ ), e j (✓ ), a j⇧(✓ )). Recall that

this set embeds both the budget constraint and the measurability constraints associated with the cognitive

friction. If these constraints are violated, then the proposed allocation is not feasible and the proof is done.

If instead these constraints are satisfied, it must be the case that the budget is violated, orX

!,✓

(p (✓ ) · x 0 j (!))�0 j (!,✓ )>
X

✓

(p (✓ ) · e j (✓ ) +a j⇧(✓ ))

Because of local non-satiation, it must further be the case that, for all i 6= j ,X

!,✓

(p (✓ ) · x 0i (!))�0i (!,✓ )�
X

✓

(p (✓ ) · e i (✓ ) +a i⇧(✓ ))

Denote the aggregate demand of a given type as x j (✓ ) ⌘ P
! x j (!)� j (! | ✓ ) in the first allocation

and x 0 j (✓ ) ⌘
P
! x 0 j (!)�0 j (! | ✓ ) in the proposed better one. Let aggregate supply similarly be y (✓ ) ⌘P

! y (!)�(! | ✓ ). Summing these expressions, using population weights ⇠ j , and substituting in the ex-

pression for profits gives
JX

i=1

X

✓

µ j (p (✓ ) · x 0 j (✓ ))>
JX

i=1

X

✓

µ j (p (✓ ) · e j (✓ )) +p (✓ ) · y (✓ )

Since it is part of an equilibrium, (y (!,�(!,✓ ))maximizes profits among all feasible combinations of

production plans and cognitions, given prices p (✓ ). By construction, (y 0(!),�0(!,✓ )) is feasible. Hence,X

!,✓

(p (✓ ) · y (!))�(!,✓ )�
X

!,✓

(p (✓ ) · y 0(!))�0(!,✓ ),

or equivalently

p (✓ ) · y (✓ )� p (✓ ) · y 0(✓ ).

Combining the above yields
JX

j=1

X

✓

µ j (p (✓ ) · x 0 j (✓ ))>
JX

j=1

X

✓

µ j (p (✓ ) · e j (✓ )) +p (✓ ) · y 0(✓ )

Provided p (✓ )> 0 for all ✓ 2⇥, this contradicts the resource-feasibility of the proposed allocation. That is,

a Pareto dominating allocation cannot exist.

Proof of Theorem 2

The main insight from our First Welfare Theorem proof—the more easily verifiable optimality of alloca-

tions within types—suggests it will suffice to establish the requisite convexity properties for the “outer”

preferences and production sets defined over the type-specific “team” problem. Below, we formalize this

idea and show how the assumed convexity condition on C suffices for a version of the Second Welfare

Theorem to apply in our setting even if the primitive preferences and technology are not convex. Once

45



this step is completed, we can prove Theorem 2 by applying the standard Second Welfare Theorem on the

economy defined by the outer preferences and technologies.

Outer preferences and technologies. Let x̄ (✓ ) be a type-specific demand for goods in state ✓ . This map-

ping x̄ (✓ ), given a fixed tracked variable z (and its relationship with the state ✓ ), is compatible with a set of

possible inattentive demands x (!) : ⌦!RN and attention distributions �(!, z ). Denote this set of inner

choices as

G(x̄ (·))⌘
⇢

x (!),�(!,✓ ) :
X

!2⌦
x (!)�(! | ✓ ) = x (✓ ),8✓ 2⇥

x 2X
�

Now consider defining preferences over x̄ (·) bundles that “concentrate out” the choices of x (·) and

�(·): these is the best choice of “aggregate demand” across states conditional on optimizing the other pa-

rameters. Denote this “outer preference” ordering as • j ,O u t The outer preferences are represented by the

following utility function:

U j (x̄ (·))⌘ max
x (·),�(·)

X

!,✓

u j (x (·),✓ )�(!,✓ )�C j [�(·)]

s.t. (x (·),�(·)) 2G(x̄ (·))
(49)

Finally let X denote some technologically feasible set for the outer bundles x̄ (✓ ).
Similarly, for the firms, we define the aggregate production set as

Y :=

®
ȳ (·) : 9

⇥
(�(·), y (·)) 2 F

⇤
s.t.

X

!2⌦
y (!)�(! | ✓ ) = y (✓ )

´
(50)

where F is defined in (16) as the “regular” production frontier (here, specialized to Z =⇥). These are aggre-

gate production plans that are feasible under any choice of cognition. Note that, because of the linearity

of the firm’s problem, we can redefine profit maximization as selecting a bundle y (✓ ) 2 Y to maximizeP
✓ p (✓ ) · y (✓ ).

Convexity. We are now ready to show that the convexity assumption invoked in Theorem 2 suffices for

the “outer” preferences and technologies defined above to be convex. This is formalized in the following:

Proposition 7. Impose Assumption 2, i.e., let C [·] be (weakly) convex over the distribution of posteriors in-

duced by a given signal! about the physical state ✓ . Then:

1. (Convexity of outer preferences) For every j 2 {1, . . . , J } and every pair x (✓ ), x 0(✓ ) 2 X, x (✓ ) � j ,O u t

x 0(✓ ) implies that a x (✓ ) + (1�a )x 0(✓ )� j ,O u t x 0(✓ ) for all a 2 (0, 1).

2. (Convexity of outer technology) Y is convex.

Proof. Here we prove that that the invoked assumption on C suffices for the “outer” preferences to be

convex, even if the primitive preferences, U , are not. The proof of the convexity of Y is omitted because it

follows from a similar argument.

Let (x 0(·),�0(·)) and (x 1(·),�1(·)) be the maximum arguments of (49) for x̄ 0(·) and x̄ 1(·), respectively.

Define a new signal which is a compound lottery over the previous two signals: agents receive !̃ ⌘ (!,⇠),
where ⇠ 2 {0, 1} indicates which of the two previous distributions! has. In the space of posteriors, this is
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a convex combination of the previous signal structures. If this signal has joint distribution �(!̃,✓ ), then

by our convexity assumption on cognitive costs, �C [�(·)]��a C [�0(·)]� (1�a )C [�1(·)].
Assume the allocation is such that agents consume x i (!)when they receive (!, i ). This strategy’s feasi-

bility is evident from the linearity of the budget constraint. The utility, net of cognitive costs, of this strategy

is strictly higher than the convex combination of utilities from options 0 and 1 and hence the utility of op-

tion 1 given x 0(✓ )• j ,O u t x 1(✓ ). The utility of a x 0(✓ ) + (1�a )x 1(✓ )must be weakly higher than that of the

constructed strategy, since it involves optimization over all possible feasible strategies. É

Putting everything together. From here, it is fairly straightforward to arrive at our version of the Second

Welfare Theorem by following similar steps as in Debreu (1954).21

Let ((x j (·))Jj=1, y (·))be a Pareto optimal allocation of goods and ((� j (·))Jj=1,� f (·))be the associated levels

of attention. Denote the aggregate demand of a given type as x̄ j (✓ )⌘
P
!2⌦ x j (!)� j (! | ✓ ) and aggregate

supply as ȳ (✓ ) ⌘
P
! y (!)�(! | ✓ ). From Theorem 2 in Debreu (1954), there exists a linear functional

v (x̄ (✓ )) ⌘
P
✓ �(✓ ) · x̄ (✓ ) such that U j (x̄ 0(✓ )) � U j (x̄ (✓ )) implies v (x̄ 0(✓ )) � v (x̄ (✓ )) for all j and, for all

feasible production plans ȳ 0(✓ ),
P
✓ �(✓ ) · y (✓ ) �

P
✓ �(✓ ) · y 0(✓ ). This implies that the “aggregate” Pareto

allocations x (✓ ) and ȳ (✓ ) solve the “outer” consumer problem and “outer” producer problem, respectively,

for prices equal to�(✓ ). Further, the Pareto consumer allocations (x j (·),� j (·))Jj=1 are (possibly non-unique)

solutions to the inner problem (49), and that the proposed firm allocations (y (·),�(·)) are (possibly non-

unique) solutions to the inner problem (50). This is a sufficient condition for individual optimality. Thus

the allocation can be supported as a competitive equilibrium.

C Proofs for Price-Tracking Economies

Proof of Theorem 3

Let us start with the first direction. By consumer optimality in the price-tracking economy, all bundles

(x j (·),� j (·)) solve the price-tracking consumer problem. Assumption 3 ensures that these bundles have

the same information-cost-inclusive utility with respect to ✓ or (✓ , p (✓ )). This is because the former is nec-

essarily a sufficient statistic for the latter. Finally there are no differences in feasibility in terms of goods or

signals. Hence the same allocations solve each consumer’s problem in a state-tracking economy evaluated

at prices p (✓ ); markets clear; and this is a state-tracking equilibrium.

The second result (state-tracking to price-tracking) follows from almost identical logic. Consumer op-

timality in the state-tracking economy implies that the bundles give weakly higher utility than any other

bundle when evaluated with respect to (p (✓ ),✓ ); agents thus optimize with the same actions and equilib-

rium prices; markets clear; and thus this is a price-tracking equilibrium.

Proofs of Theorem 4, Theorem 5 and Lemma 1

See main text.
21 There are two additional assumptions that are part of the primitive model set-up. First, the space of consumption possibilities

is convex. Second, the goods space is finite dimensional (because, by assumption, N |⇥| <1). Third, outer preferences are

continuous, or for every (x (✓ ), x 0(✓ ), x 00(✓ )), the sets {a 2 [0, 1] : x (✓ ) • j ,O u t a x 0(✓ ) + (1 � a )x 00(✓ )} are closed. This is a trivial

consequence of having a continuous Bernoulli utility function.
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Proof of Corollary 3

The difficult part is writing an extended version of Theorem 3, which says that equilibria in the price-only-

tracking economy are interchangeable with equilibria in a replicating state-tracking economy. Armed with

such a result, it is very clear how to re-prove Theorems 4 and 5. The remainder of this proof will thus extend

Theorem 3.

Let us start with the first direction, from the price-only tracking economy to the state-tracking econ-

omy. By consumer optimality in the price-tracking economy, all bundles (x j (·),� j (·)) solve the price-only-

tracking consumer problem. A fortiori, these bundles give weakly higher utility than any feasible bundle

that has the (p (✓ ),✓ j ) sufficient statistic property in signals. By Lemma 1, a sufficient condition for a bun-

dle to solve the ✓ -tracking consumer problem is that it weakly dominates all bundles with signals that

satisfy the property by the state-tracking criterion.

Assumption 3 ensures that, if we take the same bundle with a signal for which (p (✓ ),✓ j ) is sufficient

for ✓ , and generate a new “direct” signal of ✓ , the same numerical utility value will be the same.

Thus, we can conclude that (x j (·),� j (·)) has weakly higher utility than any feasible bundle with the

(p (✓ ),✓ j )-sufficient-statistic property for the cognitive state. This, plus the fact that feasibility is the same

in both the ✓ and price-tracking problems, proves that (x j (·),� j (·)) is optimal for each consumer evaluated

at prices p (✓ ). Since the allocation is optimal for each consumer, and markets clear (carried over from the

price-tracking economy), this is a price-tracking equilibrium.

The second result (state-tracking to price-only-tracking) has almost identical logic. Consumer opti-

mality in the state-tracking economy implies that the bundles give weakly higher utility than all bundles

with the sufficient statistic property in signals, which (combined with Assumption 3) a fortiori implies

optimality in the price-only-tracking economy. Markets clear and all agents optimize; thus this is a price-

only-tracking equilibrium.

D Consumer Surplus in the Example Economy

Since there are only supply (endowment) shocks, the equilibrium price function P (·) can be read as the

inverse of the aggregate demand function. In textbook microeconomics, the area under the demand curve

up to the equilibrium quantity measures consumer surplus. The same is true here in the absence of rational

inattention (�= 1), but not in its presence (�< 1).

Proposition 8 (Consumer surplus). Consider the area under the demand curve,
R ⇠1

⇠0
P (X )dX . In the presence

of rational inattention, this area ceases to measure either ex post consumer surplus (the increase in experi-

enced utility from an increase in the realized value of the endowment from ⇠0 and ⇠1) or ex ante consumer

surplus (the increase in expected utility from an increase in its prior mean from ⇠0 to ⇠1).

This is perhaps most obvious in the limit of vanishingly little attention, or � # 0 (obtained as the equi-

librium outcome in a limit as C becomes arbitrarily high for all � > 0). In this limit, demand is highly

inelastic (and prices highly variable). But this inelasticity, and the correspondingly vast area under the

demand curve, does not imply that the good is particularly “essential.”
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Proof of Proposition 8

Coincidence with complete information. Let V (⇠) ⌘ U (x ⇤1i , x ⇤2i ) the (identical) value function for each

agent i , behaving optimally. The change in realized welfare is

V (⇠1)�V (⇠0) = (⇠1�⇠0) +
⇠2

0�⇠2
1

2
Now let ⇠ be a random variable with mean ⇠0 and variance �2 <1. The change in expected utility

from shifting the mean to ⇠1, maintaining all other properties of the distribution (including variance), is

equal to the area under the demand curve
R ✓1

✓0
P (X )dX . E[V (⇠)] = 1+E[⇠]� (Var[⇠] + (E[⇠])2)/2. Thus the

effect of a mean shift is (⇠1�⇠0) + (⇠2
0�⇠2

1)/2.

Finally, it is straightforward to calculate that the area under the demand curve is:
Z ⇠1

⇠0

1� x dx =


x � x 2

2

�⇠1

⇠0

= (⇠1�⇠0) +
⇠2

0�⇠2
1

2

This equivalence is exact given the lack of income effects in the model (and hence the equivalence of Mar-

shallian and Hicksian demand).22

Non-coincidence with incomplete information. Let us define V (⇠; r ) as the cross-sectional expectation

of utility given a certain value of⇠ an a signal noise r . Equivalently, it is a welfare functional with utilitarian

Pareto weights. It is straightforward to calculate

V (⇠; r ) =
Z

i

(x1i � x 2
1i /2+ x2i )di = 1+⇠� (⇠2+ r 2)/2

Thus change and realized utility and the change in expected utility from a mean shift remain equal to

⇠1�⇠0+ (⇠2
0�⇠2

1)/2 irrespective of r (hence �).

The area under the incomplete information demand curve changes with �:
Z ⇠1

⇠0

(p0�p1X )dX = p0(⇠1�⇠0) + (p1/2)(⇠2
0�⇠2

1)

=
Å

1+
Å

1��
�

ã
µ
ã
(⇠1�⇠0) +

1
2�
(⇠2

0�⇠2
1)

Only in the case of �= 1 (i.e., complete information) does this coincide with the welfare measures.

E From Market Economies to Games: An Example

Consider the two-good example of Section 3. For the present purposes, let us add a representative, fully

attentive, competitive firm that can transform the second good to the first good according to the following

technology: �y2 = 1
2� (y1)2, where y1 � 0 is the firm’s output of the first good (“coconuts”),�y2 � 0 is its input

of the second good, and � > 0 is a technological parameter. Because the firm is attentive, it maximizes

p y1�y2 state-by-state. It follows that her optimal supply of coconuts is given by y1 =�p and that the market

for coconuts is given by ⇠+ y1 = x̄1, or equivalently ⇠+�p = x̄1, where x̄1 is the aggregate consumption of

coconuts. Solving this for the price, we have

p = P (⇠, x̄1) = 1
� (⇠� x̄1)

22We use the entire area under the demand curve, instead of the “Harberger triangle,” because there is an implicit producer

surplus above the (vertical) supply curve in the endowment economy.
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Finally, using the budget constraint of the household to express his consumption of he second good (“money”)

x2 = 1+p⇠�p x1, replacing p from the above market-clearing condition, and dropping the “1” index from

x1, we can express the realized utility of the typical consumer as

u = V (x , x̄ ,⇠)

where V (x , x̄ ,⇠)⌘U (x , 1+P (⇠, x̄ )(⇠� x )) = x � 1
2 x 2+1+ 1

� (⇠� x̄ )(⇠� x ). That is, the Walrasian economy

under consideration maps to a game in which the players are the consumers, a player’s action is her de-

mand for coconuts, and her payoff is given by V (x , x̄ ,⇠), or a function of her action, the average action,

and an exogenous fundamental.

For a moment, abstract from the endogeneity of information, as done in Angeletos and Pavan (2007).

For any given information structure, the equilibrium is the fixed point to

E [Vx (x , x̄ ,⇠)|!] = 0,

while the planner’s solution is the fixed point to

E [Vx (x , x̄ ,⇠) +Vx̄ (x , x̄ ,⇠)|!] = 0,

where Vx (·) and Vx̄ (·) denote the derivatives of V (·) with respect to, respectively, the individual and aver-

age actions. Intuitively, the planner instructs the agents to internalize their payoff externality, to the best

possible degree given their information. This is true for arbitrary V and, in this sense, for arbitrary games.

But for the particular game under consideration, the equilibrium “happens” to satisfyE [Vx̄ (x , x̄ ,⇠)|!] = 0

and, therefore, the equilibrium use of information coincides with the efficient use of information, regard-

less of the information structure. As already explained, this property follows in our closed-form example

from the quasi-linearity of utility, and in our general framework from complete markets.

This explains the sense in which the class of inattentive economies studied in this paper map to the

class of games that, under the taxonomy of Angeletos and Pavan (2007), feature efficiency in the equilib-

rium use of information. Now take this class of games, let the players choose their information structure

in the flexible manner we have described in this paper, and compare the equilibrium to the solution of

planner that can control both actions and information. Provided that our invariance condition holds, the

equilibrium and the planner’s solution continue to coincide. In other words, our invariance condition

suffices for efficiency to extend from the use of information to the acquisition of information.

The broader validity of this insight is explored in a recent paper by Hébert and La’O (2019). But whereas

our invariance condition is strong enough to make sure that the equilibrium attains the same outcomes

as a planner who can regulate not only people’s signal choices but also the very objects they track, Hébert

and La’O (2019) show that a weaker invariance condition is needed under the restriction that the planner

can do the former but not the latter.23

23To see what we mean, consider again the game-representation of our simple example. In Hébert and La’O (2019), the planner

may economize on the cognitive cost of one’s learning about the average action x̄ by manipulating the mapping from the state

of nature to x̄ , but is precluded from sending other messages in place of x̄ . This is akin to a restricted version of the planner’s

problem we studied in Section 6, which in turn helps explain why a weaker invariance condition is needed for efficiency in the

context of Hébert and La’O (2019). But note that such a restriction is not natural in our own context, because, as noted in the

beginning of Section 6, other market data or even taxes could themselves play the role of messages in place of or in addition to

prices (or the average action).
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