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1 Introduction

Aggregate match efficiency is a useful concept in macroeconomics. Its fluctuations expand

and contract the hiring possibility frontier of the economy much like changes in total factor

productivity shift its production possibility frontier. As such, movements in match efficiency

are crucial to understanding the volatility of the job finding rate, a key driver of unemployment

dynamics (Shimer, 2012).

The Great Recession offered a striking example. At the onset of the recession, the job finding

rate fell sharply, leading to sustained unemployment. However, its decline was much more

severe than what would usually be implied by the decrease in labor market tightness—the

ratio of available jobs (vacancies) to idle workers (the unemployed)—alone. On the other side

of the market there was only a moderate increase in the rate at which firms’ vacancies were

filled, much less than would usually be implied by the decrease in labor market tightness. The

reason for both is precisely that measured productivity, or efficiency, of the matching process

broke down significantly over this period (Elsby, Michaels, and Ratner, 2015).

A deterioration in aggregate match efficiency could derive from a number of sources. There

may be a reduction in search intensity among the pool of job seekers, or a compositional shift in

this pool toward workers with lower job finding rates. In addition, there may be a surge in mis-

allocation across labor markets between the job requirements of open positions and the charac-

teristics of job seekers. The respective role of workers’ search effort and mismatch as shifters of

the aggregate matching function have been well understood and investigated for almost three

decades, as thoroughly discussed in the survey by Petrongolo and Pissarides (2001).1

Instead, macroeconomists have focused less on the role played by firms’ recruiting intensity

(the counterpart of workers’ search effort) in labor market fluctuations. The empirical analy-

sis of Davis, Faberman, and Haltiwanger (2013) (henceforth DFH) has been a game changer

in this literature. DFH exploited establishment-level JOLTS data to document a great deal of

heterogeneity in recruiting intensity across firms and, in particular, a strong positive relation-

1Clearly, the Great Recession has revived both literatures. In the context of the U.S., Hornstein, Kudlyak, and
Lange (2016), Hall and Schulhofer-Wohl (2018), and Mukoyama, Patterson, and Şahin (2018) have investigated
the jobseekers’ composition and search intensity channel. Barlevy (2011), Şahin, Song, Topa, and Violante (2014),
Herz and Van Rens (2019), and Kothari, Saporta-Eksten, and Yu (2013) have explored the role of the mismatch
hypothesis.
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ship between the vacancy yield (the success rate of a vacancy) and the hiring rate in the cross

section.2 Their work has spurred new interest on the topic, in terms of both measurement from

microdata (see Mueller, Kettemann, and Zweimuller, 2018; Carrillo-Tudela, Kaas, and Gartner,

2023; Lochner, Merkl, Stuber, and Gurtzgen, 2019; Forsythe and Weinstein, 2021) and theoretical

equilibrium modelling (Kaas and Kircher, 2015; Gavazza, Mongey, and Violante, 2018; Leduc

and Liu, 2020). Our paper contributes to this line of research.

We use U.S. microdata on hires, employment, and vacancies, combined with minimal struc-

ture from a dynamic model of firm hiring in a frictional environment, in order to answer a

number of questions. What economic forces drive differences in observed recruiting outcomes

at the firm level? What explains the dynamics of aggregate recruiting intensity over the cycle?

And what lessons can we draw regarding aggregate labor market dynamics?

To answer these questions our paper systematically addresses heterogeneity in hiring be-

havior across firms. To take a broad view of this heterogeneity we create a new dataset that

links firm-level observations in two existing sources of firm-level microdata at the U.S. Bureau

of Labor Statistics (BLS): the Job Openings and Labor Turnover Survey (JOLTS) and the Quarterly

Census of Employment and Wages (QCEW). We can therefore, for the first time, incorporate het-

erogeneity in establishment age and per-worker earnings into the analysis, along with size and

industry which are available in JOLTS. As a companion to this paper, we are placing online a

repository of cross-tabulations from our new linked JOLTS-QCEW microdata that will benefit

other researchers interested in firm dynamics, job reallocation, and worker flows.

To provide a framework for understanding the data we first specify a model of heteroge-

neous firms facing shocks to separations and productivity, nested in a general equilibrium ran-

dom search environment. Each period firms first choose their desired rate of gross hires, and

then choose a combination of two inputs to attain this: recruiting intensity and vacancies. The

stronger is recruiting intensity, the faster firms’ vacancies are filled (and the higher the vacancy

yield). To link micro to macro we use the model to derive an expression for aggregate recruiting

2In particular, this key empirical finding represents a rejection of the classical theoretical result in chapter 5
of Pissarides (2000) stating that if the recruiting cost per vacancy is isoelastic in effort (and independent of the
vacancy rate), then the optimal search intensity is a constant and we are back to the model without effort choice.
This ‘neutrality’ result was taken as a benchmark reference for a long time and was, perhaps, one of the reasons
why macroeconomists appeared uninterested in studying recruiting intensity.
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intensity (ARI) from first principles.

We combine our model and micro data to decompose our measure of ARI into three factors:

slackness, growth, composition. The first factor summarizes the general equilibrium response

of recruiting effort to labor market conditions that are common across firms, the second captures

the economy-wide hiring rate, the third reflects heterogeneity within and across groups of firms.

We show how to build each of these components from the ground up using our QCEW-JOLTS

microdata. These data enter the measures directly as inputs, and indirectly through parameters

that we estimate in a first stage. Having constructed these measures, we empirically decom-

pose the time-series variance of ARI into its three theoretical components. Finally, we use our

decomposition results to motivate a simple empirical index that can be entirely computed using

publicly available data, and conduct counterfactual exercises.

Our analysis contains four main findings. First, at the micro level, the bulk of cross-sectional

variation in the rate at which firms fill vacancies can be explained by heterogeneity in firm-

level hiring rates, even after controlling for firm age, establishment wage, wage growth, quit

rate, employment, employment growth and industry information, which are available from our

merged QCEW-JOLTS data. This stark regularity significantly extends—through the addition

of controls—the initial observation of DFH that in the cross-section of establishment gross hiring

rates, firms with higher gross hiring rates tend to have higher vacancy yields.3 We conclude

that at the firm level the hiring rate is, quantitatively, a ‘sufficient statistic’ for the vacancy

filling rate. This empirical regularity is important. We show in Proposition 1 that, joint with

firm optimality, it puts tight restrictions on functional forms in a theory in which firms choose

cost-minimizing combinations of recruiting inputs.

Second, we combine our microdata and theory to aggregate our micro-founded recruiting

intensity decisions up to the macro level measure of ARI. We document that aggregate recruit-

ing intensity is strongly procyclical and that its fluctuations account for roughly 40% of the

volatility of overall aggregate match efficiency from 2002 to 2019. The residual component of

match efficiency beyond ARI —which captures other mechanisms studied in the literature such

as workers’ job search effort, jobseekers’ composition, and sectoral mismatch— is also procycli-

3See their Figure IX, which our Figure 1 extends from their 2001-2006 sample to 2001-2018.
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cal.

Third, decomposing our aggregate measure of recruiting intensity reveals that its procycli-

cality is chiefly due to firms optimally cutting back on recruiting effort when labor markets are

slack and plenty of job seekers are available. This dominant general equilibrium feedback mo-

tivates the construction of a proxy-index that explains the bulk of time-series variation in ARI

and is easily computable from publicly available data. Proposition 2 shows that a representative

firm choosing aggregate vacancies and recruiting effort will, in equilibrium, yield a measure of

recruiting intensity identical to our index. We show that this index is conceptually different

from that proposed by DFH: their approach imputes the estimated value of the cross-sectional

elasticity to a macro elasticity, and by doing so it abstracts from general equilibrium forces.

Finally, in order to guide future research on the dynamics of unemployment around the

Great Recession, we conduct a simple counterfactual experiment. We illustrate that the sharp

fall in our empirical measure of the recruiting intensity of hiring firms can account for much of

the decline in the job finding rate in the immediate aftermath of the Great Recession, but little

of its slow recovery. In other words, the high duration of unemployment which lingered well

after the end of the recession appears to have other culprits.

Outline. The paper proceeds as follows. Section 2 presents the theoretical framework for our

empirics. Section 3 describes JOLTS and QCEW microdata and our empirical approach. Section

4 presents our main empirical results. Section 5 shows the robustness of these results. Section 6

returns to the model to interpret our results through an index of ARI and conduct counterfac-

tuals. Section 7 discusses (a) alternative theories linking vacancy yields and hiring rates, and

(b) our findings in the context of overall cyclicality of match efficiency. Section 8 concludes. An

online appendix contains additional figures and tables (Appendix A), mathematical derivations

(Appendix B), and additional details on data construction and treatment (Appendix C).

2 Theory

We derive our empirical model of recruiting intensity from a dynamic decision problem of a

firm hiring in a frictional labor market. We first specify the partial equilibrium microeconomic

environment, and then close the model in order to study the aggregate labor market.
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2.1 Microeconomic environment

Consider a firm i in period t that has nit employees at its disposal, productivity zit and fixed

idiosyncratic match efficiency ϕi. Flow profits of the firm πit consist of its value added net of

operating costs f (zit, nit) minus wage payments wit, and the costs associated with recruiting.

A firm recruits workers by spending resources on two inputs: vacancies vit and recruiting

intensity eit. In order to be consistent with microdata, our notion of a vacancy in this paper hues

to the tight definition of a vacancy used by the Bureau of Labor Statistics (BLS). In the JOLTS

a vacancy is an “open position ready to be staffed in 30 days, for which the establishment is actively

recruiting externally”.4 Recruiting intensity includes expenditures on all other variable inputs

such as advertising, screening, recruiting events, etc.5 We allow costs per vacancy to depend on

employment nit, the number of open positions vit, and on recruiting intensity eit: Ci(eit, vit, nit).

More recruiting intensity increases the effectiveness of a vacancy, such that firm hires hit are a

product of the firm’s effective vacancies v∗it = ϕieitvit and the aggregate meeting rate of effective

vacancies Q∗
t , which the firm takes as given.6 For now we defer closing the model, which will

require specifying Q∗
t consistently with the firm-level hiring technology, to the next section.

The firm’s problem is as follows. Let st be the history of firm-level and aggregate shocks

until date t, Mi
(
s

t) the subjective discount rate associated with history s
t, and δit

(
s

t) the

stochastic rate of exogenous separations. The firm chooses sequences of recruiting intensity

eit(s
t), vacancies vit(s

t) and endogenous separations sit(s
t) to solve the following dynamic

4See Bureau of Labor Statistics, Handbook of Methods, Chapter 18 - Job Openings and Labor Turnover Sur-
vey, for detailed definition of responses. A copy of the short form filled in by hiring managers is available at
https://www.bls.gov/jlt/jltc1.pdf

5The survey data collected in O’Leonard, Krider, and Erickson (2015) show that these expenditures are sizable
and vary by type of firm.

6Note that this relation hit = Q∗v∗it implies that the hiring technology is constant returns to scale in vacancies.
We provide evidence of this property later.
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problem:

max
{eit(st),vit(st),sit(st)}∀t,∀st |s0

∞

∑
t=0

∑
s

t|s0

Mit
(
s

t)πit
(
s

t) , subject to (1)

πit(s
t) = f

(
zit

(
s

t
)

, nit(s
t)
)
− wit

(
s

t) nit(s
t)− Ci

(
eit(s

t), vit(s
t), nit(s

t)
)

vit(s
t)

nit+1(st+1) =
(

1 − δit+1(st+1)
)

nit(s
t) + hit(s

t)− sit(s
t)

hit(s
t) = Q∗

t (s
t) ϕi eit(s

t) vit(s
t) , vit(s

t) ≥ 0 , sit(s
t) ≥ 0.

The first equality is the definition of profits, the second is the law of motion for employment,

and the third is the firm-level hiring technology. Clearly, if the firm chooses positive endoge-

nous separations sit(s
t) > 0, then recruiting inputs are optimally set to zero.

Separability. The problem separates into three stages: (1) decide whether to hire workers or

separate with workers, (2) conditional on hiring, choose the optimal number of hires, which

delivers the state-contingent policy {hit(s
t)}t,st , (3) choose inputs to minimize the recruiting

costs associated with hit(s
t). Intuitively, since (i) the recruiting inputs are variable and (ii) costs

are sunk after hiring a worker, the choice of inputs is irrelevant for future hiring decisions.

Therefore, given a path for hires hit(s
t), the firm solves a static recruiting cost-minimization

problem at each node s
t.7

Recruiting problem. Since the aggregate history only enters the recruiting problem through

Q∗
t (s

t) and hit(s
t), it is redundant once Q∗

t and hit are taken as given by the firm at the recruiting

stage. The problem of a firm with employment nit and target hires hit is therefore

min
eit,vit

Ci

(
eit, vit, nit

)
vit s.t. hit = Q∗

t ϕi eit vit. (2)

In specifying the cost function we ensure that the model is consistent with the empirical obser-

vation that, in the microdata, the vacancy yield of firms (hit/vit) is approximately log-linear in

7It is worth noting that there may exist cases in which we would not be able to attain this separability because
current recruiting effort would affect future employment, even conditional on current hires. For example, suppose
that firms vary their screening effort and low screening effort leads to hiring workers who are more likely to quit
next period. In this case, in the law of motion for employment in (1) the exogenous separation rate δit+1 would
depend on eit, i.e. eit would affect nit+1 over and above its effect on hit.
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Figure 1: Vacancy rate and vacancy yield by gross hiring rate - JOLTS 2002-2018
Notes Establishment-month observations in JOLTS microdata 2002-2018 (blue circles), or 2008-2009 (red crosses)
are pooled in bins, where bins are determined by net monthly growth rate, and have a width of 1 percent. Growth
rates computed as in DFH. Within bins b, total hires hb, total vacancies vb, total employment nb are computed.
From these, the gross hiring rate hb/nb, vacancy yield hb/vb and vacancy rate vb/(vb + nb) are computed. Bins
with positive gross hiring rates are kept. Points plotted are logs of these variables, differenced about the bin
representing a one percent net growth rate.

the gross hiring rate of the firm (hit/nit). First documented by DFH in JOLTS microdata from

2002 to 2006, we update this relationship and show it to be robust through and after the Great

Recession in Figure 1. Our first theoretical contribution is to show that this relationship places

tight and precise restrictions on Ci.

Proposition 1. If and only if (i) the per-vacancy cost function Ci is of the following form:

Ci (eit, vit, nit) = xi Gc

(
Ge(eit) + Gv

(
vit

nit

))
, (3)

where the functions Gc, Ge and Gv are all isoelastic (constant elasticity), then (ii) firm optimality implies

that the firm’s job-filling rate fit = (hit/vit) and vacancy rate (vit/nit) are log-linear in the hiring rate

(hit/nit).

Proof. See Appendix B.

The if component of Proposition 1 could be viewed as an exercise in structural reverse engi-
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neering: it reassuringly demonstrates that there exists a cost function that delivers the empirical

relationship we observe in the data. The more substantive contribution of Proposition 1 is the

only if component, which requires a more involved proof stating that the empirics places a very

strong restriction on the theory. The only if part provides a family of functions for future work

and, importantly, restricts the number of parameters in C.8

We make three points regarding cost functions implied by Proposition 1. First, individual

level firm heterogeneity is restricted to entering through the multiplicative shifter xi. Second,

the requirement that the cost function depends on the vacancy rate tells us that in the data, firms

find it more costly to add a given number of positions v in a small firm than in a larger firm (e.g.,

in terms of reorganization of production). Third, hiring inputs are complements in production:

raising recruiting intensity makes each vacancy more productive. Through the cost function

the data also reveals to us that they complements in costs. That is, any further microfoundation

of behavior will require models in which increasing vacancies must increase the marginal cost

of allocating more resources to recruiting intensity.

In order to adhere to the data, in what follows we consider only the class of functions Ci that

satisfy this property. We let the three constant elasticities of the functions Gc(·), Ge(·) and Gv(·)

be given by γc, γe and γv, respectively.

Optimal recruiting intensity. In Appendix B we show that minimization of (3) subject to the

hiring constraint yields the following optimal policy for recruiting intensity which we express

in logs

log eit = Const. − γv

γe + γv
log Q∗

t −
γv

γe + γv
log ϕi +

γv

γe + γv
log
(

hit

nit

)
. (4)

The constant includes the elasticity γc and other parameters.

To interpret the optimal policy it is useful to think of the firm’s hiring technology in (2)

as a production function that produces a hiring rate (hit/nit), with inputs of the vacancy rate

(vit/nit) and recruiting intensity (eit), and productivity term (Q∗
t ϕi). The firm’s recruiting in-

tensity depends positively on its hiring rate: more output requires more inputs. These inputs

8In the two equilibrium macroeconomic models of recruiting intensity that we are aware of, Gavazza, Mongey,
and Violante (2018) assume a cost function that is a special case of this class, and Leduc and Liu (2020) assume a
functional form for recruiting costs that is not included in this class. Proposition 1 should provide some guidance
to future literature that models firms’ hiring effort decisions.
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are more productive when the rate at which effective vacancies produce hires due to market-

wide productivity in matching (Q∗
t ) or idiosyncratic productivity in matching (ϕi), are high,

requiring less inputs. In equilibrium Q∗
t encodes the mass of idle workers and their average

search intensity as well as the vacancies of competitors Vt and their recruiting intensity deci-

sions. Below we show that recruiting choices of hiring firms are strategic complements.9

How is the shape of the policy function determined by the elasticities γv and γe? When γv

is large relative to γe increasing marginal costs of vacancies set in quickly. This leads the firm

to adjust more on the recruiting intensity margin in response to an increase in the demand for

inputs due to an increase in output (↑ hit/nit). Similarly, when productivity falls (↓ Q∗
t ϕi), the

firm raises the recruiting intensity margin more the larger is γv relative to γe. The functional

form for the hiring technology implies that optimal recruiting intensity responds symmetrically

to either shift, which is reflected in equal but oppositely signed coefficients in (4).

Vacancy yield. Combining the firm’s hiring technology and optimality condition (4) delivers

the optimal vacancy yield which, unlike eit, is observable in JOLTS microdata:

log
(

hit

vit

)
= Const. +

γe

γe + γv
log Q∗

t +
γe

γe + γv
log ϕi +

γv

γe + γv
log
(

hit

nit

)
. (5)

Figure 2 provides a graphical characterization of the cost-minimizing recruiting choice in

terms of unobserved intensity and observed vacancy yield, and how these respond to changes

in the firm’s desired hiring rate. Figure 2(a) shows how an increase in the hiring rate is equiva-

lent to shifting out isoquants of the hiring technology in log vacancy-rate / recruiting intensity

space. The firm then chooses the combination of hiring inputs that place it on its lowest isocost

curve subject to the technology, where the composite parameter γ = γv/(γe + γv) determines

the gradient of the isocost curves. Under a cost function that satisfies Proposition 1, an increase

in hit/nit leads to a log-linear expansion path of the vacancy-rate and recruiting intensity, with

the slope of this path determined by γ. Figure 2(b) shows how this maps into the log-linear re-

lationship between the hiring rate and vacancy yield that we observe in the microdata in Figure

9Clearly, Q∗
t might also encompass other factors determining the aggregate level of match efficiency in the

economy which we do not model explicitly, such as the degree of sectoral mismatch between job-seekers and
vacancies.
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(a) Optimal recruiting choice as desired hiring
rate increases

(b) Observable outcomes consistent
with Figure 1

Figure 2: Microeconomic choice of recruiting intensity

Notes: Panels (a) and (b) describe the unobserved recruiting choice and observed recruiting outcomes of
a firm. Panel (a) plots isoquants of the hiring production technology in logs (blue), and the isocosts also
in logs (red). Keeping Q∗

t ϕi fixed, an increase in production ↑ (hit/nit) requires an increase in the level of
inputs: eit and vit/nit. The parameter γ captures the elasticity of substitution in the average vacancy cost
function C and so determines the slope of the expansion path in logs. Panel (b) shows the observable
implications for the relationship between vacancy yield and hiring rate. On the x-axis, the hiring rate,
which is our comparative static variable, is increasing. On the y-axis, the log vacancy yield—which is
equal to log eit + log Q∗

t + log ϕi—increases linearly (with slope 1) as log eit increases linearly.

1. The key result is that the slope of the observed relationship in Panel B is informative of the

marginal rate of substitution between inputs in Panel A, and hence γv and γe.

2.2 Macroeconomic environment

We construct our empirical measure of aggregate recruiting intensity (ARI) in two steps. First,

we aggregate establishment level recruiting decisions into our measure of ARI. Second, since

establishment level recruiting decisions depend on the meeting rate Q∗
t , which itself depends

on ARI, we have to solve a general equilibrium fixed point. A contribution of the paper is to

derive this fixed point in closed form and characterize the multiplier associated with changes

in market tightness on ARI.

In order to aggregate establishment level recruiting decisions we specify an aggregate
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matching function that is consistent with the firm level hiring constraint (hit = Q∗
t ϕieitvit) :

Ht = V∗ α
t S∗ 1−α

t , V∗
t =

�
ϕieitvit di , S∗

t =
K

∑
k=1

aktSkt, (6)

This delivers consistency in that Ht =
�

hitdi = Q∗
t V∗

t . In this expression V∗
t is the mass of

effective vacancies. The mass of effective worker search effort S∗
t is determined by the time-varying

search intensity akt of the K different searcher types, and their masses {Skt}K
k=1. Let type k = 1

denote unemployed workers. We normalize the search intensity of the unemployed to 1 such

that in (6) we have a1tS1t = Ut where Ut is the measure of unemployed workers. Multiplying

and dividing the matching function by U1−α
t we obtain Ht = AtV∗ α

t U1−α
t , where At is aggregate

worker search intensity:

At =

[
K

∑
k=1

akt
Skt
Ut

]1−α

. (7)

The term in the square bracket reflects the composition of the pool of job seekers.

The empirical matching function Ht = AtV∗ α
t U1−α

t contains unobserved effective vacan-

cies, but can be expressed in terms of JOLTS vacancies, unemployment and aggregate recruiting

intensity Φt, which we define:

Ht = Φt AtVα
t U1−α

t , Φt =

(
V∗

t
Vt

)α

=

[�
ϕieit

vit

Vt
di
]α

. (8)

Note, however, that this is only a partial equilibrium definition. Changes in Φt alter the tightness

of the labor market, and hence meeting rates Q∗
t , which affect choices of search intensity eit.

Hence Φt is in both the left and right sides of (8).

General equilibrium. To solve for Φt in general equilibrium, first let θt = (Vt/Ut) denote

measured market tightness. The matching function implies that the aggregate meeting rate Q∗
t =

Ht/V∗
t depends on {Φt, At, θt}:

Q∗ (Φt, At, θt) = At

(
V∗

t
Ut

)−(1−α)

=

(
V∗

t
Vt

)−(1−α)

At

(
Vt

Ut

)−(1−α)

= Φ− 1−α
α

t Atθ
−(1−α)
t︸ ︷︷ ︸

:=Q(At,θt)

. (9)

11



Here we define Q(At, θt) := Q∗(1, At, θt), which we use extensively below. Given this definition

Q(At, θt) is equal to the measured meeting rate, Q(At, θt) = Ht/Vt.

We measure aggregate recruiting intensity in general equilibrium by substituting the mi-

croeconomic optimal policy (4) into the macroeconomic aggregate (8):

Φt =

[�
Q∗ (Φt, At, θt)

−γ ϕ
1−γ
i

(
hit

nit

)γ vit

Vt
di
]α

, γ :=
γv

γe + γv
∈ (0, 1). (10)

Along with (9), this describes a mapping Φ′ = φ(Φ, Q), for which general equilibrium ARI is

the fixed point.

Characterization. A key property of the mapping φ is that recruiting intensity decisions across

firms are strategic complements. That is, φ(Φ, Q), is such that φΦ ∈ (0, 1), and hence the solu-

tion is also stable. Intuitively amplification occurs as follows. An increase in Φ tightens the

labor market. From the macroeconomics of the frictional labor market, this decreases the meet-

ing rate Q∗ with elasticity 1−α
α (equation 9). From the microeconomics of firm behavior, firms

respond to this decline in effective meeting rates by increasing recruiting intensity with elas-

ticity γ (equation 4). When aggregated, this microeconomic response increases Φ′ with elastic-

ity α (equation 8). Combining these three forces, a one percent increase in Φ increases Φ′ by

γ(1 − α) ∈ (0, 1) percent. Since γ(1 − α) < 1, this recursive system is stable, and features a

multiplier of 1/(1 − γ(1 − α)). If γ is large, as we will find it is in the data, then these general

equilibrium multiplier effects can also be large.

From this we can derive the general equilibrium multiplier associated with a change in

the effective meeting rate Q∗
t . The partial equilibrium direct effect of an increase in Q∗

t on Φt

is −γα. From the firm level policy, a change in Q∗
t affects eit with elasticity −γ (4), which

is propagated via V∗
t to Φt with elasticity α (8). To get to the general equilibrium indirect effect

we apply the multiplier on Φt and conclude that a one percent increase in Q∗
t decreases Φt by

−γα/(1−γ(1− α)) < −γα. Note that, for given α, the closer is γ to 1 the larger is the multiplier

effect. Figure 3 illustrates this equilibrium mechanism for an increase in Q∗ and the resulting

decline in Φ. A higher value of γ would flatten the blue and red curves representing φ(Φ, Q),

holding Q fixed. This would increase the multiplier effect.
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Figure 3: Macroeconomic propagation of recruiting intensity

Notes: This figure describes the general equilibrium of the model. Given Φ on the x-axis, the angled
lines plot the equilibrium response Φ′ = φ(Φ, Q∗). An increase in Q∗

1 > Q∗
0 shifts this function down,

leading to a greater than one-for-one decrease in Φ′ < Φ. The overall decline in Φ is determined by the
increase in Q and the elasticity −γα/(1 − γ(1 − α)), consistent with equation (11).

Theoretical decomposition of ARI. By consolidating (10) we obtain our the main relation-

ship, which we will decompose empirically. First, we substitute our expression for the meeting

rate (9) and collect Φt terms. Second, we write the firm hiring rate in deviations from the aggre-

gate hiring rate. Third, we extract from the integral terms that do not depend on i. We obtain

the following expression for ARI which includes the general equilibrium multiplier:

Φt = Q
(

At, θt

)− γα
1−γ(1−α)

︸ ︷︷ ︸
Slackt

(
Ht

Nt

) γα
1−γ(1−α)

︸ ︷︷ ︸
Growtht

[�
ϕ

1−γ
i

(
hit/nit

Ht/Nt

)γ vit

Vt
di
] α

1−γ(1−α)

︸ ︷︷ ︸
Compt

. (11)

The first term is the slackness component. The labor market slackens in response to increasing

worker search effort or a compositional shift toward higher search intensity types, both encoded

in residual match efficiency At. It also slackens due to changes in the ratio of vacancies to un-

employed workers in the economy, which is encoded in measured market tightness θt = (Vt/Ut).

When the labor market slackens, a firm’s desired hires can be attained with less costly inputs:

recruiting intensity and vacancies. The elasticity at which firms cut-back on eit relative to vit
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is γ. Therefore, the closer is γ to one (i.e., the smaller γe is relative to γv) the stronger is the

response of Φt to changes in labor market tightness.

The second term is the growth component. When a firm grows it requires more recruiting

intensity to realize hires. The common hiring rate of firms in the economy therefore effects

aggregate recruiting intensity. Symmetric exponents on the two components stem from the

hiring technology:

hit = Q∗
t ϕi eit vit =⇒ eit

(
vit

nit

)
=

(
1

Q∗
t

)(
1
ϕi

)(
hit

nit

)
.

The response of eit is the same in magnitude, but opposite in sign, following an increase in input

productivity (Q∗
t ), or a increase in input demand (hit/nit).

The final term is the composition factor which reflects the contribution of firm heterogeneity.

This term increases when the distribution of vacancies shifts toward (i) firms that are highly

efficient in recruiting, i.e. that have high ϕi’s, and (ii) firms that hire a lot relative to the aggre-

gate. By construction, absent heterogeneity, if hiring firms are identical then Φt exactly equals

(Slackt × Growtht).

Implementation. Equation (11) can be used to answer our question: what drives aggregate

recruiting intensity over the business cycle, and what are the roles of micro decisions and macro

propagation. Our approach is to implement (11) empirically by constructing each term entirely

from microdata.10

In doing so we must resolve the issue that At is not observed. Even though we observe

Ht, Nt and θt from aggregate data and {hit, nit, vit} from JOLTS microdata, we cannot fully

construct Φt from (11) because we do not observe At. Rather than try to construct At from

worker search data and (7), which we do not seek to model here, we approach this in a model-

consistent way by using a cross-equation restriction imposed by general equilibrium. Note that

the matching function itself provides an additional equation in observables {Ht, Vt} and the

same two unknowns {Φt, At}:
Ht = Φt AtVα

t U1−α
t (12)

10This exercise is therefore distinct from the simulations in Gavazza, Mongey, and Violante (2018), where ARI
was inferred within the model, and what was studied was an impulse response function of ARI to a financial
shock.
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Our empirical implementation therefore proceeds in four steps. First, we estimate ϕi and γ

using the firm’s first order condition (5). Second, combining microdata on {hit, nit, vit}, our

estimates of ϕi and γ, and a choice of α we construct Compt. Third, combining macrodata on

{Ht, Nt}, our estimate of γ and choice of α we construct Growtht. Fourth, we use Compt and

Growtht along with aggregate data {Ht, Nt, Vt, Ut} to simultaneously solve for Φt and At from

equations (11) and (12).11

3 Measurement using microdata

Data. Our primary data sources are the restricted-use BLS microdata underlying JOLTS and

the QCEW. JOLTS data are monthly establishment level responses of hiring managers with re-

spect to employment on the twelfth of the month, hires over the calendar month, and open

positions (vacancies) at the end of the month.12 Apart from a permanent sample of firms that

have remained in the JOLTS since inception, most establishments are present in the survey for

24 months, giving a short panel dimension. Our sample runs from 2002 to 2018. We drop 2001

due to reliability of JOLTS data in the year in which the initial panels of the survey were being

rolled in.

QCEW data are obtained through the UI system and provide month-end employment and

total quarterly compensation observations for the universe of establishments.13 From the

QCEW we compute establishment wage as total payroll divided by average monthly employ-

ment.14 We obtain establishment age using a BLS-produced entry date into QCEW sample. The

data are merged using BLS identifiers. To the best of our knowledge, few previous papers have

used the JOLTS microdata, and this is the first to combine them with the QCEW to construct

11Specifically, equation (12) can be written as (Ht/Vt) = ΦtQt, and equation (11) can be written as Φt =

Q−µ
t (Ht/Nt)µCompµ/γ

t where µ = γα/(1 − γ(1 − α)). These can be solved for Φt and Qt. We then use
Qt = At(Vt/Ut)−(1−α) to back out At. The data requirements for this inversion are the economywide hiring
rate (Ht/Nt), vacancy yield (Ht/Vt) and market tightness (Vt/Ut), as well as Compt which we construct from
aggregating our microdata.

12Since only some or one of a firm’s establishments may be surveyed in a given month, one cannot construct
firm level measures for multi-establishment firms.

13We check monthly employment in the QCEW against the establishment reported employment in the JOLTS
and find them to have a correlation coefficient close to one.

14We impute the same wage to the establishment in each month of the quarter. When we compute wage growth,
we compute quarterly wage growth.
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age and average wage for JOLTS establishments.15

Summary statistics. The decomposition (11) shows that, theoretically through Compt, hetero-

geneity can play an important role in shaping ARI. Figure 4 motivates careful measurement of

Compt by depicting the vast heterogeneity in hiring in the cross-section. There is systematic

heterogeneity across industries, ages, sizes and wages in recruiting outcomes of firms. The va-

cancy rate and gross hiring rates (panels A, B, C, D) and the number of hires relative to open

vacancies (panels E, F, G, H), all vary systematically.16 This evidence rejects the canonical ran-

dom matching model where all firms face the same vacancy filling rates. Our model interprets

these differences as systematically different recruiting intensities, and aggregates them into the

Compt term.

Specification. Using data at the month t, establishment i level, we would ideally estimate the

following specification, which is the empirical counterpart of (5):

log
(

hit

vit

)
= δt + ξi + β log

(
hit

nit

)
+ εijt. (13)

The time effect δt absorbs other unobserved aggregates beyond Q∗
t , so we do not use it to infer

Q∗
t in our construction of (10). Instead, as we have shown, we construct Q(At, θt) directly.

However we do use estimates of fixed effects ξi to infer recruiting efficiencies ϕi, and β to infer

γ. With a choice of α, and microdata on {hit, nit} we can then construct all terms in Compt in

equation (11).

Implementation. First, due to short panels of only twelve months at the firm level, we group

firms into J groups, and estimate a single ξ j for each group. We seek to be robust to the particu-

lar grouping of firms used, so consider different approaches, allowing j to determine quintiles

of a number of variables, for example, quintiles of establishment age. Second, due to zeros

15Examples of previous articles to use the JOLTS microdata are Faberman and Nagypal (2008), Davis, Faber-
man, Haltiwanger, and Rucker (2010), Davis, Faberman, and Haltiwanger (2012), Faberman (2014), DFH, Elsby,
Michaels, and Ratner (2018).

16The daily filling rate in these last four panels is computed from the daily recruiting model of DFH. Details and
closed forms are found in Appendix B. For statistics that require employment in the previous month, we follow
DFH and create a backward consistent measurement taking into account gross hires and separations: nit−1 =
nit − (hit − sit).
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Figure 4: Summary statistics of heterogeneity in recruiting

Notes: Consider a point in panel C, for example. Establishment-month observations are first categorized by 50
quantiles of establishment size. When constructing quantiles we pool all data from 2002-2018. Within a size
quantile, we then pool across time and compute total hires, vacancies, employment, separations. We use these
to construct the hiring rate, separation rate and vacancy rate. For Panel A, establishments are categorized into
industries according to groupings of NAICS codes defined in Table C1, we then sort industries by hiring rate to
construct the x-axis. In Panel B, they are categorized by their age, in years. In Panel C, they are categorized into
size-groups measured as total employment. In panel D, they are categorized by average firm-wage computed as
total payroll divided by employment. Panels E to H plot the daily filling rate computed from the daily recruiting
model of DFH outlined in Appendix B.

in hires and vacancies at the monthly frequency for individual establishment, we aggregate

within j to determine our i’s.17 We split out i within j by using fine industry codes. For exam-

ple, one specification uses age quintiles for j and then within each age quintile we aggregate

firms within NAICS 4-digit industries to construct hijt, nijt and vijt. Thus, in this case, i indexes

all firms of a specific 4-digit industry within an age quantile.18

17For example, for all firms that hire during the month hit > 0 but some firms will hire with no vacancies vit−1.
As noted by DFH, around 40 percent of hires in month t (hit > 0) occur in establishments with no vacancies at the
end of month t − 1 (vit−1 = 0). They pool data across time (2001-2006) within a growth rate bin in constructing
their key Figure IX. Our approach is to pool at a far finer level: for example, within an {age-quantile}-{4 digit
industry code}-{month} cell.

18When constructing hijt, vijt and nijt we aggregate within ijt using the same weights that the BLS applies to
compute published aggregates. These account for systematic biases for non-response, as well as generating a
representative sample.
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The above strategy delivers numerous alternative approaches to estimating the following

modification of (13):

log

(
hijt

vijt

)
= δt + ξ j + β log

(
hijt

nijt

)
+ εijt. (14)

We consider many different variables whose quintiles are used to define the groups j. Our

baseline results are given for j in {age, size, wage, 1-digit industry, separation rate, quit rate,

turnover rate, employment growth rate}. Within these groups j, we then consider 4 different

levels of aggregation which determine i, and aggregate within-(ijt) to obtain hijt, nijt and vijt.

Our baseline results are given for i in NAICS-{1,2,3, or 4} digit industries. Hence, for example,

when grouping firms by age, hijt may be total hires of all establishments in the lowest quintile

of age (j) of establishments in a particular NAICS4 industry (i) in that month (t).19

Estimates. Table 1 provides estimates of β̂ which is our estimate of γ for 31 different specifi-

cations of (14). Our results are broadly robust to the different approaches for categorizing firms

into groups based on heterogeneity in recruiting productivity ϕj and aggregation. Across the 31

cases, the mean estimate is 0.726, with an interquartile range of [0.701, 0.761]. These estimates

are also precise, with a mean standard error of 0.007 and maximum standard error of 0.026. We

do note that as we move from left to right—defining i by narrower levels of aggregation within

groups j—the estimate tends to fall, suggestive of measurement error as the sample used to

construct (ijt) measures gets smaller and becomes noisy due to zeros. By comparison, DFH

group firms by 100 bins of net employment growth (i), aggregate all observations within these

groups over six years, and obtain an estimate of 0.82 (cf: Figure IX). Our estimates are remark-

ably similar given that we aggregate at the far finer {month, NAICS4, age quintile}-level.20 We

now show that these results are robust to a number of different treatments of the data.

3.1 Extensions

Narrower variation. Theory suggests that equation (14) should be estimated with separable

time and group fixed effects. Despite this, we can verify that our estimates of β are consistent
19When j is 1-digit industries, we only consider NAICS-{2,3, or 4} digit aggregation leading to 12 + 3 = 15

specifications in total.
20Note that we cannot disclose estimates of the ξ j terms that are used to infer ϕj coefficients, or the hijt, vijt, nijt

terms constructed for the estimation of (14).
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Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

Industry - 0.76 ( 0.008) 0.77 ( 0.007) 0.73 ( 0.004)
Age 0.84 ( 0.009) 0.77 ( 0.006) 0.76 ( 0.004) 0.73 ( 0.003)
Size 0.83 ( 0.010) 0.76 ( 0.009) 0.65 ( 0.005) 0.64 ( 0.004)
Wage 0.78 ( 0.009) 0.74 ( 0.006) 0.76 ( 0.004) 0.72 ( 0.003)
Separation rate 0.70 ( 0.011) 0.72 ( 0.007) 0.75 ( 0.004) 0.73 ( 0.003)
Quit rate 0.73 ( 0.012) 0.73 ( 0.008) 0.77 ( 0.004) 0.77 ( 0.003)
Turnover rate 0.51 ( 0.026) 0.63 ( 0.016) 0.68 ( 0.007) 0.69 ( 0.005)
Emp. growth rate 0.69 ( 0.010) 0.71 ( 0.008) 0.72 ( 0.005) 0.72 ( 0.003)

Table 1: Coefficient estimates
Notes: Point estimates of the coefficient on the hiring rate from regression (13), with standard errors in parentheses.
In all cases the coefficient is statistically significant at the one percent level. The estimation uses JOLTS microdata
from 2002:1 to 2018:12. Rows give the manner in which establishments are grouped in order to estimate ϕj terms.
Columns give the industry level at which hires, vacancies and employment are aggregated within these groups.

with using narrower sources of variation. Appendix A provides estimates of β using only

within-group-time, across-industry variation (i.e. using a (jt)-fixed effect, Table A1), and only

within-group-industry, across-time variation (i.e. using a (ij)-fixed effect, Table A2). In both

cases we find remarkably similar estimates to those in Table 1. In the former (latter) case the

average estimate is 0.727 (0.739), with an average standard error of 0.007 (0.008). The first of

these additional specifications makes clear identification of β in (14): ξ jt pulls out the time

series of group (e.g. age quintile-month) means, while β is identified using within-group-month,

across-industry variation, where this variation is at as fine as a NAICS4 level.

In the following section we will use our estimates of the fixed effects to construct the com-

position term. Even in the case where we are estimating ϕij fixed effects we have many obser-

vations per fixed effect. In our baseline specification, the average ϕj fixed effect has more than

200,000 observations behind it. Even when we estimate ϕij fixed effects (Table A2), the average

ϕij fixed effect has close to 1,000 observations (Appendix Table A3) because we are pooling data

across all months of the sample when estimating these fixed effects.

Wage growth. One might imagine that either wages or wage growth are systematically corre-

lated with hiring rates and vacancy filling rates (either because high-wage firms attract more job

seekers or because low-wage firms are those with low hiring standards), and that this variation

may be responsible for the positive relationship between hiring rates and vacancy yields. When
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we control for these variables, however, the relationship remains the same. We residualize the

log establishment wage (or wage growth) on NAICS3-month fixed effects and group firms by

quantiles of these residuals. Hence we control for positions in the within-NAICS3-month wage

(or wage growth) distribution. Table A4 shows that the estimates of β are unchanged. Table

A5 shows that adding in (jt)− fixed effects does little to change the estimates. The same holds

if we group firms by the average value of their residual over the sample (lower panel of each

table). Hence, within the group of firms that are paying the most in an industry, or whose wages

are growing the most in an industry, those firms with higher hiring rates have higher vacancy

yields.

One may be concerned that average wage is more about workforce composition within the

establishment than about how much a firm pays similar workers, and hence the average wage

is a poor measure of firm attractiveness or hiring standards. Using residual wages within 3

digit industries—where we may hope that composition of occupations is roughly constant—

attempts to address this (see Table A4). A better approach would be to join the Occupation

Employment Statistics (OES) microdata to our JOLTS/QCEW merged data. The OES has data on

employment by occupation at the establishment level. Unfortunately, we were not able to add

access to the OES to this project.

Quit rates. One may think that firms that have higher quit rates would have to generate more

hires and do so by filling vacancies more quickly. That is, in an interacted specification higher

quit rates firms may have a higher elasticity of hiring rate to vacancy yield. We run our entire

analysis separately for establishments by the quintile of their quit rate. Due to disclosure issues

we could only disclose results for these specifications where firm groups j are heterogeneous in

their average wage level and, within group, these establishments are aggregated at the NAICS1

level (row 4, column 1 of Table 1). Figure A1 shows stable estimates across quit quintiles which

slightly decrease at higher quit rates.

Across groups. Our fixed effects specifications compare establishments within a group of es-

tablishments (e.g. young firms in a particular month). We may also compare the groups of

establishments themselves. Figure 5 compares means across different categorizations of firms.

For a given categorization—size, age, wage, industry—we split firms into 15 quantiles. Within
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A.I Hiring rates and daily vacancy flow A.II Hiring rates and daily vacancy flow

B.I Hiring rates and daily job filling rate B.II Hiring rates and daily job filling rate

Figure 5: Recruiting intensity in the cross-section
Notes: These figures plots the log of the employment weighted hiring rate against (A) daily vacancy flow, (B) daily
filling rate (both computed from the DFH daily hiring model), (C) vacancy rate, and (D) vacancy yield (hires over
vacancies). These are computed within 15 unweighted quantiles of establishment age, size, wage (measured as
total payroll per worker), and the 12 industry groups defined in Table C1. Quintiles are marked, and industries
are sorted from highest (=1) to lowest (=12) by hiring rate. The main take-away from the markings is that low
numbers—young, small, low wage—gravitate to the North-East, and high numbers—old, large, high wage—
gravitate to the South-West.

each group we pool employment, hires and vacancies to compute the average hiring rate and

vacancy yield.21 Remarkably, across-group differences in vacancy filling rates are revealed en-

tirely through differences in hiring rates. If there was something special about the efficiency

of young (or small, high-wage, etc.) firms in attaining higher vacancy yields, we would ex-

21Note that computing total quantile hires Hq = ∑it∈q hit, and total employment Nq = ∑it∈q nit, and then
computing the hiring rate as Hq/Nq, is equivalent to computing the employment weighted hiring rate within
quantile q.
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pect them to deviate from the systematic relationship between hiring rate and vacancy yield

displayed in the data. In all cases the same pattern holds: differences across groups in the aver-

age vacancy yield and filling rate are determined by differences across groups in average hiring

rates.

‘Luck’ Finally, one may be concerned that ‘luck’ drives these results. Given some measure of

vacancies, some firms get lucky and hire many workers, which increases both their vacancy-

yield and hiring-rate. These appear on the left and right side of (13), and would lead to a

positive β while the underlying parameter γ is potentially zero. There are three reasons this is

not a concern. First, in each regression firms are aggregated within narrow groups×industries,

and hence these idiosyncratic events would wash out across the firms in each cell. Second, and

in a similar spirit, luck can be ruled out by the systematic relationship shown across groups in

Figure 5. This ‘luck’ would have to be perfectly correlated with establishment age, size, wage,

and industry. Third, this possibility is also covered by DFH through Monte-Carlo exercises.22

They conclude that “the luck effect accounts for one-tenth of the observed positive relationship”, which

would moderate our estimates in Table 1 by 0.06 − 0.08.

4 Aggregating to macro recruiting intensity

Given our estimates of γ and ϕj and microdata {hijt, nijt, vijt}, we can compute our measure of

aggregate recruiting intensity Φt from (10), and decompose it using (11). The only additional

object we require is the matching function elasticity of meetings to effective market tightness.

For the matching function elasticity, we set α = 0.25. This is the mid-point of estimates in

Barnichon and Figura (2015) (0.18-0.34). Shimer (2005) arrives at an estimate of α = 0.28. Section

5 shows that our main results are robust to values of 0.15 and 0.50.

4.1 Variance decomposition

Table 2 decomposes the time-series variance of aggregate recruiting intensity using (11): Φt =

Constant × Slackt × Growtht × Compt. We take logs of (11), deseasonalize each with X13-

22See their page 601 and Figure VIII.
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ARIMA-SEATS filter, then difference from December, 2007, which removes constant terms. We

then compute the time-series variance of each term. Table 2 expresses the fraction of the overall

variance accounted for by each term. We have one set of results for each grouping of firms (j)

and level of aggregation (i) considered in Table 1. Fixing a grouping and level of aggregation

we have estimated a β and ξ j fixed effects, which are used to construct γ and ϕj required in

equation (11). Hence for any grouping we get a new set of aggregate time series for Slackt,

Growtht, Compt, Φt, and At.

Our main result is that, regardless of how we group establishments to compute ϕj or coarse-

ness of aggregation within groups, the dominant component is Slackt, on average accounting

for 50 percent of the time-series variance of Φt. The Growtht and Compt terms, combined, ac-

count for less than 15 percent. Unsurprisingly the covariance term is positive and large, but this

is driven mostly by the covariance between the slackness and growth factors rather than covari-

ances associated with Compt. The fifth column presents the share of the variance attributable to

Compt via an alternative decomposition approach, commonly used in international trade.23 By

this measure, on average, less than 10 percent of the variance is due to the composition term.

Our second result, therefore, is the small role for heterogeneity. To further understand this

finding we split the composition term Compt between and within groups:

[�
ϕ

1−γ
j

(
hijt/nijt

Ht/Nt

)γ vijt

Vt

] α
1−γ(1−α)

︸ ︷︷ ︸
Composition from (11): Compt

= (15)
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∑
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1−γ
j

(
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)γ vjt
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1−γ(1−α)

︸ ︷︷ ︸
Within groups j: Withint

where hjt, vjt and njt are aggregates at the group-j, month-t level. The final columns of Table

2 show that in general the within group-j term dominates. That is, Compt is not driven by

cyclical reallocation of vacancy-shares across high or low ϕj groups, which would be captured

by Betweent. We conclude that a single sector model capturing aggregate (Slackt, Growtht) and

23 We take the approach and the following description from (Hottman, Redding, and Weinstein, 2016). In logs,
then demeaned, regressing Slackt, Growtht and Compt one by one on aggregate recruiting intensity Φt yields three
coefficients that sum to one, and allocates out the covariance equally across components.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. βComp Between Within Cov.

Industry NAICS2 0.48 0.06 0.02 0.44 0.098 0.26 0.32 0.42
NAICS3 0.47 0.06 0.03 0.44 0.109 0.19 0.44 0.37
NAICS4 0.45 0.07 0.05 0.43 0.119 0.22 0.65 0.13

Age NAICS1 0.59 0.04 0.06 0.31 0.079 0.12 0.48 0.40
NAICS2 0.54 0.06 0.04 0.36 0.063 0.10 0.58 0.32
NAICS3 0.52 0.07 0.04 0.37 0.070 0.06 0.72 0.22
NAICS4 0.48 0.07 0.14 0.31 0.139 0.09 0.59 0.32

Size NAICS1 0.61 0.04 0.02 0.33 0.038 0.06 0.73 0.21
NAICS2 0.53 0.07 0.03 0.37 0.057 0.33 1.13 -0.46
NAICS3 0.43 0.09 0.05 0.43 0.095 0.16 0.98 -0.14
NAICS4 0.42 0.09 0.08 0.41 0.116 0.04 0.84 0.12

Wage NAICS1 0.55 0.06 0.04 0.35 0.052 0.15 0.49 0.36
NAICS2 0.52 0.08 0.05 0.35 0.059 0.18 0.53 0.29
NAICS3 0.52 0.07 0.05 0.36 0.071 0.08 0.75 0.17
NAICS4 0.49 0.08 0.08 0.35 0.098 0.05 0.83 0.12

Separation rate NAICS1 0.45 0.08 0.06 0.41 0.111 0.34 0.26 0.40
NAICS2 0.47 0.07 0.07 0.39 0.108 0.30 0.32 0.38
NAICS3 0.51 0.07 0.07 0.35 0.081 0.26 0.45 0.29
NAICS4 0.53 0.08 0.09 0.30 0.065 0.25 0.66 0.09

Quit rate NAICS1 0.54 0.08 0.05 0.33 0.036 0.22 0.36 0.42
NAICS2 0.55 0.08 0.06 0.31 0.037 0.21 0.49 0.30
NAICS3 0.64 0.08 0.07 0.21 -0.008 0.27 0.74 -0.01
NAICS4 0.72 0.09 0.13 0.06 -0.053 0.32 0.95 -0.27

Turnover rate NAICS1 0.30 0.10 0.14 0.46 0.229 0.96 0.28 -0.24
NAICS2 0.40 0.09 0.12 0.39 0.150 0.68 0.28 0.04
NAICS3 0.47 0.09 0.11 0.33 0.106 0.56 0.29 0.15
NAICS4 0.48 0.09 0.11 0.32 0.097 0.34 0.30 0.36

Emp. growth rate NAICS1 0.49 0.09 0.03 0.39 0.055 0.20 0.52 0.28
NAICS2 0.50 0.08 0.04 0.38 0.056 0.20 0.58 0.22
NAICS3 0.47 0.08 0.04 0.41 0.085 0.04 0.80 0.16
NAICS4 0.48 0.08 0.07 0.37 0.099 0.02 0.84 0.14

Average 0.50 0.075 0.066 0.36 0.08 0.23 0.59 0.18

Table 2: Decomposing aggregate recruiting intensity

Notes: This table presents the time-series variance decomposition of equation (11) (1. Aggregate recruiting inten-
sity) and (15) (2. Composition). The decomposition in each case is computed as follows. First, logs of the equation
are taken. Second, the time-series variance of each term is computed. Third, the entry in the table gives the fraction
of the time-series variance of the left-hand side variable attributable to the different right-hand side variables. The
contribution due to covariance terms are grouped together under Cov. The different rows represent the alternative
groupings used to estimate (13). For example for j =“Age” and NAICS = 3, the categorical variable used to con-
struct the ϕj match efficiency terms are quintiles of establishment age. Within these quintiles firms are split into
3-digit NAICS subsectors. Within these sub-groups we then aggregate establishment-month hires, employment,
and vacancies to compute

{
hijt, nijt, vijt

}
which are used as inputs into the regression and for the computation of

the terms in the variance decompositions.

firm-level behavior (Withint) could approximate well the cyclical behavior of Φt.

Figure 6 presents these results graphically. In Section 6, Figure 10 we plot all series of Φt
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Figure 6: Decomposing aggregate recruiting intensity

Notes: Panels A and B present an example of the components of equations (11) and (15). In this case we have
grouped firms by quintiles of employment for estimating ϕj, and within these quintiles aggregated hires, vacancies
and unemployment within 4 digit industries. Time-series are first deseasonalised using X13-ARIMA-SEATS. For
presentation only we then apply a three month centered moving average to each series.

across different groupings of j and i. Here we take a particular case as a representative exam-

ple. We choose the case where j denotes quintiles of firm size, and within j we aggregate at the

NAICS4 level to form (ijt) data (corresponding to line 11 in Table 2). Panel A shows the slack-

ness component closely following Φt. A sizable drop in the growth component also contributes

to the decline in ARI over the Great Recession. Panel B shows that, for this case, almost 100

percent of the composition term is driven by within size-quantile, across-NAICS4 variation in

recruiting intensity.

In summary, we find that empirically, the components of aggregate recruiting intensity that

do not reflect firm heterogeneity per se are the dominant forces that shape aggregate recruiting

intensity. This result is robust to the manner in which permanent heterogeneity in recruiting

efficiency is handled.

Finally, we note that this finding has a counterpart in direct survey evidence. There is a

tradition in labor economics of designing small-scale ad-hoc surveys to investigate recruitment

methods of firms. Some document that firms respond to aggregate conditions. A recent ex-

ample is Forsythe and Weinstein (2018) which finds that when campus recruiters expect the

labor market to be slack, they cut recruiting intensity through on-campus career fairs, job post-

ings and advertising. A classic article in this literature is Malm (1954) where the author writes:
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“During a tightening of the labor market [...] employers react to the increasing difficulty of finding job

applicants by using more intensive (usually more expensive, both in terms of time and in cash outlay)

recruiting methods.”

5 Robustness

5.1 Parameters and assumptions

First, we find that these results are robust to the value of the matching function elasticity α that

we use. Appendix Table A6 and Table A7 replicate Table 2 using values of α of 0.25 and 0.75,

respectively. The share of the variance accounted for by Slackt alone is 50% in the first case

and 66% in the second. We can show that the share of the variance due to Compt is invariant

to α, at 0.066.24 Second, that Compt accounts for little of the fluctuations in ARI is not due

to our estimates of γ deviating from the level found in DFH. Appendix Table A8 replicates

Table 2 under γ of 0.82. Averaging across specifications, the share of fluctuations due to Slackt

alone increases from 50% (Table 2) to 64% as recruiting decisions become more elastic with

respect to market tightness. Third, using regressions with (ij)-fixed effects (Table A2) and using

estimates of these in the construction of Compt does not affect results. Appendix Table A9

sees the variance component due to Slackt fall by only 4 ppt.25 Fourth, using regressions with

groupings j by residualized wages and residualized wage growth (as in Table A4), does not

affect results. Appendix Table A10 shows that under these groupings the share of the variance

due to Slackt slightly increases to 0.51, as does the Withint piece of Compt.

5.2 Why is the composition effect small?

One of our main results is that the composition effect accounts for very little of the variation

in aggregate recruiting intensity, but why is this? For intuition we rely on the quantitative

model in our existing work Gavazza, Mongey, and Violante (2018, henceforth GMV). In GMV

24From equation (11), if we exponentiate all right hand-side terms by (1 − γ(1 − α))/α, then α disappears from
the righthand-side. Then, when taking logs and decomposing the variance into shares, α does not change the
share due to the Compt variance. The allocation of the remainder to Slackt and Growtht change due to the overall
solution under the substitution of the matching function (12).

25We can not conduct this decomposition exercise using the estimated ϕjt fixed effects associated with Table A1,
since time variation in these terms cannot be separated from the aggregate terms.
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we decompose the response of aggregate recruiting intensity following two aggregate shocks:

a drop in TFP and a tightening of financial constraints. In both cases the slackness component

dominates, which Table 2 of this paper verifies empirically. In GMV we then use the model to

decompose the composition effect into two pieces: direct and indirect. The indirect effect is due

to counterfactual changes in the hiring rate that would occur under the equilibrium path for

market tightness, counterfactually holding the aggregate shock fixed. The direct effect is the

residual. Note that this decomposition is not possible empirically.

Key to understanding the small role of Compt is the fact that these two forces have strongly

off-setting effects. The direct effect is strongly pro-cyclical, as one would expect: as financial

constraints tighten or TFP declines, hiring rates fall, and along with this, so does recruiting in-

tensity (recall Figure 2(a)). More surprising is that the indirect effect is strongly counter-cyclical:

markets slacken, so firms that plan on hiring in fact hire more, pushing up hiring rates, and

increasing recruiting intensity. We point out that one of the driving forces of this result is that,

as is standard in models with heterogeneous firms, idiosyncratic productivity shocks are ‘more

important’ to the firm’s decisions than aggregate shocks. Hence, most of the hiring is done by

firms that have realized, say, a persistent 10 percent increase in productivity. In slacker labor

markets, these firms face a lower cost of hiring and hence hire more.26

Empirically, we can observe the outcome of these offsetting effects by noting small changes

to the distribution of establishment growth rates, hiring rates and vacancy shares over the Great

Recession (Figure 7). The distribution of establishments across establishment growth rates

changed only slightly over the Great Recession, with a small shift of mass to the left (Panel

A). Hiring rates fell across the distribution of growth rates, and most significantly at shrinking

plants, nevertheless the heterogeneity pre-Great Recession remained largely intact (Panel B).

Conditional on these hiring rates, however, vacancy rates fell across the board, consistent with

vacancy posting optimality in a slacker labor market (Panel C). However, the overall distribu-

tion of openings moved very little (Panel D). Overall, we think this indicates an economy in

which idiosyncratic factors dominate the cross-sectional heterogeneity in firm hiring decisions,

26Despite the fact that GMV is a model of a single representative sector without heterogeneity in ϕi, our empirics
in this paper suggest that the logic outlined above should carry over. In an economy with no heterogeneity in ϕi,
all fluctuations in Compt are accounted for by Withint, consistent with what we found in Table 2.
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Figure 7: Cross-section of firms before and during the Great Recession

Notes: Establishment growth rates are computed monthly as git = (nit − nit−1)/(0.5(nit−1 + nit)), and establish-
ments are binned by 1 percent increments. Panel A., D. In each bin we compute the total share of establishments
(vacancies) across the given period. Panel B., C. In each bin we aggregate total hires, total vacancies and total
employment across the given period and plot ratios of these. Only 5.6% (6.4%) of vacancies are outside of ±15%
growth rates in 2002-06 (2008-09).

while aggregate factors impact overall levels. In such an economy we may be surprised if the

Compt played a strong role in shaping aggregate recruiting intensity.

6 Applications

We use the above empirical results to construct an easily computable index of ARI. We test

this index against the exact time-series for ARI that we have constructed, and show that it

corresponds to true ARI in a representative firm model. We then use this formulation to conduct

a simple counterfactual exercise to understand the role that ARI played in unemployment in the

Great Recession.
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6.1 An easily computable index of ARI

We build on the results of Section 4 to produce an easy to measure, microfounded, index of

aggregate recruiting intensity which we denote ΦIndex
t . Our microdata exercise has taught us

that we can capture the true empirical measure of Φt with only Slackt and Growtht and their

covariance. Abstracting from the composition factor in (11), we obtain

ΦIndex
t = Q (At, θt)

− γα
1−γ(1−α)

︸ ︷︷ ︸
Slackt

(
Ht

Nt

) γα
1−γ(1−α)

︸ ︷︷ ︸
Growtht

(16)

Since it contains At, this expression cannot be computed on publicly available data. However,

we can use the aggregate vacancy yield from the matching function to substitute out Q (At, θt):

Ht

Vt
= ΦIndex

t Q (At, θt) . (17)

Substituting (17) into (16) via Q(At, θt), it is clear that Ht drops out and we are left with a conve-

nient expression that depends only on the aggregate vacancy rate. This expression is indexed by

the elasticity of the matching function (α) and the micro-elasticity of recruiting intensity (γ). It

is consistent with how firm behavior (16) depends on aggregates, and how aggregates depend

on firm behavior (17):

ΦIndex
t =

(
Vt

Nt

) γα
1−γ

. (18)

Figure 8 plots ΦIndex
t , alongside our empirical measure Φt. We plot the mean of all the different

time series for Φt obtained under the different specifications in Table 2. The index closely tracks

Φt. On average across the specifications of i and j in Table 2, ΦIndex
t accounts for 93.2 percent of

the time-series variance of Φt, with a correlation of 0.97. We conclude that the index delivers an

excellent approximation of the overall measure of aggregate recruiting intensity.

Comparison. By comparison, the index computed by DFH is ΦDFH
t = (Ht/Nt)

0.82. The foun-

dation for their index is as follows. As discussed earlier, from JOLTS microdata they estimate

equation (5) and obtain a micro-elasticity of the job filling rate to the gross hiring rate of 0.82.
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Figure 8: Indexes of aggregate recruiting intensity

Notes: This figure plots our estimated measure of ARI (Φt), alongside our empirical index ΦIndex
t , and that con-

structed by DFH. Time-series are first deseasonalised using X13-ARIMA-SEATS. For presentation only, we also
apply a three month centered moving average to each series.

They then set the macro elasticity equal to this micro-elasticity.27 Our measure fundamen-

tally differs. We find that the main contributing factor to the variation of job filling rates is

the response of firm recruiting choices to equilibrium aggregate market tightness. This is not

captured by the DFH measure as they extrapolate from cross-sectional regression to aggregate

time-series.

Representative firm. To further ground our index in theory, we show that in general equi-

librium a representative firm model delivers ΦIndex
t as the exact measure of aggregate recruit-

ing intensity. This formulation may be used by future researchers to represent firm recruiting

choices in arbitrarily rich DSGE environments with frictional labor markets.

Consider an economy populated by a unit measure of identical firms. Given initial em-

ployment nt, each firm chooses its hires for the period ht. They then choose vacancies vt and

recruiting intensity et to minimize total hiring costs. Firms are competitive in that they take the

meeting rate for effective vacancies Q∗
t as given. For any given pair (ht, nt) the firm solves:

min
et,vt

C (et, vt, nt) vt s.t. ht = Q∗
t etvt.

27Put differently, they observe that the elasticity of hit/vit to hit/nit at the micro-level is 0.82. They then construct
an index based on Ht/Vt having an elasticity of 0.82 with respect to Ht/Nt at the macro-level.
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Under the assumptions on C in Proposition 1, and the definition γ := γv/ (γe + γv), the first

order conditions of this problem deliver the same policies for recruiting intensity we derived in

our model with heterogeneous firms:

et = Const. ×
(

Q∗
t

)−γ
(

ht

nt

)γ

. (19)

In equilibrium, xt = Xt for all variables. Since V∗
t =

� 1
0 etvtdi = EtVt, then Et = (V∗

t /Vt) =

Φ1/α
t . As before, the matching function implies Q∗

t = Φ−(1−α)/α
t Q(At, θt). In equilibrium, these

properties and the first order condition (19) imply:

Φt = Q∗−γα
t

(
Ht

Nt

)γα

= Q(At, θt)
− γα

1−γ(1−α)

(
Ht

Nt

) γα
1−γ(1−α)

. (20)

This expression contains the slackness and growth components of our general model, and cor-

responds exactly to ΦIndex
t in equation (16).

6.2 A Great Recession Counterfactual

As a second application, we seek to isolate the role of aggregate recruiting intensity for the

dynamics of the job finding rate and the unemployment rate in the Great Recession. Besides

unemployment, there are three other inputs into the evolution of job finding rate: vacancies Vt,

aggregate recruiting intensity Φt, and residual match efficiency At.

Formally, we ask the following question: over the Great Recession, how would the job find-

ing rate Ft and unemployment Ut have evolved if aggregate recruiting intensity Φt fell, but

vacancies Vt and residual match efficiency At remained unchanged at their pre-recession level?

To answer this question we consider the following dynamic system:

Ht = Φt AtUα
t V1−α

t (21)

Ut+1 = (1 − Ft)Ut + St , where Ft := Ht/Ut. (22)

First, with our series for Φt, and data on {Ht, Ut, Vt} we construct residual match efficiency

At from the matching function (21), and derive a consistent series for separations St from ob-
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Figure 9: Counterfactual job finding rate and unemployment due only to the decline in Φt

Notes: The counterfactual series in this figure are constructed as follows. First take the aggregate matching func-
tion Ht = Φt AtUα

t V1−α
t . The job finding rate is f (At, Φt, Ut, Vt) = Ht/Ut. We combine this with the empirical

law of motion Ut+1 = (1 − f (At, Φt, Ut, Vt))Ut + St. Given data on {Ht, Φt, Ut, Vt} we use the matching func-
tion to construct At, and the law of motion for unemployment to construct St. We then freeze non-recruiting
intensity inputs, setting At = A0, Vt = V0. We then use {A0, V0, Φt, St} to construct a counterfactual path
for unemployment Ũt starting at U0 as in the data. That is, Ũ1 = (1 − f (A0, Φ0, U0, V0))U0 + S0, and then
Ũ2 = (1 − f (A0, Φ1, Ũ1, V0))Ũ1 + S1. Panel A plots f̃t = f (A0, Φt, Ũt, V0). Panel B plots Ũt. The red lines therefore
measure the drop in the job finding rate and the consequent rise in unemployment due only to the decrease in
aggregate recruiting intensity Φt, holding all other determinants of the job finding rate fixed, i.e. residual match
efficiency A0 and aggregate vacancies V0. Note that, by construction, by feeding in also the observed series for Vt
and our estimated series for At, we would match exactly the data for both job finding rate and unemployment.

served unemployment dynamics (22). Second, we construct our counterfactual series for resid-

ual match efficiency and vacancies, by fixing values at their pre-recession levels: Ãt = A2008:1

and Ṽt = V2008:1 for all t. Hence, the only time-varying input into hiring is Φt. Third, we con-

struct our counterfactual series for our variables of interest by starting from Ũ2008:1, and using{
Ãt, Ṽt, Φt, St

}
along with (21) and (22) to construct counterfactual

{
F̃t, Ũt

}2018:12

t=2008:1
(for more

details see the footnote of Figure 9).28

Figure 9 shows that the decline in the recruiting intensity of hiring firms alone accounts

for a large part of the decline in the job finding rate, and over 40 percent of the increase in

unemployment at the onset of the recession. However, as the vacancy rate recovers quickly

and the labor market starts tightening again, recruiting intensity rebounds as firms once more

28Consistent with the previous figures we use the series for Φt constructed using the employment quintile (j),
NAICS4 (i).
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increase their recruiting inputs to realize hires. Thus under our counterfactual, unemployment

returns to near its pre-recession level by 2012. In the data 2012 unemployment is still 60 percent

above its pre-recession level. We conclude that the decline in ARI is important in explaining

unemployment dynamics at the onset of the recession, but not its slow recovery

7 Discussion

Before we conclude, we (i) discuss alternative theories for the relationship between hiring rates

and vacancy yields, and (ii) study the empirical properties of overall match efficiency and the

residual At term.

7.1 Alternative theories

Our empirical facts document that heterogeneity in vacancy yields across different groups of

firms—age, size, separation rate, quit rate, wage, wage growth—can be explained entirely by

heterogeneity in hiring rates across these groups. Our theory is one of firms’ choices of re-

cruiting intensity, although other theories may be consistent with this behavior, which calls for

further empirical and theoretical analysis. First, faster growing firms may have lower recruiting

standards, and hence fill their vacancies more quickly. Such channels are considered in Carrillo-

Tudela, Kaas, and Lochner (2024) and Carrillo-Tudela, Kaas, and Gartner (2023) and found to

have positive effects on vacancy yields. Second, from the perspective of a multi-worker firm

job ladder model (Bilal, Engbom, Mongey, and Violante, 2022), firms may grow quickly because

they have a high marginal value of additional employee, which also increases their ability to fill

vacancies via poaching from other firms. Third, from the perspective of a multi-worker firm di-

rected search model Kaas and Kircher (2015), firms with a high desired hiring rate may post in

high wage markets which deliver higher vacancy filling rates. Finally, it could be the case that

idiosyncratic shocks to firm-level match efficiency cause both hiring rates and vacancy yields

to comove, however we find that our results held while including (jt) fixed effects.

While each of these explanations are appealing, the fact that we find a robust relationship

of hiring rates and vacancy yields within and between many different categorizations of firms

by observable characteristics means that each could not be the only reason for this relationship.
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Categories for j Aggregation A. Decomposition of var(Mt) Correlation with unemp.

are quintiles of level for i var(At) var(Φt) Cov. βΦ At Φt

Industry NAICS2 0.017 0.026 0.025 0.571 -0.825 -0.929
NAICS3 0.015 0.031 0.022 0.615 -0.763 -0.927
NAICS4 0.023 0.020 0.025 0.478 -0.863 -0.909

Age NAICS1 0.014 0.065 -0.011 0.875 -0.196 -0.915
NAICS2 0.018 0.027 0.023 0.565 -0.790 -0.920
NAICS3 0.020 0.023 0.025 0.526 -0.828 -0.918
NAICS4 0.028 0.018 0.022 0.426 -0.840 -0.859

Size NAICS1 0.010 0.055 0.003 0.833 -0.361 -0.935
NAICS2 0.018 0.024 0.026 0.541 -0.840 -0.926
NAICS3 0.033 0.009 0.026 0.327 -0.940 -0.922
NAICS4 0.036 0.008 0.024 0.296 -0.937 -0.889

Wage NAICS1 0.018 0.028 0.022 0.572 -0.782 -0.912
NAICS2 0.025 0.018 0.025 0.449 -0.871 -0.896
NAICS3 0.022 0.023 0.023 0.509 -0.817 -0.898
NAICS4 0.026 0.017 0.025 0.429 -0.873 -0.893

Separation rate NAICS1 0.028 0.014 0.026 0.398 -0.900 -0.898
NAICS2 0.026 0.017 0.025 0.435 -0.873 -0.892
NAICS3 0.023 0.022 0.023 0.489 -0.828 -0.893
NAICS4 0.028 0.016 0.024 0.419 -0.868 -0.877

Quit rate NAICS1 0.025 0.016 0.027 0.439 -0.886 -0.915
NAICS2 0.025 0.017 0.026 0.440 -0.880 -0.911
NAICS3 0.022 0.022 0.024 0.496 -0.826 -0.901
NAICS4 0.026 0.019 0.023 0.446 -0.841 -0.875

Turnover rate NAICS1 0.046 0.004 0.018 0.188 -0.961 -0.845
NAICS2 0.038 0.008 0.022 0.277 -0.934 -0.851
NAICS3 0.034 0.011 0.023 0.336 -0.908 -0.857
NAICS4 0.033 0.012 0.023 0.348 -0.901 -0.860

Emp. growth rate NAICS1 0.028 0.012 0.028 0.382 -0.929 -0.922
NAICS2 0.027 0.014 0.027 0.406 -0.913 -0.918
NAICS3 0.024 0.016 0.028 0.442 -0.900 -0.930
NAICS4 0.025 0.016 0.027 0.433 -0.883 -0.909

Average 0.025 0.020 0.023 0.464 -0.831 -0.900

Table 3: Decomposing aggregate match efficiency

Notes: This table presents the time-series variance decomposition of equation (23). The coefficient βΦ is obtained
from a regression of de-meaned logMt on de-meaned log Φt, this gives an alternative expression for the share
of the variance of logMt attributed to log Φt (see Hottman, Redding, and Weinstein (2016) and description in
footnote 23).

For example, controlling for wages —which is a strong predictor of fill rates in directed search

models— we still find that higher hiring rate firms have higher vacancy yields. And controlling

for establishment age—which is a strong predictor of marginal value of additional employee in

Bilal, Engbom, Mongey, and Violante (2022)—we still find that higher hiring rate firms have

higher vacancy yields.
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7.2 Overall aggregate match efficiency

So far, the focus of the paper has been on aggregate recruiting intensity. In this section, we ex-

pand it to overall aggregate match efficiency. Given the matching function Ht = Φt AtV1−α
t Uα

t ,

overall match efficiency is Mt = Φt At. Here we take an agnostic view of the determinants

of At, and estimate Mt residually from hires, vacancies and unemployment. Then, given our

measure of Φt, we recover the implied path for At and show that: (a) around half of fluctu-

ations in Mt are due to recruiting intensity Φt, (b) the residual portion At is pro-cyclical, (c)

around half of fluctuations in At are accounted for by a simple measure of worker search ef-

fort and composition based on (7), leaving ample room for other pro-cyclical theories, such as

mismatch, to explain the remainder.

Table 3 repeats the decomposition exercise of our main results in Table 2, but now breaking

down Mt into fluctuations in Φt, At and their covariance:

Var
(

logMt

)
= Var

(
log Φt

)
+ Var

(
log At

)
+ 2Cov

(
log Φt, log At

)
. (23)

Recall that obtaining At requires an estimate of Compt, and hence for every grouping of types

of firms we obtain a different estimate of At. Both At and Φt are strongly procyclical: the last

two columns show that the correlation with unemployment is close to one in both cases. Across

groupings we find that, on average, around 40% of fluctuations in overall match efficiency are

accounted for by changes in Φt.

Figure 10 depicts these results graphically by plotting Mt (blue line in both panels) along

with paths for At (panel A) and Φt (panel B) obtained for each of our groupings of fixed effects

j across all NAICS aggregation levels for i, and their mean paths (in red).

In the Great Recession, aggregate recruiting intensity Φt falls quickly, whereas the residual

factors are slower to decline and also more persistent. As explained, the residual At is a catch-

all for further features of the economy that may lead to a variation in match efficiency. First, we

construct a sub-component of At which captures changes in job-seekers search effort and com-

position. Using (7), and taking into account K = 3 types of workers, unemployed U, employed

35



Figure 10: Decomposing aggregate match efficiency into recruiting intensity and residual

Notes: Each of the eight dashed line corresponds to the At (left panel) or Φt (right panel) obtained under
all different grouping of firms j and industry categorizations to define i considered in Table 2. The red line
is the average of the dashed lines. The blue line gives measured aggregate match efficiency Mt = AtΦt.
The green line in Panel A plots Ãt constructed directly using equation (24), where we construct groups k ∈
{Unemployed, Non-employment, Employed}.

E and non-employed N, yields the index Ãt:

Ãt =

[
K

∑
k=1

akt
Skt

Ut

]1−α

=

[
1 + aEt

Et

Ut
+ aNt

Nt

Ut

]1−α

where aEt =
EEt/Et

UEt/Ut
, aNt =

NEt/Nt

UEt/Ut
. (24)

Since the matching function is constant returns to scale, we can measure aEt and aNt from rel-

ative flows. We use the adjusted employed-to-employed transition rate EEt/Et from Fujita,

Moscarini, and Postel-Vinay (2024). The green line in Figure 10 plots Ãt. This time series shares

the same pro-cyclicality of the measures of At backed out from our recruiting intensity exer-

cises and, in the Great Recession, accounts for around half of the decline in average At (red

line).29 Second, although not in the figure, we note that what remains of At after subtracting

the job-seeker composition term Ãt is also procyclical. This result is consistent with additional

explanations of fluctuations in Mt, such as worsening mismatch (Şahin, Song, Topa, and Vi-

olante, 2014) or a decline in poaching (Bilal, Engbom, Mongey, and Violante, 2022).30

29We find that search efficiencies aEt and aNt both increase in the Great Recession. However, since the levels of
both are much lower than one (i.e. the normalized search efficiency of the unemployed), these increases in search
efficiency are dominated in the construction of Ãt by the shift in composition toward non-employment.

30In Bilal, Engbom, Mongey, and Violante (2022), a job ladder exists across firms, ranked by the marginal surplus
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8 Conclusion

We conclude by highlighting two natural directions for further research. First, motivated by

empirical evidence (O’Leonard, Krider, and Erickson, 2015; Forsythe and Weinstein, 2018), we

emphasized expenditures on recruiting activities as the key instrument firms use to modulate

their search effort. Other margins, such as varying offered wages, non-pecuniary job amenities,

and screening standards, may be important too. There is currently no representative microdata

for the U.S. that allows researchers to disentangle these different mechanisms, but progress

has being made for other countries, such as Austria and Germany (Mueller, Kettemann, and

Zweimuller, 2018; Carrillo-Tudela, Kaas, and Gartner, 2023). This promising line of research

that digs deeper into the black box of firm-level recruiting decisions could lead to a comprehen-

sive model of firm recruiting which can be embedded into the canonical frameworks used by

macroeconomists to study labor market dynamics.

Second, firms’ recruiting intensity is only one of the factors that moves aggregate match ef-

ficiency, which is what is ultimately important for the volatility of the unemployment rate. The

literature linking micro to aggregate recruiting intensity, effectively initiated by Davis, Faber-

man, and Haltiwanger (2013), is still in its infancy. A more established literature has studied two

other sources of match efficiency dynamics over the business cycle: variation in composition of

the pool of job seekers, in worker’s search effort, and in mismatch. Research on these three fac-

tors has been, so far, disjoint. A unified framework to coherently estimate these various forces

and theoretically understand how they interact with each other—in producing amplification

and complementarities or in offsetting each other—would be another welcome advancement

in the literature (see Crump, Eusepi, Giannoni, and Sahin (2019), Leduc and Liu (2020) and

Barnichon and Figura (2015) for first steps in this direction).

of additional employment. Firms at the top of the ladder post the most vacancies and fill their jobs most quickly as
they can hire from any other firm below them. A financial crisis most steeply reduces the marginal surplus of jobs
at firms at the top of the ladder, reducing their vacancies, which shifts the distribution of vacancies toward firms
with lower job filling rates.
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APPENDIX FOR ONLINE PUBLICATION

This Appendix is organized as follows. Section A contains additional figures and tables. Section B
provides details on our analytical derivations. Section C provides additional details on variable con-
struction.

A Additional figures and tables
This appendix section contains additional figures and tables referenced in the main text.

Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

Industry - 0.77 ( 0.009) 0.79 ( 0.007) 0.74 ( 0.004)
Age 0.84 ( 0.009) 0.77 ( 0.006) 0.76 ( 0.004) 0.73 ( 0.003)
Size 0.83 ( 0.011) 0.77 ( 0.009) 0.66 ( 0.005) 0.65 ( 0.004)
Wage 0.78 ( 0.010) 0.74 ( 0.006) 0.76 ( 0.004) 0.72 ( 0.003)
Separation rate 0.70 ( 0.011) 0.72 ( 0.007) 0.75 ( 0.004) 0.73 ( 0.003)
Quit rate 0.73 ( 0.012) 0.73 ( 0.008) 0.77 ( 0.004) 0.77 ( 0.003)
Turnover rate 0.48 ( 0.027) 0.62 ( 0.017) 0.68 ( 0.007) 0.69 ( 0.005)
Emp. growth rate 0.71 ( 0.011) 0.71 ( 0.008) 0.72 ( 0.005) 0.72 ( 0.003)

Table A1: Coefficient estimates - With jt fixed effects
Notes: This table replicates Table 1, but with the following modification. In each case equation (14), but with fixed
effects δt and ξ j replaced with the joint fixed effect δjt. This implies that the only variation used to estimate the
coefficient β presented in this table is: within-group-j-month-t, across-industries-i.

Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

Industry - 0.78 ( 0.013) 0.75 ( 0.008) 0.75 ( 0.004)
Age 0.78 ( 0.011) 0.80 ( 0.007) 0.75 ( 0.004) 0.73 ( 0.003)
Size 0.83 ( 0.011) 0.78 ( 0.009) 0.69 ( 0.006) 0.68 ( 0.004)
Wage 0.75 ( 0.011) 0.75 ( 0.007) 0.74 ( 0.004) 0.73 ( 0.003)
Separation rate 0.78 ( 0.012) 0.77 ( 0.008) 0.76 ( 0.004) 0.74 ( 0.003)
Quit rate 0.72 ( 0.014) 0.73 ( 0.009) 0.76 ( 0.004) 0.76 ( 0.003)
Turnover rate 0.71 ( 0.024) 0.72 ( 0.016) 0.72 ( 0.007) 0.73 ( 0.004)
Emp. growth rate 0.62 ( 0.011) 0.67 ( 0.009) 0.70 ( 0.005) 0.73 ( 0.003)

Table A2: Coefficient estimates - With ij and t fixed effects
Notes: This table replicates Table 1, but with the following modification. In each case equation (14), but with fixed
effect ξ j replaced with the joint fixed effect ξij. This implies that the only variation used to estimate the coefficient
β presented in this table is: within-group-j-industry-i, across-months-t.
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Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

Industry - 71228 17245 5553
Age 27303 14758 3546 1134
Size 27303 14758 3608 1178
Wage 22753 12318 2989 956
Separation rate 22753 12135 2941 936
Quit rate 22753 12225 2984 952
Turnover rate 22752 12135 2936 936
Emp. growth rate 22753 12602 3138 1099

Table A3: Sample size in each ij cell
Notes: In the estimation described in Table A2, we estimate fixed effects ϕij. For each estimation, this table gives
the average number of observations in each (ij)-cell.

Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

A. Grouped by establishment’s current residual
Within-NAICS3-month log wage residual quantile 0.78 ( 0.010) 0.74 ( 0.006) 0.76 ( 0.004) 0.72 ( 0.003)
Within-NAICS3-month wage growth (t − 1, t) residual quantile 0.71 ( 0.011) 0.71 ( 0.008) 0.72 ( 0.005) 0.72 ( 0.003)
Within-NAICS3-month wage growth (t, t + 1) residual quantile 0.70 ( 0.011) 0.71 ( 0.008) 0.71 ( 0.005) 0.72 ( 0.003)

B. Grouped by establishment’s average residual
Within-NAICS3-month log wage residual quantile 0.80 ( 0.010) 0.75 ( 0.006) 0.76 ( 0.004) 0.72 ( 0.003)
Within-NAICS3-month wage growth (t − 1, t) residual quantile 0.76 ( 0.011) 0.78 ( 0.008) 0.74 ( 0.005) 0.74 ( 0.003)
Within-NAICS3-month wage growth (t, t + 1) residual quantile 0.73 ( 0.010) 0.75 ( 0.007) 0.74 ( 0.005) 0.74 ( 0.003)

Table A4: Coefficient estimates - Grouping by residualized wages and wage growth
Notes: This table replicates Table 1, but with the following modification. The variables that we use to group firms
into groups j are residuals. Take a variable xemt for establishment e in NAICS3 industry m in period t. We regress
xemt on mt-fixed effects, call the residual x̃emt. We then group firms into groups j by quintiles of either: (Panel A)
grouped every period by x̃emt, (Panel B) grouped by the establishment mean of x̃emt over the sample. For x we
consider (a) log Wageemt, where Wageemt = Payrollemt/Employmentemt, (b) growth in Wageemt between t − 1 and t
(where t is a quarter), (c) growth in Wageemt between t and t + 1.

Categories for j Level of aggregation for i

are quintiles of: NAICS1 NAICS2 NAICS3 NAICS4

A. Grouped by establishment’s current residual
Within-NAICS3-month log wage residual quantile 0.75 ( 0.011) 0.75 ( 0.007) 0.74 ( 0.004) 0.73 ( 0.003)
Within-NAICS3-month wage growth (t − 1, t) residual quantile 0.62 ( 0.011) 0.67 ( 0.009) 0.70 ( 0.005) 0.73 ( 0.003)
Within-NAICS3-month wage growth (t, t + 1) residual quantile 0.61 ( 0.011) 0.66 ( 0.009) 0.69 ( 0.005) 0.73 ( 0.003)

B. Grouped by establishment’s average residual
Within-NAICS3-month log wage residual quantile 0.78 ( 0.011) 0.78 ( 0.007) 0.75 ( 0.004) 0.74 ( 0.003)
Within-NAICS3-month wage growth (t − 1, t) residual quantile 0.71 ( 0.011) 0.77 ( 0.008) 0.75 ( 0.005) 0.76 ( 0.003)
Within-NAICS3-month wage growth (t, t + 1) residual quantile 0.68 ( 0.011) 0.75 ( 0.008) 0.75 ( 0.005) 0.75 ( 0.003)

Table A5: Coefficient estimates - Grouping by residualized wages and wage growth - With jt
fixed effects
Notes: This replicates the above Table A4, with the addition of jt fixed effects, as in Table A1, above.
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Figure A1: Coefficient estimates - Separately for quit rate quintiles
Notes: This figures provides point estimates similar to Table 1, but with the following modification. In each case
we run the entire analysis only for establishments within a particular quintile of quit rates qit.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. βComp Between Within Cov.

Industry NAICS2 0.42 0.09 0.02 0.47 0.098 0.39 0.24 0.37
NAICS3 0.42 0.08 0.03 0.47 0.109 0.29 0.37 0.34
NAICS4 0.40 0.10 0.05 0.45 0.119 0.32 0.64 0.04

Age NAICS1 0.52 0.07 0.06 0.35 0.079 0.19 0.38 0.43
NAICS2 0.47 0.09 0.04 0.40 0.063 0.14 0.51 0.35
NAICS3 0.45 0.10 0.04 0.41 0.070 0.10 0.68 0.22
NAICS4 0.42 0.10 0.14 0.34 0.139 0.13 0.52 0.35

Size NAICS1 0.53 0.07 0.02 0.38 0.038 0.09 0.68 0.23
NAICS2 0.46 0.10 0.03 0.41 0.057 0.49 1.24 -0.73
NAICS3 0.39 0.12 0.05 0.44 0.095 0.21 1.01 -0.22
NAICS4 0.38 0.12 0.08 0.42 0.116 0.05 0.82 0.13

Wage NAICS1 0.48 0.09 0.04 0.39 0.052 0.22 0.41 0.37
NAICS2 0.46 0.11 0.05 0.38 0.059 0.26 0.48 0.26
NAICS3 0.46 0.10 0.05 0.39 0.071 0.12 0.72 0.16
NAICS4 0.43 0.11 0.08 0.38 0.098 0.07 0.80 0.13

Separation rate NAICS1 0.40 0.11 0.06 0.43 0.111 0.47 0.20 0.33
NAICS2 0.41 0.10 0.07 0.42 0.108 0.42 0.25 0.33
NAICS3 0.45 0.10 0.07 0.38 0.081 0.38 0.40 0.22
NAICS4 0.47 0.11 0.09 0.33 0.065 0.36 0.64 0.00

Quit rate NAICS1 0.48 0.11 0.05 0.36 0.036 0.32 0.29 0.39
NAICS2 0.48 0.11 0.06 0.35 0.037 0.30 0.44 0.26
NAICS3 0.56 0.11 0.07 0.26 -0.008 0.40 0.76 -0.16
NAICS4 0.63 0.13 0.12 0.12 -0.053 0.48 1.03 -0.51

Turnover rate NAICS1 0.28 0.12 0.14 0.46 0.229 1.15 0.31 -0.46
NAICS2 0.36 0.12 0.12 0.40 0.150 0.88 0.29 -0.17
NAICS3 0.41 0.12 0.11 0.36 0.106 0.76 0.31 -0.07
NAICS4 0.43 0.12 0.11 0.34 0.097 0.47 0.25 0.28

Emp. growth rate NAICS1 0.43 0.12 0.03 0.42 0.055 0.27 0.48 0.25
NAICS2 0.44 0.12 0.04 0.40 0.056 0.28 0.55 0.17
NAICS3 0.42 0.11 0.04 0.43 0.085 0.06 0.77 0.17
NAICS4 0.42 0.11 0.07 0.40 0.099 0.03 0.82 0.15

Average 0.44 0.105 0.065 0.39 0.08 0.33 0.56 0.12

Table A6: Decomposing aggregate recruiting intensity - ALTERNATIVE α = 0.15

Notes: This table replicates Table 2 from the main text with the following difference. For every row, we assume
that the matching function elasticity α = 0.15 when constructing all terms that enter the variance decomposition.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. βComp Between Within Cov.

Industry NAICS2 0.57 0.03 0.02 0.38 0.098 0.13 0.47 0.40
NAICS3 0.57 0.03 0.03 0.37 0.109 0.09 0.57 0.34
NAICS4 0.54 0.03 0.05 0.38 0.119 0.11 0.73 0.16

Age NAICS1 0.69 0.02 0.06 0.23 0.079 0.05 0.64 0.31
NAICS2 0.64 0.03 0.04 0.29 0.063 0.05 0.69 0.26
NAICS3 0.62 0.03 0.04 0.31 0.070 0.03 0.79 0.18
NAICS4 0.57 0.04 0.14 0.25 0.139 0.05 0.69 0.26

Size NAICS1 0.72 0.02 0.02 0.24 0.038 0.02 0.81 0.17
NAICS2 0.63 0.03 0.03 0.31 0.057 0.16 1.02 -0.18
NAICS3 0.52 0.05 0.05 0.38 0.095 0.09 0.99 -0.08
NAICS4 0.51 0.06 0.08 0.35 0.116 0.02 0.87 0.11

Wage NAICS1 0.66 0.03 0.04 0.27 0.052 0.07 0.62 0.31
NAICS2 0.63 0.04 0.05 0.28 0.059 0.09 0.63 0.28
NAICS3 0.63 0.03 0.05 0.29 0.071 0.04 0.81 0.15
NAICS4 0.58 0.04 0.08 0.30 0.098 0.02 0.87 0.11

Separation rate NAICS1 0.54 0.04 0.06 0.36 0.111 0.18 0.39 0.43
NAICS2 0.56 0.04 0.07 0.33 0.108 0.15 0.45 0.40
NAICS3 0.61 0.03 0.07 0.29 0.081 0.13 0.56 0.31
NAICS4 0.63 0.04 0.09 0.24 0.066 0.13 0.71 0.16

Quit rate NAICS1 0.65 0.04 0.05 0.26 0.036 0.11 0.50 0.39
NAICS2 0.65 0.04 0.06 0.25 0.037 0.11 0.60 0.29
NAICS3 0.76 0.04 0.07 0.13 -0.008 0.13 0.76 0.11
NAICS4 0.86 0.04 0.13 -0.03 -0.053 0.15 0.90 -0.05

Turnover rate NAICS1 0.35 0.07 0.14 0.44 0.229 0.66 0.25 0.09
NAICS2 0.48 0.06 0.12 0.34 0.150 0.40 0.33 0.27
NAICS3 0.56 0.05 0.11 0.28 0.106 0.31 0.37 0.32
NAICS4 0.58 0.05 0.11 0.26 0.097 0.18 0.41 0.41

Emp. growth rate NAICS1 0.58 0.05 0.03 0.34 0.055 0.11 0.61 0.28
NAICS2 0.60 0.04 0.04 0.32 0.056 0.11 0.65 0.24
NAICS3 0.57 0.04 0.04 0.35 0.085 0.02 0.85 0.13
NAICS4 0.57 0.04 0.07 0.32 0.099 0.01 0.88 0.11

Average 0.60 0.039 0.066 0.29 0.08 0.13 0.66 0.22

Table A7: Decomposing aggregate recruiting intensity - ALTERNATIVE α = 0.50

Notes: This table replicates Table 2 from the main text with the following difference. For every row, we assume
that the matching function elasticity α = 0.50 when constructing all terms that enter the variance decomposition.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. βComp Between Within Cov.

Industry NAICS2 0.56 0.05 0.01 0.38 0.063 0.17 0.42 0.41
NAICS3 0.54 0.04 0.02 0.40 0.082 0.13 0.53 0.34
NAICS4 0.58 0.05 0.04 0.33 0.066 0.11 0.77 0.12

Age NAICS1 0.56 0.04 0.06 0.34 0.089 0.13 0.45 0.42
NAICS2 0.61 0.05 0.04 0.30 0.035 0.08 0.62 0.30
NAICS3 0.61 0.05 0.04 0.30 0.034 0.06 0.74 0.20
NAICS4 0.61 0.05 0.13 0.21 0.080 0.06 0.64 0.30

Size NAICS1 0.59 0.05 0.02 0.34 0.044 0.06 0.72 0.22
NAICS2 0.62 0.05 0.03 0.30 0.023 0.25 1.06 -0.31
NAICS3 0.67 0.05 0.04 0.24 -0.007 0.12 0.83 0.05
NAICS4 0.68 0.05 0.08 0.19 0.000 0.05 0.79 0.16

Wage NAICS1 0.62 0.05 0.03 0.30 0.027 0.12 0.52 0.36
NAICS2 0.66 0.05 0.05 0.24 0.008 0.13 0.57 0.30
NAICS3 0.62 0.05 0.05 0.28 0.035 0.07 0.76 0.17
NAICS4 0.63 0.05 0.08 0.24 0.039 0.03 0.84 0.13

Separation rate NAICS1 0.62 0.05 0.06 0.27 0.037 0.18 0.39 0.43
NAICS2 0.61 0.05 0.06 0.28 0.049 0.17 0.43 0.40
NAICS3 0.62 0.05 0.06 0.27 0.040 0.17 0.51 0.32
NAICS4 0.67 0.05 0.09 0.19 0.011 0.14 0.67 0.19

Quit rate NAICS1 0.68 0.05 0.05 0.22 -0.016 0.15 0.44 0.41
NAICS2 0.69 0.05 0.06 0.20 -0.012 0.14 0.53 0.33
NAICS3 0.73 0.06 0.07 0.14 -0.038 0.20 0.70 0.10
NAICS4 0.82 0.07 0.13 -0.02 -0.083 0.23 0.86 -0.09

Turnover rate NAICS1 0.68 0.05 0.10 0.17 0.009 0.30 0.34 0.36
NAICS2 0.67 0.05 0.10 0.18 0.024 0.28 0.38 0.34
NAICS3 0.67 0.05 0.10 0.18 0.018 0.27 0.38 0.35
NAICS4 0.67 0.05 0.10 0.18 0.018 0.18 0.41 0.41

Emp. growth rate NAICS1 0.68 0.05 0.03 0.24 -0.021 0.16 0.53 0.31
NAICS2 0.67 0.05 0.03 0.25 -0.011 0.15 0.58 0.27
NAICS3 0.62 0.05 0.03 0.30 0.024 0.05 0.83 0.12
NAICS4 0.63 0.05 0.06 0.26 0.038 0.02 0.86 0.12

Average 0.64 0.050 0.060 0.25 0.02 0.14 0.62 0.24

Table A8: Decomposing aggregate recruiting intensity - ALTERNATIVE γ = 0.82

Notes: This table replicates Table 2 from the main text with the following difference. We assume that γ = 0.82 in
every row, rather than the value presented in Table 1.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. βComp Between Within Cov.

Industry NAICS2 0.49 0.06 0.02 0.43 0.091 0.29 0.22 0.49
NAICS3 0.45 0.06 0.03 0.46 0.117 0.33 0.18 0.49
NAICS4 0.42 0.06 0.05 0.47 0.149 0.33 0.18 0.49

Age NAICS1 0.50 0.05 0.04 0.41 0.100 0.28 0.22 0.50
NAICS2 0.52 0.05 0.03 0.40 0.093 0.25 0.25 0.50
NAICS3 0.45 0.06 0.03 0.46 0.123 0.33 0.18 0.49
NAICS4 0.37 0.06 0.08 0.49 0.200 0.36 0.16 0.48

Size NAICS1 0.55 0.04 0.02 0.39 0.086 0.20 0.31 0.49
NAICS2 0.48 0.05 0.03 0.44 0.105 0.29 0.21 0.50
NAICS3 0.39 0.07 0.05 0.49 0.155 0.42 0.13 0.45
NAICS4 0.34 0.06 0.09 0.51 0.218 0.42 0.12 0.46

Wage NAICS1 0.47 0.06 0.03 0.44 0.104 0.33 0.18 0.49
NAICS2 0.47 0.06 0.04 0.43 0.108 0.33 0.18 0.49
NAICS3 0.46 0.06 0.06 0.42 0.122 0.34 0.18 0.48
NAICS4 0.40 0.06 0.07 0.47 0.172 0.36 0.16 0.48

Separation rate NAICS1 0.53 0.06 0.03 0.38 0.070 0.28 0.22 0.50
NAICS2 0.51 0.06 0.04 0.39 0.085 0.29 0.21 0.50
NAICS3 0.49 0.06 0.06 0.39 0.103 0.31 0.19 0.50
NAICS4 0.40 0.06 0.11 0.43 0.194 0.34 0.17 0.49

Quit rate NAICS1 0.51 0.08 0.02 0.39 0.043 0.37 0.15 0.48
NAICS2 0.50 0.08 0.03 0.39 0.064 0.36 0.16 0.48
NAICS3 0.54 0.07 0.05 0.34 0.061 0.31 0.20 0.49
NAICS4 0.50 0.06 0.08 0.36 0.108 0.31 0.20 0.49

Turnover rate NAICS1 0.49 0.08 0.09 0.34 0.089 0.38 0.14 0.48
NAICS2 0.50 0.08 0.10 0.32 0.094 0.37 0.15 0.48
NAICS3 0.48 0.07 0.14 0.31 0.132 0.37 0.16 0.47
NAICS4 0.40 0.06 0.17 0.37 0.219 0.36 0.16 0.48

Emp. growth rate NAICS1 0.38 0.09 0.04 0.49 0.134 0.50 0.08 0.42
NAICS2 0.41 0.08 0.04 0.47 0.118 0.45 0.11 0.44
NAICS3 0.43 0.07 0.05 0.45 0.127 0.39 0.14 0.47
NAICS4 0.40 0.06 0.06 0.48 0.169 0.35 0.17 0.48

Average 0.46 0.064 0.057 0.42 0.12 0.34 0.18 0.48

Table A9: Decomposing aggregate recruiting intensity - Baseline has (ij)-fixed effects

Notes: This table replicates Table 2, but with the following modification. In each case equation (14), but with fixed
effect ξ j replaced with the joint fixed effect ξij. This implies that the only variation used to estimate the coefficient
β presented in this table is: within-group-j-industry-i, across-months-t. The ϕij terms are then computed and used in
the decomposition.
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Categories for j Aggregation 1. Aggregate recruiting intensity 2. Composition

are quintiles of level for i Slack Growth Comp. Cov. Between Within Cov.
A. Grouped by establishment’s current residual

Within-NAICS3-month log wage residual quantile NAICS1 0.55 0.06 0.04 0.35 0.15 0.49 0.36
NAICS2 0.52 0.08 0.05 0.35 0.18 0.53 0.29
NAICS3 0.52 0.07 0.05 0.36 0.08 0.75 0.17
NAICS4 0.49 0.08 0.08 0.35 0.05 0.83 0.12

Within-NAICS3-month wage growth (t − 1, t) residual quantile NAICS1 0.49 0.09 0.03 0.39 0.20 0.52 0.28
NAICS2 0.50 0.08 0.04 0.38 0.20 0.58 0.22
NAICS3 0.47 0.08 0.04 0.41 0.04 0.80 0.16
NAICS4 0.48 0.08 0.07 0.37 0.02 0.84 0.14

Within-NAICS3-month wage growth (t, t + 1) residual quantile NAICS1 0.48 0.09 0.03 0.40 0.26 0.51 0.23
NAICS2 0.50 0.09 0.04 0.37 0.25 0.60 0.15
NAICS3 0.46 0.08 0.03 0.43 0.06 0.78 0.16
NAICS4 0.47 0.07 0.07 0.39 0.03 0.83 0.14

B. Grouped by establishment’s average residual

Within-NAICS3-month log wage residual quantile NAICS1 0.57 0.06 0.03 0.34 0.13 0.52 0.35
NAICS2 0.53 0.07 0.05 0.35 0.16 0.50 0.34
NAICS3 0.52 0.07 0.05 0.36 0.08 0.72 0.20
NAICS4 0.49 0.08 0.08 0.35 0.04 0.80 0.16

Within-NAICS3-month wage growth (t − 1, t) residual quantile NAICS1 0.54 0.07 0.04 0.35 0.16 0.50 0.34
NAICS2 0.56 0.06 0.04 0.34 0.13 0.61 0.26
NAICS3 0.51 0.07 0.03 0.39 0.06 0.78 0.16
NAICS4 0.50 0.07 0.08 0.35 0.02 0.83 0.15

Within-NAICS3-month wage growth (t, t + 1) residual quantile NAICS1 0.50 0.08 0.03 0.39 0.18 0.52 0.30
NAICS2 0.52 0.07 0.04 0.37 0.16 0.65 0.19
NAICS3 0.49 0.07 0.03 0.41 0.05 0.79 0.16
NAICS4 0.48 0.07 0.08 0.37 0.02 0.84 0.14

Average 0.51 0.075 0.048 0.37 0.11 0.67 0.22

Table A10: Decomposing aggregate recruiting intensity - Grouping by residualized wages and
wage growth

Notes: This table replicates Table 2, but with the following modification. The variables that we use to group firms
into groups j follow Table A4.
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Figure A2: Decomposing aggregate recruiting intensity - ALTERNATIVE γ = 0.82

Notes: This figure replicates Figure 6 from the main text with the following difference. We assume that γ = 0.82
rather than the value presented in Table 1.

Figure A3: Indexes of aggregate recruiting intensity - ALTERNATIVE γ = 0.82

Notes: This figure replicates Figure 8 from the main text with the following difference. We assume that γ = 0.82
rather than the value presented in Table 1.
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B Mathematical details
This section contains (1) the proof of Proposition 1 and (2) the derivation of the daily filling rate and
vacancy flow rate used in the text.

B.1 Proof of Proposition 1
We begin by working explicitly with a cost function in the form of Ci(eit, vit, nit) = xiC(eit, vit/nit), and
in the necessity part of the proof show that this is the only way in which v and n can enter. Let ṽ = (v/n)
denote the vacancy rate, and h̃ = (h/n) denote the hiring rate. The hiring problem can be written as
follows:

min
eit,vit

xiC
(

eit,
vit

nit

)
vit s.t. hit = Q∗

t ϕieitvit

which, removing it subscripts for convenience, and setting ϕi = 1 without loss of generality, we write as:

min
e,ṽ

xC (e, ṽ) ṽn s.t. h̃ = Q∗eṽ (B1)

Sufficiency. We first show the following. If C is an isoelastic function m(·) of two, additive, isoelastic
functions g(e) and f (ṽ), then the solution to (B1) delivers a vacancy yield h/v = h̃/ṽ and vacancy rate ṽ
that are log-linear in the hiring rate h̃.

The first order conditions of the problem imply the following optimality condition, which along with
the hiring constraint can be solved for e

(
Q∗, h̃

)
and ṽ

(
Q∗, h̃

)
:

Ce (e, ṽ) e = Cv (e, ṽ) ṽ + C (e, ṽ) . (B2)

Note that since x scales the cost function, it does not appear in the optimality condition. Despite affecting
the firms’ dynamic decision that controls h̃, x does not affect the recruiting input decision. If C(e, ṽ) has
the form just described:

C(e, ṽ) = m
(

g(e) + f (ṽ)
)

,

then the optimality condition (B2) can be written:

g (e)
[(

m′(g(e)+ f (ṽ))(g(e)+ f (ṽ))
m(g(e)+ f (ṽ))

) (
g′(e)e
g(e)

)
− 1
]
= f (ṽ)

[(
m′(g(e)+ f (ṽ))(g(e)+ f (ṽ))

m(g(e)+ f (ṽ))

)
f ′(ṽ)ṽ
f (ṽ) + 1

]
Since m, g and f are constant elasticity functions, with elasticities γm, γv and γe respectively, this condi-
tion reduces to

g(e) [γmγe − 1] = f (ṽ) [γmγv + 1] . (B3)

Given that g and f are isoelastic, the solution to (B3) is of the form ṽ = Ωeω. Substituting this into the
hiring technology h̃ = Q∗eṽ gives

h̃ = ΩQ∗e1+ω =⇒ e = Ω− 1
1+ω Q∗− 1

1+ω h̃
1

1+ω .
h̃=Q∗eṽ

=⇒ h̃
ṽ
= Ω− 1

1+ω Q
ω

1+ω h̃
1

1+ω .
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Since h̃ = Q∗eṽ then it is immediate that ṽ is also isoelastic in h̃. Since γm only appears in the constant
Ω, it can be normalized to one (i.e. m(x) = x) as we do in the paper without any impact on the key
properties of the recruiting policies.

Necessity. We want to show the following. Suppose that under optimality the vacancy yield and
vacancy rate are isoelastic in the hiring rate. Then the cost function takes the following form, where g
and f are isoelastic: C (e, v, n) =

[
g (e) + f

( v
n

)]
. Given our previous result that constant elasticity m only

affects policy function constants we ignore it here. We proceed in five steps.

Step 1. We begin by simplifying the statement that we wish to prove. First, we show that if the sup-
position is true, then ṽ and recruiting intensity must be isoelastic with respect to each other, i.e. have a
constant elasticity relationship, as in ṽ = Ψeψ. By the supposition (h̃/ṽ) is log-linear in h̃. From the hir-
ing constraint (h̃/ṽ) = Q∗e. Therefore e is log-linear in h̃: e = Ωh̃ω, which implies that h̃ is an isoelastic
function of e. Substituting this isoelastic function of e into the hiring constraint for h̃ gives

Ω− 1
ω e

1
ω = Q∗eṽ.

The relationship between e and ṽ is therefore constant elasticity: ṽ = Ψeψ for some Ψ and ψ.
Second, the supposition requires that the first order conditions hold. These give the optimality con-

dition (B2).
Combining these two points allows us to simplify the statement that we wish to prove:

Suppose the optimality condition Ce (e, ṽ) e = Cv (e, ṽ) ṽ + C (e, ṽ) implies that ṽ = Ψeψ, for some
Ψ, ψ. Then C(e, ṽ) = m (g(e) + f (ṽ)), with isoelastic m(x), g(e) and f (ṽ).

We construct the proof by contradiction. Under the assumption that the cost function is not isoleastic,
obtaining an optimal relation between e and ṽ that features constant elasticity leads to a contradiction.

Step 2. We establish a particular implication in the case that C(e, ṽ) is not additively separable. Taking
(B2), and rearranging:

e =
[

Cv (e, ṽ)
Ce (e, ṽ)

ṽ
]
+

[
C (e, ṽ)
Ce (e, ṽ)

]
. (B4)

In order for the supposition to hold, this must imply that e = Ωṽω. If C is not additively separable,
then this requires that e

ω−1
ω can be factored out of both terms on the right side of (B4), leaving only terms

involving ṽ:
Cv (e, ṽ) ṽ
Ce (e, ṽ)

= Γ1 (ṽ) e
ω−1

ω ,
C (e, ṽ)
Ce (e, ṽ)

= Γ2 (ṽ) e
ω−1

ω .

Moreover, to obtain e = Ωṽω we require that Γ1(ṽ) = Γ1ṽγ and Γ2(ṽ) = Γ2ṽγ, so that we can add the
terms on the right side of (B4). Imposing this condition and then dividing the above two expressions
gives

Cv (e, ṽ) ṽ
C (e, ṽ)

=
Γ1

Γ2
.

For this condition to hold, then it must be the case that C(e, ṽ) = Θg(e)vθ . We prove this last step at the
end of the proof in Lemma 1.
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Step 3. We show that if C(e, ṽ) = Θg(e)vθ , then there is no way for the supposition to hold. Under this
functional form the optimality condition (B2) becomes:

Ce (e, ṽ) e = Cv (e, ṽ) ṽ + C (e, ṽ) ,[
Θg′(e)ṽθ

]
e =

[
θΘg(e)ṽθ−1

]
v + Θg(e)vθ .

Since ṽθ can be factored out of both sides, the optimality condition implies that e is independent of ṽ
which violates the supposition.

Step 4. From steps 2 and 3 above we have established by contradiction that C must be additively
separable for the supposition to hold. Now we show that if C is separable, then g and e must be isoelastic
for the supposition to hold. If C(e, ṽ) = m(g(e) + f (v)), then the optimality condition can be written

m′(g(e) + f (ṽ))(g(e) + f (ṽ))
m(g(e) + f (ṽ))

ge (e) e − g (e) =
m′(g(e) + f (ṽ))(g(e) + f (ṽ))

m(g(e) + f (ṽ))
fv (v) v − f (v) .

The supposition requires that the addition of functions on both left and right sides are isoelastic in e and
ṽ. This requires that m, g and f are themselves isoelastic.31

Step 5. Finally, note that the dependence of C(e, v, n) on ṽ and not v and n separately can be shown.
In terms of sufficiency we have already covered this. In terms of necessity, if (v, n) entered not as ṽ =
(v/n), then the first order conditions would produce an extra term involving n’s which would violate
the requirement imposed by the data of an isoelastic relationship between ṽ and e.

Lemma 1. If a function f (x, y) has the property that

fx(x, y)x
f (x, y)

= c ,

where c is a constant, then f (x, y) = h(y)xc for some function h(y).

Proof. Rearrange the above expression:
fx(x, y)
f (x, y)

=
c
x

.

Integrating both sides and, without loss of generality, writing the constants of integration log h1(y), and log h2(y):

log h1(y) + log f (x, y) = log h2(y) + c log x.

31It is immediate that the terms involving m must both be constants, and hence m is isoelastic. The terms are
the same and if they involve both or either of ṽ and ẽ will not result in an isoelastic relationship between e and ṽ.
To observe that f and g are isoelastic consider the following. We require that Fx(x)x − F(x) = axb. The left side
can be written F(x) [Fx(x)x/F(x)− 1]. Therefore we require the term in the bracket to be a constant. This will only
be the case if F(x) is a constant elasticity function. We then require that the term outside the bracket is isoelastic.
Therefore F(x) must be isoelastic.
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Exponentiating delivers our the functional form we wished to establish:

f (x, y) =
h2(y)
h1(y)︸ ︷︷ ︸
:=h(y)

xc.

Policies. We now derive the policy functions in the text. Without loss of generality we let C(e, ṽ) =
cm (ceeγe + cvṽγv)γm . Recalling equation (B3), the first order conditions implied

g(e) [γmγe − 1] = f (ṽ) [γmγv + 1] → ṽ(e) =
[

ce

cv

γmγe − 1
γmγv + 1

]
︸ ︷︷ ︸

:=κ

1
γv

e
γe
γv

which is of the form ṽ(e) = Ψeψ as required. Proceeding as above, (i) substituting in for ṽ in the hiring
function h̃it = Q∗eitṽ(eit), (ii) solving for eit as a function of h̃it and Q∗

t , (iii) multiplying by Q∗
t to convert

eit into the vacancy yield, (iv) taking logs:

log
(

hit

vit

)
= − 1

γe + γv
log κ +

γe

γe + γv
log Q∗

t +
γe

γe + γv
log ϕi +

γv

γe + γv
log
(

hit

nit

)
.

The vacancy rate can then be obtained from ṽ(e):

log
(

vit

nit

)
=

1
γe + γv

log κ − γe

γe + γv
log Q∗

t −
γe

γe + γv
log ϕi +

γe

γe + γv
log
(

hit

nit

)
.

One can observe immediately that summing the two equations delivers log(hit/nit), which verifies that
the hiring constraint holds.
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B.2 Daily hiring model of DFH
Here we present the model and computations that underlie the estimates of the (i) daily job filling rate,
(ii) daily vacancy flow rate referenced in the text and figures. We progress the results of their paper to
arrive at a simple set of equations that can be solved numerically.

Define the following variables. Hires at firm i on day s of month t are hist. Vacancies at the end of the
day are vist. Let fit be the daily job filling rate, such that hist = fitvis−1t, assumed to be constant over the
month t. Let θit be the daily vacancy in-flow rate and δit be the daily exogenous vacancy out-flow rate such
that

vist = (1 − fit) (1 − δit) vis−1t + θit.

Let there be τ days in a month. We observe the following in the JOLTS microdata: (i) monthly hires
hit = ∑τ

s=1 hist, (ii) beginning of month vacancies vit−1 = vi0t, (iii) end of month vacancies vit = viτt−1.
Our aim is to use these data and the above equations to estimate fit, θit, δit. Iterating on the vacancy

equation, vacancies at any day s can be written in terms of fit, θit, δit and vit−1:

vis−1t = [1 − fit − δit + δit fit]
s−1 vit−1 + θit

s−1

∑
j=1

[1 − fit − δit + δit fit]
j−1 .

Using hit = ∑τ
s=1 hist = ∑τ

s=1 fitvis−1t and this expression:

hit = fitvit−1

τ

∑
s=1

[1 − fit − δit + δit fit]
s−1 + fitθit

τ

∑
s=1

(τ − s) [1 − fit − δit + δit fit]
s−1 . (B5)

Evaluating the vacancy equation at the end of the month, we also have

vit = [(1 − fit) (1 − δit)]
τ vit−1 + θit

τ

∑
j=1

[(1 − fit) (1 − δit)]
j−1 . (B6)

Equations (B5) and (B6) are two equations in three unknowns { fit, θit, δit}. As in DFH we simplify this by
assuming that δit is equal to the daily layoff rate ξit. The daily layoff rate is computed by taking month
layoffs ℓit divided by employment nit and then dividing by τ: ξit = (ℓit/τnit). Setting δit = ξit makes
(B5) and (B6) two equations in two unknowns { fit, θit}.

We can make some progress beyond DFH by applying results in algebra for finite sums. Let xit =
1 − fit − δit + δit fit. Plugging this in:

vit = xτ
itvit−1 + θit

τ

∑
j=1

xj−1
it ,

hit = fit

[
τ

∑
s=1

xs−1
it

]
vit−1 + fitθit

[
τ

∑
s=1

(τ − s) xs−1
it

]
.
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Manipulating these obtains two expressions that can be computed sequentially given xit:

θit =
vit − xτ

itvit−1

g0(xit)
(B7)

fit =
hit

g0(xit)vit−1 + θitg1 (xit)
(B8)

where the functions g0 and g1 are given by

g0(x) =
1 − xτ

1 − x
, g1(x) =

τ − g0(x)
1 − x

.

This implies a simple algorithm:

1. Guess f (0)it and use this to compute x(0)it = (1 − δit)(1 − f (0)it ).

2. Use equation (B7) to compute θ
(0)
it , then equation (B8) to compute f (1)it .

- Iterate until
∣∣∣ f (k+1)

it − f (k)it

∣∣∣ < ε.

In practice this converges after a very few iterations. In the figures and text instead of plotting θit directly,
we transform θit into a monthly rate as a fraction of employment: θitτ/nit.

55



C Empirical details
This section contains additional details about the data used in our estimation.

C.1 Trends in data
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B. Residual after removing linear trend

Figure C1: Trends in our data relative to published JOLTS aggregates

Figure C1A compares our construction of aggregate hires, employment and vacancies to officially
published BLS data. For a given series Xt we first adjust our series for mean differences from published
series in logs. Figure C1A then plots the ratio of the log of our adjusted series to the published series.
As can be observed for all three series there is a trend in the bias, with our series being slightly less than
the published data in the early part of the sample, and slightly larger in the latter part. This may be
due to differences in compilation of published data or imputation in either data set. To account for these
differences we take a linear trend out of both our data and the published data—both in logs—saving
the residuals from the regression using our data. We then put the trend of the published data back into
our residualized data. Figure C1B, plots the log difference between our final data and published data.
There is now no longer any trend in bias between the two series, and differences are small, everywhere
less than 3 percent in magnitude. There is some cyclicality but this is small. Importantly as our main
measures in the paper consist of various ratios of Ht, Nt and Vt, we find that the difference relative to
published series move in step across the three variables. Finally, and separately, we take a linear time
trend out of each of these series.

C.2 Microdata details
• All data are at the establishment level
• Age is defined as the number of years since the establishment first reported having more than one

employee.
• QCEW data are reported quarterly but contain monthly payroll and employment at the establish-

ment. These were checked for consistency against the JOLTS.
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NAICS categories Industry categories from DFH

21 Mining, Quarrying, and Oil and Gas Extraction
23 Construction
31,32,33 Manufacturing
22, 42, 48, 49 Utilities; Wholesale Trade; Transportation and Warehousing
44, 45 Retail Trade
51 Information
52, 53 Finance and Insurance; Real Estate and Rental and Leasing
54, 55, 56 Professional Services, Management, Administrative Services
62 Health Care and Social Assistance
71, 72 Arts, Entertainment, and Recreation; Accommodation and Food Services
81 Accommodation and Food Services
>90 Government

Table C1: Categorization of industries used in analysis

• Industry categorizations are given in Table C1. We drop Agriculture (11) and Educational Services
(61) due to data collection issues that we were informed of by BLS staff.

• Participation in external researcher programs using employment and wage microdata are at the
discretion of the states, which run the unemployment insurance programs report data used in the
QCEW. Accessibility varies from project to project. Our project was granted access to data from 37
states: AL, AR, AZ, CA, CT, DE, GA, HI, IA, IN, KS, MD, ME MN, MO, MT, NJ, NM, NV, OH, OK,
SC, SD, TN, TX, UT, VA, WA, WI, and WV. These represent over 70 percent of the population. The
5 largest states not included are FL, MI, NC, NY, and PA. Throughout we restrict our sample to the
states made available to us. This avoids changing samples when only using JOLTS data, versus
when also using establishment age or wage, for which we require the QCEW.

• All aggregation is performed using weights provided by the BLS that adjust for systematic bias in
survey non-response rates, and generate a representative sample.

• For further details on data definitions and statistical methods see the BLS Handbook of Methods -
Chapter 18 - Job Openings and Labor Turnover Survey.
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