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1 Introduction

Certification ratings are widely used in markets with adverse selection. While relevant for

any market with asymmetric information (e.g., hygiene ratings for restaurants or doctors’

performance ratings), rating design is a key consideration for the overall performance of the

ever more popular online trading platforms, where transactions are decentralized and rarely

repeated. Despite the importance of rating mechanisms, little is known about their optimal

design and how it might depend on the characteristics of the market, such as supply, demand,

and the distribution of sellers’ qualities. This paper sheds light on this question by considering

the design of an optimal rating system and how it relates to the characteristics of the market.

Rating systems usually provide coarse signals of quality to buyers. For example, in Cal-

ifornia, restaurants are given grades A, B, C, or none based on the score obtained after a

hygiene inspection is conducted. Airbnb awards its top-quality hosts the Superhost badge,

and eBay’s high-quality sellers are classified as Top Rated Sellers. These examples raise two

critical questions about rating design: First, given a number of categories, what are the criteria

for setting the boundaries between them? In particular, when there are only two categories,

how stringent should the standards be to certify a seller is high quality? Second, what are the

gains from increasing the number of categories? These choices a↵ect the total market size,

the market shares of di↵erent types of sellers, and, as a result, the quality distribution of the

goods consumed, as supported by recent empirical evidence.1 Consequently, a key to rating

design is evaluating how these choices impact market performance as measured by consumer

and producer surplus. This paper develops a tractable framework to address these questions

and provides specific guidelines for the optimal design for di↵erent market structures.

A rating system helps reallocate sales from lower- to higher-quality producers, thus miti-

gating the problem of adverse selection. Our analysis focuses on two main sources of market

heterogeneity that are critical to determine the extent and e↵ect of this reallocation: the

distribution of firm qualities and the responsiveness of sellers’ supply to prices. Intuitively,

the heterogeneity and skeweness of seller quality a↵ect the spread of prices across ratings,

while the responsiveness of supply determines the resulting reallocation of output across these

categories. To our best knowledge, this is the first paper that considers systematically the

interaction of these two factors and their impact on optimal rating design.

The following is a preview of our results. We first show that while better information always

increases total surplus, its e↵ect on consumers depends on the elasticity of supply. Second,

1Hui et al. (2018) examine the e↵ect of an increase in the requirements to become a badged seller on eBay.
They find that this increase leads to a higher market share of high-quality sellers while decreasing the sales of
sellers in the medium range of quality.
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we show that the optimal information structure with finite ratings can be found in the set

of threshold partitions, which are related to the solution of a standard k-means clustering

problem. Right skewness in the distribution of qualities or more elastic supply implies higher

thresholds and a lower share of certified sellers. Third, we identify theoretical bounds for the

performance of a simple two-tier rating system and provide numerical computations showing

it can achieve 46-77% of full information surplus for some standard classes of distributions.

Our baseline model considers a competitive market with a large set of buyers and sellers.2

Firms are endowed with di↵erent levels of quality, which is the only source of product di↵eren-

tiation.3 Production technology is the same for all firms. All buyers have the same preference

for quality but are heterogeneous in their value of the outside option. As explained below, the

information structure partitions sellers into di↵erent levels of expected quality. An equilibrium

is a set of prices as a function of expected quality and quantities supplied by firms such that

markets clear. Our model exhibits two features that are common to adverse selection settings

that are a↵ected by the degree of asymmetric information. First, low-quality sellers benefit

from being pooled with high-quality ones, while adversely a↵ecting them. Second, high-quality

sales are crowded out by low-quality ones.

The information structure shared by all buyers follows the setting described in Ganuza and

Penalva (2010) and Gentzkow and Kamenica (2016). A common prior over firm qualities and a

signal structure determine the distribution of expected posterior firm qualities. As an example,

if we consider the case of finite rating systems as those described above, the posterior is given

by a discrete distribution with point masses at the conditional mean qualities associated to

each rating. This setting provides a natural ordering of the quality of information, where

better information is associated to a mean-preserving spread of the distribution of expected

values.

As a preliminary step we analyze the e↵ect of improving information on equilibrium out-

comes. As a result of improved information, prices become more strongly associated with true

seller quality and thus more disperse. Demand is reallocated from lower- to higher-quality

firms, which has a positive e↵ect on the average quality of goods consumed and total surplus.

However, its e↵ect on total market size and consumer surplus is ambiguous and depends on the

properties of the supply function. When supply is convex, the higher spread in prices results in

an increase in total output and higher consumer surplus. The opposite occurs when the supply

2We also consider the case of Cournot competition with constant marginal costs and show the results are
the same as those for perfect competition with linear supply.

3While moral hazard might be a critical consideration in some markets, in others adverse selection might
play a more critical role, as suggested by an empirical study on eBay (see Hui et al. (2017)). Optimal rating
design with moral hazard and adverse selection is considered in Saeedi and Shourideh (2019) in a simplified
market environment.
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is concave. In this case, any information provided by the market designer lowers consumer

surplus. We also show that profits increase with information quality when the supply function

is concave, while the e↵ect is ambiguous otherwise.

We then turn to the question of optimal rating design. While we focus primarily on total

surplus as a criterion, we also consider the e↵ect on consumer and producer surplus. Since total

surplus increases with better information, an unconstrained designer would prefer to release

all information. However, in practice, many platforms use a limited number of categories,

as in the examples discussed above, as well as certifiers such as bond rating agencies.4 To

provide guidance in the design of such rating systems, we consider the problem of optimal

rating design when the designer is constrained to choose a fixed number of categories N .

We show that the optimal information structure with finite ratings can be found in the set

of threshold partitions, i.e., those that partition sellers into ordered, disjoint, and connected

intervals of quality in a monotone fashion. This reduces the problem of optimal ratings to

the determination of the corresponding set of optimal thresholds, which are defined by an

intuitive criterion. Consider a marginal firm with quality at the threshold between two adjacent

intervals. For this threshold to be optimal, the planner should be indi↵erent between placing

this marginal firm in the lower or upper interval. This decision ultimately a↵ects the demand

faced by this firm, and thus its total output. The benefit of the increased output is the extra

value generated by the additional sales, which at the optimum should be equated to the extra

cost of production. This suggests that one of the key determinants of this trade-o↵ is the

supply behavior of firms, in particular, the curvature of the supply function.

The role of curvature can be conveniently illustrated comparing the two polar cases of per-

fectly inelastic and perfectly elastic supply. When supply is perfectly inelastic (i.e., producers

can produce either zero or one unit or equally face a constant marginal cost up to a fixed

capacity), quality ratings cannot reallocate output to higher-quality producers, except in the

extreme case where there is no production in the absence of information. However, ratings can

potentially serve to filter out the very low-quality producers that no consumer would buy from

at a positive price, so the optimal threshold will be at this low end. At the other extreme,

when all firms face a constant marginal cost, only the highest-quality firm should serve the

market, so the optimal threshold would be at the other end. More generally, we find that

the optimal thresholds in the case of a convex (resp. concave) supply function are pointwise

higher (resp. lower) than those in the linear case. As an example, in the case of a simple

certification rating with two groups, more elastic supply leads to a higher threshold and lower

share of certified sellers.
4This can be justified by practical reasons, to reduce the cost of acquiring information or to keep the rating

system simple and transparent.
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We find a simple characterization for the optimal thresholds in the case of linear supply,

which provides a useful benchmark. These optimal thresholds are the solution to a standard

clustering problem that involves only information regarding the distribution of qualities. This

clustering problem can be solved by the k�means algorithm as introduced by MacQueen

et al. (1967) and used extensively in machine learning and statistics. Our results thus provide

a straightforward and easy-to-compute method for the design of rating systems.

We then consider the thresholds that maximize consumer and producer surplus. To high-

light the conflict of interest between consumers and producers, we have already noted that in

the case of concave supply functions, consumer surplus decreases while profits increase with

better information. More generally, the thresholds that maximize total surplus are in between

those that maximize producer and consumer surplus. When supply is linear, consumer surplus

does not change with the choice of ratings and the optimal thresholds for total surplus also

maximize total profits, so the ranking of optimal threshold is indeterminate. On the sides of

this knife-edge case, we provide su�cient conditions for the ordering of optimal thresholds.

In particular, we find a clear ranking for the class of homogeneous supply functions that are

widely used in applications. When the degree is greater than one (convex supply) producers

prefer higher thresholds, i.e., more stringent standards, while consumers prefer lower ones.

The reverse occurs when the degree is less than one.

Next, we relate the optimal thresholds to the distribution of firm qualities in the linear

supply case. In the case of a single threshold, the optimal share of certified sellers relates

to the skewness of the distribution: when it is right (resp. left) skewed, the share is above

(resp. below) one half. We also show that if the distribution of qualities is more skewed to

the right then the optimal percentiles of thresholds defined for the first will be higher. In

particular, for a two-tier certification rating, the share of certified firms should decrease with

the degree of right-skewness. Optimal thresholds are considerably high for some distributions;

as an example, when the distribution of qualities is exponential with any hazard rate, only

20% of sellers should be certified.

Regarding the performance of ratings, we show that a one-threshold partition closes at least

half of the surplus gap between no information and full information for quality distributions

with log-concave density. In our numerical computations we find that it closes from 46%

to nearly 77% of the gap, depending on the underlying distribution of qualities. The gains

diminish rapidly as the number of thresholds increases. Even though our results show that the

higher the number of certification tiers, the higher the total surplus, the market designer should

weigh in the cost of having a more complex information structure against the diminishing

return of having more tiers. As an illustration of our methodology, we solve for the optimal

threshold in a two-tier partition using data from eBay.
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The last part of the paper examines a series of extensions. Our first extension considers

a demand system where agents have heterogeneous preference for quality, and firms have

inelastic supply. While by construction, improvements in information do not increase total

quantity, they contribute to welfare by increasing the correlation between average firm quality

and consumer preference for quality. The optimal threshold is defined by a slightly modified

formula that weighs di↵erences in the firm’s quality gap in each interval by the respective

gap in consumers’ preferences. As a result, skewness in consumers’ preferences for quality has

similar implications to the ones observed for skewness in producers’ quality.

Second, we consider Cournot competition and show that all the results obtained under

perfect competition for the linear supply case apply to this setting. In our final extension, we

add entry to the baseline model. Improvements in information induce entry, as a result of the

increase in profits. Entry reduces prices, increases market size, and, thus, consumer surplus.

In the extreme case where all potential entrants are ex-ante identical, drawing their qualities

after entry, all gains from improved information accrue to consumers.

Related Literature

Our paper is related to two strands of the literature: first, the papers considering the impact

of information disclosure on consumer and producer surplus; second, those concerning the

determinants of ratings systems as well as their performance.5

In regards to the impact of information disclosure, most papers consider the case where

there is a single seller/auctioneer and multiple buyers, as opposed to multiple agents on both

sides. Similar to our results, Schlee (1996) shows that information can hurt consumers when the

cost function is su�ciently convex. Bergemann et al. (2015) consider the impact of information

in third degree price discrimination. They show that any distribution of surplus that is between

the ones achieved by optimal pricing with none and full information can be attained with some

information structure. Bergemann and Pesendorfer (2007) show that in a private value setting,

bidders can be worse o↵ with better information even though total surplus increases. Board

(2009) shows that this result depends on the number of bidders. Hoppe et al. (2011) consider a

matching problem where for some distribution of types, consumers can be worse o↵ with better

information. In our paper we show that better information always increases total surplus, but

might decrease consumer or producer surplus depending on properties of the supply function.

There is a large literature on certification and quality disclosure. Dranove and Jin (2010)

provide an excellent survey of the earlier papers. One of the first theoretical papers is Lizzeri

5Our paper focuses on a setting where uncertainty is about seller quality and information is provided to
consumers. There is a growing literature that focuses on the reverse channel where an intermediary transmits
information about buyers to sellers. For a survey see Bergemann and Bonatti (2019).
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(1999), that considers the e↵ect of competition among certifiers. The author finds that while a

monopoly certifier chooses to provide coarse information with a single and low threshold, com-

petition among certifiers can lead to full information. Ostrovsky and Schwarz (2010) consider

equilibrium information structures and show that colleges maximize student job prospects by

pooling weaker and stronger students. De Marzo, Kremer, and Skrzypacz (2018) consider a

Bayesian game where agents choose the informativeness of testing, but can withhold bad re-

sults. The equilibrium test minimizes the expected price upon nondisclosure over all possible

tests and disclosure strategies and results in a threshold that is below the optimal one. In

contrast, to these papers, in our setting, the preferred thresholds of sellers can be below or

above the optimal ones depending on properties of the supply function.

A growing literature considers the impact of moral hazard and experimentation incentives

on ratings design. The general finding is that coarse ratings can contribute to provide better

incentives. Harbaugh and Rasmusen (2018) consider a case where the certifier discloses limited

information in order to incentivize participation. Examples of papers related to moral hazard

and limited information/memory are Hörner and Lambert (2016), Liu and Skrzypacz (2014),

Ekmekci (2011), and Bhaskar et al. (2017). Examples of papers where limited information

encourages experimentation are Kovbasyuk and Spagnolo (2017), Che and Hörner (2018),

Kremer et al. (2014) and Vellodi (2019). The latter also considers information design and its

e↵ect on entry and selection of firms.

Coarse ratings have also been justified in the literature by their simplicity and overall

performance. Wilson (1989) shows that losses relative to full information are of order 1/n2

for a partition with n classes. This is consistent with our computed bounds in Section 5. Our

theoretical bound on the gains from a two-tier certification builds on similar bounds found by

McAfee (2002) and also relate to those in Hoppe et al. (2011).

Information disclosure is the focus of the literature on Bayesian persuasion, where an

informed sender chooses an information structure to influence the behavior of a receiver. This

literature generally finds coarse information provision as a result. Dworczak and Martini,

(2018) provide conditions on payo↵s so that interval partitions are the optimal information

structure. In contrast to most of this literature, where a single receiver takes an action, in our

setting the outcome is the result of the equilibrium choices of multiple agents.6 This distinction

6While other papers have studied settings with multiple receivers (see surveys in Kamenica (2018); Berge-
mann and Morris (2017)), the analysis has often been suitable for games where a low-dimensional source of
aggregate information is observed by a sender. For example, Bergemann and Morris (2013, 2016) characterize
the outcome of all Bayesian persuasion games with multiple receivers. In principle, our problem could be
potentially mapped into this framework, with an omniscient sender that observes the quality of a continuum
of firms, but it would be impractical to solve it this way. Even for a simple two-player game, Bhaskar et al.
(2016) show that computing the optimal public signal is NP-hard.
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applies to most of the literature reviewed above, which often ignores market interactions, in

contrast to the approach followed in this paper where it is a key consideration. While individual

incentives for quality disclosure are important, they seem less relevant for platforms wherein

a central authority observes some information and must choose what to reveal to the market

participants; this is what we focus on in our analysis.

The most relevant empirical papers related to our theory are Saeedi (2014), Elfenbein

et al. (2015), Fan et al. (2013), and Jin and Leslie (2003). Saeedi (2014) studies the value of

reputation mechanisms and establishes a positive signaling value for the certification done by

eBay. Elfenbein et al. (2015) study the value of certification badges across di↵erent markets.

They find that certification provides more value when the number of certified sellers is low

and when markets are more competitive. Fan et al. (2013) analyze the e↵ect of badges on

Taobao.com. They find sellers o↵er price discounts to move up to the next reputation level. Jin

and Leslie (2003) examine the e↵ect of an increase in product quality information to consumers

on firms’ choices of product quality using data on restaurant hygiene ratings. Our paper

also relates to the literature that analyzes the e↵ects of changes in a marketplace feedback

mechanisms on price and quality (Hui et al. (2016), Filippas et al. (2018), and Nosko and

Tadelis (2015)).7

Section 2 describes the model. Section 3 considers the e↵ect of improved information

on market outcomes. Section 4 derives the conditions that characterize optimal thresholds,

the comparative statics on supply functions and discusses the implications for consumer and

producer surplus. Section 5 provides comparative statics on distribution functions, numer-

ically solves for the optimal thresholds for various distribution functions and considers the

application to eBay ratings. Finally, Section 6 studies the extensions to the baseline model.

2 The Model

There is a unit mass of firms with qualities z distributed according to a continuous cumulative

distribution function (cdf) F (z). Production technology is the same for all firms and is given

by a continuous, strictly increasing, and strictly convex cost function c (q), and, correspond-

ingly, a strictly increasing supply function s (p). On the demand side, there is mass M of

consumers who face a discrete choice problem, with preferences

U (z, ✓, p) = z + ✓ � p,

7More generally, this research also fits broadly into the theme of understanding the e↵ect of certification
and reputation in e-commerce; representative papers include Cabral and Hortacsu (2010), Wu et al. (2015),
Tadelis (2016), Dellarocas et al. (2006), Bajari and Hortacsu (2004), and Chevalier and Mayzlin (2006).
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where z is the quality of the good purchased, and ✓ is a taste parameter measuring the

preference for goods o↵ered in this market vis a vis an outside option and p is the price

of the good. The taste parameter ✓ is distributed according to a continuous and strictly

increasing cdf  (✓), while the outside good’s utility (no purchase) is normalized to zero.8

Goods are di↵erentiated only by quality that is equally valued by all consumers.9 Given

the linearity of the utility function in z, the same ordering is obtained for consumption of

a good of expected quality z. We assume all market participants have the same information

about the expected qualities of firms, represented by the distribution function G (z).10 In

particular, when considering a finite rating system as in Section 4, we assume that G is a

discrete distribution with point masses at the conditional mean qualities associated to each

rating. We will say that a firm has expected quality z if conditional on all signals received,

that is the quality expected by consumers.

Given expected quality z, equilibrium prices take the form p (z) = p (0)+z, where p (0) cor-

responds to the demand price of a hypothetical good of quality zero. This expression for prices

guarantees that all consumers are indi↵erent between goods with di↵erent signal realizations,

which is a necessary condition for an equilibrium. Given a baseline price p (0) , the marginal

consumer’s ✓ is found by setting U (0, ✓, p (0)) = 0, or simply ✓ (p (0)) = p (0) . All consumers

with ✓ � p (0) will consume some good, so aggregate demand is Q = M (1� (p (0))). In-

verting this function we can define an inverse baseline demand function

P (Q) =  �1 (1�Q/M) (1)

On the supply side, each firm with expected quality z chooses its output, q = s (p (z)), ,

so aggregate supply Q =
R
s (p (z)) dG (z).

Definition. An (interior) equilibrium, given the distribution of expected qualities G (z), is

given by prices p (z) = P (Q) + z, where total quantity Q =
R
s (p (z)) dG (z).

Figure 1 shows graphically the derivation of an interior equilibrium for the case of a two-

tier partition, where L represents the group of firms with quality below a threshold z⇤, and

H those above.11 Denote zL (resp. zH) to be the average quality of sellers in the L group

(resp. H group). The two curves depict the demand curve for the goods in the L and

H segment, respectively. Since all consumers value quality identically, the price di↵erence

8Alternatively, one can consider �✓ to be the value of the outside good to consumers.
9In Section 6.1, we consider a case where consumers are heterogenous with respect to their taste for quality.

10This representation of the information structure is consistent with the approach followed in Ganuza and
Penalva (2010) and Gentzkow and Kamenica (2016). Given a common prior F (z0) over firm qualities and a
signal structure ⇡, we can let G (z) be the distribution of expected posterior firm quality.

11Alternatively, this can be interpreted as a case of having two type of sellers with two levels of qualities.
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Figure 1: Equilibrium

pH � pL = zH � zL, i.e., the di↵erence between the two respective average qualities. The first

upward sloping curve is the H group’s supply function: SH = (1� F (z⇤)) s (pH) . The second

one is the supply function of the L firms’ segment SL = F (z⇤) s (pL) displaced to the right by

the equilibrium quantity QH . The marginal consumer Q is the one that is indi↵erent between

consuming either of these goods or none. At the equilibrium prices, Q is also the total market

supply of both goods.

To prove the existence of an interior equilibrium, we make the following assumption.

Assumption 1. There exists ✓ in the support of  such that

M >

Z
s (✓ + z) dG (z)

for all distributions G such that F is a mean preserving spread of G.

This assumption rules out the possibility that all consumers make purchases in this mar-

ket.12 While a corner equilibrium, if it exists, is also unique, we rule this out as a matter of

convenience.
12As explained below, the assumption spans the set of all possible information structures.
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Lemma 1. Under Assumption 1, there exists a unique interior equilibrium for all expected

quality distributions G such that F is a mean preserving spread of G.

Proof. Given that the cdf  is strictly increasing and continuous, the function P (Q) is strictly

decreasing and continuous. Define function f (Q) =
R
s (P (Q) + z) dG (z). This is strictly

decreasing and continuous. It follows immediately that f (0) > 0. By assumption 1, f (M) <

M since P (M)  ✓. Hence, there exists a unique fixed point Q⇤ for this mapping.

3 Improved Information

This section considers the e↵ect of improved information for general signal structures. As

in Ganuza and Penalva (2010), the quality of information can be ordered by the dispersion

of beliefs as follows. The distribution of expected qualities G̃ is more informative than dis-

tribution G if it is a mean preserving spread of G. We will refer to this ordering as better

information. As the maximal signal structure corresponds to perfect information, the class

of all information structures can be represented by all garblings of F , i.e., all distributions G

such that F is a mean preserving spread of G. 13

Market Size and Consumer Surplus

We consider first the e↵ect of information precision on market size measured by the equilib-

rium quantity Q. For fixed quantity Q, better information implies a mean-preserving spread

of prices. In the case of linear supply functions, this does not a↵ect aggregate supply, so

equilibrium quantity remains unchanged. In the case of convex supply functions, aggregate

supply will exceed the original quantity Q, so aggregate output must increase. For similar

reasons, in the case of concave supply functions, aggregate output decreases with the quality

of information.

We show that consumer surplus can be measured by the area under the baseline demand

function and over P (Q), up to quantity Q. Consider a consumer of type ✓ who buys a good

of quality z. Equilibrium price for this good p (z) = P (Q) + z, so this consumer’s net utility

13This corresponds to the ordering of integral precision of signal structures defined in Ganuza and Penalva
(2010). Starting from a prior F0, signal structure t̃ is more integral precise than signal t if the induced
distribution of expected qualities G (z) generated by t̃ is a mean-preserving spread of the one generated by t.

In general, integral precision ordering is weaker than the likelihood ratio and other related orderings considered
in the literature (see Ganuza and Penalva (2010) for references.)
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is ✓ � P (Q) . It follows that total consumer surplus is

Z

P (Q)

(✓ � P (Q)) d (✓) =

Z Q

0

(P (x)� P (Q)) dx

where the last equality follows from the change of variables x = M (1� (✓)) and our def-

inition of P (Q) given by equation (1). As a result, total consumer surplus will move in the

same direction as total quantity, so it will increase (resp. decrease) with information precision

if the supply function is convex (resp. concave). The following proposition summarizes these

results.

Proposition 1. Suppose signal t1 is more precise than t2. If in addition the supply function

is convex (resp. concave), then total output Q1 � Q2 (resp. Q2  Q1) and consumer surplus

increase (resp. decrease). This further implies that when the supply function is linear, total

output is independent of information.

Proof. Suppose the supply function S (p) is convex and, by way of contradiction, Q1 < Q2.

Let p1 (z) = P (Q1)+z denote the equilibrium price for a good of expected quality z and define

similarly p2 (z) . It follows immediately that p1 (z) > p2 (z) since P is strictly decreasing. Let-

ting G1 and G2 denote the distribution of expected qualities under signal structures t1 and t2,

respectively. By definition of integral precision, it follows that G1 second order stochastically

dominates G2, so

Q1 =

Z
S (p1 (z)) dG1 (z) � S (p2 (z)) dG1 (z)

�
Z

S (p2 (z)) dG2 (z) = Q2

where the second inequality follows from convexity of S (p) . The above contradicts the original

hypothesis, proving that Q1 � Q2. The proof is similar for concave S (p).

In particular, note that for the case of concave supply functions, consumers are better o↵

with no signal provision. There are some related results in the literature, though in di↵erent

settings. Schlee (1996) considers a single product monopoly seller in a vertically di↵erentiated

market. The quality of the good o↵ered is exogenous and privately observed by the monopolist,

who must choose the informativeness of a signal to be provided to consumers before observing

the quality realization. It is shown that if the cost function is su�ciently convex, consumers

are worse o↵ ex-ante with a more informative signal. Hoppe et al. (2011) consider a matching

problem and show that under some conditions on the distribution of types, one of the sides
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(e.g., consumers) can be worse o↵ by having a more precise information structure regarding

the type of the other side.

Total Surplus and Profits

In this part, we show that improved information always increases total surplus. The intuition is

as follows. First, we show that a social planner, subject to the the same information structure,

cannot improve on the competitive equilibrium allocation, which is thus optimal. Secondly,

equipped with better information a social planner can always increase total surplus.

Proposition 2. A better information system results in higher total surplus.

Proof. First, we show that there exists a correspondence between competitive equilibria and

allocations that maximize total surplus. Given a distribution of mean qualities G (z), the

problem of maximizing total surplus solves:

S = max
qk

Z Q

0

P (x) dx+

Z
[zq (z)� C (q (z))] dG (z)

subject to

Q =

Z
q (z) dG (z) .

The first order conditions for the choice of q (z) is:

z � C 0 (q (z)) + � = 0 (2)

and this holds for all points in the support of G, where the Lagrange multiplier of the con-

straint, � = P (Q) . Substituting in (2) and letting p (z) = P (Q)+ z, implies p (z) = C 0 (q (z))

which is the condition defining the profit maximizing output q (z) in the competitive equilib-

rium. Hence the allocation q (z) together with the prices p (z) are the ones that correspond to

the unique competitive equilibrium.

Suppose the distribution of expected qualities G̃ corresponds to a better information system

than G, so it is a mean preserving spread of G. Following the characterization in Rothschild

and Stiglitz (1970), there exists a garbling of signals that generates G from G̃. This means

that a social planner could ignore the additional information contained in G̃ and reproduce

the quantity-weighted distribution of average qualities corresponding to the optimal allocation

under G and thus the same value. Since this is not optimal, because the competitive equilib-

rium given G̃ (which is optimal) di↵ers from that under G, it follows that total value increases

with signal precision.
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In particular, the above proposition implies that average profits must rise when consumer

surplus does not increase. Following Proposition 1, this will be the case when supply functions

are concave or linear. On the other hand, it is easy to construct examples with convex supply

functions where the opposite occurs.

4 Optimal Ratings

This section considers the question of optimal information design. While we focus on total

surplus as a criterion, we also consider the e↵ect on consumer and producer surplus. As stated

by Proposition 2, better information is preferred to worse, so an unconstrained designer would

prefer to release all information. However, in practice, many platforms use a limited number

of categories. For example, in the case of Yelp, the partition involves five stars, including the

possibility of half-stars. In the case of eBay, the partition includes two groups: the badged

and unbadged. In the case of California restaurants, the partition involves three elements: A,

B, and C. To provide guidance in the design of such rating systems, we consider the optimal

information structure design subject to a fixed set of categories N .

To simplify our analysis, we assume that consumers have no information other than that

provided by the certifier. The timing is as follows: 1) Certifier observes some signals for each

firm that are correlated with their quality; 2) Certifier assigns a rating to each firm and makes

it common knowledge to all participants in the market. Based on these ratings all market

participants can infer the average quality of sellers, thus sharing a common posterior with

support at the corresponding N conditional quality means.14 3) Market equilibrium outcomes

are determined for this distribution of expected qualities. Following our earlier discussion

on information structures, the certifier’s information can be summarized by a distribution of

posterior mean qualities that, in order to avoid further notation, we denote by F (z). This is

the basis on which the certifier classifies firms into rating bins. To simplify the exposition, we

refer to the expected value z as the quality of the firm.15 We assume F is di↵erentiable on its

support with density f (z).

A threshold partition totally orders firms into N quality intervals. As a corollary to

Proposition 2, we establish the superiority of threshold partitions.16

14Certifiers usually provide users with guidelines to interpret their ratings or users learn their meaning over
time.

15The true distribution of qualities plays no role, as any information provision that respects the information
of the certifier is a garbling of the certifier’s posterior F.

16Dworczak and Martini (2019) provide conditions under which the optimal signal structure implies a mono-
tone partition in a Bayesian persuasion setting. Our setting is quite di↵erent and our result quite straightfor-
ward. We can only find a connection in the case of linear supply, where our problem can be mapped into their
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Corollary 1. The optimal rating is given by a threshold partition.

Proof. Consider a partition of the set of sellers into sets S1, ..., SN . Suppose there are two sets

Sk, Sk+1 that are not totally ordered in quality. One can substitute Sk and Sk+1 by two new

disjoint sets S 0
k and S 0

k+1 of equal measures to the original ones that are totally ordered so that

S 0
k < S 0

k+1, element-wise. This generates a mean-preserving spread of the original distribution

of means and thus higher surplus.

Section 4.1 considers the ratings that maximize total surplus and the next section considers

consumer and producer surplus.

4.1 Total Surplus

We now characterize the threshold partition that maximizes total surplus. Consider a vector

of thresholds z = (z1....zN�1) defining the N partitions {[z0, z1] , [z1, z2], ..., [zN�1, zN ]}, where
z0 and zN are the lower and upper supports of the distribution of qualities (�1 or +1 if un-

bounded), respectively. Let m (zk�1, zk) , k = 1, ..., N denote the conditional means of quality

z in the intervals [zk�1, zk]. For simplicity, we will use the notation Mk = m (zk�1, zk) unless

otherwise needed for clarity. The following lemma gives necessary and su�cient conditions for

these thresholds to be optimal. Let Q (z) denote the unique equilibrium total quantity at the

optimal threshold vector, with prices pk = P (Q (z)) +Mk and quantities qk = s (pk) . Total

surplus is given by

W (z) =

Z Q(z)

0

P (x) dx+
NX

k=1

[F (zk)� F (zk�1)] [Mkqk � c (qk)] (3)

The following lemma gives the necessary conditions for an optimal zk.

Lemma 2. A necessary condition for an optimal threshold zk is that

(P (Q) + zk) (qk+1 � qk) = c (qk+1)� c (qk) . (4)

Proof. To totally di↵erentiate equation (3) with respect to zk, first note that by the envelope

condition, we can ignore the e↵ect on the output choices q1, ..., qN . In particular, this implies

that @Q/@zk = f (zk) (qk � qk+1) . Since Mk =
R zk
zk�1

zdF (z) / (F (zk)� F (zk�1)) , it follows

that

@ (F (zk)� F (zk�1))Mk

@zk
= f (zk) zk,

@ (F (zk+1)� F (zk))Mk+1

@zk
= �f (zk) zk.

formulation with the additional constraint of a fixed number of ratings.
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The result now follows by totally di↵erentiating (3) and setting it equal to zero.

Condition (4) has an intuitive interpretation. The left hand side shows the marginal value

obtained by increasing the quantity of the marginal firm with qualityzk, from qk to qk+1; this

would result from a marginal change in this threshold. The right hand side shows the di↵erence

in cost. At an optimum, these two should be equal. While intuitive, all the variables in this

equation, quantities and prices, are endogenous to the choice of thresholds, thus limiting the

usefulness in characterizing the optimal thresholds. The following Lemma provides a more

useful characterization.

Lemma 3. The optimal thresholds satisfy the following condition:

zk �Mk

Mk+1 �Mk

s (pk) +
Mk+1 � zk
Mk+1 �Mk

s (pk+1) =

R pk+1

pk
s (p) dp

pk+1 � pk
, (5)

where Mk and Mk+1 are the conditional mean qualities for the two groups and pk and pk+1 the

equilibrium prices.

Proof. See Appendix.

Equation (5) equates the expected value of s (p) under two lotteries. The left hand side

lottery has weights ↵ = (zk �Mk) / (Mk+1 �Mk) on price pk and (1� ↵) on price pk+1. The

second lottery is uniform between these two extreme prices. When s is linear, it must be the

case that ↵ = 1/2 and this implies that

zk �Mk = Mk+1 � zk. (6)

When s is convex, ↵ > 1/2 so zk � Mk > Mk+1 � zk,so the optimal threshold is above the

one defined by equation (6), while the reverse occurs when s is concave. The following lemma

summarizes these results.

Lemma 4. If the supply function is linear, the optimal threshold zk = (Mk +Mk+1) /2. If the

supply function is concave (resp. convex), then zk is lower (resp. higher) than (Mk +Mk+1) /2.

While the second part of this lemma gives criteria for local deviations for a single threshold,

convex to the right and concave to the left, starting at those obtained for the linear case, it

does not imply an ordering of the whole vector of thresholds. The following proposition gives

conditions for the total ordering.

Proposition 3. Suppose the quality distribution F (z) has log-concave density. Let
�
zL1 , ..., z

L
N�1

�

be the optimal thresholds for the linear case. The optimal vector of thresholds (z1, ..., zN�1) for

convex (resp. concave) supply function is pointwise higher (resp. lower) than

�
zL1 , ..., z

L
N�1

�
.
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Proof. See Appendix.

The formula given by equation (6) gives a simple characterization for the optimal thresholds

for the linear supply case that only depends on the distribution of qualities and by the previous

proposition provides a lower (resp. upper) bound when the supply function is convex (resp.

concave). We now show that these thresholds are also the solution to a standard clustering

problem.

Proposition 4. Assume the supply function is linear. The optimal thresholds z1, ..., zN�1 for

an N � rating are the ones that minimize

NX

k=1

Z zk

zk�1

(z �m (zk�1, zk))
2 dF (z) (7)

Proof. Taking derivatives with respect to zk gives first order condition (6).

The objective defined in the above proposition coincides with the popular k � means

criteria for clustering as introduced by MacQueen et al. (1967) which is commonly used in

machine learning and statistics literature. Uniqueness of the thresholds is guaranteed when

the distribution has log-concave density (Mease and Nair (2006).) This makes estimating the

optimal thresholds a trivial task, as many software programs incorporate algorithms to solve

this problem. Additionally, when combining this result with the one in Lemma 4, the simple

algorithm can give a market designer a good place to start, given that the above thresholds

will be the lower bound or upper bound, depending on the properties of the supply functions.

4.2 Consumer and Producer Surplus

The above thresholds maximize total surplus, however it might be the case that the certifier

has a di↵erent objective, such as maximizing consumer surplus or profits. How would the

corresponding thresholds compare the ones obtained above? The answer depends again on

properties of the supply function. We have shown that consumer surplus moves together

with total output. In the case of concave supply, total output decreases with information,

so optimal thresholds are at the extremes of the distribution. When supply is linear, total

quantity is independent of the amount of information (see Proposition 1), so consumer surplus

is the same for any threshold. This implies that the optimal threshold is also the one that

maximizes profits. More generally, total output will vary as the thresholds change. The

following Lemma provides a characterization.
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Lemma 5. dQ (z) /dzk has the same sign as

zk �Mk

Mk+1 �Mk

s0 (pk) +
Mk+1 � zk
Mk+1 �Mk

s0 (pk+1)�
R pk+1

pk
s0 (p) dp

pk+1 � pk
, (8)

Proof. See Appendix.

It is useful to compare this expression to equation (5) that corresponds to the optimal

thresholds. Both represent expected values with the same lotteries, but with di↵erent func-

tions. In parallel to Lemma 4, it is immediate to prove:

Lemma 6. The certification thresholds z1, ..., zN�1 that maximize total output and consumer

surplus satisfy zk =(Mk +Mk+1) /2 when s0 (p) is linear, and is lower than (resp. higher than)

this value when s0 (p) is concave (resp. convex).

A comparison of equations (5) and (8) allows us provide some global comparison between

the corresponding thresholds for the convex case, in parallel to Proposition 3.

Proposition 5. Let zo =
�
zo

1, ..., z
o

N�1

�
be the thresholds that maximize total surplus and

zc =
�
zc1, ..., z

c
N�1

�
the ones that maximize consumer surplus. Suppose that the distribution of

qualities F (z) has log-concave density and the supply function is convex and s0 (p) concave.

Then zc
is pointwise smaller than zo.

To illustrate the above results, consider a simple example. Suppose the supply function

s (p) = p✓ (cost function c (q) = q1+✓/ (1 + ✓)). For 0 < ✓ < 1, s (·) is concave, so consumers

prefer no thresholds. For ✓ = 1, consumers are indi↵erent and the optimal thresholds also

maximize profits. For 1 < ✓  2, supply is convex but s0 (·) concave, so by the previous propo-

sition consumers prefer lower thresholds. For ✓ > 2, s0(·) is also convex, so this proposition

does not apply. The following proposition and its corollary provide more general local results

that also cover this case.

Proposition 6. Let z = (z1, ..., zN�1) be the thresholds that maximize total surplus.

1. If s is convex and s00 (p) /s0 (p) is decreasing (resp. increasing) in p. Then dQ (z) /dzk is

negative (resp. positive) at z.

2. If s is concave and s00 (p) /s0 (p) is decreasing (resp. increasing) in p. Then dQ (z) /dzk
is positive (resp. negative) at z.

Proof. See Appendix.
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The previous proposition can be used to sign the local behavior of consumer and producer

surplus at any optimal threshold. Given that the derivative of total surplus is zero at any

of the optimal thresholds zk, derivatives of consumer surplus and producer surplus have the

opposite signs. Moreover, derivative of consumer surplus has the same sign as dQ/dz. Hence

the following corollary follows.

Corollary 2. Let z = (z1, ..., zN�1) be the thresholds that maximize total surplus.

1. If s is convex and s00 (p) /s0 (p) is decreasing (resp. increasing) in p. Then the derivative

of consumer surplus, dCS (z) /dzk, is negative (resp. positive) and the derivative of

producer surplus, dPS (z) /dzk, is positive (resp. negative) at z.

2. If s is concave and s00 (p) /s0 (p) is decreasing (resp. increasing) in p. Then dCS (z) /dzk
is positive (resp. negative) and dPS (z) /dzk is negative (resp. positive) at z.

Going back to the previous example of homogeneous supply, s00 (p) /s0 (p) = (✓ � 1) /p

which is decreasing for convex supply functions (✓ > 1) . Applying the first case in the corol-

lary, this implies that starting at the surplus maximizing thresholds, consumers prefer lower

thresholds while producers prefer higher ones. This highlights a tension in the choice of ratings

systems between consumers and producers.

5 Distribution Functions and Optimal Thresholds

The thresholds defined by equation (6) are determined solely by the distribution of seller

quality for the case of linear supply functions. In this section, we examine the impact of

skewness on optimal thresholds. Our analysis is restricted to the case of linear supply function,

though we conjecture it can be extended to more general supply. Our first result considers

a weak notion of skewness (mean vs. median) but restricted to certification ratings (N = 2).

Our second result relates to a stronger skewness order, the convex/concave order, applied

to arbitrary N. Finally, we calculate optimal thresholds for a series of distribution functions

and provide measures of surplus attainment as we increase the number of partitions. As an

application, we solve for the optimal threshold for a distribution of seller quality from eBay.

To simplify notation in the case where N = 2, we let z⇤ denote the optimal threshold and

zL and zH the conditional means below and above this threshold, respectively. The condition

given in equation (6) implies

z⇤ =
1

2
(zL (z

⇤) + zH (z⇤)) , (9)

which can be used to relate this threshold to properties of the distribution. Consider first the

case of a symmetric distribution, i.e., where the median, zmedian, equals the mean, z̄. Since for
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any z⇤, F (z⇤) zL + (1� F (z⇤)) zH = z̄, setting the threshold z⇤ = z̄ = zmedian would satisfy

the above condition. For skewed distributions F (z) , the following result can be proved:

Proposition 7. Suppose there is a unique point z⇤ satisfying (9) and z̄ is greater (resp.

smaller) than zmedian. Then z⇤ is greater (resp. smaller) than z.

Proof. See Appendix.

The above proposition shows that if a distribution is skewed, the optimal threshold when

N = 2 will be even more skewed in the same direction. Table 1, shows the optimal threshold

for a series of distributions, as well as the corresponding fraction of certified sellers. Except

for the last case, all distributions are skewed to the right so according to Proposition 7,

z⇤ > z̄ > zmedian and it is optimal to have a small share of sellers certified. This is shown in

the fifth column of our table. As an example, for the Pareto distributions only a small fraction

should get certified, 5% when the power parameter is 3 and 9% when the power parameter is

4.17 For the exponential distribution, only 20% of sellers should be certified regardless of the

hazard rate.

We now turn to the case of generalN under a stronger skewness order, the convex (concave)

order, proposed originally by Van Zwet (1964).

Definition. Distribution F̃ is more skewed to the right than F if F̃�1 (F (x)) is convex,

equivalently, there exists an increasing convex function g (x) such that F̃ (g (x)) = F (x).18

We can think of this ordering as stretching to the right the quality scale with the trans-

formation g (x) . As an example, if F is a uniform distribution in [0, 1] and g (x) = x2, then

F̃ (x2) = x or equivalently, F̃ (x) = x1/2.

Proposition 8. Suppose the supply function is linear. Let F be a distribution with log-concave

density and F̃ a distribution such that F̃ (g (z)) = F (z) , where g is a strictly convex increasing

function. Let {lk} be the optimal thresholds for F and {g (zk)} the optimal thresholds for F̃ .

Then zk > lk for all k.

Proof. See appendix.

This proposition implies that for all k, F̃ (g (zk)) = F (zk) > F (lk) so the percentiles

defined by the two optimal thresholds are ordered. In particular, for a 2-tier certification

rating, the share of certified firms should be lower for distribution F̃ . An example is given in

Table 1 for the case of power distributions F (z) = z↵. It is easily shown that the distribution

17When ↵  2, the value of z⇤ is undefined, as total surplus is strictly increasing in z

⇤ in all the support.
18Note that this definition implies that F�1 (F (x)) = g

�1 (x) is concave.
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with ↵ = 0.5 is more skewed to the right than the one with ↵ = 2.19 Consistently with the

previous proposition, the share of certified sellers is lower when ↵ = 0.5.

We now examine how the surplus gap between the full-information and no-information

settings changes as the number of groups in a partition increases for the case of linear supply. In

this case, we have shown that total output Q remains unchanged and so does consumer surplus.

Therefore, the gap in total surplus equals the gap in total profits. For a firm with perceived

quality z, profits are equal to p (z)2 /2 = (P (Q) + z)2 /2. Therefore, for any distribution G of

expected quality, total profits are

⇧ =
1

2

Z
(P (Q) + z)2 dG (z)

=
1

2
P (Q)2 + P (Q) z̄ +

1

2

Z
z2dG (z) .

The first two terms do not depend on G and thus on the partition. For full information, the

distribution of means G = F, so, ⇧ = 1
2P (Q)2+P (Q) z̄+ 1

2

R
z2dF (z). Therefore, the surplus

gap with respect to full information is �⇧ = 1
2

�R
z2dF (z)�

R
z2dG (z)

�
for any distribution

of expected quality G. In particular, the total gap with respect to the no-information case

is �⇧ = 1
2

�R
z2dF (z)� z̄2

�
. For a threshold partition (z1, ..., zN�1) , where G has N mass

points at the conditional means M1, ...,MN

�⇧ =
1

2

NX

k=1

Z zk

zk�1

�
z2 �M2

k

�
dF (z) (10)

=
1

2

NX

k=1

Z zk

zk�1

(z �Mk)
2 dF (z) .

This corresponds again to the loss function used in k � means clustering, given that at the

optimal thresholds, as defined earlier, the expected values Mk are precisely the centroids of the

corresponding intervals [zk�1, zk] . Table 1 reports the share of the total surplus gaps that is

closed with partitions of di↵erent sizes n. As can be seen from the calculations a one-threshold

(two-group) partition closes from near 50% to almost 80% of the surplus gap, depending on

the underlying distribution of qualities. The gains are diminishing as the number of thresholds

increases. Even though total surplus increases with the number of tiers, our numerical results

suggest that most gains are attained with a small number of ratings. As a result, the market

designer should weigh in the cost of having a more complicated information structure against

the diminishing return of having more tiers. While we do not model the cost of providing more

19Take g (x) = x

4
.
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Table 1: Optimal Thresholds

Distribution Case Mean/Median z⇤ 1� F (z⇤)
Share of Surplus Gap Closed
n = 2 n = 3 n = 5 n = 10

Pareto ↵ = 3 1.19 2.73 0.05 0.46 0.68 0.84 0.94
↵ = 4 1.12 1.84 0.09 0.54 0.74 0.89 0.97

Exponential all 1.45 0.20 0.65 0.82 0.93 0.98
F (z) = z↵ ↵ = 0.5 1.32 0.41 0.36 0.77 0.90 0.97 0.99
z 2 [0, 1] ↵ = 2 0.94 0.62 0.62 0.72 0.87 0.95 0.99

Log-normal � = 0.25 1.03 1.09 0.36 0.63 0.81 0.92 0.98
(µ = 0) � = 1 1.64 4.25 0.07 0.55 0.75 0.89 0.97

eBay (Kernel) band=0.2 0.97 0.63 0.63 0.66 0.83 0.93 0.98
Note: The above calculations correspond to the linear supply case.

detailed information for the market designer or consumer’s cost of analyzing and understanding

detailed information, our results suggest that small costs could justify simple optimal rating

systems that include only limited number of tiers, as usually seen in practice.

Following McAfee (2002); Hoppe et al. (2011); Shao (2016), it is possible to find lower

bounds for the share of the surplus gap that is closed by a one-threshold partition. While

these papers consider the case of one-to-one matching, our setup with linear supply can be

conveniently mapped into this setting. Let z represent the type of a seller, ✓ that of a buyer,

and m (z, ✓) = z✓ the surplus of this match. Furthermore, assume that both seller and

consumer types have the same distribution F. This is a special case of the class of matching

problems considered in the above papers. With complete information, the optimal matching

is assortative, with total value W =
R
z2dF (z). In contrast, in a two-group partition with

threshold z⇤ and conditional means zL and zH , there is random matching within each partition,

resulting in total value W̃ = F (z⇤) z2L + (1� F (z⇤)) z2H . At the other extreme, with no

information and pure random matching, the value is simply z̄2. The gap between these values

is proportional to the corresponding ones in our setting, as given by equation (10), so the

relative gain from a one-threshold partition is identical in both cases.20

McAfee (2002) finds that for the class of distribution functions with log concave densities,

the relative gain is at least 1/2. For this class of distributions, Hoppe et al. (2011) show that

W̃ � 3
4W. They also find that the same bound as McAfee (2002) applies to distributions with

decreasing hazard rate.

These results show that a very simple rating system consisting of a single certification

threshold can achieve a considerable share of the gains from full information. This suggests

that the added cost or complexity of a more elaborate design might not be compensated by

20More generally, the relative gain from any information structure is the same.
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the gains. This could explain the popularity of such simple schemes among market designers.

Optimal Threshold for eBay

Nosko and Tadelis (2015) provides a quality measure given by the percentage time a seller got

positive feedback (as opposed to negative or none). The distribution of this statistic across

sellers is given in Figure 2 together with a density kernel estimator.21 If we interpret this

statistic as an ex-ante probability of a good (vs. a bad) experience and the expected utility

from this purchase as (1� P (good)) u (bad) + P (good)u(good), then expected utility is an

a�ne transformation of the probability of a good experience. Based on this interpretation,

we can use this distribution to calculate the optimal certification threshold, as done for other

distributions above. Table 1 reports the results for the kernel estimate of this distribution.

According to our calculations, more than 65% of sellers should be certified, closing about 63%

of the surplus gap. The exercise highlights the importance of skewness in the distribution of

qualities. While our mapping of this data to a quality distribution is admittedly quite special,

it suggests that filtering out the lower end of the distribution so to avoid bad experiences could

provide considerable value.22

6 Extensions

In this section we consider a series of extensions. First, we consider heterogeneous preference

for quality. Second, we show results for Cournot competition. Third, we analyze the e↵ect of

entry.

6.1 Heterogeneous Preference for Quality

We examine briefly the determination of optimal thresholds when consumers di↵er in their

preferences for quality for the case where N = 2. Suppose consumers’ preferences are given

by the utility function u = ✓z + ✓0 � p for a good of quality z, a la Mussa and Rosen (1978).

Consumers di↵er in their preference for quality ✓ and for the value they assign the inside vs.

outside good ✓0, which is distributed in the population according to some joint distribution

 (✓, ✓0). As earlier, firm qualities z are distributed according to cdf F (z) . For simplicity,

we restrict our analysis to a partition of sellers into two groups defined by threshold z⇤ with

21The data for the histogram come directly from Table 4 in Nosko and Tadelis (2015).
22Also note that here we make very special assumptions in terms of supply and demand functions; for

example, we assume a linear the supply function, while if the supply function is convex, the optimal z

⇤

estimated is just a lower bound for the actual z⇤.
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Figure 2: Distribution of % Positive Responses for eBay sellers

qualities zL and zH , respectively. Given prices pL and pH , consumers will be split into three

groups: those that do not consume and those that consume either the H or L product, with

demands DH (pL, pH) and DL (pL, pH), respectively. These will be equilibrium prices provided

that DH (pL, pH) = (1� F (z⇤)) q (pH) and DL (pL, pH) = F (z⇤) q (pL) . As in our previous

case, there is a unique equilibrium under fairly general conditions.

Lemma 7. The optimal choice of threshold z⇤ satisfies the following first-order necessary

condition:

⇧ (pH)� ⇧ (pL) = (z⇤ � zL) ✓LqL + (zH � z⇤) ✓HqH , (11)

where ✓L is the average preference for quality of consumers who purchase the L product, and

✓H of those who purchase the H product.

Proof. See Appendix.

This formula has an intuitive explanation. The first term is the loss of profits by those

firms that transition from the H to the L group, when z⇤ is marginally increasing. The second

term measures the e↵ect of the increase in the averages zL and zH as z⇤ is increased, valued at

the quality preference of the average consumer in each group and weighted by their respective

market sizes.

24



Vertical Di↵erentiation with Inelastic Supply

To establish further results, we consider the canonical model of vertical di↵erentiation where

consumers di↵er only in their preference for quality ✓ and where firms supply inelastically one

unit of output.23 Given equilibrium prices pL and pH , all consumers above a threshold ✓⇤

buy an H product, while all those between ✓ and ✓⇤ buy an L product, where ✓zL = pL and

✓⇤ (zH � zL) = pH � pL. Substituting in equation (11) gives the condition

(z⇤ � zL) (✓
⇤ � ✓L) = (zH � z⇤) (✓H � ✓⇤) .

Notice that this is a modified version of equation (6), where the gaps between z⇤ and the re-

spective means are weighted by the corresponding preference gaps. This highlights the role of

the complementarities between average quality and preference for quality in the determination

of the optimal threshold. In particular, when both distributions are symmetric, this also im-

plies that the optimal threshold z⇤ (and also ✓⇤) will equal the corresponding mean. Moreover,

when z and ✓ have the same distribution, the optimal threshold is also given by our baseline

condition, as given in equation (6).24 As an example, if both have uniform distributions, then

when ✓⇤ = z⇤ = 1/2, this condition will hold.

6.2 Cournot Competition

Here we restrict the analysis to a fixed set of firms, without considering explicitly the e↵ect

of changes in z* on entry. There is a total of N firms (per consumer), and given signal z⇤,

a fraction F (z⇤) in the first group and (1� F (z⇤)) in the second. The demand structure is

the same as in the competitive case considered above. Assume firms face a constant marginal

cost c regardless of their type. The equilibrium conditions are

MRH = P 0 (Q) qh + P (Q) + zH = c (12)

MRL = P 0 (Q) ql + P (Q) + zL = c. (13)

Multiplying each equation by the number of firms in the respective group and adding up, we

get

P 0 (Q)Q+NP (Q) +Nz̄ = Nc,

23This can be reinterpreted as a one-to-one matching environment with surplus function ✓z.

24It is interesting to note that when all consumers have the same preference for quality and supply is inelastic,
welfare is independent of z⇤, as the average product quality is not a↵ected by its choice.

25



where z̄ is the mean quality for the N firms. Interestingly, this equation determines Q inde-

pendently of the signal threshold z⇤, as in the case of perfect competition.

Another implication of the invariance of total output is that consumer surplus does not

change, as in the case of linear supply with z⇤. This occurs because price increases capture

exactly the change in average quality in each group. It follows that optimal thresholds solve

the maximization problem (3), so they are identical to those obtained above for the linear

case. 25

6.3 Entry

In our previous analysis we did not consider explicitly the e↵ect of changes in z⇤ on entry.

Many of our results extend to settings where the distribution of qualities of firms is not a↵ected

by entry. We discuss here two scenarios: one where entrants are ex-ante di↵erentiated and

one when they are ex-ante homogeneous.

Consider first the case of di↵erentiated entrants. Our analysis extends without modification

in the following scenario. Suppose there is a mass N of entrants that are di↵erentiated in

qualities z and fixed (or entry) costs f . Assume qualities are independent from fixed costs

and are given by distribution F and �, respectively. For a given threshold partition z⇤, we

can define the aggregate supply functions SL and SH as follows. Let SH (p) = s (p)NH (p),

where NH (p) = N (1� F (z⇤))� (⇡ (p)). This supply function combines the e↵ect of prices

on the intensive and extensive margin. We can define similarly SL (p) .Our analysis remains

unchanged if we substitute s (p) by ŝ (p) = s (p)N� (f (p)), so total supplies are SL (p) =

F (z⇤) ŝ (p) and SH (p) = ŝ (p) (1� F (z⇤)) .26

For the homogeneous case, assume there is a set N of potential entrants that draw their

qualities independently from distribution F upon entry, after paying an entry cost f, which

is distributed according to cdf � (f) . For fixed output, improved information results in a

mean-preserving spread of expected qualities and thus prices. Given that profit functions

are convex in prices, this results in an increase in expected profits and a consequent increase

in entry. In the case of linear supply, where in the absence of entry, total output does not

change, additional entry results in an increase in total output and thus consumer surplus. In

the case of concave supply, we have seen that total output decreases. This increases profits

over and beyond what is produced by the mean-preserving spread of average qualities, thus

25We have considered here quantity competition. For a model of price competition with partially informed
consumers see Moscarini and Ottaviani (2001).

26The properties of these modified supply functions will now depend both on the individual supply functions
and the distribution of fixed costs. There exist assumptions on the latter that will guarantee that the modified
supply functions are linear, convex, or concave when these properties hold for the original supply functions.
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inducing entry, mitigating, if not totally undoing, the drop in total output that would result

in the absence of entry. Finally, note that if all potential entrants were to have the same entry

cost, all surplus gains from improved information would accrue to consumers, as expected and

average profits would remain unchanged. The above results apply in particular to the e↵ect

of introducing a certification mechanism in a market where there is none.

7 Final Remarks

This paper considered the optimal design of quality ratings in markets with adverse selection.

Ratings reallocate demand across producers, impacting the average quality of goods consumed

but also average cost. The optimal thresholds in a discrete rating system optimize this trade-

o↵. Optimal ratings thus depend on characteristics of the market, given by the distribution of

producers quality, the elasticity of supply and consumer preferences. We find that the optimal

thresholds in the case of a convex (resp. concave) supply function are pointwise higher (resp.

lower) than those in the linear case. Intuitively, in case of a simple certification rating with

two groups, more elastic supply leads to a higher threshold and lower share of certified sellers.

We also find that skewness in the distribution of firm qualities matters for optimal ratings,

which move in the direction of the skew.

We have given a simple characterization for the optimal thresholds in the case of linear

supply, or Cournot competition with constant marginal cost, as the solution to a standard

k-means clustering problem. Our results thus provide a straightforward and easy-to-compute

method for the design of rating systems. This method is used to derive bounds on the per-

formance of the rating system as a function of the number of categories. As an example,

we find that for the exponential family of distributions, 65% of the surplus gains from full

information can be achieved with only two categories. In addition we provide general bounds

for the case of distribution functions with log-concave density. The large gains in surplus with

a very simple threshold mechanism suggest that the added cost of a more complex one might

not be compensated by the gains. This could explain the popularity of these simple schemes

among market designers.

As for the distribution of surplus, we find that there is a tension between the interest of

consumers and producers in the design of a rating mechanism. When supply is concave, better

information hurts consumers and benefits producers. More generally, our results suggest the

thresholds that maximize producer surplus and those that maximize consumer surplus are on

opposite sides of those maximizing total surplus.

Our preliminary analysis of the vertical di↵erentiation model suggests that preferences for

quality can be an important factor in determining optimal thresholds. One might conjecture
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that, in parallel to our results on the supply side, more convexity (resp. concavity) in the

distribution of consumer types increases (resp. decreases) the gains from more assortative

matching, thus leading to higher thresholds. This question and further extensions on the

demand side, such as including scope for horizontal di↵erentiation, are subject for future

research. Other extensions worth considering are a more detailed modeling of entry, following

results obtained in the empirical literature Hui et al. (2018). Finally, we have abstracted from

moral hazard considerations which can be important in some settings. Exploring the impact

these may have on the design of optimal ratings is subject for future research.
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8 Appendix. Proofs

Proof of Lemma 3

First note that

(P (Q) + zk) (qk+1 � qk) = (P (Q) +Mk+1 �Mk+1 + zk) qk+1

� (P (Q) +Mk �Mk + zk) qk

= pk+1qk+1 � pkqk � (Mk+1 � zk) qk+1 � (zk �Mk) qk.

Substituting in (4) and rearranging gives:

(Mk+1 � zk) qk+1 + (zk �Mk) qk = ⇡k+1 � ⇡k.

Equation (5) follows by substituting ⇡k+1 � ⇡k =
R pk+1

pk
s (p) dp , using qk+1 = s (pk+1) and

qk = s (pk) and dividing through the left hand side by (Mk+1 �Mk) and the right hand side

by the equivalent value pk+1 � pk.

Proof of Proposition 3 and Proposition 8

We use the following properties of distributions with log-concave densities (see Lemma 1 in

Mease and Nair (2006)):

E (z|s  z  s+ d)� s is decreasing in s for d > 0 (14)

s� E (z|s� d  z  s) is increasing in s for d > 0 (15)

and these properties are preserved when conditioning on intervals.

Lemma 8. Suppose F is a distribution with log-concave density and let m (a, b) = EF (z|a  z  b) .

Suppose the vector of thresholds {lk}N�1
k=1 satisfy

lk �m (lk�1, lk) = m (lk, lk+1)� lk (16)

and let z1, ..., zN�1 be a vector such that

zk �m (zk�1, zk) > m (zk, zk+1)� zk (17)
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Then zk > lk for all k.

To prove Lemma 8 we use first the following:

Claim. Under the assumptions of Lemma 8, suppose that for some k, zk < lk and zk+1 � zk �
lk+1 � lk. Then zk�1 < lk�1 and zk � zk�1 � lk � lk�1.

Proof. Note that

zk �m (zk�1, zk) > m (zk, zk+1)� zk (18)

� m (zk, zk + lk+1 � lk)� zk

� m (lk, lk+1)� lk

= lk �m (lk�1, lk) .

The first inequality follows from (17), the second one from monotonicity of m,the third from

(14), and the last by (16). Now consider k � 1. We will show that zk � zk�1 � lk � lk�1.

Suppose, by way of contradiction, that zk � zk�1 < lk � lk�1. Then

zk �m (zk�1, zk)  lk �m (lk � (zk � zk�1) , lk)

 lk �m (lk�1, lk)

where the first inequality follows from condition (15) and the second one from the monotonicity

of m. This inequality contradicts (18), proving that zk � zk�1 � lk � lk�1. Given that zk < lk,

this also guarantees that zk�1 < lk�1.

We now prove Lemma 8. Let h denote the highest k for which zk < lk. By the definition

of h, zh+1 � zh > lh+1 � lh. Using inductively the previous claim, it follows that the same is

true for all k = 1, ..., h. For k = 1, the claim would imply that z0 < l0 which cannot be true if

the distribution had a lower bound since in that case both z0 and l0 should equal this lower

bound. For unbounded support, an argument similar to the one used in the claim can be used

to generate a contradiction. This completes the proof.

Proof of Proposition 3.

Let {lk} denote the optimal thresholds for the linear supply function and {zk} those for the

convex supply function. Lemma 4 (16) and (??) hold, so Lemma 8 proves the proposition.
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Proof or Proposition 8.

We first prove the following:

Lemma 9. Let g (z1) , ..., g (zN�1) be the optimal thresholds for F̃ . Let Mk = m (zk�1, zk) =

EF (zk�1  z  zk). Then zk �Mk > Mk+1 � zk.

Proof. Let M̃k = EF̃ (g (z̃k�1)  z  g (z̃k)). Note that by strict convexity of g, M̃k > g (Mk) .

It follows that

z �Mk > zk � g�1
⇣
M̃k

⌘

= g�1 (g (zk))� g�1
⇣
M̃k

⌘

= g�1
⇣
M̃k+1

⌘
� g�1 (g (zk))

> Mk+1 � zk

To prove the proposition, let the vector {lk} be the optimal thresholds for F and {zk}
the optimal thresholds for F̃ . Equation (16) follows from the necessary condition for optimal

thresholds and (??) follows by the previous lemma.

Proof of Lemma 5

Total output

Q =
NX

k=1

(F (zk)� F (zk�1)) s (pk) .

where pk = P (Q) +Mk. Di↵erentiating with respect to zk and using

(F (zk)� F (zk�1))
@Mk

@zk
= f (zk) (zk �Mk) .

(F (zk+1)� F (zk))
@Mk+1

@zk
= f (zk) (Mk+1 � zk)
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@Q

@zk
= f (zk) (s (pk)� s (pk+1))

+ f (zk) [s
0 (pk) (Mk � zk) + s0 (pk+1) (Mk+1 � zk)]

+
NX

k=1

(F (zk)� F (zk�1)) s
0 (pk)P

0 (Q)
@Q

@zk

so
@Q

@zk
=

f (zk) [s (pk)� s (pk+1) + s0 (pk) (Mk � zk) + s0 (pk+1) (Mk+1 � zk)]

1�
PN

k=1 (F (zk)� F (zk�1)) s0 (pk)P 0 (Q)

The denominator is positive since s0 (pk) > 0 and P 0 (Q) < 0 so @Q/@zk has the same sign as

s (pk)� s (pk+1) + s0 (pk) (Mk � zk) + s0 (pk+1) (Mk+1 � zk)

and since s (pk)�s (pk+1) = �
R pk+1

pk
s0 (p) dp and pk+1�pk = Mk+1�Mk, equation (8) follows.

Proof of Proposition 6

Letting ↵ (zk) =
Mk+1�zk
Mk+1�Mk

we can rewrite Equation (5) as

s (pk) + ↵ (zk) (s (pk+1)� s (pk)) = s (pk) +

R pk+1

pk
s (p)� s (pk) dp

pk+1 � pk

so

↵ (zk) =

R pk+1

pk

s(p)�s(pk)
s(pk+1)�s(pk)

dp

pk+1 � pk
. (19)

To evaluate dQ/dzk at the optimal thresholds z1, ..., zk we rewrite , equation (8) in similar

fashion using the expression for ↵ (zk) given by equation (19).

dQ

dzk
s
=

↵ (zk)�

R pk+1

pk

s0(p)�s0(pk)
s0(pk+1)�s0(pk)

dp

pk+1 � pk

=

R pk+1

pk

s(p)�s(pk)
s(pk+1)�s(pk)

dp�
R pk+1

pk

s0(p)�s0(pk)
s0(pk+1)�s0(pk)

dp

pk+1 � pk

so dQ/dzk has the same sign as

Z pk+1

pk

s (p)� s (pk)

s (pk+1)� s (pk)
dp�

Z pk+1

pk

s0 (p)� s0 (pk)

s0 (pk+1)� s0 (pk)
dp
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so a su�cient condition for dQ/dzk to be positive (negative) is that

s (p)� s (pk)

s (pk+1)� s (pk)
� s0 (p)� s0 (pk)

s0 (pk+1)� s0 (pk)
> 0 (< 0)

For convex s, s0 (pk+1)� s0 (pk) > 0 so we can rewrite this condition as

s0 (pk+1)� s0 (pk)

s (pk+1)� s (pk)
� s0 (p)� s0 (pk)

s (p)� s (pk)
> 0 (< 0) (20)

This can be restated as
s0 (p)� s0 (pk)

s (p)� s (pk)
(21)

increasing or decreasing in p (for all p > pk). The derivative of (21) with respect to p has the

sign of:

s00 (p) (s (p)� s (pk))� s0 (p) (s0 (p)� s0 (pk))

=s00 (p)

Z p

pk

s0 (x) dx� s0 (p)

Z p

pk

(s00 (x)) dx

which in turn has the sign of

s00 (p)

s0 (p)
�

R p

pk

(s00(x))
s0(x) s0 (x) dx

R p

pk
s0 (x) dx

.

The second term is a weighted average of the coe�cient of absolute risk aversion of s for values

between pk and p. So if s00 (x) /s0 (x) is increasing (resp. decreasing) in x, then this di↵erence

will be positive (resp. negative).

For concave s the signs in inequality (20) flip, as s0 (ph+1) � s0 (pk) < 0,so the results will

be reversed.

Proof of Proposition 7

Let g (z) = 1
2 (zL (z) + zH (z)) . The optimal threshold is a fixed point of this function. When

z ! zmax (or as z ! 1 in the case of unbounded support), g (z) ! 1
2 z̄ +

1
2z < z, and when

z ! zmin(or as z ! �1 in the case of unbounded support), g (z) ! 1
2zmin+

1
2 z̄ > z. Consider

the case where z̄ > zmedian, which is illustrated in Figure 3. For z = zmedian, g (z) = z̄ > z.

Since the function g (z) is increasing and continuous, the unique fixed point z⇤ must be to the

right of zmedian and, as a consequence, z⇤ > z̄, as illustrated in the figure. The proof for the
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Figure 3: z⇤ When Mean>Median

case where z̄ < zmedian follows from a similar argument.

Proof of Lemma 7

Let

U (QH , QL, z
⇤) = max

AL,AH

Z

AL

u (✓, zL (z
⇤)) d (✓) +

Z

AH

u (✓, zH (z⇤)) d (✓) (22)

subject to:

Z

AL

d (✓) = QLand

Z

AH

d (✓) = QH

Given this we can write the general problem as

V (z⇤) = max
qL,qH

U (qLF (z⇤) , qH (1� F (z⇤)) , z⇤)� F (z⇤) c (qL)� (1� F (z⇤)) c (qH)

By the envelope theorem,

@V (z⇤)

@z⇤
=

@U

@QL

qLf (z⇤)� @U

@QH

qHf (z⇤) +
@U

@z⇤
(23)

� f (z⇤) c (qL) + f (z⇤) c (qH)
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The first two derivatives are the respective multipliers pL and pH of the constraints in (22).

To evaluate the last term, first we note that:

@zL
@z⇤

= f (z⇤)
z⇤ � zL (z⇤)

F (z⇤)
(24)

and
@zH
@z⇤

= f (z⇤)
zH (z⇤)� z⇤

1� F (z⇤)
(25)

Note also that:

@U

@z⇤
=

✓Z

(✓1,✓0)✏AL

✓1dG

◆✓
@zL
@z⇤

◆
(26)

+

✓Z

(✓1,✓0)✏AH

✓1dG

◆✓
@zH
@z⇤

◆

Finally note that the measure of the set AL is QL = qLF (z⇤) and the measure of the set

AH is QH = qH (1� F (z⇤)) . Dividing and multiplying (26) by this respective measures and

substituting (24) and (25) we get:

@U

@z⇤
= f (z⇤) (z⇤ � zL)E (✓1| (✓0, ✓1) ✏AL) qL (27)

+ f (z⇤) (zH � z⇤)E (✓1| (✓0, ✓1) ✏AH) qH

Substituting (27) in (23) we obtain:

1

f (z⇤)

@V

@z⇤
= pLqL � c (qL)� [pHqH � c (qH)]

+ (z⇤ � zL)E (✓1| (✓0, ✓1) ✏AL) qL

+ (zH � z⇤)E (✓1| (✓0, ✓1) ✏AH) qH .

Noting that the multipliers pL and pH are also the equilibrium prices, we can rewrite the first

order condition for the optimal z⇤ as:

⇧ (pH)� ⇧ (pL) = (z⇤ � zL)E (✓1| (✓0, ✓1) ✏AL) qL (28)

+ (zH � z⇤)E (✓1| (✓0, ✓1) ✏AH) qH
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