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1 Introduction

Testing for and measuring brand loyalty, or persistence in brand choice, remains one of the oldest

and most central themes in the empirical quantitative marketing literature [e.g., Brown, 1952,

Frank, 1962]. Typically, a consumer’s complete, lifetime brand choice history is not observed,

leading to an initial conditions problem [Heckman, 1981a]. The initial conditions problem arises

when the initial observed loyalty state depends on unobserved aspects of consumer preferences,

creating a specification error in approaches that treat the initial state as exogenous.

Due to the computational complexity of modeling the dependence of the initial conditions on

unobserved consumer tastes, the extant literature has typically relied on assumptions that ignore

the initial conditions problem. One approach assumes that the initial loyalty state is independent

of preferences (initial state is exogenous) [e.g., Keane, 1997, Dubé et al., 2010], while the second

one treats the first observed purchase occasion as having no loyalty (initial state is zero) [e.g.,

Seetharaman et al., 1999, Shum, 2004]. Both approaches lead to inconsistent estimates of loyalty

for fixed T and exhibit a small-sample bias (in T ) in the estimates. While this bias dissipates as

T →∞, the order of T required to eliminate the bias in practice can potentially be infeasible even

with long panels spanning many years of shopping history.

We investigate the small-sample biases associated with ignoring the initial conditions problem

when estimating a state-dependent brand choice model. In a series of Monte Carlo simulations, we

show that the biases due to misspecified initial conditions is substantial even for panels that are

longer than conventional CPG (consumer packaged goods) shopping databases, like those collected

by Nielsen and IRI. We further show that the procedures used in the extant literature exhibit

systematic forms of bias: in short panels, assuming an exogenous initial state leads to an upward

bias in the estimated degree of loyalty, while assuming no initial loyalty (setting initial state to zero)

leads to attenuation bias. These two biased approaches can be used to construct computationally

simple estimators that approximately bound the degree of state dependence as a preliminary test

that does not require modeling the initial conditions.

We then propose a Bayesian estimator that incorporates the endogenous initial conditions into

the likelihood function. This approach is based on the assumption that the stochastic process

governing the joint distribution of prices and consumer choices is in equilibrium. This assumption

is plausible in the vast majority of extant empirical applications, which study state dependence

in mature consumer packaged goods (CPG) markets. To solve the computational challenge of

evaluating the likelihood, we propose a simulation procedure that treats the initial state as an

auxiliary variable and yields draws from the joint distribution of consumer preference parameters

and initial states as part of the Gibbs sampling procedure. To sample the initial states, we compute

the conditional probability of being in each state given the current draws of consumer preferences.

The sampler also accounts for the dynamics in prices, which we treat as the outcome of an estimated

Markov process using the observed prices.
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We test the performance of the proposed estimator in a series of Monte Carlo simulations and

compare it to approaches that treat the initial conditions as exogenous. We find that our proposed

approach recovers the true values of brand loyalty quite well, even in panels of moderate length.

Interestingly, the estimator that also addresses the dynamics in prices only performs slightly better

than the estimator that treats prices as i.i.d., even when the true data-generating process involves

Markovian prices. In contrast, naive estimators that ignore the initial conditions problem generate

biases, even in long panels. Using the two naive approaches as bounds on the true value of the state

dependence, our Monte Carlo simulations show that the bounds converge to the true value as we

increase the panel length. We also find that the two bounds coincide at zero for a data-generating

process with no state dependence.

We compare the same set of estimators in two empirical case studies of the margarine category.

The first case study comprises the 2.5-year panel shopping panel from Dubé et al. [2010]. The second

case study comprises a 6-year panel from the Nielsen-Kilts Homescan (HMS) data. The estimates

confirm the conclusions from the Monte Carlo simulations. As explained above, we can use the two

naive estimators to bound the degree of state dependence above zero. We therefore conclude that

there is indeed state dependence in consumers’ brand choices. Our proposed estimator accounts

for the dependence of the initial conditions on unobserved consumer preferences and generates an

estimate of the state dependence that lies between the two naive approaches, as expected. The

magnitude of bias when ignoring the initial conditions problem is of a factor of 2-2.5. For instance,

our results suggest that Dubé et al. [2010] under-estimated the degree of brand loyalty by more

than half.

These findings add to a large literature exploring biases in empirical models of state-dependent

brand choice. The initial conditions bias we investigate herein builds on the seminal work of

Heckman [1981a] and is similar to the biases associated with incorrect assumptions about initial

beliefs in learning models [e.g., Shin et al., 2012], a related form of structural state dependence,

and the initial inventory state variable in the literature on stock-piling and dynamic discrete choice

[e.g., Erdem et al., 2003, Hendel and Nevo, 2006].1 Our findings also build on the literature that

has discussed the potential biases associated with unobserved heterogeneity in state-dependence

models of brand choice [e.g., Heckman, 1991, Keane, 1997, Dubé et al., 2010]. However, controlling

for unobserved heterogeneity does not resolve the initial conditions problem. Finally, our findings

have supply-side implications for brand pricing. In particular, incorrectly assuming exogeneity in

the initial observed loyalty state will bias the degree of brand loyalty, which in turn biases the

dynamic incentives to firms when setting their prices [e.g., Dubé et al., 2008, 2009].

The rest of the paper is organized as follows. Section 2 formalizes the initial conditions’ problem

in a model of consumer discrete-choice demand with heterogeneity and state dependence, and

proposes a correction procedure. Section 3 tests the correction procedure and “naive” ways to treat

1Heckman [1981a] considers a simple case of intercept heterogeneity and does not provide a computationally
feasible solution to the problem.
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the initial state in a Monte Carlo simulation exercise. Section 4 applies the estimation routines to

two real-world datasets. Section 5 concludes.

2 Model and Estimation

2.1 Model

In this section, we focus on the familiar first-order Markov multinomial discrete choice model of

demand [e.g., Chintagunta, 1998, Keane, 1997, Seetharaman et al., 1999, Dubé et al., 2010], which

extends the discussion of binary choices in Heckman [1981b]. Consumers indexed by h = 1, ...,H

make discrete purchase decisions j from a choice set A = {0, 1, . . . , J} during each of the time

periods t = 1, ..., T . The j = 0 alternative indicates non-purchase.

The choice-specific utility of consumer h is:

uj(s
h
t , ε

h
t ; Θh) =

 βhj + γh1{sht = j}+ εhjt if j 6= 0,

εh0t if j = 0.

Θh =
(
βh1 , ..., β

h
J , γ

h
)′

is a vector that includes the consumer’s taste parameters and εhjt ∼ i.i.d. EV(0, 1)

are random utilities. The state variable sht ∈ {1, . . . , J} indicates the consumer’s current loyalty

state. When choosing the alternative that the consumer is loyal to, j = sht , the consumer receives

the utility component γh. Adding additional covariates in the utility function is straightforward,

but for now we only consider the most minimal model structure to keep the exposition simple.

The consumer makes the discrete choice yht = j if and only if

uj(s
h
t , ε

h
t ; Θh) ≥ uk(sht , εht ; Θh) ∀k 6= j.

The corresponding probability that consumer h chooses alternative j is:

Pr
{
yht = j|sht ,Θh

}
=

exp
(
βhj + γh1{sht = j}

)
1 +

∑J
k=1 exp

(
βhk + γh1{sht = k}

) . (1)

In the model, the choice in the previous period determines the current period’s loyalty state. If

the consumer chooses j 6= 0, the loyalty state in the next period will be sht+1 = j. If the consumer

chooses the outside option, j = 0, the loyalty state will remain unchanged, sht+1 = sht . Therefore,

the loyalty state follows a Markov Process where the transition probabilities are derived from the

conditional choice probabilities. The probability that the loyalty state transitions from sht = j to
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sht+1 = k 6= 0 is

Pr
{
sht+1 = k|sht = j,Θh

}
=

{
Pr
{
yht = k|sht ,Θh

}
if k 6= j,

Pr
{
yht = j|sht ,Θh

}
+ Pr

{
yht = 0|sht ,Θh

}
if k = j.

(2)

Following most of the prior literature, we assume that a consumer will never become loyal to the

outside option. However, this is not an essential assumption and could be relaxed. For example,

we could allow for a loyalty (or rather: non-loyalty) state sht = 0, such that a consumer who is in

this state does not receive the utility component γh for any choice.

The marginal probability of an observed choice in a given period depends on the probabilities of

all possible choice histories up until that point. Formally, the marginal probability that consumer

h chooses j in period t is

Pr{yht = j|Θh} =
∑
sht ∈St

Pr{j|sht ,Θh} · Pr{sht |sht−1,Θh} · · ·Pr{sh2 |sh1 ,Θh} · Pr{sh1 |Θh}, (3)

where sht = (sh1 , . . . , s
h
t ) and St is the t-fold Cartesian product of the set of loyalty states, {1, . . . , J}.

Furthermore, because sht depends on sht−1 and the choice yht−1, it is evident that the marginal

probability of a loyalty state, Pr{sht |Θh}, depends on the entire prior choice process, and thus on

Θh. Even if the data included the very first period when a consumer made a choice and the initial

loyalty state, sh1 and Θh would in general be dependent. For example, adjusting for prices and

other covariates, a consumer will be more likely to be loyal to her most preferred alternative, i.e.

the alternative with the largest value of βhj . Only under some special conditions, such as when

consumers are not loyal to any alternative in the initial period (Pr{sh1 = 0|Θh} = 1 for all Θh ),

sh1 will be independent of Θh.

We now consider the problem of statistical inference for the distribution of preference parame-

ters. FΘ

(
Θh|θ

)
is the prior for the population distribution of the individual preference parameters

with a vector of hyper-parameters θ. For each consumer, we observe the choices yh =
(
yh1 , ..., y

h
T

)
.2

`(yh|Θh) is the multinomial logit likelihood-contribution for consumer h:

`(yh|Θh) =
J∑
j=1

(
T∏
t=1

Pr
{
yht |sht ,Θh

}
· Pr{sh1 = j|Θh}

)
. (4)

Note the dependence of the likelihood on the distribution of the initial condition, Pr
{
sh1 = i|Θh

}
,

which in general is dependent on the consumer-specific parameters Θh.

One approach to solve the initial conditions problem is to assume that the process generated by

the sequence of choices is in equilibrium. In our model, all choice probabilities (1) are strictly posi-

tive, and hence the distribution of the loyalty state converges to the stationary distribution π(Θh) =

2Assuming the same number of observations per consumer for notational convenience only.
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(π1(Θ
h), . . . , πJ(Θh)). The probability of the initial condition is Pr{sh1 = j|Θh} = πj(Θ

h).

The evaluation of the initial condition probability becomes more complicated when we include

covariates in the choice model. Typically, we will includes prices in the choice-specific indirect

utility function:

uj(pt, s
h
t , ε

h
t ; Θh) =

 βhj − αhpjt + γh1{sht = j}+ εhjt if j 6= 0,

εh0t if j = 0.

Assume that prices follow a Markov process with transition probability Fp(pt+1|pt), and let Fp1
(p1)

be the distribution of prices in the initial period. Let Gt(p̃) be the implied distribution over the

sequence of price vectors, p̃ = (p1, . . . ,pt). Now the marginal probability that consumer h chooses

j in period t is:

Pr{yht = j|Θh} =

∫ ∑
sht ∈St

Pr{j|pt, sht ,Θh} ·
t∏

τ=2

Pr{shτ |pτ−1, shτ−1,Θh} · Pr{sh1 |Θh} dGt(p̃). (5)

The marginal probability of the loyalty state, Pr{sht |Θh}, directly follows from (5).

In practice, many researchers have avoided estimators based on the likelihood (4) due to the

computational burden associated with estimating Pr{sht |Θh}, especially when covariates are in-

cluded in the model. The extant literature has typically evaluated the initial state in one of two

ways:

1. Assume (i) initial stationarity of the process and (ii) that the stationary distribution of initial

loyalty states, π(Θh), does not depend on Θh. Then drop the first observed choice for each

household h to initialize

sh1 =

j if yh0 = j and j 6= 0,

sh0 otherwise

[e.g., Seetharaman et al., 1999, Shum, 2004].

2. Set the initial state to zero, sh1 = 0, implying that there is no loyalty to any of the alternatives

in the first observed purchase period [e.g., Keane, 1997, Dubé et al., 2010].

Both approaches are expected to generate biased estimates of θ for samples with finite length T . 3

For the first approach, the bias arises from the ignored dependence of sh1 on unobserved consumer

tastes. Intuitively, the household’s initial state is selected on the preference parameter vector

Θh, creating bias if there are idiosyncratic preference components that are unobserved to the

3Another approach that has been proposed in the literature is to assume initial stationarity of the process,
estimate π(Θh) with auxiliary data, and draw the initial state as part of the MCMC procedure, sh1 ∼ π(Θh). While
computationally convenient, such auxiliary data would need to be found on a case-by-case basis [e.g., Sudhir and
Yang, 2014], limiting the generalizability of this approach.
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researcher. Assuming that sh1 is exogenous is likely to create an upward bias in the estimate of γ,

since the estimator will attribute some of the persistence in choices to sh1 and not to the preference

components, βj .

The second approach is expected to generate attenuation bias in γ due to the misspecification

of the initial condition, which is assumed to be sh1 = 0. The estimator is likely to attribute some of

the persistence in choices to the preference components βj and not to the state dependence.

2.2 Bayesian MCMC Estimation

In this section we describe the MCMC estimator we use to derive the posterior distribution of the

taste parameters for the multinomial logit model with state dependence described above in section

2.1. We then describe how we modify the MCMC algorithm to specify the initial conditions. We

use the unconditional (on the initial condition) likelihood (4). This approach is similar to Heckman

[1981b]’s frequentist estimator that integrates the initial state variable out of the likelihood. Here,

we apply a Bayesian approach that treats the initial state as an auxiliary variable.

2.2.1 Exogenous initial conditions

We begin with the case where the initial condition is observed and exogenous. This approach gives

rise to the standard, random coefficients logit discrete choice model. In addition to the initial

conditions problem discussed in section 2.1, we also address the well-known challenge of separating

heterogeneity and state dependence. To ensure that we fully control for heterogeneity in tastes

between households, we follow Rossi et al. [2005] and use a hierarchical prior. At the first stage,

we specify a K-component mixture of normals distribution for
{
Θh
}H
h=1

. At the second stage, we

specify priors on the parameters of the mixture of normals:

Θh|indh, {µk,Σk} ∼ N(µindh ,Σindh) (6)

indh ∼MN(λ)

λ, {µk,Σk}|b ∼ Fb,

where ·|· are conditional distributions and b comprises all the hyperparameters of the priors for

both the mixing probabilities and the mixture components. To facilitate the MCMC algorithm, we

also introduce the notation indh ∈ {1, . . . ,K}, the latent variable indicating the mixing component

from which an individual’s preferences are drawn. We specify indh as a K-category multinomial

random variable with outcome probabilities λ = (λ1, ..., λK) . Following Rossi et al. [2005], we

specify Dirichlet, normal, and Inverse-Wishart priors on λ, µk and Σk, respectively, which we

denote Fb, and use the same prior hyperparameter settings as in Dubé et al. [2010]. To sample

from the resulting posterior distribution, we use a hybrid MCMC procedure with a customized
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Metropolis chain [Rossi et al., 2005] for the draws of Θh and a standard Gibbs sampler for the

draws of indh, λ and {µk,Σk}. The sampling process is

1. {µk,Σk}|ind,Θ

2. ind|λ, {µk,Σk},Θh

3. λ|ind

4. Θh|{µk,Σk}, indh, {yh}

The first step consists of drawing {µk,Σk} from a multivariate regression model conditional on the

draws of the components, ind, and draws of consumer preferences, Θ. The second step consists

of drawing the components indh conditional on λ, the prior probability of membership in each

component, Θh, the consumer-level preferences, and {µk,Σk}, with the multinomial probabilities

in the form of likelihood ratios weighted by λ. The third step consists of drawing λ conditional on

the updated mixture memberships, ind. Finally, the fourth step consists of the Metropolis step to

draw Θh conditional on the distribution of consumer preferences, {µk,Σk}, the component draw

indh, and the observed data for consumer h, {yh}.4 Figure 1 provides a DAG for the sampling

procedure.

Figure 1: Sampling schema without the initial state draws.

Schema of the Hierarchical Multinomial Logit with a mixture of normals as the first-stage prior.

2.2.2 Extension to include Pr {s1|p1, ...,pT ,Θ}

We treat s1 as an auxiliary variable, adding a draw from s1 into the MCMC sampling procedure.

Throughout this section, we assume that the choice process is initially in equilibrium.

In the absence of prices, it is straightforward to compute the steady state probabilities of each

4Our set-up closely follows Rossi et al. [2005], and we refer the interested reader to it for details.
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loyalty state. Let

P (Θ) =


Pr {st+1 = 1|st = 1,Θ} · · · Pr {st+1 = J |st = 1,Θ}

...
...

Pr {st+1 = 1|st = J,Θ} · · · Pr {st+1 = J |st = J,Θ}

 (7)

denote the matrix of transition probabilities. Since the choice process consists of an ergodic,

finite-state Markov chain, the distribution over loyalty states converges to the unique stationary

distribution π(Θ): lim
t→∞

P (Θ)t = ιπ(Θ), where ι is a J-vector of ones, π(Θ) is a row vector, and

the state-specific probabilities, π(Θ) = (π1(Θ), ..., πJ(Θ)), are strictly positive. We can then solve

for the steady-state probabilities, π(Θ) = π(Θ)P (Θ). 5

The incorporation of prices into the choice process complicates the computation of the steady

state. Since the initial prices in period zero, p0, are typically unobserved, the distribution over the

initial state has the form

π (p1, ...,pT ,Θ) = (π1 (p1, ...,pT ,Θ) , ..., πJ (p1, ...,pT ,Θ)) . (8)

The dependence on the observed prices, p1, ...,pT , arises because these prices are in general infor-

mative about p0. For instance, if the price process is Q-order history-dependent, then p0 depends

on the prices in periods t = 1 . . . Q. The price p0 affects the choice in period 0 and thus the realized

loyalty state in period 1.

In the remainder of the paper, we will assume that prices have support in a discrete set

{ζ1, . . . , ζN}.6

Below we describe the sampling procedure of Pr
{
s1|p1, ...,pT ,Θh

}
for the cases of i.i.d. and

Markov price processes. We propose simulation-based solutions to the initial conditions problem

that incorporates a draw of s1 into the MCMC procedure:

sh1 ∼ π
(
p1, ...,pT ,Θ

h
)
. (9)

Figure 2 provides a DAG for the adjusted sampling procedure.

2.2.3 Price Process is i.i.d.

When prices are i.i.d., the unobserved value of p0 does not depend on the observed prices, p1, ...,pT ,

simplifying the marginal distribution of the initial states to π(Θ) = (π1(Θ), ..., πJ(Θ)).

To compute π(Θ), we use the following approach:

5π(Θ) is the left eigenvector of P corresponding to the eigenvalue 1.
6For similar CPG categories to the ones studied herein, Eichenbaum et al. [2011, page 239] show that “weekly

prices typically fluctuate between reference and non-reference prices.” In our analysis, we will consider the case where
prices are dependent and independent over time.
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Figure 2: Sampling schema with the initial state draws.

Schema of the Hierarchical Multinomial Logit with a mixture of normals as the first-stage prior and
auxiliary initial state s0.

1. Use a frequency estimator to estimate the discrete distribution of prices, Pr {pt = ζn} =

ρn, n = 1, ..., N .

2. For each price state ζn and loyalty state st, compute Pr
{
st+1|pt = ζn, st,Θ

h
}

, using equa-

tions (1) and (2).

3. Compute the transition probability of s, unconditional on p0:

Pr
{
st+1 = j|st = k,Θh

}
=

N∑
n=1

Pr
{
st+1 = j|pt = ζn, st = k,Θh

}
ρn.

4. Compute the marginal distribution of loyalty states, π(Θh), which is a left eigenvector of the

transition probability matrix with elements Pr
{
st+1|st,Θh

}
.

2.2.4 Price Process is Markov

When prices follow a Markov process, calculating the marginal distribution of the initial state is

more complicated because now the state will depend on the observed prices, p1, ...,pT , as explained

above. We assume that prices follow a first-order Markov process, an assumption that has frequently

been made in the literature. Note that conditional on p1, the prices p2, ...,pT provide no additional

information about p0 in the case of a first-order Markov process. Hence, the distribution over the

initial loyalty state conditional on the observed sequence of prices, π (p1,Θ), depends on p1 only.

We use the following approach to compute the initial distribution of the loyalty state:

1. Estimate the transition probabilities of the price process, Pr
{
pt+1 = ζn|pt = ζj

}
= ρjn, using

a frequency estimator. If the price process is ergodic, we compute the stationary distribution

ρ = (ρ1, . . . , ρN ),where ρn = Pr {pt = ζn}.
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2. For each household h, simulate the price chain backwards for periods t = 0,−1, . . . ,−S.

The draws are obtained assuming that the price process is in equilibrium, which implies the

conditional probability distribution:

Pr{pt−1 = ζn|pt = ζj} =
ρnρnj
ρj

.

3. Draw a state sh−S in period t = −S from an exogenous distribution (in the simulations we

assume that sh−S is uniformly distributed over the domain of possible states). Conditional on

the price draws obtained in step 2, p−S , . . . ,p0, use the conditional choice probabilities to

simulate a sequence of choices and states to obtain a draw sh1 .

4. Repeat steps 2 and 3 L times, and obtain an estimate of π
(
p1,Θ

h
)

based on the empirical

frequency

πhj =
1

L

L∑
l=1

1{sh1l = j}.

3 Monte Carlo Experiments

We now conduct a series of Monte Carlo experiments to assess the degree of bias due to the initial

conditions problem. Of particular interest is the relationship between the bias and the dimensions

of a consumer panel database.

3.1 Design

As in section 2.1, we assume that consumer h obtains the following indirect utility from purchasing

product j at date t:

uj(pt, s
h
t , ε

h
t ; Θh) =

 βhj − αhpjt + γh1{sht = j}+ εhjt if j 6= 0,

εh0t if j = 0.

pjt is the price of the product j, and the parameter vector is Θh =
(
βh1 , ..., β

h
J , α

h, γh
)′

.

We use the following random coefficients specification to accommodate the persistent hetero-

geneity in tastes between consumers:

Θh ∼ N (µ,Σ) . (10)

σ = (σβ1 , ..., σβJ , σα, σγ) denotes the population standard deviations (σl =
√

Σll).

To calibrate the parameter values, we use demand estimates based on the Nielsen-Kilts consumer

panel purchase data for the margarine category. We discuss the estimates from the Nielsen-Kilts
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data in section 4.2, and describe the panel data in Appendix 6.1. Accordingly, we set J = 4 and

use the following hyper-parameter settings for the population distribution of tastes:

βh1
βh2
βh3
βh4
αh

γh


∼ N





−1.71

0.44

−1.37

−0.91

−1.23

1


,



10.37 0 0 0 0 0

0 10.49 0 0 0 0

0 0 8.24 0 0 0

0 0 0 17.22 0 0

0 0 0 0 1.9 0

0 0 0 0 0 1




. (11)

We assume that the price process is independent of the product choices of individual consumers

and estimate it using the empirical distribution of the observed prices in the Nielsen data. Accord-

ingly, we estimate the first-order Markov price process Pr
{
pt+1 = ζn|pt = ζj

}
= ρjn, with prices

discretized into N = 100 mass points using k-mean clustering of the observed price vectors.With

this design, the shares of shopping trips during which brands 1-4 are purchased are 14%, 22%, 16%,

and 17%, respectively. The outside option is chosen on 31% of the trips.

D denotes the data used for estimation. For each synthetic dataset, we simulate a panel for

1, 000 time periods (or trips to the store) and H ∈ {500, 2000} households. To ensure that the

simulated data are not influenced by the initialization of the price and choice processes, we drop

the first 100 simulation periods and retain the remaining T = 900 periods for each household.

We compare four estimation approaches that differ based on the respective treatment of the

initial conditions:

1. Retain the first observation for each household and set sh1 = 0.

2. Include the conditional choice probability in the first period assuming that the initial state,

sh1 , is observed, but ignore the marginal probability of the initial loyalty state, Pr
{
sh1 |Θh

}
,

in the likelihood function.

3. Assume that the price process is i.i.d., and draw sh1 ∼ π(Θh) as an auxiliary variable that is

drawn from the stationary distribution of loyalty states, as described in section 2.2.3.

4. Treat the price process as first-order Markov, and draw the auxiliary variable sh1 from π
(
p1,Θ

h
)
,

as described in section 2.2.4.

For each of the four estimation approaches we perform R = 100 independent replications, and we

estimate each of the model specifications for each replication.We report summary statistics of the

posterior mean of the first-stage prior, i.e. random coefficients distribution, of the state dependence
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parameter, γ. First, for replication r and draw d we calculate

µdr =
K∑
k=1

λk,drµk,dr,

Σdr =

K∑
k=1

λk,drΣk,dr +

K∑
k=1

λk,dr(µk,dr − µdr)(µk,dr − µdr)′.

Here, λk,dr is the dth draw of the mixture probability for component k, and µk,dr and Σk,dr are

the corresponding draws of the mean and variance of component k.7 We then average over all D

MCMC draws to obtain the posterior mean and variance of the first-stage prior in replication r:

µ̂r =
1

D

D∑
d=1

µdr,

Σ̂r =
1

D

D∑
d=1

Σdr.

µ̂γ,r is the γ-component of µ̂r, and σ̂γ,r is the square root of the γ-component of the diagonal of

Σ̂r.

We report the mean and standard deviation of µ̂γ,r and σ̂γ,r across the R replications, and

we also report the corresponding 2.5th and 97.5th percentiles. Finally, we report the percentage

of replications where the true values of µγ and σγ are contained in the respective 95% posterior

credible intervals.

3.2 Monte Carlo Results

3.2.1 Main Results

In this section we contrast the various approaches to specifying the initial conditions and their

respective abilities to recover the true preference parameters in the presence of state dependence

(γh > 0). We discuss the small-sample properties of γh for panels that vary in the length of T .

Our first experiment uses a design intended to mimic a panel length of approximately 6 years,

which is much longer than the panels used in the extant literature.8 For instance, in the 6-year

period between 2006 and 2011 of the Nielsen-Kilts database discussed below in section 4.2, we

observe a mean, median and maximum number of observed trips per household of T = 22, T = 14

and T = 220 respectively.9 Hence, for our first experiment, we use a balanced panel with T = 30 for

7We show the formulas for µk,dr and Σk,dr for the case of arbitrarily many mixture components. If K = 1, the
formulas simplify in an obvious manner.

8For example, Keane [1997] used all trips over a 60-week period, Dubé et al. [2010] use a subset of all trips over a
120-week period, and Seetharaman et al. [1999] use all the weeks in a 3-year period.

9Recall that T is based in part on our definition of the outside good, which we define as a purchase of any
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Table 1: Monte Carlo Results: Posterior mean and standard deviation estimates of γ. T = 30 and
N = 2000.

Mean of µ̂γ,r and σ̂γ,r (in brackets: coverage)
(2.5, 97.5 quantiles across the MC draws)

Point (1) (2) (3) (4)
Estimates True Value s0 = 0 p(s0|θ) ignored p(s0|θ) included

Prices i.i.d. Prices Markov

Mean µ̂γ,r 1.0 0.759 (0) 3.044 (0) 1.102 (0.68) 1.066 (0.86)
(0.678, 0.819) (2.673, 3.345) (0.997, 1.202) (0.967, 1.163)

Mean σ̂γ,r 1.0 0.852 (0) 2.817 (0) 1.007 (0.93) 0.977 (0.91)
(0.77, 0.899) (2.496, 3.094) (0.905, 1.092) (0.881, 1.052)

Based on a 100 Monte Carlo simulations.

each household, which is a long panel compared to the CPG datasets used in the extant literature.

In Table 1, we compare the results for each of the 4 model specifications. Columns (1) and (2)

present the estimates of the mean µ̂γ,r and σ̂γ,r for the cases when the initial condition is set to

sh1 = 0 and when Pr
{
sh1 |Θh

}
is not included in the likelihood, respectively. The estimates of both

ˆ̄γ and σ̂γ are biased. Across our 100 replications, the true values of µγ and σγ never lie inside the

95% credible interval. Moreover, µγ and σγ lie outside the (2.5th, 97.5th) percentile range of the

point estimates across the simulations.

Columns (3) and (4) present the estimates of mean µ̂γ,r and σ̂γ,r for the cases where we correct

the likelihood of the initial conditions to account for both the choice and price processes; although

column (3) makes the incorrect simplifying assumption that the price process is i.i.d.. Across

the 100 replications, the estimates are close to the true values of µγ and σγ , which fall within

the (2.5th, 97.5th) percentile range of the point estimates and over half the 95% credible intervals.

Interestingly, the point estimates for the i.i.d. price scenario (column 3) and Markov price scenario

(column 4) are qualitatively similar, even though the true price process is simulated as Markov.

However, using the correct Markov specification on prices slightly improves the coverage of µ̂γ,r.
10

In sum, we find that even with a simulated panel that would be deemed “long enough” based

on past research, we still find bias in the two specifications that exhibit specification error in the

likelihood of the initial conditions. To understand the source of this bias, first recall that consumers

select the outside option on 31% of the trips. So when T = 30, the average consumer makes only

22 purchases and the number of observed transitions in the loyalty state has a mean and median

of only 3.87 and 2 respectively. Moreover, the loyalty state never deviates from its initial value for

45.4% of the consumers in our simulated sample. Consequently, even with T = 30, we may not

other product in the margarine category. This reduces the number of outside option choices in the data and makes
the simulations more efficient. All results presented below qualitatively hold if we define the outside option as any
purchase of a spreadable product or as any trip to a store, after adjusting T accordingly.

10Since coverage is computed using only 100 Monte Carlo simulations, differences in the coverage of σ̂γ,r in speci-
fications (3) and (4) can occur by chance.
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observe enough state transitions to avoid a small-sample bias due to initial conditions.11 In Table

9 of Appendix 6.3, we further show that even for an unrealistically long panel with all consumers

having T = 100 observations, specifications (1) and (2) still lead to a significant (although smaller

in magnitude) bias, while specifications (3) and (4) correctly recover µ̂γ,r and σ̂γ,r.

3.2.2 Results By Number of Purchases

To explore when a dataset is capable of eliminating the initial conditions bias, we next run experi-

ments that balance the panel based on the number of observed purchases, T purch, instead of on the

number of purchase occasions (i.e., trips). We draw the data set for T = 1, 000 time periods for

N consumers, remove the first 100 simulated choices and then retain T purch trips per consumer,

truncating after T purch purchases are observed.12 Following standard practices in the extant brand

choice literature, we exclude consumers who do not make at least T purch choices in T periods. As

a result, our simulation sample is slightly less than N across the simulation conditions, which we

report with the results. In Table 3, we compare the results for several scenarios that re-balance

the panel on T purch ∈ {5, 10, 25, 100} to examine the role of the number of observed purchases. We

also vary N ∈ {500, 2000} to examine the role of the size of the cross-section of consumers used.

This common approach to constructing a panel with a sufficient number of purchases selects on

consumers’ unobserved tastes. It is therefore even more crucial in this scenario to verify whether,

even in very long panels, it is possible to recover the true parameter values in practice.

Since the loyalty parameter is identified by the observed spells in the data, we summarize the

number of spells for each of our scenarios in Table 2. For realistic values of T purch ≤ 10, which is

approximately consistent with typical purchase panel lengths used in practice, we observe very few

spells per consumer (e.g., less than 3 on average) and over half the panelists fail to deviate from

their initial loyalty state. It is only when we increase T purch well above these realistic scenarios

that we see considerably more spells. When T purch = 100, almost 80% of the panelists deviate from

their initial state at least once and the average panelist has 16.2 spells. When T purch = 100, the

mean and median panel length across simulated consumers is T = 176.3 and T = 112, respectively,

corresponding to well over a decade of purchases per household.

Table 3 presents the Monte Carlo results. Column (1) presents the estimates of the mean of µ̂γ,r

and σ̂γ,r when the initial state is set to zero (i.e. ignore initial conditions in first observed period).

Confirming the results in Table 1, mean µ̂γ,r and σ̂γ,r are systematically underestimated, across

all the T purch and N conditions. For the case when N = 2, 000 households, the true in-sample

values of µγ and σγ are almost never covered by the 95% credible interval, even when each panelist

11Changing the definition of the outside good to increase the number of observations (e.g., to include more of
the observed store trips) would not remedy this problem since it would only increase the number of non-purchase
observations without changing the number of observed state transitions.

12We remove the first 100 simulated choices for each consumer to make sure that the initial state in the data is
drawn from the stationary distribution of consumer choices.
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Table 2: Switching Behavior in a Typical Simulated Panel
T purch Spells % panelists that

mean median deviate from s0
5 1.68 1 34.5%
10 2.47 1 48.2%
25 4.97 3 62%
100 16.2 9 78%

makes T purch = 100 purchases, corresponding to on average 176.3 trips. For the case of N = 500

households, the coverage is slightly higher due to a higher variance in the posterior point estimates,

but still well below our criterion of 95%. The true in-sample values of µγ and σγ lie outside of

the (2.5th, 97.5th) percentile range across the point estimates in each replication for most of the

cases. Although, when T purch = 100, µγ is just inside the range and σγ is just outside the range,

suggesting that increasing T purch does indeed reduce the bias.

Column (2) of table 3 presents the estimates when the initial state is set correctly but treated

as exogenous. In this case, the mean of µ̂γ,r and σ̂γ,r are overestimated for all but the largest values

of T purch. For small values of T purch ∈ {5, 10}, the true in-sample values of µγ and σγ are never

covered by the 95% credible interval, and the (2.5th, 97.5th) percentile range of the point estimates

across replications is shifted substantially to the right of the true values. Once again, the bias

appears to decline as we increase T purch. For T purch = 25, the bias is small and for T purch = 100,

the bias appears to have dissipated.

Columns (3) and (4) of table 3 present the estimates of the mean of µ̂γ,r and σ̂γ,r with the initial

state drawn as an auxiliary variable in the MCMC routine. For all T purch and N specifications,

the recovered estimates are close to the true in-sample values of µγ and σγ . The (2.5th, 97.5th)

percentile range of the point estimates across replications also contain the true values. However, it

is only when we use larger values of T purch that we start to see the true values falling within the

95% posterior credible intervals for at least 90% of the replications. Interestingly, while our price

process was simulated as Markov, our treatment of prices in the MCMC sampling either as i.i.d.

or Markov has little effect on the resulting point estimates. Using the correct Markov specification

on prices only slightly improves the coverage when N = 500, for instance.

In sum, specification (1) leads to a substantial attenuation bias in γ, specification (2) over-

estimates the mean and variance of γ, and specifications (3) and (4) correctly recover the state

dependence distribution in the majority of the cases. When T purch = 5, the relatively low per-

formance in terms of percentage of replications where the posterior credible intervals contain the

true values is due to the fact that many households do not switch brands with so few observed

purchases.

In practice, researchers do not truncate their purchase panels above at a maximum number

of purchases. Rather, a researcher would likely pre-screen their sample to ensure that retained
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Table 3: Monte Carlo Results: Posterior mean and standard deviation estimates of γ. Balanced
panel.

Mean of µ̂γ,r and σ̂γ,r (in brackets: coverage)
(2.5, 97.5 quantiles across the MC draws)

N TPurch Point (1) (2) (3) (4)
Estimates s0 = 0 p(s0|θ) p(s0|θ)
(Means) ignored included

Prices i.i.d. Prices Markov

N = 2, 000 :
5 µ̂γ 0.43 (0) 4.17 (0) 1.30 (0.32) 1.04 (0.87)

(0.31, 0.55) (3.92, 4.43) (1.08, 1.58) (0.83, 1.29)
σ̂γ 0.62 (0) 2.81 (0) 1.33 (0.15) 1.05 (0.93)

(0.56, 0.69) (2.52, 3.08) (1.15, 1.56) (0.86, 1.26)
10 µ̂γ 0.62 (0) 3.79 (0) 1.06 (0.85) 0.98 (0.89)

(0.54, 0.69) (3.54, 4.02) (0.94, 1.21) (0.88, 1.1)
σ̂γ 0.7 (0) 3.02 (0) 1.05 (0.88) 0.98 (0.94)

(0.64, 0.77) (2.83, 3.22) (0.93, 1.16) (0.88, 1.06)
25 µ̂γ 0.79 (0) 1.45 (0.09) 1.02 (0.93) 1 (0.89)

(0.73, 0.86) (1.07, 2.54) (0.93, 1.1) (0.93, 1.07)
σ̂γ 0.85 (0) 1.41 (0.05) 1 (0.9) 0.99 (0.92)

(0.79, 0.91) (1.04, 2.48) (0.93, 1.07) (0.92, 1.05)
100 µ̂γ 0.96 (0) 1.06 (0.94) 1.06 (0.96) 1.05 (0.97)

(0.92, 1) (1.01, 1.13) (1.01, 1.12) (1, 1.11)
σ̂γ 0.94 (0.06) 1 (0.92) 1 (0.95) 0.99 (0.91)

(0.89, 0.97) (0.95, 1.05) (0.95, 1.04) (0.94, 1.03)

N = 500 :
5 µ̂γ 0.56 (0.05) 4.26 (0) 1.54 (0.33) 1.41 (0.56)

(0.34, 0.84) (3.73, 4.82) ( 1.09, 1.98) (0.95, 1.91)
σ̂γ 0.81 (0.6) 2.96 (0) 1.44 (0.33) 1.27 (0.75)

(0.7, 0.94) (2.57, 3.47) (1.15, 1.87) (0.99, 1.64)
10 µ̂γ 0.67 (0.01) 3.71 (0) 1.15 (0.81) 1.07 (0.95)

(0.52, 0.83) (3.35, 4.13) (0.88, 1.41) (0.84, 1.27)
σ̂γ 0.78 (0.15) 2.92 (0) 1.1 (0.89) 1.03 (0.96)

(0.67, 0.9) (2.62, 3.23) (0.91, 1.33) (0.86, 1.2)
25 µ̂γ 0.81 (0.03) 1.78 (0.23) 1.05 (0.91) 1.02 (0.94)

(0.68, 0.93) (1.02, 3.27) (0.88, 1.22) (0.86, 1.18)
σ̂γ 0.86 (0.24) 1.70 (0.23) 1.01 (0.91) 0.99 (0.94)

(0.76, 0.96) (0.98, 3) (0.87, 1.16) (0.87, 1.12)
100 µ̂γ 0.96 (0.37) 1.08 (0.88) 1.07 (0.92) 1.06 (0.93)

(0.85, 1.06) (0.95, 1.18) (0.95, 1.17) (0.95, 1.16)
σ̂γ 0.95 (0.65) 1.02 (0.89) 1.01 (0.93) 1 (0.95)

(0.88, 1.02) (0.94, 1.11) (0.93, 1.1) (0.93, 1.09)
Point estimates are the means of σ̂γ,r and σ̂γ,r across r.
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panelists always have at least some minimum number of purchases. For instance, Honore and Kyr-

iazidou [2000] show that the identification of the state-dependent choice model using a fixed effects

approach to capture persistent, unobserved heterogeneity requires T purch ≥ 3. To replicate this

approach, we repeat the same Monte Carlo design as above but simulate the number of purchases

per household from the empirical distribution of purchases based on Nielsen-Kilts data, truncated

at T purch.13 In this scenario, T purch is a lower bound on the number of observed purchases per

panelist.

When we use T purch as a lower bound, we mechanically obtain more information than in the

balanced scenario. At the low end, T purch ≤ 5 generates a mean and median number of spells of 3.61

and 2.0 respectively, although 49% of panelists still fail to deviate from their initial loyalty state.

At the same time, we now have 446 households with at least 20 purchases. Of interest is whether

pooling households with short purchase histories contaminates our final estimates even though we

have a substantial number of households with long histories. At the high end of T purch ≥ 100,

the mean and median number of spells is 19.3 and 10 respectively, and only 22% of panelists fail

to deviate from the initial loyalty state. However, as before, T purch ≥ 100 corresponds to an

unrealistically long panel length, implying a mean and median number of observed trips of T = 195

and T = 144 respectively.

We report the results from this second set of experiments in Table 4. Most of our findings

are qualitatively similar to those in Table 3. The key difference is that our corrected procedures

(columns 3 and 4) now perform even better, likely because we have more brand-switching in these

data.

There are several important take-aways from these results. First and perhaps most important,

we find systematic short-sample biases in γ, the coefficient on the loyalty state, when we use

a model that mis-specifies the likelihood over the initial states, even with a relatively wide cross

section (N = 2, 000) and long panel (T purch = 100). Interestingly, in the unbalanced case, where we

observe many purchases for most consumers, the inclusion of consumers with few (e.g., T purch < 10)

purchases (a typical case for CPG categories) still biases the estimates.14 In this sense, the results

in Table 4 when T purch ≥ 5 and N = 500 are close to what we expect in an application of demand

estimation with state dependence in a CPG category. Columns (3) and (4) of Table 4 show that

we obtain largely unbiased estimates once we account for the likelihood of the initial conditions.

Second, the directions of the bias in specifications (1) and (2) allow us to bound the mean

of the state dependence coefficient, µγ , without estimating the more computationally complex

procedures that account for the likelihood of the initial conditions. When we set the initial states

to 0 (specification 1), the estimates of µγ are downward biased. Intuitively, setting s0 = 0 forces the

estimation procedure to infer that the first purchase of each consumers is fully driven by consumers’

13The histogram of the empirical distribution of purchases from Nielsen-Kilts data is presented in Appendix 6.2,
14In the Nielsen HMS data that we use later, the share of consumers with 3-5 purchases is 37.2%, with the median

number of purchases of 7 and mean of 12.7.
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Table 4: Monte Carlo Results: Posterior mean and standard deviation estimates of γ. Unbalanced
panel.

Mean of µ̂γ,r and σ̂γ,r (in brackets: coverage)
(2.5, 97.5 quantiles across the MC draws)

N TPurch Point (1) (2) (3) (4)
Estimates s0 = 0 p(s0|θ) p(s0|θ)
(Means) ignored included

Prices i.i.d. Prices Markov

N = 2000:
5 µ̂γ 0.71 (0) 3.58 (0) 1.03 (0.92) 1.01 (0.95)

(0.63, 0.78) (3.35, 3.9) (0.94, 1.12) (0.91, 1.1)
σ̂γ 0.81 (0) 3.14 (0) 1.01 (0.91) 0.99 (0.96)

(0.75, 0.89) (2.93, 3.34) (0.92, 1.12) (0.92, 1.09)
10 µ̂γ 0.79 (0.05) 2.73 (0) 1.04 (0.92) 1.03 (0.96)

(0.73, 0.87) (2.25, 3.06) (0.96, 1.13) (0.95, 1.1)
σ̂γ 0.85 (0.02) 2.61 (0) 1.01 (0.94) 0.99 (0.98)

(0.78, 0.9) (2.15, 2.88) (0.95, 1.09) (0.93, 1.07)
25 µ̂γ 0.87 (0) 1.09 (0.42) 1.04 (0.94) 1.02 (0.95)

(0.82, 0.92) (1.02, 1.18) (0.98, 1.1) (0.96, 1.08)
σ̂γ 0.89 (0.01) 1.05 (0.53) 1 (0.95) 0.98 (0.92)

(0.84, 0.93) (0.99, 1.11) (0.95, 1.05) (0.93, 1.03)
100 µ̂γ 0.97 (0) 1.07 (0.92) 1.06 (0.95) 1.05 (0.94)

(0.92, 1.02) (1.01, 1.13) (1.01, 1.12) (1.1, 1.11)
σ̂γ 0.94 (0.13) 1 (0.94) 1 (0.97) 0.99 (0.96)

(0.9, 0.98) (0.95, 1.05) (0.95, 1.04) (0.95, 1.03)

N = 500:
5 µ̂γ 0.75 (0.05) 3.52 (0) 1.08 (0.83) 1.04 (0.9)

(0.6, 0.91) (3.03, 3.94) (0.86, 1.3) (0.85, 1.25)
σ̂γ 0.85 (0.36) 3.05 (0) 1.03 (0.93) 1.01 (0.91)

(0.71, 1) (2.62, 3.37) (0.84, 1.24) (0.83, 1.2)
10 µ̂γ 0.8 (0.04) 2.56 (0.05) 1.05 (0.86) 1.03 (0.92)

(0.67, 0.92) (1.16, 3.39) (0.87, 1.25) (0.85, 1.19)
σ̂γ 0.86 (0.32) 2.41 (0.06) 1.01 (0.92) 1 (0.93)

(0.75, 0.95) (1.1, 3.07) (0.86, 1.15) (0.84, 1.13)
25 µ̂γ 0.87 (0.12) 1.12 (0.64) 1.05 (0.91) 1.03 (0.92)

(0.74, 0.99) (0.97, 1.31) (0.91, 1.21) (0.9, 1.18)
σ̂γ 0.91 (0.42) 1.08 (0.68) 1.01 (0.92) 1 (0.92)

(0.78, 1.01) (0.9, 1.28) (0.87, 1.15) (0.87, 1.14)
100 µ̂γ 0.97 (0.41) 1.07 (0.92) 1.06 (0.95) 1.06 (0.98)

(0.88, 1.1) (0.96, 1.22) (0.95, 1.2) (0.95 1.2)
σ̂γ 0.94 (0.66) 1 (0.95) 1 (0.94) 0.99 (0.95)

(0.87, 1.01) (0.92, 1.09) (0.92, 1.09) (0.91, 1.07)

T purch is now a lower bound on the number of observed purchases per retained panelist. Point estimates
are the means of σ̂γ,r and σ̂γ,r across r.
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persistent preferences for the product, β, and price sensitivity, α. In practice, however, the first

observed choice is also determined by the true initial state. Correspondingly, there is attenuation

bias in the µγ estimate. Conversely, when we drop the initial choice and correctly define the initial

state but treat it as exogenous (specification 2), µγ is overestimated. Now the estimation routine

assumes that the consumer has arrived in the initial state by pure chance, ignoring the fact that

the initial state is a function of the consumer’s preferences. As a result, any subsequent choices of

the consumer that match the initial state are attributed to the state dependence process and not

to consumer’s preferences, leading to an upward bias in the µγ estimate.

3.3 A Diagnostic Tool

The Monte Carlo results in section 3 suggest a simple method for diagnosing whether or not a state

dependence correction is necessary when analyzing a given choice-panel dataset. While we do not

derive an analytic characterization of the biases associated with the various approaches for handling

the specification of the initial conditions, the results herein are suggestive of a computationally

simple approach for bounding the degree of state dependence in a purchase panel. To bound the

true value of µγ , one can use the two ad hoc estimators:

1. Lower bound: retain the first observation for each household and set sh1 = 0

2. Upper bound: drop the first observation so that sh1 is observed, but ignore Pr
{
sh1 |Θh

}
in

the likelihood.

If the bounds are tight, there will be no benefit to estimating the more computationally intensive,

corrected approaches that we proposed.

In Figure 3, we plot the mean of µ̂γ,r across Monte Carlo replications along with the correspond-

ing (average) credible intervals. We report these statistics for both the balanced and unbalanced

panels, for panel size N ∈ {500, 2000} and length T purch ∈ {5, 10, 25, 100}. The bounds are wide

for low values of T purch and narrow as T purch increases. The correct value always lies within the

bounds. At T purch = 100, the difference between the bounds is small, with an expected difference

of 0.103 (9.8% of the true µγ).

In Figure 4 we conduct a similar exercise using a new Monte Carlo design with no state depen-

dence: µγ = σγ = 0. Subfigure (a) presents the average values of µ̂γ,r in our main specifications

for different levels of T purch. As expected, almost all specifications recover the true value of µγ .15

Subfigure (b) plots the range of the bounds implied by the estimates of the specifications (1) and

(2) with its corresponding 95% posterior credible interval. For all T purch, we cannot reject that the

range of the bounds is zero (in other words, the difference in the mean of µ̂γ,r between specifications

15A notable exception is the upper bound specification with T purch = 5. In this case, state dependence is slightly
overestimated (the estimate is around 0.069 with a 95% posterior credible interval of (0.02, 0.119). This result shows
that the model struggles to separate out state dependence and heterogeneity when T purch is small.
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Figure 3: Mean µ̂γ,r and the corresponding average credible intervals as a function of T.
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Shaded region represents an average of 2.5% and 97.5% quantiles across the Monte Carlo replications.
“True gamma” almost exactly coincides with specification 4 in all subfigures.
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1 and 2 is not statistically significant), implying that the initial conditions correction method is

not necessary.16

Figure 4: Mean µ̂γ,r and the implied bounds for the simulation case of γ = 0.
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Subfigure (a): Mean µ̂γ,r and the corresponding average credible intervals as a function of T; Subfigure (b):
Bounds on µγ implied by specifications (1) and (2). Shaded regions represent an average of 2.5% and

97.5% quantiles across the Monte Carlo replications. Case of the unbalanced panel and N = 2,000.

Overall, our findings indicate that the computationally simple ad hoc approaches can be used

as a preliminary check for positive state dependence. In the absence of state dependence, these

estimators appear to generate the correct bound of zero even for short panels. In the presence

of state dependence, the bounds converge as the panel length increases, potentially providing a

diagnostic check for whether a given dataset is sufficiently long to be able to ignore the initial

conditions without biasing the parameter estimates.

4 Empirical Application

The simulations in Section 3 demonstrates how the misspecification of the likelihood of the initial

conditions can bias demand estimates, even in moderately long panels. To illustrate this problem

in practice, we now estimate the same four specifications from Section 3 using two actual consumer

purchase panels for the margarine category. The panels are from the Denver Scantrack Data in

Dubé et al. [2010] and from the Nielsen-Kilts Homescan Data for 2006-2011.

16Appendix 6.4 explores the robustness of our findings to data-generating processes with different magnitudes
of state-dependence: µγ ∈ {−1, 0.5}. The bounds apply to µγ = 0.5 but not to the process with negative state
dependence on average, µγ = −1. Appendix 6.4 discusses the intuition behind this result.
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4.1 Denver Scantrack Data

Our first implementation uses the data in Dubé et al. [2010]. The data contain 429 households

making tub margarine purchases in the Denver Scantrack between January 1993 and March 1995.

The choice set comprises the four leading margarine brands. On average, households make 16.7

purchases from this choice set (ranging from 3 to 92) over the sample period. We refer the interested

reader to Dubé et al. [2010] for a detailed description of the data and the estimation sample.

We estimate the price process as follows. We discretize the support of the vector of observed

prices charged by the four brands by classifying the observed prices into 100 clusters, using the

cluster centers as prices states. We then estimate the transition probability matrix of prices across

the states using the frequency estimator. To account for the frequency of shopping trips of con-

sumers, we compute the median number of days between the shopping trips of consumers in the

Nielsen data (4 days) and simulate the price process assuming that consumers observe prices (make

shopping trips) every 4 days. Although not reported herein, all our estimated state transitions

have positive probabilities and therefore our empirical price process satisfies the required ergodicity

condition.17

Table 5 reports the posterior expectation of the mean and standard deviation of the first-stage

prior, µ̂ and σ̂, for each of the four specifications discussed in section 3.1. As expected, we observe

large differences in our parameter estimates for specifications (1) and (2), which treat the initial

conditions as exogenous, versus specifications (3) and (4), which model the dependence of the initial

states on unobserved consumer tastes. As in the Monte Carlo experiments, setting the initial states

to zero (specification 1) leads to much smaller estimates of µ̂γ and σ̂γ , than the specifications that

incorporate the likelihood of the initial states (specifications 3 and 4). Treating the initial states as

exogenous (specification 2) leads to much higher estimates of µ̂γ and σ̂γ than the specifications that

model the likelihood of the initial states (specifications 3 and 4). These differences are significant

in the sense that a 95% posterior credible interval of the difference in the posterior expected point

estimate does not contain zero. Interestingly, the estimates in specifications (3) and (4) are very

close, and the similarity in their posterior likelihoods are too close to allow us to reject one model

in favor of the other.

We also observe corresponding differences in some of the other preference parameters. However,

there does not appear to be any systematic pattern in these differences.

These findings are consistent with our Monte Carlo experiments. The differences between

our first two specifications and second two specifications are broadly consistent with the biases

documented in section 3. These findings suggest that the estimated levels of loyalty documented

in Dubé et al. [2010] underestimate the actual degree of loyalty in the margarine category.18

17The estimates for the price process are available upon request.
18This bias does not change the finding that equilibrium prices are lower due to switching costs in Dubé et al.

[2009], who find that prices only start to rise when switching costs are four times the magnitude of the empirical
estimates.
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Table 5: Estimation results with Denver Scantrack Data. Estimates of µ and σ across the estimation
specifications.

Posterior point estimates of µand σ
(95 % posterior credible interval)

µ̂l (1) (2) (3) (4)
and s0 = 0 p(s0|θ) ignored p(s0|θ) included

Price: σ̂l i.i.d. Markov

Brand 1 µ̂β1 1.967 1.417 1.165 1.091
(1.129, 2.862) (0.36, 2.363) (0.111, 2.131) (0.157, 2.004)

σ̂β1 2.039 1.177 1.667 1.917
(1.26, 3.153) (0.701, 1.889) (1.013, 2.951) (1.102, 3.297)

Brand 2 µ̂β2 -3.077 -0.33 -2.629 -2.928
(-4.767, -1.447) (-1.446, 0.667) (-4.408, -1.169) (-4.464, -1.738)

σ̂β2 5.016 1.425 3.354 3.797
(3.37, 7.038) (0.86, 2.124) (1.935, 5.001) (2.587, 5.882)

Brand 3 µ̂β3 0.247 -0.294 -0.297 -0.358
(-0.382, 0.872) (-1.012, 0.372) (-1.08, 0.356) (-1.047, 0.318)

σ̂β3 3.66 1.51 3.125 3.335
(2.836, 4.64) (1.06, 2.021) (2.258, 4.224) (2.357, 4.509)

Brand 4 µ̂β4 2.329 1.662 1.433 1.349
(1.575, 3.186) (0.658, 2.544) (0.438, 2.346) (0.403, 2.248)

σ̂β4 2.288 1.466 2.029 2.155
(1.508, 3.345) (0.95, 2.147) (1.325, 2.962) (1.252, 3.433)

Price µ̂α -2.656 -2.744 -2.269 -2.227
(-3.204, -2.162) (-3.287, -2.134) (-2.838, -1.661) (-2.749, -1.653)

σ̂α 1.52 0.982 1.213 1.333
(0.972, 2.353) (0.71, 1.392) (0.729, 1.941) (0.811, 2.231)

State Dependence µ̂γ 0.667 3.096 1.125 1.138
(0.494, 0.836) (2.847, 3.379) (0.852, 1.428) (0.868, 1.44)

σ̂γ 0.984 2.73 1.324 1.319
(0.797, 1.182) (2.436, 3.041) (1.06, 1.635) (1.034, 1.625)

Hierarchical Multinomial Logit with Normal Heterogeneity. 100,000 MCMC draws.
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4.2 Nielsen-Kilts Data

We now repeat the analysis from Section 4.1 using the Nielsen-Kilts Homescan data. The advantage

of these data is that we can construct a much longer choice panel to see if the biases documented

above persist when a longer choice sequence is available to the researcher.

We construct our purchase panel by combining the Nielsen-Kilts Homescan and RMS datasets.19

For details on the construction of the estimation sample see Appendix 6.1. The sample contains

1,829 households that constitute at least 85% of their observed margarine purchases in a single

chain observed in the RMS database. To mimic the design of the Denver sample used above, we

focus our analysis on 15 oz and 16oz tubs of margarine, the top-selling pack size, and the four top-

selling brands: “Imperial,” “I Can’t Believe Its not Butter,” “Blue Bonnet,” and “Smart Balance.”

We collapse the resulting 31 UPCs into four brand “items.” In the final estimation sample, we

observe a mean and median number of purchases per household of 12.66 and 7 respectively.

As before, we estimate each of the four specifications. Table 6 reports the posterior expectation

of µ̂ and σ̂ for each of the four specifications. We replicate all the key substantive conclusions

from the Denver Scantrack data. Thus, the results from specifications (3) and (4), which address

the dependence of the initial conditions on unobserved consumer tastes in the likelihood, generate

similar estimates. In Table 7, we report the differences in posterior estimates of the mean and

standard deviation of γ between our first two specifications, which likely have misspecified initial

conditions, and specification (4) which simulates the likelihood of the initial conditions. Consistent

with our Monte Carlo evidence, we find that specification (1) yields a significantly smaller estimate

(in a statistical sense) than specification (4), whereas specification (2) is significantly larger. In

both comparisons, we reject the hypothesis of equal µγ and σγ values with at least 95% posterior

probability.

An advantage of the Nielsen-Kilts data is the fact we can track some households for a relatively

long period. To investigate the role of “big T purch,” we estimate the four specifications using

only those households for which we observe at least 10 purchases, leaving us with a sample of

713 households. We report the estimates in Table 8. As in our Monte Carlo experiments, we

still observe differences between specifications (1) and (2) relative to (3) and (4). However, as we

increase T purch, while the differences in the estimates of the distribution of γ in specifications 1 and

2 become smaller, there is still a detectable bias. In addition, the estimates based on the truncated

sample are substantially different from the full sample estimates (Table 6).

5 Conclusions

While the initial conditions problem associated with the state-dependent choice processes has been

discussed in the econometrics literature since at least Heckman [1981b], most of the empirical

19We use RMS data to get the product prices in a given store during the week of the household’s purchase.
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Table 6: Estimation results with Nielsen HMS Data. Estimates of µ and σ across the estimation
specifications.

Posterior point estimates of µand σ
(95 % posterior credible interval)

µ̂l (1) (2) (3) (4)
and s0 = 0 p(s0|θ) ignored p(s0|θ) included

Price: σ̂l i.i.d. Markov

Brand 1 µ̂β1 -1.703 -2.157 -2.056 -1.984
(-1.896, -1.528) (-2.361, -1.958) (-2.253, -1.861) (-2.161, -1.815)

σ̂β1 3.235 2.966 3.391 3.292
(3.02, 3.452) (2.77, 3.176) (3.153, 3.62) (3.063, 3.505)

Brand 2 µ̂β2 0.442 -0.152 0.033 0.04
(0.185, 0.686) (-0.456, 0.133) (-0.221, 0.279) (-0.201, 0.291)

σ̂β2 3.222 2.992 3.304 3.306
(2.924, 3.529) (2.696, 3.31) (3.014, 3.59) (3.002, 3.612)

Brand 3 µ̂β3 -1.384 -1.977 -1.618 -1.679
(-1.539, -1.238) (-2.169, -1.791) (-1.772, -1.475) (-1.832, -1.521)

σ̂β3 2.911 2.705 2.818 2.938
(2.718, 3.107) (2.516, 2.912) (2.624, 3.008) (2.739, 3.135)

Brand 4 µ̂β4 -0.907 -0.828 -1.031 -1.104
(-1.24, -0.572) (-1.165, -0.505) (-1.364, -0.718) (-1.441, -0.783)

σ̂β4 4.139 3.173 3.875 3.992
(3.801, 4.499) (2.863, 3.504) (3.511, 4.239) (3.656, 4.332)

Price µ̂α -1.238 -1.204 -1.143 -1.149
(-1.343, -1.133) (-1.323, -1.089) (-1.241, -1.045) (-1.253, -1.04)

σ̂α 1.375 1.234 1.375 1.374
(1.255, 1.507) (1.117, 1.362) (1.249, 1.494) (1.233, 1.498)

State Dependence µ̂γ 0.651 2.635 1.06 1.026
(0.582, 0.72) (2.491, 2.777) (0.952, 1.178) (0.932, 1.122)

σ̂γ 0.909 2.608 1.194 1.148
(0.84, 0.98) (2.445, 2.788) (1.078, 1.313) (1.057, 1.254)

(Hierarchical Multinomial Logit with Normal Heterogeneity. 100,000 MCMC draws.)

Table 7: Posterior estimates of the differences in γ across specifications (95% posterior credible
intervals in brackets).

µ̂
(1)
γ − µ̂(4)γ µ̂

(2)
γ − µ̂(4)γ σ̂

(1)
γ − σ̂(4)γ σ̂

(2)
γ − σ̂(4)γ

-0.375 1.609 -0.239 1.46
(-0.483,-0.265) (1.434,1.789) (-0.359,-0.121) (1.263,1.664)
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Table 8: Estimation results with Nielsen HMS Data using only panelists with 10+ purchases.
Estimates of µ and σ across the estimation specifications.

Posterior point estimates of µand σ
(95 % posterior credible interval)

µ̂l (1) (2) (3) (4)
and s0 = 0 p(s0|θ) ignored p(s0|θ) included

Price: σ̂l i.i.d. Markov

Brand 1 µ̂β1 -1.335 -1.479 -1.631 -1.552
(-1.608, -1.088) (-1.839, -1.158) (-1.848, -1.381) (-1.811, -1.338)

σ̂β1 3.324 3.272 3.484 3.418
(3.006, 3.584) (2.912, 3.607) (3.043, 3.758) (2.972, 3.736)

Brand 2 µ̂β2 0.464 0.395 0.079 0.156
(0.176, 0.747) (0.053, 0.714) (-0.221, 0.397) (-0.169, 0.514)

σ̂β2 3.239 3.144 3.384 3.399
(2.851, 3.566) (2.758, 3.586) (2.98, 3.766) (3.052, 3.734)

Brand 3 µ̂β3 -1.258 -1.345 -1.381 -1.422
(-1.453, -1.059) (-1.565, -1.105) (-1.577, -1.192) (-1.649, -1.215)

σ̂β3 3.164 2.934 2.961 3.121
(2.868, 3.438) (2.451, 3.298) (2.618, 3.224) (2.762, 3.411)

Brand 4 µ̂β4 -0.889 -0.684 -0.994 -1.089
(-1.289, -0.354) (-1.039, -0.303) (-1.375, -0.621) (-1.51, -0.691)

σ̂β4 4.084 3.472 3.853 4.008
(3.415, 4.529) (3.075, 3.883) (3.403, 4.293) (3.622, 4.377)

Price µ̂α -1.095 -1.116 -1.01 -1.027
(-1.227, -0.967) (-1.246, -0.981) (-1.129, -0.868) (-1.174, -0.872)

σ̂α 1.426 1.36 1.424 1.439
(1.257, 1.582) (1.181, 1.541) (1.254, 1.579) (1.228, 1.59)

State Dependence µ̂γ 0.792 1.414 1.124 1.061
(0.69, 0.996) (1.044, 2.115) (0.993, 1.276) (0.957, 1.252)

σ̂γ 1.017 1.601 1.333 1.241
(0.931, 1.111) (1.22, 2.312) (1.219, 1.437) (1.132, 1.357)

(Hierarchical Multinomial Logit with Normal Heterogeneity. 100,000 MCMC draws.)
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literature on brand choice assumes the panel length is sufficiently large to eliminate the bias created

by the improper treatment of the initial condition. In a series of Monte Carlo experiments, we find

that initial conditions bias can persist even in panel datasets that are much longer than those

typically used in the extant literature. Moreover, popular and simple approaches to initialize the

choice process can introduce systematic bias into the estimates of state-dependence. In particular,

the common assumption that the first observed choice does not exhibit state dependence leads to

substantial under-estimation of the degree of state-dependence in the choice process, while dropping

the first observation and treating the initial state as exogenous leads to substantial over-estimation.

Under the assumption of stationary initial conditions, we employ simulation methods to aug-

ment standard Bayesian procedures for choice models with state dependence to correct the initial

conditions problem. The method provides much more accurate estimates of the true degree of

state dependence, and provides good sampling performance even in panels with only a handful of

purchases per panelist.

Our results suggest (though without a formal proof) a simple diagnostic approach to assess

whether a state dependence correction is necessary. Researchers can bound the extent of the

initial condition bias by running two estimation specifications: one with all initial states set to

zero, and one with the observed initial state treated as an exogenous realization. If these two

specifications lead to statistically similar estimates, a correction procedure likely would not change

the results substantially. However, if the estimates are substantially different, researchers can

apply a correction procedure like the one proposed herein. This correction procedure is more

computationally intensive but is generally available since it does not require any auxiliary data for

the initial choice.
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6 Appendices

6.1 Appendix A: Nielsen-Kilts HMS and RMS datasets

We use the Nielsen-Kilts Homescan (HMS) and Retail Measurement System (RMS) datasets to

construct a long shopping panel. The Nielsen-Kilts HMS data track CPG purchases for a rolling

panel of households between 2004 and 2016. The Nielsen-Kilts RMS data tracks weekly prices and

unit volumes sold at the UPC level for about 35,000 stores between 2006 and 2015. We focus on

the time span between 2006 and 2011, since most households churn out of the sample within 3 or

4 years.

We analyze shopping behavior in the margarine category, focusing on the 16-oz tubs sold by the

top 4 national brands, based on expenditures in the category. The resulting set of brands includes

“Imperial,” “Blue Bonnet,” “Smart Balance” and “I Can’t Believe Its Not Butter” (ICBNB),

spanning 30 unique UPCs. An analysis of price correlations indicates high correlation between

products of the same brand and pack size: the median within-group correlations range from 87.2%

and 98.8%. We observe considerably lower correlation between products of the same brands and

different packaging types: the median within-brand correlations for Blue Bonnet and Smart Balance

are 53.4% and 58.2%, respectively. Therefore, we aggregate the UPCs into 6 “products” based

on brand and packaging type (stick or tub): one combination for Imperial and ICBNB and two

combinations for Blue Bonnet and Smart Balance.

We restrict our sample to households that make at least 85% of their margarine purchases in

the same retail chain. This restriction ensures that the households face the same price process over

time, a useful simplification for our proposed approach that estimates the Markov price process. In

addition, for each brand, we retain the packaging type with the highest sales.20 We then retained

those stores for which all 4 products are observed. Finally, we retained those households making

at least 3 purchases during the sample period.

Our final estimation sample comprises 1,829 households making 23,173 purchases from our set

of 4 products. In the sample, the mean and median number of purchases per household are 12.7

and 7 respectively. We define the outside option as a purchase of any other margarine product

in the store. In contrast with other typical definitions of the outside good (e.g., every trip to the

store), this definition reduces the total number of trips in the estimation panel along with the rate

at which the outside option is chosen. Households purchase the outside option on 16,998 occasions,

or 42.3% of the trips.21

20The less popular packaging types for Blue Bonnet and Smart Balance each sold one tenth as much as the more
popular size and represented only about 2.2% of the purchases in the sample

21An alternative way to define an outside option is as a purchase of any spread. In this case the outside option
would be chosen on 75.3% of the trips.
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6.2 Appendix B: An empirical Distribution of Purchases in Nielsen-Kilts data.

Figure 5: Empirical Distribution of Purchases of Margarine in Nielsen-Kilts data.
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6.3 Appendix C: Results with T = 100

Table 9: Monte Carlo Results: Posterior mean and standard deviation estimates of γ. T = 100
and N = 2, 000.

Mean of µ̂γ,r and σ̂γ,r (in brackets: coverage)
(2.5, 97.5 quantiles across the MC draws)

Point (1) (2) (3) (4)
Estimates s0 = 0 p(s0|θ) ignored p(s0|θ) included

Price: i.i.d. Markov

Mean µ̂γ,r 0.869 (0) 1.075 (0.38) 1.028 (0.93) 1.019 (0.99)
(0.814, 0.918) (1.006, 1.14) (0.962, 1.09) (0.956, 1.077)

Mean σ̂γ,r 0.93 (0.06) 1.023 (0.81) 0.994 (0.91) 0.987 (0.92)
(0.876, 0.979) (0.958, 1.08) (0.934, 1.054) (0.927, 1.043)
Based on a 100 Monte Carlo simulations.
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6.4 Appendix D: Robustness of Results to Alternative Values of µγ

To check the robustness of our findings in section 3.2 to alternative magnitudes of state dependence,

we re-run the Monte Carlo simulations using the values µγ ∈ {−1, 0.5}, holding all the other true

parameter values the same as before. We expect similar qualitative findings for µγ = 0.5 because

this specification still generates positive state dependence. However, the bias results are less clear

for µγ = −1 because when γ < 0, consumers exhibit variety-seeking. Variety-seeking should cause

more consumer brand-switching, which in turn generates more information about state dependence

even in a short sample. Moreover, this brand-switching offsets the dependence of the choice history

on the initial state. Consequently, we still expect specification (1), which sets the initial state to

zero, to generate attenuation bias in the γ estimate. However, the magnitude and direction of bias

in specification (2), which treats the first observed loyalty state as exogenous, is unclear.

Figure 6 visualizes the estimates for µγ ∈ {−1, 0.5}. Subfigure (a) presents the mean of µ̂γ,r

estimates when µγ = 0.5. As expected, specification (1) underestimates the true state dependence

and specification (2) overestimates the true state dependence, as we found earlier in section 3.2.

More important, our proposed estimator , specification (4), recovers the true value of µγ .

Our results differ from those in section 3.2 when µγ = −1. Specification (1) still under-states

the magnitude of state dependence. The bias disappears only once we increase T purch to 100, a

very long panel length. Surprisingly, specification (2) does not appear to generate any bias, even

when T purch is small. As explained above, this finding may be due to the fact that the increased

brand-switching induced by γ < 0 reduces the dependence of the purchase history on the initial

state. Finally, as before, our specification that models the role of the initial conditions recovers the

true value of µγ . While our interest herein is mainly on loyalty (i.e., positive state dependence), a

deeper understanding of initial conditions bias under variety-seeking may be an interesting direction

for future research.

Table 10 presents the estimated values of mean of µ̂γ,r and σ̂γ,r. The results provide more

information about the estimates presented in Figure 6 – specifications (3) and (4) correctly recover

the true distribution of γ, while specification (1) generates biases in both the mean and disper-

sion. Specification (2) generates biased estimates when µγ = 0.5 but appears to recover the true

distribution of γ when µγ = −1.22

22A small exception is the case of T purch = 5 when µγ = −1: the coverage for specification (2) are lower than 95%.
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Table 10: Monte Carlo Results: Posterior mean and standard deviation estimates of γ for µγ = 0.5
and µγ = −1 specifications. Unbalanced panel, N = 2,000 and σγ = 1.

Mean of µ̂γ,r and σ̂γ,r (in brackets: coverage)
(2.5, 97.5 quantiles across the MC draws)

µγ TPurch Point (1) (2) (3) (4)
Estimates s0 = 0 p(s0|θ) p(s0|θ)
(Means) ignored included

Prices i.i.d. Prices Markov

µγ = 0.5:
0.35 (0) 2.49 (0) 0.53 (0.88) 0.51 (0.95)

5 µ̂γ (0.29, 0.430) (2.17, 2.84) (0.44, 0.63) (0.44, 0.6)
0.83 (0) 2.89 (0) 1.02 (0.92) 0.99 (0.94)

σ̂γ (0.76, 0.895) (2.63, 3.13) (0.93, 1.1) (0.91, 1.07)
0.39 (0) 0.67 (0.13) 0.53 (0.95) 0.52 (0.93)

10 µ̂γ (0.33, 0.440) (0.56, 0.81) (0.45, 0.61) (0.45, 0.6)
0.86 (0) 1.13 (0.2) 1 (0.98) 0.99 (0.95)

σ̂γ (0.81, 0.913) (1.04, 1.26) (0.93, 1.07) (0.93, 1.05)
0.44 (0.02) 0.56 (0.69) 0.54 (0.94) 0.53 (0.95)

25 µ̂γ (0.38, 0.504) (0.49, 0.64) (0.47, 0.6) (0.47, 0.6)
0.91 (0.03) 1.03 (0.77) 1 (0.91) 1 (0.93)

σ̂γ (0.86, 0.962) (0.97, 1.09) (0.95, 1.06) (0.95, 1.05)
0.52 (0.25) 0.57 (0.94) 0.57 (0.97) 0.57 (0.95)

100 µ̂γ (0.47, 0.563) (0.52, 0.62) (0.51, 0.66) (0.51, 0.61)
0.95 (0.15) 1 (0.99) 0.99 (1) 0.99 (1)

σ̂γ (0.91, 0.984) (0.96, 1.04) (0.95, 1.03) (0.95, 1.03)

µγ = −1:
-0.82 (0) -0.92 (0.63) -0.97 (0.92) -0.97 (0.91)

5 µ̂γ (-0.88, -0.75) (-1, -0.83) (-1.04, -0.9) (-1.04, -0.9)
0.95 (0.59) 1.06 (0.69) 1 (0.91) 1 (0.9)

σ̂γ (0.87, 1.03) (0.97, 1.16) (0.9, 1.08) (0.92, 1.09)
-0.86 (0) -0.97 (0.92) -0.98 (0.90) -0.98 (0.91)

10 µ̂γ (-0.93, -0.81) (-1.04, -0.91) (-1.05, -0.92) (-1.05, -0.92)
0.94 (0.43) 1.02 (0.89) 1 (0.91) 1 (0.89)

σ̂γ (0.88, 1) (0.95, 1.09) (0.93, 1.07) (0.93, 1.07)
-0.89 (0.06) -0.97 (0.94) -0.97 (0.95) -0.97 (0.95)

25 µ̂γ (-0.95, -0.83) (-1.03, -0.9) (-1.03, -0.91) (-1.03, -0.9)
0.96 (0.39) 1.01 (0.94) 1 (0.9) 1 (0.89)

σ̂γ (0.9, 1.01) (0.94, 1.06) (0.94, 1.06) (0.94, 1.06)
-0.9 (0.56) -0.94 (0.92) -0.94 (0.92) -0.94 (0.92)

100 µ̂γ (-0.96, -0.85) (-0.99, -0.88) (-0.99, -0.88) (-0.99, -0.88)
0.98 (0.71) 1.01 (0.94) 1.01 (0.91) 1.01 (0.92)

σ̂γ (0.94, 1.03) (0.96, 1.05) (0.95, 1.05) (0.96, 1.05)
Point estimates are the means of σ̂γ,r and σ̂γ,r across r.
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Figure 6: Mean of µ̂γ,r for the simulation case of µγ = {0.5,−1}.
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(b) µγ = −1

Figures present the mean of µ̂γ,r and the corresponding average credible intervals as a function of T. Case
of the unbalanced panel and N = 2,000.
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