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The relation between risk and the prices of individual stocks has long
been the subject of both theoretical and empirical research in financial
economics. Recently, however, interest has arisen in the relation between
risk and the pricing of the aggregate, or market, portfolio. In its barest
form the question is: What is the effect of an increase in risk on the price
of the market portfolio? In a recent paper, Pindyck (1984) examines monthly
returns for the New York Stock Exchange Index from the CRSP tape and concludes
that a substantial portion of the fall in the stock market during the 1970's
was due to an increase in risk. However, Pindyck's finding that increased
risk was a substantial contributor to the stock market decline has been
challenged on both theoretical and empirical grounds. Poterba and Summers
(1986) have argued that the effect of increased risk on stock prices depends
on the persistence of the increased risk. They used daily data to estimate
the variance of stock returns and then estimated the degree of persistence in
their constructed series for the variance. They found that changes in
variance were not persistent enough to account for the magnitude of the
observed decline in the stock market.

The empirical studies conducted by Pindyck (1984) and Poterba and Summers
(1986) were partial equilibrium in nature., In particular, neither study
examined the effect of an increase in risk on the equilibrium riskless rate of
return. In an insightful paper, Barsky (1986) applies the Lucas (1978) asset
pricing model to examine the effects of an increase in the variance of
dividends. He finds that an increase in the variance of dividends is likely
to increase the risk premium on equities vis-a-vis riskless assets as argued
by Pindyck, but would also tend to reduce the riskless rate of return as
pontfolio holders attempt to substitute away from riskier equities toward

riskless assets. The net effect of an increase in risk on the required rate
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of return on equities depends on whether the increase in the risk premium is
greater or less than the decrease in the riskless rate of return. Barsky
analyzes several parametric examples in which he can determine conditions for
stock prices to rise unambiguously or to fall unambiguously in response to an
increase in risk. Barsky's major finding may be summarized as follows: If
investors are not very averse to intertemporal substitution, then an increase
in the variability of dividends reduces stock prices; however, if investors'
utility functions display more aversion to intertemporal substitution than is
displayed by logarithmic utility, then an increase in dividend variability
Wwill increase stock prices.

Barsky's analysis is appropriate for comparing stock prices in two
economies that are identical in every respect except that the variance of
dividends is higher in one economy than in the other. However, this analysis
is, striectly speaking, not appropriate for analyzing the time-series behavior
of stock prices in an economy with a time-varying volatility of dividends. A
more appropriate framework would be to include time-varying volatilities in
the specification of the model and to examine equilibrium price behavior in a
market in which consumers understand that volatility can change over time. I
pursue this approach in this paper.

Though motivated by empirical analyses of stock prices and risk, this
paper is not intended to provide an explanation of any particular episode of
stock market behavior. Its intended contribution, which is theoretical, is
twofold. First, it provides explicit solutions for the prices of riskless
bonds and the aggregate stock portfolio in a competitive general equilibrium
model in which the conditional mean and conditional variance of the underlying
dividend process evolve stochastically over time. By including variation in

the conditional distribution of dividends in the model specification, one can
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meaningfully ask what is the equilibrium response of any particular asset
price to a change in the conditional distribution of dividends. The specific
application of this model to analyze the response of asset prices to an
increase in risk is the second intended contribution of the paper.

The strategy followed in this paper is to parameterize a Lucas (1978)
asset pricing model and then to derive an exact solution for the stock price
as a function of the appropriate state variables. The price function is a
solution to a functional equation and in general, functional equations do not
have closed form solutions. In order to obtain exact solutions, it is often
necessary to restrict preferences and/or technology quite a bit., For example,
Michener (1982) restricted preferences to be logarithmic and obtained a
closed-form solution for stock prices. Alternatively, the dividend process
could be assumed to be i.i.d. and this restriction could be exploited to
obtain a solution for stock prices. However, neither of these restrictions is
appropriate here. Because many of Barsky's results depend precisely on
whether the elasticity of marginal utility is greater or less than one,
logarithmic preferences, which have a unitary elasticity of marginal utility,
would not be rich enough to capture the scope of Barsky's findiqgs. As for
i.i.d. dividends, I have relaxed both the independence assumption and the
assumption that dividends are identically distributed over time. Relaxing the
assumption of identically (conditionally) distributed dividends is an absolute
prerequisite for the study of the joint time-series behavior of stock prices
and the riskiness of dividends in a rational expectations model. I chose to
relax the assumption of independently distributed dividends not because of the
exigencies of logical consistency but because of the overwhelming evidence in

the data that dividends are highly serially correlated. Furthermore, as I
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show in section VI, relaxation of the i.i.d. assumption is necessary if we are
to model the imperfect correlation of stock prices and bond prices.

Although the basic model of asset pricing used in this paper is
essentially the Lucas (1978) model of asset pricing, the development of a
general equilibrium model with stochastically-varying conditional volatility

! The behavior of asset prices under stochastically-varying

is new.
conditional risk has recently been examined in general equilibrium models by
Gennotte and Marsh (1987) and Giovannini (1987).2 Gennotte and Marsh develop
a continuous-time model of a nonmonetary economy that is similar in many
respects to the model presented below. They specify dividends to have a
constant instantaneous expected growth rate and allow the variance of the
growth rate of dividends to vary stochastically. This specification differs
from the stochastic specification presented below and thus the equilibrium
price function derived by Gennotte and Marsh differs from the equilibrium
price function that I derive. Nevertheless, Gennotte and Marsh's substantive
results about the effects of risk on stock prices are qualitatively the same
as my results, and are consistent with those presented by Barsky.

Whereas the papers discussed above examine the behavior of asset prices
in nonmonetary economies, Giovannini (1987) analyzes asset prices in a
monetary economy. In particular, he introduces money into a Lucas asset
pricing model by specifying a cash-in-advance constraint. This extension
allows him to analyze nominal as well as real returns and to study the role of
liquidity in determining asset prices. There are two important differences
between Giovannini's results and the results that I derive below. First, in
analyzing the effects of increased risk on the price of stocks, Giovannini's
results are diametrically opposite the results in this paper (and also

diametrically opposite Barsky's (1986) results). He explains this difference

1.1.1



-5-

as a consequence of the role of liquidity and the nature of the cash-in-
advance constraint. Second, Giovannini does not formally model persistence of
the volatility parameter of the conditional distribution of dividends.
Nevertheless, he concludes that the more persistent are the changes in
volatility, the smaller will be the effect of such changes on stock prices.

By contrast, I explicitly model the persistence of the volatility of the
conditional distribution of dividends and demonstrate unambiguously that the
more persistent are the changes in volatility, the greater will be the effect
of such changes on stock prices.

In the first two sections of the paper, I present a simple Lucas (1978)
asset pricing model. The behavior of the individual consumer is modeled in
section I and equilibrium is analyzed in section II. In section III, I
present the stochastic specification of dividends. The dividends are
conditionally lognormal and the two parameters of the conditional distribution
of dividends are specified to evolve stochastically over time. Having fully
specified the model in the first three sections, I derive an exact solution
for the stock price as a function of the contemporaneous dividend and the
contemporaneous values of the distributional parameters in Section IV. Then I
use the price function in Section V to examine the effects on the equilibrium
stock price of changes in the expected growth rate and riskiness of
dividends. In section VI, I analyze the behavior of bond prices. I use the
explicit solutions for the prices of stocks and bonds to analyze the behavior
of the risk premium on stocks in section VII. Concluding remarks are

presented in Section VIII.

I. Individual Consumer Behavior

In this section I analyze the behavior of a representative infinitely-

lived consumer who allocates his resources in each period between consumption,
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C» and saving in the form of stocks. A share of stock pays a dividend Ve 2 0
in period t and has an (ex-dividend) price of p, at the end of period t. Let
kt be the number of shares of stock the consumer holds at the end of period t,
and suppose that all of the consumer's dispcsable resources come from his
holding of stock. Therefore, the budget constraint of the representative
consumer is

(pt + yt)kt-1 =+ ptkt . (1)

The objective function of the representative consumer at time t is

sdu(e. )}, ()

Et{ t+]

J

n o~ 8

0

where 0 < B < 1, Eb( } denotes the expectation conditional on the information
set at time t, and u( ) is strictly increasing and strictly concave. In

particular, suppose that marginal utility is isoelastic so that u(e) =
el ™ . g
1 -

relative risk aversion.

with a > 0 and u'(e) = ¢”%.

Note that a is the coefficient of
The representative consumer maximizes the objective function (2) subject
to the budget constraint in {1). The first-order necessary condition for this

maximization problem is well-known to be
t - '
%u(%)-saﬂph1+yuﬁu(%§ﬂ}. (3)

The left hand side of (3) is the loss in utility from reducing consumption in
period t by P units in order to buy an additional share of stock. If this
stock is held for one period and is sold ex-dividend in period t+1, then
consumption in period t+1 can be increased by p.,; + ¥y,q- The right-hand
gide of (3) is the expected discounted increase in utility associated with

this additional consumption in period t+1. Optimality requires that the
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reduction in utility in period t be equal to the expected discounted increase

in utility in period t+1.

II. Equilibrium

It is convenient to adopt the normalization that the number of shares of
stock is equal to the number cf coansumers. The only good in the economy is
the non-storable dividend y,, and all shares of stock pay identical
dividends. Equilibrium in the goods market requires that aggregate
consumption is equal to the aggregate dividend. Since there is a
representative consumer, equilibrium requires that ey = V- Using this
equilibrium condition we can evaluate the consumer's first-order condition in
equilibrium as

1 - 1
Pyu (yt) = BEt{(pt¢1 * Ve, (yt+1)} . %)
Under the assumption of isoelastic marginal utility, equation (4) becomes
-a _ -a
Py = 8B {(Py y + ¥ vl - (5)

The next step is to derive a price function which expresses the equilibrium
stock price py as a function of the current dividend Y as well as any other
state variables relevant for calculating the conditional expectation in (5).
An explicit solution for the price function will, of course, depend on the
distributional assumptions on the dividend process. I present these

assumptions in the next section.

III. Stochastic Specification of Dividends

Suppose that the dividend process is conditionally lognormal with a
serially correlated conditional mean and a serially correlated conditional
coefficient of variation. More precisely, suppose that, conditional on the

information set available in period t, 1ln is N(m 52). Define u, and
» 10 Ve e S t
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Ve to be the conditional mean and conditional coefficient of variation,

respectively, of Yt4+1» and observe that

- - 1.2
My E Et(yt+1) = exp(mt *3 St) >0 (6a)
Var _(y, .)
2 _ £t e+l 2
Vp E 5 = exp(st) -120. (6b)

"t

The conditional mean and conditional coefficient of variation of
dividends, e and Ve Wwill vary over time. They are in the information set at
time t and are relevant state variables for the determination of the
equilibrium stock price in period t because consumers who are making saving
decisions in period t must forecast the dividend and stock price in period
t+1. Although I will specify the stochastic behavior of e and Veo it is
often convenient to use an alternative 2-parameter representation of the

distribution. Define vy and et to be

© ul'“ = exp[(1 - a)(m, + % si)] >0 (7a)

5 ala-1)/2 2
o, = [1+ vt] = expla(a - 1)st/2] >0 . (7b)
and observe the following useful relation

T-ay _
Belyg,y 1= wdy - (8)

The parameter y is monotonically related to the conditional mean Hy- In
particular, if the relative risk aversion parameter a < j, then wy is an
£ is a decreasing function of He-
Note that for logarithmic preferences (a = 1), wy = 1 regardless of the value

increasing function of Hyi if a > 1, then w

of e+
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The parameter 8_ is monotonically related to the coefficient of variation

t
of the distribution of dividends. If a < 1 then 8, is a decreasing function

of the coefficient of variation, but if a > 1 then 8_ is an increasing

t

function of the coefficient of variation. Under logarithmic preferences 9t is
identically equal to 1.

Before solving the functional equation (5) to obtain a price function, I
must first specify the stochastic behavior of Ve and Vi which implies the

stochastic behavior of wy and et' The dynamic evolution of the distributional

parameters LT and Vet proceeds in two steps. In the first step, it is

determined whether Mot and/or v change from their respective values in

t+1

period t. In the second step, new values of LT and/or v are drawn, if it

t+1

was determined in the first step that either of these distributional
parameters will change between period t and period t+1. Observe from the

definitions of Wy and 8, in (7a, b) that w changes if and only if u changes

and that 8 changes if and only if v changes.
To be more specific about the stochastic evolution of the conditional

distribution parameters, let L be the probability that w remains equal

t+1

to Wy which is equal to the probability that LT remains equal to pt;

, which is equal to the

let Py be the probability that 8 remains equal to 8

t
Let g be the probability that

t+1

probability that v remains equal to v

t+1 t°

e and et+1 (or equivalently Hea and Veet

dates at which w (and hence ut) changes are independent of the dates at

both w ) remain unchanged. If the

which et (and hence vt) changes, then g = LA If there is a positive

relation between the dates at which w_ and °t change, then g > .8" In any

t
case, the probability g must satisfy3

0 <g <min (pm, pe) (9)

PRI B
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The probability that both w_ and eb change is equal to 1 - P, = Pg * 8-

t

Now consider the second step in the stochastic evolution of the
distributional parameters. If a new value of p is drawn, it is drawn fromva
continuous distribution with density function fu(u); if a new value of v is
drawn, it is drawn from a continuous distribution with density function
fv(v). If new values of both u and v are drawn in the same period, the
drawings are independent.u

Although the stochastic specification is stated in terms of assumptions
about the distributions of My and Ver the solution of the functional equation
for the stock price function can conveniently be written as a function of w
and 6. Define w and 8 to be the unconditional means of Wy and et’

respectively. More formally,

ws u1-°f (u)dp and 8=z [ [1+ v2]°(°-1)/2f (v)dv .
0 s 0 Y

The assumptions on the stochastic evolution of the distributional parameters

imply that
Et(ut+1) = 0w+ (1 - ow); ; 0 < P, < 1 (10a)
BB, q) =08 + (1 -0.)8; 0s<po, <1 (10b)
In addition, the assumed independence of the realizations of My and v
implies, along with (10a, b), that
Covy (., q» 8.,1) = (B - og0 )(w, - @)(8, - 8) (1)

Note that if the dates at which we and 8, change are independent, then

g = L and hence the conditional covariance in (11) is equal to zero. If

.11
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there is a positive correlation between the dates at which these two
parameters change, then g > PaP,:

The stochastic properties in (10a, b) and (11) provide enough structure
to solve the functional equation (5) to obtain the exact price function.
However, the properties in (10a, b) and (11) are stated in terms of w and @
which involve the preference parameter a as well as the parameters of the
distribution of dividends. Since the preference parameter a is
time-invariant, the fact that (10a, b) and (11) depend on the parameter a
should not affect the qualitative conclusions about the time-series co-
movement of the distributional parameters and the stock price. However, if
one wanted to compare stock prices across two economies with identical

evolutions of My and v,_, but with different degrees of risk aversion, then it

t?
would be necessary to state the stochastic specification solely in terms
of e and s Below I present an example of a stochastic specification stated
solely in terms of y and v that is consistent with the assumptions in (10a, b)
and (11). Those readers who are content with the stochastic specification in
(10a, b) and (11) can proceed to Section IV without loss of continuity.

Let fu(u) have the following lognormal specification
1 1

£ (p) = =5
M /2n

s exp[-(ln - H)2/252] for yw > 0

so that the unconditional mean value of u is exp[M + 0.55%]. Under this

distributional assumption it can be shown that
5= B = exp[(1 - a)M + }(1 - a)3s?] (12)

Let f“(v) = 2yv(1 + vz)'(1+7) where y > 1. In this case, 1 + v2 has a Pareto
distribution with an unconditional mean value of y/{(y - 1). Under the

additional assumption that y > a{a - 1)/2, it can be shown that

.
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9 2 —x
8 = y - a{a = 1)/2 (13)

Equations (7a) and (12) could be substituted into (10a} to obtain an
expression for Et(wt+1) directly in terms of LI the parameters of the density
function fu(u), and the preference parameter a. Similarly, equations (7b) and
(13) could be substituted into (10b) to obtain an expression

for Et(et+1) directly in terms of Ve the parameters of the density

function fv(v), and the preference parameter a. However, it is more

convenient to solve the functional equation in terms of wy and et'

IV. An Exact Price Function

In this section I present an exact solution to the functional equation in
(5) when the dividend process is as described in Section IIT. The functional

equation (5) can be rewritten using (8) to obtain
-a _ -a
Py = 8By (P gyt + Bud, - (1)
Suppose, as will be verified below, that the stock price Pt is given by
= a
Py = p(yt,wt,et) = [a + bmtet + dwt + eet]yt . (15)

To verify that (15) is a solution to the functional equation (5), observe that

if (15) correctly describes the stock price, then
—aq L
By lpy, iyt = 2 + B, q0p g} + dBlog g} « B i} (16)

The conditional expectation Et{wt+1et+1} can be calculated using (11) and the

fact that Et{mt+1et+1} : Et{wt+1}Eb{et+1} + Cdvt{ut¢19t+1} to obtain
Et{”t+1°t+1} = (1 - Py = Po * glwb + (Du - g)emt + (pe - g)met + Bw 8, (n

Substituting (17) into (16) and then substituting the resulting expression

.11
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into (14), it can be verified, using the method of undetermined coefficients,

that (15) is a solution to the functional equation where?
_ 8
b=gTg 0 (18a)
bse(o - g)
d = T -.8 20 (18b)
pw
bsu(p, - &)
e —3--520 (18c)
- 995
- B - _ Y - ° - N
a =7 _3 [b(1 P, " Pg * glwd + d(1 pw)u + e(1 98)6] 20 (18d)

Thus, (15) is an exact price function which relates the equilibrium stock

price in each period to contemporaneous values of Yer wy and et'6

V. The Relation between the Stock Price and the Conditional Distribution of
Dividends

In this section I use the exact price function (15) to analyze the
contemporaneous relation between the distributional parameters of dividends
and the stock price. First, I will derive the relation between the parameters
w and 8 and the stock price. Then, I will use these results to examine the
relation between the parameters u and v and the stock price.

Let py, pw and pe denote the partial derivatives of the price function
p(yt, ) et) with respect to Ypr ©p and at, respectively. It follows

immediately from (15) that at time t, these partial derivatives are

p., = upt/yt (19a)

o
"

[bet + dlyy ; (19b)

1.1
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Py = [bwt + e]y: (19¢)

To determine the signs of these partial derivatives, recall that I have
assumed that 0 < Py < 1and 0 < oy < 1. In addition, the assumption that
dividends are positive implies that w > 0. Finally, since the coefficient of
variation must be nonnegative, it follows that & > 0. Therefore, inspection
of (18a, b, ¢) reveals that the coefficient b is positive and the coefficients
d and e are non-negative. Hence, the partial derivatives in (19a, b, c) are
all positive.

To analyze the response of stock prices to changes in the conditional
distribution parameters e and Ve equations (7a, b) can be used to express
the stock price as a function of Ve My and Ver Py o= E(yt,ub,vt). Using (7a,

b) and the price function p_ = p(y,,w,,8, ) yields
t [ AN A

aﬁt
;;; = (1 - u){pwwt/ut} (20a)
35 v
t t
o = (1 - u){peaet 2} (20b)
t T+ v
t
Since a, pw, pe, s et, vy and My are all positive, it follows that the terms
in curly brackets in (20a, b) are positive. Therefore, it follows immediately
p ap
that ™ and v are of opposite sign (except for the case of logarithmic
t t )

utility when they are both equal to zero). In particular, if « < 1, then an
increase in the conditional expected dividend increases the current stock
price, but an increase in the conditional coefficient of variation reduces the
current stock price. Alternatively, if a« > 1, then the current stock price is
negatively related to the conditional mean dividend, but the current stock

price is positively related to the conditional coefficient of variation.

1N
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The analysis above provides some formal underpinning to the argument by
Poterba and Summers (1986) that the magnitude of the effect on stock prices of
increased dividend volatility is an increasing function of the persistence of
the increase in volatility. To examine the role of the persistence of
volatility, Py in determining the effect on stock price of a change in
volatility, it is necessary to examine the effect of an increase in Py ON the
coefficients b and e of the price function. In examining these coefficients,
I must specify what happens to g, the probability that neither w, nor
et changes, when I consider a change in Pg- I will first examine two simple
special cases and then I will state a more general result.

First, suppose that g is held fixed when G is increased. In this case,
b is unaffected but e is increased by the increase in pe. It follows from
(19¢) that the magnitude of Py is increased when o4 is increased.

Alternatively, suppose that the dates at which w and & change are

uncorrelated so that g = o Substituting PaPy for g in the expressions for

8w’
b and e in (18a, c¢) implies that both b and e are non-decreasing in Pa and at
least one of these coefficients is strictly increasing in Py Once again, the
magnitude of Pg is increased when °q is increased.

More generally suppose that 0 < g%— < 1. This assumption implies that
when the persistence of ¢ is increased,ethe probability that both 8 and w
remain unchanged cannot decrease; also the probability that 6 remains
unchanged and w changes cannot decrease. This assumption includes the two
special cases presented above. Under this assumption, b and e are, once
again, non-decreasing in Pq and at least one of these coefficients is
inereasing in P Thus, in this more general case, it remains true that the
magnitude of Pg is increasing in Pg Therefore, (20b) implies that the
magnitude of aﬁ/avt is inereasing in p_,

...
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Now consider the relation of these results to those in Poterba and
Summers (1986) and Giovannini (1987). The results presented above are
consistent with the claim by Poterba and Summers that the magnitude of the
stock price response to a change in volatility is an increasing function of
the persistence of volatility. However, the Poterba-Summers analysis was
partial equilibrium and predicted an unambiguous negative relation between
dividend riskiness and stock prices. The general equilibrium framework
employed here shows that the effect on stock prices can be in either direction
but that the magnitude of the effect is an increasing function of Og- As for
Giovannini's (1987)-results about the role of persistence, the results here
are in direct contradiction to his conclusion that the more persistent is the
change in volatility, the smaller will be its effect on stock prices. Indeed,
because of his timing assumptions and the binding cash-in-advance constraint,
he finds that stock prices are invariant to permanent changes in volatility.
Thi; seemingly counterintuitive result appears to depend on the nature and

timing of transactions in Giovannini's cash-in-advance structure.

VI. Bond Prices

In this section [ derive the price of one-period riskless bonds and
examine the co-movement of bond prices and stock prices. Let qg be the price
in period t of a one-period riskless bond that yields one unit of output in
period t+1. A consumer wh: is considering buying an additional bond in period
t would have to reduce Cy by Q¢ units, suffering a utility loss of qtu'(ct) in
period t. The reward to purchasing the bond is that consumption in period t+1
could be increased by one unit which increases expected discounted utility

by BEt{u'(c Equating the current loss in utility with the future gain

t+1)}'
in utility yields the bond price

1.1.1
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a, = 8B {u' (e, )}/u'(ey) (21)

t t+1

Recalling that in equilibrium ¢, = ¥, the bond price equation in (21) can be
written as

9, = BEt{u’(yt+])}/u'(yt) (22)

To compare the behavior of stock and bond prices, divide (4) by (22) to
obtain
1
B {(Py g + Yo q)u' (g )

E 10 (v,.p)] (23)

pt/qt =

Observe that if y¢ were i.i.d., then the conditional expectations in the
numerator and denominator of the right-hand side of (é3) would each be
constant. Hence Py and g would be perfectly correlated. However, by
relaxing the assumption that yg is i.i.d., I have allowed for stock prices and
bond prices to be imperfectly correlated.

To calculate the equilibrium price of a riskless bond qy, recall that
with an isoelastic utility function, u'(yt) = ygu. Therefore, equation (21)
can be rewritten as

- -a -a
q, = 8E {yc, 1y (24)

Under the distributional assumptions in section III, it can be shown that

-a ] _ 122 .
Et{yt+1} = exp[—omt + 5 st] (25)
Using the definitions of My and vi in (6a, b), (25) can be rewritten as
a{1+a)
-a ] _ . -a& 2 2
By{yggqb = wg (1 + vl (26)

To express the bond price as a function of Yer My and vi, substitute (26) into

(24) to obtain

1.1.11
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a( 1+a)

y
2 t 2 2
qp = alygsug,vy) = 9(@]“[1 + v (27)

It follows from inspection of (27) that aqt/ayt >0, aqt/aut ¢ 0 and
aqt/avi > 0. In words, a reduction in the expected growth rate of dividends
(ut/yt) and an increase in the riskiness of dividends each cause bond prices
to rise. Note that, as with stock prices, the responses of bond prices to
increases in He and vi are in opposite directions. If a < 1, an inerease in
vs (or a reduction in ut) causes a reduction in the price of stocks but an
increase in the price of bonds. However, if a > 1, then stock and bond prices

both rise in response to an increase in v, or a reduction in M-

VII. The Risk Premium on Stocks

I have analyzed the effects of dividend riskiness on the price of stocks
and on the price of one-period riskless bonds. This analysis was motivated by
Pindyck's empirical study of the effect of risk on stock prices. French,
Schwert and Stambaugh (1986) also studied the empirical relation between risk
and stock market behavior, but instead of focusing directly on stock prices,
they analyzed the risk premium on stocks relative to the riskless rate of
return. They found "reliable evidence of a positive relation between the
expected risk premium on common stocks and the predictable level of
volatility.” (p. 20) In addition, they found that the excess return on stocks
relative to bonds is negatively related to the contemporaneous innovation in
stock price volatility. Their explanation of this finding is that an
unexpected increase in volatility leads to an upward revision in forecasts of
future volatility. In response to this increase in future volatility, the
stock price falls, and it is this fall in the stock price that accounts for a

low realized rate of return. Their argument presumes that dn increase in risk
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leads to a reduction in stock prices. This presumption is consistent with the
general equilibrium model presented above if a < 1.

In this section; I derive an expression for the ex ante risk premium on
stocks and examine the relation between this risk premium and dividend
volatility. Under logarithmic utility, the ex ante risk premium is an
increasing function of dividend volatility. However, if a # 1, then for some
allowable, though implausible, barameter values, the risk premium is a
decreasing function of risk.

Let Rt+1 be the gross return on stocks between period t and period t+1 so
that

Bipr = (Peyy * Yeuy) /Py (28)

Let RE*1 = 1/qt be the gross rate of return on a one-period risk-free real

discount bond. It follows from (27) that

-a{1+a)
F _ _-1a-a 2,7 2
Reor = 8 gy (1 vp) (29)
The (ex ante) risk premium on stocks is Et{Rt+1 - R€*1} and the (realized)
excess return on stocks is R - RF .
t+ t+1

Before deriving the ex ante risk premium, I will introduce an additional
simplifying assumption. Specifically, I will assume that, conditional on

information available at time t, the parameter vector (wt+1’ °t+1) is

independent of the dividend Yeor Under this assumption it is convenient to

define the following function of the distributional parameters Wy and et’

* -
p* = a + bwte + dwb + ed (30)

t t
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Observe from (15) that
- piy®
Py = Pp¥e (31)
Using (31), the functional equation in (14) can be rewritten as
» - *

and the gross rate of return on stocks can be written as

p§+1y:+1 * Ve
Rewt =7 a (33)
Pe¥e

The assumption that, conditional on information available at time ¢,

cos . . » . e
(wt+1, et*1) is independent of Ve implies that P is conditionally

independent of 9  Therefore, the conditional expectation of R is
Ve t+1

E {p* 1E {yp..} +
e (R} - £ P15 Weay t (34)
'G
Pe¥e

The right-hand side of (34) involves the conditional expectations of
p:*1 and yg. The conditional expectation of pz+1 can be obtained immediately
from (32) as

1

Et{p§+1} = 87 p} - w8, (35)

The conditional expectation of yz+1, which follows from the conditional
lognormality of Yeopr 18

a _.a
B (year) = ¥eoy (36)

Substituting (35) and (36) into (34) yields

o r,-1a 2, "ty -a
E{R, ) = (87 g, + (1 - 0p) Eflyt (37)

.11
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The ex ante risk premium on stocks is calculated by subtracting the riskless

rate in (29) from the expected rate of return in (37) to obtain

F -a
E{Rpyy = Regqh = mlugy vy (38a)

2

"
2)—a(a+1)/2] . 2

. g 1,0 £
where h(ut, vt) =8 ut[et - {1+ vy oF (1 -8

) (38b)

It can be shown that h(ut, v, ) is positive if and only if vy 0 0. Thus, the

t
ex ante risk premium on stocks is positive if and only if dividends are

risky. Furthermore, inspection of (38a) reveals that the ex ante risk premium
is a declining function of the most recent dividend, Y-

A natural question to study at this point is whether the ex ante risk
premium is an increasing function of risk. More formally, the question is
whether h(ut, vt) is an increasing function of the coefficient of variation
v, . The answer turns out to be that h(ut, “t) is not a monotonic function

t

of v in general. In order to shed some light on the behavior of the risk

£’
premium I will first examine the case of logarithmic utility which yields a
crisp set of results. Then I will present some numerical results for the case
in which a = 6. These results will demonstrate that the risk premium can
decline when risk increases.

First consider the case with logarithmic utility, i.e., a = 1. Recall
from (7a, b) that under logarithmic utility w, = et = 1. In this case, p; is

equal to a + b + d + e. Using the expressions for a, b, d, and e in (18a - d)

yields

- 8 ; -
pg:1_8 ifa=1. (39)

Substituting (39) into the expression for h(ut, vt) in (38b), and using the

expression for the ex ante risk premium in (38a), yields

11N
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toi]

Et{Rt+1 - Riv

-1 t ; -
= B8 (ut/yt) — if a =1 (40)
‘Iw-\)t

It follows from (40) that under logarithmic utility, the expected risk premium
is an increasing function of the ex ante volatility of dividends Ve if the
exogenous stochastic variables B and y, are held fixed.

In the case with logarithmic utility it turns out that the volatility of
the rate of return on stocks is equal to the volatility of the dividend.

Using the expression for p; in (39), it follows immediately from (36) that
8
Pe =787 (41)

Recalling the definition of the (gross) rate of return on stocks in (28), it
follows from (41) that

=
R =8 Yo'V (42)

The ex ante rate of return on stocks is B_1ut/yt so that the squared

coefficient of variation of returns is

112 = 2 (43)

Var(Rt*1)/[Et{R "

£+

Thus, the volatility of returns is the same as the volatility of dividends
under logarithmic utility. Equation (40) is consistent with the positive
relation between the expected risk premium and the expected volatility of
returns found by French, Sechwert and Stambaugh (1986). However, it is not
consistent with their finding of a negative relation between the innovation in
volatility and the ex post risk premium. Under logarithmic utility, there is
no relation between ex post returns and the innovation in volatility because
the stock price does not change in response to a change in riskiness.

However, if a < 1, then the stock price will fall in response to an

unanticipated increase in risk as found by French, Schwert and Stambaugh.7
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Under logarithmic utility, the ex ante risk premium is an increasing
function of the coefficient of variation Ve- However, as a matter of economic
theory, this result does not hold for all iscelastic utility functions.

Consider the following example in which the distributional parameters wy and

8, are i.i.d. over time (puj R 0): a=6.0,8=0.95 vy, =

4.0, M= 0.5, w = 0.62, 8 = 2.00. Now consider two different levels of risk:

2 _ 2 . . ( F
vy = 0.20 and Ve = 0.30. The ex ante risk premium, Etth+1 - Rt+1}' falls
from .2983 x 1072 to .2976 x 1072 when vo is increased from 0.20 to 0.30.

t

I offer the following remarks in an attempt to shed some light on this
finding. First, with a large degree of risk aversion and with a high degree

of risk, the gross riskless rate becomes almost zero (in this example,

RE+1 = .8728 « 10'7 when vi z 0.20). Indeed, the riskless rate becomes only a
. : . . . F F _

small fraction of the risk premium (in this case, Rt+1/Et{Rt+1 - Rt+1} =

0.0293 when vi = 0.20). Thus, in response to an increase in vi, most of the

movement in the risk premium is due to a change in the ex ante rate of return

on stocks, Et{R , rather than to a change in the riskless rate. As shown

t¢1}

. ; . - 2 ; . :
in Section V, an increase in v causes the stock price, P¢» to increase if

t
a > 1 which tends to decrease the expected rate of return, Et{Rt+1}'

Although I have shown that there are allowable values of the parameters
under which the ex ante risk premium is a decreasing function of the degree of
risk, I do not claim that such a negative relation holds for empirically
relevant parameter values. I presented these results simply to establish that
the standard assumptions on the utility function are not sufficient to

establish unambiguously that the risk premium is an increasing function of the

degree of risk.
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VIII. Conclusion

In this paper I have developed a simple stochastic general equilibrium
model to analyze stock and bond prices. The methodological contribution of
the paper is the derivation of exact solutions for asset prices in a rational
expectations model with a time-varying distribution of dividends. The derived
pricing equations allow us to examine the joint time series behavior of stock
prices, bond prices and distributional parameters. Including the time-varying
distribution in the general equilibrium asset pricing model is important if we
are to try to relate historical changes in stock and bond prices to changes in
dividend risk.

The substantive conclusions of the paper provide some theoretical support
for aspects of previous partial equilibrium empirical studies by Poterba and
Summers (1986) and French, Schwert and Stambaugh (1986). In assessing
Pindyck's (1984) argument that the decline in the stock market in the 1970's
was substantially due to increased risk, Poterba and Summers argued that to
explain the large magnitude of the decline in stock prices, the increase in
volatility would have to be more persistent than indicated by their
estimates. The analysis above is consistent with their argument that the
magnitude of the response of the stock price to an increase in riskiness is an
increasing function of the persistence in riskiness. However, the general
equilibrium analysis is consistent with their supposition about the direction
of the effect only when the coefficient of relative risk aversion (a) is less
than one.

French, Schwert and Stambaugh analyzed the behavior of the risk premium
on common stocks. The general equilibrium analysis above is, for plausible
parameter values, generally supportive of their finding of a positive relation

between the expected risk premium and predicted volatility. However, their
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explanation of their finding of a negative relation between the innovation in
volatility and the realized risk premium relies on a presumed negative
relation between expected volatility and stock prices. This presumed relation
holds in the general equilibrium model above only if o < 1.

The substantive findings of this paper support and extend Barsky's (1986)
finding that an increase in riskiness can either increase or decrease stock
prices depending on the curvature of the utility function. Barsky's model is
a two-period model and the model presented above is infinite-horizon. The
advantage of the multi-period model relative to the two-period model is that
it allows the distributional parameters to evolve stochastically over time.

We can then examine the joint time series behavior of riskiness and stock
prices rather than simply rely on the comparative statics analysis that is

possible in a two-period model.

1.1
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Footnotes

"The two-state versions of the Lucas (1978) model examined by LeRoy and
LaCivita (1981) and Mehra and Prescott (1985) allow for the conditional
coefficient of variation to vary stochastically over time. However, these
models do not allow the conditional mean and conditional coefficient of
variation to vary independently over time.

2More recently, Flood (1987) and Hodrick (1987) have extended the
discrete-time models developed in this paper and in Giovannini (1987) to
analyze asset prices in open-economy models.

3 addition, the probability g must satisfy g > AP 1.

uThe responses of the stock price to changes in e and vy would be
unaffected if I relax the assumption that By and e are independent. See
footnote 2.

5If I relax the assumption that v_ and ut are independent when both are

t

drawn, then wy and et will be correlated. Let § be the correlation of wy

and et when both By and v, are drawn. In this case, b, d, and e are unchanged
S - - ) - = _ y
and a = T {p(1 P, = Pyt g)(wd + §) + d(1 om)w + e(1 pe)B}.

6I have ignored explosive solutions for stock prices. For example, let

z, be a stochastic process that is independent of y,, wy and et at all leads
-1

and lags. Suppose that Et{zt+1} = 8 z,. Now define Pt =P+ 62t where Dy
is the stock price in {15). It is easily verified that P, satisfies (14) and
is a potential candidate solution for the stock price. However, unless § = 0O,
the conditional expectation Et{Pt+j} = Et{pt+j} + sEt{zt+J} = Et{pt+j} +
ss'Jzt grows without bound as j grows without bound. I impose the restriction
§ = 0 to rule out this explosive behavior.

7Strictly speaking, v, is the riskiness of dividends and French, 3Schwert

t

and Stambaugh examined the riskiness of returns. Using the coefficient of
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variation as a measure of volatility, dividend volatility is identical to rate

of return volatility in the special case of logarithmic utility (e = 1), but

this identity is not generally true if o = 1.
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