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1 Introduction

Industrial policy, broadly defined as a policy agenda aimed at shaping a country’s industrial struc-
ture by either promoting or restricting certain sectors, has been widely used in developed and de-
veloping countries. Examples include the U.S. and Europe after World War II, Japan in the 1950s
and 1960s (Johnson, 1982; Ito, 1992), South Korea and Taiwan in the 1960s and 1970s (Amsden,
1989), and China, India, Brazil, and others more recently (Stiglitz and Lin, 2013). In recent years,
industrial policies have reemerged and been embraced by policy makers around the world. As Ro-
drik (2010) puts it, “The real question about industrial policy is not whether it should be practiced,
but how.”

Despite the prevalence of industrial policies in practice and the contentious debate in the lit-
erature regarding their efficacy (Baldwin, 1969; Krueger, 1990), remarkably few empirical studies
directly evaluate the welfare implications of these policies using micro-level data. Our paper fills
this gap in the literature with a focus on China, the most prominent example of industrial policies
currently. During the past two decades or so, Chinese firms have rapidly dominated a number of
global industries, such as steel, auto, and solar panels (Figure 1), partly as a result of government
support. In 2015, China unveiled its plan to ‘become the leader among the world’s manufacturing
powers’ by 2049 (“Made in China 2025”).

In this paper, we focus on the shipbuilding industry, an illustrative example of the quick ascent
of China’s manufacturing sector into global influence during the 2000s. At the turn of the century,
China’s nascent shipbuilding industry accounted for less than 10% of world production. During the
11th (2006-2010) and 12th (2011-2015) National Five-Year Plans, it was dubbed a pillar industry
in need of special oversight and support. Since then, an unprecedented number of national policies
were issued with the goal of developing the infant industry into the largest worldwide. Within a
few years, China overtook Japan and South Korea and became the leading ship producer in terms
of output.

Using this historical event as a case study, we examine the welfare consequences of industry
policy, focusing on three questions of general interest. First, how has China’s industrial policy
shaped its domestic and the global industry? Second, what are the welfare consequences of this
policy? Third, what is the relative efficacy of different policy instruments, such as production
subsidies (e.g., subsidized material input, export credits, and buyer financing), investment subsidies
(e.g., low-interest long-term loans and expedited capital depreciation), entry subsidies (e.g., below
market-rate land prices), and consolidation policies? To the best of our knowledge, this study is the
first to address these questions using comprehensive micro data on the global shipbuilding industry.
We build and structurally estimate a dynamic model of firm production, investment, entry, and exit,
under aggregate uncertainty. The model incorporates economies of scale in firm production and
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accommodates private shocks in investment decisions.
Our analysis delivers four sets of main findings. First, like many other policies unleashed

by China’s central government in the past few decades, the scale of the industrial policy in the
shipbuilding industry is massive (relative to the size of the industry). Our estimates suggest that
the policy support from 2006 to 2013 is equivalent to RMB 550 billion, with the lion’s share
going to entry subsidies (RMB 330 billion), followed by production subsidies (RMB 159 billion)
and investment subsidies (RMB 51 billion).1 It boosted China’s domestic investment and entry
by 270% and 200%, respectively, and increased its world market share by 40%, three fourths of
which occurred via business stealing from rival countries. However, the policy created sizable
distortions and generated merely RMB 145 billion of net profit gains to domestic producers and
RMB 230 billion of worldwide consumer surplus. The policy attracted a large number of inefficient
producers, exacerbated the extent of excess capacity, and did not translate into significantly higher
industry profits over the long run.

Second, the effectiveness of different policy instruments is mixed. Production and investment
subsidies can be justified on the grounds of revenue considerations, but entry subsidies are wasteful
and lead to increased industry fragmentation and idleness. This is because entry subsidies attract
small and inefficient firms; in contrast, production and investment subsidies favor large and efficient
firms that benefit from economies of scale. Production subsidies are more effective at achieving
output targets, while investment subsidies are less distorting over the long run. In addition, welfare
losses are convex and deteriorate when multiple policies interact and induce firms to make further
inefficient decisions.

Third, our analysis suggests that the efficacy of industrial policy is significantly affected by the
presence of boom and bust cycles, as well as by heterogeneity in firm efficiency, both of which
are important features of the shipbuilding industry. A counter-cyclical policy would have out-
performed the pro-cyclical policy that was adopted by a large margin. Indeed, their effectiveness
at raising long-run industry profit differs by nearly threefold, which is primarily driven by two
factors: a composition effect (more low-cost firms operate in a bust compared to a boom) and the
much cheaper expansion during recessions. In a similar vein, had the government targeted subsidies
towards more efficient firms, the policy distortions would have been considerably lower.

Fourth, we examine the consolidation policy adopted in the aftermath of the financial crisis,
whereby the government implemented a moratorium on entry and issued a “White List” of firms
chosen for government support. This strategy was adopted in several industries to curb excess ca-
pacity and create large conglomerates that can compete globally.2 Consistent with the evidence
discussed above, we find that targeting low cost firms creates less distortions; that said, the govern-

1The conversion rate for this period was around 6.88 RMB for 1 US dollar.
2See https://www.wsj.com/articles/SB10001424127887324624404578257351843112188.
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ment’s White List was sub-optimal because it favored SOEs and did not include the most efficient
firms. Finally, the profit gains of a policy package that involves entry subsidies (to overcome entry
barriers and capital market inefficiencies) followed by a consolidation phase (to reduce fragmen-
tation) is dwarfed by the cost of the subsidies and do not provide a compelling justification for
subsidizing the industry.

A potential drawback of our analysis is that our model does not feature any market failure; as a
result, industrial policy is necessarily welfare-reducing and our results essentially speak to its costs.
To investigate whether this is reasonable, we explore a number of traditional rationales for industrial
policy. We find limited evidence that the shipbuilding industry generates significant spillovers to
the rest of the domestic economy (e.g., steel production, ship owning, and the labor market). Nor
do we find evidence of industry-wide learning-by-doing (Marshallian externalities) or support for
strategic trade considerations. In terms of the benefits to Chinese trade, the policy implemented in
the shipbuilding industry may have lowered freight rates and boosted China’s imports and exports;
though evaluating the associated welfare gains falls beyond the scope of this paper. Finally, it is
worth noting that non-economic arguments, such as national security, military considerations, and
the desire to be world number one (Grossman, 1990), could also be important in the design of this
policy. Regardless of the motivation, our analysis provides cost estimates (and welfare losses) and
the relative efficacy of implementing these policies that can be used as a guidance for future polices.

Literature Review There is a large theoretical literature on industrial policies (Hirschman, 1958;
Krugman, 1991; Harrison and Rodriguez-Clare, 2010; Stiglitz et al., 2013; Liu, 2018; Itskhoki and
Moll, 2019). The earlier empirical literature on industrial policy mostly focuses on describing what
happens to the benefiting industries (or countries) with regards to output, revenue, and growth rates
(Baldwin and Krugman, 1988; Hansen et al., 2003; Head, 1994; Luzio and Greenstein, 1995; Ir-
win, 2000), while recent studies recognize the importance of measuring the impact on productivity
and cross-sector spillovers (Aghion et al., 2015; Lane, 2017). A related literature analyzes trade
policies, in particular export subsidies (Das et al., 2007), R&D subsidies (Hall and Van Reenen,
2000; Bloom et al., 2002; Wilson, 2009), place-based policies targeting disadvantaged geographi-
cal areas (Neumark and Simpson, 2015; Criscuolo et al., 2019), and environmental subsidies (e.g.,
renewable energy subsidies, Yi et al. 2015; Aldy et al. 2018). To the best of our knowledge, our
paper provides the first (global) welfare analysis of a large-scale industrial policy and a comparison
of different policy instruments using firm-level data.

Our study is related to a small and growing literature on the shipbuilding industry. Thompson
(2001) studies learning in the shipbuilding industry, using as a case study the Liberty shipbuild-
ing program during World War II. Hanlon (2018) studies competition between British and North
American shipbuilders during the late 19th and early 20th centuries and illustrates that temporary
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cost advantages can translate into a persistent competitive advantage due to the presence of learn-
ing. Kalouptsidi (2018) is closely related to our paper and detects evidence of production subsidies
by the Chinese government in the Handysize segment within the dry bulk sector. In addition to
analyzing the entire shipbuilding industry that includes all dry bulk ships, tankers, and container-
ships, we conduct a positive analysis of the welfare consequences of different policies used by the
government. A central element in this paper is firm investment and entry/exit, which is abstracted
away in the previous study that only explores firm production decisions.

Methodologically, we build on the literature on dynamic estimation, including Bajari et al.
(2007); Ackerberg et al. (2007); Pakes et al. (2007); Xu (2008); Aw et al. (2011); Ryan (2012);
Collard-Wexler (2013); Sweeting (2013); Barwick and Pathak (2015); Fowlie et al. (2016), as well
as the macro literature on firm investment (Abel and Eberly, 1994; Cooper and Haltiwanger, 2006).
Complementing the macro literature that focuses on inaction (zero investment) and adjustment
costs, our approach can rationalize different investments chosen by observably similar firms, while
at the same time accommodates inaction and various adjustment costs. Our analysis on firm in-
vestment builds on Ackerberg et al. (2007) and provides one of the first empirical applications of
this model with continuous investment. This approach can be used in a variety of settings where
heterogeneity in investment is an important consideration.

The rest of the paper is organized as follows. Section 2 provides an overview of China’s ship-
building industry and discusses the relevant industrial policy and our datasets. Section 3 incor-
porates industrial policy into a market equilibrium model of ship demand and supply. Section 4
describes our strategy for estimating each component of the model. The estimation results are pre-
sented in Section 5. Section 6 quantifies the welfare impact of the industrial policy and evaluates
different policy instruments. Section 7 concludes.

2 Industry Background and Data

2.1 Industry Background

Shipbuilding is a classic target of industrial policies, as it is often seen as a strategic industry for
both commercial and military purposes. During the late 1800s and early 1900s, Europe was the
dominant ship producer (especially the UK). After World War II, Japan subsidized shipbuilding
along with several other industries to rebuild its industrial base and became the world’s leader in
ship production. South Korea went through the same phase in the 1970s and 1980s. In the 2000s,
China followed Japan and South Korea and supported the shipbuilding industry via a broad set of
policy instruments.

The scope and frequency of national policies issued in China in the 2000s, especially after 2005
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to support its domestic shipbuilding industry is unprecedented. In 2002, when former Premier Zhu
inspected the China State Shipbuilding Corporation (CSSC), one of the two largest shipbuilding
conglomerates in China, he pointed out that “China hopes to become the world’s largest shipbuild-
ing country (in terms of output) [...] by 2015.” Soon after, the central government issued the 2003
National Marine Economic Development Plan and proposed constructing three shipbuilding bases
centered at the Bohai Sea area (Liaoning, Shandong, and Heibei), the East Sea area (Shanghai,
Jiangsu, and Zhejiang), and the South Sea area (Guangdong).

The most important initiative was the 11th National Five-Year Economic Plan (2006-2010)
which dubbed shipbuilding as a strategic industry. Since then, the shipbuilding industry, together
with the marine equipment industry and the ship-repair industry, has received numerous supportive
policies. Zhejiang was the first province that identified shipbuilding as a provincial pillar industry.
Jiangsu is the close second, and set up dedicated banks to provide shipbuilding companies with
favorable financing terms. In the 11th (2006-2010) and 12th (2011-2015) Five-Year plans, ship-
building was identified as a pillar, or strategic industry by twelve and sixteen provinces, respec-
tively. Besides these Five-Year Plans, the central government issued a series of policy documents
with specific production and capacity quotas. For example, as part of the 2006 Medium and Long

Term Development Plan of Shipbuilding Industry, the government set an annual production goal of
15 million deadweight tonnes (DWT) to be achieved by 2010, and 22 million DWT by 2015. Both
goals were met several years in advance. Table 1 documents major national policies issued during
our sample period.

The government adopted interventions that affected firms along several dimensions. We group
policies that supported the Chinese shipbuilding industry into three categories: production, invest-
ment, and entry subsidies. Production subsidies lower the cost of producing ships. For instance,
the government-buttressed domestic steel industry provides cheap steel, which is an important input
for shipbuilding. Besides subsidized input materials, export credits (Collins and Grubb, 2008) and
buyer financing in the form of collateral loans provided by local banks constitute other important
components of production subsidies.3 To help attract buyers, shipyards have traditionally offered
loans and various financial services to facilitate purchasing payment. Investment subsidies take the
form of low-interest long-term loans and other favorable credit terms that reduce the cost of invest-
ment, as well as preferential tax policies that allow for accelerated capital depreciation. Finally,
shortened processing time and simplified licensing procedures, as well as heavily subsidized land
prices along the coastal regions, greatly lower the cost of entry for potential shipyards.

An often explicitly-stated goal of China’s industrial policy is to create large successful firms
that can compete against international conglomerates. In the aftermath of the 2008 economic crisis

3Until 2016, the Chinese government provided a range of subsidies for exporters, including reduced corporate income
taxes, refund of the value-added-tax, etc. Shipbuilding companies benefit from export subsidies since most of their
products are traded internationally.
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that led to a sharp decline in global ship prices, the government promoted consolidation policies.
The Plan on Adjusting and Revitalizing the Shipbuilding Industry, implemented in 2009, resulted
in an immediate moratorium on entry with increased investment subsidies to existing firms. The
most crucial policy for achieving consolidation objectives was the Shipbuilding Industry Standard

and Conditions (2013), which instructed the government to periodically announce a list of selected
firms that “meet the industry standard” and thus receive priority in subsidies and bank financing.4

The so called “White List” included sixty firms in 2014 upon announcement.
In this paper, we focus on the production of three ship types: dry bulk, tankers, and contain-

erships, which account for more than 90% of world orders in tons in our sample period. Dry
bulk ships transport homogeneous and unpacked goods, such as iron ore, grain, coal, steel, etc.,
for individual shippers on non-scheduled routes. Tankers carry chemicals, crude oil, and other oil
products. Containerships carry containerized cargos from different shippers in regular port-to-port
itineraries. As these types of ships carry entirely different commodities, they are not substitutable;
we thus treat them as operating in separate markets.

Shipbuilding worldwide is concentrated in China, Japan, and South Korea, which collectively
account for over 90% of the world production. We limit our empirical analysis to shipyards in these
three countries.

2.2 Data

Our empirical analysis draws on a number of datasets. The first dataset comes from Clarksons and
contains quarterly information on all shipyards worldwide that produce ships for ocean transport
between the first quarter of 1998 and the first quarter of 2014. We observe each yard’s orders,
deliveries, and backlog (which are undelivered orders that are under construction) measured in
Compensated Gross Tonnage (CGT), for all of the major ship types, including bulk, tankers, and
containers. CGT, which is a widely used measure of size in the industry, takes into consideration
production complexities of different ships and is comparable across types. The entry year for a
shipyard is defined as the first year it takes an order or the first year it delivers minus two years to
account for the time it takes to build a ship, whichever is earlier.5

The second data source is the annual database compiled by the National Bureau of Statistics

4In practice, favorable financing terms and capital market access are often limited to firms on the White List post 2014.
5As an additional measure of firm entry, we successfully extracted the registration information (date and business
scope) for 90% of Chinese firms, from the Trade and Industry Bureau database. The registration data is an imperfect
measure of entry since firms often register with a wide business scope (ship building and repairs, marine equipment,
marine engineering, etc.), and it is difficult to identify firms whose core business is shipbuilding from the registration
data alone. In addition, some firms switch from ship repairs and marine equipment to shipbuilding years after regis-
tering with the Trade and Industry Bureau. As such, we use the entry year from the Clarkson’s database in our main
analysis. Nonetheless, the overall entry pattern is similar across these two measures: entry peaked in 2005-2007 and
became minimal post 2009.
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(NBS) on Chinese manufacturing firms with annual sales above five million RMB. For each ship-
yard and year, we observe its location (province and city) and ownership status (state-owned en-
terprises (SOEs), privately owned, or joint ventures with foreign investors). We differentiate SOEs
that are part of China State Shipbuilding Corporation (CSSC) and China Shipbuilding Industry
Corporation (CSIC), the two largest shipbuilding conglomerates in China, from other SOEs. We
link firms over time and construct their real capital stock and investment following the procedure
described by Brandt et al. (2012). We also observe the annual accounting operation costs for each
shipyard. One limitation of the NBS database is that data for 2010 are missing. This prevents us
from constructing the firm-level investment in either 2009 or 2010, since investment is imputed
from changes in the capital stock.

In addition to these firm-level variables, we collect a number of aggregate variables for the
shipbuilding industry, including quarterly global prices per CGT for each of the three ship types.6

The steel ship plate price serves as a proxy for changes in the production cost, as steel is a major
input in shipbuilding. We merge all datasets to obtain a quarterly panel of Chinese, South Korean,
and Japanese shipyards ranging from 1998 to 2013.

2.3 Descriptive Evidence and Summary Statistics

Similar to many other manufacturing industries in China, the shipbuilding industry experienced
exponential growth since the mid 2000s. Indeed, China became the largest shipbuilding country in
terms of deadweight tons in 2009, overtaking South Korea and Japan. Figure 2 plots China’s rapid
ascent into global influence from 1998 to 2013. At the same time, a massive entry wave of new
shipyards occurred along China’s coastal area. Figure 3 plots the total number of new shipyards by
year for China, Japan, and South Korea. The number of entrants is modest for Japan (1.4 per year)
and South Korea (1.2 per year), partly due to a lack of greenfield sites to build new shipyards. In
contrast, the number of new shipyards in China registered a historic record and exceeded 30 per
year during the boom years when the entry subsidy was in place. Entry dropped to 15 in 2009 and
became minimal within a couple of years of the implementation of the 2009 entry moratorium, as
part of the Plan on Adjusting and Revitalizing the Shipbuilding Industry.7

The rise in entry was accompanied by a large and unprecedented increase in capital expansion
(Figure 4). The year of 2006 alone witnessed a steep four-fold increase in investment. The capital
expansion was universal across both entrants and incumbents and among firms with different own-
ership status. Indeed, entrants account for 43% of the aggregate investment from 2006 to 2011,

6We experiment with two price indices, real RMB/CGT vs. USD/CGT, and obtain nearly identical results, suggesting
that exchange rate fluctuations are not first-order in our analysis.

7No new applications were processed post 2009, but projects already approved were allowed to be completed. In
addition, firms registered prior to 2009 but engaged in repairs and marine engineering could ‘enter’ and produce ships
post 2009. Both account for the entry (though at a far reduced rate) that we see in Clarksons from 2009 onward.
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with the remaining 57% implemented by incumbents. Private firms, joint ventures, and SOEs ac-
count for 25%, 36%, and 38% of total investment, respectively. In addition, the capital expansion
was spread out across provinces, though Jiangsu accounted for a disproportionate share of 40% of
the aggregate investment between 2006 and 2011.

The rapid rise in China’s production, entry, and investment coincided with the introduction of
China’s industrial policies for the shipbuilding industry. The global shipbuilding industry went
through a boom in the mid-2000s, roughly concurrent with China’s initial expansion. As Figure 5
shows, ship prices began rising around 2003 and peaked in 2008, before collapsing in the aftermath
of the financial crisis and remaining stagnant from 2009 through to 2013. China’s production and
investment, on the other hand, continued to expand well after the financial crisis.

Table 2 contains summary statistics on key variables of interest. There are a large number of
firms, with 266 Chinese shipyards, 108 Japanese shipyards, and 46 Korean shipyards. Industry
concentration is low, with a world HHI that varies from 230 to 720 during the sample period.

An important feature of ship production is that shipyards take new orders infrequently, about
23% of the quarters for bulk and less frequently for tanker and containerships. From 2009 onwards,
during a prolonged period of low ship prices, the frequency with which yards took new orders was
significantly lower. This lumpiness in ship orders, combined with Chinese shipyards becoming
increasingly vulnerable to long periods of inaction in the latter part of our sample, is a key feature
of the shipbuilding industry that informs our modeling choices in Section 3.

Finally, about 52% of firms in our sample produce one ship type, a pattern that holds across
countries. The fraction of ships that produce all three ship types is higher in South Korea (28%)
and Japan (16%) and lower in China (14%). If a shipyard never takes orders for a certain ship type
throughout our sample, it is assumed not to produce this ship type.

3 Model

In this section, we introduce a dynamic model of firm entry, exit, and capital investment. In each
period, incumbent firms make static production decisions to maximize their variable profit taking
global ship prices as given. Then they choose whether or not to exit, and conditional on staying,
how much to invest. A pool of potential entrants make one-shot entry decisions based on their
expected discounted stream of profits, as well as the cost of entry. At the end of the period, entry,
exit, and investment decisions are implemented and the state evolves to the next period.

Time is discrete and is a quarter. In period t, there are j = 1, ...,Jt firms in the world that produce
ships. There are m = 1, ...,M types of ships, such as dry bulkers, tankers, and containerships. Ships
within a type are homogeneous.
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Ship Demand In each period, the aggregate inverse demand for ships of type m is given by the
function,

Pmt = P(Qmt ,dmt) (1)

for m = 1, ...,M, where Pmt is the market price of ship type m in period t, Qmt is the total tonnage
of type m demanded, and dmt are demand shifters, such as freight rates and aggregate indicators of
economic activity.

Ship Production Firm j produces q jmt tons at cost:

C
(
q jmt ,s jmt ,ω jmt

)
= c0 + cm

(
q jmt ,s jmt ,ω jmt

)
where c0 is a fixed cost that is incurred even when shipyards have zero production. Fixed costs
are often abstracted away in empirical studies, but in later periods of our sample when the aggre-
gate demand for new ships plummeted and many shipyards reported prolonged periods with zero
production, such costs are first order. They capture wages and compensation for managers, capital
maintenance, land usage, etc.

The second term, cm(q jmt ,s jmt ,ω jmt), is the standard production cost. We use s jmt to denote
firm characteristics (e.g. capital, backlog, age, location, ownership status), as well as aggregate cost
shifters that affect all shipyards (e.g. government subsidies, steel prices). In addition, production
costs depend on a shock ω jmt : the larger ω jmt is, the less productive the firm is. The marginal cost
of production is given by MC

(
q jmt ,s jmt ,ω jmt

)
.

Firms are price takers and choose how many tons to produce for ship type m, q jmt , to maximize
their profits:

max
q jmt

π(s jmt ,ω jmt) = Pmtq jmt−C
(
q jmt ,s jmt ,ω jmt

)
If the optimal production tonnage for type m, q∗jmt , is positive, it satisfies the following first order
condition:

Pmt = MCm
(
q∗jmt ,s jmt ,ω jmt

)
(2)

Let s jt = {s j1t , ...,s jMt} and ω jt =
{

ω j1t , ...,ω jMt
}

denote the union across ship types of ob-
served state variables and unobserved cost shocks, respectively. Note that with a slight abuse of
notation, we now use s jmt to denote all observed payoff relevant variables, which include ship prices
in addition to cost shifters. A firm’s total expected profit from all types, before the cost shocks are
realized, is given by:

π(s jt) = Eω jt

M

∑
m=1

π(s jmt ,ω jmt)

Finally, in each period, the prevailing ship price, Pmt , equates aggregate demand and supply,
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where the aggregate supply is the sum of q∗jmt defined in (2).

Investment and Exit Once firms make their optimal production choice, they observe a scrap
or sell-off value, φ jt , that is distributed i.i.d. with distribution Fφ and decide whether to remain in
operation or exit. If a firm chooses to exit, it receives the scrap value. If it remains active, it observes
a firm-specific random investment cost shock, v jt , that is distributed i.i.d. with distribution Fv and
chooses investment i jt at cost Ci(i jt ,v jt). The amount invested i jt is added to the firm’s capital stock
next period, which in turn affects its future production costs.

The value function for incumbent firm j is:

V (s jt ,φ jt) = π(s jt)+max
{

φ jt ,Eν jt

(
max

i

(
−Ci(i,v jt)+βE

[
V (s jt+1)|s jt , i

]))}
(3)

= π(s jt)+max
{

φ jt ,CV (s jt)
}

CV (s jt)≡ Eν jt

(
−Ci(i∗,v jt)+βE

[
V (s jt+1)|s jt , i∗

])
(4)

where CV (s jt) denotes the continuation value, which includes the expected cost of optimal invest-
ment and the discounted future stream of profits. Crucially, Eν jt is the expectation with respect to
the random investment cost shock ν jt and i∗ denotes the optimal investment policy i∗ = i∗(s jt ,v jt).

The optimal exit policy is of the threshold form: the firm exits the market if the drawn scrap
value φ jt is higher than its continuation value CV (s jt). Since the scrap value is random, the firm
exits with probability, px(s jt), defined by,

px(s jt)≡ Pr
(
φ jt >CV (s jt)

)
= 1−Fφ

(
CV (s jt)

)
(5)

where Fφ is the distribution of φ jt .
Conditional on staying, firm j observes its investment shock, ν jt . Its optimal investment i∗ =

i∗(s jt ,v jt), which is non-negative, satisfies the first-order condition:

β
∂E
[
V (s jt+1)|s jt , i∗

]
∂ i

≤
∂Ci(i∗,v jt)

∂ i
(6)

with equality if and only if the optimal investment is strictly positive, i∗(s jt ,v jt) > 0. When the
investment costs are prohibitively high or the expected benefit too low, firm j opts for no investment.
Capital depreciates at a rate δ that is common to all firms.

We assume that the cost of investment, Ci(i jt ,ν jt) has the following form:

Ci(i jt ,ν jt) = c1i jt + c2i2jt + c3ν jt i jt + c4Tt i jt (7)
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This (quadratic) specification borrows from the macro literature on investment costs (Cooper
and Haltiwanger, 2006) with two important differences. First, investment costs depend on the
unobserved marginal cost shock ν jt . Much of the existing literature has focused on the lumpy nature
of investment (inaction) and adjustment costs, but has shied away from modeling heterogeneous
investment decisions among observationally similar firms.8 Here, we tackle this heterogeneity by
introducing ν jt that shifts the marginal cost of investment across firms. Note that ν jt can also
explain inaction: firms with unfavorably large ν jt will choose not to invest. In practice, there are
many factors that influence firms’ investment decisions. Some firms have political connections
that grant them favorable access to the capital market (Magnolfi and Roncoroni, 2018), and others
might be experienced at sourcing from equipment suppliers at low costs. In our estimation, once

we control for ν jt , additional adjustment costs, such as
i2jt
k jt

and/or a (random) fixed cost, contribute
little to the model fit.9 A second difference from the literature, is that we allow government policies
Tt to directly affect the marginal cost of investment.

Entry In each period t, N̄ potential entrants observe the payoff relevant state variables and their
own entry cost κ jt , which is i.i.d., and make a one-time entry decision. The entry cost is drawn
from a distribution Fκ that is shifted by the government policy. If potential entrant j decides not
to enter, it vanishes with a payoff of zero.10 If j enters, it pays the entry cost and continues as an
incumbent next period. In addition, the entrant is assumed to be endowed with a random initial
capital stock that is realized the following period once the firm becomes an incumbent and begins
operation.

Potential entrant j solves,

max
{

0,−κ jt +E
[
−Ci(k jt+1)+βE

[
V (s jt+1)|s jt

]]}
where κ jt is the entry cost, k jt+1 is entrant j’s initial capital stock in period t +1 after paying a cost
of Ci(k jt+1). The expectation is taken over entrant j’s information set at time t, which includes all
aggregate state variables.

Similar to the exit decision, the optimal entry policy is of the optimal threshold form: a potential

8Notable exceptions include Ryan (2012) that models firm investment decisions as following an S-s rule and Collard-
Wexler (2013) that analyzes discrete investments.

9The estimated fixed cost of investment, once included, is economically small. Fixed costs are associated with an
inaction region where firms make no investment. The larger the fixed cost, the larger the inaction region. In our data,
firms frequently make small investments, which is inconsistent with a large fixed cost.

10Here we follow the bulk of the empirical literature on industry dynamics (Ericson and Pakes, 1995), where the entry
decision involves a simple comparison between the value from entering the market and the random entry cost.
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entrant enters the market if the entry cost κ jt drawn is lower than the value of entering, i.e.

κ jt ≤V E(s jt)≡ E
[
−Ci(k jt+1)+βE

[
V (s jt+1)|st

]]
Since κ jt is random, the potential entrant enters with probability, pe

t , defined by,

pe
t ≡ Pr

(
κ jt ≤V E jt

)
= Fκ

(
V E(s jt)

)
(8)

Industrial Policy Industrial policies affect the costs of production, investment, and entry and are
thus part of the payoff relevant state variables, s jt . We assume that these policies are unexpected
and perceived as permanent by all shipyards once they are in place. This is consistent with the
empirical patterns documented in Section 2.3, where the spike in entry and investment coincides
remarkably with the timing of these policies.

Equilibrium The Markov Perfect Equilibrium (MPE) of this model is defined as follows:

Definition 1. An equilibrium of this model consists of policies, {q jmt}M
m=1, i∗(s jt ,v jt), px(s jt), pe

t ,
value function V (s jt) and prices Pmt , such that the production quantity satisfies (2) and maximizes
the period profit, the investment policy satisfies (6), the exit policy satisfies (5), the entry policy
satisfies (8), and ship prices clear the market each period so that aggregate demand equals total
supply. Moreover, the incumbent’s value function satisfies (3) and firms employ the above policies
to form expectations.

The key assumption in invoking the MPE concept is that the transition processes of all payoff
relevant state variables (including ship prices) satisfy the Markovian property pre and post the
policy intervention. Consequently, the equilibrium is stationary conditioning on our state variables
(which include dummy variables for different policies) and the value functions are not indexed by
t. While China’s market share increased substantially during our sample period, such an expansion
can be explained by changes in state variables, including demand and cost factors, as well as policy
interventions.11

Discussion We close this section with a brief discussion on our assumptions. We assume that
shipyards are price-takers. This assumption is motivated by the large number of firms in the in-
dustry. As discussed above, there are more than four hundred shipyards globally and the market
share of the largest firm is less than 5%. The market is thus sufficiently unconcentrated that market

11Stationarity does not preclude business cycles, which are typical in the world shipbuilding industry. We use ship
prices to capture the aggregate business cycles. Relaxing the stationarity assumption is a difficult but important topic
for future research.
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power is not a first order consideration. Nonetheless, we consider a variation of our model that
incorporates market power with firms being Cournot competitors in the product market. In that
case, the optimal production of firm j in period t (when positive) satisfies a variant of the first order
condition (2) that includes a markup equal to −q jmt

[
∂P(Qmt ,dmt)/∂q jmt

]
. Empirically, this term

turns out to be small and the estimates are robust when replicated under the Cournot assumption. It
is also worth noting that on the ship buyer side (shipowners), monopsony power is not a first-order
issue as the concentration among ship ownership is also low.12

Ships are assumed homogeneous within a type conditioning on size. In prior work (Kalouptsidi
(2014), Brancaccio et al. (2018)), this assumption is substantiated for dry bulkers. These papers
show that both in secondary markets for ships, as well as in transport contracts, the majority of
price variation is accounted for by a ship’s age and aggregate indicators of economic activity. To
further substantiate this assumption, we explore a small sample of new ship purchase contracts
with detailed price information and ship attributes. Ship type, ship size (measured in Compensated
Gross Tonnage), and quarter dummies explain most of the price variation: the R2 of a hedonic
price regression when these are the only regressors is 0.93 for bulk, 0.94 for tankers, and 0.75 for
containers. Ship and shipyard characteristics (age, country, number of docks and berths, etc.) have
limited explanatory power: adding shipyard fixed effects to the hedonic regressions adds little to
the fit with the exception of containers where the R2 does increase.

We assume away dynamic considerations in production. In practice, producing a ship takes
time and the production decision is in general dynamic: production today affects the backlog to-
morrow, which affects tomorrow’s operation costs and therefore production decisions. However,
as documented in Kalouptsidi (2018), cost function estimates under static and dynamic assump-
tions are fairly similar, especially the estimates that reflect the impact of policy interventions on
firms’ production costs. This is partly because the amount of drastic production expansion seen in
practice cannot be entirely explained by the inter-temporal considerations that arise with a dynamic
production. Note that we allow backlogs to directly affect the marginal cost of production, which
proxies for the dynamic considerations in production decisions in a reduced-form manner.

Moreover, we model shipyards’ production decision in tonnage, rather than number of ships.
Modeling the optimization decisions in both the number and size (tonnage) of ships is substantially
more complicated. Since our main focus here is on entry, exit, and investment, we thus make
the simplifying assumption that shipyards choose production in tonnage to maximize their static
profits. This keeps the model tractable. It is worth noting that our estimated production subsidies
are consistent with those in Kalouptsidi (2018) that models the choice of the number of ships and
focuses on shipyards producing a specific size category of dry bulkers, Handysize vessels.

12The containership segment may be concentrated among the operators, but they lease containerships from many
shipowning firms.
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We assume that the cost shocks ω jmt are i.i.d. There are several reasons for this choice. First,
ω jmt is estimated to be only moderately persistent, with a serial autocorrelation of 0.28 for bulk,
0.27 for tankers, and 0.39 for containerships. It is worth noting that our estimation procedure on
production cost parameters accommodates persistence in ω jmt (see Section 4.1). Second, while
it is straightforward to estimate the persistence of these shocks using observed quantity choices,
incorporating a persistent time-varying unobserved state variable in a dynamic model raises con-
siderable modeling and estimation challenges. For the same reason, the investment cost shocks
ν jt are assumed i.i.d. Given that aggregate investment increased by more than four-fold within a
year upon the announcement of the 11th National Five-Year Plan (Figure 4) and that all firms ex-
panded regardless of their efficiency level, firm-specific persistent investment shocks are unlikely a
first-order contributing factor to the boom of the capital expansion observed in our sample.

Lastly, the government policies are perceived as permanent by all firms. This is likely a strong
assumption, since China’s economy is experiencing a drastic transformation with a highly dynamic
policy environment. This assumption, however, is standard in the literature (Ryan, 2012). Relaxing
it and estimating firms’ expectations and adaptation to a changing environment is a difficult but
important topic for future research (Doraszelski et al., 2018; Jeon, 2018). One (imperfect) approach
to proxy for a dynamic policy environment is to use lower discount rates so that future profits are
less relevant for today’s decisions. We indeed test for the robustness of our results with different
discount rates.

4 Estimation Strategy

In this section, we present the empirical approach undertaken to uncover the model parameters. The
key primitives of interest are: the world demand function for new ships, the shipyard production
cost function, the investment cost function, the distribution of scrap values, and the distribution of
entry costs. We estimate the heterogeneous production cost function for shipyards in all countries,
but only analyze the dynamic decisions (entry, exit, and investment) for Chinese shipyards as there
is little entry, exit, and capacity expansion in Japan and South Korea (OECD, 2015, 2016).

We first estimate the demand curve for new ships, as well as the shipyard production costs.
We refer to these parameters as the “static parameters”. We use these estimates to construct firm
profits in each period. Next, we estimate the parameters governing investment costs and the scrap
values for exiting firms, i.e. the “dynamic parameters”. This constitutes the bulk of our dynamic
estimation where we adopt a two-step procedure in the tradition of Hotz and Miller (1993) and
Bajari et al. (2007). Finally, we estimate entry costs.13 We next describe our approach in detail.

13Combining step two and three and estimating all dynamic parameters jointly is more efficient but computationally
more challenging.
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This section is self-contained and the reader may omit it and proceed to the results section if
desired. Section 4.1 discusses estimation of the static parameters (demand and production costs).
Sections 4.2.1 and 4.2.2 present the first and second stage of estimating the dynamic parameters
(investment cost, scrap values, as well as entry costs).

4.1 Estimation of Static Parameters

Demand The demand curve (1) for ship type m is parameterized as follows:

Qmt = α0m +αpmPmt +d′mtαdm + ε
d
mt (9)

The demand shifters dmt include freight rates, the total backlog of type m, and some other type-
specific variables. Demand for new ships is higher when demand for shipping services is high,
reflected in higher freight rates.14 Conversely, a large backlog implies that more ships will be
delivered in the near future, which reduces demand for new ships today. We also control for aggre-
gate indicators of economic activity relevant for each ship type we consider: the wheat price and
Chinese iron ore imports for bulk carriers; Middle Eastern refinery production for oil tankers; and
world car trade for containerships. In some specifications, we allow for time trends as well. Finally,
we allow the price elasticity to change before and after 2006, the main policy year.

Prices are instrumented by steel prices and steel production.15 Steel is a major input in ship-
building and contributes to 13% of the costs (Stopford, 2009). The identification assumption is that
steel prices and steel production are uncorrelated with new ship demand shocks εd

mt . This is a plau-
sible assumption because only a modest portion of global steel production is used in shipbuilding
and an increase in ship demand (εd

mt > 0) is unlikely to have much impact on steel prices.16

As there is a single global market for each ship type, the demand curves are estimated from time
series variation. To improve the precision of parameter estimates, we restrict some parameters to
be the same across ship types and estimate equation (9) jointly across the three types using GMM.

Production Cost We parameterize the marginal cost function for type m, MCm
(
q jmt ,s jmt ,ω jmt

)
,

as follows:
MCm(q jmt ,s jmt ,ω jmt) = β0m + s jmtβsm +βqmq jmt +ω jmt (10)

14The freight rate measures are the Baltic Exchange Freight Index for bulk shipping, the Baltic Exchange Clean Tanker
Index for tankers, and the Containership Timecharter Rate Index for containerships.

15Other potential instruments include the aggregate number of shipyards, Jt , and the aggregate capital stock. These
cost-side instruments shift the industry supply curve and are determined in period t− 1, before demand shocks in
period t are realized. Results are robust with or without these additional IVs.

16In addition, internationally traded steel accounts for less than 8% of the volume of goods transported by dry bulkers
(UNCTAD, 2018). Thus, changes in the steel price that affect the amount of steel transported by sea are unlikely to
directly affect demand for dry bulkers.
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where q jmt denotes tons of ship type m chosen by firm j in period t. It is worth noting that because
of time to build, there is a difference between the orders placed in a period, the deliveries, and the
production. We use orders as a measure of q jmt , following Kalouptsidi (2018). We do so because
the number of tons ordered is the relevant quantity decision made by the firm. In addition, our
data source reports orders and deliveries instead of production and it is not straightforward to infer
production from orders. Last but not least, the decision on orders corresponds to observed prices,
while any constructed measure of production does not.

State variables s jmt include firm j’s capital and backlog of all ship types. The capital stock,
which is controlled by the firm through the investment decisions over time, reduces production
costs by allowing the firm to achieve economies of scale. The backlogs also capture economies of
scale, as well as learning by doing, and possibly capacity constraints. The vector s jmt in addition
contains the age and ownership status, nationality and region (for Chinese firms), a dummy for
large firms, the steel price, as well as polynomial terms of these state variables.17 Finally, s jmt

includes dummies for the policy intervention between 2006 and 2008 and then from 2009 onwards.
The production cost shock ω jmt is assumed to be normally distributed with mean zero and variance
σ2

ωm.
The optimal production q∗jmt , if positive, satisfies the first order condition that equates the

marginal cost of production to the price:

q∗jmt =
1

βqm

(
Pmt−β0m− s jmtβsm−ω jmt

)
The yard chooses positive production if and only if:

ω jmt < Pmt−β0m− s jmtβsm

Besides observed shipyard attributes, zero production is driven by unfavorable cost shocks: firms
with high cost shocks are more likely to stay idle.

The parameters characterizing shipyards’ production costs are θ q ≡
{

β0m,βsm,βqm,σωm
}M

m=1
and are estimated via MLE. The sample likelihood of the Tobit model is:

L =
M

∏
m=1

∏
q jmt=0

Pr(q jmt = 0|s jmt ;θ
q) ∏

q jmt>0
fq(q jmt |s jmt ;θ

q)

It is worth noting that θ q is consistently estimated even when ω jmt is correlated over time, despite

17Large firms are defined as the top firms that account for 90% of the aggregate industry revenue from ship production
throughout our sample period. There are fifty-five large Chinese shipyards. Adding this variable (on top of capital
and other firm attributes) helps to capture unobserved differences across firms, like management skills, political
connections, etc. and improves the fit of our model.
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the fact that this likelihood function assumes (erroneously) that ω jmt is i.i.d. (Robinson, 1982).18

To obtain the standard errors allowing for autocorrelation in ω jmt , we use 500 block bootstraps.
Finally, it should be noted that a firm’s production decisions provide no information on its fixed

cost c0, since the firm incurs this cost regardless of whether it produces. However, unlike most
empirical studies where fixed costs are assumed away, we take advantage of accounting cost data
to calibrate c0, exploiting the fact that firms report costs incurred even during periods when the
production facility is idle. Details on this calibration procedure are reported in Appendix A.1.
Restricting the fixed cost to zero may bias the counterfactual analyses (Aguirregabiria and Suzuki,
2014; Kalouptsidi et al., 2018); we discuss this issue further in Section 6.1.

4.2 Estimation of Dynamic Parameters

We now turn to the estimation of the dynamic parameters, i.e. the investment cost, the scrap value
distribution, and the entry cost distribution. To estimate these parameters, we rely on firm choices
regarding investment, entry and exit. An important complication in doing so is that optimal choices
depend on the value function (as well as an unobserved shock in the case of investment), which is
unknown. To tackle this challenge, we follow the tradition of Hotz and Miller (1993) and Bajari
et al. (2007) (henceforth BBL) and estimate the parameters in two stages. In the first stage, we
flexibly estimate investment and exit policy functions, as well as the transition process of state
variables from the data. Then, we use these estimates to obtain a flexible approximation of the
value function. Here we approximate the value function by a set of B-spline basis functions of
the state variables, following Sweeting (2013) and Barwick and Pathak (2015). In the second
stage, once we have an estimate of the value function, we formulate the likelihood of the observed
investment and exit and recover the dynamic parameters of interest. We next describe each step.
Appendix A contains additional details.

4.2.1 First Stage

Exit Policy Function Estimating the exit policy function can be done via a number of different
approaches (linear probability models, logit or probit, local polynomial regressions, etc.). Here, we
perform a probit regression, though results appear robust across different specifications:

Pr(χ jt = 1|s jt) = Φ(h(s jt))

where χ jt equals 1 if firm j exits in period t, h(s jt) is a flexible polynomial of the states, and Φ is
the normal distribution. We denote the first-stage estimate of the exit probability by p̂x(s jt).

18Intuitively this is similar to how the OLS estimator in the standard linear regression model continues to be consistent
(though not efficient) when the errors are non i.i.d.
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Investment Policy Function Recall that the cost of investment, Ci(i jt ,ν jt), has the following
form:

Ci(i jt ,ν jt) = c1i jt + c2i2jt + c3ν jt i jt + c4Tt i jt

The random investment cost shock ν jt helps to rationalize different investment decisions by observ-
ably similar firms. To our knowledge, this is one of the first empirical analyses that incorporates
this feature in the context of continuous investment.

The optimal investment policy function i∗jt(s jt ,ν jt) is implicitly defined by the following first
order condition:

β
∂E
[
V (s jt+1)|s jt , i∗

]
∂ i

≤
∂Ci(i∗,v jt)

∂ i
with equality if and only if i∗ is strictly positive. Our goal is to flexibly estimate i∗jt(s jt ,ν jt). Under
reasonable assumptions, one can show that the optimal investment is monotonically decreasing in
ν jt : firms with more favorable (smaller) cost shocks invest more, all else equal.19 As a result,
conditioning on s jt , the jth quantile of ν jt corresponds to the (100− jth) quantile of i jt in the data.
As shown in Bajari et al. (2007) and Ackerberg et al. (2007), we can recover the optimal investment
policy function i∗jt(s jt ,ν jt) as follows:

F(i|s jt) = Pr(i∗jt ≤ i|s jt) = Pr(ν jt ≥ i∗−1(s jt , i)|s jt) = Pr(ν jt ≥ ν |s jt)

= 1−Fv(ν |s jt)

which implies i∗|s jt = F−1(1−Fv(ν |s jt)
)

(11)

where F(i|s jt) denotes the empirical distribution of investment given the state variables and Fv

is the distribution of ν . The data requirement for estimating this conditional distribution non-
parametrically increases dramatically with the number of state variables and becomes challenging
in our setting. Therefore, we make the simplifying assumption that the optimal investment function
is additive in ν jt :

i∗jt = h1(s jt)+h2(ν jt)

where both h1(s jt) and h2(ν jt) are unknown functions to be estimated. Moreover, since the distri-
bution of ν jt cannot be separately identified from h2(ν jt) non-parametrically, we assume that ν jt

is distributed standard normal. We first flexibly regress observed investment on the state variables
to obtain an estimate of h1(s jt). Then we employ equation (11) to obtain an estimate of h2(v jt),
treating i∗jt− ĥ1

(
s jt
)

as the relevant data.
We do not incorporate divestment in our analysis. Compared to the massive investment under-

19One sufficient condition for monotonicity is that the value function has increasing differences in investment and the
negative of the investment shock.
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taken by Chinese shipyards, divestment is much less common and an order of magnitude smaller.20

Modeling the level of divestment with irreversible adjustment costs (firms only recoup a fraction
of the nominal value of their capital goods when they sell them) introduces a kink in the cost
function and makes the value function non-differentiable, which raises considerable computational
challenges. As a result, we abstract away from formulating the magnitude of divestment.

To address the issue that investment is non-negative, in addition to estimating the investment
policy function as above, we perform two robustness checks. The first is a Tobit model that assumes
h2(ν jt) is normally distributed. The second approach assumes that the median of h2(ν jt) is zero
and estimates h1(s jt) using the Censored Least Absolute Deviation estimator (CLAD) that was
first proposed by Powell (1984) and later extended by Chernozhukov and Hong (2002). With an
estimated h1(s jt) at hand, we non-parametrically estimate h2(ν jt) using a modified version of (11)
that takes advantage of the assumption that i∗jt is additively separable in s jt and ν jt . Appendix A
provides more details.

State Transition Process Some of the state variables included in s jt , such as the province and
ownership status, are fixed over time. The transition process for age is deterministic. Capital (k jt)
depreciates at a common rate δ , so that

k jt+1 = (1−δ )k jt + i jt

We calibrate δ to 2.3% quarterly (Brandt et al., 2012), reflecting China’s high interest rates over
our sample period. Similar to capital, the firm’s backlog in period t + 1 is determined by orders
and deliveries in period t. We assume backlog at time t + 1 satisfies an AR(1) process: b jmt+1 =

(1−δbm)b jmt +q jmt , and calibrate δbm based on average deliveries.21

Finally, we need to specify firm beliefs over the transition process of steel and ship prices. The
steel price, which is perceived as exogenous to the industry, follows an AR(1) process. The equilib-
rium price for each ship type is a complicated object, determined by the intersection of aggregate
demand and supply. Following other work in the literature (e.g. Aguirregabiria and Nevo 2013),
we model shipyards’ beliefs about ship prices as an AR(1) process. This is a behavioral assump-
tion: firms do not follow the production decisions of hundreds of rivals to predict future ship prices.
They instead use the AR(1) process as a heuristic rule. The introduction of the Chinese govern-
ment policies presents a permanent and unanticipated shock to the industry, which can potentially
change the evolution of firm beliefs over prices. To capture this, we allow the AR(1) process to
differ before and after 2006 when the policies came into effect.

20The aggregate divestment is about 12% of the aggregate positive investment in the industry. We also drop 5% outliers
with investment exceeding RMB 250 million or capital stocks exceeding RMB 4 billion.

21The quarterly depreciation rate for backlog, δbm, equals 6.8% for bulk, 6.3% for tankers, and 6.2% for containers.
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Value Function Approximation Armed with estimates of the policy functions and state transi-
tions, we now turn to the value function. We assume that the scrap value φ jt is distributed expo-
nentially with parameter 1/σφ and obtain the ex ante value function (i.e. prior to the realization of
φ jt) as follows:

V (s jt)≡ EφV
(
s jt ,φ jt

)
= Eφ

[
π(s jt)+max

{
φ jt ,CV (s jt)

}]
(12)

= π(s jt)+ px(s jt)E
(
φ jt |φ jt >CV

(
s jt
))

+
(
1− px(s jt)

)
CV (s jt) (13)

= π(s jt)+ px(s jt)σφ +CV (s jt)

where we use the fact that E(φ |φ > CV ) = σφ +CV , shown in Pakes et al. (2007). π jt(s jt) and
px(s jt) denote firms’ static profit and exit probability, respectively, and CV (s jt) denotes the firm’s
continuation value as defined in equation (4).

The ex-ante value function in our context is smooth and can be approximated arbitrarily well
by a set of B-spline basis functions of the state variables:

V (s jt) =
L

∑
l=1

γlul(s jt)

where {ul(s jt)}L
l=1 are basis functions and {γl}L

l=1 are coefficients to be estimated. This approach
has several advantages. First, it avoids discretization and approximation errors therein when the
state space is large. Second, replacing an unknown function with a finite set of unknown parameters
substantially reduces the computational burden. Third, the accuracy of the value function approxi-
mation can be controlled via appropriate choices of the basis functions and is directly benchmarked
by the violation of the Bellman equation.22

We search for {γl}L
l=1 that minimize the violation of the Bellman equation (12) given the dy-

namic parameters:

{γl}L
l=1 = argmin

γl

∥∥V (s jt ;γ)−π(s jt)− p̂x(s jt)σφ −CV (s jt ;γ)
∥∥

2 (14)

where p̂x(s jt) and î∗(s jt ,ν jt) are the estimated first-stage exit and investment policy functions,
respectively, CV (s jt ;γ) =Eν jt

{
−Ci(î∗(s jt ,ν jt))+βE[V (s jt+1;γ)|s jt , î∗jt ]

}
is the continuation value

evaluated at these estimated policy functions, and ‖.‖2 is the L2 norm. Equation (14) is imposed as
a constraint in the estimation of the dynamic parameters, as discussed below.

22Another popular approach to calculate the value function is via forward simulation. The computational burden of our
approach is comparable to forward simulation when the policy function is linear in parameters.
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Constructing Basis Functions Note that several state variables enter the shipyard’s payoff as
a single index s jmtβsm in the marginal cost of production (10), including the shipyard’s region,
ownership, size, age, and backlog. Instead of keeping track of each state individually, we collapse
them into a single-dimensional state using the estimated coefficients:

s̄ jt =−∑
m

s jmtβsm (15)

We use s̄ jt as a measure of a firm’s observed cost efficiency: a higher s̄ jt is associated with a lower
marginal cost and a higher variable profit. Our approach of collapsing firm-level state variables into
a single index is similar in spirit to Hendel and Nevo (2006) and Nevo and Rossi (2008) that use the
“inclusive value” to capture the impact of changing product attributes on future profits. We further
assume that s̄ jt evolves via a simple rule s̄ jt+1 = α0 +α1s̄ jt , which almost perfectly forecasts s̄ jt+1

in period t since all but one of the variables in s̄ jt are deterministic.
Therefore, the state variables in the dynamic estimation are the capital stock, the price for each

ship type, the steel price, s̄ jt (which subsumes the remaining firm characteristics), and two policy
dummies for the periods 2006-08 and post 2009, respectively. The basis functions are flexible third
order B-splines (i.e. quadratic piecewise polynomials). Given our focus on investment, we use
two knots (and have experimented with more knots) in forming the B-splines for capital. The total
number of basis functions is 44.

4.2.2 Second Stage

Investment and Exit We estimate the dynamic parameters θ i≡
{

σφ ,c1,c2,c3,c4
}

via MLE. Our
sample likelihood includes both the likelihood for exit decisions and the likelihood for investment
decisions. The scrap value is assumed to follow the exponential distribution φ jt ∼ Fφ (σφ ), where
σφ is the average. The investment cost shock is assumed to follow the standard normal. The
log-likelihood for exit is:

∑
j,t

log( f (χ jt)) = ∑
j,t

[
(1−χ jt) log(1− e

−
CV (s jt ;γ)

σφ )−χ jt
CV (s jt ;γ)

σφ

]

where χ jt = 1 if firm j exits in period t and f (χ jt) is the associated likelihood.
Optimal investment, i∗jt = i∗(s jt ,ν jt), if positive, is defined by the first order condition:

β
∂E
[
V (s jt+1;γ)|s jt , i∗

]
∂ i

=
∂Ci(i∗,v jt)

∂ i

By construction, when i∗(s jt ,ν jt) is positive, it is strictly monotonic in ν jt . Assuming it is also
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differentiable, the likelihood of investment can be written as follows:23

g(i jt) =


fv(ν jt)
|i′(ν jt)| if i∗(s jt ,ν jt)> 0

Pr
([

β
∂E(V (s jt+1;γ)|s jt ,i)

∂ i − ∂Ci(i,v jt)
∂ i

]
i=0 ≤ 0

)
if i∗(s jt ,ν jt)≤ 0

where in the first row, fv(ν jt) is the density of the cost shock ν jt and |i′(ν jt)| is the absolute value
of the derivative of i∗(s jt ,ν jt) with respect to ν jt .

Since the scrap values φ jt and investment shocks ν jt are assumed independent, the joint log-
likelihood for exit and investment decisions is the sum of the two respective log-likelihoods. We
maximize the sample log likelihood subject to the Bellman constraint (14):

max
θ i

L = ∑
j,t

log( f (χ jt ;θ
i))+∑

j,t
log(g(i jt ;θ

i))

s.t. V (s jt ;θ
i) = π(s jt)+ px(s jt)σφ +CV (s jt ;θ

i)

Entry Cost Parameters Estimating the distribution of entry costs is straightforward once the
investment cost and scrap value parameters are known. A potential entrant enters if their value of
entry exceeds the random draw of the entry cost:

κ jt(Tt)≤V E(s jt)≡ E
[
−Ci(k jt+1)+βE

[
V (s jt+1)|st

]]
We first construct the value of entry V E jt using the dynamic parameter estimates and then estimate
the mean entry costs using the observed entry decisions, via MLE.

One issue with the entry cost estimation is how to treat firms’ initial capital stock. As the initial
capital is an order of magnitude larger than observed post entry investment, our investment model
cannot rationalize it as an ordinary investment decision.24 Therefore, we assume that the cost
of the initial capital equals C(kt+1) = c1kt+1 + c4Ttkt+1, where kt+1 is drawn from the observed
distribution of initial capital stocks. Essentially, we assume that firms face no adjustment costs
when choosing their initial capital so that c2k2

t+1 and c3νt+1kt+1 do not apply.

5 Results

This section follows closely the sequence in Section 4. Section 5.1 presents estimates of the static
parameters (demand and production costs). Section 5.2 discusses estimates of the policy functions

23The necessary condition for differentiability is that the value function is twice differentiable in investment, which
holds since the value function is approximated using smooth spline basis functions.

24The mean capital stock upon entry is RMB 125 million, compared to the average investment of RMB 18.5 million.
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and state transition process. Section 5.3 reports the dynamic parameter estimates (investment cost,
scrap values, as well as entry costs).

5.1 Static Demand and Production Cost Estimates

Demand Table 3 reports estimates of the demand curve (9). Column (1) presents the simplest
specification where the only demand shifter is the type-specific freight rate. Column (2) adds type-
specific demand shifters. Column (3) further controls for a time trend, while Column (4) allows
the time trend to differ before and after 2006. In all specifications, we allow for a different price
coefficient before and after 2006, to capture changes in the slope of the demand curve after the
introduction of Chinese subsidies. Given the limited number of observations for each type-specific
aggregate demand, we restrict the price coefficient post 2006 and the coefficient on backlog to be
the same across types. We instrument prices using the steel price and steel production and we
estimate the demand system using GMM. Adding demand shifters improves the fit, though time
trends appear to matter little.25 As such we use Column (2) as our preferred specification.

Demand becomes less elastic post 2006. According to our preferred specification (Column 2),
the price elasticity prior to 2006 was 1.8 for bulk and tanker, and 3.4 for containers. It fell to 0.3 for
bulk, 0.6 for tanker, and 1.7 for containers post 2006.26 As expected, demand is also responsive to
backlog (which affects the future competition that shipowners face): a 1% increase in the backlog
leads to a 1% decrease in the quantity of new ships demanded. The remaining shifters have the
expected sign.

Production Cost Table 4 shows the estimated marginal cost parameters for Chinese yards for
each ship type (standard errors are computed from 500 block bootstrap samples). We allow the key
parameters that characterize the curvature of the production cost to be type specific (the coefficients
on quantity, capital, backlog, and steel price), but restrict the coefficients on subsidy dummies and
shipyard attributes to be the same across ship types, due to the large number of parameters. There
are intuitive reasons for these restrictions. For example, the effect of scale economies from holding
a large backlog, the return to capital (which proxies for capacity), and input intensity are likely to
be different across ship types. On the other hand, it is not unreasonable to assume that subsidies are
not earmarked for a particular ship type, as firms can produce different kinds of ships depending on
the prevailing market conditions.

25In addition, the time trends pose a challenge to the stationarity assumption of our dynamic setup and are difficult to
deal with when extrapolating beyond our sample period in the counterfactual analyses.

26Demand elasticity for new ships, which are durable goods, is driven by complicated dynamic considerations that
include the composition of the existing fleet, the expected number of new ships to be delivered in the near future, as
well as the beliefs about future freight rates and fuel costs. Hence, we have no prior as to whether it should increase
or decrease post 2006.
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As the Chinese policies came into effect in 2006 and underwent major changes in 2009, we
include separate dummies for Chinese yards in 2006-2008 and from 2009 onwards. The produc-
tion subsidy between 2006-2008 is estimated to be 1,510 RMB/CGT, which is 10-13% of the
average price. The subsidy from 2009 onwards is slightly smaller, at 1,380 RMB/CGT.27 Though
our estimation method, sample period, and industry coverage are different from those in Kaloupt-
sidi (2018), the estimated production subsidy is of a similar magnitude (with ours being slightly
smaller), which is reassuring.

The parameter βq captures the increase in marginal cost (in 1000 RMB/CGT) from taking an
additional order of 100,000 CGT. The larger βq is, the more convex the cost function is, and the less
responsive supply is to changes in prices. On average, a 10% price increase causes bulk production
to increase by 21%, tanker production by 28%, and container production by 22%. Higher capital
is associated with a lower marginal cost of production, though at a diminishing rate (the coefficient
on capital squared is positive). Increasing capital by RMB 100 million for an average firm with a
capital of RMB 400 million reduces the annual marginal cost of production by 2.1% for bulk, 1.8%
for tanker, and 1.7% for container. To put these numbers into context, the average firm’s per-period
profits would decline by 19% if its capital stock were halved.

Moreover, we find strong evidence of economies of scale in production with respect to the
backlog: it is cheaper to produce multiple ships at the same time. The effect of the backlog on
marginal cost is sizable: increasing the backlog by 100,000 CGT reduces the marginal cost of
production by 11% to 27% on average across ship types. As backlogs continue to increase, capacity
constraints become binding and drive up marginal costs, as reflected in the positive coefficient
(though much smaller in magnitude) on backlog squared.

Firms located in Jiangsu, Liaoning, and Zhejiang provinces (the major shipbuilding regions in
China) have lower marginal costs, by 18-22% for Jiangsu, 13-16% for Liaoning, and 10-12% for
Zhejiang. The (additional) effect of ownership is limited. While private firms have the highest
marginal costs, followed by small SOEs, CSSC/CSIC owned SOEs, and finally foreign JVs, none
of these coefficients is statistically significant. As shipyards age, their marginal cost increases by
about 1% each year. Finally, increases in the steel price raise the marginal cost for all types, as
expected.

The fixed cost calibrated from the average of the NBS accounting data equals RMB 15 million
per quarter, accounting for 15% of the industry profit on average. Thus setting it to zero, as is
commonly done in the literature, would significantly overestimate per-period profits accruing to
firms.

Our baseline specification (Table 4) estimates costs separately for each country, partly because

27In robustness checks, we estimate the production subsidies separately for each region. They are higher in Jiangsu
and Liaoning than in Zhejiang and the rest of China, although the differences are statistically insignificant.
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we only observe the capital stock for Chinese shipyards. Table 5 displays parameter estimates
when shipyards from all three countries are pooled together. We set the capital variable to zero
for Japanese and South Korean yards and use country dummies to control for these capital costs.
The key coefficients are qualitatively similar, though the subsidy for Chinese yards during 2006-08
is estimated to be somewhat larger relative to the baseline specification. We prefer the baseline
specification, which allows more flexibility in capturing production differences across countries
and delivers a more conservative estimate of the subsidies.28

In Appendix Section A.2, we examine both within-firm and industry-wide learning-by-doing
among Chinese shipyards by allowing the marginal cost of production to depend on a firm’s past
production as well as the industry cumulative past production. Despite the potential upward-bias of
over-estimating the spillover effects in the absence of suitable instruments, our estimates suggest
that there is no evidence of learning-by-doing: marginal costs tend to increase rather than decrease
in past production. This is consistent with industry reports that the technology for producing ships,
especially bulk and tankers, has been around for a while and is mature. We hence take the baseline
estimates from Table 4 to the dynamic estimation and counterfactual analyses.

5.2 Dynamic Parameters: First Stage

Investment policy function Table A2 in Appendix A reports the estimates for the investment
policy function using OLS, Tobit with h2(ν) normally distributed, and CLAD, which does not
impose a distributional assumption on ν . Our preferred specification is the OLS regression, which
delivers the highest model fit. Investment increases in ship prices and decreases in the steel price.
Firms with higher s̄ jt (i.e., more productive) invest more all else equal. As expected, the coefficients
for both the 2006-08 and 2009+ policy dummies are positive. Moreover, investment is hump-
shaped with respect to capital: it initially increases in the capital stock, reaches a peak when capital
equals RMB 1-1.5 billion, and then falls. Lastly, we invert the decreasing function h2(ν), to obtain
v in order to calculate the expected investment cost that enters the sample likelihood below.

Exit policy function We estimate the exit policy function via a probit regression. Table A3 in
Appendix A presents two sets of estimates using linear terms of all states as well as capital squared,
with and without region fixed effects. Firms with higher s̄ jt are less likely to exit, which is intuitive
as s̄ jt is a measure of firm profitability. Exit probabilities are lower when subsidies are in place.

28However, using the cost estimates that pool data from all three countries leads to qualitatively similar welfare results.
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5.3 Dynamic Parameters: Second Stage

Investment and exit Table 6 reports the investment cost estimates; note that following the liter-
ature on investment (Cooper and Haltiwanger, 2006), we assume that the unit investment cost is
equal to one (c1 = 1).29 Between 2006-2008, the subsidy was 0.25 RMB per RMB of investment,
implying that 25% of the per-unit cost of investment (excluding adjustment costs) is subsidized.
Post 2009, the subsidy nearly doubles and jumps to 0.49 RMB per RMB of investment, which
helps rationalize the elevated investment post the financial crisis with plummeting ship prices. In
addition, the increase in subsidies post 2009 is consistent with the government policy change that
shifted the focus towards consolidating the industry and supporting existing firms.

The coefficient on quadratic investment, c2, is both economically and statistically significant.
On average, adjustment costs account for 28% of total investment costs and exceed 50% for large
investments over RMB 50 million. In addition, an estimated large value of c3 implies that the
shock ν jt plays an important role in explaining investment. Finally, the mean of the scrap value
distribution is estimated to equal RMB 0.69 billion. This is significantly lower than the estimated
value of a firm, V (s jt), which is around three to four billion RMB, as exit is a rare event and occurs
in only 1% of the observations.

Figure 6 plots the distribution of the observed and the simulated investment. These two distribu-
tions are reasonably similar, though the actual distribution has a heavy-tail of large investments and
fewer medium-sized investments. Table 7 compares the actual number of exits with the model’s
estimates. Our model predicts fewer exits post 2006, with a total of 39 exits compared to a total of
48 exits observed in the sample.

Entry cost estimates Table 8 reports the estimates for κ jt , the mean entry costs, across periods
while Table 9 illustrates that the simulated number of entrants is reasonably close to the actual
number of entrants in each policy period. Given the different number of entrants across provinces
(Zhejiang has the highest number of entrants at 95), we estimate the entry cost separately for
Liaoning, Jiangsu, Zhejiang, which collectively account for 70% of new shipyards, and the rest
of China.30 The entry cost estimates range from RMB 25 billion to 91 billion prior to 2006.
Conditional on entering, the average entry cost paid is RMB 2.3 billion; this is close to a shipyard’s
accounting value.31 Given the unprecedented entry boom from 2006 to 2008, it is not surprising

29Monte Carlo evidence indicates that it is difficult to identify all the cost parameters in equation (7).
30We assume that the ship type produced by an entrant is a random draw from the observed distribution of product lines

for entrants in that province and is realized post-entry. In addition, entry subsidies are assumed to begin in 2004 for
Zhejiang, when it identified shipbuilding as a pillar industry, and in 2006 for all other provinces. This is consistent
with the empirical pattern that entry peaked earlier in Zhejiang than the rest of the country.

31See http://www.jiemian.com/article/1483665.html and http://www.wuhu.com.cn/
compay_mod_file/news_detail.php?cart=3&id=595 for news articles that report the book value of
shipyards.
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that we find substantial entry subsidies, with the fraction of entry costs that is subsidized varying
from 49% in Liaoning to 64% in Jiangsu. Entry costs increased substantially in 2009 when the
entry moratorium was put in place.32

A common challenge in estimating entry costs is setting the number of potential entrants, as this
is rarely observed. Following the literature (Seim, 2006), we assume that the number of potential
entrants in a region in any quarter is larger than the maximum number of entrants ever observed in
that region, specifically, twice the maximum number of observed entrants. At this level, the entry
rate is only 6.8% and thus leads to high estimated entry costs. We have estimated the entry cost
distribution under alternative assumptions (e.g. the maximum number of entrants ever observed,
or a large number such as 20 and 40). The higher the number of potential entrants, the higher the
estimated κ jt . While the estimates for κ jt vary, the estimated entry cost paid upon entering, as
well as the entry subsidies are remarkably robust, as they are essentially determined by the actual
number of entrants observed in the sample.

Note that the entry costs we estimate include both the economic costs of entry (e.g. opportunity
cost of land), as well as non-pecuniary costs of entry (e.g. a lengthy bureaucratic approval process).
Thus the monetary costs borne by the government in subsidizing entry may be lower than our
estimates. Nonetheless, the key qualitative conclusions that entry subsidies are more wasteful than
other subsidies (see Section 6) remain unchanged unless most entry subsidies (more than 90%) is
non-monetary.

6 Evaluation of China’s Industrial Policies

In this section, we carry out counterfactual experiments to evaluate the effects of China’s industrial
policies. Doing so necessitates simulating the industry for a long period of time, as both entry
and investment have dynamic consequences – the accumulated capital remains productive and new
firms can continue operation long after the policy ends.33

We implement the counterfactuals as follows. We simulate the world shipbuilding industry
from 2006, when the Chinese government started subsidizing its domestic industry, until 2099 (the
discounted profits post 2099 is negligible), turning on and off the subsidies as needed for each
experiment.34 In each period, Chinese firms make optimal production, investment, exit and entry

32Entry subsidies are large in magnitude, amounting to RMB 330 billion in our sample period. While the number is
large, it is consistent with a back-of-the-envelope calculation: entry subsidies induced the entry of 80-90 additional
firms and each firm is worth a few billion RMB.

33Production subsidies also have dynamic consequences through backlogs that affect future cost of production, though
these effects disappear when backlogs are converted to deliveries within a few years.

34For each counterfactual, we carry out 50 simulations and average over these simulations. Further increasing the
number of simulations makes little difference to the results. The discount rate is 0.02 per quarter, or 0.08 annually,
reflecting the high interest rates in China (averaging 6% from 1996 to 2018). We have experimented with different
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decisions, taking both prices and government policies as given. Japanese and South Korean firms
make production decisions, but do not invest or enter/exit, since there is limited capacity expansion
or entry/exit among these firms as discussed above.35 Equilibrium prices are determined each
period by the intersection of the industry demand and supply curves. Appendix B contains more
details on the implementation.

In Section 6.1, we first briefly evaluate the impact of subsidies. Then, we turn to our main
exercise: the welfare evaluation of different types of subsidies. We also discuss the timing of sub-
sidies. Section 6.2 evaluates the consolidation policies. Section 6.3 examines different rationales
for industrial policy interventions.

6.1 Evaluation of Subsidy Policies

Magnitude of Subsidies Perhaps not surprisingly, subsidies had a significant impact on every
outcome we examine: China’s world market share, overall production, prices, entry and exit, in-
vestment, profits, concentration and capital utilization.

Total subsidies handed out to Chinese shipbuilders were close to RMB 540 billion (or $90
billion) between 2006 and 2013 without discounting, with the lion’s share going to entry subsidies
(RMB 330 billion), followed by production subsidies (RMB 159 billion) and investment subsidies
(RMB 51 billion). The subsidies are massive in comparison to the size of the domestic industry,
whose revenue was around RMB 1700 billion during the same period.

These subsidies increased China’s world market share during 2006-13 by nearly 40%. The
ascent in market share is most pronounced for bulk ships, since a large fraction of the new ship-
builders produce bulkers and the cost advantage enjoyed by Japanese and South Korean firms is
narrower for bulkers. In the absence of subsidies, China’s production would still increase in abso-
lute value in response to the higher demand during the boom; this increase however would have
been much less pronounced.

In absolute terms, only one-fourth of China’s increased production translated into higher world
industry output. The remaining three-fourths constitute business-stealing, whereby Chinese pro-
duction expanded at the expense of competing firms in other countries. As a consequence of
Chinese subsidies, South Korea’s market share decreased from 47% to 38% and Japan’s market
share from 24% to 21% during the 2006-2013 period, with profits earned by shipyards in these two
countries falling by RMB 140 billion.

subsidy durations (subsidies ending after a varying number of decades) and different discount rates. The results are
qualitatively very similar.

35In practice, Chinese subsidies might induce exit in Japan and South Korea, which could be important in the long-run
and result in larger gains for China. On the other hand, our analysis does not take into account industrial policies that
could be adopted by Japan and South Korea. If these governments respond in kind, the gains to Chinese shipbuilders
from the subsidies would be reduced.
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The rising global supply induced by the subsidies led to substantial reductions in global ship
prices: the price of bulk ships, oil tankers, and containers fell by 8.2%, 6.2%, and 3.1% from
2006 to 2008, respectively (Table 10). The price effect is most significant for bulkers, as Chinese
shipyards account for a bigger market share in bulk and demand for bulkers is the most inelastic.
As the effect of past subsidies accumulates through an increased production capacity for existing
firms and a larger number of new firms, the price drop became more pronounced from 2009 to 2013
and reached 16.5% for bulk, 10.6% for tankers, and 3.7% for containers. Because of the reduction
in ship prices, world shipowners benefit by RMB 230 billion from Chinese subsidies, though only a
small proportion of these gains accrues to Chinese shipowners as they account for a small fraction
of the world fleet.36

Figure 7 compares the number of Chinese firms by year with and without subsidies. Govern-
ment support more than doubled the entry rate: 148 firms enter with subsidies vs. 65 without
subsidies from 2006 to 2013. It also depressed exit (37 firms exit vs. 46) and changed the composi-
tion of exiting firms. With subsidies, a bigger fraction of exiting firms come from those that entered
during the policy period, partly because subsidies attract small and relatively inefficient firms.

Figure 9 illustrates the striking effect of subsidies on investment, which skyrocketed post 2006.
Total investment during 2006-2013 is RMB 114 billion with subsidies, compared to RMB 42 billion
without subsidies.

Finally, total subsidies handed out between 2006-13 led to an estimated RMB 145 billion in-
crease in the discounted lifetime profits for Chinese shipbuilders. Entry subsidies induce entry of
small inefficient firms. In addition, production and investment subsidies boost firms’ variable profit
and retain unprofitable firms that should have exited. As a result, the industry became much more
fragmented post the policy period. China’s domestic Herfindahl-Hirschman index (HHI) plum-
meted from 1,200 in 2004 to less than 500 in 2013 (Figure 8) with a significantly lower 4-firm
concentration ratio. Despite a sizable increase in China’s overall production, capacity utilization
was much lower, particularly when demand was low. If China had not subsidized the shipbuilding
industry, the ratio of production to capital (which proxies for capacity utilization) would have been
20% higher during the 2009-2013 recession.

Welfare Analysis and Effectiveness of Subsidies Subsidies led to a substantial increase in the
number of firms, capacity, and production, and also resulted in lower prices, lower capital utilization
and a more fragmented industry structure. Our first goal in this section is to explore the welfare
implications of the subsidies. Since there is no market failure that the subsidies address, these

36According to Clarkson World Shipyard Monitor, orders by Chinese shipowners have been growing but still account
for under 10% of world orders in 2010-2013.
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interventions are necessarily welfare-reducing.37 What is less well-understood is how distortionary
subsidies are and the magnitude of the welfare losses. Our second, and perhaps more important
goal is to shed light on the effectiveness of different types of policy instruments, in particular the
relative efficacy of production, investment, and entry subsidies, and search for general lessons that
can be applied in other contexts. Since China’s domestic consumer surplus accounts for a small
fraction of the world consumer surplus as discussed earlier, and is modest compared to the industry
profit, we only briefly discuss the effect on consumer surplus when it is relevant.

In order to compare different types of policies, we carry out five counterfactual exercises with
different subsidies in place: all subsidies (as in the data), only production subsidies, only investment
subsidies, only entry subsidies, and no subsidies. When simulating the industry beyond 2013, we
assume that the 2013 policy environment is propagated to the end of our simulation period unless
otherwise noted. For example, in the scenario with all subsidies, entry subsidies run from 2006 to
2008, whereas production and investment subsidies run from 2006 to the end.38

The welfare effects are summarized in Table 11, which reports the discounted sums of industry
revenue and profit in China, as well as the magnitude of different subsidies. The last three rows,
“∆Revenue/Subsidy”, “∆(Profit-Inv. Cost)/Subsidy”, and “∆Net Profit/Subsidy”, constitute differ-
ent measures of the effectiveness of the subsidies. “∆Revenue” is the revenue difference between
subsidies and no subsidies. We report the ratio between the revenue increase and the subsidy cost to
evaluate the effectiveness of subsidies at promoting industry revenue. This is of interest, as China’s
official government documents explicitly state production targets for the domestic shipbuilding in-
dustry. “∆(Profit-Inv. Cost)” is the difference in variable profit (revenue minus production cost)
after subtracting investment costs. Finally, “∆Net Profit” is the difference in net profit which equals
revenue plus the scrap value upon exiting, minus the costs of production, investment, and entry. We
use “∆Net Profit/Subsidy” to measure the gross rate of return of different subsidies. A rate lower
than 100% indicates that the cost of subsidies exceeds the net benefits to the domestic industry and
that subsidies are welfare reducing.

When all subsidies are in place, this policy mix is highly ineffective, as reflected by the rate
of return being merely 18%. When each policy is in place in isolation, the return is 56% for
production subsidies, 87% for investment subsidies, and 24% for entry subsidies, respectively.
This implies that the distortions induced by multiple subsidies are convex: i.e. the combination of
all policies yields a considerably lower return compared to each policy in isolation. For example,
entry subsidies lower the entry threshold and thus attract inefficient entrants. With the introduction
of production and investment subsidies, the number of firms in operation is further inflated due to

37In the absence of market failures and externalities, the best subsidy would be no subsidy. We return to this issue and
examine rationales for industrial policies in Section 6.3.

38Another option is to shut down production and investment subsidies post 2013. This would constitute an unantici-
pated policy shock to firms and is shown in our simulations to produce lower returns.
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subsidized revenue. This drives down the rate of return and makes the subsidies more distortionary
in per-dollar terms.

An important factor contributing to the low returns are fixed costs. Indeed, firms incur fixed
costs to stay in business even when they receive no orders from buyers. In volatile industries with
cycles of booms and busts, this tends to be a common occurrence: as exit is irreversible, firms are
willing to suffer temporary losses in expectation of higher demand in the future. If fixed costs were
zero, the rate of return on subsidies would increase from 18% to 29%.39

We now turn to the performance of each type of subsidy in isolation. If industry revenue is the
object of interest, both production and investment subsidies are effective. On average, one RMB
increase in the production and investment subsidy raises the industry’s revenue by RMB 1.8 and
RMB 2.3, respectively. This might justify the popularity of these subsidies in China, since quantity
and revenue targets are often linked to local officials’ promotion (Jin et al., 2005). In addition, as
discussed earlier, the government had set explicit output targets for ship production.

The investment subsidies appear less distortionary than the production subsidies (87% vs.
56%). However, this comparison is confounded by the larger magnitude of the production sub-
sidies, as in our setting bigger subsidies are associated with more distortion. We reduce the per-unit
production subsidies by 75% and make the total amount of these two subsidies comparable (RMB
44 billion). The return to investment subsidies remains higher, though the difference is smaller
(87% vs. 81%). On the other hand, production subsidies are slightly more effective at increasing
revenue: the increase in revenue per RMB of subsidy is 233% for production subsidies, versus
226% for investment subsidies. Thus, depending on the policymaker’s objectives, there is poten-
tially a trade-off between production and investment subsidies. If the policymaker’s goal is to max-
imize industry profits, perhaps investment subsidies are superior. However, if the goal is to achieve
a production/revenue target, then production subsidies might be preferred. In a similar vein, Aldy
et al. (2018) find that wind farms claiming output subsidies produced 10-11% more power than
wind farms claiming investment subsidies. Finally, for a government that cares about both industry
revenue and profit, a mix of production and investment subsidies may be more effective.

Entry subsidies are the least efficient policy instrument among the three by a large margin.40

This is because the take-up rate for production and investment subsidies is higher among firms
that are more efficient, receive more orders (higher backlogs), and are more likely to invest.41 In

39The discussion here does not take into consideration the cost to finance these subsidies. Estimates from Ballard et al.
(1985) suggest that collecting one dollar of government revenue costs 17 to 56 cents in the U.S. Including the cost to
finance subsidies will further drive down the rates of return.

40It might be easier to finance entry subsidies than production or investment subsidies, which matters for the imple-
mentation of different policies. Unfortunately we do not have data to evaluate the importance of this concern.

41Appendix C uses a simple static model to compare production and investment subsidies and illustrates that the rate
of return is higher when taken up by efficient firms. In our empirical analysis, there are four decisions that can be
distorted: entry, production, investment, and exit. Compared to efficient firms, inefficient firms are more likely to be
distorted in all four margins with subsidies. In addition, efficient firms enjoy considerable economies of scale as a
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addition, production and investment subsidies increase backlogs and capital stocks that lead to scale
economies and drive down both current and future production costs. In contrast, the entry subsidies
predominantly attract the entry of small, high-cost firms that would not find it profitable to operate
in the absence of subsidies. The large number of additional entrants contributes little to industry
profits, while it reduces ship prices and exacerbates excess supply.

Table 12 illustrates these points by decomposing subsidies that are taken up by firms above or
below the median efficiency (as measured by s̄ jt , defined in equation 15). Subsidies are significantly
more effective when given to productive firms, both in terms of revenue and in terms of profits. The
subsidies accruing to productive firms has a net rate of return equal to 29%, while those going to
unproductive firms is almost entirely wasted.42 Note that production and investment subsidies
are reasonably well-targeted, with between 70-84% of subsidies going to productive firms. In
comparison, less than 50% of entry subsidies are taken up by productive firms.

Our welfare analysis so far has abstracted away from changes in consumer surplus enjoyed by
Chinese shipowners. Assuming that these gains are equal to 10% of total surplus gains (which is an
upper bound), the rate of return increases from 18% to 26%. For the total benefit of the subsidies
to exceed the cost, China’s share of the global consumer surplus from new ships would need to be
over 94%.43

Finally, as a robustness check, we repeated our analysis assuming that firms are Cournot com-
petitors rather than price takers. Parameter estimates are quantitatively similar to our main spec-
ification, though the estimated marginal costs become smaller and firm profits higher. Therefore,
the recovered subsidies are somewhat larger (in the order of 10-20%). The counterfactual results,
including both the return to industrial policies and the comparison of different subsidies, are un-
changed in this case.

Business Cycles and Industrial Policy Like many other industries, cycles of booms and busts
are a fundamental feature of shipbuilding. A rich macro and public finance literature explores
the optimal fiscal policy over the business cycle and generally recommends counter-cyclical fiscal
policies, in order to smooth out intertemporal consumption (Barro, 1979), reduce the efficiency
costs of business cycle fluctuations (Gali et al., 2007), and increase long-run investment by lowering
volatility (Aghion et al., 2014). It is less well-understood, however, how industrial policy should

result of larger backlogs and capital stocks relative to inefficient firms, which further widens the wedge in efficiency.
42The rate of return for subsidizing unproductive firms is negative due to a general equilibrium effect: increased

production drives down ship prices. Since these firms have high production costs, reduction in ship prices offsets
potential gains in quantity produced.

43Naturally, these results depend on the elasticity of the demand curve. We repeat our counterfactuals by assuming that
demand post 2006 is as elastic as pre 2006. We find that with a more elastic demand curve post-2006, the incidence
of subsidies on producers is higher, resulting in a smaller reduction on prices, a smaller increase in consumer surplus,
and a larger gain in producer surplus. As such, the return on subsidies would increase from 18% to 25%.
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be optimally designed in the presence of boom-and-bust cycles.
To explore whether the effectiveness of subsidies varies over the business cycle, we carry out

two counterfactual simulations. The first simulation only subsidizes production and investment of
all firms during the 2006-08 boom, while the second simulation only subsidizes production and
investment during the 2009-13 bust. All subsidies are discontinued afterwards. The subsidy rates
are calibrated so that the government spends the same amount in the two scenarios. This design
allows us to explore the long-run implications of pro-cyclical vs. counter-cyclical policies.

Strikingly, subsidizing firms during the boom leads to a net return of only 29%, whereas sub-
sidizing firms during the downturn leads to a much higher return of 78%, as shown in Table 13.
What explains this large difference?

There are two main contributing factors: convex production and investment costs, and firm com-
position. In booming periods, the industry is operating close to full capacity. Further expansion is
costly and entails utilization of high-cost resources. Firms that are already producing and investing
may choose to engage in more rapid expansion than is optimal, incurring large adjustment costs.
During a bust, on the other hand, the industry operates well below capacity and many production
facilities remain idle. Subsidies mobilize underutilized resources, resulting in smaller distortions.
The second contributing factor is the changing firm composition over the business cycle. Subsidies
during a boom attract a higher fraction of inefficient firms, which pushes down the rate of return.
As an illustration, Figure 10 plots the average s̄ jt (a measure of profitability) over time for these
two scenarios. Subsidies in the boom leads to a much lower average profitability than subsidies in
the bust, as expected.

Despite the benefits of a counter-cyclical policy, the actual policy mix is overwhelmingly pro-
cyclical: RMB 442 billion of subsidies were handed out between 2006 and 2008, vs. RMB 106
billion between 2009 and 2013. This echoes a more general finding in the literature showing that
developing countries typically use pro-cyclical fiscal policies (Frankel et al., 2014), due to budget
constraints, political considerations, etc. (Tornell and Lane, 1999; Barseghyan et al., 2013).

6.2 Evaluation of Consolidation Policies

One explicit goal of China’s industrial policies after the financial crisis is to facilitate consolidation
and create large successful firms that can compete against international conglomerates. A crucial
policy for achieving this objective was the 2013 Shipbuilding Industry Standard and Conditions,
whereby the government announced a list of selected firms that meet the industry standard, the so
called “White List”. In this section, we ask the following questions. First, does the consolidation
policy improve the return of subsidies, and if so by how much? Second, did the government choose
the optimal set of firms for the White List?
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Gains from Targeting In our first counterfactual exercise, we rank firms in 2013 based on their
expected variable profits (E[π jt ]) in that year, and select the top 56 firms with the highest profitabil-
ity to form the White List.44 These firms receive production and investment subsidies, while other
firms receive no subsidies post 2013. We compare this policy to the one that subsidizes all firms
after 2013, as well as the case with no subsidies.

As shown in Table 14, directing subsidies towards the best set of firms generates considerable

gains. The net rate of return for targeted production and investment subsidies is 84%, whereas the
return is 38% when all firms are subsidized. This pattern holds across all three measures of policy
effectiveness (revenues, profits net of investment cost, net profits), due to several reasons. First,
subsidizing all firms encourages sub-optimal entry, while the White List policy only subsidizes
existing firms and does not distort entry. Second, subsidizing existing firms leads to lower exit than
is socially optimal, but the set of firms on the White List is less likely to be subject to sub-optimal
exit decisions, in contrast to other firms that are more prone to distortions. Lastly, as argued above,
targeting productive firms leads to less distortion.

White List While subsidies are less distortionary when targeted towards efficient firms, it is
unclear a priori whether the government targeted the optimal set of firms. Information asymmetries
and regulatory capture might bias the process in favor of interest groups or “sunset sectors” (Lane,
2017).

To avoid confounding effects from subsidies and focus on the “White List” only, in this analysis
we discontinue all subsidies post 2013 and examine profits post 2013 for the actual set of firms on
the White List vs. firms included in our “optimal White List” as constructed above. Note that our
selection criterion focuses on short-run profitability and thus we may not choose the firms with the
highest long-run profits. Thus this is a weak test: if the government chose the set of firms with the
highest long-run profitability, then their selected firms should do at least as well as the set of firms
we choose.

As shown in Figure 11, industry profits are significantly lower with the actual White List (the
dashed blue line) than our “optimal White List” (the solid red line). The difference in the long-run
industry profits and revenue (the discounted sum from 2014 to 2099) is 14% and 10%, respectively,
suggesting that the government did not choose the optimal set of firms in its White List. Out of the
56 firms chosen by the government, only 31 firms appear in our White List based on the short-run
profitability. There appears a bias in favor of SOEs: 65% of firms selected by the government are
SOEs, while 55% of our selected firms are SOEs.

44Four out of sixty firms on the official White List cannot be matched to the rest of our datasets described below, hence
we focus on the remaining fifty-six firms in our counterfactual analysis.
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6.3 Rationales for Industrial Policy

Our evaluation of China’s industrial policy in promoting the shipbuilding industry so far is mixed.
The subsidies boosted production and investment, but contributed to the development of a frag-
mented industry, reduced the capital utilization rates, and to a large extent, were dissipated through
sub-optimal entry/exit decisions. In this section, we assess traditional arguments in favor of in-
dustrial policies and evaluate the extent to which existing policies are effective in achieving these
objectives.

A common rationale for industrial policy is related to economies of scale: in markets with large
entry costs or other entry barriers, the government may want to boost, or aid the formation of a sec-
tor through subsidies. Indeed, especially in developing countries, capital market inefficiencies and
other regulatory constraints may drive a wedge between privately and socially optimal firm entry
(WTO, 2006). China provided entry subsidies in a number of sectors, which led to a large number
of small firms, before implementing consolidation policies to reduce industry fragmentation. A
combination of subsidies in the initial periods of the industry, possibly followed by consolidation,
could facilitate firm entry, induce a high industry growth rate, and allow the survival of the best
performing firms post consolidation.

We assess this argument by simulating two scenarios. In the first scenario, the government
subsidizes entry, production, and investment from 2006 to 2013, chooses the 56 best firms from
the pool in 2014, and shuts down the remaining firms. In the second scenario, the industry evolves
without any intervention and then the government selects the same number of the best firms in
2014. In both scenarios, once the White List firms have been selected and the other firms removed,
the industry is allowed to evolve with no further government intervention. We compare the long-run
industry revenue and profits from 2014 onward.

Subsidizing the industry prior to consolidation does lead to 18% higher long-run industry rev-
enue and profits, as shown in Figure 11. Since the number of firms is the same upon consolidation in
2014, the profit difference is driven by firm composition: firms are bigger and more productive with
subsidies (solid red line) than in the scenario without subsidies (dashed green line). Nonetheless,
the increase in the long-run industry profit is only 34% of the cost of subsidies from 2006 to 2013.
Therefore, this argument does not provide a compelling justification for subsidizing the industry. In
particular, entry subsidies are especially costly when combined with consolidation because a lion’s
share of the entry subsidies goes to waste when new entrants exit post consolidation.

Another justification for subsidies is the presence of positive externalities (such as industry-
wide learning-by-doing), as each firm produces less than what is socially optimal. As we discussed
in Section 5.1, there is no evidence of significant spillover effects in this industry. This is consistent
with industry reports that much of the production by Chinese shipyards occurs in product sectors

36



with mature technologies, where the scope for learning is limited.45

Our analysis focuses on the shipbuilding sector and does not account for benefits to other sec-
tors. While spillovers to downstream sectors provide a rationale for subsidizing upstream industries
(Liu, 2018), it is unlikely a justification for subsidies in the shipbuilding industry. Three-quarters
of the output from this industry is used for final consumption (China’s 2012 Input-Output Table).
Moreover, most of these ships are exported, reducing the share of benefits from subsidies that is
captured domestically.

There are potential spillovers to upstream sectors. Intermediate inputs from other sectors ac-
count for 63% of the value of ships produced. Steel in particular is an important input. One might
argue that shipbuilding subsidies are partially designed to boost demand for steel, a strategic sector
that has been subject to many policy interventions. However, steel used in shipbuilding accounts
for less than 1.5% of total steel produced (China’s 2012 Input-Output Table).

Another justification for industrial policy is labor market consequences: subsidies could have
welfare benefits if they increase employment or offset distortions that lead to depressed employ-
ment. Even in the grand scheme of things, total employment in shipbuilding and related industries
(ship repairs and marine equipments, etc.) accounts for less than 0.5% of national employment,
suggesting that any potential labor market benefits would be modest.

In the presence of market power, there are in principle strategic trade benefits from subsidizing
industries that compete with foreign firms (Krugman, 1986; Brander, 1995). Our main findings
remain unchanged when we allow for firms to exercise market power in Cournot competition;
indeed the returns to subsidies are nearly indistinguishable. For strategic trade considerations to
be relevant, a necessary condition is the existence of market power and thus ‘rents on the table’
that can be shifted from foreign companies to domestic firms. Given the fragmented nature of the
industry where the largest firm accounts for less than 5% of the market, our results suggest that the
shipbuilding industry is unlikely an effective target for strategic trade policies.

Given China’s prominent role in global trade, another reason to subsidize shipbuilding may be
to boost its import and export sectors. Indeed, a larger worldwide fleet reduces transportation costs
and thus increases trade; if Chinese exporters and importers face entry barriers or other frictions,
these subsidies may be justifiable. To evaluate this argument, we would have to augment our
model with a general equilibrium model of trade in order to predict changes in China’s exports and
imports brought by the enlarged ship fleet due to the industrial policy; unfortunately this creates
complications, such as computing the corresponding welfare gains, that fall beyond the scope of
this paper.46

45There might be technological ‘catching-up’ and learning among Chinese shipyards for producing the latest generation
ships (e.g. large containerships or LNG’s), where most of the patents and ‘know-how’ are possessed by Japanese and
South Korean firms. Unfortunately, there are few orders of these ships and our tests lack statistical power.

46In particular, to perform this calculation we need to compute the change in freight rates after the subsidies (Kaloupt-
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Finally, it is worth noting that other considerations, including national security and military
implications, as well as the desire to be the world leader in heavy industries (as stated in various
government documents), might be equally relevant in motivating these policies. Regardless of the
motivation, our analysis provides cost estimates (and welfare losses) and the relative efficacy of
implementing these policies that can be used as a guidance for future polices.

7 Conclusion

We empirically evaluate China’s industrial policies, using the shipbuilding industry as a case study.
While subsidies led to a significant increase in China’s world market share and buttressed China’s
ascent into global influence, they are wasteful and entail substantial welfare distortions. Counter-
factual simulations indicate that the effectiveness of subsidies can be improved substantially when
targeted towards more productive firms or implemented counter-cyclically. Our results provide a
cautionary tale of industrial policies implemented in developing countries and highlight the impor-
tance of a proper policy design.

sidi 2018 calculates this at 3-5% in the case of Handysize vessels), the trade elasticity with respect to freight rates
(Brancaccio et al. 2018 calculate this to be about 1), China’s total maritime trade (the exact portion of China’s trade
that is carried by ships, which is unknown) and finally, the resulting gains from trade. It is the latter element that is
complicated and requires overlaying our framework with a GE trade model.
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Figure 1: China’s Expansion in Major Industries
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on the right vertical axis.

Figure 2: China’s Market Share Expansion
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Figure 3: Entry of New Shipyards
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Figure 4: Quarterly Investment by Chinese Shipyards
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Figure 5: Ship Prices
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Figure 6: Simulated vs. actual investment
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Figure 7: Number of firms, with and without subsidies
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Figure 8: HHI for Chinese Shipbuilding, with and without subsidies
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Figure 9: Investment, with and without subsidies
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Figure 10: Average firm cost-efficiency s̄ jt with subsidies during the boom vs. subsidies during the bust
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Figure 11: Industry Profits Under Different White Lists
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Table 1: Shipbuilding National Industrial Policies

Year Shipbuilding National Industrial Policies Plan Period

2003 National Marine Economic Development Plan 2001-2010

2006 The 11th Five-Year Plan for National Economic and Social Development 2006-2010
2006 The Medium and Long Term Development Plan of Shipbuilding Industry 2006-2015
2007 The 11th Five-Year Plan for the Development of Shipbuilding Industry 2006-2010
2007 The 11th Five-Year Plan for the Development of Shipbuilding Technology 2006-2010
2007 11th Five-Year Plan for the Development of Ship Equipment Industry 2006-2010
2007 Guideline for Comprehensive Establishment of Modern Shipbuilding (2006-2010) 2006-2010
2007 Shipbuilding Operation Standards 2007-

2009 Plan on the Adjusting and Revitalizing the Shipbuilding Industry 2009-2011
2010 The 12th Five-Year Plan for National Economic and Social Development 2011-2015
2012 The 12th Five-Year Plan for the Development of the Shipbuilding Industry 2011-2015

2013
Plan on Accelerating Structural Adjustment and

2013-2015
Promoting Transformation and Upgrading of the Shipbuilding Industry

2013 Shipbuilding Industry Standard and Conditions 2013-

Table 2: Summary Statistics

Variable Obs Mean S.D. Min Max

All Observations (including zero orders)
Bulk orders (1000 CGT) 10,101 17.1 51.9 0.0 968.2
Tanker orders (1000 CGT) 10,583 9.6 46.2 0.0 1119.0
Container orders (1000 CGT) 4,813 18.9 93.9 0.0 1644.1

Observations With Positive Orders
Bulk orders (1000 CGT) 2,316 74.6 86.5 3.9 968.2
Tanker orders (1000 CGT) 1,436 70.4 107.1 0.05 1,119.0
Container orders (1000 CGT) 625 145.3 222.7 2.3 1,644.1

Other Variables
Bulk backlog (1000 CGT) 10,101 171.4 329.3 0.0 2830.5
Tanker backlog (1000 CGT) 10,583 98.5 315.1 0.0 3840.8
Container backlog (1000 CGT) 4,813 206.6 670.5 0.0 7362.8
Investment (mill RMB) 4,386 18.5 88.9 -240.5 1,770.7
Capital (mill RMB) 6,157 392.0 806.9 0.3 8,203.3
1. The data on orders and backlog is for yards in China, Japan and Korea. There are a total of

14,455 observations, out of which 7,186 are for Chinese yards, 5,448 are for Japanese yards and
1,821 are for Korean yards.

2. 10,101 observations are for yards that produce bulkers, 10,583 observations are for yards that
produce tankers, and 4,813 observations are for yards that produce containerships.

3. We observe investment and capital only for Chinese yards.
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Table 3: Demand estimates

(1) (2) (3) (4)
Dependent variable: Orders Orders Orders Orders

Price (bulk) -2.34*** -1.67*** -2.07*** -2.12***
(0.77) (0.64) (0.69) (0.75)

Price (tanker) -2.66*** -1.46* -1.80** -1.76**
(0.60) (0.88) (0.78) (0.89)

Price (container) -4.85*** -2.44*** -3.39*** -3.39***
(0.91) (0.85) (1.01) (0.99)

Price*Post2006 1.34*** 1.00*** 1.15*** 1.34**
(0.18) (0.14) (0.15) (0.55)

Backlog (log) 0.34 -1.00*** -0.78** -0.81**
(0.25) (0.33) (0.38) (0.37)

Freight rate (bulk) 2.84*** 3.27*** 3.35*** 3.33***
(0.45) (0.56) (0.57) (0.56)

Freight rate (tanker) 4.04*** 3.24*** 2.94*** 2.91***
(0.70) (0.68) (0.65) (0.65)

Freight rate (container) 6.45*** 4.47*** 4.69*** 4.60***
(0.87) (0.73) (0.77) (0.75)

US Wheat price -0.12 -0.10 -0.12
(0.48) (0.48) (0.49)

Iron ore imports, China 2.62*** 2.93*** 3.01***
(0.90) (0.89) (0.92)

Middle East refinery production 1.37 1.84* 1.66*
(1.05) (0.97) (0.99)

World Car Trade 1.32*** 2.08*** 2.05***
(0.44) (0.49) (0.49)

Trend -0.026** -0.020
(0.011) (0.019)

Trend*Post2006 -0.0026
(0.0076)

R2_bulk 0.68 0.71 0.71 0.71
R2_tanker 0.26 0.33 0.35 0.36
R2_container 0.44 0.52 0.51 0.51
* N equals 64 for bulk and container and 61 for tankers. The freight rate is the Baltic

Exchange Freight Index for bulk ships, Baltic Exchange Clean Tanker Index for
tankers, and the Containership Timecharter Rate Index for containerships. The de-
mand shifters include the US wheat price and total Chinese iron ore imports for bulk,
Middle East refinery production for tanker, and world car trade for containership. We
instrument ship prices using steel production and the steel ship plate price. Parameters
are estimated using GMM.
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Table 4: Cost function estimates

Bulk Tanker Container

Type-specific Coefficient T-stat Coefficient T-stat Coefficient T-stat

βq 7.34 9.52 13.60 5.54 9.69 5.63
σω 8.49 10.43 14.40 7.08 12.14 5.71
Constant (1000 RMB/CGT) 19.26 15.88 36.58 9.18 32.30 8.39
Steel Price (1000 RMB/Ton) 1.55 7.49 1.10 3.04 0.63 1.65
Capital (bill RMB) -2.43 -2.96 -2.61 -1.80 -2.19 -2.01
Capital2 0.19 0.83 0.06 0.25 0.06 0.32
Backlog -1.56 -5.29 -4.44 -5.04 -2.88 -3.34
Backlog2 0.07 4.04 0.24 3.43 0.18 1.97
Backlog of Other Types 0.13 0.94 0.35 1.65 0.46 2.66

Common
2006-2008 -1.51 -2.62
2009+ -1.38 -2.37
Large firms -3.85 -6.97
Jiangsu -2.64 -4.75
Zhejiang -1.42 -2.80
Liaoning -1.87 -2.05
CSSC/CSIC -0.77 -1.20
Private 0.14 0.30
Foreign JV -0.78 -1.45
Age 0.18 3.14

N 4886 4977 2504
* Standard errors bootstrapped using 500 bootstrap samples.
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Table 5: Cost function estimates, pooling data across China/Japan/South Korea

Bulk Tanker Container

Type-specific Coefficient T-stat Coefficient T-stat Coefficient T-stat

MC (thousand RMB / CGT)
βq 9.10 12.94 11.04 9.36 5.06 7.22
σω 10.36 13.78 15.12 11.11 13.36 9.20
China (1000 RMB/CGT) 19.40 17.11 32.30 12.99 29.79 12.68
Japan (1000 RMB/CGT) 12.57 16.67 30.92 12.78 25.02 11.45
South Korea (1000 RMB/CGT) 15.92 14.88 23.07 12.01 19.83 11.13
Steel Price (1000 RMB/Ton) 2.12 14.20 2.46 8.80 1.89 6.25
Capital (bill RMB) -2.92 -3.06 -2.06 -1.55 -1.41 -1.33
Capital2 0.23 0.89 -0.01 -0.05 -0.03 -0.14
Backlog -2.09 -6.63 -4.50 -6.38 -3.06 -4.40
Backlog2 0.10 4.83 0.24 4.15 0.19 2.48
Backlog of Other Types 0.11 0.76 0.32 1.47 0.47 2.66

Common
China 2006-2008 -2.79 -4.57
China 2009+ -0.90 -1.56
Large firms -4.17 -6.84
Jiangsu -2.93 -4.81
Zhejiang -1.57 -2.79
Liaoning -1.87 -1.88
CSSC/CSIC -0.93 -1.28
Private 0.13 0.24
Foreign JV -0.92 -1.61
Age 0.26 6.14

N 10013 10429 4661
* Standard errors bootstrapped using 500 bootstrap samples. We pool together Chinese/Japanese/Korean yards. We

observe the capital stock only for Chinese yards. To account for the missing values, we set the capital variable to
zero for Japanese and Korean yards, and allow the constant term to differ by country. We also allow the backlog
coefficients to differ by country. (Backlog coefficients for Japan and Korea are not reported above).
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Table 6: Estimates of investment cost and scrap value parameters

Coeff. T-stat

σφ 0.69 11.76
c1 1.00
c2 21.72 10.57
c3 1.55 8.27
c42006−08 -0.25 -1.89
c42009+ -0.49 -4.07

N 4286

* Standard errors bootstrapped
using 500 block bootstrap
samples.

Table 7: Actual vs. Simulated Exit

1999-2005 2006-2013 Total

Actual exits 5 43 48
Simulated exits 9 30 39
1 We simulate the model 50 times from 1999 to 2013 under

the baseline assumptions, and report the average number
of exits across these simulations in the table above.

Table 8: Entry Cost Distribution (Mean), billion RMB

κpre κpost,06 % of pre costs κpost,09+ % of pre costs

Jiangsu 60 22 36% 69 114%
Zhejiang 91 37 41% 194 214%
Liaoning 56 29 51% - -
Other 25 10 38% 44 172%
1 κpre refers to the mean of the entry cost distribution prior to 2004 for Zhejiang, and

prior to 2006 for Jiangsu, Liaoning and Other regions.
2 κpost,06 refers to the mean of the entry cost distribution between 2006 and 2008 for

Jiangsu, Liaoning and Other regions and between 2004 and 2008 for Zhejiang.
3 κpost,09+ refers to the mean of the entry cost distribution from 2009 onwards.
4 We assume that N̄, the number of potential entrants, equals twice the maximum

number of potential entrants ever observed in the region.
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Table 9: Actual vs. Simulated Entrants

Pre Post, Until 2008 Post, 2009+ Total

Actual entries 83 122 39 244
Simulated entries 69 125 38 232
1 "Pre" refers to the period prior to 2004 for Zhejiang, and prior to 2006 for

Jiangsu, Liaoning and Other regions.
2 "Post, Until 2008" refers to the period between 2004 and 2008 for Zhejiang

and between 2006 and 2008 for Jiangsu, Liaoning and Other regions.
3 "Post, 2009+" refers to the period from 2009 onwards.
4 We simulate the model 50 times from 1999 to 2013 under the baseline as-

sumptions, and report the average number of entries across these simulations
in the table above.

Table 10: Impact of Subsidies on Ship Prices

Bulk Tanker Container

Subsidies, 2006-08 16.3 20.0 17.2
No subsidies, 2006-08 17.6 21.2 17.7
% difference 8.2% 6.2% 3.1%

Subsidies, 2009-13 8.8 8.1 9.2
No Subsidies, 2009-13 10.2 9.0 9.5
% difference 16.5% 10.6% 3.7%
1 Prices in 1000 RMB/CGT
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Table 11: Comparison of Different Subsidies

All Only Only Only No
Subsidies Production Investment Entry Subsidies

Lifetime Revenue 2006- 2320 2091 1796 1830 1696
Lifetime Profits 2006- 854 788 618 590 570

Production subsidies 256 216 0 0 0
Investment subsidies 86 0 44 0 0
Entry subsidies 302 0 0 171 0

∆ Revenue/Subsidy 97% 183% 226% 78%
∆ (Profit-Inv. Cost)/Subsidy 44% 93% 148% 11%
∆ Net Profit/Subsidy 18% 56% 87% 24%

1 Each element in the table refers to the discounted sum from 2006 to 2099, averaged across all simulations.
For example, “Lifetime Profits 2006" refers to the discounted sum of profits earned by firms from 2006 to
2099.

2 ∆Revenue/Subsidy equals the discounted sum of revenue in the scenario minus the discounted sum of
revenue in the scenario with no subsidies, divided by the discounted sum of subsidies.

3 (Profit-Inv.Cost) refers to profits net of the cost of investment. ∆(Profit-Inv.Cost)/Subsidy equals the dis-
counted sum of (profits-investment cost) in the scenario minus the discounted sum of (profits-investment
cost) in the scenario with no subsidies, divided by the discounted sum of subsidies.

4 Net Profit = (Profits-Investment Cost+Scrap Value-Entry Cost). ∆Net Profit/Subsidy equals the discounted
sum of net profits in the scenario minus the discounted sum of net profits in the scenario with no subsidies,
divided by the discounted sum of subsidies.

5 In the scenarios “Only Production", we maintain the same production subsidy as in the baseline estimation,
but shut down entry and investment subsidies. The scenarios “Only Investment" and “Only Entry" are
constructed in a similar fashion.

6 We assume for each scenario that the government policy from 2014 onwards remains frozen at the 2013
policy. This implies in particular that in the “Only Production" and “Only Investment" scenarios, the
government continues to subsidize firms beyond 2013, whereas in the “Only Entry" scenario, there are
no entry subsidies beyond 2013 (reflecting the fact that the government had already discontinued entry
subsidies by 2013).
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Table 12: Effect of subsidies on productive and unproductive firms

Unproductive firms Productive firms

Lifetime Revenue 2006- 406 1911
Lifetime Profits 2006- 70 779

Production subsidies 40 215
Investment subsidies 26 60
Entry subsidies 157 146

∆ Revenue/Subsidies 71% 113%
∆ (Profit-Invest Cost)/Subsidies 19% 58%
∆ Net Profit/Subsidies -4% 29%
1 We define “unproductive" firms as firms with initial s̄ jt (at the time the policy change

first occurred) below the median, and “productive" firms as firms with initial s̄ jt above
the median.

2 Each element in the table refers to the discounted sum from 2006 to 2099, averaged
across all simulations. For example, “Revenue" refers to the discounted sum of scrap
values earned by exitting firms from 2006 to 2099.

3 ∆Revenue/Subsidy, ∆(Profit-Inv.Cost)/Subsidy and ∆Net Profit/Subsidy are defined as
in Table 11.

Table 13: Pro-cyclical vs. counter-cyclical industrial policy

Subsidize Subsidize
during during
boom recession

Lifetime Revenue 2006- 1792 1795
Lifetime Profits 2006- 609 624

Production Subsidies 34 35
Investment Subsidies 16 16

∆ Revenue/Subsidies 222% 225%
∆ (Profit-Invest Cost)/Subsidies 86% 126%
∆ Net Profit/Subsidies 29% 78%
1 In the policy “Subsidize during recession", the government offers

subsidies during the recession of 2009-13, but offers no subsidies
before 2009 or after 2013. In the policy “Subsidize during boom",
the government offers production and investment subsidies during
the boom of 2006-08, but discontinues the subsidies from 2009
onwards. The subsidy rates during the 2006-08 boom are adjusted
downwards to match the amount handed out during the recession.
Finally, no entry subsidies are offered in either scenario.

2 Each element in the table refers to the sum from 2014 to 2099,
discounted back to 2006, averaged across all simulations. For ex-
ample, “Scrap Value" refers to the discounted sum (in 2006) of
scrap values earned by exitting firms from 2014 to 2099.

3 ∆Revenue/Subsidy, ∆(Profit-Inv.Cost)/Subsidy and ∆Net
Profit/Subsidy are defined as in Table 11.
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Table 14: Targeting subsidies to White List firms

Subsidize Subsidize No
All Firms White List firms Subsidies
After 2013 After 2013 After 2013

Lifetime Revenue 2014- 945 887 736
Lifetime Profits 2014- 416 395 278

Production subsidies 129 88 0
Investment subsidies 48 16 0
Entry subsidies 0 0 0

∆ Revenue/Subsidies 118% 144%
∆ (Profit-Invest Cost)/Subsidies 83% 109%
∆ Net Profit/Subsidies 38% 84%
1 Each element in the table refers to the sum from 2014 to 2099, discounted back to 2006, av-

eraged across all simulations. For example, “Lifetime Profits 2014-" refers to the discounted
sum (in 2006) of profits earned by firms from 2014 to 2099.

2 ∆Revenue/Subsidy, ∆(Profit-Inv.Cost)/Subsidy and ∆Net Profit/Subsidy are defined as in
Table 11.
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Appendix
Online Appendix. Not for Publication.

This appendix discusses the calibration of the fixed production cost, details for the dynamic
estimation (e.g., estimates of the first-stage policy functions and state-variable transitions), and
implementation of the counterfactual analyses.

A Estimation Details

A.1 Calibrating the Fixed Cost

The NBS data include information on operating costs, which allows us to calibrate the fixed cost of
production. A firm’s total production cost is equal to:

C jt = c0 +C(q jt)

where C(q jt) is the variable cost of taking qit orders that is estimated from the Clarkson data, as
discussed in Section 4.1.

Let CNBS
jt denote the accounting operating costs, which include the costs of both ship production

and ship repairs, a common practice in this industry. We follow the standard assumption in the
production literature that the cost share of ship production is the same as its revenue share and
obtain the accounting operating cost of ship production as:

Ĉ jt =CNBS
jt ∗ (RClarkson

j /RNBS
j )

where RClarkson
j = ∑t RClarkson

j denotes j’s lifetime revenue from building new ships that is reported
in Clarkson and RNBS

j = ∑t RNBS
jt denotes its lifetime revenue in NBS.

We use two approaches to estimate the fixed cost c0; both deliver similar results. The first
approach uses the quarters with zero production (so that the variable production cost is zero) and
the accounting costs Ĉ jt (after adjusting for repairs) in the same periods to infer the fixed cost. The
second approach uses the difference between a shipyard’s average operating costs and the average
estimated variable cost of production:

c0 =
1
T ∑

t
[Ĉ jt−C(q jt)]

Note that the calibrated fixed cost of operation is the same for all firms. While in principle we could
allow the fixed cost to vary by firm characteristics, our data is not rich enough to deliver a precise
estimate.
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A.2 Testing for learning-by-doing in ship production

In this subsection, we examine evidence of learning-by-doing by shipyards. First, we evaluate
within-firm learning-by-doing by allowing a firm’s marginal cost to depend on its cumulative past
production. As shown in Table A1, a larger past production leads to higher marginal costs, which
is inconsistent with there being any within-firm learning-by-doing. Second, we allow a firm’s
marginal cost to depend on the industry cumulative output, as a crude test of industry-wide learning-
by-doing (where firms learn from each other). Without instrumenting for the industry cumulative
output, this exercise is likely to over-estimate spillover effects: if there are common unobserved
shocks that raise the output of all firms, it will look as though there are positive spillover effects.
Despite this, we find limited evidence for spillover effects, as we can see in the third panel of Table
A1. Marginal costs increase with the cumulative industry production for tanker and container and
only modestly decrease with the cumulative industry production for bulk, though none of these
coefficients is statistically significant.

Table A1: Cost function estimates, pooling data across China/Japan/South Korea

Bulk Tanker Container

Type-specific Coefficient T-stat Coefficient T-stat Coefficient T-stat

Baseline specification
Capital (bill RMB) -2.92 -3.06 -2.06 -1.55 -1.41 -1.33
Backlog -2.09 -6.63 -4.50 -6.38 -3.06 -4.40

Allow for within-firm learning
Capital (bill RMB) -1.94 -2.12 -1.95 -1.52 -1.11 -1.22
Backlog -1.45 -5.05 -4.41 -5.06 -0.90 -1.30
Cumulative Q 0.07 4.72 0.09 5.59 0.01 4.00

Allow for within-firm and industry-wide learning
Capital (bill RMB) -2.04 -2.16 -3.41 -1.69 -2.04 -1.32
Backlog -1.35 -4.58 -6.60 -4.02 -1.58 -1.16
Cumulative Q 0.08 4.76 0.13 4.39 0.02 2.94
Cumulative Q, China -0.03 -1.60 0.18 1.47 0.33 1.30
* Standard errors bootstrapped using 500 bootstrap samples. We pool together Chinese/Japanese/Korean

yards. We observe the capital stock only for Chinese yards. To account for the missing values, we set
the capital variable to zero for Japanese and Korean yards, and allow the constant term to differ by
country. We also allow the backlog coefficients to differ by country. Backlog coefficients for Japan
and Korea are not reported above.

* The first panel repeats key coefficients from the specification reported in Table 5. The second panel
includes all regressors from the specification in Table 5, as well as each firm’s cumulative past produc-
tion. The third panel includes all regressors from the specification in Table 5, each firm’s cumulative
past production, and the country’s cumulative past production.
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A.3 Estimating the Investment Policy Function

Here we discuss the robustness check for the first stage investment policy function that is based on
the CLAD estimator discussed in Section 4.2.1. The investment policy function is assumed to be
additive in the observed state variables and the unobserved investment cost shock:

I∗jt = h1(s jt)+h2(ν jt)

I jt = max(I∗jt ,0)

where the second equation makes it explicit that investment is non-negative. Powell (1984) showed
that we can recover h1(s) through the Censored Least Absolute Deviations estimator (CLAD) while
normalizing the median of h2(ν jt) to 0. Once we obtain the CLAD estimate ĥ1(s), we treat I jt −
ĥ1(s jt) as data with the goal of estimating h2(ν jt) with the truncated data:

ĩ jt ≡ I jt− ĥ1(s jt) = max(h2(ν jt),−ĥ1(s jt)),or

ĩ jt = max(h2(ν jt), h̄ jt)

where in the second equation we use h̄ jt to denote −ĥ1(s jt).
Note that the level of truncation h̄ jt varies across observations. We use the observed probability

of truncation (zero or negative investment) to back out the level of the investment shock that in-
duces truncation, conditioning on the observed state variables (let Φ denote the CDF of a standard
normal):

Pr(ĩ jt > h̄ jt |h̄ jt) = Pr(h2(ν jt)> h̄ jt) = Pr(ν jt < h−1
2 (h̄ jt)) = Pr(ν jt < ν̃ jt)

= Φ(ν̄ jt),or

ν̄ jt = Φ
−1(Pr(ĩ jt > h̄ jt |h̄ jt)

)
where Pr(ĩ jt > h̄ jt |h̄ jt) can be estimated either via kernel methods, or by approximating the cutoff
value ν̄(h̄ jt) by a flexible function of h̄ jt and carrying out a probit regression.

To estimate h2(ν jt), we categorize all the uncensored observations (where ĩ jt > h̄ jt) into distinct
bins. Specifically, suppose the thresholds are

{
h̄1, h̄2, ...h̄R+1

}
. Then any uncensored observation ĩ

∈ (h̄r, h̄r+1] is placed in bin r. We carry out the BBL inversion separately for each bin. In particular,
if i∗ = max(h2(ν

∗), h̄ jt) for some arbitrary ν∗, where i∗ lies in bin r, then the following expression
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must hold:

F(i∗|i∗ ∈ (h̄r, h̄r+1]) = Pr(ĩ≤ i∗|i∗ ∈ (h̄r, h̄r+1))

= Pr(ν ≥ ν
∗|ν̄r+1 < ν < ν̄r)

=
Φ(ν̄r)−Φ(ν∗)

Φ(ν̄r)−Φ(ν̄r+1)

In other words,

i∗ = F−1
(

Φ(ν̄r)−Φ(ν∗)

Φ(ν̄r)−Φ(ν̄r+1)

)
for ν̄r+1 < ν

∗ < ν̄r

It is easy to verify that this estimator nests the uncensored example as a special case and allows us
to better address censoring by increasing the number of bins. Monte Carlo simulations suggest that
a small number of bins (say five) can lead to surprisingly well-behaved estimates with minimal bias
in the estimated function h2(ν).

A.4 First-stage Policy Functions and State Transition Estimates

This section presents the first-stage estimates of the investment and exit policy functions, as well as
the state transition process. Table A2 reports the estimated investment policy function using OLS,
Tobit, and CLAD. Table A3 reports the estimated exit policy function. Table A4 presents estimates
of the transition process for the prices of bulkers, tankers, containerships, and steel.

A.5 State Space

As discussed in the main text, we approximate V (s jt) via B-spline basis functions V (s jt)=∑
L
l=1 γ0

l ul(s jt)

and impose the Bellman equation as a constraint. Recovering γ0 requires specifying the set of state
values on which to evaluate the Bellman constraint. We construct a sample that ensures sufficient
variation in each of the state variables. First, we include all the N states observed in the sample.
Second, we randomly draw Nadd additional states to span the full range of the state variables. The
coefficients γ0 are recovered using these N +Nadd states. This approach is similar to Sweeting
(2013).

These additional states are instrumental in getting a good approximation of the value function,
for two reasons. First, some states (for example, ship prices and the steel price) are highly correlated
in the data, which makes it challenging to separately identify the coefficients on basis functions
formed from these state variables if we only use the observed states. Second, some regions of the
state space have a limited number of observations. Both of these problems can be mitigated by
adding randomly drawn states, which avoids multicollinearity between states and ensures sufficient
data points across all regions of the state space.
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Table A2: Estimates of the investment policy function

(1) (2) (3)
OLS Tobit CLAD

Constant -0.066 -12.2 -31.9***
(7.54) (8.17) (4.09)

B-spline 1 Capital -69.7*** -63.8*** -69.6***
(22.0) (17.2) (1.67)

B-spline 2 Capital -74.7*** -71.7*** -68.2***
(17.7) (13.5) (1.41)

2006-08 6.42*** 4.59** 17.9***
(1.60) (2.32) (0.74)

2009+ 2.70 3.79 3.55**
(2.20) (3.03) (1.80)

s̄ jt 0.74*** 0.87*** 1.44***
(0.11) (0.087) (0.040)

Bulk price 2.05*** 1.97*** 1.34***
(0.46) (0.57) (0.30)

Tanker price 0.48 1.89* 0.81***
(0.93) (1.14) (0.13)

Container price -1.25 -1.49 -0.55
(0.87) (1.06) (0.34)

Steel price -2.49*** -4.44*** -4.38***
(0.53) (0.61) (0.19)

N 4286
N(I > 0 3301
N(I = 0) 985

In Column (1), we carry out an OLS regression of investment
(I) on basis functions of the states, including both observations
with I > 0 and I = 0.
In (2), we estimate the policy function using a Tobit regression
of I on the basis functions.
In (3), we estimate the investment policy function using a cen-
sored least absolute deviations estimator.
s̄ jt is an index capturing the effect of backlog, age, ownership,
region, and size on a firm’s per-period payoffs. Investment is
measured in million RMBs in these regressions.
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Table A3: Estimates of exit policy function

(1) (2)

Coefficient SE Coefficient SE

Constant -0.57 (0.97) -0.56 (1.02)
K 0.05 (0.35) 0.54 (0.43)
K2 -0.05 (0.12) -0.16 (0.15)
2006-2008 -0.57 (0.41) -0.64 (0.43)
2009+ -0.47 (0.41) -0.72 (0.44)
s̄ jt -0.01 (0.01) -0.04 (0.02)
Bulk price 0.36 (0.12) 0.36 (0.12)
Tanker price -0.18 (0.11) -0.16 (0.11)
Container price -0.22 (0.10) -0.25 (0.11)
Steel price -0.06 (0.07) -0.10 (0.08)
Jiangsu 0.77 (0.24)
Zhejiang 0.58 (0.19)
Liaoning 1.04 (0.28)

N(exit) 47 47
N 4605 4605

Residual deviance 478.59 459.47
Log-likelihood -239.30 -229.74
Pseudo-R2 0.09 0.12

We carry out a probit regression of a binary indicator of exit on basis
functions of the states. We restrict the estimation to 1999-2011, because
firm exits in 2012 and 2013 are not reliably measured.
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Table A4: AR(1) estimates for state transition processes

Bulk Tanker Container Steel

Constant 0.88 0.70 1.25 -0.023
(0.87) (0.94) (1.11) (0.37)

Post 3.44 3.63 1.80 2.32
(2.28) (3.43) (3.33) (1.01)

Price (t-1)*Pre 0.86 0.92 0.88 0.89
(0.12) (0.086) (0.090) (0.19)

Price (t-1)*Post 0.86 0.86 0.88 0.69
(0.072) (0.095) (0.10) (0.11)

Trend*Pre 0.042 0.038 0.029 0.024
(0.033) (0.028) (0.024) (0.027)

Trend*Post -0.058 -0.054 -0.040 -0.022
(0.027) (0.041) (0.040) (0.013)

N 57 57 57 57
R2 0.95 0.97 0.96 0.80
* The dependent variable is the price in quarter t, or p(t). Standard

errors in parenthesis. “Pre" refers to 2005Q4 or earlier. “Post" refers
to 2006Q1 or later. The sample ranges from 1999 Q4 to 2013Q4.

B Implementation of Counterfactual Analyses

Each of the counterfactual experiments involves two steps: first, solving for the new Bellman
equation and policy functions, and second, simulating the industry forward until 2099. Here we
briefly explain how to implement the first step through a fixed point algorithm:

1. Compute expected profits π(s) at all states.

2. Start with an initial guess of the exit policy function p0,x(s) and investment policy function
i0(s,ν).

3. Update the policy functions. At each iteration j:

• Solve for the value function coefficients γ j+1 using the equation V j+1(s) = π(s) +

p j,xσ +CV j+1(s).

• Update the investment policy function to i j+1(s,ν) by solving the investment FOC,
using V j+1 and CV j+1. As the value function is approximated by cubic B-splines, the
investment policy function has an analytic solution.

• Update the exit policy function to p j+1,x using V j+1 and CV j+1.
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• Check whether ||p j+1,x(s)− p j,x(s)|| < tol and ||i j+1(s,ν)− i j(s,ν)|| < tol, where tol

is a pre-assigned tolerance level.

C A Simple Model on Subsidies

This is a static model with homogeneous firms. Each firm has a starting capital stock of K0. Price
is equal to P. Marginal cost of production equals MC(qt) = α−βK+δqt . Total cost of investment
equals CI(I) = c1I +(c2/2)I2. The firm chooses q and I simultaneously to maximize profits:

V (K0) = maxq,IPq−
(
(α−β (K0 + I))q− δ

2
q2
)
−
(

c1I +
c2

2
I2
)

The optimal quantity and investment are denoted by q∗ and I∗, respectively.
Now suppose that the government introduces production subsidies of τp per unit. For simplicity,

we assume that the firm only adjusts its level of production and not investment; thus investment
remains fixed at I∗. The new level of production, q̂, is:

q̂ = q∗+
τp

δ

Alternatively suppose the government introduces investment subsidies of τi per unit. The new
level of investment, Î, is:

Î = I∗+
τi

c2

Below we provide expressions for the return to subsidies, which is the change in industry profits
from the subsidies divided by the cost to the government of providing the subsidies, as well as the
deadweight loss from subsidies:

DWL from Prod. Subsidies = τ
2
p/2δ

DWL from Invest Subsidies = τ
2
i /2c2

Return to Prod. Subsidies = (q∗+
τp

2δ
)/(q∗+

τp

δ
)

Return to Invest Subsidies = (I∗+
τi

2c2
)/(I∗+

τi

c2
)

Holding the adjustment cost parameters c2 and δ fixed, the return to subsidies is increasing in I∗

(for investment) and q∗ (for production). In other words, subsidizing “better" firms leads to higher
returns.

Our derivation of the DWL shows that the magnitude of DWL is independent of whether a firm
has low or high marginal costs: τ2

p/δ . Essentially, all firms (large or small) increase their output by
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the same amount when they receive the same subsidy. However, the return to subsidies is higher for
low-cost firms than high-cost ones. This is because low-cost firms receive a higher absolute amount
of subsidies due to the fact that they produce a higher quantity. Thus the DWL loss is divided by a
larger denominator which means the per-dollar return to subsidies is higher.
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