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1 Introduction

Forward guidance (FG) refers to central banks�announcements regarding future policy
rates. During Great Recession and its aftermath, FG was widely used by central banks
as an unconventional monetary policy tool when nominal interest rates were constrained
at their e¤ective lower bounds (ELB). For example, in August 2011, the Fed signalled
an intention to maintain nominal interest rates at zero at least until the middle of 2013.
Blinder, Ehrmann, Haan and Jansen (2017) surveyed 55 heads of the central banks, and
they found that during this period, about a half of the central banks adopted a FG policy
of some type. In the survey, policymakers believe that FG will continue to be used as a
monetary policy tool after the end of the economic crisis, however, they have doubts about
its e¤ectiveness, in particular in the absence of active ELB. In fact, the Fed started using
FG much earlier, in 2003-2004, when the ELB was not binding; see Carlson, Eggertsson
and Mertens (2008), and Plosser (2013). The goal of this paper is to make progress in
understanding whether or not FG is a potentially useful monetary policy tool when the
ELB does not bind policy.
We consider a stylized new Keynesian economy that is away from the ELB, and we as-

sume that the monetary authority uses a Taylor-style rule. There are di¤erent de�nitions
of forward guidance in the related literature. For example, Bean (2013), then deputy gov-
ernor of the Bank of England, states that FG �is intended primarily to clarify our reaction
function,�a description of how the policy interest rate will react to economic variables, or
a monetary policy rule. According to this de�nition, FG is simply an announcement that
monetary policy follows a policy rule now and in the future. Alternatively, Reifschneider
and Williams (2000), and Woodford (2013) de�ne FG as an announced deviation from
the policy rule; they consider such a deviation in the context of the ELB.
In this paper, we de�ne FG as a deviation from policy rule, but not necessarily in the

context of the ELB. In particular, we consider FG that takes the form of an anticipated,
one-time interest-rate shock. We restrict attention to conventional equilibria that do not
explode in the future �forward stable equilibria. We distinguish three cases, depending
on how responsive central banks are to variables in the rule conducting their monetary
policy. To illustrate these three cases, suppose that a Taylor rule contains just a feedback
to in�ation.1

First, if the in�ation coe¢ cient in the Taylor rule is smaller than one, then the model
has one stable (smaller-than-one) root and one unstable (larger-than-one) root and there
is a multiplicity of equilibria. This case is studied inWerning (2015) and Cochrane (2017a)
under the assumption that the in�ation coe¢ cient is e¤ectively zero.2 In this paper, we
establish a general class of Taylor rules that leads to indeterminacy of equilibria, and

1Under more general Taylor rules, considered in this paper, there is a feedback to in�ation, expected
in�ation and output gap, and the responsiveness of monetary policy depends on all the feedback coe¢ -
cients.

2Bianchi and Nicoló (2017) proposed an approach for dealing with indeterminacy in the model in
which the response to in�ation in the Taylor rule is not zero but su¢ ciently small.
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we show that large di¤erences between multiple equilibria are a generic property of the
model in which the monetary policy is not su¢ ciently responsive to insure the equilibrium
uniqueness.
Second, when the in�ation coe¢ cient in the Taylor rule reaches unity, the stable root

becomes unstable (speci�cally, it also reaches unity), and the equilibrium becomes unique.
This case exhibits the so-called forward guidance puzzle �a counterintuitive implication
of the model that the central bank�s announcements about future interest rates have
immediate and unrealistically large e¤ects on the economy; see Carlstrom, Fuerst and
Paustian (2015), Del Negro, Giannoni and Patterson (2012, 2015), and McKay, Nakamura
and Steinsson (2016). More generally, we show that the FG puzzle is a very special edge-
of-the-knife case in which one of the two characteristic roots is unity.
Finally, when the in�ation coe¢ cient exceeds one, then both roots remain unstable

(either both roots are real and larger than one or they are complex with the amplitude
larger than one), the equilibrium remains unique and the FG puzzle disappears. The
resulting model has the following common-sense predictions: (i) the e¤ect of FG is not
excessively large if policy announcements refer to a distant future; (ii) such e¤ect de-
creases with the horizon of a policy announcement (i.e., the further away in the future is
anticipated interest-rate shock, the smaller is the e¤ect of this shock on today�s economy);
(iii) FG can have a detrimental e¤ect on output, at least during some periods, or it can
lead to cyclical �uctuations of a decreasing amplitude.3

Why do not we have the FG puzzle when the monetary policy is su¢ ciently responsive?
Technically, the assumptions in Del Negro et al. (2012, 2015) and McKay et al. (2016)
imply that interest-rate shocks a¤ect the current output without discounting, so that the
e¤ect of today�s shock on current output is as strong as the one that happens in a million
of years. We show analytically that the introduction of more realistic and plausible Taylor
rules restores discounting, so that the e¤ect of distant future shocks on today�s economy
is practically non-existent.4

In a Taylor rule that contains just a feedback to in�ation, the in�ation coe¢ cient
exceeding unity is su¢ cient to ensure local determinacy. In the more general policy
rule of the paper, the conditions for two unstable eigenvalues are more complex. An
important point of the paper is to show that namely these roots (or eigenvalues) capture
model dynamics better than underlying parameters.
The main body of our analysis relies on closed-form solutions. Depending on speci�c

parameterization of Taylor rule, the model can have four di¤erent types of solutions that
corresponds to four di¤erent types of characteristic roots: i) one stable and one unstable
real root, ii) two distinct unstable real roots, iii) two repeated unstable real roots and
iv) two unstable complex roots.5 To the best of our knowledge, we are the �rst to derive

3We argue that prediction (ii) is related to turnpike theorem established for the neoclassical optimal
growth model; see Maliar, Maliar, Taylor and Tsener (2015) for a discussion.

4McKay et al. (2016) argue that the introduction of idiosyncratic uncertainty and borrowing con-
straints restores discounting in the Euler equation and helps resolve the FG puzzle.

5In the present paper, we analyze a discrete-time version of the model. Maliar (2018) shows how to
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closed-form solutions for the cases of repeated real and complex roots. Complex roots
are not an exotic peculiarity but plausible case: we show that the most stylized Taylor
rules with both in�ation and output gaps can lead to complex roots. The solutions we
construct are applicable not only to the deterministic, perfect-foresight version of the
model but also to the stochastic model with random disturbances, including persistent
government-spending shocks, interest-rate shocks, etc. The stochastic part of our analysis
is related to a method of undetermined coe¢ cients, described in Taylor (1986).
We use numerical simulation to explore the properties of equilibria under more gen-

eral assumptions when closed-form solutions are infeasible. We �nd that the results we
establish analytically are robust to the model�s modi�cations. They hold both in a fully
non-linear version of the new Keynesian model, as well as in the model augmented to
include capital. Moreover, our �ndings are robust to the solution methods used, specif-
ically, we �nd that both Fair and Taylor�s (1983) extended path method and Maliar et
al.�s (2015) extended function path method lead to similar results.
There is a variety of alternative ways of resolving the FG puzzle. In particular, Del

Negro, Giannoni and Patterson (2015) constructed a perpetual-youth version of Smets
and Wouters (2007) model in which the presence of cohorts results in heavier discounting
of the future and as a result, to smaller e¤ects of the central bank�s announcements on
current aggregate variables. McKay et al. (2016) introduced idiosyncratic household
risk and borrowing constraints. Husted, Rogers and Sun (2017) modi�ed their model to
allow for monetary policy uncertainty (they assume that there is only 50 percent chance
that the central bank will implement the anticipated policy rate change) and �nd that
this modi�cation leads to a smaller response in output. Kaplan, Moll and Violante (2017)
showed that a heterogeneous-agent version of the standard new Keynesian model generates
smaller e¤ects of FG on output than a representative-agent counterpart of their model.
Gabaix (2017) assumed that agents are not fully rational to unusual events and they do
not have perfect foresight of the future, etc.6

Unlike the above literature, we do not attempt to modify the baseline new Keynesian
model to resolve the FG puzzle. Instead, we argue that the policy rules, that lead to the
FG puzzle, are extreme and implausible. In particular, Del Negro et al. (2015) generate
the FG puzzle by assuming that prices are �xed. In turn, McKay et al. (2016) assume
that the central bank sets the current nominal interest rate to completely accommodate
anticipated in�ation. That is, if in�ation expectations were, for example, 300 percent,
the central bank would simply set the nominal interest rate to 302 percent to ensure a
2 percent real interest rate. However, high in�ation is costly for the economy, and the
actual monetary authorities will �ght in�ationary expectations instead of accommodating
them. In�ation stabilization is the key prescription of the Taylor rule used by actual

construct parallel closed-form solutions for the continuous-time model.
6Other papers that study the e¤ectiveness of FG include Levin, López-Salido, Nelson and Yun (2010),

Werning (2012), Den Haan (2013), Carlstrom et al. (2015), Chung (2015), Bundick and Smith (2016),
Keen, Richter and Throckmorton (2016), Galí (2017), Walsh (2017), Hagedorn, Luo, Manovskii and
Mitman (2018), among others.
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central banks and is in line with the optimal monetary policy.7 An active response of the
monetary authority prevents the FG puzzle from happening: the e¤ect of future shocks on
today�s variables quickly fades away when the shocks are translated farther in the future.
We conclude that what produces the FG puzzle is not the new Keynesian model itself but
an unrealistic and suboptimal way of modeling the monetary authority�s responses.8

Finally, our closed-form solutions help us understand and compare the e¤ects of FG
on economies with and without active ZLB. Interestingly, FG was primarily motivated by
active ZLB, however, the literature �rst discovered and analyzed the FG puzzle in models
without active ZLB; see Del Negro et al. (2012, 2015) and McKay et al. (2016). In those
papers, the models have unique solutions in which the impact of FG on the economy is
unrealistically large. In turn, the literature that focuses on active ZLB �nds multiplicity
of equilibria; see Carlstrom et al. (2015), Werning (2015) and Cochrane (2017a). In these
papers, the e¤ect of FG on the economy can range from extremely large to nonexistent
depending on which equilibrium is selected. The present paper connects these two streams
of the literature: we show that the backward explosion away from ZLB is similar to the
one established under the ZLB scenario in Cochrane (2017a). In either of the two cases,
the e¤ectiveness of FG is fully determined by the size of the smaller eigenvalue, which is a
single su¢ cient statistics for capturing the role of all model�s ingredients and parameters
in the backward explosion. The theorems we establish make it possible to see up-front
whether or not a speci�c parameterization of the new Keynesian model leads to the FG
puzzle under both ZLB and no-ZLB scenarios.
The rest of the paper is as follows: In Section 2, we derive closed-form solutions in

the stylized new Keynesian model. In Section 3, we explore the model�s implications
under several alternative coe¢ cients of the monetary rule. In Section 4, we characterize
the optimal monetary policy by solving the Ramsey problem. In Section 5, we show a
collection of experiments which illustrate the robustness of our analysis to the introduction
of uncertainty, nonlinearity, and capital; �nally, in Section 6, we conclude.

2 Stylized new Keynesian model

In this section, we outline a standard three-equation linear new Keynesian model, express
it as a second-order di¤erence equation, derive a closed-form solution and characterize
some of its properties.

7Woodford (2001) shows that the optimal Ramsey rule closely resembles the empirically relevant
Taylor rule with both in�ation and output gap and with standard calibration of its coe¢ cients.

8There are papers that document FG puzzle in medium-scale models parameterized by empirically
plausible Taylor rules, see, e.g., the FRBNY DSGE model of Del Negro et al. (2015). Our analysis does
not allow us to say what features produce FG puzzle in other studies but allows us to a¢ rm that such
features are not present in the stylized new Keynesian model if empirically plausible Taylor rule is used.
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2.1 The model

We consider the standard linearized new Keynesian model that consists of, respectively,
an IS equation and Phillips curve, expressed in deviations from the steady state

xt = Et [xt+1]� � (it � int � Et [�t+1]) ; (1)

�t = �Et [�t+1] + � (xt + gt) ; (2)

where xt is an output gap; �t is in�ation; it is a nominal interest rate; int is a natural
rate of interest; gt is a disturbance; � is a slope of the Phillips curve; and � is an in-
tertemporal elasticity of substitution.9 The Phillips-curve shifter gt can be interpreted as
a direct marginal cost increase due to, for example, capital destruction, technical regress,
government spendings (up to a scaling factor); see a discussion in Cochrane (2017a).
For the third equation, we assume that the nominal interest rate it is determined by

a stylized Taylor rule

it = i
�
t + ���t + �E�Et [�t+1] + �yxt + "t; (3)

where fi�tg is a desired interest rate path; �� � 0, �E� � 0 and �y � 0 are constant
coe¢ cients; and "t is a disturbance that may include both anticipated and unanticipated
shocks. The rule studied in Taylor (1993) corresponds to �� = 1:5, �y = 0:5, �E� = 0 and
i�t = 1.

10

2.2 Second-order di¤erence equation

We next derive key regions to the parameters and eigenvalues of this system. It will
be convenient to re-write the model (1)�(3) as a second-order di¤erence equation. We
substitute it from (3) into (1), use (2) to express xt and xt+1 and substitute them into (1)
to obtain

Et [�t+2] + bEt [�t+1] + c�t = �zt; (4)

where b � �1� 1
�
���y�

��(1��E�)
�

; c � (1+��y)
�

+ ����
�
; zt includes all exogenous variables,

gt, i�t , "t, i
n
t ,

zt �
�

�

�
gt+1 � gt

�
1 + ��y

�
+ � (i�t + "t � int )

�
: (5)

Let us �rst construct a solution for the economy with perfect foresight by eliminating
the expectation operator in (4) and later, we will show how to generalize the solution
to the case of uncertainty. Below, we establish some properties a homogenous equation
�t+2 + b�t+1 + c�t = 0 that corresponds to (4).

9In Section 6 and Appendix A, we describe a fully nonlinear model whose linearized version corresponds
to the model (1), (2) under some further restrictions. In particular, the slope of the Phillips curve is
� = (1���)(1��)

� (1 + #), where � is a discount factor; � is a share of not reoptimizing �rms; # is a

parameter of the utility function u (Ct; Lt) =
C
1�1=�
t �1
1�1=� � L1+#t �1

1+# ; and � ! 1.
10Our analysis abstracts from the issues of commitment, discretion and time inconsistency. These issues

are studied, for example, in Walsh (2017).
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Theorem 1 The roots m1;2 =
�b�

p
b2�4c
2

to characteristic equation m2 + bm + c = 0
satisfy:

Case Restrictions on eigenvalues Restrictions on parameters
i) either jm1j > 1, jm2j < 1 or jm1j < 1, jm2j > 1 �E� < �

1
E� and �E� > �

4
E�

ii) jm1j � 1, jm2j � 1 �1E� � �E� < �2E� and �3E� � �E� < �4E�
iii) m1 = m2 = m with jmj > 1 �E� = �

2
E� and �E� = �

3
E�

iv) m1;2 = �� �� with r �
p
�2 + �2 > 1 �2E� < �E� < �

3
E�

where �1E� = 1� �� �
(1��)�y

�
, �2E� = �

1
E� +

1
��

�p
1 + ����+ ��y �

p
�
�2
, �3E� = �

1
E� +

1
��

�p
1 + ����+ ��y +

p
�
�2
and �4E� = �

1
E� +

2
��

�
1 + ��y + ���� + �

�
.

Proof. See Appendix B. �

Thus, if the roots are real and distinct, there are two possibilities: either one root is stable
and the other root is unstable (case i) or both roots are unstable (case ii). If the roots are
either real and repeated (case iii) or complex (case iv), they are always unstable. Thus, it
is never the case that both roots are stable in the considered area of the parameter space.
We have further results for the economy in which the rule (3) contains only actual but

not future in�ation.

Theorem 2 Assume �E� = 0. Then, the roots m1;2 =
�b�

p
b2�4c
2

to characteristic equa-
tion m2 + bm+ c = 0 satisfy:

Case Restrictions on eigenvalues Restrictions on parameters
i) either jm1j > 1, jm2j < 1 or jm1j < 1, jm2j > 1 �� < �

1
�

ii) jm1j � 1, jm2j � 1 �1� � �� < �2�
iii) m1 = m2 = m with jmj > 1 �� = �

2
�

iv) m1;2 = �� �� with r �
p
�2 + �2 > 1 �� > �

2
�

where �1� = 1�
(1��)�y

�
and �2� = �

1
� +

�
4��

�
1� 1

�
� ��y � ��

�

�2
.

Proof. See Appendix B. �

In other words, when the response of the monetary authority to in�ation �� < �
1
� is weak,

we have one stable and one unstable root; when the response to in�ation becomes stronger,
both roots become unstable �1� � �� < �2�; when the response to in�ation reaches the
threshold level �2�, the roots become repeated and unstable and �nally; when �� > �2�,
the roots are complex and unstable. Complex roots are not a theoretical peculiarity but
the most typical case: the stylized parameterization of the Taylor rule leads to complex
roots, such as �� = 2 and �y = 0:5 used in Coibion et al. (2012).
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Woodford (2001) calculated the boundary �1� of Theorem 2. Cochrane (2011) derived
stability conditions under several Taylor rules with leads and lags, including it = ���t,
it = �E�Et [�t+1], and it = ���t+ �yxt (see his Appendix B, Section E). Our Theorems 1
and 2 provide sharper results by establishing boundaries that separate di¤erent types of
roots, namely, distinct real roots, repeated real roots and complex roots. These theorems
are a useful step in constructing closed-form solutions since di¤erent types of roots lead
to di¤erent types of solutions.

2.3 Closed-form solution

We now show closed-form solutions to the model (1)�(3) under four possible cases of
characteristic roots established in Theorem 1. To the best of our knowledge, closed-form
solutions for the cases ii)�iv) have not been derived in the literature yet.

Theorem 3 The solution to the new Keynesian model (4) for cases i)-iv) in Theorem 1
is given by:
i). For two distinct real roots such that root m1 is unstable and root m2 is stable, i.e.,
jm1j � 1 and jm2j < 1, we have

�t = C1m
t
1 + C2m

t
2 +

1

m1 �m2

Et

" 1X
s=t

mt�1�s
1 zs +

t�1X
s=�1

mt�1�s
2 zs

#
; (6)

if jm1j < 1 and jm2j � 1, we �ip the subscripts.
ii) For two distinct real roots m1 6= m2 that are unstable jm1j � 1, jm2j � 1, we have

�t = C1m
t
1 + C2m

t
2 +

1

m1 �m2

Et

" 1X
s=t

mt�1�s
1 zs �

1X
s=t

mt�1�s
2 zs

#
; (7)

iii). For two repeated real roots m1 = m2 = m that are unstable jmj > 1, we have:

�t = (C1 + C2t)m
t +

1

m
Et

"
(t� 1)

1X
s=t

mt�1�szs �
1X
s=t

smt�1�szs

#
; (8)

iv). For complex roots m1;2 = �� �� that are unstable r �
p
�2 + �2 � 1, we have:

�t = C1r
t cos (�t) + C2r

t sin (�t) +
1

�
Et

" 1X
s=t

rt�1�s sin (� (t� 1� s)) zs

#
: (9)

where � � arctan
�
�
�

�
.

In i)�iv), C1, C2 in (6)-(9) are arbitrary constants.
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Proof. The solution to (4) is given by the sum of a general solution to homogeneous
equation �t+2+ b�t+1+ c�t = 0 and a particular solution satisfying the non-homogeneous
equation (4). Homogeneous second-order di¤erence equations with constant coe¢ cients
are well studied in the �eld of di¤erential equations; the solutions to such equations are the
parts of expressions (6)�(9) that contain integration constants C1 and C2. In contrast,
there is no general approach that can deliver particular solutions to the studied non-
homogenous equations. One possible approach is a version of the "trial and error" method
that parameterizes a particular solution by a linear combination of two terms in the
solution to the homogeneous equations and identi�es the coe¢ cients in the combination to
satisfy the given non-homogeneous equation �this is the approach we used in the paper.11

The resulting particular solutions to non-homogeneous equations are the remaining parts
of (6)�(9) (those that do not contain C1 and C2). The fact that the constructed particular
solutions satisfy the non-homogeneous equation can be veri�ed directly, by substituting
them into (4). Finally, the solutions derived for the deterministic economy also hold
for the version of the model with uncertainty after the introduction of the operator of
conditional expectation; this fact follows by the law of iterative expectations. �
Two observations are in order: First, the output gap can be found from

�xt = �t � �Et�t+1:

For example, for case i), we have

�xt = C1m
t
1 (1� �m1) + C2m

t
2 (1� �m2)

+
1

m1 �m2

Et

"
m�1
1 zt + (1� �)

1X
s=t+1

mt�1�s
1 zs

��m�1
2 zt + (1� �)

t�1X
s=�1

mt�1�s
2 zs

#
:

Second, in Theorem 3 we abstract from the possibility of sunspots. In particular, in case
i), if sunspot solutions are taken into account, formula (6) becomes

�t =
tX

s=�1
C2sm

t�s
2 +

1

m1 �m2

Et

" 1X
s=t

mt�1�s
1 zs +

t�1X
s=�1

mt�1�s
2 zs

#
:

where fC2sg is any sequence of unpredictable random variables with Et�1C2t = 0 (not just
C2m

t
2). (Here, we set C1 �a constant associated with an unstable eigenvalue m1 �to zero

11To construct the particular solutions in the cases i) and ii), we can also use the approach of Cochrane
(2017a) of decomposing the second-order di¤erence equation into two �rst-order di¤erence equations,
however, this approach does not directly apply to cases iii) and iv).
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to get a solution which is stable forward). That is, there is not just time-0 indeterminacy
but sunspots may emerge at any date.12

In the main text, we focus on the deterministic case in which the sequence of shocks
fzt; zt+1; :::g is announced at t. Since the agents have perfect foresight about future shocks,
the expectation operator can be omitted. We can also extend deterministic solutions
to the case of uncertainty, including temporary and permanent shocks, anticipated and
unanticipated shocks, as well as mixtures of deterministic trends and stochastic shocks.
Another method that allows us to deal with uncertainty is proposed in Taylor (1986).
Taylor�s (1986) method does not specify how to construct a solution to the deterministic
model like those we obtain in Theorem 3; see Appendix C for a comparison.
The particular solutions in (6)�(9) are forward stable (nonexplosive) by construction.

A comparison of cases i) and ii) reveals one regularity about the construction of forward
stable particular solutions: if a root mi is unstable, i.e., mi > 1, we use a particular
solution that is forward looking

P1
s=t m

t�1�s
i zs, while if it is stable, i.e., mi < 1, we use

the one that is backward looking �
Pt�1

s=�1m
t�1�s
i zs. To make the entire solution stable,

the solution to the homogeneous equation must also be forward stable. In (7)�(9), this
requires us to set the integration constants at C1 = 0 and C2 = 0. However, in case i),
stability is consistent with any integration constant C2 on the stable root m2. Therefore,
the stable solution is unique in cases ii)-iv), and it is indeterminate in case i).
The constructed closed-form solutions are convenient for applications. They allow

us to analytically construct the path for f�tg for a given sequence of disturbances fztg.
The corresponding solution for the output gap xt = 1

�
(�t � ��t+1) � gt follows from the

Phillips curve (2). We use the constructed solutions to produce the results in Section 3.
Cochrane (2017b) obtained closed-form solutions for a discrete-time version of the

new Keynesian model in which one root is stable (negative) and the other root us un-
stable (positive); see his equation (88). Cochrane (2017a) showed a parallel result for
a continuous-time versions of the model; see his equation (6). In addition to that case,
our Theorem 3 shows closed-form solutions for three other cases, namely, two distinct
unstable real roots, repeated real roots and complex roots.13 Maliar (2018) constructs the
corresponding solutions in the continuous-time version of the model (1)�(3).

12The same point holds for the other solutions but there sunspots lead to explosive equilibria which we
typically rule out.
13Cochrane (2017a) considers a model with two equations (the IS and Phillips curves) and two unknowns

fxt; �tg, and he closes the model by specifying the interest rate path fitg directly. Cochrane (2017a)
argues that it is possible to reverse-engeneer a Taylor rule that is consistent with the constructed path,
namely, given the path for fxt; �t; itg, it is possible to back up the implied i�t , ��, �E� and �y in (3). The
underlying assumption behind this construction is that the agents do not realize that the interest rate
follows the Taylor rule but believe that it follows the given path. In terms of our analysis, this approach
is equivalent to setting ��, �E� and �y to zero.
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3 E¤ectiveness of FG

In this section, we use the constructed closed-form solutions to explore the response of
the economy to FG �an anticipated shock to the policy rule �under several alternative
parameterizations of the Taylor rule. We discuss cases ii), iv) and i) in Sections 3.1,
3.2 and 3.3, respectively (to save on space, we omit the edge-of-the-knife case iii)). We
consider case i) in the last place because it is usually associated with the analysis of ZLB,
and the current paper is not concerned with zero-bound cases.
Among the cases established in Theorems 1-3, cases i) and ii) are the most studied ones

in the context of FG; see, e.g., Werning (2015), McKay et al. (2016), Cochrane (2017a),
and Husted et al. (2017). Case iv) is less explored but it is also plausible. In particular,
it encompasses the values of �� and �y that are widely discussed in the literature to be
the most empirically plausible, such as �� = 2 and �y = 0:5 (see Coibion et al., 2012).
The condition that �� > 1 (and �y = 0) is referred to as the Taylor Principle. Recent
Monetary Policy Reports of the Fed focus on this case: "Policy rules can incorporate key
principles of good monetary policy. One key principle is ... . A third key principle is
that, to stabilize in�ation, the policy rate should be adjusted by more than one-for-one
in response to persistent increases or decreases in in�ation." (see the report from July 7,
2017, February 23, 2018, July 17, 2018).

3.1 Accommodating in�ation: the FG puzzle

Under case ii) of Theorems 1�3, we attain the turning point when the smallest root m2

reaches a unit size. There are many di¤erent combinations of the parameters �E�, �� and
�y that lead to a unit root. The most well-known case is a forward guidance puzzle �an
observation that in a stylized new Keynesian model, output and in�ation react excessively
and unrealistically to central bank�s announcements about future interest rates changes;
see Del Negro et al. (2012, 2015) and McKay et al. (2016). To illustrate the FG puzzle,
in line with McKay et al. (2016), we assume that the interest rate is determined by the
Taylor rule with it = int + �t+1 + "t (this is a speci�c case of the monetary policy rule (3)
under �E� & 1, �� = 0 and �y = 0). The corresponding roots are m1 =

1
�
and m2 & 1,

meaning that we are in case ii) of Theorems 1-2. Let us assume that all shocks are zero,
except of the shock at T which is equal to zT = ��"

�
. By (7), for t � T , the solution is

given by

�t =
1

1=� � 1

" 1X
s=t

�
1

�

�t�s�1
zs �

1X
s=t

zs

#
=
��"

1� �
�
�T�t+1 � 1

�
, (10)

and �t = 0 for t > T . From the Phillips curve (1), we have xt = 1
�
(�t � ��t+1) = ��"

for t � T and xt = 0 for t > T . This means that, a shock that will happen in any remote
period T has the same e¤ect on current output xt as the one that happens at present.
The impact of future shocks on in�ation is even more dramatic: the further away the
shock is in the future, the larger is its e¤ect on today�s in�ation, as (10) shows. Note

11



however that in�ation is not explosive backward but rather converges to a limit, given by
lim
t!�1

�t = � �
1��zT = �

��"
1�� .

Figure 1 illustrates the FG puzzle graphically. The �gure plots the output gap, in�a-
tion and nominal interest rate in response to a one-percent negative shock to the nominal
interest rate that happens in the 30th quarter, T = 30. To produce this and all subsequent
solutions, we parameterize the model by � = 0:11, � = 1 and � = 0:99.14
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Figure 1. Forward guidance: Taylor rule with expected in�ation, �E� & 1.

The output gap goes up immediately by one percent in response to a distant future shock.
The in�ation goes up by about three percent, and then gradually decreases and reaches
the steady state level in period 30. We should point out that there will be the same
magical e¤ects of promised future �scal stimuli and capital destruction. This is because
a positive monetary policy shock acts similarly to a disturbance to government spendings
and capital destruction.
Why are the future shocks so powerful? As was pointed out by Del Negro et al. (2012,

2015) and McKay et al. (2016), this happens because the e¤ect of future shocks on output
is not discounted. To see the point, let us apply forward recursion to the IS curve (1)
by imposing a forward stability condition lim

s!1
xt+s = 0 (a steady-state value) and let us

assume again the monetary policy rule it = int + �t+1 + "t. We get

xt = ��
1X
s=t

(is � ins � �s+1) = ��
1X
s=t

"s: (11)

(In the case of a single T -period shock, (11) leads to the same expression as our closed-
form solution xt = ��"). In formula (11), there is no discounting and all shocks have the
same e¤ect on output.
To study the robustness of the FG puzzle, let us consider a more general Taylor rule

(3) with expected in�ation such that �E� > 1; for example, in Figure 2, we illustrate the
case �E� = 3; �� = 0 and �y = 0. Then, we are in case iv) of Theorems 1 and 2 with

14The value of � = 0:11 corresponds to a fraction of non-reoptimizing �rms � = 0:83 and a utility-
function parameter # = 2:09; see our footnote 8 for the formula of �.
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unstable complex roots. In response to the shock in period 30, the model�s variables start
�uctuating from period 0 and on, up to period 30.
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Figure 2. Forward guidance: Taylor rule with expected in�ation, �E� = 3.

There is a gradual decay but it is very slow, since we are close to unit root jrj � 1:005
under our benchmark calibration. While this oscillating case is discomforting, we draw
attention that it is produced by a meaningful positive (although too strong) response of
the interest rate to expected in�ation; we cannot rule it out as a less appealing case of
negative Taylor-rule coe¢ cients, also leading to oscillations.
An interesting question is: How di¤erent would the results be if the monetary rule

(3) depended on actual rather than expected in�ation, i.e., �E� = 0, �� = 1 and �y = 0,
which implies it = int +�t+"t? We analyze this case in Appendix D. We �nd that again we
have a unit rootm2 = 1 but in that case, only in�ation explodes backward but not output.
Finally, we �nd that increasing �� leads to a more rapid decay of cyclical �uctuations in
in�ation. Thus, we conclude that the FG puzzle disappears, when �E� and �� increase
although backward stabilization can be very slow.

3.2 Plausible Taylor rules: sensible FG e¤ects

In this section, we show that the introduction of the output gap in the Taylor rule helps
us insure backward stability in a sense that neither in�ation nor the output gap react by
large amounts to the announcement of the future interest-rate change. Therefore, the FG
puzzle is not observed in that case.

Taylor rule with the output gap and anticipated in�ation. Let us consider the
rule (3) with anticipated in�ation �E� > 0 and the output gap �y > 0. Substituting the
Taylor rule (3) into the IS curve (1), we obtain xt = 1

1+��y

�
Etxt+1 � �

�
�E� � 1

�
Et�t+1 � �"t

�
.

By making recursive substitution and by imposing lim
s!1

xt+s = 0, we get

xt = �
�
�E� � 1

� e�� 1X
s=t

e�s�tEs�s+1 � e�� 1X
s=t

e�s�t"s; (12)
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where e� � 1
1+��y

is an e¤ective discount factor. Since �y > 0, the e¤ect of future shocks

on today�s output is discounted at the rate e� < 1, unlike under the FG puzzle (11). In

particular, in the benchmark case �E� & 1, we obtain xt = �e��P1
s=t
e�s�t"s, which is

identical to the FG-puzzle formula (11) (up to the multiplicative term) except that now we
have discounting. Note that discounting is present for any �y > 0, except of the limiting
case �y = 0, which corresponds to the FG puzzle.

Taylor rule with the output gap and actual in�ation. Alternatively, we can con-
sider the Taylor rule with actual in�ation �� > 0 and the output gap �y > 0. Substitut-
ing the t-period Taylor rule (3) into (1) and imposing (2), we get xt =

�
�+��+���y

xt+1 �
��

�+��+���y

�
���t � �t

�
+ "t

�
. Again, by using a forward recursive substitution of the future

output gaps and by imposing lim
s!1

xt+s = 0, we obtain

xt = �
�
�� �

1

�

�
��

1X
s=t

�
s�t
�s � ��

1X
s=t

�
s�t
"s; (13)

where � � �
�+��+���y

< 1 is an e¤ective discount factor. Like in the previous case, we

have � < 1, so that the e¤ect of the shock "s on today�s output is discounted at the rate
�. Furthermore, in a special case �� =

1
�
, we obtain xt = ���

P1
s=t �

s�t
"s, which is again

identical to the FG-puzzle formula (11) except for the presence of discounting (and the
multiplicative term �). Interestingly, discounting does not disappear even if �y = 0 since
we have � = �

�+��
< 1 (as long as � > 0). However, a larger output gap in the Taylor

rule (3) makes discounting stronger.

A comparison of the Taylor rules with anticipated and actual in�ation. In
Figure 3, we compare the results under two Taylor rules (3) that both contain an identical
output gap coe¢ cient �y = 0:5 but one rule contains just expected in�ation �E� = 2 (see
a red line), while the other contains just actual in�ation �� = 2 (see a blue line). These
are the conventional values used in the related literature, see, e.g., Taylor (1993), and
Coibion et al. (2012). We used the constructed closed form solutions, to generate the
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series for the output gap, in�ation and the interest rate for these two cases.
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Figure 3. Forward guidance: Taylor rules with the output gap �y = 0:5: a comparison
of anticipated in�ation , �E� = 2, and actual in�ation, �� = 2.

In the �gure, the two Taylor rule�s parameterizations lead to similar qualitative be-
havior of the model�s variables. This similarity can be understood by looking at our
decompositions (12) and (13) which imply that the formulas for xt are virtually identical
although the e¤ective discount factor may be di¤erent. Note that the FG puzzle is not
observed in these cases: the e¤ect of a distant shock on today�s variables is negligible, i.e.,
in�ation and output are backward stable. In sum, the plausible Taylor rule insures both
backward stability and equilibrium uniqueness.
Finally, it turns out that for our calibration of the other model�s parameters (see

Section 3.1), the considered parameterization of the Taylor rule is close to the one that
separates the cases ii) and iv) of Theorems 1-3. In particular, �E� = 2 or �� = 2 leads to
complex roots, while �E� = 1:5 or �� = 1:5 leads to real roots. Qualitatively, dynamics in
both cases look very similar; we show the case of the real roots in Figure D3 of Appendix
D. The latter case is distinguished in Taylor (1993) as the most plausible one.

Can contemporaneous shocks mess up with FG shocks? Our key �nding is that
the FG puzzle depends on the Taylor-rule parameterization. It is obtained under the
assumption of given contemporaneous policy shocks. An important question is: What
would happen to e¤ects of future (FG) shocks if we take into account contemporaneous
shocks? In particular, if our result is true in a broad context, it should be also true
that contemporaneous impulse responses are barely a¤ected (or at the very least they
are a¤ected much less than the responses to future shocks) by changing the coe¢ cients
of the Taylor rule. To answer, we compare contemporaneous impulse responses for two
parameterizations: �E� = 1, �� = 0, �y = 0 and �E� = 0, �� = 1:5, �y = 0:5 (our
empirically plausible parameterization); both of these parameterizations lead to case ii)
in the paper. We �nd that the di¤erences in responses to a 1% contemporaneous shock
are very small between these two parameterizations. Therefore, our �ndings that the
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puzzle depends on the monetary policy rule are still valid if contemporaneous shocks are
included into the analysis.

3.3 Choosing the interest rate path directly: indeterminate ef-
fects of FG

We �nally consider a version of the model that has one stable root and one unstable root,
and as a result, has multiple (forward) stable solutions; see case i) of Theorems 1�3. An
example of such model is the one in which the coe¢ cients in the Taylor rule (3) are all
equal to zero, i.e., �� = 0, �y = 0, �E� = 0, so that the monetary authority does not
follow any rule but choose the sequence of interest rates i0; i1; ::: directly.
By Theorem 3, case i), under jm1j � 1 and jm2j < 1, a collection of stable solutions is

obtained from (6) by setting C1 �a constant associated with an unstable eigenvalue m1

�to zero. An impulse-response function takes the form

�t = C2m
t
2 +

1

m1 �m2

Et

" 1X
s=t

mt�1�s
1 zs +

t�1X
s=0

mt�1�s
2 zs

#
; (14)

where C2 is an arbitrary constant. In particular, for a single anticipated shock, "t = 0 for
t 6= T , and "T = ", we have zt = 0 for t 6= T , and zT = ��"

�
. Substituting the latter result

into the solution (14), we get the following impulse responses:

t � T , �t = C2mt
2 +

��"

� (m1 �m2)
mt�1�T
1 ; (15)

t > T , �t = C2mt
2 +

��"

� (m1 �m2)
mt�1�T
2 . (16)

That is, the economy is driven by a forward-looking component
P1

s=tm
t�1�s
1 zs before

the shock occurs and it is driven by a backward-looking component
Pt�1

s=�1m
t�1�s
2 zs

afterwords. Since stability is consistent with any C2, we can choose it in an arbitrary
manner.
A combination jm1j � 1 and jm2j < 1 is related to the zero-bound case on which

much of the FG literature focuses; see. e.g., Cochrane (2017a). The impulse response to a
central bank�s promise to hold the interest rate at zero will take the form (15), (16). These
solutions generically converge going forward, meaning that they diverge going backward:
announcements of policy deviations further in the future have larger e¤ects today. This
result, which extends to output, is the classic "forward guidance puzzle" of the zero-bound
literature, and it extends to any passive policy regime, e.g., �� < 0, �y = 0, �E� = 0.
Here, the FG puzzle is a smooth function of m2.
For our model, we plot the impulse responses (15), (16) for T = 30 in Figure 4. For

our benchmark calibration of �, � and �, described in Section 3.1, the eigenvalues are
m1 = 1:4052 and m2 = 0:7188. We display two stable equilibria: in one of them, we chose
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C2 = 0, and in the other, we chose C2 such that initial in�ation is zero, i.e., �0 = 0.
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Figure 4. Multiple equilibria under �E� = 0, �� = 0, �y = 0: equlibria with C2 = 0 (top
panels) and with �0 = 0 (bottom panels)

Cochrane (2017a) argued that if the monetary authority follows a discretionary policy
of choosing the interest rate path, the e¤ect of FG on the economy depends critically on
the equilibrium selection (i.e., on the integration constant C2), ranging from extremely
large to practically non-existent. In the �gure, a possible impact of FG on output ranges
from a drastic immediate increase in output (equilibrium with C2 = 0) to an essentially
absent immediate increase in output (equilibrium with �0 = 0). Similarly, the e¤ect on
in�ation is dramatic in the former case, and it is very mild in the latter case. The �rst
panel is a classical FG puzzle response. Thus, large di¤erences between multiple equilibria
emphasized by Cochrane (2017a) are not limited to his setup with a zero response to
in�ation but are a generic property of the model in which the monetary policy is not
su¢ ciently responsive to insure the equilibrium uniqueness.
The zero-bound literature reasons that some choices of C2 make more sense than the

others. To illustrate, suppose there is a transitory IS disturbance that lasts from period 0
to T (e.g., the real interest rate happens to be negative in this interval of time). Werning
(2012) selected an equilibrium with �T+1 = 0, arguing that people will expect it because
of forward-looking optimality. This choice of in�ation implies a speci�c value of C2 and
�0 6= 0. The resulting solution generically explodes backwards and therefore, implies
the forward-guidance puzzle. Cochrane (2017a) proposed to resolve the puzzle by setting
�0 = 0. Similar to the case of the bottom graph in Figure 4, the responses converge
going backward. To justify, he noted that �0 < 0 represents an unexpected de�ation that
induces an increase in the value of government debt which requires �scal tightening to
pay o¤. Absent such �scal policy, we have �0 = 0, which, as argued above, resolves the
puzzle.
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3.4 Backward stability and turnpike theorem

All our solutions are constructed in a way that makes them forward stable. Whether
they are also backward stable or not depends on a speci�c parameterization of the Taylor
rule. The FG puzzle in Figure 1 is an example of backward unstable (explosive) solution
and so are the examples shown in Figure 4 (upper panel) and Figure 2 (see also Figure
D1 in Appendix D). In turn, the solutions in Figure 4 (bottom panel) and Figure 3 are
backward stable (see also Figure D2 in Appendix D). Backward stability can be related
to the so-called turnpike theorem which is well-known for the neoclassical growth model;
see Brock (1971) and McKenzie (1976). The turnpike theorem states that a backward-
looking trajectory of the �nite-horizon growth model is situated arbitrary close to that of
the corresponding in�nite-horizon model in initial periods, provided that time horizon is
su¢ ciently large; see Maliar, Maliar, Taylor and Tsener (2015) for a formulation of the
turnpike theorem and discussion.
An important role in turnpike analysis is played by the rate of backward convergence.

As an illustration, in our model, we vary the terminal condition under two Taylor rules
(3): one rule has just actual in�ation �� = 3 and the other rule has just expected in�ation
�E� = 3.

5 10 15 20 25 30 35
0.8

0.9

1

1.1

1.2

1.3
Output: Taylor rule with inflation

115%
110%
100%
90%
85%

5 10 15 20 25 30 35
0.6

0.8

1

1.2

1.4

1.6
Output: Taylor rule with expected inflation

103%
101%
100%
99%
95%

Figure 5. The e¤ect of variations in the terminal condition under the Taylor rules with �� = 3
and �E� = 3.

In both models, the roots are complex, so by case iv) of Theorem 3, the solutions are
backward stable and thus, satisfy the turnpike theorem. While the model with actual
in�ation in Figure 5 shows a rapid backward convergence pattern, the model with expected
in�ation appears to have a non-convergent cyclical pattern. In the latter model, the root
is close to unity: as a result, the �uctuations decay so slowly that they appear to be
nonvanishing (we had similar tendency in Figure 2).
It is easy to check that the backward explosive case i) of Theorems 1-3 and the FG-

puzzle case violate the turnpike theorem. The corresponding �gures would look like Figure
4 (upper panel) and Figure 1, respectively. (in e¤ect, variations in the terminal condition
are similar to future shocks).
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Let us consider the FG-puzzle case which violates the turnpike theorem. Our analysis
suggests that the monetary authority�s rule that leads to the FG-puzzle case is suboptimal.
Indeed, high in�ation is costly for the economy, and yet the monetary authority adjusts
interest rate to fully �t the in�ation expectation it = int + �t+1 + "t. For example, if
the people expect 300 percent in�ation, the monetary authority will do nothing but set
302 percent nominal interest rate to guarantee the real interest rate of 2 percent. Such
"passive" monetary authority response is the reason for why the FG-puzzle solution in
Figure 1 explodes backward.
In contrast, the models that satisfy the turnpike theorem agree with our intuition

and a common sense. In such models, the future commitments have a sizable e¤ect on
today�s variables only if such commitments refer to relatively near future. The farther
away the commitments are advanced in the future, the less impact they have at present.
That is, the e¤ect of FG will increase as the economy approaches the period of the shock
(or the terminal condition). These implications hold for the neoclassical growth model,
as well as for the new Keynesian models under the plausible Taylor rules (e.g., �� = 1:5
and �y = 0:5). Moreover, Woodford (2001) shows that such a Taylor rule provides a
good approximation to the Ramsey policy rule, which suggests that the optimal policy
rules are also backward stable and do not lead to the FG puzzle.15 However, if the
monetary authority happens to follow some arbitrary and suboptimal policy rules such
as accommodation of high in�ationary expectations, it would not be surprising to see
dramatic consequences in line with those predicted by the FG-puzzle example. There
seems to be a paradox here: on one hand, an optimal policy rule implies a large response
of the interest rate to in�ation (e.g., �� = 1:5). On the other hand, a lower �� (e.g.,
�� � 1) gives the central bank more power to a¤ect the economy by open mouth policy.

4 Robustness of our �ndings

Up to now, we have studied a linearized version of the basic new Keynesian model that
admits closed-form solutions. More general versions of the model do not admit closed-form
solutions, so we resort to numerical analysis. The model with FG is non-stationary, the
optimal decision rules change from one period to another, driven by anticipatory e¤ects,
and the conventional numerical methods that construct time-invariant value and policy
functions are not applicable. We use two methods that are designed to solve such models:
an extended path method of Fair and Taylor (1983) and an extended function path method
of Maliar et al. (2015, 2017). In both methods, we impose (forward) stability: for the
former method, we assume that in the terminal period, the economy arrives in the steady
state, while for the latter method, we assume that the economy asymptotically converges
to stationary. Thus, all the equilibria in our simulations are forward stable equilibria by
construction. We �rst ask whether or not our �ndings are robust to the introduction

15The analysis of Woodford (2001) requires some additional assumptions; see Woodford (2003) for a
discussion and generalizations.

19



of nonlinearity; we then introduce uncertainty in the nonlinear model by assuming six
exogenous shocks; and we �nally augment the nonlinear model to include capital.

4.1 Nonlinearity

In this section, we consider a nonlinear version of the basic new Keynesian model. The
di¤erence between global and local determinacy might show up in the behavior of the
real economy in times of extreme in�ation (not just in ZLB). Speci�cally, we consider a
nonlinear new Keynesian model analyzed in Maliar and Maliar (2015).16 The economy is
populated by households, �nal-good �rms, intermediate-good �rms, monetary authority
and government. In particular, the monetary authority follows a Taylor rule

Rt � R�
�
Rt�1
R�

�� "�
Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (17)

where Rt is the gross nominal interest rate at t; R� is the steady state level of nominal
interest rate; �tar is the target in�ation; YN;t is the natural level of output; and �R;t is a
monetary shock following the standard �rst-order autoregressive process. In addition to
the three variables in our baseline linearized model of Section 2, the nonlinear model has
consumption, labor, price dispersion and the supplementary variables S and F following
from the pro�t maximizing conditions of monopolistic �rms; see Appendix A for the
model�s description, the list of the �rst-order, the calibration and solution procedures, as
well as a list of linearized equations. 17

As an example, in Figure 6, we compare the e¤ect of FG on linear and nonlinear
solutions under the Taylor rule (17) parameterized by �E� = 0, �� = 1=� and �y = 0 (we
assume � = 0). The anticipated shock here (as well as in the rest of Section 5) happens

16It would be interesting to explore in details eigenvalues and global behavior of the FRBNY model,
studied in Del Negro et al. (2015). The last paper just reported few impulse responses without exploring
alternative model�s parameterizations.
17The linearized version of the model does not correspond exactly to the three-equation model studied

before, e.g., the former includes government spendings and the endogenous natural level of output, the
presence of which does not lead to the three-equation model; see Appendix A.
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at T = 20.

10 20 30 40 50
1.085

1.09

1.095

1.1
Output

10 20 30 40 50
0.835

0.84

0.845

0.85
Consumption

10 20 30 40 50
1.085

1.09

1.095

1.1
Labor

10 20 30 40 50
1

1.01

1.02

1.03
Nominal interest rate

10 20 30 40 50
1

1.002

1.004

1.006

1.008

1.01
Inflation

10 20 30 40 50
1

1.005

1.01

1.015
Real interest rate

10 20 30 40 50
0.994

0.996

0.998

1
Dispersion

10 20 30 40 50
7

7.5

8

8.5

9
Variable S

10 20 30 40 50
7

7.5

8

8.5
Variable F

Linear
Nonlinear

Figure 6. A comparison of linear and nonlinear solutions under �E� = 0, �� = 1=� and
�y = 0.

We can see some qualitative di¤erences between the linear and nonlinear solutions. For
example, in the initial period, the nonlinear model predicts that output goes down, while
the linear model predicts that it goes up. However, quantitatively, these di¤erences are
not very signi�cant.
We explore a number of other parameterizations and obtain similar results. For ex-

ample, for the Taylor rule with the output gap (�y = 0:5) and persistence in the interest
rate (� = 0:82), the di¤erence between the linearized and nonlinear solutions is minimal,
independently of whether the rule is parameterized by expected in�ation or actual in�a-
tion . Moreover, similar to the linearized model (see Figure 3), we �nd that the nonlinear
solutions are practically indistinguishable in two cases of �E� = 3 and �� = 0 and �� = 3
and �E� = 0.

4.2 Multiple sources of uncertainty

We next study how the introduction of more general sources of uncertainty a¤ects the
model�s predictions about the e¤ectiveness of FG. As described in Appendix A, we in-
troduce six di¤erent shocks into the nonlinear model. As an example, in Figure 7, we
introduce uncertainty in the nonlinear model which exhibited the FG puzzle, i.e., we
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parameterize the Taylor rule (17) by �E� & 1, �� = 0; �y = 0 and � = 0).
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Figure 7. Forward guidance in the nonlinear stochastic model �E� & 1, �� = 0 and

�y = 0.

The time series in Figure 7 look very similar to the FG puzzle dynamics in the corre-
sponding deterministic model of Section 3.1. The output and in�ation jump up in the
initial period.
We also analyze the model with the Taylor rule that includes actual in�ation �E� = 0,

�� & 1, �y = 0 and � = 0 (not reported). The e¤ect of the FG in the model with
uncertainty is very similar to the one in the deterministic version of the model analyzed in
Appendix D; see Figure D1. In our experiments, those parameterizations of the Taylor rule
that led to backward stable solutions in the deterministic model also result in backward
stable solutions in the model with uncertainty. Overall, we conclude that the introduction
of uncertainty does not signi�cantly a¤ect the predictions of the model about the FG
e¤ectiveness.

4.3 Capital

We�nally study how the introduction of capital into the basic newKeynesian model a¤ects
the model�s implications about the e¤ectiveness of FG; see Appendix E for a description
of such a model. In Figure 8, we show the non-linear solution under the Taylor rule (17)
parameterized by either expected in�ation �E� = 2, �� = 0 or actual in�ation �E� = 0,
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�� = 2 and the remaining coe¢ cients are set at �y = 0:5 and � = 0:82.
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Figure 8. Model with capital: Taylor rules with expected in�ation
�E� = 2, versus actual in�ation �� = 2 under �y = 0:5 and � = 0:82.

With capital and the lagged nominal interest rate in the Taylor rule, the model has now
two additional endogenous state variables. In this model, output responds not only to
labor-input but also to capital-input changes. These di¤erences do not a¤ect qualitative
implications of the model about the FG e¤ectiveness: the series in Figure 8 are backward
stable and qualitatively similar to those in the baseline three equation model in Figure 3.
We perform a number of sensitivity experiments by varying the parameters in the

Taylor rule (17). Some of these experiments are provided in Appendix E. In particular, in
Figures E1-E3, we show the same experiments for the model with capital as those shown
for the basic linear model in Figures 2, D1, D2. We do observe some qualitative di¤erences
between the model with capital and the basic linearized model in Section 3 but our most
important �nding remains unchanged: the Taylor rule with a weak response to in�ation,
e.g., �E� & 1 or �� & 1, produces backward explosive dynamics with some version of the
FG puzzle, while a more responsive monetary policy (for example, with larger values of
�� or with the inclusion of the output gap �y) eliminates the puzzle.
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5 FG puzzle with and without ZLB

FG became well-known as a policy instrument during the period of an active zero lower
bound. Central banks used FG because they had a limited ability to conduct conventional
monetary policy. However, FG was �rst analyzed theoretically in models with no zero
lower bound, and the FG puzzle was also discovered in such models; see Del Negro et al
(2012, 2015) and McKay et al. (2016).
To be more speci�c, Del Negro et al. (2015) highlight an excessive power of FG in

the context of FRBNY DSGE model. Their theoretical analysis assumes an operating
Taylor principle and no zero lower bound (i.e., no max operator in the Taylor rule), and
they look for a "...solution to the log-linear approximation of the model�s equilibrium
conditions around the deterministic steady state". To explain why the FG puzzle holds
in their model, Del Negro et al (2015) o¤er the following explanation (see their p. 4):
"...forward guidance puzzle results from the interaction of many features of DSGE models.
These include the excess sensitivity of consumption to interest rate changes and the front-
loading associated with the New Keynesian Phillips curve, which have long been criticized
for being counterfactual. In addition, we stress the excessive response of consumption to
interest rate changes far in the future implied by the standard consumption Euler equation,
emphasized also in a recent paper by McKay et al. (2015). As we explain in Section 3.3,
what is novel about the forward guidance policy experiment is that it compounds all these
implications, bringing to the fore the limitations of typical medium scale DSGE models
used for policy analysis." Thus, their analysis suggests that the considered medium-scale
DGSE model is not su¢ ciently large and realistic to resolve the FG puzzle.
Similarly, the paper of McKay et al. (2016) contains an extensive discussion of various

ingredients needed for resolution of the FG puzzle. Their baseline analysis also abstracts
from the zero lower bound, namely, they make the following assumption about the policy:
"Suppose for simplicity that the monetary policy of the central bank is given by an
exogenous rule for the real interest rate where the real interest rate tracks the natural real
rate with some error: rt = it � Et�t+1 = rnt + �t;t�j ...Suppose...the monetary authority
announces that the real interest rate will be lower by 1 percent for a single quarter
�ve years in the future, but maintained at the natural real rate of interest in all other
quarters..." This policy is assumed in both the standard and modi�ed models extended to
include incomplete markets (see, e.g., pages 3134, 3135, 3137 and 3146). Interestingly, in
the lower-bound scenario, their incomplete-market model entirely falls apart, producing
backward explosions even larger than the standard model; see their Section C.
On the other hand, Campbell et al. (2016) �nd that the FG puzzle is not a generic

feature of medium-scale NK models. Their medium-scale NK model estimated with US
data di¤ers from that in Del Negro et al. (2015) in several dimensions, and it produces
realistic responses for empirically plausible interest-rate pegs. See also more recent liter-
ature that focuses on resolving the FG puzzle, including Husted et al. (2017), Kaplan et
al. (2017) and Gabaix (2017).
In contrast, the papers of Carlstrom et al. (2015), Werning (2015) and Cochrane
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(2017a) study the e¤ects of FG by explicitly focusing on a lower bound scenario. In par-
ticular, Carlstrom et al. (2015) assumes that after the ZLB episode is over, the economy
follows the standard Taylor rule with empirically plausible values of coe¢ cients �� = 1:5
and �y = 0:5. The solution is worked out backward by starting from the steady state,
by proceeding backward up to the period when the lower bound begins to bind, and by
constructing the solution up to the initial period. In the three equation model, Carlstrom
et al. (2015) explain backward explosiveness (i.e., the FG puzzle) by looking at eigenvalue
but this is an unstable eigenvalue rather than a stable one (as follows from their explana-
tion on page 233, integration constant on the unstable eigenvalue is not set to zero). Thus,
that paper highlights a di¤erent mechanism for generating explosive behavior than FG
puzzle compared to the literature that analyzes forward stable solutions. In the medium-
scale DSGE models of Christiano et al. (2005) and Smets and Wouters (2007), Carlstrom
et al. (2015) �nd diverse e¤ects of FG � from none to very large �depending on the
number of FG periods and on the presence of in�ation indexation. These e¤ects seem to
follow a very complex, sometimes "nonsensical" structure.
In turn, Werning (2015) and Cochrane (2017a) show that backward explosion is still

present even if we restrict attention to forward-stable solutions. In particular, Cochrane
(2017a) demonstrates that the stylized new Keynesian model has multiplicity of equilibria
during the ZLB episodes and that it may or may not lead to a backward explosion (the
FG puzzle) depending on the equilibrium selection via the choice of integration constant
on stable eigenvalue. The e¤ectiveness of FG and the magnitude of backward explosion
depend on the size of the smaller eigenvalue. In particular, there is no FG puzzle if the
monetary authority manages to coordinate on equilibrium which involves no backward
explosion.
The contribution of the present paper is to show that for the baseline three-equation

new Keynesian model, the whole issue of FG is about the size of a smaller eigenvalue.
This is true both for the economy facing active ZLB and the one away from the ZLB
constraint. The backward explosion away from ZLB is similar to the one established in
Cochrane (2017a) under the lower-bound scenario. Our analytical results make it possible
to cleanly see whether the new Keynesian model leads to the FG puzzle or not under a
given parametrization. The size of the smallest eigenvalue is a su¢ cient statistics to
capture the role of all the ingredients and parameters in the backward explosion.
Do we resolve FG puzzle? In a sense, yes we do, namely, we demonstrate analytically

that the baseline three equation new Keynesian model parameterized by a plausible Taylor
rule does not produce a backward explosion. We show that similar quantitative results
hold for the nonlinear version of the baseline new Keynesian model and the version of the
model with capital. We conclude that baseline new Keynesian model does not have the
FG puzzle as long as plausible Taylor rules are used.
In the broader literature on the FG puzzle, our paper may be interpreted as follows:

Previous work has shown that various (behavioral) frictions can dampen the economy�s
response to rate cuts in the far future. The present paper establishes that such dampening
is already implied by plausible Taylor rules. However, this particular source of dampening
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might not be enough to break the FG puzzle in all models, so additional frictions might
be needed. In particular, there are models that produce excessively large responses to the
Fed announcement under empirically plausible Taylor rules, e.g., Del Negro et al. (2012,
2015), McKay et al. (2016) and Carlstrom et al. (2015). Presumably, such models have
additional ingredients that accentuate the backward explosion. Our analysis does not
provide a basis to determine which ingredients of these models lead to FG puzzle. But we
can a¢ rm that the FG puzzle is not present in the stylized new Keynesian model under
plausible Taylor rules, as well as in the version of this model with capital; this is true for
both linear and nonlinear analysis.
There is another sense in which we do not resolve the FG puzzle, namely, nothing in

our analysis prevents monetary authority from taking advantage of the open-mouth policy
by using the rules that lead to backward explosion, e.g., it = int + �t+1 + "t. However, we
remind that rules like that are suboptimal. One of the fundamental principals of mone-
tary theory is that the central bank aims to maximize social welfare. If the central bank
does something else, the models in this paper predict a variety of empirically implausible
outcomes, such as the FG puzzle, or even large cyclical �uctuations. The fact that sub-
optimal monetary policies lead to counterintuitive and counterfactual implications is not
entirely surprising: one would expect equally puzzling implications from the models in
which consumers do not maximize utilities or �rms do not maximize pro�ts. A reasonable
approach would be for the monetary authority to aim at attaining an optimal outcome by
implementing a Taylor-style rule that approximates Ramsey policy; and such an approach
does not lead to the FG puzzle.

6 Conclusion

In this paper we examine the impact of FG� de�ned as an announced and anticipated
deviation of the central bank�s policy interest rate from a policy rule, and we showed that
the impact depends crucially on the form of the policy rule. We concentrate on the �FG
puzzle,�in which such an announced deviation of the policy interest rate from the policy
rule, even in the far future, has huge, even implausible, e¤ects on in�ation or output
today.
We use a three-equation new Keynesian model with an Euler equation, a price adjust-

ment equation, and a policy rule. We delineate four regions of the parameter space for
this model and prove analytically that these regions correspond to (i) one stable and one
unstable root for which there are multiple stable solutions and the FG puzzle may arise,
(ii) one unit root and one unstable root for which there is a unique stable solution and
the FG puzzle arises, and (iii and iv) two unstable roots for which there is a unique stable
solution and the FG puzzle does not arise. In region (i)-(iii) the roots are real, and in
region (iv) they are complex.
We show that coe¢ cients of the policy rule� the responsiveness of the policy interest

rate to output, in�ation, and expected in�ation� are the key determinants of each region.
We argue that the policy rules that generate regions (iii) and (iv), where there is no
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FG puzzle, constitutes far better and more empirically realistic monetary policy. First,
these regions include the parameters of the original Taylor (1993) rule in which the Taylor
Principle that the response to in�ation is greater than one holds. Second, the region that
includes the Taylor principle accords well with the fully optimal monetary policy rule for
this model, which is derived analytically from a Ramsey-type intertemporal optimization
problem. Third, the Fed argues in its recent monetary policy reports that a key monetary
principle is that �the policy rate should be adjusted by more than one-for-one�in response
to in�ation, which also generates the regions with no FG puzzle. Fourth, empirical results
show that monetary policy works better when the policy rule parameters are in this region.
We show that these results are robust by considering nonlinear models and solving

them numerically, and by adding capital and labor to the model. We consider alternative
solution techniques and a variety of terms in the policy rule. We also show that the models
without the FG puzzle correspond to well-known turnpike properties of growth models.
While FG became popular at the time of binding ZLB during and after the Great

Recession, it was used before that time by the Fed and other central banks, and surveys
show that there is interest in FG at central banks in the future. Indeed, out of 55
heads of central banks, surveyed in Blinder et al. (2016), none said that FG should be
discontinued after the crisis; 59% and 12.8% think that it is a potential instrument in
the same and modi�ed form, respectively. Among monetary policymakers, there is a
signi�cant voice calling for FG in normal times. Bernanke (2017) argues that FG can
be useful before the next recession hits, by noting that "... when ZLB looms, rate cuts
should be aggressive ... Forward guidance, of the Odyssean variety, would come next ... .
Relative to earlier experience, I would expect a much earlier adoption of state-contingent,
quantitative commitments to hold rates low." The former Fed�s chair, Yellen (2018) has a
similar opinion by arguing that " the FOMC should seriously consider pursuing a lower-
for-longer or makeup strategy for setting short rates when the zero lower bound binds
and should articulate its intention to do so before the next zero lower bound episode".
Mester (2014) views FG as a device that in normal time "conveys to the public how policy
is likely to respond to changes in economic conditions"; Coeuré (2018) also supports the
usefulness of FG "beyond the timing to lift-o¤", etc. The results in this paper indicate
that the best FG is for central banks to base policy decisions on rules in which there is
no FG puzzle, as well as to indicate that they will base policy decisions in the future.
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Appendix A. The nonlinear new Keynesian model

In this section, we describe the basic new Keynesian model that leads to the three-equation
model (1), (2) and (3) studied in the main text.

Households. The representative household solves

max
fCt;Lt;Btgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1��t � 1

1� � � exp
�
�L;t
� L1+#t � 1
1 + #

�
(18)

s.t. PtCt +
Bt

exp
�
�B;t
�
Rt
+ Tt = Bt�1 +WtLt +�t; (19)

where
�
B0; �u;0; �L;0; �B;0

�
is given; Ct, Lt, and Bt are consumption, labor and nominal

bond holdings, respectively; Pt, Wt and Rt are the commodity price, nominal wage and
(gross) nominal interest rate, respectively; �u;t and �L;t are exogenous preference shocks
to the overall momentary utility and disutility of labor, respectively; �B;t is an exogenous
premium in the return to bonds; Tt is lump-sum taxes; �t is the pro�t of intermediate-
good �rms; � 2 (0; 1) is the discount factor; � > 0 and # > 0 are the utility-function
parameters. The shocks follow standard AR(1) processes with means zero and constant
standard deviations.

Final-good �rms. Perfectly competitive �nal-good �rms produce �nal goods using
intermediate goods. A �nal-good �rm buys Yt (i) of an intermediate good i 2 [0; 1] at
price Pt (i) and sells Yt of the �nal good at price Pt in a perfectly competitive market.
The pro�t-maximization problem is

max
Yt(i)

PtYt �
Z 1

0

Pt (i)Yt (i) di (20)

s.t. Yt =
�Z 1

0

Yt (i)
"�1
" di

� "
"�1

; (21)

where (21) is a Dixit-Stiglitz aggregator function with " � 1.

Intermediate-good �rms. Monopolistic intermediate-good �rms produce intermedi-
ate goods using labor and are subject to sticky prices. The �rm i produces the intermediate
good i. To choose labor in each period t, the �rm i minimizes the nominal total cost, TC
(net of government subsidy v),

min
Lt(i)

TC (Yt (i)) = (1� v)WtLt (i) (22)

s.t. Yt (i) = exp
�
�a;t
�
Lt (i) ; (23)

�a;t+1 = �a�a;t + �a;t+1; �a;t+1 � N
�
0; �2a

�
; (24)
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where Lt (i) is the labor input; exp
�
�a;t
�
is the productivity level such that �a;t follows

the standard AR(1) process. The �rms are subject to Calvo-type price setting: a fraction
1 � � of the �rms sets prices optimally, Pt (i) = ePt, for i 2 [0; 1], and the fraction � is
not allowed to change the price and maintains the same price as in the previous period,
Pt (i) = Pt�1 (i), for i 2 [0; 1]. A reoptimizing �rm i 2 [0; 1] maximizes the current value
of pro�t over the time when ePt remains e¤ective,

maxePt
1X
j=0

�j�jEt

n
�t+j

h ePtYt+j (i)� Pt+jmct+jYt+j (i)io (25)

s.t. Yt (i) = Yt

�
Pt (i)

Pt

��"
; (26)

where (26) is the demand for an intermediate good i (follows from the �rst-order condition
of (20), (21)); �t+j is the Lagrange multiplier on the household�s budget constraint (19);
mct+j is the real marginal cost of output at time t+j (which is identical across the �rms).

Government. Government �nances a stochastic stream of public consumption by levy-
ing lump-sum taxes and by issuing nominal debt. The government budget constraint
is

Tt +
Bt

exp
�
�B;t
�
Rt
= Pt

GYt

exp
�
�G;t
� +Bt�1 + vWtLt; (27)

where G is the steady-state share of government spending in output; vWtLt is the subsidy
to the intermediate-good �rms; �G;t is a government-spending shock, that follows the
standard AR(1) process.

Monetary authority. The monetary authority follows a Taylor rule

Rt � R�
�
Rt�1
R�

�� "�
Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (28)

where Rt is the gross nominal interest rate at t; R� is the steady state level of nominal
interest rate; �tar is the target in�ation; YN;t is the natural level of output; and �R;t is a
monetary shock following the standard AR(1) process.

Natural level of output. The natural level of output YN;t is the level of output in
an otherwise identical economy but without distortions. It is a solution to the following
planner�s problem

max
fCt;Ltgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1��t � 1

1� � � exp
�
�L;t
� L1+#t � 1
1 + #

�
(29)

s.t. Ct = exp
�
�a;t
�
Lt �Gt; (30)
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where Gt � GYt
exp(�G;t)

is given, and �u;t+1, �L;t+1, �a;t+1, and �G;t follow the same processes

as in the nonoptimal economy. The FOCs of the problem (29), (30) imply that YN;t
depends only on exogenous shocks (see equation (39) below).

Equilibrium conditions. We summarize the equilibrium conditions below:

St =
exp

�
�u;t + �L;t

�
exp

�
�a;t
� L#t Yt + ��Et

�
�"t+1St+1

	
; (31)

Ft = exp
�
�u;t
�
C��t Yt + ��Et

�
�"�1t+1Ft+1

	
; (32)

C��t =
� exp

�
�B;t
�
Rt

exp
�
�u;t
� Et

"
C��t+1 exp

�
�u;t+1

�
�t+1

#
; (33)

St
Ft

=

�
1� ��"�1t

1� �

� 1
1�"

; (34)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (35)

Yt = exp
�
�a;t
�
Lt�t; (36)

Ct =

 
1� G

exp
�
�G;t
�!Yt; (37)

Rt = R�

�
Rt�1
R�

�� "�
Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (38)

and YN;t is given by

YN;t =

2664 exp
�
�a;t
�(�+#)(1��)�

1� G

exp(�G;t)

��
exp

�
�L;t
�
3775

1
#+�

: (39)

Here, the variables St and Ft are introduced for a compact representation of the
pro�t-maximization condition of the intermediate-good �rm and are de�ned recursively;
�t+1 � Pt+1

Pt
is the gross in�ation rate between t and t + 1; �t is a measure of price

dispersion across �rms (also referred to as e¢ ciency distortion). To get condition (31),
we impose "

"�1 (1� v) = 1, which ensures that the model admits a deterministic steady
state (this assumption is commonly used in the related literature; see, e.g., Christiano et
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al. 2005). An interior equilibrium is described by 8 equilibrium conditions (31)�(38), and
6 processes for exogenous shocks. The system of equations must be solved with respect to
8 unknowns fCt; Yt; Lt; �t;�t; Rt; St; Ftg. There are 2 endogenous and 6 exogenous state
variables, , f�t�1; Rt�1g, and

�
�u;t; �L;t; �B;t; �a;t; �R;t; �G;t

	
, respectively.

Linearized equilibrium conditions. Below, we provide linearized versions of the equi-
librium conditions (31)�(39):

St � S� = L#�Y�(�u;t + �L;t � �a;t)� #L#�1� (L� L�)Y�
+L#� (Yt � Y�) + ��S�"�"�1� Et(�t+1 � ��) + ��"�"�1� �"�Et (St+1 � S�) ;

Ft � F� = �u;tC
��
� Y� + (��)C���1� Y�(Ct � C�) + C��� (Yt � Y�)

+��("� 1)�"�2� F�Et (�t+1 � ��) + ��"�"�1� Et(Ft+1 � F�);

��C���1� (Ct � C�) = �R�
C���
��
(�B;t � �u;t) + �

C���
��
(Rt �R�)

+�R�(��)
C���1�
��

Et(Ct+1 � C�)� �R�
C���
�2�
Et(�t+1 � ��)

+�R�(��)
C���
��
��u�u;t;

1

F�
(St � S�) +

S�
F 2�
(Ft � F�) =

=

�
1� ��"�1�
(1� �)

� 1
1�"�1 �

1� ��
"�2
� (�t � ��);

�t ��� =

�
(1� �) (1� ��"�1� )

1� �

� "
"�1

+ �
�"�
��2
�

�
1� ��"�1�
1� �

� "
"�1�1

"��"�2�

�� "
��
�"�1� (�t � ��) + �

�"�
�2
�
(�t�1 ���) ;

Yt � Y� = �a;tL��� + (Lt � L�)�� + (�t ���)L�;

Ct � C� =
1�G
Y�

�G;t + (1�G)(Yt � Y�);

Rt �R� = R��R;t + �(Rt�1 �R�) + (1� �)��
R�
��
(�t � ��) +

(1� �)�E�
R�
��
Et(�t+1 � ��) + (1� �)�y

R�
Y�
(Yt � Y�)
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YN;t � YN� =
1

#+ �
(1�G)

��
#+�

�1
�
1 + #

1�G

��
�a;t

+�(1�G)���1�G;t + �L;t(1�G)��:

Under the assumptions of no government spendings, no shocks, and no endogenous natural
level of output, the above nine linearized equilibrium conditions can be reduced to three
equations (1)�(3) used in the main text; see, e.g., Galí (2008).

Calibration procedure. We assume � = 1 and # = 2:09 in the utility function (18);
� = 0:82 in the Taylor rule (38); " = 4:45 in the production function of the �nal-
good �rm (21); � = 0:83 (the fraction of the intermediate-good �rms a¤ected by price
stickiness); G = 0:23 in the government budget constraint (27). We set the discount
factor at � = 0:99. To parameterize the Taylor rule (38), we use the steady-state interest
rate R� = ��

�
, and the target in�ation, �� = 1 (a zero net in�ation target). In a stochastic

version of the model, we calibrate the parameters in the processes for shocks as follows:
In the AR(1) processes for shocks, we assume the autocorrelation coe¢ cients, �u = 0:92,
�G = 0:95, �L = 0:25, �a = 0:95, �B = 0:22, �R = 0:15, and the standard deviations
of shocks �u = 0:054%, �G = 0:038%, �L = 0:018%, �a = 0:045%, �B = 0:023% and
�R = 0:028% (these values come from Del Negro et al., 2007, and from Smets andWouters,
2007).
In the three-equation model, we use similar parameter values, namely, the slope of the

Phillips curve � = (1���)(1��)
�

(1 + #) is computed under the same values of the parameters
�, �, #; the coe¢ cient of relative risk aversion is � = 1.

Solution procedure. In Section 6, we solve linear and nonlinear versions of the model
by using extended path (EP) method by Fair and Taylor (1983). The model starts in
the steady state, in particular, we assume R� = ��

�
. In the initial period, the monetary

authority announces that at t = 30, the nominal interest rate will go down by 1%. We
then construct the path for the model�s variables to satisfy the model�s equations. We
solve the model for 50 periods, and we extend the path to 150 periods.
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Appendix B. Proofs of Theorems 1 and 2

In this section, we prove Theorems 1 and 2 that establish the regions for the parameters
�� � 0, �E� � 0 and �y � 0 corresponding to di¤erent types of characteristic roots in the
model (1), (2) and (3).

Proof to Theorem 1. The roots to the characteristic equation m2 + bm+ c�t = 0 are
given by

m1 =
�b+

p
b2 � 4c
2

; (40)

m2 =
�b�

p
b2 � 4c
2

; (41)

where b � �1 � 1
�
� ��y �

��(1��E�)
�

, and c � (1+��y)
�

+ ����
�
. It is useful to note that

c > 1.
We start by showing statement ii) of Theorem 1.
Two unstable real roots. To have jm1j � 1, jm2j � 1, we must have one of the following

cases:

a)

�
m1 � �1
m2 � 1

�
; b)

�
m1 � 1
m2 � �1

�
; c)

�
m1 � 1
m2 � 1

�
; d)

�
m1 � �1
m2 � �1

�
:

Let us �rst rule out Cases a) and b) by showing that there are no parameters values that
satisfy both restrictions.

Case a) By construction, we have m2 < m1, so this case is impossible.

Case b) Since m1 � 1, we have
p
b2 � 4c � 2 + b.

Since m2 � �1, we have �
p
b2 � 4c � �2 + b which is equivalent

p
b2 � 4c � 2� b.

i) If b � 0, then
p
b2 � 4c � 2 + b implies

p
b2 � 4c � 2� b, so we only need to insure

the former inequality:

b2 � 4c � (2 + b)2 ) �4c � 4 + 4b, impossible since c > 0.

ii) If b < 0, then
p
b2 � 4c > 2� b implies

p
b2 � 4c > 2 + b, so again, we only need to

insure the former inequality:

b2 � 4c > (2� b)2 ) �4c > 4� 4b, impossible since c > 0.

By combining i) and ii), we conclude that the case b) is impossible.

Case c) Since m2 � 1 implies m1 � 1, we only need to insure m2 � 1, i.e., �b�
p
b2�4c
2

�
1. This implies

�
p
b2 � 4c � 2 + b: (42)
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Since the root is real, we must have b2�4c � 0. This implies two possibilities: if b > 0, we
must have b > 2

p
c and if b < 0, we must have �b > 2

p
c. However, the former possibility

violates (42), so we are left with b � �2
p
c, which leads to boundary value �2E�:�

� 1
�
�
�
1 + ��y

�
� �� (1� �E�)

�

�
� �2

s�
1 + ��y

�
�

+
����
�

�E� � 1 +
1

��

�
1 +

�
1 + ��y

�
� � 2

q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 +

�
1 + ��y

�
� + �� +

(1� �)�y
�

� 2
q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 + ���� + ��y + � � 2

q�
1 + ��y + ����

�
�

�
� �2E�:

(43)

Furthermore, we re-write (42) as
p
b2 � 4c � �2� b;�p

b2 � 4c
�2

� (�2� b)2 ;
�4c � 4 + 4b:

The latter inequality implies c+ 1 � �b, which leads to the boundary value �1E�:

1 +

�
1 + ��y

�
�

+
����
�

� 1 + 1

�
+ ��y +

�� (1� �E�)
�

�1E� � 1� �� +
��y
�

�
1� 1

�

�
� �E�:

Finally, we consider Case d). The analysis of this case is similar to Case c). Since
m1 � �1 implies m2 � �1, we only need to insure m1 � �1, i.e., �b+

p
b2�4c
2

� �1. This
implies p

b2 � 4c � �2 + b: (44)

Since the root is real, we must have b2�4c � 0. This implies two possibilities: if b > 0, we
must have b > 2

p
c and if b < 0, we must have �b > 2

p
c. However, the latter possibility
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violates (44), so we are left with b � 2
p
c, which leads to the boundary value �3E�:�

� 1
�
�
�
1 + ��y

�
� �� (1� �E�)

�

�
� 2

s�
1 + ��y

�
�

+
����
�

�E� � 1 +
1

��

�
1 +

�
1 + ��y

�
� + 2

q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 +

�
1 + ��y

�
� + �� +

(1� �)�y
�

+ 2
q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 + ���� + ��y + � + 2

q�
1 + ��y + ����

�
�

�
� �3E�:

(45)

Furthermore, we re-write (44) as�p
b2 � 4c

�2
� (�2 + b)2

�4c � 4� 4b:

This implies c+ 1 � b, which leads to the boundary value �4E�:�
1 + ��y

�
�

+
����
�

+ 1 � �1� 1

�
� ��y �

�� (1� �E�)
�

�E� �
�
1 + ��y

�
+ ���� + � + � + 1 + ���y + ��

��

�E� � 1� �� �
(1� �)�y

�

+

�
1 + ��y

�
+ ���� + � + � + 1 + ���y + ��

��
� 1 + �� +

(1� �)�y
�

�E� � 1� �� �
(1� �)�y

�
+
2
�
1 + ��y + ���� + �

�
��

� �4E�:

We next show statement iii) of Theorem 1.
Two repeated real roots. To have repeated real roots, it must be that b2 � 4c = 0.

There are two possible solutions b = 2
p
c and b = �2

p
c. By using the results (43) and

(45) obtained for Cases c) and d) of the statement ii), we obtain that the corresponding
parameterizations are �E� = �

2
E� and �E� = �

3
E�.

To see that the resulting root m = � b
2
is unstable, notice that b = 2

p
c and b = �2

p
c

imply m = �
p
c and m =

p
c, respectively. Since c > 1, we conclude that jmj > 1.

We now show statement iv) of Theorem 1.
Complex roots. For complex roots, we must have b2 � 4c < 0; which implies �2

p
c <

b < 2
p
c. Again, based on the results (43) and (45) obtained for Cases c) and d) of the
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statement ii), we obtain that the corresponding parameter range is �2E� < �E� < �3E�.
To see that the complex root m1;2 = � � �� is unstable, we compute r �

p
�2 + �2 =r��b

2

�2
+
�p

4c�b2
2

�2
=
p
c > 1.

We �nally show statement i) of Theorem 1.
One stable and one unstable real roots. To analyze this case, we actually show that

there are no parameter values for which we have two stable roots, i.e., jm1j < 1 and
jm2j < 1. Indeed, the existence of two stable roots implies that �1 < m1 < 1 and
�1 < m2 < 1, i.e.,

�1 <
�b+

p
b2 � 4c
2

< 1;

�1 <
�b�

p
b2 � 4c
2

< 1:

If �1 < �b�
p
b2�4c
2

, then we have �1 < �b+
p
b2�4c
2

and if �b+
p
b2�4c
2

< 1, then we have
�b�

p
b2�4c
2

< 1. So, we must check only the following two conditions:

�1 < �b�
p
b2 � 4c
2

;

�b+
p
b2 � 4c
2

< 1:

These conditions can be, respectively, re-written as
p
b2 � 4c < 2� b; (46)

p
b2 � 4c < 2 + b: (47)

Since the roots are real, we have b2 > 4c which means that either b >
p
4c or b < �

p
4c.

Since c > 1, these last two inequalities imply that either b > 2 or b < �2. But then
the restrictions (46) and (47) cannot be satis�ed simultaneously: if b > 2, the right side
of (46) is negative and if b < �2, the right side of (47) is negative. Since the roots are
real and we discarded the possibility of two stable roots, we conclude that we must have
one stable and one unstable root, except of those cases when two roots are unstable and
when the roots are complex, i.e., everywhere except of the range �1E� � �E� � �4E�. This
completes the proof of the statement i) of Theorem 1. �

Proof to Theorem 2. The roots to the characteristic equation m2 + bm + c�t = 0
are again given by (40) and (41), where under the assumption �E� = 0, we have b �
�1� 1

�
� ��y � ��

�
, and c � (1+��y)

�
+ ����

�
. It is useful to note that b < 0 and c > 1.

We start by showing statement ii) of Theorem 2.
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Two unstable real roots. To have jm1j � 1, jm2j � 1, we must have one of the following
cases:

a)

�
m1 � �1
m2 � 1

�
; b)

�
m1 � 1
m2 � �1

�
; c)

�
m1 � 1
m2 � 1

�
; d)

�
m1 � �1
m2 � �1

�
:

Cases a) and b) The results of Theorem 1 apply here as well, so we conclude that
these two cases are impossible.

Case c) Since m2 � 1 implies m1 � 1, we only need to insure m2 � 1, i.e., �b�
p
b2�4c
2

�
1. Like in Case c) of Theorem 1, this implies that b � �2

p
c and results in the corre-

sponding boundary value �2�:�
� 1
�
�
�
1 + ��y

�
� ��
�

�
� �2

s�
1 + ��y

�
�

+
����
�

1

�
+
�
1 + ��y

�
+
��

�
� 2

s�
1 + ��y

�
�

+
����
�

�� � 1�
(1� �)�y

�
+

�

4��

�
1� 1

�
� ��y �

��

�

�2
� �2�:(48)

The boundary value �1� follows by (42). Like in Case 3 of Theorem 1, we have c+1 � �b
and consequently, we obtain

1 +

�
1 + ��y

�
�

+
����
�

� 1 + 1

�
+ ��y +

��

�

�1� � 1�
(1� �)�y

�
� ��. (49)

Finally, we consider Case d). Following the reasoning of the corresponding case of
Theorem 1, we conjecture that we must have b � 2

p
c. But this is not possible since

by de�nition, we have b < 0 and c > 1. Thus, unlike Theorem 1, here we do not have
boundary values analogous to �3E� and �

4
E� in Theorem 2.

We next show statement iii) of Theorem 2.
Two repeated real roots. To have repeated real roots, it must be that b2 � 4c = 0.

There are two possible solutions b = 2
p
c and b = �2

p
c. But in the present case, we

have b < 0, only the latter root is possible. Using the results (48) obtained for Case c) of
the statement ii), we obtain that the corresponding parameterization is �� = �

2
�. Again,

to see that the resulting root m = � b
2
is unstable, notice that b = �2

p
c imply m =

p
c,

respectively. Since c > 1, we conclude that jmj > 1.
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We now by show statement iv) of Theorem 2.
Complex roots. For complex roots, we must have b2 � 4c < 0, which implies �2

p
c <

b < 2
p
c. The argument of Case d) of the present proof rules out the possibility of b � 2

p
c

so that the second inequality always holds. Therefore, the roots are complex whenever
�2
p
c < b, which together with the result (48) obtained for Case c) of the statement ii)

leads us to �� > �
2
�. Like in Theorem 1, the complex root m1;2 = �� �� is unstable since

r �
p
�2 + �2 =

r��b
2

�2
+
�p

4c�b2
2

�2
=
p
c > 1.

We �nally show statement i) of Theorem 1.
One stable and one unstable real roots. The arguments of Theorem 1 apply to this

case as well as, so that we conclude that there are no parameter values for which we have
two stable roots, i.e., jm1j < 1 and jm2j < 1. Since the roots are real and we discarded
the possibility of two stable roots, we conclude that we must have one stable and one
unstable root, except when two roots are unstable and when the roots are complex which
yields the range �� < �

1
� and completes the proof of the statement. �

Appendix C. Method of undetermined coe¢ cients for
linear stochastic models

In the economy with stochastic shocks, we should construct conditional expectations for
future shocks. Our closed-form solutions provide a convenient way of modeling a variety
of uncertainty scenarios, including temporary and permanent shocks, anticipated and
unanticipated shocks, as well as mixtures of deterministic trends and stochastic shocks.
Since the characteristic roots in (6)�(9) are non-random, the expectation operator can be
brought inside the summations, for example, Et

�P1
s=tm

t�1�s
1 zs

�
=
P1

s=tm
t�1�s
1 Et [zs],

so that e¤ectively, we need to compute Et [zs] for s � t.
As an illustration, let us assume that zt follows a �rst-order autoregressive process

zt+1 = �zt + "t+1, in which case, we have Et [zs] = �s�tzt for s � t. Furthermore, let us
assume that the roots are complex, i.e., case iv). Then, the solution (9) can be re-written
as

�t = C1r
t cos (�t) + C2r

t sin (�t) +
zt
��

" 1X
s=t

�
r

�

�t�1�s
sin (� (t� 1� s))

#
: (50)

To simulate stochastic time-series solution, we draw a sequence of shocks for zt, �nd �t
from (50) and compute xt from (2). Similar formulas are easy to show for the remaining
cases (6)�(8); in those cases, the roots mi can be adjusted to � by mi

�
and the term zt

�

can be taken out of the summation. Examples of time-series solutions to the stochastic
versions of the model are shown in Section 6.
To ensure stationarity in the stochastic case, we need to impose the same restrictions

on the homogeneous solutions as those necessary for forward stability in the deterministic
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case. In particular, we obtain a unique stationary solution in cases (7)�(9) by setting
C1 = 0 and C2 = 0, and there is a multiplicity of stationary solutions in case (6) since
any C2 is consistent with stationarity.
Closed-form solutions to new Keynesian models with uncertainty are studied in Tay-

lor (1986) by using a method of undetermined coe¢ cients �an analytical technique that
reduces a stochastic di¤erence equation to the deterministic one. In contrast, our present
analysis proceeds in the opposite direction: we �rst constructed a solution to the deter-
ministic model, and we then generalized it to the stochastic case. Below, we show that
both approaches lead to the same stochastic solution under a general linear process for
shock zt. Taylor�s (1986) method does not specify how to construct a solution to the
deterministic model like those we obtain in Theorem 3, which is our main contribution.
Finally, Cochrane (2017b) constructs related solutions for the stochastic version of the
model in which one root is stable and the other root us unstable, which corresponds to
our case i).
We assume that zt follows a general linear process with a representation

zs =
1X
j=0

#j"s�j; (51)

where #j is a sequence of parameters, and "t is a serially uncorrelated random variable
with zero mean. The process (51) includes important types of policy shocks as special
cases, in particular, it allows us to distinguish between temporary and permanent shocks,
as well as anticipated and unanticipated shocks; see Taylor (1986) for a discussion. We
�rst construct a closed-form solution of our Theorem 3 under (51), and we next show that
the method of undetermined coe¢ cients of Taylor (1986) leads to the same solution. We
omit the homogeneous solution because it is the same in the deterministic and stochastic
models, and we concentrate on particular solutions.

Closed-form solutions of Theorem 3. As an example, consider the closed-form so-
lution (9) of Theorem 3 for the model with complex roots, which under assumption (51)
becomes

�t =
1

�
Et

" 1X
s=t

ht�1�s

1X
j=0

�j"s�j

#
;

where ht�1�s � rt�1�s sin (� (t� 1� s)) is compact notation. The latter expression can
be written as

�t =
1

�
Et

"
h�1

1X
j=0

�j"t�j + h0

1X
j=1

�j"t+1�j + h1

1X
j=0

�j"t+2�j + :::

#
:
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Since Et ["t+��j] = 0 for any � � 0, we can compute expectation with the following
sequence of steps:

�t =
1

�

"
h�1

1X
j=0

�j"t�j + h0

1X
j=1

�j"t+1�j + h1

1X
j=2

�j"t+2�j + :::

#

=
1

�

"
h�1

1X
j=0

�j"t�j + h0

1X
j=0

�j+1"t�j + h1

1X
j=0

�j+2"t�j + :::

#

=
1

�

1X
j=0

"t�j [h�1�j + h0�j+1 + h1�j+2 + :::] =
1

�

1X
j=0

"t�j

1X
s=j

hj�1�s�s: (52)

Method of undetermined coe¢ cients. The method of undetermined coe¢ cients
described in Taylor (1986) requires us to guess that a solution for �t has the same kind
of representation as (51), speci�cally,

�t =
1X
j=0

"t�j
j; (53)

where 
j is a sequence of unknown coe¢ cients. By taking into account that Et [
0"t+1] =
0, we obtain Et [�t+1] =

P1
j=1 
j"t�j+1 and Et+1 [�t+2] =

P1
j=2 
j"t�j+2. Therefore, we

can re-write (4) as

1X
j=2


j"t�j+2 + b
1X
j=1


j"t�j+1 + c
1X
j=0


j"t�j = �
1X
j=0

#j"t�j: (54)

Equating the coe¢ cients on both sides of the equality (54) gives us a set of restrictions


j+2 + b
j+1 + c
j = �#j; j = 0; 1; ::: (55)

This is a deterministic di¤erence equation with a forcing variable #j. It has the same
structure as a stochastic di¤erence equation and it is identical up to notation to the
deterministic version of the equation (4) studied in the main text. Therefore, the coef-
�cients of the stochastic equation (55) can be described by formulas (6)-(9) of Theorem
3, again up to notation. For example, Theorem 3, case (9) implies that the sequence of

the coe¢ cients (55) in the model with complex roots is given by 
j =
1
�

hP1
s=j hj�1�s#s

i
,

which together with (53) implies the same solution for �t as (52). The equivalence for the
remaining cases (6)-(9) can be shown similarly.

Appendix D. Supplementary results for Section 3

In this section, we present some supplementary results for Section 3.
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D1. Taylor rule with actual in�ation: a weaker version of the FG
puzzle

We now consider a di¤erent version of the monetary policy rule (3), namely, we assume
that it contains actual in�ation instead of expected in�ation. To begin with, let the
coe¢ cients in (3) be �E� = 0; �� = 1 and �y = 0. Here, we again have case ii) of
Theorems 1-3 with two roots m1 =

1+�k
�

> 1 and m2 & 1, so that the solution is given
by (10)

�t =
1

1+�k
�
� 1

" 1X
s=t

�
1 + �k

�

�t�s�1
zs �

1X
s=t

zs

#
=

��"

1� � + �k

"�
�

1 + �k

�T�t+1
� 1
#
,

(56)
where the last expression corresponds to the case of a single shock zT = ��"

�
. From the

Phillips curve, the corresponding solution for output is xt = ��"
1��+�k

�
1� � + ��k

1+�k

�
�

1+�k

�T�t�
.

If the shock is distant, i.e., T � t, so that
�

�
1+�k

�T�t � 0, the future shock increases
output initially to x0 � ��"

1��+�k (1� �) � �0:08�" and continues to raise it to reach
xT =

��"
1��+�k

�
1� � + ��k

1+�k

�
� 0:9�" at T (assuming � = 0:11, � = 1 and � = 0:99). This

case is illustrated in Figure D1.
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Figure D1. Forward guidance: Taylor rule with actual in�ation, �� = 1.

Thus, we observe a weaker version of the FG puzzle in which only the initial response
of in�ation to anticipated interest rate shock is large but the initial response of output is
modest (it is about 8 percent of what we had in the FG puzzle case (11)). As the economy
approaches the period 30, the impact of the shock on output gradually increases to reach
90 percent of the FG puzzle e¤ect (11).
The e¤ect of future shocks on output is dampened because we now have discounting

in the IS curve; see formula (13) under �y = 0. In fact, as the value of �� increases,
discounting becomes su¢ cient to dampen the e¤ect of FG on in�ation as well, so that the
FG puzzle is not observed any longer even for in�ation. For example, in Figure D2, we
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show the solution under the Taylor rule (3) with �E� = 0; �� = 3 and �y = 0.
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Figure D2. Forward guidance: Taylor rule with actual in�ation, �� = 3.

D2. Taylor rule with actual in�ation and output gap: the case of
the real roots

In Section 3.3, we compare the solution under two Taylor rules (3) with output gap: one
contains the actual in�ation and the other contains the expected in�ation. In the former
case, the model is parameterized by �y = 0:5 and �E� = 2, and in the latter case, it is
parameterized by �y = 0:5 and �� = 2. These parameterizations lead to complex roots,
which correspond to case iv) of Theorems 1-3.
Interestingly, a relatively small change in parameterization produces a switch to the

real roots, which is the case ii) or iii) of Theorem 1-3. As an example, we show the
solutions for slightly di¤erent parameterizations, namely, �y = 0:5 and �E� = 1:5 and
�y = 0:5 and �� = 1:5.
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Figure D3. Forward guidance: Taylor rule with output gap �y = 0:5 and expected
in�ation �E� = 1:5 vesus actual in�ation �� = 1:5.

Qualitatively, the solutions shown in Figure D3 are very similar to those reported in Figure
3 in the main text. Quantitatively, the di¤erence in in�ation between the two solutions is
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somewhat larger under �E� = 1:5 and �� = 1:5 than under �E� = 2 and �� = 2 reported
in the main text.

Appendix E. New Keynesian model with capital

In this section, we extend the basic new Keynesian model described in Appendix A to
include capital and provide additional sensitivity experiments.

E1. The model

We formulate the new Keynesian model with capital.

Households. A household j solves:

maxE0

1X
t=0

�t exp
�
�u;t
� "Ct (j)1�� � 1

1� � � exp
�
�L;t
� Lt (j)1+' � 1

1 + '

#

s.t. PtCt (j) + Pt exp
�
�I;t
�
It (j) +

Bt (j)

exp
�
�B;t
�
Rt
+ Tt (j) = (57)

Bt�1 (j) +R
k
tKt�1 (j) +WtLt (j) + �t (j)

Kt (j) = (1� �)Kt�1 (j) + It (j)

where � 2 (0; 1) is the discount factor; � and ' are the utility-function parameters;
� 2 (0; 1] is the depreciation rate of capital.
�u;t and �L;t are exogenous preference shocks: the former scales the overall momentary

utility and the latter a¤ects the marginal disutility of labor; Ct (j), Lt (j), It (j), Kt�1 (j)
and Bt (j) are consumption, labor, investment, capital stock and nominal bonds holdings,
respectively; Pt, Wt, Rkt and Rt are the commodity price, nominal wage, (gross) nominal
interest rate on capital and (gross) nominal interest rate on bonds, respectively; �B;t is
an exogenous premium in the return to bonds (might re�ect ine¢ ciency in the �nancial
sector, e.g., a risk premium required by households to hold a one-period bond); �I;t
is an exogenous capital-embodied technology shock; Tt (j) is lump-sum taxes; �t (j) is
the pro�t of intermediate-good producers. The exogenous shocks follow the following
exogenous stochastic processes:

�u;t = �
u�u;t�1 + "u;t; "u;t � N

�
0; �2u

�
�L;t = �

L�L;t�1 + "L;t; "L;t � N
�
0; �2L

�
�B;t = �

B�B;t�1 + "B;t; "B;t � N
�
0; �2B

�
�I;t = �

I�I;t�1 + "I;t; "I;t � N
�
0; �2I

�
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Final-good producers. They are the same as in the model without capital.

Intermediate-good producers. Technology of a producer i is

Yt (i) = exp
�
�a;t
�
Kt�1 (i)

� Lt (i)
1��

where Lt (i) is labor; Kt�1 (i) is capital; exp
�
�a;t
�
is the productivity level that follows

the exogenous stochastic process

�a;t = �
a�a;t�1 + "a;t; "a;t � N

�
0; �2a

�
Total cost (net of government subsidy vt) in nominal terms:

min
Kt�1(i);Lt(i)

TC (Yt (i)) =
�
(1� vt)

�
RktKt�1 (i) +WtLt (i)

�	
(58)

s.t. Yt (i) = exp
�
�a;t
�
Kt�1 (i)

� Lt (i)
1�� (59)

where Wt is the nominal wage rate.
A reoptimizing �rm solves the same problem as in the model without capital.

Monetary authority. The monetary authority follows the same Taylor rule (28) as in
the model without capital.

Natural level of output. The natural output level YN;t can be determined from

maxE0

1X
t=0

�t exp
�
�u;t
� "(Ct)1�� � 1

1� � � exp
�
�L;t
� (Lt)1+' � 1

1 + '

#

s.t. C�t + exp
�
�I;t
�
[Kt � (1� �)Kt�1] = exp

�
�a;t
�
(Kt�1)

� (Lt)
1�� �Gt (60)

with Gt =
�
1� 1

exp(�G;t)

�
YN;t.

Summary of equilibrium conditions.

St =
exp

�
�u;t + �L;t

�
exp

�
�a;t
� C��t Yt

rkt
�

�
Kt�1

Lt

�1��
+ ��Et

�
�"t+1St+1

	
; (61)

Ft = exp
�
�u;t
�
C��t Yt + ��Et

�
�"�1t+1Ft+1

	
; (62)

St
Ft
=

�
1� ��"�1t

1� �

� 1
1�"

; (63)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (64)
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exp
�
�u;t
�
C��t = � exp

�
�B;t
�
RtEt

(
exp

�
�u;t+1

�
C��t+1

�t+1

)
; (65)

exp
�
�u;t + �I;t

�
C��t = �Et

�
exp

�
�u;t+1

�
C��t+1

�
exp

�
�I;t+1

�
(1� �) + rkt+1

�	
; (66)

rkt =
�

1� � exp
�
�L;t
�
L1+'t C�t K

�1
t�1; (67)

Yt = exp
�
�a;t
�
K�
t�1L

1��
t �t; (68)

Ct + exp
�
�I;t
�
[Kt � (1� �)Kt�1] =

 
1� G

exp
�
�G;t
�!Yt; (69)

where rkt is the marginal productivity of capital. There are 10 equations and 10 unknowns
(Ct, Lt, Kt, Yt, �t, �t, Rt, rkt , St, Ft). There are 7 exogenous shocks (�a;t, �u;t, �L;t, �B;t,
�R;t, �G;t, �I;t+1) and 3 endogenous state variables (Kt�1;�t�1; Rt�1).

E2. Additional numerical results for the new Keynesian model
with capital

We now report the sensitivity experiments that complement the numerical results of
Section 5.3. In our �rst sensitivity experiment, we assume the Taylor rule (28) has just
actual in�ation �� & 1. Recall that in the model without capital, this parameterization
led to a version of the FG puzzle when just in�ation reacts immediately, while the output
gap increases gradually; see e.g., Figures D1 in Appendix D.
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Figure E1. Model with capital: Taylor rule with actual in�ation, �� = 1,
�E� = 0, �y = 0.

We observe some qualitative di¤erences between the dynamics of the models with and
without capital. As we can see from Figure E1, there are immediate e¤ects of FG on both
output and in�ation, while consumption goes up slowly. Hence, we observe a stronger
version of the FG puzzle than in the model without capital under this speci�c parame-
terization.
However, when �� in (28) increases, the FG puzzle disappears as it does in the model
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without capital. In Figure E2, we show the model with capital in which �� = 3.
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Figure E2. Model with capital: Taylor rule with actual in�ation, �� = 3,
�E� = 0, �y = 0.

This case is qualitatively similar to the one reported for the baseline linear model in Figure
D2.
Finally, in Figure E3, we consider the FG puzzle scenario, i.e., we assume Taylor rule

(28) with just expected in�ation �E� & 1.
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Figure E3. Model with capital: Taylor rule with expected in�ation, �E� = 1.

Unlike in the case of �� = 1, FG is not very e¤ective under �E� = 1. As we can see from
Figure E3, labor jumps up immediately in the �rst period and then it goes down in the
second period, in spite of the smooth behavior of capital. The behavior of output here
drastically di¤ers from the one in the model without capital, namely, output jumps in
the �rst period but goes back to the original level in the second period and remains there
until the shock happens. Therefore, in terms of output, FG has no long-term e¤ect but
only a brief initial e¤ect. It is surprising that consumption does not mimic output but
behaves as in the basic model without capital, i.e., it jumps immediately and stays high
until the shock happens. Hence, the consumption pattern looks resembles the FG puzzle
in the baseline model. Thus, some version of the FG puzzle is observed in this case as
well.
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