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1 Introduction

Legislative processes are typically modelled in the political economy literature as bargaining pro-

tocols. The prototypical approach to describe legislative bargaining is the Baron and Ferejohn’s

[1989] model, where a randomly selected proposer makes sequential take-it or leave-it offers to the

other legislators until a policy that wins a majority is chosen. In this and other related models,

votes are traded in “markets” where only the monetary size of concessions matters.1 There is no

room for politicians’ characteristics, their social connections, or even for political parties. There is,

however, an important body of work in political science that has stressed the importance of taking

into account interpersonal relations and social connections when studying how legislatures work.

The history of the U.S. Congress is indeed rich in examples where voting coalitions are shaped by

social connections formed inside and outside of the legislative chambers.2 While the suggestion

that social connections should be important in the legislative process is intuitive, little formal work

has been done to study them. Can we formally measure their effect on the legislative process? Can

we assess what determines whether a legislator is well connected and what this implies for his/her

legislative effectiveness?

In answering these questions, the main challenges are that social networks in legislatures (as

is the case in most other social groups) are endogenous and not directly observed by outsiders.

The standard approach in the empirical literature on network effects is not designed for these

environments. The typical approach is to assume that a network is an observable realization from

an unknown data generation process; and that it can be used to estimate key parameters of the

process (for example the cost of link formation and other parameters that matter for the network).

To address the questions listed above we need to allow for environments in which networks are

unobservable: in which, more precisely, only the activities of their members are observable and

usable for estimation. This is challenging because models of network formation, even when they

ignore the implications for their members’ activities, are characterized by significant equilibrium

multiplicity and computational complexities.

In this paper, we propose a new theory of legislative behavior in which both the choice of

forming social links among legislators and their legislative effort are endogenous. The theory has

two stages. In the first stage, legislators target their efforts to form social links with specific

other legislators. The effort required to form social links is costly, and bilateral links between two

legislators may depend on both of the legislators’ efforts, according to a given production function.

1We use the term “market” as an analog of a bargaining protocol that is nothing less than a description of how
the buyer and seller (of a vote) interact. Other models of legislative bargaining will be discussed in the literature
review below. All of these models establish specific market/bargaining protocols in which votes are traded.

2We will discuss the political science literature more extensively later in this section.
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In the second stage, legislators’ effectiveness depends on their legislative efforts and the effectiveness

of the legislators with whom links have been established in the previous stage. The preferences of the

legislators in the linking process may not only depend on the legislators’ observable characteristics,

but also on unobservable factors that may be correlated with variables that directly affect the

legislators’ effectiveness. We use the theory to structurally estimate social links in the 109th to

113th U.S. Congresses using data on legislators’ characteristics and activities.3

We are able to overcome the complications in solving and estimating the model described above

because of two methodological contributions that may have wider applicability in estimating social

network effects. First, we introduce a new equilibrium concept that we call Network Competitive

Equilibrium.4 The difficulty in solving the game described above is that, by establishing a link, a

legislator generates direct effects on his/her effectiveness, but also a cascade of indirect spillover

effects that make the analysis hard: legislator i’s change in effectiveness after linking to j affects

the effectiveness of all the others directly or indirectly linked to i, including j. These complications

are similar to the problems that arise when studying a general equilibrium in an exchange econ-

omy: where a change in an agent’s demand has a direct obvious effect on an agent’s utility and

a cascade of indirect effects on equilibrium prices, the budget of other agents, and their actions.

In competitive analysis, this problem is solved by assuming that agents are “price takers:” agents

solve their optimization program taking prices as given. Prices, however, must clear the market in

equilibrium. Such analysis is motivated by the fact that, in many exchange economies, each agent

only has a marginal impact on equilibrium prices, thus allowing them to ignore the indirect effects.

Similarly, in our approach, legislators choose their socialization efforts taking the other legislators’

equilibrium effectivenesses as given; these equilibrium effectiveness levels, however, need to be con-

sistent with individual choices. Given this, we show that a Network Competitive Equilibrium can be

characterized by a system of nonlinear equations. Moreover, under empirically testable conditions,

the equilibrium is unique.

Our second methodological contribution is how we use the analytical characterization of the

equilibrium conditions to estimate the model by Bayesian methods. Because our characterization

makes it impossible to state an analytic likelihood function, we estimate the model by an Approxi-

mate Bayesian Computation method (henceforth, ABC), a computational approach that has proven

3Measuring legislators’ activities is naturally a complicated task. Thankfully, considerable work has been done
in the political science literature on this front. For our analysis we rely on the index of Legislative Effectiveness
constructed by Volden and Wiseman [2014].

4Other approaches used in the literature to model complex endogenous network formation process that can be
used in empirical analysis include modelling networks as the steady states of stochastic best response dynamics, in
which myopic agents select links sequentially; or to adopt cooperative solutions as pairwise stability. We will discuss
these approaches and how they relate to our approach in greater detail below and in Section 3.
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useful in population genetics and other applications that require large scale models.5

Using Monte Carlo simulations, we systematically explore the performance of our estimation

technique by studying environments in which we change the number of nodes, the number of periods

in which behavior is observed, and other characteristics of the network topology. We show that our

approach performs well for networks with at least 200 members, even if the networks are dense and

we only observe outcomes (here, legislators’ effectiveness) in a few periods.6

We then use our methodology to estimate the social network in the U.S. Congress using data

from the 109th to 113th Congresses. We find evidence that social connections affect legislative effec-

tiveness. We estimate that a 1% increase in the social connectedness of a legislator i–a measure of

the effectiveness of the other legislators connected to i that we will define precisely–induces a 0.74%

increase in individual effectiveness. Consistent with the endogeneity of the network, moreover, we

also find that the elasticity of link formation with respect to other legislators’ effectiveness levels is

significantly positive.

The estimation of the social network gives us insight into the determinants of social connec-

tions. Consistent with the existing literature on congressional politics, party affiliation is the most

significant factor determining social connections, with Republicans more linked to Republicans

and Democrats more linked to Democrats. More surprisingly, we find that interpersonal relations

bonded long before Congress’s election victory are also a key factor, about one-fourth as large as

party affiliation. This is in line with the evidence that alumni connections predict cosponsorships

and voting behavior in Congress (Cohen and Malloy [2014] and Battaglini and Patacchini [2018]).

We also find that weak links across political lines are important, an observation long suggested in

the sociological and political science literature (see Granovetter [1973] and, more recently, Kirkland

[2011]). More importantly, however, the model allows us to estimate social network effects without

having to rely on a specific, observable adjacency matrix as an approximation of social connections.

Instead, we use a variety of sources of information and let the data tell us what matters. For

example, as we discuss in greater detail in Section 5.2, by using exclusively alumni networks as a

proxy (as done by Cohen and Malloy [2014] or Battaglini and Patacchini [2018]), we ignore the

importance of party affiliation; and by using only cosponsorships (as done by Fowler [2006], for

example), we ignore the importance of alumni connections.

The underlying assumption in our approach is that agents in our network are marginal and can

therefore take the centralities of the other players as given. This approach seems appropriate for

applications with large networks in which the status of any single agent depends on the linking

decision of many other agents, though it may be a limitation in other environments. An advantage

5See Rubin [1984] and Marjoram et al. [2003] for a discussion of ABC methods and their applications.
6Indeed one period is sufficient, though the estimates improve with three to five periods.
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of our approach, however, is that it allows us to obtain sharp and testable predictions for large and

complicated networks.

Related literature As we discussed above, legislative activity typically is modelled as a bar-

gaining protocol in the political economy literature. The classic reference is Baron and Ferejohn

[1989], while alternative bargaining protocols have been presented by Austen-Smith and Banks

[1988], Morelli [1999], Baron and Diermeier [2001], Seidmann et al. [2007], Battaglini [2019], and

others. In these works, there is little space for the legislators’ social connections. In extending the

analysis to incorporate social connections, our work relates to two main other strands of literature,

one in political science and one in economics.

First, our work relates to a recent literature studying the impact of social networks in Congress

on legislative behavior. While scholars in political science have recognized the relevance of social

connections between lawmakers for quite some time, only recently have data availability and ad-

vances in network analysis allowed us to move beyond descriptive analyses.7 Peoples [2008], Masket

[2008], Rogowsky and Sinclair [2012], Cohen and Malloy [2014] and Harmon et al. [2017] have stud-

ied whether social links affect voting behavior. Battaglini and Patacchini [2018] have studied the

impact of the legislators’ social connections on PAC’s contributions. Closer to our work, Fowler

[2006], Kirkland [2011], and Battaglini et al. [2019] have studied the relationship between legisla-

tors’ effectiveness in the U.S. Congress and their social connections. None of these papers, however,

model the process of social linking; they all rely upon specific observable social networks as proxies

for the true social connections among the legislators.8

The second literature to which our work is connected is the economic literature on the estima-

tion of social networks. The traditional approach in the empirical works on endogenous network

formation is to interpret observable social networks as realizations from unknown data generating

processes, and use them for estimating the processes. The issue of estimating an unobservable

network using other observable economic outcomes has been addressed in the networks literature

only by assuming that social connections are exogenous. The complication here is that the number

of network connections is much higher than the number of economic outcomes that can be used

for the estimation (in our specific application, the legislators’ performance in Congress): with n

legislators observed for T sessions, the first is on the order of n2, the second just of order n · T . De

7Earlier work includes Rice [1927, 1928], Routt [1938], Eulau [1962]. See Victor et al. [2016] and Battaglini and
Patacchini [2019] for recent surveys.

8The observable social connections that have been used include, among others, the proximity network, in which
two legislators are linked if they sit next to each other in a legislative session or if they have nearby offices; the
cosponsorship network in which two legislators are linked if they have cosponsored each other’s bills; and the alumni
network, in which two legislators are linked if they have attended the same educational institution. See Battaglini
and Patacchini [2019] and Victor et al. [2016] for surveys of this literature.
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Paula et al. [2018] use high-dimensional estimation techniques to estimate social networks, which

can bypass the dimensionality problem.9 While this and other related approaches are versatile

and can be applied to many environments with minor changes,10 they have two main limitations.

First, they typically require assuming an exogenous linear model of behavior, thus not allowing

for the endogeneity of the network. Second, and more importantly, they require assuming that a

social network is sparse and the vector of outcomes used for the estimation can be observed for

many sessions. These assumptions are problematic for environments such as ours: as we will argue

below, legislative network are generally dense networks that cannot be observed repeatedly because

elections are held every few years.11 Our approach, instead, is to rely on the structure generated by

our endogenous model of link formation to reduce the dimensionality of the estimation; and then to

use the observable outcome from just one or few congresses to structurally estimate the parameters

of the model.

To our knowledge, we are the first to model the network formation as a “competitive equilibrium”

as described above. Two very different approaches have been adopted to model complex network

formation processes for empirical analysis. The first approach is based on stochastic best response

dynamics, in which myopic agents form random links sequentially, thus forming a Markov chain of

networks. In this approach, an observed network is interpreted as a realization from the stationary

distribution of the Markov process, which is obtained by simulation.12 The second approach is

to study networks that satisfy pairwise stability, a stability concept introduced by Jackson and

Wolinsky [1996]. This approach typically generates a large set of equilibrium predictions and thus

only leads only to partial identification under strong sparsity conditions on the network.13 In Section

3.1, we discuss the relative advantages and limitations of these other approaches in comparison to

our approach, after we have described our model and equilibrium solution in greater details.

Closer to our approach in modelling network formation is the work by Acemoglu and Azar [2018],

9A spatial econometrics model with an unobserved and stochastic network is also proposed by Souza [2014].
Breza et al. [2017] propose a method to estimate social links using aggregated relational data. The properties of
the estimators with missing data have also been studied by Shalizi and Rinaldo [2013], Handcock and Gile [2010],
Koskinen et al [2010], and others. See De Paula [2017] for a comprehensive discussion.

10For related approaches, see also Manresa [2016] who, however, only considers exogenous peer effects; and
Battaglini et al. [2018], who follow a graphical lasso approach to identify the network.

11Elections for the U.S. Congress are held every two years. While reelection rates are very high (about 90-95% of
Congress members are reelected), the average length of service is about five terms in the U.S. House of Representatives
as of January 2013, and, on average, over 10% of first-term Congress members do not seek reelection (Glassman and
Wilhelm [2017]). It is therefore problematic to assume social networks in Congress persist for more than a few
Congresses.

12Using this approach, Christakis et al. [2010], Mele [2017], and Badev [2017] provide microfoundations for the
exponential random graph approach. Jackson and Rogers [2007], Liu et al. [2012], Konig [2016], and Boucher [2018]
have characterized the distribution of networks emerging from alternative sequential models.

13Miyauchi [2016], De Paula et al. [2018b], and Sheng [2018] each provide a partial identification analysis of
network formation models based on the cooperative solution concept of pairwise stability under restrictions on the
complexity of network connections. We refer to De Paula [2017] for a comprehensive survey of this literature.
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who study the endogenous choices of firm input combinations in a competitive environment.14 In

their model marginal productivities of inputs depend on the entire input/output network, but are

taken as given by firms when chosing suppliers. Contrary to us, they assume that the production

network is observable and therefore do not attempt to estimate it; their focus is on studying its

impact on aggregate productivity in a dynamic model of growth.

Two other papers in the networks literature deserve special mention. The first is Boucher [2018],

who also uses an Approximate Bayesian Computation approach similar to ours to estimate a model

of endogenous network formation. In contrast to our approach, he aims at estimating the proba-

bility distribution over networks under the assumption that a network realization is observed. The

sequential model of social link formation underlying this work does not have a tractable analytical

characterization of the equilibria, thus it does not give sufficient statistics for the approximation

of the likelihood function. Boucher [2018] suggests a set of summary statistics that allows him to

estimate homophily in a network of high school friendship based on Add Health data. The second

related paper is Canen et al. [2017], who adapts a model by Cabrales et al. [2011] to estimate

unobservable social efforts in the U.S. Congress. In contrast to this paper, the authors assume that

legislators cannot target their socialization efforts to other specific legislators, rather they exert a

generic non-directed level of effort in socializing with all other legislators (Cabrales et al. [2011] call

it a model without “earmarked socialization”).15 The analysis, moreover, is based only on the total

number of cosponsored bills by a legislator, that is used as an empirical proxy for social effort; and

on a one-dimensional index of roll call data and floor speeches, that is used as an empirical proxy

for legislative effort.

The remainder of this paper is organized as follows. Section 2 presents our model of legislative

behavior formation of social connections. Section 3 defines our equilibrium concept, the Network

Competitive Equilibrium, and characterizes it. Section 4 defines the econometric specification of

the model, discusses the estimation method by Approximate Bayesian Computation Method, and

presents a set of simulations to explore the performance of our approach in finite samples and as

we change the environment of the estimation. Section 5 estimates the model using data from the

109th to 113th U.S. Congresses. Section 6 presents a few extensions to the model and discusses the

robustness of the results. Section 7 concludes.

14Other recent but less related models of endogenous production networks are presented by Oberfield [2018] and
Taschereau-Dumouchel [2019].

15A member of a legislator’s party may benefit differently from the social effort, but this is not a choice of the
legislator, it instead depends on an exogenous parameter modulating “partisanship.”
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2 Model

Consider a Congress comprised of n legislators, where N = {1, ..., n} is the set of legislators.

Each legislator has a pet legislative project that he or she cares to implement. The goal of each

legislator is to maximize their legislative effectiveness, measured by the probability of implementing

the project.16 We assume that legislator i’s effectiveness Ei is an increasing function of the effort

directly exerted by i and the legislative effectiveness of all the legislators with whom i is socially

connected. Legislator i’s PAC, for example, may have contributed to the reelection campaign of

legislator j, so j may use his or her “weight” to help i. Specifically, we assume the following

“production function” for legislative effectiveness:

Ei = ϕ · (si)α (li)
1−α

+ εi (1)

The Cobb-Douglas in (1) captures the effects of legislator i’s level of “social connectedness” si and

effort li. We assume that i’s social connectedness is

si =
∑

j∈N
gi,jEj , (2)

where gi,j is a measurement of the social link between i and j. The idea behind (2) is that the

higher is the effectiveness of the legislators socially connected to i, the higher is i’s effectiveness;

because of this, the effect of j on i is weighted in (2) by the degree of social connection of i to j.

The second term, εi, is a factor idiosyncratic to i that contributes to i’s efficacy independently from

his/her connections or effort. We assume it is observed by the players, but not by an econometrician

studying the game. In the analysis below, we assume gi,i = 0, gi,j ∈ [0, g] with g > 0, εi ∈ [ε, ε]

with ε > 0, ε ∈ (0, 1), and li ∈
[
0, l
]

with l > 0. Moreover, below we will maintain the following

assumption that guarantees Ei ∈ [0, 1):

Assumption 1. ϕ · gα · l1−α + ε < 1.

These assumptions on the parameters and functional form are only made for convenience. In Section

6, we discuss how more general functional forms would affect the analysis.

In this model, legislators’ effort levels l = {l1, ..., ln}, legislative effectiveness E = {E1, ..., En}
and the social matrix G = (gi,j)i,j∈N are all endogenous variables. These variables are determined

in a two-stage game. At t = 2, the legislators choose their costly efforts li, taking the social links G

16The idea that legislators have independent projects that they pursue to seek reelection is at the core of the theory
of distributive politics (see Fiorina [1978], Weingast [1979], Shepsle and Weingast [1981], Weingast and Marshall [1988]
among others).
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as given. The cost of effort is assumed to be represented by a linear function Li(li) = c · li, where

c is a cost parameter.

At t = 1, legislators befriend other legislators in order to increase their legislative effectiveness.

At this stage, the legislators simultaneously choose the social links gi,j . Specifically, we assume that

at t = 1, legislator i decides with which other legislator j ∈ N\i he or she wishes to establish a link

gi,j . A link gi,j is established only if j approves it, but it only depends on i’s effort. If a social link

from i is approved by j, the cost of establishing it with intensity gi,j is given by:

C(gi,j , θi,j) =
φ

(1 + φ)

(
gi,j
θi,j

)1+ 1
φ

, (3)

where θi,j is a variable that captures the degree to which the types of i and j are socially “com-

patible:” the more i and j are socially compatible, the lower is the cost for i to establish a link

with intensity gi,j with j. This cost may be interpreted as, for example, the cost of the time spent

socializing with j or the time that i’s staff needs to spend with j’s staff to coordinate actions,

or the cost of the campaign contributions from i’s PAC to j’s PAC. The variable θi,j is taken as

exogenous in the theoretical analysis and it may comprise a number of factors: whether i and j are

elected in the same district, whether they have the same party affiliation, sex, social, or educational

background (for example if they attended the same educational institutions, etc.). In practice, we

assume that the matrix Θ = (θi,j)i,j is symmetric and that for each legislator i there is a setMi of

other legislators such that θi,j > 0 for j ∈ Mi and zero otherwise. This implies that legislator i is

compatible with at most a subset Mi with cardinality mi = |Mi| of other legislators. We denote

m = maximi as the maximal cardinality of the subsets of friends. The variables θi,j and Mi will

be discussed in greater detail in Section 2.3, where we develop the empirical analysis of the model.

While Θ and Mi are exogenous in the theoretical model, in the empirical analysis we will let the

data identify them.

In the socialization process described above, the ability of i to establish a link with j depends

only on i’s effort and on i and j’s types, not on j’s effort. Naturally, it may be that j’s effort plays

a role too. In Section 6.1 we extend the model to allow gi,j to be a function of both i and j’s effort,

along with their types. The analysis is more complicated, but it is not qualitatively different.

The following assumption guarantees that we will not have a corner solution in which a legislator

chooses li = l for some i ∈ N .17

Assumption 2. l > ((1− α)ϕ/c)
1/α

Note that a simple condition that guarantees both Assumption 1 and Assumption 2 are satisfied

17A formal proof of this fact is provided in the proof of Proposition 1.
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is that the parameter controlling the social spillovers ϕ is sufficiently small.

The type ωi of a legislator i is defined by all of the variables describing his/her preferences

and social connections, so ωi = (εi, (θi,k)k∈N ,Mi). We denote with Ω the space of types with

typical element ω ∈ Ω. A pure strategy for a legislator is described by a socialization strategy

g : Ω → [0, g]
n−1

, mapping the legislator’s type to a vector of intensities gi = {gi,j}j 6=i for each of

the n− 1 other legislators; and an effort strategy l : Ω×G→
[
0, l
]
, mapping the social network and

i’s type to an effort level.

3 Equilibrium analysis

3.1 Network competitive equilibrium

The game described in the previous section has a simple structure that allows us to solve it by

backward induction. At t = 2, the legislators choose effort levels taking the social network as

given; at t = 1, legislators choose their social links. As it is often the case in games with network

externalities, however, the analysis is complicated by the fact that each action has, in addition to

a straightforward direct effect, a set of indirect effects. For example, consider the choice at t = 1,

when legislator i chooses the link to j, gi,j : here a change in gi,j has a direct effect on Ei described

by (1); but it may also have a complex set of indirect effects: the change in Ei given G changes

all other Ejs of js who are connected to i; these changes may affects Ej if i is connected to them,

directly or indirectly.

To understand our approach, it is useful to note that these complications are not dissimilar to

the complications we have when studying a general equilibrium in an exchange economy in which

a change in an agent’s demand has a direct obvious effect on an agent’s utility and an indirect

effect on equilibrium prices. The solution in general equilibrium analysis is to assume that agents

are “price takers:” agents solve their optimization program taking prices as given. Prices, however,

must clear the market in equilibrium. Such analysis is motivated by the fact that, in many exchange

economies, each agent has only a marginal impact on equilibrium prices, thus allowing us to ignore

the indirect effects.

The same approach seems appropriate for the study of network games with many players such as

ours, in which the incentives to establish a link to a node depends only on some measure of centrality

of the node that is a function of the aggregate behavior in the network. In these environments it

is plausible to assume, as in a competitive equilibrium, that the players are “price takers ”with

respect to these measures of centrality, in our case the legislators’ levels of effectiveness. We can

10



therefore introduce a Network Competitive Equilibrium (henceforth, NCE) as follows:

Definition 1. Legislators’ effort levels l = {l1, ..., ln}, legislative effectiveness E = {E1, ..., En} and

the social matrix G = (gi,j)i,j∈N constitute a Network Competitive Equilibrium (NCE) if:

• network connections gi = (gi,1, .., gi,n) are optimal for i at t=1 given E;

• effort levels li are optimal for legislator i at t = 2 given E and G =
(
gi
)
i∈N ;

• the vector of efficacy levels E satisfy the production function (1) given l and G.

The first two requirements in the definition correspond to the requirement in a competitive equi-

librium that agents optimize given “prices,” where the other legislators’ effectivenesses corresponds

to prices. The last requirement corresponds to the market clearing condition: here we impose that

the equilibrium expected levels of effectiveness are consistent with each other. It should therefore

be stressed that while the legislators choose G taking E as given, E is endogenous in the same

way as prices are endogenous in a competitive equilibrium. While the concept is introduced in

the context of this model, it seems the idea of a NCE should have a more general applicability to

network formation in many other environments. We will explore some properties of this equilibrium

definition below.

Before turning to the equilibrium characterization, it is useful to compare our approach with

the other approaches that have been adopted to model network formation for empirical analysis. A

key aspects of our NCE is the simplification of the strategic interaction implied by the assumption

that agents take the other players’ effectiveness as given when choosing their social connections.

Underlying this approach is the implicit assumption that agents are “small” and thus have (or

perceive) only a marginal effect on the effectiveness of other players. This assumption does not

seem too demanding in large and complex networks such as congressional networks. Consider, for

example, Figure 16, plotting our estimated network and other observed networks often used to study

social networks in Congress (such as the cosponsorship and committee networks).18 It is apparent

that no nodes (or very few) are in a position to exert a dominant effect on social interactions; and,

more importantly, that if we change an individual agent’s connections, we would not change the

overall network very much.

The other two approaches to model endogenous networks used in the literature–stochastic best

response dynamics and pairwise stability–also adopt very significant simplifications of the strategic

interactions between agents. In the first approach, based on stochastic best response dynamics,

18The cosponsorship network has been used to study social connections in the U.S. Congress by Fowler [2006],
Kirkland [2011], Parigi and Sartori [2014] among others. The committee network has been used by Porter et al.
[2005].
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agents are myopic and form random links sequentially. This approach, moreover, does not lead to

an analytical characterization of an equilibrium (except under simplifying assumptions in specific

examples). The equilibrium stationary distribution is obtained by simulating the underlying Markov

process.19 The underlying Markov process typically induces a unique stationary distribution of

networks, but this distribution depends on the exogenous distribution of the random shocks that

affect the agents’ preferences. The second approach focuses on networks that satisfy pairwise

stability, a cooperative solution concept. This approach typically leaves a large set of equilibrium

predictions and thus only partial identification under strong sparsity conditions on the network.20

While the NCE can conceptually be applied to any networks, its applicability is probably not

appropriate for simple environments with few links, where it is probably the case that players are

well aware of indirect effects (just as the idea of a competitive equilibrium can conceptually be

applied even to a one agent Robinson Crusoe economy, but probably it should not). Whether the

simplification in the NCE is an acceptable compromise it is ultimately an empirical question that

has to do with the ability of the model to fit the data better than alternative approaches. We will

argue in Section 5 that this is the case for our congressional network.

In the next two subsections we characterize the NCE of our game, starting from the choice of

effort at t = 2.

3.2 The choice of effort at t = 2

Substituting in the solution to the maximization of (4) into (1), we obtain that the equilibrium

levels of legislative effectiveness for a type i ∈ N are given by:

Ei = ϕ

(
(1− α)ϕ

c

) 1−α
α

·
∑n

j=1
gi,jEj + εi. (4)

These equations can be expressed in matrix form as:

[I − δ ·G] ·E = ε (5)

where δ = ϕ ((1− α)ϕ/c)
1−α
α and ε is the vector (εi)i∈N .

If we had an exogenous G, condition (4) would have a straightforward interpretation: assuming

the invertibility of the matrix on the left hand side of (5), a legislator’s effectiveness coincides

19For empirical analysis based on this approach, see Christakis et al. [2010], Konig [2016], Mele [2017], Badev
[2017] and Boucher [2018], among others.

20For empirical studies following this approach, see Miyauchi [2016], De Paula et al. [2018], and Sheng [2018],
among others.
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with his weighted Bonacich centrality in G, with weights given by the natural “effectiveness of each

legislator” εi and the discount factor δ.21 However, the interpretation of E as “weighted Bonacichs”

is no longer correct because G is endogenous.

3.3 The formation of the network at t = 1

At t = 1, the legislators choose their social links to maximize the expected utility at stage t = 2,

net of the cost of establishing the links. The expected continuation utility at t = 1 of a type i is

easily determined by substituting the optimal effort levels and Ei(G,ε) in (4):

U i(G, ε) = αδ
∑n

j=1
gi,jEj(G, ε) + εi. (6)

Legislator i will choose the links gi = (gi,1, ..., gi,n) that maximize (6) with the constraint that if

gi,j > 0, then the link is not vetoed by j. It is, however, easy to see that no legislator j would

find it optimal to veto a link from i. The establishment of a link gi,j increases the effectiveness of

i and of any other legislator who has a direct or indirect link to i: so if j does not have a direct or

an indirect link that points to i, then j is indifferent; if j has a direct or indirect link to i, then j

strictly prefers that i establishes a link with him/her.22 It follows that legislator i chooses his links

solving:

max
gi

{∑n

j=1

[
αδ · gi,jEj(G, ε)−

φ

(1 + φ)

(
gi,j
θi,j

)1+ 1
φ

]}
. (7)

Combining the solution of (7) with (5), we have:

Proposition 1. A Network Competitive Equilibrium (NCE) exists and it is characterized by a

vector E∗ and a matrix G∗ that solve the system:

E∗i = δ ·
∑

l∈N

(
g∗i,lE

∗
l

)
+ εi (8)

and g∗i,j ≤ (θi,j)
1+φ (

αδE∗j
)φ

( = for g∗i,j ≤ g) (9)

for any i, j ∈ N .

In an interior solution, i.e. when g∗i,j ≤ g for all i, j, the two conditions collapse to the system

21 The standard definition of the Bonacich centrality with discount factor ν is E = [I − ν ·G]−1 1 (See Bonacich
[1987]). The weighted Bonacich with weights A is defined as E = [I − ν ·G]−1 A (See Ballester et al. [2006]).

22In Section 6.1 we will extend the analysis to consider the case in which gi,j depends on both i’s and j’s investments.
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in n equations and n variables:

E∗i = αφ (δ)
1+φ

∑
l∈N

(θi,lE
∗
l )

1+φ
+ εi (10)

The legislators’ effectivenesses are no longer representable by a linear system of equations as in

the familiar “Bonacich” representation of (5). The intuition for this phenomenon is simple. When

the network is exogenous, Ei is a linear function of Ej , with a factor of proportionality given by gi,j .

When gi,j is endogenous, however, i finds it optimal to choose gi,j that is proportional to (Ej)
φ
.

The true link between Ei and Ej , therefore, is no longer linear: Ei will be a function of (Ej)
1+φ

.

To interpret (8) and (10), it is useful to note that the elasticity of a link gi,j with respect to the

effectiveness of the associated target legislator j is εgi,j ,Ej = φ.23 As φ → 0, the endogenous links

become completely inelastic with respect to effectiveness, and indeed we have gi,j → θi,j . In this

case, we are back to the standard Bonacich representation of effectiveness, assuming that [I − δ ·Θ]

is invertible:

Example 1. As φ → 0, there is a unique equilibrium in which effectiveness coincides with the

Bonacich centralities: E = [I − δ ·Θ]
−1 · ε, where Θ is the n× n matrix with generic term θi,j.

When φ > 0, instead, changes in the equilibrium effectiveness imply changes in the links. The

higher is φ, the more links polarize around the most effective legislators. To see the implications

of a positive φ, let φ → ∞. In this case, from the first order condition, we obtain that gi,j = g if

αδEjθi,j − 1 ≥ 0 and zero otherwise. Consider a symmetric environment in which legislators are

symmetric (so εi = ε for all i) and located in a ring such that θi,j = 1 for j ∈ {i− 1, i+ 1} and

zero otherwise. We say that there is no connectivity if gi,j = 0 for all i, j ∈ N and that there is full

connectivity if gi,j = g if θi,j > 0. We have:

Example 2. As φ→∞, in a ring there is a unique pure strategy equilibrium with no connectivity

if ε < 1/(αδ); a unique pure strategy equilibrium with full connectivity if ε ≥ (1− 2δg) /(αδ); and

both equilibria coexist if ε ∈ [(1− 2δg) /(αδ), 1/(αδ)].

The network structure described in Example 1, where links are inelastic to the level of effec-

tiveness of the legislators (i.e. φ = 0) and thus exogenous, is very different than the structure

in Example 2. While the network formation decision is continuous in the first case it shows an

“explosive behavior” in the second (as a function of ε, at least).

In the following, we will assume that we do not have corner solutions with gi,j = g and so the

equilibrium network is characterized by (10). This property is implied by the following assumption

23The elasticity is defined as εgi,j ,Ej = (∂gi,j /∂Ej ) · (Ej /gi,j ).
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on the fundamentals:

Assumption 2. g > (αδ)
φ
θ

1+φ
.

Under Assumptions 1 and 2, it is easy to state a sufficient condition for the existence of a unique

equilibrium for δ sufficiently small. Define θ = maxi,j∈N θi,j . We have:

Proposition 2. For δ < 1
θ

[
1/
(
(1 + φ)αφm

)]1/(1+φ)
, there is a unique equilibrium G∗ = (g∗i,j)i,j∈N ,

E∗ = (E∗i )i∈N .

It should be noted that the condition in Proposition 2 is only sufficient, not necessary. For

example, the symmetric example presented above with arbitrarily large φ obviously violates this

condition but still admits a unique equilibrium under the conditions specified above.

4 Estimation

4.1 Model specification

Assume we observe data from r̄ Congresses (r = {1, ..., r}), each comprised of n Congress members

and associated with an endogenous and unobserved network Gr = {gi,j,r}. Each legislator i in

Congress r is characterized by a level of legislative effectiveness Ei,r and a vector of characteristics.

We assume there are l observable characteristics and denote it as Xi,r = (Xi,r,1, ..., Xi,r,l). We also

assume that there is an observed adjacency matrix linking legislators that may be relevant in the

formation of the true network G and denote it with Hr = (hi,j,r)i,j∈N . In the following, Hr will be

the alumni network, in which hi,j,r = 1 if i and j have attended the same educational institution

in overlapping periods, and hi,j,r = 0 otherwise.24 We will discuss these variables in greater detail

in the next section.25

Propositions 1 shows that, in equilibrium, effectiveness solves (10). To bring this system of

equations to the data, we assume that εi,r = (Xi,r)
′β+ ζr + εi,r, where β is a vector of coefficients,

ζr is a Congress fixed effect and εi,r is a random variable. We therefore have:

Ei,r = αφ (δ)
1+φ

∑
l∈r

(θi,l,rEl,r)
1+φ

+ X′i,rβ + ζr + εi,r (11)

24This network has been shown to be relevant as a proxy of social connectedness in Congress by Cohen and Malloy
[2014], Battaglini and Patacchini [2018], and Battaglini et al. [2019]. While we will not assume it to be relevant,
we will use it as input of the analysis as described below.

25We omit the index for the Congress in hi,j because in the following analysis the exogenous adjacency matrix will
not depend on r. In general, it might also depend on r.
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In (11), the terms θi,j,r, measuring how costly it is for i to form a link with j, are modeled as

random realizations from a logistic function:

P (θi,j,r |λi,j,r ) =

(
eλi,j,r

1 + eλi,j,r

)θi,j,r (
1

1 + eλi,j,r

)1−θi,j,r
(12)

with:

λi,j,r = ι+ γhi,j,r +
∑

l
g(Xi,r,l, Xj,r,l)ψl (13)

In (13) ι is a constant; γ and ψl are parameters to be estimated; and g(·, ·) is a distance function.

The parameter λi,j,r depends on the position of i and j on a known adjacency matrix (for example

whether they attended the same school in the same period); and on the distance between i and j in

terms of observable characteristics as measured by g(·, ·). The specification in (13) therefore allows

the cost of forming a link to be random but also to depend on the affinity of the legislators, thus

capturing the possibility of homophily.26

In estimating our model, there are three parameters that are of special interest: ϕ, φ, and α.

The parameter ϕ measures the importance of the social spillovers as is typical of the literature

on network effects (see, for example, Calvò-Armengol et al. [2009]). As discussed above, φ is the

elasticity of the link formation with respect to the equilibrium level of effectiveness of the other

legislators. This parameter is key to test of whether the endogeneity of the network formation is

a significant factor in shaping the legislators’ effectiveness. Because the model with an exogenous

network (i.e. with φ = 0) is nested in the more general model, we can test if allowing G to be

endogenous improves the fit of the model. Finally, α measures the elasticity of Ei = Ei − εi with

respect to social connectedness and effort. The variable Ei can be interpreted as the endogenous

component of i’s effectiveness, generated by social connections.

4.2 Approximate Bayesian Computation (ABC)

To understand our estimation approach, it is first useful to start from the standard estimation

approach in Bayesian econometrics. The Metropolis-Hasting algorithm (see Metropolis et al. [1953],

Hastings [1970]) is as follows:

A1. Starting from an initial vector of parameters ω, propose a move to ω′ according to a transition

26The functional form assigned to g(·, ·) in our empirical application is the absolute value of differences between
individual characteristics, which captures homophilic or heterophilic behavior. The logistic function is one of the most
popular in dyadic link formation (see for example Graham [2017]). Alternative functional forms and specifications
(even not binding θi,j,r to be binary) can be used. The estimation method proposed in the next section does not
impose particular limitations on these choices.
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kernel q(ω → ω′).

A2. Calculate h = min

(
1,

p(E|ω′ )π(ω′)q(ω′→ω)

p(E|ω )π(ω)q(ω→ω′)

)
, where p (E |ω′ ) is the probability of observing E

given ω′ in the model.

A3. Move to ω′ with probability h, else remain at ω; go to the first step.

Under suitable regularity conditions, the limiting stationary distribution of the chain described

above is equal to the conditional distribution p (ω |E ). This approach, however, is impossible in our

model because an explicit formula for the likelihood function p (E |ω ) is not available. This problem

is not uncommon in complex environments such as ours and it is indeed typical in genetics and

evolutionary biology (see Fu and Li [1997] and Weiss and Haeseler [1998] and Plagnol and Tavare

[2004] for instance). Approximate Bayesian Computation (ABC) methods allow us to bypass the

evaluation of the likelihood function via simulations. Marjoram et al. [2003] has proposed the

following algorithm to recover p (ω |E ):

B1. Starting from an initial vector of parameters ω, propose a move to ω′ according to a transition

kernel q(ω → ω′).

B2. Generate E′ using the model with parameters ω′.

B3. If ρ (E′,E) < ν, proceed to the next step otherwise return to the first step. Here, E is the

observed vector, ρ (E′,E) is a norm between E′ and E, and ν is a tolerance parameter.

B4. Calculate h = min

(
1,

π(ω′)q(ω′→ω)

π(ω)q(ω→ω′)

)
.

B5. Move to ω′ with probability h, else remain at ω; go to the first step.

This algorithm generates a Markov chain that has a limiting stationary distribution equal to

the posterior Pr (ω |ρ (E′, E) < ν ). The true conditional distribution p (ω |E ), therefore, coincides

with the limit limν→0 Pr (ω |ρ (E′, E) < ν ).

When, as in our case, E is high dimensional, two problems may arise. First, for practical

purposes it may be necessary to replace ρ (E′,E) < ν in step B3 with ρ (η (E′) , η (E)) < ν, where

η (E) is a vector of summary statistics of E. However, this reduces the information that is used

because it is hard to identify a set of sufficient statistics (see Robert et al. [2011]). Second, the

algorithm may be slow when the evaluation in step B2 is computationally onerous. We can, however,

bypass both of these problems. First, the characterization of Proposition 1 allows us to drastically

reduce the dimensionality of the problem, which is fully characterized by a system of “only” n

equations (despite the endogenous network being of dimension n2). This allows us to directly
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use the observed vector E, rather than a set of statistics of it. Second, the explicit equilibrium

condition in (11) allows us to bypass the need of solving the nonlinear system of n equations by

simply evaluating how well the the proposed vector of parameters solves them in correspondence

to the observed vector E. Define the vector:

z(E,ω) = E− ε− αφδ1+φ ·Θ ·D (E,φ)

where E = (E1, ..., En)′ is the observed vector of empirical efficacies, D (x,φ) = ((x1)
1+φ

, ..., (xn)
1+φ

)′

and Θ is a n × n matrix with i, j element equal to (θi,j)
1+φ

. Let ρ (z(E,ω)) be the norm of this

vector. Our modified algorithm is:

C1. Starting from an initial vector of parameters ω, propose a move to ω′ according to a transition

kernel q(ω → ω′).

C2. If ρ (z(E,ω′)) < ν, proceed to the next step; otherwise return to the first step.

C3. Calculate h = min

(
1,

π(ω′)q(ω′→ω)

π(ω)q(ω→ω′)

)
.

C4. Move to ω′ with probability h, else remain at ω; go to the first step.

The properties of this algorithm are characterized in the following proposition.

Proposition 3. The stationary distribution of the Markov process described by Algorithm C is

Pr (ω |Dν ), where Dν = {ω |ρ (z (E, ω)) ≤ ν }.

It follows from Proposition 3 that, under the assumption that the model is well specified,

Pr (ω |E ) = limν→0 Pr (ω |Dν ). That is, the true conditional distribution of the parameters, given

the evidence E, coincides with the limit of the stationary distribution as we reduce the tolerance

parameter ν to zero. The details of how our ABC algorithm is implemented in practice are described

in the Appendix (Section 8.6).

We conclude this section with a comment on identification of the model in our Bayesian anal-

ysis. Provided that it is proper, the posterior Pr (ω |Dε ) is always well defined and it incorporates

all information in E given the model (Lindley [1971], Kaas et al. [1998]). The interpretation of

this posterior is, moreover, straightforward. Bayes rule allows to use the observations to update

the probabilities of the events associated to the sigma algebra of the minimal sufficient parameter

space.27 If the parameter space in the Bayesian model is not minimal, the conditional probabilities

27A Bayesian model can be seen as a statistical model on which the parameter space A is endowed with a probability
measure on A,A, where A is the σ-field of A. The parameter space A is sufficient if it is sufficient to describe the
sampling process. The minimal sufficient parameter A∗ is the intersection of all the sufficient parameter A. See
Florens et al. [1990] for a reference.
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on events associated to their finer sigma algebra are naturally updated relying on their prior prob-

abilities. A parameter is therefore not identified in Bayesian theory only if its prior distribution

is not revised through the information brought by the data, so that the conditional posterior and

conditional prior distribution are the same (Florens and Simoni [2011]). In the next section we show

with simulations that the Bayesian procedure described above provides accurate estimates of all

parameter for the type of datasets that we use in the empirical application in Section 5. Regarding

the empirical analysis of Section 5, Figures A.2 - A.4 in the supplementary online Appendix show

that there is significant updating of information in the chains, which result in posterior that are

markedly different from the priors.

4.3 Monte Carlo Simulations

In this section, we use simulations to investigate the performance of our estimation approach. We

first propose two examples to illustrate its ability to recover the underlying structural parameters

and key features of the network topology. We then systematically study how the performance of

our approach changes as we change important features of the setting, such as the sparsity of the

networks, their size, the number of periods for which we observe the outcomes, and the elasticity

of network formation, among others.

4.3.1 Two benchmarks

A real network There are a number of parameters determining the shape of the social network

in our model that need to be chosen in any simulation. An important ingredient is the observed

adjacency matrix that enters in the cost function (3), i.e. the observed factors affecting the cost

of establishing a link from legislator i to legislator j. In our first set of simulations, we use a real

network as a basis to simulate H = {hi,j}. Specifically, we generate H using the alumni network,

the same network that we will use in in our empirical application. For the 111th Congress, we

randomly select n = 200 legislators and set the observed adjacency networks hi,j = 1 if i and j

graduated from the same school within four years and zero otherwise.28

28The 111th Congress is chosen at random as an example. Similar findings are obtained with other Congresses.
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Figure 1: REAL NETWORK ESTIMATION
- GOODNESS OF FIT -

(a) Estimated

(b) True

NOTE. Panels (a) and (b) represent the estimated and true network respectively. The true network is generated using
equations (26)-(27) and data from the alumni network. The connections of 200 politicians from the 111th Congress extracted
at random are considered. The 111th Congress is randomly selected. Results are robust to different draws. The DGP is
described in detail in Section 8.5. The estimated network is derived using the parameter estimates at the last iteration of
the MCMC. The first of c̄ = 5 networks is visually represented using the force-directed layout algorithm with five iterations.
The algorithm uses attractive forces between adjacent nodes and repulsive forces between distant nodes in the network. See
Fruchterman and Reingold [1991] for more details. The size of the nodes is proportional to their degree. Three random
nodes are drawn and highlighted with circles.

We use a given set of parameters (ι, γ, ψl, α, φ, ϕ), randomly generated characteristics X, and

H as inputs in (12) and (13) to compute θi,j and extract the true network G = {gi,j} from (9). The
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true network G, along with realizations of the other random variables X, are then used in (8) to

generate the observed vector of effectiveness E. We simulate a situation in which five Congresses

are observed, which corresponds to simulating five vectors E. The parameters (ι, γ, ψl, α, φ, ϕ)

are chosen so that the resulting network matches the average values of the following moments in

the cosponsorship networks of the Congresses in our sample (from the 109th to the 113th): the

diameter, the average distance of the politicians’ cosponsorship network, and the betweenness of

the committee network (in which two legislators are linked if they belong to the same committee).29

Panel (b) of Figure 1 illustrates a simulated network. The estimation procedure consists of using

the simulated E, H, and X to estimate (ι, γ, ψl, α, φ, ϕ), and thus the unobserved G. Because we

know the true (ι, γ, ψl, α, φ, ϕ) in these exercises, we can evaluate the performance of the estimation

technique.

To illustrate the performance of the network estimation, in Figure 1 we show a graphical com-

parison of the real network (Panel (b)) versus the estimated network (Panel (a)) for one of the five

simulations (results for the remaining four simulated networks are similar). The pictures show that

the estimated and original networks are, naturally, not identical but remarkably similar in terms of

topological structure.30 Dyads, triads and dense clusters are well represented in the estimated net-

work, and nodes appear in their true topological position. To highlight the topological similarities,

we highlight three specific nodes, one in the center, one in the periphery, and one in the extreme

periphery. Their respective positions in the real network are preserved in the estimated network.

More formal evidence of the goodness of fit of our estimation method is provided by the ROC curve

for the true positive rate of estimated links in Figure A.1.31 Again, the picture shows that almost

all of the links are correctly predicted.

29The details of how we have calibrated the remaining parameters and other details regarding the implementation
are presented in Section 8.5 in the Appendix.

30In our model, a network depends on deterministic factors and random components affecting the cost of forming
a link θi,j , see Section 4.1 and Appendix 8.5 for the details of the implementation. The network illustrated in Figure
1 is a random realization from the calibrated model using the estimated parameters. The results are, however,
representative as similar qualitative results are obtained independently from the draws.

31The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings. It can also be interpreted as a plot of the power as a function of the Type I error of the decision rule. The
closer the curve is to the upper right contour of the box, the better is the estimation.
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Figure 2: NODE-LEVEL STATISTICS
- ESTIMATED VS TRUE REAL NETWORK -

(a) Betweenness (b) Eigenvalue

(c) Closeness (d) Clustering

(e) Indegree (f) Outdegree

NOTE. X-axis: estimated value of node-level statistic. Y-axis: true value of node-level statistic. The true network is
generated using equations (26)-(27) and data from the alumni network. The connections of 200 politicians from the 111th
Congress extracted at random are considered. The 111th Congress is randomly selected. The DGP is described in detail in
Section 8.5. The estimated network is derived using the parameter estimates at the last iteration of the MCMC. The first
of c̄ = 5 networks is considered. See Newman [2010] for the definition of network measures.
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As further evidence of the good performance of the method, in Figure 2 we plot the values of

individual network statistics for each node (betweenness, eigenvalue, closeness, clustering, and in-

and out-degree).32 Each point corresponds to a node of the network, with the estimated network

statistic on the X-axis, the real network statistic on the Y-axis, and the bisector drawn in red. The

plots reveal that the data points lie close to the red line, again showing the ability of the ABC

procedure to precisely estimate the position of each node in the network. Finally, Table 1 shows

aggregate network statistics in the simulated and true networks (density, assortativity, diameter,

average distance, closeness, betweenness, degree, and clustering). Perhaps unsurprising at this

stage, the table confirms that the estimated values are quite similar to the real ones.

The circular network Our second benchmark is a simulation in which hi,j is a “circular network”

in which i is linked to agents i+ j for j ≤ zi, where zi is an independent realization from a uniform

distribution U(0, z̄) for each legislator i with z̄ = 8.33, 34 While this setup is less realistic than the

previous, it will prove useful in the next subsection for the comparative statics exercise because it

allows us to easily change its features (size, sparsity, etc.). As in the previous section, here too we

generate a network G and r = 5 observations with n = 200 legislators in each. A similar analysis

as in the previous section is presented in Figures 3 and 4. Results are very similar and lead to the

same conclusions.

4.3.2 Sensitivity Analysis

Using the “circular network” discussed above as a benchmark, we now explore the performance of

our method as we change key features of the environment, namely: the number of legislators n; the

number of observations over time r; the sparsity of the network, as measured by z; the elasticity of

link formation φ; and other important aspects of the network topological structure.

Network size We have simulated networks for n = 25, 50, 100, 200, and 400 nodes. Figure 5 shows

a box plot where each box represents the difference between the real and the estimated parameter.35

32See Newman [2010] for a formal definition of these centrality measures.
33We label this experiment the circular network because when zi = 1 for all i, the resulting network is circular.

The model we use is indeed a generalization of a simple circle that allows for a random number of connections.
34The variable z̄ defines network sparsity. We have also repeated our simulation experiment using other distribu-

tions for zi (different from uniform). The results are not sensitive to different specifications. We do not report these
further results for brevity. They remain available upon request. We will show the sensitivity of our methodology to
network sparsity in Figure 10 and 11.

35The boxplot is constructed using the ergodic distribution generated by the Markov chain after a burning period
of 10,000 iterations. We normalize the realizations by subtracting the true values from each of them, thus centering
the distributions of all parameters at zero.
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Figure 5: ESTIMATION BIAS FOR DIFFERENT NETWORK SIZES
- PARAMETERS -

(a) ϕ (b) φ

(c) α (d) β

NOTE. X-axis: network size. Y-axis: distribution of the differences between estimated and true values in the MCMC after
a burning period of 10,000 iterations. The estimated values are taken from the posterior distribution. The true values are
fixed and generated using equations (26)-(27). The connections are generated from a circular network, as defined in Section
4.3.1. The DGP is described in detail in Section 8.5. The bottom and top edges of the boxes indicate the 25th and 75th
percentiles of the distribution, respectively, and the central red mark indicates the median. The whiskers extend to the most
extreme data points within 1.5 times the interquartile range. Values more than 1.5 times the interquartile range away from
the top or bottom of the box (outliers) are plotted individually using the ‘+’ symbol.

The graphs show that, for each parameter, the distance from the true value and its dispersion

converges to zero as n increases. It is interesting to observe that n = 200 is already sufficient to have

distances highly concentrated around zero. Figure 6 presents a boxplot where each box represents

the difference between the real and the estimated node-level statistics. Here too the graphs show

that the distributions concentrate around zero as n increases.36 Figure 7 shows the ROC curves

36We use the last simulated network to construct the measures. Given that the posterior of estimated parameters
is highly concentrated around the true value, this network is very close to one constructed using estimates of each
parameter and it is faster to compute. The centralities are normalized by subtracting their value in the true network.
See Newman [2010] for the definition of the network centrality measures.
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for each network size considered. The picture reveals a very high probability of detection of true

links and a low probability of false positives for network sizes as small as 50 nodes. This simulation

exercise provides ample evidence on the ability of our methodology to estimate social interactions

in environments similar to the environment of our empirical investigation, where we will deal with

five Congresses of about 400 politicians.

Number of observations We now vary the number of observations r from 1 to 10 while keeping

the number of nodes in the network constant at 200. Figures 8 and 9 have the same structure as

Figures 5 and 6. They report the distribution of the estimation bias along the Markov chain in

the estimated parameters, and the node-level characteristics when r varies. The plots show a clear

reduction in the mean and variance of the distribution as we increase r. The important point here

is that just two observations are sufficient to obtain estimates with a negligible bias; and a single

observation (i.e. r = 1) is sufficient for obtaining a good match of the key centrality measures. This

is an important difference with respect to the literature attempting to estimate sparse networks

using repeated observations with Lasso techniques. While these approaches do not require a formal

model of endogenous network formation and attempt to directly estimate the network links (rather

than the parameters of a model of network formation), they require repeated observations from the

same network (easily over 20 times) to obtain reliable estimates.

Network sparsity An important feature in the estimation of network models is the sparseness

of connections between nodes (see De Paula et al. [2018] and Manresa [2016]). As hinted before,

our simulation framework allows us to change network sparsity by varying the density of Z. A

simple way to do this is to change z̄, the maximum number of links that a node can have. In our

benchmark model, z̄ is equal to 8. We now set it to 4, 20, 40 and 100, while keeping constant all the

other parameters.37 As before, for this simulation exercise too we report the bias in the estimation

of the parameters and of node-level statistics in Figures 10 and 11. These figures show that network

sparsity is not a necessary condition for the estimation of our model, since the concentration of bias

around zero does not appear to be related to network density.

37Given that zi is drawn from a uniform distribution, increasing the maximum by one unit implies a shift of the
mean of one half. We have also repeated our simulation experiment using other distributions for zi (different from
uniform). The results are not sensitive to different specifications. We do not report these further results for brevity.
They remain available upon request.
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Figure 6: ESTIMATION BIAS FOR DIFFERENT NETWORK SIZES
- NODE-LEVEL STATISTICS -

(a) Indegree (b) Outdegree

(c) Betweenness (d) Closeness

(e) Eigenvector (f) Clustering

NOTE. X-axis: network size. Y-axis: distribution of the differences between estimated and true values. See Newman
[2010] for the definition of network measures. The true network is generated using equations (26)-(27). The connections
are generated from a circular network, as defined in Section 4.3.1. The DGP is described in detail in Section 8.5. The
estimated network is derived using the parameter estimates at the last iteration of the MCMC. Eigenvector centrality is not
reported for the 25 nodes sample because the adjacency matrix has degenerate eigenvalues (i.e. with multiplicity greater
than one). The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the distribution, respectively,
and the central red mark indicates the median. The whiskers extend to the most extreme data points within 1.5 times the
interquartile range. Values more than 1.5 times the interquartile range away from the top or bottom of the box (outliers)
are plotted individually using the ‘+’ symbol.
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The elasticity of network formation A key parameter of our theoretical model is φ, which

captures the cost of linking among agents. When φ = 0 the elasticity of network formation is zero

and so model (10) is linear in θi,j , as in standard spatial autoregressive models if θi,j is assumed to

be the exogenous network. When φ > 0, and thus the elasticity of the network formation is positive,

the model diverges from standard linear spatial autoregressive models because the social spillovers

are nonlinear. We perform a simulation experiment to understand whether the performance of our

estimation methodology varies when φ changes. We set φ = 1, 2, 3, and 4. Figure 12 and Figure

13 present, respectively, the distribution of the estimation bias for the parameters and node-level

network statistics for each value of φ. The boxplots reveal no systematic pattern across values of

φ, and that the distributions are mainly concentrated around zero for all values of φ, with similar

dispersion. These results thus indicate that performance of our methodology does not hinge on a

particular value of φ.

Network topology To conclude, we show the performance of our methodology under different

network topologies. Figure 14 displays the true adjacency matrix, the associated estimated matrix

using our methodology, and their difference when the true network is simulated under different

rules. We consider a high density network (Panel a)), a low density network (Panel b)), a network

structure coming from a highly nonlinear model (Panel c)), a reverse circular network (Panel d)),

and the alumni network (Panel (e)).38 Remarkably, the estimated linking structure closely follows

the changes of the true network.

5 Evidence from the U.S. Congress

5.1 Data description

We measure each Congress member’s legislative performance using the Legislative Effectiveness

Scores (LESs) for members of the U.S. House of Representatives, developed by Volden and Wiseman

[2014]. Each member’s score is based on how many bills each legislator introduces, as well as

how many of those bills receive action in the committees, are approved at the committee level,

receive action of the floor of the House, pass the House, and ultimately become law. Data are

available online from the Legislative Effectiveness Project (http://www.thelawmakers.org).39 We

38The high, medium and low density networks are circular networks with respectively z = 200, z = 20 and z = 8.
The network structure with the highly nonlinear model is the circular network with z = 8 and φ = 4. The reverse
circular model is like the circular model but now i is linked to agents i − j for j ≤ zi, where zi is an independent
realization from a uniform distribution U(0, z̄) for each legislator i with z̄ = 8. The alumni network is described in
Section 4.1.

39Volden et al. [2013] have used this data to explore the legislative effectiveness of women for the 93rd - 110th
Congresses. A similar index, Health ILESs, was proposed by Volden and Wiseman [2011] to examine which House
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use information from five recent election cycles: the 109th Congress (election cycle 2004) to the

113th Congress (election cycle 2012).

Consistent with existing theories of congressional politics, Volden and Wiseman [2014] argue that

legislative effectiveness is a function of innate abilities, a cultivated set of skills, and institutional

positions. The Legislative Effectiveness Project thus provides data on the observed legislators’

characteristics that are theoretically important for lawmaking effectiveness. They identify nine

factors that are important for legislative effectiveness. We briefly discuss them here because we

include them as controls in our analysis.

The first one is the number of years served as a member of the Congress (seniority). As

legislators spend more time in Congress, they are expected to become better and more effective

at lawmaking. Consistent with the acquisition of skills over time, the second factor is previous

legislative experience. Legislators who have previously served in the state legislatures may be more

effective than legislators without similar experiences.40 The next three factors (party influence,

committee influence, and legislative leadership) capture the effect of institutional positions on the

legislative process. Majority party members, committee chairs, members of the most powerful

committees (Appropriation, Budget, Rules, and Ways and Means), and party leaders hold positions

that are naturally associated with greater legislative effectiveness.41

The sixth factor captures ideological considerations. The Legislative Effectiveness Project data

is merged with the http://voteview.com project data. It provides data on legislators’ ideological

stance, as measured by the absolute value of the first dimension of the dw-nominate score created

by McCarty et al. [1997]. A number of legislative politics studies suggest a negative correlation

between this variable and legislative success, reflecting the idea that moderate policies obtain a

larger consensus among the members of the House (see, e.g. Krehbiel [1992], Wiseman and Wright

[2008]).

The seventh factor captures the demographic characteristics of under-represented members in

Congress. The experiences of women and ethnic minority legislators in terms of effective lawmaking

are different from the average member of Congress, although the existing literature has not reached

a consensus about the sign and the sources of these differences (Jeydel and Taylor [2003]; Volden

and Wiseman [2014]; Volden et al. [2013]).

members have been most successful at advancing health care bills for the 93rd to 110th Congresses.
40Previous legislative experience is captured using a dummy taking value one whether a legislator has previously

served in their state legislature, and zero otherwise, and its interaction with the state’s level of professionalism as
measured by the index constructed by Squire [1992].

41This is true in general, with some exceptions. Volden and Wiseman [2014] document that the high level of effort
required by the members of these committees results in a number of endorsed bills which is lower than that of the
average House member, thus making the relationship with their LES scores negative. Minority party leaders are less
likely to have their bills pass the House relative to other members of their party.
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The eighth factor is the size of the congressional delegation, which counts the number of districts

in the state congressional delegation (and thus the number of Congress members in the House from

the same state). Legislators coming from larger congressional delegations may be more effective

because they can find coalition partners among the members of their delegations. In contrast, the

presence of more legislators interested in the same issues (the interests of the state) may result in

a lower number of bills advanced in the legislative process for each legislator.

The ninth factor is captured by the degree of electoral competition, as measured by the legislators’

margin of victory (i.e. the percentage of total votes that separated the Congress member from the

second-place finisher in the previous election). If voters value politicians’ legislative effectiveness,

then one would expect a positive relationship between legislators’ levels of effectiveness and their

margins of victory. The existence and sign of this relationship, however, is still a matter of debate. In

fact, it is plausible to expect a negative correlation if electorally vulnerable legislators expend more

energy to foster their agenda and increase support among voters. Alternatively, one may think

that vulnerable legislators spend their energy on campaigning, while legislators in safe districts

commit more time to the lawmaking process (see, e.g. Padro I Miquel and Snyder [2006], Volden

and Wiseman [2014]).

Our analysis considers all of the legislator characteristics indicated in the Legislative Effective-

ness Project. The control set Xr in model (11) includes the number of years spent in Congress

and its squared term, margin of victory and its squared term, dw-ideology, the size of the state

congressional delegation, party, chairmanship, majority and minority party leadership, whether the

representative is a member of the majority party, whether the representative is a member of the

most powerful committees, previous legislative experience, gender, and race. Basic member charac-

teristics, (party, gender, ethnicity, and seniority) are also included in the network formation model

(12)-(13).42 To construct the alumni network, we extract information on the educational institu-

tions attended by the Congress members using the Biographical Directory of the United States

Congress, which is available online (http://bioguide.Congress.gov/ biosearch/biosearch.asp).43 In

our baseline version, we assume that a tie exists between two Congress members if they graduated

from the same institution within four years of each other. Because many legislators hold a primary

and a secondary degree (typically a JD or an MBA), this construction gives us a rich network of

direct and indirect links. Additional details on the construction of the alumni network can be found

in Battaglini and Patacchini [2018]. Table A.1 in the Appendix provides a detailed description of

42We do not include the full set of controls in order to decrease the number of parameters to be estimated, thus
easing the computational burden of the bayesian estimation techniques.

43We use high schools and academic institutions attended for both undergraduate and graduate degrees. In dealing
with multiple campuses, we match each satellite campus as a separate university (e.g., University of California at
Los Angeles, San Diego, and Berkeley are treated as separate universities). We match specialized schools (e.g., law
schools) to the larger university.
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the variables used in this study, together with summary statistics for our sample.

5.2 Empirical Findings

Using the procedure described in the previous sections, we now describe the estimation of model

(11)-(13) using data from the 109th Congress (election cycle 2004) to the 113th Congress (election

cycle 2012). Table 2 and Table 3 present the median value of the posterior distributions of the key

parameters. Table 2 focuses on ϕ, α, and φ, and the βi contributing to εi. Column (1) of Table 3

shows the median values of the parameters governing the network formation: ψ, γ, and µ. These

tables also report the probability of observing a value greater than zero (p-value at zero) on each

parameter’s estimated posterior distribution. A p-value equal to one indicates that the support of

the entire distribution is strictly greater than zero, whereas a p-value equal to zero means that the

support of the entire distribution is less than or equal to zero. The posterior distributions of all of

the key parameters of the model and the convergence of the respective Markov chains are presented

in Figures A1-A4 in the supplementary online Appendix.

The size of the social spillovers. We start by discussing the key parameters concerning the

size of the social spillover and their impact on effectiveness: ϕ, α, and φ. All of these parameters are

found to be positive and statistically significant. The positive and statistically significant value of

ϕ measures the social multiplier in the model. The presence of social spillovers is further confirmed

by a significantly positive α, which measures the elasticity of Ei = Ei − εi with respect to social

connectedness and effort (social spillovers would be irrelevant if α were zero). A 1% increase in the

social connectedness of i, as measured by si in (1), induces a 0.74% increase in net effectiveness Ei.

Regarding φ, recall that φ = εgi,j ,Ej , where εgi,j ,Ej is the elasticity of gi,j with respect to Ej . When

φ = 0, the analysis reduces to that which simply assumes a spatial autoregressive model in which

social connections are approximated by the alumni network. The fact that φ is significantly greater

than zero highlights the importance of the fact that the network is endogenous: ceteris paribus,

an increase in the effectiveness of j by 1% leads to a median increase in the connection of another

legislator i to j (i.e. gi,j) of 0.07%.

Table 2 also presents the estimates of the legislators’ individual characteristics directly affecting

their effectiveness, i.e. the βis in εis. The effects are in line with the existing theories of congressional

politics, discussed in the previous section. Specifically, consistent with the idea that Congress

members in positions of leadership are more effective, we find a significantly positive effect of being

Chair and being Leader. Having served in State legislatures with higher levels of professionalism is

also associated with greater legislative effectiveness in Congress, in line with the idea that relevant
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skills in politics are acquired through professional experience. For seniority and the margin of

victory, we detect nonlinear effects. For seniority, we find a convex effect with diminishing returns for

low levels of seniority and positive returns for higher levels. Higher seniority is therefore associated

with greater effectiveness, but only after a few years of experience. This is in line with recent

evidence on U.S. Senators that freshmen have a lower effectiveness than the average Congress

member (Volden and Wiseman, [2018]). The impact of the margin of victory is positive but concave,

suggesting that electorally-safe members are more effective, but that the relative impact of electoral

safety on legislative effectiveness exhibits decreasing returns. This is again totally in line with

the evidence in Volden and Wiseman [2018], even though in their regression results with data

on U.S. Senators, the estimates are not statistically significant. Being a woman is associated

with lower effectiveness, suggesting that the more integrative, collaborative, and consensual female

approach to lawmaking may hinder womens’ effectiveness (Jeydel and Taylor, [2003]). Non-white

representatives, on the other hand, appear associated with a higher LES score, consistent with the

idea that they are better organized in advocating policies, counting on natural coalitions of members

in support of their legislation through groups such as the congressional Black Caucus (Volden and

Wiseman, [2014]).

The findings discussed above should be contrasted with two benchmarks. First, the OLS es-

timate in which we ignore network effects. This is the estimate typical of the previous literature

that has focused on the individual characteristics determining effectiveness while ignoring social

spillovers. Second, a similar analysis imposing no social spillovers, but using the ABC method-

ology. This second estimation is interesting mostly as a robustness check because it should (and

indeed it does) give us the same qualitative results as the OLS analysis. Table 4 collects the esti-

mates. The first two columns report the results, respectively, from a standard OLS and the ABC

estimator for the model (11) without social interactions, that is, when ϕ is constrained to be equal

to zero (and hence the effects of φ and α are also zero). The last column reports the estimates from

Table 2, when network effects are allowed. Observe that when ϕ, φ, and α are greater than zero,

the marginal effect of the k-th covariate in model (11) is not just βk, because βk directly affects

Ek which in turn affects all the remaining E−k, which may affect Ek. An implication of this is

that while the OLS model leads to a common estimate for the effect of a covariate, in the model

with endogenous nonlinear network effects, the marginal effects are necessarily heterogeneous across

individuals because they depend on the individual’s position in the network. Another implication

is that the βks should be expected to underestimate the true effect of the associated variable when

we consider the social multiplier effect (see, e.g. LeSage, [2014] and Liu et al. [2017]).

We can formally test whether the model fit improves with the addition of network effects relative

to a linear regression in which effectiveness is explained just by using the legislators’ individual
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characteristics (i.e εi). To this goal, note that the linear regression model is nested in our model

for ϕ = 0, we can therefore use a standard partial F-test.44 Results are presented in Column (3) of

Table 4. The F-test rejects the hypothesis that the model with ϕ 6= 0 does not provide a significantly

better fit than the model with ϕ = 0 (F value 29.111, p < 0.0000).

The social network. Column (1) of Table 3 provides an insight on the characteristics that matter

for social connectedness in the U.S. Congress.45 As apparent from Table 3, we find that belonging

to the same party has the highest impact on the cost of forming a link. Remarkably, however, the

effect of having a link in the alumni network is about one-fourth the size of party affiliation. This

is in line with previous studies documenting that alumni connections are important predictors of

social interactions, including voting behavior and cosponsorships (see Cohen and Malloy [2014],

Battaglini and Patacchini [2019], among others).

Using the estimates of Table 3, we can simulate the unobserved social network and use the simu-

lation to study its characteristics. Figure 15 depicts the estimated network for the 111th Congress,

simulated using the coefficients of Tables 2 and 3.46 Three features of the social network uncovered

by our analysis are worth highlighting. The first feature is the importance of party affiliation. In

Panel (a) we color the nodes denoting Democratic (respectively, Republican) politicians in blue

(resp., red). It is clear that Democrats have a higher propensity to link with fellow Democrats,

and the same is true for Republicans. This is a feature that we would have underestimated by

using as proxies for the true social network other observable adjacency matrices commonly used

to study congressional behavior (such as the alumni network or the cosponsorship network) that

do not exhibit such polarization. Figure 16 compares the estimated network, the alumni network,

the committee network, and the cosponsorship network when coloring nodes by party affiliation.

The picture reveals that the estimated network has a much better ability to capture polarization

compared to the other networks.

44Let RRS1 define the residual sum of squares of the unrestricted model [Column (3)] and p1 the number of
parameters. Let RRS2 the residual sum of squares of the restricted model [Column (2)], and p2 the number of
parameters. The partial F-test statistic F = [(RRS1 −RRS2)/p1 − p2] /(RRS1)/n− p1 will have an F distribution
with (p1 − p2, n− p1) degrees of freedom.

45Column (2) provides similar information in a modified model in which we also allow for unobservable covariates.
It will be discussed in detail in Section 6.4.

46We use force-directed layout (Fruchterman and Reingold [1991]), which pushes away from the cloud’s center
nodes with many links that are not connected among them. Qualitatively similar results are obtained with other
Congresses, we omit the analysis of these cases here for brevity.
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Figure 16: ESTIMATED VS OBSERVED NETWORKS

(a) Estimated (b) Alumni

(c) Cosponsorship (d) Committee

NOTE. The estimated network is derived using the parameter estimates at the last iteration of the MCMC for the 111th
Congress. The color represents the party of the politician. Pink nodes are Republicans. The networks are represented
with force-directed layout with five iterations (Fruchterman and Reingold [1991]). It uses attractive forces between adjacent
nodes and repulsive forces between distant nodes. For better visualization, the size of the nodes is equal to the (log) of their
degree plus 2. The alumni network is defined in Section 4.1. The ijth element of the committee network entry is equal to
the number of congressional committees in which both i and j sit. Cosponsorship activity is measured by directional links
equal to one if j has cosponsored at least one bill proposed by i and zero otherwise. The direct networks (cosponsorship and
estimated) are transformed to indirect unweighted networks to have a clean comparison with the others. Given the direct
network D = {dij}, its indirect unweighted counterpart is U = {uij}, where uij = 1 if dij or dji is different from zero, and
zero otherwise.

For the second feature, consider Panel (b) of Figure 15, where the color of the links is propor-

tional to the value of their respective gi,j . We see that, besides the high intensity of intraparty
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connections that we have just highlighted, legislators also develop weaker interparty connections.

This is interesting because it confirms a theory that developing “weak ties” with an heterogeneous

set of agents (especially, in the case of Congress, with different political ideologies) is essential to

advance bills through the legislative process (see Granovetter [1973] and especially, for the U.S.

Congress, Kirkland [2011]). An advantage of our approach is that it does not only provide a binary

measure of connection, but also the intensive margin, which allows us to identify the strength of

interactions.

The third feature we would like to highlight is an asymmetry between Democrats and Republi-

cans: the Democratic cloud is more dispersed in terms of the node’s connectivity than the Republi-

can cloud, which features many members with few connections between each others. Democrats are

also consistently more effective. This asymmetry reflects the fact that Democrats were the majority

party in the 111th Congress, which clearly explains the higher average level of effectiveness.47

We conclude this section with a final note on the identification of the gi,js. One may ask

whether the network estimation would be biased if common unobserved shocks affect the legislators’

effectiveness. This, however, can not be the case because the entries of the adjacency matrix are

not estimated by relying exclusively on pairwise covariances between legislators’ effectiveness. In

the baseline model of Section 4.1, they are also functions of observable characteristics, orthogonal

to unobserved shocks. As a result, an unobserved common shock hitting, say, politician i’s and j’s

effectiveness does not affect the likelihood of estimating the link between them. It may do so only

if it affects both the effectiveness and the likelihood of forming a link between legislators. In section

6.4 we extend our model to control for this issue, showing that the estimates are not affected by

this type of concern.

6 Discussions and extensions

6.1 Two sided links

In the previous analysis we assumed that links are one-sided: legislator i controlled gi,j (that is, a

link that allows i to benefit from j) directly, at a cost φ
(1+φ)

(
gi,j
θi,j

)1+ 1
φ

. In this section, we extend

the analysis to allow for the possibility that links are two-sided. We now assume that a link i,j

depends not only on the effort exerted by i versus j, denoted ξi,j , but also on the effort exerted by

47Another interesting feature is that most of the effective politicians tend to also have a higher number of connec-
tions, as shown in Panel (d).
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j versus i, denoted ξj,i. The cost of effort remains φ
(1+φ)

(
ξj,i
θi,j

)1+ 1
φ

, the link is now:

gi,j = ξϑi,j · ξ1−ϑ
j,i (14)

If ϑ = 1, then we are in the previous case, and if ϑ < 1, then a link is the result of effort by both i

and j: if j chooses ξi,j = 0, for example, than i can not establish a link with j.

Under (14), i’s problem finds ξi solving:

max
ξi

{∑n

j=1

[
αδ · ξϑi,j · ξ1−ϑ

j,i · Ej(G, ε)−
φ

(1 + φ)

(
ξi,j
θi,j

)1+ 1
φ

]}
. (15)

From i and j’s first order conditions we have:

αϑδ

(
ξj,i
ξi,j

)1−ϑ

θ
1+φ
φ

i,j Ej = ξ
1
φ

i,j , αϑδ

(
ξi,j
ξj,i

)1−ϑ

θ
1+φ
φ

j,i Ei = ξ
1
φ

j,i

which gives us:

ξi,j
ξj,i

=

(
Ej
Ei

) 1
2(1−ϑ)+1/φ

(16)

ξi,j = (αϑδ)
φ
θ1+φ
i,j (Ej)

φ

(
Ei
Ej

) (1−ϑ)φ
2(1−ϑ)+1/φ

, ξj,i = (αϑδ)
φ
θ1+φ
i,j (Ei)

φ

(
Ej
Ei

) (1−ϑ)φ
2(1−ϑ)+1/φ

And therefore:

gi,j = (αϑδ)
φ
θ1+φ
i,j ·

(Ej)
φ

(
Ei
Ej

) (1−ϑ)φ
2(1−ϑ)+1/φ

ϑ (Ei)
φ

(
Ej
Ei

) (1−ϑ)φ
2(1−ϑ)+1/φ

1−ϑ

(17)

Combining the solution of (14) with (5), we have:

Proposition 4. In an interior solution with gi,j < g, a NCE is characterized by a vector E∗ and

a matrix G∗ where E∗ solve the system:

E∗i = δ ·
∑

l∈N

(αϑδ)
φ
θ1+φ
i,j ·

(E∗l )
φ

(
E∗i
E∗l

) (1−ϑ)φ
2(1−ϑ)+1/φ

ϑ (E∗i )
φ

(
El
Ei

) (1−ϑ)φ
2(1−ϑ)+1/φ

1−ϑ

E∗l

+ εi

(18)

35



for i, j ∈ N and G∗ = (g∗i,j)i,j∈N is given by (17).

Note that for ϑ = 1, this expression is identical to (10). An advantage of (18) is that it would

allow us to estimate to what extent two-sided links are important in the data.

6.2 Alternative functional forms

For the empirical analysis presented above, we need to assume some specific functional forms for

the “production function” of effectiveness and the cost functions. From a theoretical point of view,

most of the choices made are not strictly necessary, in the sense that changing them would not

prevent the empirical estimation. It is however clear that the details of the analysis depend on

them. To illustrate this point, we consider a variant of the previous model in which:

Ei = ϕAi · (si)α (li)
1−α

+ εi (19)

Under (19), legislator i’s characteristics do not only affect Ei additively, through εi, they also affect

it multiplicatively through Ai. In practice, in (19) we are allowing the spillover effect ϕ to depend

on the legislators’ characteristics, i.e. ϕi = ϕ ·Ai.
Following the same steps as in Section 3, where we incorporate the optimal level of effort in

(19), we obtain that in stage 2, when G is given, effectiveness are given by:48

E = (I − δ · Γ(A,α) ·G)−1ε (20)

where Γ(A,α) is a diagonal matrix with ith diagonal element equal to A
1
α
i . Condition (20) gener-

alizes (5) by avoiding to impose that the social spillover is the same for all legislators: some may

benefit more or less than others. In (20) the social spillover depends on the legislators characteristics

affecting Ai. This generalization gives us additional flexibility in fitting the model.

Similarly as we did in Section 4.1, we now can specify Ai = (Xi,r)
′ς1 + ς2, where ς1 is a vector

of coefficients to be estimated and ς2 a fixed effect.49 Solving for the optimal social connections in

the first stage as in Section 3.3, in an interior solution we have:

Ei = δ · [αδ]φ [(Xi,r)
′ς1 + ς2]

1+φ
α ·

∑
j

[θi,jEj ]
1+φ

+ εi (21)

48In (20) we are assuming that the linking technology is one sided as described in Section 2 for simplicity. There
is no problem in generalizing the result using the “two sided links” technology described in Section 6.1.

49Naturally, we can include also random terms, as εi in Section 4.1.
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with gi,j =
[
αδ ·A

1
α
i

]φ
· θ1+φ
i,j Eφj . We can then use (21) in step C2 of our algorithm exactly as

described in Section 4.2.

6.3 Negative spillovers

In the model presented above, i can only gain if j’s effectiveness increases: if i and j are compatible

(i.e. θi,j > 0), then i can establish a link with j and benefit from j’s effectiveness. If i and j are

not compatible (say they have very different ideologies and they dislike each other), then i cannot

establish a link with j, but j can not hurt i.50 There may be situations in which i does not want

j’s effectiveness to be high, because j may actively use his effectiveness to contrast i. In this case,

gi,j < 0 independently from what i does. To allow for this possibility, we can introduce a variable

κi,j = 1 if i and j are enemies and zero otherwise. We can then modify the model assuming that

if θi,j > 0, then κi,j = 0, so that if i can form a link with j then j is not an enemy; but if θi,j = 0,

then κi,j can be 0 or 1. The link is now (1 − κi,j)gi,j − Zκi,j , so that if j is an enemy, then the

effect of j’s effectiveness on i is −Z. We can then estimate the parameters determining κi,j in the

model as a function of the party affiliation and other homophily measures.

6.4 Unobserved Factors

In our model, we deal with the endogeneity of the network by explicitly modeling its formation.

Still, there may be correlated unobservable factors affecting both the cost of forming a link θi,j,r

and the effectiveness Ei,rs. Suppose that an unobserved characteristic of node i in network r, ηr,i,

matters for the network formation process. Then we can extend model (13) in the following way:51

λi,j,r = ι+ γhi,j,r +
∑

l
g(Xr,li, Xr,lj)ψl +m(ηr,i, ηr,j)κ, (22)

where m(·, ·) is a distance function and κ is a parameter. We allow the outcome error term εr,i to be

correlated with ηr,i, with εr,i =
∑L
l=1 µlη

l
r,i + ur,i.

52 In any step of the ABC algorithm (described

50Indeed, i can benefit indirectly from j’s effectiveness if there is a chain of connections such that, for example, j
“helps” k who helps l who helps i.

51The model can be further extended to a vector of unobservable characteristics and to multiple observed adjacency
matrices.

52We define m(ηi, ηj) = I(ηi ≥ ση)I(ηj ≥ ση), where I(.) is an indicator function and ση is a threshold that we
set equal to the variance of η. When the threshold is crossed, m(.) switches to one. We set L = 5. ui,r is extracted
from a normal distribution with zero mean and variance equal to σu. Other functional forms can be used. For
example, we could assume m(ηr,i, ηr,j) = ηr,i + ηr,j to capture higher individual propensity to link (see Graham
[2017]); or m(ηr,i, ηr,j) = ηr,iηr,j to include multiplicative effects. We experimented with other functional forms,
distance definitions, thresholds, and L. Results remain qualitatively unchanged.
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in Section 8.6), εr,i is thus generated as a function of ηr,i and µ = (µ1, ..., µL), which are estimated

as the rest of the model’s parameters.

The results associated to this extension of the empirical model are shown in column 2 of Table

3 for the network formation model (equation (22)) and in Table A.2 in the supplementary online

Appendix for the outcome equation (equation (11) augmented with εr,i =
∑L
l=1 µlη

l
r,i+ur,i). In the

first column of Table A2, we report our baseline estimates of Table 4, Column (3), for comparison.

The evidence on the positive and statistically significant estimates of φ, ϕ and α holds true.

By allowing for unobserved variables that are correlated with the legislators’ effectiveness to

affect the choice of social links, our approach is along the lines of Hsieh and Lee [2014], Boucher et

al. [2019], and Goldsmith-Pinkham and Imbens [2013]. Our analysis, however, differs in two sig-

nificant ways. First, in our model the true network is unobservable–only the fundamental variables

determining the network formation are observable. Second, and most importantly, the network

endogeneity is explicitly modeled. This is what gives us the nonlinear representation in (8).

7 Conclusions

We have presented a model of endogenous formation of social connections in the U.S. Congress to

study the determinants of legislators’ effectiveness. In the model, legislators first invest in their

social connections with other legislators, then they exert effort to achieve their favorite legisla-

tive projects, taking the connections as given. The ability of legislators to achieve their goals in

Congress–their legislative effectiveness–depends on the social connections that they have previously

established, the effectiveness of the other legislators with whom they are socially connected, their

efforts, and their characteristics. Using data from the 109th to 113th U.S. Congresses, we have

structurally estimated the model to gain insight on the legislators social network and its effect on

the legislators effectiveness.

Two methodological contributions are at the core of our analysis. First, we introduce a new equi-

librium concept that we call the Competitive Network Equilibrium. Drawing an analogy with the

approach in competitive analysis to study “price taker” consumers, we assume that legislators take

as given the expected effectiveness of other legislators when investing in their social connections. As

prices in a competitive equilibrium, however, the vector of effectiveness needs to satisfy equilibrium

conditions, i.e. to be consistent with the individual optimizing behavior of the legislators. The sec-

ond contribution consists in the estimation technique, which is based on approximate computation

methods (ABC), an approach to draw Bayesian inference without an analytic likelihood function.

Our analysis suggests that social connections in the U.S. Congress are an important factor in
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determining legislative effectiveness, thus confirming an idea that has been long informally discussed

in journalistic and historical accounts of how Congress works. Perhaps more importantly, the

estimation of the social network gives us an insight into the determinants of social connections.

Not surprisingly, party affiliation is the most significant factor determining social connections,

with Republicans more linked to Republicans and Democrats more linked to Democrats. More

surprisingly, we find that alumni connections are also a key factor, about one-fourth as large as

party affiliation. We also find that weak links across the political lines are important, an observation

long suggested in the sociological and political science literature (see Granovetter [1973] and more

recently Kirkland [2011]). The model, moreover, allows us to estimate social network effects using

only information on outcomes. This is an improvement over the existing practice, where some

observable adjacency matrix is used as a proxy for social connections. As we have discussed in

Section 5.2, by exclusively using alumni networks as a proxy, we ignore the importance of party

affiliation, and by using only cosponsorship, we ignore the importance of alumni connections.

We have discussed in Section 6 a few extensions of the model and the estimation techniques.

More generally, we believe the approach used in this work can more broadly be applied to study

social networks in other environments where social connections are endogenous and unobservable,

and only a vector of outcomes (in our application the vector of legislators’ effectiveness) is available

for the estimation.
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8 Appendix

8.1 Proof of Proposition 1

Let gi,l and gi,j be the links chosen by agent i with agents l and j. Agent i chooses the links solving

(7) under the constraint that gi,j ∈ [0, g] for all j ∈ N . It is easy to see that, given (Ej(G, ε))j∈N ,

problem (7) is concave in gi = (gi,1, ..., gi,n) and, therefore, it has a unique solution whose necessary

and sufficient condition is: g∗i,j ≤ (θi,j)
1+φ (

αδE∗j
)φ

, satisfied as an equality in an interior solution.

Combining this with the necessary and sufficient condition (5) at t = 2, we have that an equilibrium

(G∗,E∗) is characterized by the system in n · n equations in n · n variables (the n variables E∗j s

and the n(n − 1) variables g∗i,j for i ∈ N and j ∈ N\{i}) described in (8) and (9) (given that the

elements in the diagonal of G∗ are all zero).53 �

8.2 Proof of Proposition 2

Define the mapping T (x) from [0, 1]
n

to [0, 1]
n

as Ti(x) = αφ (δ)
1+φ∑

l∈N (θi,lxl)
1+φ

+ εi for

i = 1, ..., n. For any two x, y ∈ [0, 1]n, we can write:

‖T (x)− T (y)‖ = αφ
∑
i

∣∣∣∑
l∈N

(δθi,l)
1+φ

[
(xl)

1+φ − (yl)
1+φ
]∣∣∣

≤ αφ
(
δθ
)1+φ∑

i

∣∣∣∑
l∈N

1θi,l>0 ·
[
(xl)

1+φ − (yl)
1+φ
]∣∣∣

≤ αφ
(
δθ
)1+φ∑

i

∑
l∈N

1θi,l>0 ·
∣∣∣(xl)1+φ − (yl)

1+φ
∣∣∣

= αφ
(
δθ
)1+φ∑

l∈N

∑
i
1θi,l>0 ·

∣∣∣(xl)1+φ − (yl)
1+φ
∣∣∣

≤ αφm
(
δθ
)1+φ∑

l∈N

∣∣∣(xl)1+φ − (yl)
1+φ
∣∣∣

where ‖a− b‖ =
∑
l |al − bl| for any a,b ∈ [0, 1]n: the first inequality follows from the fact that

θi,l is either zero or it is lower than θ, the second inequality follows from the triangle inequality

(i.e. |
∑
xl| ≤

∑
|xl|), the second equality from the fact that we can invert the order of summation,

and the last inequality from the fact that each agent l has at most m compatible j legislators who

53Since we are assuming that the diagonal values θi,i ∀i are zeros, the values g∗i,i are also all zero. This implies

that, effectively, the number of free variables is n · n: the n(n − 1) values of g∗i,j for i 6= j and the n values E∗
j for

i = 1, ..n.
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can establish a link. We can now write:

‖T (x)− T (y)‖ ≤ αφm
(
δθ
)1+φ∑

l∈N

∣∣∣(xl)1+φ − (yl)
1+φ
∣∣∣

≤ (1 + φ)αφm
(
δθ
)1+φ · ‖x− y‖

where the second inequality follows from the fact that for any xl, yl ∈ [0, 1], we have:

∣∣∣x1+φ
l − y1+φ

l

∣∣∣ =

∣∣∣∣∫ x

y

(1 + φ) tφdt

∣∣∣∣ ≤ (1 + φ)

∣∣∣∣∫ x

y

dt

∣∣∣∣
= (1 + φ) |xl − yl|

It follows that T (x) is a contraction with a unique fixed-point if δ < 1
θ

[
1/
(
(1 + φ)αφm

)]1/(1+φ)
. �

8.3 Proof of the result in Example 2

First, consider an equilibrium with no connections. A necessary and sufficient condition for its

existence is that a legislator, expecting no connections by the other players, finds it optimal to

establish no connections as well. In this equilibrium, the effectiveness of an agent j is ε. Agent i

finds it optimal not to link to j = i+ 1 or i− 1 if αδε− 1 ≤ 0, that is if ε ≤ 1/(αδ). Conversely,

assume all legislators except i are fully connected. Then the equilibrium effectiveness of an agent

j is E = ε
1−2δg . Legislator i finds it optimal to connect to j if αδ ε

1−2δg − 1 ≥ 0, that is ε ≥
(1− 2δg) / (αδ). �

8.4 Proof of Proposition 3

The stationary distribution associated with Algorithm C is defined by the fixed-point:

F ∗ν (ω) =

∫
x

Qν (x→ ω)F ∗ν (x)dx (23)

where Qν (x→ ω) is the transition probability of Algorithm C. We need to prove that f (ω |Dν ) is

the unique fixed-point of (23). Let ω be the vector of parameters to estimate and let Dν be defined

as in Section 4.2. We have:

Qν (ω → ω′) = q (ω → ω′) Pr(Dν |ω′ ) · h(ω, ω′)
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There are now two cases to consider. Assume first that:

π (ω′) q(ω′ → ω)

π (ω) q(ω → ω′)
≤ 1 (24)

We can then write for any ω 6= ω′:

f (ω |Dν )Qν (ω → ω′) = f (ω |Dν ) · q (ω → ω′) · Pr(Dν |ω′ ) ·
π (ω′) q(ω′ → ω)

π (ω) q(ω → ω′)

=
Pr(Dν |ω )π(ω)

Pr (Dν)
· q (ω′ → ω) · Pr(Dν |ω′ ) ·

π (ω′)

π (ω)

=
Pr(Dν |ω′ )π(ω′)

Pr (Dν)
· q (ω′ → ω) · Pr(Dν |ω )

= f (ω′ |Dν ) · q (ω′ → ω) · Pr(Dν |ω )

= f (ω′ |Dν ) ·Qν (ω′ → ω)

where in the last stage we used the fact that if (24) holds, then
π(ω′)q(ω→ω′)
π(ω)q(ω′→ω) > 1 and thus h(ω′, ω) =

1.

Assume now that (24) does not hold. We have for any ω 6= ω′:

f (ω |Dν )Qν (ω → ω′) = f (ω |Dν ) · q (ω → ω′) · Pr(Dν |ω′ )

=
Pr(Dν |ω )π(ω)

Pr (Dν)
· q (ω → ω′) · Pr(Dν |ω′ )

=
Pr(Dν |ω′ )π(ω′)

Pr (Dν)
· q (ω′ → ω) · Pr(Dν |ω )

π (ω)

π (ω′)

q (ω → ω′)

q (ω′ → ω)

= f (ω′ |Dν ) · q (ω′ → ω) · Pr(Dν |ω ) · h(ω′, ω)

= f (ω′ |Dν ) ·Qν (ω′ → ω)

From these two cases we conclude that:

f (ω |Dν )Qν (ω → ω′) = f (ω′ |Dν ) ·Qν (ω′ → ω) (25)
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If we integrate both sides of (25) by ω′ we have:

f (ω |Dν ) = f (ω |Dν )

∫
x

Qν (ω → x) dx

=

∫
x

Qν (x→ ω) f (x |Dν ) dx

which proves that f (ω |Dν ) is a fixed-point of (23) and a stationary distribution of the process. To

see that f (ω |Dν ) is unique, note that Qν (x→ ω) defines an irreducible Markov chain on Dν in

which all states in Dν are recurrent and it thus admits a unique stationary distribution. �

8.5 Setup of the Simulations in Section 4.3

We conduct Monte Carlo simulations generating the dependent variable from the following variant

of model (11):

Ei = αφδ1+φ
∑
j 6=i

(θi,jEj)
1+φ + βXi + εi (26)

Here Xi is a unidimensional random variable generated from a normal distribution N(0, σx) and

θi,j is generated from (12) where:

λi,j = v(ι+ γhi,j). (27)

For hi,j we consider the two frameworks described in Section 4.3. In the real world model, we set

hi,j equal to the alumni network described in Section 5.1, in the baseline “circular model,” we set

z̄ = n/w = 200/25 = 8. This number is selected in order to have a degree close to the alumni

network (about 0.04, see Table A.3). In Section 4.3.2 we also change z̄ and show the insensitivity

of our results to it. For both models, we set σx = 1, β = 1, α = 0.5, φ = 2, σε = 0.1 and ϕ = 0.5.

The linking parameters are set as ι = −1, γ = 2 and v = 7. The parameters (ι, γ, ψl, α, φ, ϕ)

are chosen so that the resulting network matches the average values of the following moments in

the cosponsorship networks of the Congresses in our sample (from the 109th to the 113th): the

diameter, the average distance of the politicians’ cosponsorship network, and the betweenness of

the committee network (in which two legislators are linked if they belong to the same committee).

See Table 1 and Table A.3. All of the results discussed in Section 4.3 are robust to alternative

configurations of the parameters.

8.6 Approximate Bayesian Computation

In this section we detail the features of our ABC algorithm.
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Prior Distributions We adopt the following prior distributions for the parameters in model (11)-

(13):

φ ∼ TN{0,∞}(φ0,Φ0),

α ∼ TN{0,1}(α0,∆0),

ηi,r ∼ N(0, η0)

β ∼ NK(β0, B0)

γ ∼ N(γ0,Γ0)

(ψ, γ, ι) ∼ NKl+2(ω0,Ω0)

ϕ ∼ U [−χ, χ]

σ2
ε ∼ TN{0,∞}(σ0,Σ0)

ζr ∼ N(0, σζ)

µ ∼ N(0, µ0)

where U [·] , TN{a,b}(·) and N(·) are, respectively, the uniform, truncated normal (with a and b as

lower and upper bounds), and normal distributions. For our key parameter of interest measuring

the social externality, ϕ, we adopt a uniform (uninformative) prior centered at zero, as suggested

in Smith and LeSage [2004] for spatial autoregressive models. Following Hsieh and Lee [2014], we

adopt standard normal priors for the parameters of covariates in the outcome and link formation

equations (i.e. β, ψ, ι), and for ηi,r and µ (if the model includes the unobservables as described

in Section 6.3). The normal allows us to incorporate prior information regarding the variance-

covariance matrix of the covariates’ parameters in a natural way. As both the Cobb-Douglass

coefficient α and the endogenous network parameter φ are constrained to be non-negative, we use

truncated normal distributions. The truncated normal prior of α assumes values between zero and

one. The truncated normal prior of φ is only constrained to be positive.

We set the hyperparamethers as follows. For the parameters for which we have no prior in-

formation, we chose neutral values: φ0 and α0 are set equal to zero; Φ0 and ∆0 are set equal to

0.5; η0 (i.e., the variance of the prior for η) is set equal to one; σ0 is set equal to zero; χ is set at

0.5; Σ0 is a diagonal matrix with 0.5 on its diagonal elements; σζ is set equal to 0.5. For other

parameters we used available information to inform the prior as suggested by Kass and Wasserman

[1996]: K is the number of controls in the outcome equation; Kl is the number of controls in the

link formation equation; β0 is set equal to the OLS point estimate obtained by regressing the con-

trols on the outcome controlling for Congress fixed effects, and B0 is set equal to the correspondent

variance covariance matrix; ω0 is set equal to the logit point estimates obtained by regressing the

pairwise controls on the cosponsorship network entries, and Ω0 is the correspondent variance co-

variance matrix. Hyperparameters in the prior distribution for the fixed effects ζs are given and

fixed, differently from random effects (see Lancaster, [2004]; Rendon, [2013]).

Under the assumption that the social network G is observable and exogenous, conditions are

generally imposed to guarantee an invertibility condition of G (see Kelejian and Prucha, [2010]),

which in turn are sufficient for the existence of a unique equilibrium (see Calvò-Armengol et al.
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[2009]). The analogous condition in our theory of endogenous network formation is given by Propo-

sition 2, stating a sufficient condition for the existence of a unique equilibrium. We therefore focus

on a parameter space satisfying the condition of Proposition 2 that guarantees the existence of a

unique equilibrium. To this goal, we extract values of φ, ϕ, α, ψ, γ, ι and ηi,r only if they satisfy

Proposition 2, i.e. when δ < (1/θ) ·
[
1/
(
(1 + φ)αφm

)]1/(1+φ)
. Observe that ψ, γ, ι and ηi,r are

included in the formula because their values shape θ and m.

We should emphasize that the results are not sensitive to these assumptions about the prior

distributions. The posterior distributions are reported in the supplementary online Appendix in

Figures A.2-A.4.

Sampling Algorithm The initial state of the Markov chain

ω(1) = [φ(1), α(1), η(1), β(1), ψ(1), γ(1), ι(1), µ(1), ϕ(1), σ(1)
ε , ζ(1)]

is set with all values equal to zero, except for β(1), ψ(1), and ι(1): β(1) is set equal to the OLS

point estimate obtained by regressing the controls on the outcome controlling for Congress fixed

effects; ψ(1), and ι(1) are set equal to the logit point estimates obtained by regressing the pairwise

controls on the cosponsorship network entries.54 To draw new values for each parameter (ω′i) at

iteration t, we use a normal kernel, with mean equal to the current value and variance set at a

parameter-specific tuning parameter c:

N(ωi,t, c). (28)

The decision rule for acceptance or rejection is described in Algorithm C (steps C3 and C4) in

Section 4.2. Each step of the algorithm is run for each parameter, conditioning on the previous

draws of the other parameters. Once every parameter has been updated, the algorithm moves to

the next iteration.

To make the acceptance rate of the parameters’ proposals as close as possible to 0.44 (which is

optimal for one-dimensional proposals, see Roberts et al., [1997]; Roberts and Rosenthal, [2001]),

we determine c with the following adaptive Metropolis-Within-Gibbs algorithm (see Roberts and

Rosenthal, [2009]).55 In the first phase, we allow c to change at each iteration t: ct is decreased

by a half percentage point if the algorithm presents an acceptance rate inferior to 20% in drawing

new values; and is increased by half percentage point if the algorithm presents an acceptance rate

54The algorithm is robust to different starting values.
55Our results are robust to the use of different adaptive algorithms, which are not reported for brevity.
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superior to 80% in drawing new value. Namely:

if tA,i/t ≤ 0.2 then ct+1 = ct/1.005,

if tA,i/t ≥ 0.8 then ct+1 = ct × 1.005,

if 0.2 ≤ tA,i/t ≤ 0.8 then ct+1 = ct,

(29)

where tA,i is the number of accepted draws at iteration t. The sequence ct converges after iteration

10,000 to a level c∞. In the second phase, the parameter is set at its convergence level c∞. This

mechanism guarantees a bounded acceptance rate and convergence to optimal tuning. Figure A.6

in the supplementary online Appendix reports the acceptance rate (tA,i/t), i.e. the probability of

moving from ωi to ω′i, for each of our parameters over the MCMC iterations. We can see that

rates converge to values ranging from 20 to 35 percent, showing good mixing properties.

Our algorithm relies on the choice of the tolerance ε, i.e. the maximum acceptable distance

between the simulated data from real data. Here too we proceed with a two step procedure. In

step 1, we allow our algorithm to explore the tolerance space in the first 10,000 iterations. In step

2, we then fix ε equal to the first quartile of the observed tolerance distribution. Specifically, for

the first 10, 000 iterations we substitute step C2 with:

C2’ If ρ (z(E, ω′)) < ρ (z(E, ω)), proceed to the next step otherwise return to the first step.

In this way the algorithm moves to regions of the parameter space where the distance from the

real data is lower. Figure A.5 shows the rapid convergence of the distance between the simulated

and the real data.56 We use the Manhattan norm distance, ρ(z(E, ω)) = ||z(E, ω)||1 =
∑
|zi(E, ω)|.

The results do not change significantly using different norms.

56Observe that the distance does not strictly decrease in the first 10,000 observations because the random compo-
nent is generated at any iteration, thus the distance may increase if we keep the parameters constant.
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Tables

Table 1: NETWORK-LEVEL STATISTICS
- ESTIMATED VS TRUE NETWORKS -

Estimated True

Density 0.0694 0.0583
Assortativity 26.7911 21.4879
Diameter 6.0000 6.0000
Average distance 2.8238 3.0403
Closeness 0.4066 0.3786
Betweenness 0.1206 0.0923
Degree 0.1684 0.1441
Clustering 0.7113 0.6558

NOTE. The true network is gener-
ated using equations (26)-(27). The
DGP is described in detail in Section
8.5. The estimated network is de-
rived using the parameters’ estimates
at the last iteration of the MCMC.
See Newman [2010] for the definition
of network measures.
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Table 2: MAIN ESTIMATION RESULTS

Dependent variable: legislative effectiveness

ABC
Endogenous

network effects

ϕ 0.0263 ***
[1.0000]

α 0.7807 ***
[1.0000]

φ 0.0741 ***
[1.0000]

Party -0.0116 ***
[0.0000]

Gender -0.0020 ***
[0.0000]

Non white 0.0042 ***
[1.0000]

Seniority -0.0015 ***
[0.0000]

Seniorty2 0.0002 ***
[1.0000]

DW ideology -0.0268 ***
[0.0000]

Margin of victory 0.0319 ***
[1.0000]

Margin of victory2 -0.0319 ***
[0.0000]

Committee chair 0.1789 ***
[1.0000]

Powerful committee -0.0037 ***
[0.0000]

Delegation size -0.0001
[0.1240]

Leader 0.0040 ***
[1.0000]

State legislative experience -0.0058 ***
[0.0000]

State legislative experience * 0.0300 ***
State legislative professionalism [1.0000]

Congress fixed effects Yes

Partial F test [no network effects] 29.111
p-value 0.0000
N. Obs. 2,176

NOTE. Estimates of parameters in equation (11). The me-
dian of the posterior distribution estimated with the ABC al-
gorithm is reported for each coefficient. The empirical p-value
of zero on the estimated posterior is reported in brackets. A
precise definition of control variables can be found in Table
A.1. *, **, *** indicate statistical significance at the 10, 5
and 1 percent levels, based on empirical p-values.
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Table 3: ESTIMATION RESULTS - LINK FORMATION

Dependent variable: probability of forming a link

ABC ABC
Endogenous network effects Endogenous network effects

with unobservables
(1) (2)

Alumni network 0.9325 *** 0.9652 ***
[1.0000] [1.0000]

Constant -4.6279 *** -4.9112 ***
[0.0000] [0.0000]

Seniority 0.5206 *** 0.4297 ***
[1.0000] [1.0000]

Leader 0.0200 -0.0387 **
[0.7474] [0.0339]

Gender -0.6530 *** 0.1593
[0.0000] [0.8849]

Non white 1.1445 *** 1.5384 ***
[1.0000] [1.0000]

Party 4.2029 *** 3.7434 ***
[1.0000] [1.0000]

Unobservables -0.0127
[0.2209]

Congress fixed effects Yes Yes
N. Obs. 2,176 2,176

NOTE. Estimates of parameters in equation (13). The median of the posterior
distribution estimated with the ABC algorithm is reported for each coefficient.
The empirical p-value of zero on the estimated posterior is reported in brack-
ets. A precise definition of control variables can be found in Table A.1. *, **,
*** indicate statistical significance at the 10, 5 and 1 percent levels, based on
empirical p-values.
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Table 4: MAIN ESTIMATION RESULTS
-WITH AND WITHOUT NETWORK EFFECTS-

Dependent variable: Legislative Effectiveness

OLS ABC ABC
No network effects Network effects

(1) (2) (3)

ϕ - - 0.0263 ***
[1.0000]

α - - 0.7807 ***
[1.0000]

φ - - 0.0741 ***
[1.0000]

Party -0.0173 *** -0.0171 *** -0.0116 ***
[0.0000] [0.0000] [0.0000]

Gender 0.0013 0.0034 -0.0020 ***
[0.6338] [0.7575] [0.0000]

Non white -0.0026 -0.0002 0.0042 ***
[0.2830] [0.4855] [1.0000]

Seniority -0.0020 ** -0.0027 *** -0.0015 ***
[0.0190] [0.0000] [0.0000]

Seniorty2 0.0003 *** 0.0002 *** 0.0002 ***
[1.0000] [1.0000] [1.0000]

DW ideology -0.0208 *** -0.0302 *** -0.0268 ***
[0.0080] [0.0000] [0.0000]

Margin of victory 0.0383 ** 0.0409 *** 0.0319 ***
[0.9726] [1.0000] [1.0000]

Margin of victory2 -0.0259 * -0.0457 *** -0.0319 ***
[0.0875] [0.0000] [0.0000]

Committee chair 0.1822 *** 0.1790 *** 0.1789 ***
[1.0000] [1.0000] [1.0000]

Powerful committee -0.0090 *** -0.0041 -0.0037 ***
[0.0040] [0.1351] [0.0000]

Delegation size -0.0002 * -0.0002 ** -0.0001
[0.0601] [0.0440] [0.1240]

Leader 0.0082 0.0067 *** 0.0040 ***
[0.8930] [1.0000] [1.0000]

State legislative experience -0.0032 -0.0018 -0.0058 ***
[0.2661] [0.1255] [0.0000]

State legislative experience * 0.0248 ** 0.0344 *** 0.0300 ***
State legislative professionalism [0.9508] [1.0000] [1.0000]

Congress fixed effects Yes Yes Yes

Partial F test [no network effects] 29.111
p-value 0.0000
N. Obs. 2,176 2,176 2,176

NOTE. Estimates of parameters in equation (11). ABC estimated coefficients are re-
ported in columns (2)-(3). The median of the posterior distribution estimated with the
ABC algorithm is reported for each coefficient. The empirical p-value of zero on the
estimated posterior is reported in brackets. OLS estimated coefficients are reported in
column (1). For comparison the p-value of zero on a normal distribution with mean
equal to the OLS point estimate and variance equal to the estimated variance of each
coefficient is reported in brackets. A precise definition of control variables can be found
in Table A.1. *, **, *** indicate statistical significance at the 10, 5 and 1 percent levels,
based on empirical p-values.
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Figures

Figure 3: CIRCULAR NETWORK ESTIMATION
- GOODNESS OF FIT -

(a) Estimated

(b) True

NOTE. Panel (a) and (b) represent the estimated and true network respectively. The true network is generated using
equations (26)-(27). The connections are generated from a circular network, as defined in Section 4.3.1. The DGP is
described in detail in Section 8.5. The estimated network is derived using the parameter estimates at the last iteration of
the MCMC. The first of c̄ = 5 networks is visually represented using the force-directed layout algorithm with five iterations.
The algorithm uses attractive forces between adjacent nodes and repulsive forces between distant nodes in the network. See
Fruchterman and Reingold [1991] for more details. The size of the nodes is proportional to their degree. Three random
nodes are drawn and highlighted with circles.
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Figure 4: NODE-LEVEL STATISTICS
- ESTIMATED VS TRUE CIRCULAR NETWORK -

(a) Betweenness (b) Eigenvalue

(c) Closeness (d) Clustering

(e) Indegree (f) Outdegree

NOTE. X-axis: estimated value of node-level statistic. Y-axis: true value of node-level statistic. The true network is
generated using equations (26)-(27) and data from the alumni network. The connections are generated from a circular
network, as defined in Section 4.3.1. The DGP is described in detail in Section 8.5. The estimated network is derived using
the parameter estimates at the last iteration of the MCMC. The first of c̄ = 5 networks is considered. See Newman [2010]
for the definition of network measures.
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Figure 7: GOODNESS OF FIT

NOTE. Receiver Operating Characteristic (ROC) curve. The ROC curve is a plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. Y-axis: the true positive rate (TPR) at various thresholds.
X-axis: the false positive rate (FPR) at various thresholds. For each threshold, the ROC curve reveals two ratios, the true
positive rate TP/(TP + FN) and the false positive rate FP/(FP + TN), where TP is the number of true positives, FP
is the number of false positives, TN is the the number of true negatives, and FN is the number of false negatives. The
estimated network is derived using the parameter estimates at the last iteration of the MCMC. The first of c̄ = 5 networks
is represented.
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Figure 8: ESTIMATION BIAS FOR DIFFERENT NUMBERS OF REPEATED
OBSERVATIONS OF VECTOR E - PARAMETERS

(a) ϕ (b) φ

(c) α (d) β

NOTE. X-axis: number of repeated observations of vector E. Y-axis: distribution of the differences between estimated and
true values in the MCMC after a burning period of 10,000 iterations. The estimated values are taken from the posterior
distribution. The true values are fixed and generated using equations (26)-(27). The connections are generated from a
circular network, as defined in Section 4.3.1. The DGP is described in detail in Section 8.5. The bottom and top edges of
the boxes indicate the 25th and 75th percentiles of the distribution, respectively, and the central red mark indicates the
median. The whiskers extend to the most extreme data points within 1.5 times the interquartile range. Values more than
1.5 times the interquartile range away from the top or bottom of the box (outliers) are plotted individually using the ‘+’
symbol.
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Figure 9: ESTIMATION BIAS FOR DIFFERENT NUMBERS OF REPEATED
OBSERVATIONS OF VECTOR E - NODE-LEVEL STATISTICS

(a) Indegree (b) Outdegree

(c) Betweenness (d) Closeness

(e) Eigenvector (f) Clustering

NOTE. X-axis: number of repeated observations of vector E. Y-axis: distribution of the differences between estimated and
true values. See Newman [2010] for the definition of network measures. The true network is generated using equations
(26)-(27). The connections are generated from a circular network, as defined in Section 4.3.1. The DGP is described in
detail in Section 8.5. The estimated network is derived using the parameter estimates at the last iteration of the MCMC.
Eigenvector centrality is not reported for the 25 nodes sample because the adjacency matrix has degenerate eigenvalues (i.e.
with multiplicity greater than one). The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the
distribution, respectively, and the central red mark indicates the median. The whiskers extend to the most extreme data
points within 1.5 times the interquartile range. Values more than 1.5 times the interquartile range away from the top or
bottom of the box (outliers) are plotted individually using the ‘+’ symbol.
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Figure 10: ESTIMATION BIAS FOR DIFFERENT NETWORK DENSITIES
- PARAMETERS -

(a) ϕ (b) φ

(c) α (d) β

NOTE. X-axis: network density is the maximum number of possible connections with other nodes (z̄). Y-axis: distribution
of the differences between estimated and true values in the MCMC after a burning period of 10,000 iterations. The estimated
values are taken from the posterior distribution. The true values are fixed and generated using equations (26)-(27). The
connections are generated from a circular network, as defined in Section 4.3.1. The DGP is described in detail in Section
8.5. The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the distribution, respectively, and
the central red mark indicates the median. The whiskers extend to the most extreme data points within 1.5 times the
interquartile range. Values more than 1.5 times the interquartile range away from the top or bottom of the box (outliers)
are plotted individually using the ‘+’ symbol.
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Figure 11: ESTIMATION BIAS FOR DIFFERENT NETWORK DENSITIES
- NODE-LEVEL STATISTICS -

(a) Indegree (b) Outdegree

(c) Betweenness (d) Closeness

(e) Eigenvector (f) Clustering

NOTE. X-axis: network density is the maximum number of possible connections with other nodes (z̄). Y-axis: distribution
of the differences between estimated and true values. See Newman [2010] for the definition of network measures. The true
network is generated using equations (26)-(27). The connections are generated from a circular network, as defined in Section
4.3.1. The DGP is described in detail in Section 8.5. The estimated network is derived using the parameter estimates at the
last iteration of the MCMC. Eigenvector centrality is not reported for the 25 nodes sample because the adjacency matrix has
degenerate eigenvalues (i.e. with multiplicity greater than one). The bottom and top edges of the boxes indicate the 25th
and 75th percentiles of the distribution, respectively, and the central red mark indicates the median. The whiskers extend
to the most extreme data points within 1.5 times the interquartile range. Values more than 1.5 times the interquartile range
away from the top or bottom of the box (outliers) are plotted individually using the ‘+’ symbol.
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Figure 12: ESTIMATION BIAS FOR DIFFERENT φ
- PARAMETERS -

(a) ϕ (b) φ

(c) α (d) β

NOTE. X-axis: φ. Y-axis: distribution of the differences between estimated and true values in the MCMC after a burning
period of 10,000 iterations. The estimated values are taken from the posterior distribution. The true values are fixed and
generated using equations (26)-(27). The connections are generated from a circular network, as defined in Section 4.3.1.
The DGP is described in detail in Section 8.5. The bottom and top edges of the boxes indicate the 25th and 75th percentiles
of the distribution, respectively, and the central red mark indicates the median. The whiskers extend to the most extreme
data points within 1.5 times the interquartile range. Values more than 1.5 times the interquartile range away from the top
or bottom of the box (outliers) are plotted individually using the ‘+’ symbol.
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Figure 13: ESTIMATION BIAS FOR DIFFERENT φ
- NODE-LEVEL STATISTICS -

(a) Indegree (b) Outdegree

(c) Betweenness (d) Closeness

(e) Eigenvector (f) Clustering

NOTE. X-axis: φ. Y-axis: distribution of the differences between estimated and true values. See Newman [2010] for the
definition of network measures. The true network is generated using equations (26)-(27). The connections are generated
from a circular network, as defined in Section 4.3.1. The DGP is described in detail in Section 8.5. The estimated network
is derived using the parameter estimates at the last iteration of the MCMC. Eigenvector centrality is not reported for the
25 nodes sample because the adjacency matrix has degenerate eigenvalues (i.e. with multiplicity greater than one). The
bottom and top edges of the boxes indicate the 25th and 75th percentiles of the distribution, respectively, and the central
red mark indicates the median. The whiskers extend to the most extreme data points within 1.5 times the interquartile
range. Values more than 1.5 times the interquartile range away from the top or bottom of the box (outliers) are plotted
individually using the ‘+’ symbol.
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Figure 14: ESTIMATED VS TRUE NETWORKS - DIFFERENT TOPOLOGIES -

(a) High density (z̄ = 100) (b) Medium density (z̄ = 20)

(c) High φ = 4 (d) Low density (z̄ = 8) and reverse circle

(e) Alumni network

NOTE. Adjacency matrices of true versus estimated networks (with blue dots) and their difference (with red dots).
The true network is generated using equations (26)-(27) The DGP is described in detail in Section 8.5. The estimated network
is derived using the parameter estimates at the last iteration of the MCMC. The first of c̄ = 5 networks is represented.
The true networks in panels (a), (b), and (c) are generated with circular connections, as described in Section 4.3.1. The
reverse linking network (in panel (d)) is obtained by reverting the algorithm described in Section 4.3.1, i.e. selecting links
for i starting from i - 1 to i + 1 (i excluded) with a pace of -1. In the alumni network (panel (e)), the connections of 200
politicians from the 111th Congress extracted at random are considered. The 111th Congress is randomly selected.
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Figure 15: ESTIMATED NETWORK

(a) Party (b) Connections’ strength

(c) Effectiveness (d) Degree vs effectiveness

NOTE. The estimated network is derived using the parameter estimates at the last iteration of the MCMC for the 111th
Congress. In panel (a) the color represents the party of the politician. Pink nodes are Republicans. In panel (b) the color
of links is proportional to gij , the strenght of the connection between the two politicians. In panel (c) the color of each
node is proportional to effectiveness, more pink nodes are more effective politicians. In panel (d) each point is a politician.
The x-axis represents the (log) degree, the y-axis represents the (log) effectiveness. The estimated network is represented
with force-directed layout with five iterations. It uses attractive forces between adjacent nodes and repulsive forces between
distant nodes. For better visualization, the size of the nodes is equal to the (log) of their degree plus 2.
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A.1 Appendix Tables and Figures

Table A.1: SUMMARY STATISTICS

Variable name Variable definition Mean St. Dev

Party Dummy variable taking value of one if the Congress member is a Democrat. 0.5060 0.5019
Gender Dummy variable taking value of one if the Congress member is female. 0.1723 0.3778

Non white
Dummy variable taking value of one if the member of Congress is African-
American or Hispanic, and zero otherwise.

0.1388 0.3458

Seniority Maximum consecutive years in Congress. 5.7863 4.4388
Seniorty2 Maximum consecutive years in Congress, squared. 53.1751 80.3864

DW ideology
Distance to the center in terms of ideology measured using the absolute
value of the first dimension of the DW-nominate score created by McCarty
et al. [1997].

0.5004 0.2236

Margin of victory Margin of victory in the last election. 0.3526 0.2488
Margin of victory2 Margin of victory in the last election, squared. 0.1862 0.2494

Committee chair Dummy variable taking value of one if the Congress member is a Chair of
at least one committee.

0.0455 0.2084

Powerful committee
Dummy variable taking value of one if the Congress member is a member
of a powerful committee (Appropriations, Budget, Rules and Ways and
Means).

0.2544 0.6355

Delegation size Number of seats assigned to Congress members state. 19.0988 15.4628

Leader
Dummy variable taking value of one if the member of Congress is a member
of the party leadership, as reported by the Almanac of American Politics.

0.0496 0.2172

State legislative experience
Dummy variable taking value of one if the member of Congress served as
a state legislator.

0.6260 0.6946

State legislative professionalism States level of professionalism [Squire, 1992]. 0.1210 0.1779

N. Obs. 2,176

Source: Legislative Effectiveness Project (http://www.thelawmakers.org), Volden and Wiseman [2014].
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Figure A.1: NETWORK ESTIMATION - GOODNESS OF FIT

(a) Real network

(b) Circular network

NOTE. Receiver Operating Characteristic (ROC) curve. The ROC curve is a plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. Y-axis: the true positive rate (TPR) at various thresholds.
X-axis: the false positive rate (FPR) at various thresholds. For each threshold, the ROC curve reveals two ratios, the true
positive rate TP/(TP + FN) and the false positive rate FP/(FP + TN), where TP is the number of true positives, FP
is the number of false positives, TN is the the number of true negatives and FN is the number of false negatives. The
estimated network is derived using the parameter estimates at the last iteration of the MCMC. The first of c̄ = 5 networks
is represented.
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Table A.2: ESTIMATION RESULTS WITH UNOBSERVABLES

Dependent variable: Legislative Effectiveness

ABC ABC
Endogenous network effects Endogenous network effects

with unobservables
(1) (2)

ϕ 0.0263 *** 0.1237 ***
[1.0000] [1.0000]

α 0.7807 *** 0.4576 ***
[1.0000] [1.0000]

φ 0.0741 *** 0.0231 ***
[1.0000] [1.0000]

Party -0.0116 *** -0.0086 ***
[0.0000] [0.0000]

Gender -0.0020 *** 0.0035 ***
[0.0000] [1.0000]

Non White 0.0042 *** 0.0038 ***
[1.0000] [1.0000]

Seniority -0.0015 *** -0.0012 ***
[0.0000] [0.0000]

Seniorty2 0.0002 *** 0.0002 ***
[1.0000] [1.0000]

DW ideology -0.0268 *** -0.0293 ***
[0.0000] [0.0000]

Margin 0.0319 *** 0.0402 ***
[1.0000] [1.0000]

Margin2 -0.0319 *** -0.0304 ***
[0.0000] [0.0000]

Committee Chair 0.1789 *** 0.1809 ***
[1.0000] [1.0000]

Powerful Committee -0.0037 *** -0.0053 ***
[0.0000] [0.0000]

Delegation size -0.0001 -0.0001 **
[0.1240] [0.0160]

Leader 0.0040 *** 0.0111 ***
[1.0000] [1.0000]

State Legislative Experience -0.0058 *** -0.0027 ***
[0.0000] [0.0000]

State Legislative Experience * 0.0300 *** 0.0304 ***
State Legislative Professionalism [1.0000] [1.0000]

µ1 - -0.0012 ***
[0.0000]

µ2 - 0.0002 ***
[1.0000]

µ3 - -0.0027 ***
[0.0000]

µ4 - 0.0304 ***
[1.0000]

µ5 0.0111 ***
[1.0000]

Congress fixed effects Yes Yes
N. Obs. 2,176 2,176

NOTE. Estimates of parameters in equation (11). The median of the posterior distribution
estimated with the ABC algorithm is reported for each coefficient. The empirical p-value of
zero on the estimated posterior is reported in brackets. A precise definition of control variables
can be found in Table A.1. *, **, *** indicate statistical significance at the 10, 5 and 1 percent
levels, based on empirical p-values. Each parameter µ corresponds to the relative power of ε as
η is generated with ηi,r =

∑5
l=1 µlε

l
i,r.
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Figure A.2: ESTIMATED POSTERIOR DISTRIBUTIONS
- CONTROL VARIABLES -

NOTE. X-axis: parameter value, Y-axis: kernel density. The solid line represents the posterior, the dashed line the prior.
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Figure A.3: ESTIMATED POSTERIOR DISTRIBUTIONS
- TARGET VARIABLES -

(a) ϕ (b) φ (c) ρ

NOTE. X-axis: parameter value, Y-axis: kernel density. The solid line represents the posterior, the dashed line the prior.
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Figure A.4: ESTIMATED POSTERIOR DISTRIBUTIONS
- LINK FORMATION -

NOTE. X-axis: parameter value, Y-axis: kernel density. The solid line represents the posterior, the dashed line the prior.
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Figure A.5: DISTANCE BETWEEN SIMULATED AND REAL DATA AT EACH ITERATION

NOTE. X-axis: MCMC iteration, Y-axis: distance value at each iteration.

Figure A.6: ACCEPTANCE RATE AT EACH ITERATION

NOTE. X-axis: MCMC iteration, Y-axis: frequency of acceptance: moving from ω to ω′.
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A.2 A Comparison between the Estimated and Observed Networks

Here we present a comparison of the estimated network with other known and observable structures

of interactions among politicians used in the literature to approximate political interconnectedness.

Table A.3 reports some network-level statistics computed for the estimated network G and the

cosponsorship, the committee, and the alumni networks. It appears that the density in our esti-

mated network is lower than the density of the cosponsorship and committee networks and higher

than that of the alumni network, which are known for being too dense and too sparse, respectively.57

The estimated network has closeness, clustering, and betweenness close to the cosponsorship net-

work. The degree is more similar to the alumni network, while the assortativity is closer to the

committee network. The level of assortativity, however, is significantly higher than in the other

networks, suggesting a better ability to capture the fact that highly connected politicians are more

likely to be connected among themselves. Clustering is also significantly higher than the other

networks, plausibly better capturing the important role of political cliques. Betweenness and de-

gree are significantly lower than the other networks, reflecting an estimated lower level of political

intermediation and social connections.

To further analyze how different is the estimated network from the actual ones, we report

the densities of degree, closeness, clustering, and eigenvector centralities in Figure A.7-A.9 for the

different networks. Interestingly, the density of the eigenvector centralities shows that our estimated

network presents a marked bimodal distribution, which reveals the ability of our methodology to

discriminate between more central and less central players. On the contrary, the seemingly normal

distribution of centralities for the cosponsorship network seems compatible with a higher degree of

randomness in the data generating process. The density of the closeness centrality of the estimated

network is similar to the cosponsorship and committee networks, while it is concentrated on higher

values than the one for the alumni network, reflecting the excessive sparseness of the connections in

the alumni network. In terms of clustering and degree, the estimated network presents a smoother

distribution than other networks, specifically with a higher number of nodes showing higher values

of clustering and with more links than the alumni network.

Table A.4 more formally compares the estimated network with the cosponsorship, committee,

and alumni networks. The table reports the mean across nodes for each network statistic, the T-

statistics for equality of means, and its associated p-value. It also reports the Kolmogorov-Smirnov

test statistic for the equality of the probability distributions. The results show that, while we cannot

57A common complaint with the cosponsorship network is that cosponsorships are affected by many factors that do
not necessarily reflect social closeness between legislators. On the contrary, the alumni network uses only a limited
source of information to draw social connections. See Battaglini and Patacchini [2019] for a discussion and survey of
the literature.
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reject the hypothesis that the mean values of the centrality measures are the same in the estimated

and actual networks in many cases, when looking at their distributions the Kolmogorov-Smirnov

statistic always rejects the hypothesis that the empirical distribution of the centrality measure from

our estimated network comes from the same distribution of any of the popular networks considered.
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Table A.3: COMPARISON WITH OTHER NETWORKS
- NETWORK-LEVEL STATISTICS -

NETWORKS

ESTIMATED COSPONSORSHIP COMMITTEE ALUMNI
(1) (2) (3) (4)

Density 0.0809 0.1069 0.2109 0.0036
Assortativity 66.4410 20.3642 47.4155 7.5099
Diameter Inf Inf Inf Inf
Average distance Inf Inf Inf Inf
Closeness 0.1403 0.1533 0.5768 0.0216
Betweenness 0.0001 0.0004 0.0694 0.0255
Degree 0.0304 0.0904 0.2262 0.0400
Clustering 0.7163 0.6561 0.6150 0.5410

NOTE. The direct networks (cosponsorship and estimated) are transformed to indirect
unweighted networks to have a clean comparison with the others. Given the direct
network D = {dij}, its indirect unweighted counterpart is U = {uij}, where uij = 1
if dij or dji is different from zero, and zero otherwise. The network statistics are
compared on a pooled network of five Congresses. See Newman [2010] for the definition
of network statistics. The alumni network is defined in Section 4.1. See Battaglini and
Patacchini [2019] for a description of the cosponsorship network. The ijth element of
the committee network entry is equal to the number of Congressional committees in
which both i and j sit.
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Table A.4: NETWORK DIFFERENCES - STATISTICAL TESTS

Estimated Mean T stat p-value Kolmogorov p-value
Mean Smirnov

Cosponsorship
Indegree 118.1162 153.8747 -0.3919 0.6523 0.4465 0.0000
Clustering 0.7036 0.6816 0.2282 0.4098 0.2323 0.0000
Betweenness 0.0017 0.0015 0.1155 0.4540 0.2847 0.0000
Closeness 0.6220 0.6705 -0.4032 0.6565 0.4784 0.0000
Bonacich 0.0401 0.0458 -0.1827 0.5725 0.4305 0.0000

Committee
Indegree 172.4920 92.3554 1.9085 0.0285 0.8109 0.0000
Clustering 0.7036 0.7115 -0.0376 0.5150 0.3781 0.0000
Betweenness 0.0017 0.0021 -0.1002 0.5399 0.3622 0.0000
Closeness 0.6969 0.5768 1.5566 0.0601 0.8360 0.0000
Bonacich 0.0401 0.0393 0.0226 0.4910 0.2642 0.0000

Alumni
Indegree 172.4920 1.5626 6.2572 0.0000 1.0000 0.0000
Clustering 0.7036 0.1575 1.6721 0.0476 0.8588 0.0000
Betweenness 0.0017 0.0009 0.2264 0.4105 0.8018 0.0000
Closeness 0.6969 0.0216 14.3031 0.0000 1.0000 0.0000
Bonacich 0.0401 0.0109 0.5195 0.3018 0.9089 0.0000

NOTE. Node-level statistics are considered. See Newman [2010] for the definition of
network statistics. The first four columns test differences in means, the last two columns
test the difference between the two distributions. The alumni network is defined in
Section 4.1. Cosponsorship activity is measured by directional links equal to one if j has
cosponsored at least one bill proposed by i and zero otherwise. The ijth element of the
Committee network entry is equal to the number of Congressional committees in which
both i and j sit. The direct networks (cosponsorship and estimated) are transformed
to indirect unweighted networks to have a clean comparison with the others. Given
the direct network D = {dij}, its indirect unweighted counterpart is U = {uij}, where
uij = 1 if dij or dji is different from zero, and zero otherwise.
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Figure A.7: ESTIMATED VS COSPONSORSHIP NETWORK
- DENSITIES OF NODE-LEVEL STATISTICS -

(a) Eigenvector (b) Closeness (c) Clustering (d) Degree

Figure A.8: ESTIMATED VS COMMITTEE NETWORKS
- DENSITIES OF NODE-LEVEL STATISTICS -

(a) Eigenvector (b) Closeness (c) Clustering (d) Degree

Figure A.9: ESTIMATED VS ALUMNI NETWORKS
- DENSITIES OF NODE-LEVEL STATISTICS -

(a) Eigenvector (b) Closeness (c) Clustering (d) Degree

NOTE. Kernel density estimate of node-level network measures. For each measure, the estimated network (in black) is
compared with the observed network (in red). See Newman [2010] for the definition of each measure. The estimated
network is derived using the parameter estimates at the last iteration of the MCMC for the 111th Congress. The alumni
network is defined in Section 4.1. The ijth element of the committee network entry is equal to the number of congressional
committees in which both i and j sit. Cosponsorship activity is measured by directional links equal to one if j has cosponsored
at least one bill proposed by i and zero otherwise. The direct networks (cosponsorship and estimated) are transformed to
indirect unweighted networks to have a clean comparison with the others. Given the direct network D = {dij}, its indirect
unweighted counterpart is U = {uij}, where uij = 1 if dij or dji is different from zero, and zero otherwise.

12


	Introduction
	Model
	Equilibrium analysis
	Network competitive equilibrium
	The choice of effort at t=2
	The formation of the network at t=1

	Estimation
	Model specification
	Approximate Bayesian Computation (ABC)
	Monte Carlo Simulations
	Two benchmarks
	Sensitivity Analysis


	Evidence from the U.S. Congress
	Data description
	Empirical Findings

	Discussions and extensions
	Two sided links
	Alternative functional forms
	Negative spillovers
	Unobserved Factors

	Conclusions
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of the result in Example 2
	Proof of Proposition 3
	Setup of the Simulations in Section 4.3
	Approximate Bayesian Computation
	Appendix Tables and Figures
	A Comparison between the Estimated and Observed Networks




