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1 Introduction

In multi-settlement markets, participants buy or sell delivery of a commodity at a pre-

specified future date in a forward market with the opportunity to close out that position

in a subsequent forward market or in the spot market. Each time the market for this

commodity and delivery date combination clears, settlement occurs, meaning that pur-

chases and sales of this product are made at a price that reflects the information available

to market participants at that time. Many commodities have multiple forward market

settlements before delivery ultimately takes place. For example, an airline might pur-

chase jet fuel for delivery on a pre-specified date in the future. It could close out this

position by selling it in any subsequent forward market before the delivery date or by

taking delivery of the jet fuel and selling it in the spot market.

Forward markets provide both producers and consumers of a product with future

price certainty. This increased future spot price certainty can improve the efficiency of

the spot market for a commodity. Specifically, forward prices that are accurate estimates

of future spot prices provide valuable information to investors in productive capacity to

supply this commodity or investors in productive capacity that consumes this commodity.

For example, a potential investor in an oil refinery can use forward prices for gasoline

and oil to obtain a more accurate estimate of whether an investment in a facility that

comes on line in two years and produces for 20 years would be profitable.

Liquid forward markets for a commodity thus have the potential to improve both

future spot price transparency and overall market efficiency. However, many commodity

markets have a small number of physical participants. Consequently, purely financial

market participants that neither produce nor consume the commodity, but simply take

financial positions in forward markets, can increase market liquidity. This logic im-

plies that allowing purely financial participants to trade in multi-settlement commodity

markets has the potential to improve both future spot price transparency and real-time

market performance.

This paper uses the introduction of purely financial participants into California’s

wholesale electricity market to examine the validity of this logic. Electricity markets

are an ideal setting for this investigation. First, wholesale electricity markets are multi-

settlement: exactly the same product—electrical energy delivered to a specific location at
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a specific hour of the day—is bought and sold using the same market-clearing mechanism

in both the day-ahead and real-time markets. Second, participants are required to post

significant collateral with the market operator and pay non-trivial transaction costs in

order to trade in these markets. This can limit the number of market participants and

baseline level of liquidity in the forward market. Moreover, it is extremely costly to

store electrical energy and the time lag between buying/selling electricity in the day-

ahead market and subsequent sale/purchase in the real-time market is less than one day.

Relative to other commodities, this greatly limits the extent to which day-ahead/real-

time electricity price differences are due to either a hedging motive or inter-temporal

discounting.

Finally, the market efficiency benefits from a more liquid forward market for grain,

gold, oil, jet fuel or other commodities are likely to be realized in a multi-year time frame.

In contrast, introducing purely financial participants in multi-settlement (day-ahead/real-

time) electricity markets has the potential to quickly reduce the cost of serving real-time

demand. This is because market/system operators are required to take the offers sub-

mitted by generation unit owners and dispatch of hundreds of electricity generation units

to meet real-time demand at thousands of locations in a transmission network. In doing

this, system operators are faced with a multitude of different operating constraints such

as transmission network capacity constraints as well as generation unit start-up, ramp-

ing, and minimum runtime constraints. Computing the market-clearing configuration of

generation unit output levels given the offers submitted by market participants requires

solving an extremely complex mixed-integer programming problem. Allowing purely fi-

nancial participants to supply or demand virtual energy in the day-ahead market could

help system operators find better solutions to this optimization problem and thereby

reduce the total cost of serving demand, particularly during high demand hours when

transmission, generation unit-level, and other system operating constraints are likely to

be most relevant.

This paper has two parts. First, we develop a statistical test of arbitrage between

forward and spot markets and apply this test to data from California’s wholesale elec-

tricity market. The canonical principle of no arbitrage implies that the forward price of

a commodity at time t for delivery at time t + k (P f
t,t+k) is equal to the expected value

of the spot price for the same commodity at time t + k (P s
t+k) conditional on the infor-
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mation available to market participants at time t (i.e.: P f
t,t+k = Et[P

s
t+k]). Otherwise,

risk-neutral arbitrageurs can earn expected profits. Deviations from the no arbitrage con-

dition that P f
t,t+k = Et[P

s
t+k] are typically attributed either to risk preferences or market

inefficiencies (Pindyck (2001); Kilian and Lee (2014); Kilian and Murphy (2014); Knittel

and Pindyck (2016)). Less explored are the substantial costs associated with trading

in many commodity markets (Williams (1987); Hirshleifer (1988); Frazzini, Israel and

Moskowitz (2018); Dávila and Parlatore (2019)). Our statistical framework accounts for

the non-trivial costs of trading in wholesale electricity markets and a number of other

commodity markets.

Our statistical framework is based on a financial trader with access to 24 assets cor-

responding to the day-ahead/real-time price spreads for each hour of the day.1 This

financial participant maximizes expected profits by buying or selling the asset corre-

sponding to the hour of the day with the largest average price spread in absolute value.

However, the maximum operator is not differentiable, so standard asymptotic methods

such as the Delta Method do not apply. We instead use the directional derivative method

formulated by Fang and Santos (2018) in order to test two separate null hypotheses for

a given value of per-unit trading costs c: (1) that the maximum absolute price spread

is greater than c (i.e.: the null hypothesis that profitable arbitrage opportunities exist),

and (2) that the maximum absolute price spread is less than c (i.e.: the null hypothesis

that no profitable arbitrage opportunities exist).

These statistical tests are applied to hourly, location-specific data on day-ahead and

real-time prices from California’s wholesale electricity market from 4/1/2009-12/31/2012.

We find that the trading costs required to reject the null hypothesis that arbitrage oppor-

tunities exist fell substantially after California introduced purely financial participation

in its market on February 1, 2011.2 Moreover, prior to the introduction of purely finan-

cial participation, electricity suppliers could arbitrage day-ahead/real-time price spreads

only at locations where they owned generation units by adjusting the day-ahead and real-

time offer curves of their generation units. There was no way for market participants to

1This formulation is consistent with market rules; trading in wholesale electricity markets occurs daily
rather than hourly, with participants simultaneously having the opportunity to take financial positions
corresponding to the day-ahead/real-time price spreads at each location in the transmission network in
each of the 24 hours of the following day.

2Consistent with our empirical results, a simulation study by Li, Svoboda and Oren (2015) finds that
the revenues generated by implementing their optimal trading strategy decrease significantly after the
introduction of purely financial participants in California.

3



arbitrage day-ahead/real-time price spreads at individual demand withdrawal locations

in the transmission network. Consistent with this intuition, we find that the reduction in

implied trading costs due to the introduction of purely financial participants is larger for

demand withdrawal locations relative to locations with generation units. Moreover, the

average values of the implied trading costs are not statistically different for generation

and load-withdrawal nodes after the introduction of purely financial participation.

The second component of our paper is to quantify the physical efficiency gains from

the introduction of purely financial participants. As noted earlier, the market efficiency

gains from introducing purely financial participants are likely to be largest during high

demand hours when transmission and other operating constraints are increasingly rel-

evant. We therefore employ a difference-in-differences estimator that compares market

performance measures such as the hourly variable cost of thermal generation and the

hourly input fossil-fuel burned by thermal generation units in high demand versus low

demand hours before versus after the introduction purely financial participants.

Our results indicate that, in hours with a system demand greater than the 90th

percentile of the distribution of demand, the introduction of financial trading resulted

in a 3.6% (4.2%) decrease in fuel costs (thermal input energy consumed) per MWh of

electricity produced from fossil-fuel fired sources. The implied annual fuel cost savings

and environmental benefits from financial trading in high demand hours are roughly 4.2

million dollars and 145,000 tons of CO2, respectively. Finally, our results indicate that

there is no discernible increase after the introduction of purely financial participants in

either the number of high demand hours that at least one fossil-fuel unit was required

to start up or the ancillary services costs associated with maintaining real-time supply

and demand balance. These results are inconsistent with the argument that allowing

purely financial participants places undue stress on the physical constraints inherent to

electricity production and distribution.

Combined, our results suggest that both the physical efficiency gains from allowing

purely financial trading as well as the costs of financial trading vary across both time

and space. Market operators can thus potentially increase the market efficiency benefits

from allowing purely financial participation by setting different transaction fees for dif-

ferent locations and hours. In particular, our estimates suggest that a 5 cents per MWh

reduction in implied trading costs in high demand hours could result in fuel cost savings
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ranging from 1-2 cents per MWh.

Our results contribute to the ongoing policy debate surrounding the controversial

role played by financial traders in commodity markets. Specifically, many argue that

financial traders earn revenues primarily at the expense of suppliers and consumers of

the commodity.3 Particularly for wholesale electricity, some have argued that financial

participants submit bids intended to profit from the physical constraints inherent to elec-

tricity provision, either by taking advantage of rules pertaining to starting up or ramping

power plants (Parsons et al., 2015) or by inducing transmission congestion (Birge et al.,

2013). On the other hand, previous work documents a substantial day-ahead/real-time

price premium in electricity markets without financial participation, due either to mar-

ket power exercised by suppliers (Ito and Reguant, 2016) or risk preferences (Routledge,

Spatt and Seppi (2001); Bessembinder and Lemmon (2002); Longstaff and Wang (2004);

Bessembinder and Lemmon (2006)). The introduction of financial participants in whole-

sale electricity markets has also been linked to decreases in the exercise of unilateral

market power (Saravia (2003); Mercadal (2018)), decreases in the volatility of electric-

ity prices (Hadsell (2007)) and grid reliability benefits (Isemonger (2006)). Our results

provides empirical evidence from a large wholesale electricity market that financial par-

ticipants can improve price transparency and market efficiency without putting unduly

stress on the physical constraints inherent to electricity production and transmission.

The remainder of the paper proceeds as follows. The next section describes how

California and other U.S. wholesale electricity markets operate both before and after

the introduction of purely financial participants. Section 3 presents several examples of

how purely financial participants can reduce the cost of serving demand. We derive our

statistical tests of arbitrage and no arbitrage opportunities that accounts for transaction

costs in Section 4. The empirical results from applying this framework to California’s

wholesale electricity market are presented in Section 5. Section 6 presents our empir-

ical framework and findings pertaining to quantifying the market efficiency benefits of

introducing purely financial participants. Finally, we conclude in Section 7 by discussing

how our findings can inform the difficult problem of setting transaction fees in order to

maximize market efficiency.

3See “Traders Profit as Power Grid Is Overworked,” New York Times, August 14, 2014 for the case
of wholesale electricity markets. See “U.S. Suit Sees Manipulation of Oil Trades,” New York Times,
May 24, 2011 for the case of oil. See “Did Goldman Sachs Rig Commodities Markets?” CNN Business,
November 20, 2014 for the case of aluminum.
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2 Wholesale Electricity Market Operations With

Versus Without Financial Trading

In this section, we first describe how day-ahead and real-time markets operated in Cal-

ifornia and other U.S. wholesale electricity markets prior to the introduction of purely

financial participants through explicit virtual bidding. The next subsection describes

explicit virtual bidding (EVB), the mechanism by which purely financial participants

and other market participants can arbitrage day-ahead/real-time price differences. This

subsection also discusses how virtual bidding impacts day-ahead and real-time system

operation and the different transaction costs faced by purely financial participants. The

final subsection describes implicit virtual bidding (IVB), the only mechanism available

for market participants to arbitrage day-ahead/real-time price differences before the in-

troduction of EVB. This subsection compares IVB to EVB in order to clarify the mech-

anisms by which purely financial market participants can reduce the mean and variance

of day-ahead/real-time price spreads and the variance of real-time prices relative to IVB

as well as why the impact of introducing purely financial participants should be different

for generation unit locations versus demand withdrawal locations.

2.1 Locational Marginal Pricing in Multi-Settlement Markets

In most markets, products are shipped directly from seller to buyer. Wholesale elec-

tricity markets work differently. In these markets, generators inject electricity into the

transmission network and this electricity flows according to Kirchhoff’s laws.4 Thus,

commitments between buyers and sellers of electricity constitute a financial rather than

physical arrangement: the buyer does not withdraw the actual energy injected into the

transmission grid by the seller. The only things that can be measured are the amount

of energy injected by a generation unit and the amount of energy withdrawn by a load-

serving entity.5

4Schweppe et al. (2013) provides an accessible discussion of Kirchhoff’s laws governing current flows
through an electrical circuit.

5As discussed in Schweppe et al. (2013), Where the energy injected by a generation unit goes in the
transmission network and where the electricity withdrawn comes from depends on the level of demand at
all locations in the transmission network, the output levels of all of the generation units, the configuration
of the transmission network, as well as a number of other technical operating conditions.
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All electricity supply industries have transmission networks with finite transfer ca-

pacity between locations in the grid. This can often prevent the system operator from

accepting energy from low-cost generation units located distant from a load withdrawal

point and instead accepting energy from higher cost generation units that can meet this

demand. Specifically, transmission congestion limits the amount of low-cost energy that

can injected at a location on the transmission network to be transported and withdrawn

elsewhere on the grid. It has proven extremely difficult for system operators in the United

States (US) to predict which specific transmission links will be congested. As a result,

all wholesale markets in the US have adopted dispatch and pricing mechanisms that set

potentially different prices at all points of injection and withdrawal on the transmission

network.

A dispatch and pricing mechanism called nodal pricing or locational marginal pric-

ing (LMP) sets spatial prices that reflect all relevant transmission network constraints,

transmission losses, generation unit start-up and ramping constraints, and other rele-

vant operating constraints on the transmission network. All formal wholesale markets

operating in the United States use variants of the LMP algorithm described by Bohn,

Caramanis and Schweppe (1984). To compute locational marginal prices in the day-

ahead market, suppliers submit 24 hourly generation unit-level offer curves by 10AM of

day t and electricity retailers and other load-serving entities submit locational demand

curves, typically at a significantly higher level of spatial aggregation than the nodal level.

These offer curves have two parts: a start-up cost offer and an energy supply curve.

The start-up cost offer in the day-ahead market is a fixed dollar payment that must be

paid to the generation unit owner if the unit is not generating electricity at the start of

day t + 1 but is accepted to produce a positive output at some point during that day.

The energy offer curve for hour h indicates how much electricity the supplier is willing to

provide from the unit in hour h of day t+1 as a function of the market-clearing day-ahead

price at the unit’s location. This energy offer curve is a non-decreasing step function,

where each offer price-quantity step determines the minimum price the generation unit

owner must be paid in order to produce the quantity associated with that step.6 The

sum of the quantity increments for each energy offer curve is restricted to be less than

the capacity of the generation unit.

6In California, generation unit-level offer curves are permitted to have up to ten price-quantity pairs.

7



Load-serving entities (i.e.: demanders of electricity) similarly submit location-specific

willingness-to-purchase functions in the day-ahead market that are non-increasing in the

price at that location. This willingness-to-purchase function is composed of price-quantity

pairs ordered from highest to lowest price. A load-serving entity (LSE) is willing to in-

crease the amount of electricity it purchases by a given offer quantity increment provided

the market-clearing price is at or below the corresponding offer price increment. For the

case of California, these willingness-to-purchase functions are submitted by retailers at

the utility service territory level.7 The California Independent System Operator (ISO),

the market and system operator for California’s electricity supply industry, allocates

shares of these price and quantity offers to the hundreds to thousands of load-withdrawal

nodes in the utility’s service territory using the ISO’s estimates of the fraction of the

utility’s total demand at each node in its service territory.8

For the day-ahead market, the California ISO minimizes the total as-offered cost, the

offer price times the offer quantity summed over all units accepted, of serving the demand

for energy and ancillary services at all locations in the transmission network during all 24

hours of the following day subject to the ISO’s best estimate of the configuration of the

transmission network the following day, generation unit runtime and ramping constraints,

as well as a number of other system operating constraints.9 The locational marginal price

(LMP) at each node in the transmission network is equal to the increase in the minimized

value of the objective function from the ISO’s as-offered cost minimization problem as a

result of increasing the amount of energy withdrawn at that location by 1 MWh. The

LMPs and resulting supply and demand schedules at each location in the transmission

network for all 24 hours of the following day are computed before the afternoon of the

day before the energy is scheduled to be delivered.

All market participants are notified of these LMPs as well as their day-ahead supply

and demand obligations at 1PM on the day before the delivery date. These supply

and demand obligations are firm financial commitments to sell or buy the quantities of

energy that emerge from the day-ahead locational marginal pricing process. For example,

7Appendix Figure A.1 presents a map of the territories served by each of California’s three investor-
owned utilities.

8Pacific Gas and Electric has more than 1,500 load withdrawals point in its service territory, Southern
California Edison approximately 200, and San Diego Gas and Electric approximately 300.

9Ancillary services are the collection of operating reserves required by the ISO to maintain a reliable
supply of electricity in real-time. Wolak (2019) describes the economic efficiency properties of co-
optimizing the procurement of energy and ancillary services.
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suppose a supplier sold 50 MWh to be delivered to a given location in the 6PM to 7PM

hour of the following day at a price of 40 dollars per MWh. This supplier is guaranteed to

be paid $2,000 (= 50 MWh × $40/MWh) regardless of the actual production of energy

from its generation unit during that hour of the following day. This is the sense in which

settlement of the day-ahead market has occurred. Commitments to supply energy and

ancillary services are bought and sold at the relevant locational day-ahead price.

Between the close of the day-ahead market and the start of real-time system oper-

ation, actual demand at each location on the transmission network is realized. Some

generation units must produce more or less than their day-ahead energy schedules in

order to meet this actual demand at all of the more than 4,000 load-withdrawal points

in California. At least 75 minutes in advance of each hour of real-time system opera-

tion, generation unit owners submit offer curves specifying their willingness to increase

or decrease their output relative to their day-ahead schedules. Starting with midnight

on the delivery date, these offer curves are used to clear the real-time market during

each 5-minute interval within the hour to meet actual demand at each location in the

transmission network given the real-time configuration of the transmission network and

real-time output levels of all generation units.

It is important to emphasize that the configuration of the transmission network in

the real-time market and the set of available generation units in real-time can differ

significantly from the ISO operator’s best estimate of the configuration of the transmission

network and the set of available generation units used to determine day-ahead market

outcomes. The real-time LMP dispatch and pricing process yields real-time production

levels for all generation units that are accepted to supply additional energy or less energy

relative to their day-ahead schedules in the real-time market, as well as prices at all nodes

in the transmission network.

The 5-minute real-time LMP at each location on the transmission network is equal to

the increase in the optimized value of the as-offered cost function as a result of increasing

the amount of energy withdrawn at that location by 1 MWh. The hourly real-time price

is the average of the twelve 5-minute real-time prices within that hour. Any electricity

demander that consumes more than its day-ahead schedule in a given hour pays for this

additional consumption at the hourly real-time price. Any electricity demander that

consumes less than its day-ahead schedule in a given hour receives the real-time price for
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any scheduled energy it does not consume. Similar logic applies to generation units that

do not produce the quantity they sold in the day-ahead market. Those that produce

more energy receive the real-time price at their location and those that produce less pay

the real-time price at their location.

The combination of a day-ahead forward market and a real-time spot market is called

a “multi-settlement market” because only real-time deviations from participants’ day-

ahead schedules are settled at the hourly real-time price. Recall our previous example in

which a generation unit sold 50 MWhs of energy in the day-ahead market at a specific

location for the 6PM to 7PM hour on day t+1 at a price of 40 dollars per MWh. Suppose

that this unit actually only produced 30 MWhs of electricity between 6PM and 7PM on

day t + 1. In this case, the owner would have to purchase the remaining 20 MWhs

at the hourly time-weighted average real-time price corresponding to the same location

between 6PM and 7PM in order to meet its forward market commitment. If the unit

instead produced 55 MWhs, then the additional 5 MWhs beyond its 50 MWhs day-ahead

schedule is sold at the hourly real-time price for that location/hour-of-the-day.

2.2 Explicit Virtual Bidding

All US wholesale electricity markets currently allow for purely financial participation

through explicit virtual bidding. With explicit virtual bidding (EVB), every market

participant has access to the following purely financial instrument: buy (sell) one MWh

of electricity at a given location and hour-of-the day in the day-ahead market if the

day-ahead price is below (above) the offer price, with the obligation to sell (buy) back

one MWh at the same location and hour-of-the-day in the real-time market as a price-

taker (i.e.: accepting the prevailing real-time price for closing out this purely financial

position in the day-ahead market). These financial offer curves are termed “virtual bids”

or “convergence bids” because an expected profit-maximizing purely financial trader will

typically take positions at a location in the day-ahead market that reduce the magnitude

of the difference between day-ahead and real-time prices at that location.

Although virtual bids and physical bids are separately identified to the system op-

erator, the California ISO treats physical and virtual bids the same when running the

day-ahead LMP pricing and dispatch process. However, the California ISO knows that
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any day-ahead “virtual energy” sale or “virtual energy” purchase must be reversed in

the real-time market. Recall that in the real-time market only physical generation units

that submit offers into the real-time market are dispatched to meet the actual demand

at each location on the transmission network.10 If a purely financial player sells 10 MWh

of virtual energy at a given location in the day-ahead market, she must purchase this 10

MWh back at the real-time price for that location because she cannot actually supply

any energy in real-time. Similarly, if a purely financial player buys 10 MWh of virtual

energy in the day-ahead market, she must sell 10 MWh at the real-time price at that

location because she cannot consume any energy in real-time.

This logic implies that the actions of virtual bidders directly influence day-ahead and

real-time market outcomes, typically by closing the gap between day-ahead and real-time

prices. For example, submitting a virtual bid to sell (buy) one MWh in the day-ahead

(real-time) market earns positive revenues if and only if the day-ahead price is higher

than the real-time price. However, submitting this virtual bid increases supply (demand)

in the day-ahead market (real-time market), making it less likely that day-ahead prices

will be higher than real-time prices.

There are three broad types of transaction costs associated with financial trading

in California’s wholesale electricity market: collateral, trading fees and uplift. Purely

financial participants must post collateral greater than the total value of virtual bids

they submit each day. The total value of virtual bids submitted each day is equal to the

sum of the product of the absolute value of megawatt-hours offered times the applicable

reference price for a virtual bid at that location.11 This collateral does not earn any rate

of return while it is held by the California ISO. Moreover, there can be a lag of more than

two weeks between when a market participant requests that some or all of its collateral

be returned and when this money is actually returned. Consequently, a purely financial

participant is foregoing non-trivial financial returns on any collateral posted with the

California ISO in order to engage in virtual bidding.12

Purely financial participants have to pay roughly 0.5 cents for each price and quantity

pair associated with each incremental or decremental virtual bid they submit. They must

10Generation units with energy schedules sold in the day-ahead market can either produce this energy
from their own unit or purchase the energy from the real-time market.

11See the California ISO document, “Convergence bidding, participating in markets, credit policy
implications,” for a description of the process used to compute nodal reference prices.

12See the California ISO document, “California ISO Credit Management,” for more background.
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also pay 9 cents per MWh cleared in fees associated with “market services”. For example,

consider a virtual bidder that submits a demand curve with 10 price/quantity steps to

the day-ahead market. If 50 MWh of her demand bid clears, she must pay trading fees

of $0.09× 50 + $0.005× 10 = 4.55 dollars. Finally, all financial participants are required

to pay a monthly transaction fee of 1,000 dollars regardless of the volume of virtual bids

they submit or clear.13

Purely financial participants are also required to pay “uplift” charges when system-

wide virtual demand is larger than system-wide virtual supply (i.e.: net virtual demand

is greater than zero). Uplift charges compensate suppliers that are forced to quickly start

up or ramp up their units in order to meet this excess virtual demand. System-wide uplift

charges are allocated to different market participants based on their individual levels of

net virtual demand cleared. Figure 1 shows the annual average uplift charge per MWh

of electricity demand for the five major Independent System Operators (ISOs) in the

United States for 2009-2013. This figure indicates that average uplift charges range from

roughly 40 to 60 cents per MWh. However, these annual average values conceal significant

volatility in the daily value of these uplift charges throughout the year that impact the

profitability of the daily virtual bidding actions of purely financial players.14 As noted in

Federal Energy Regulatory Commission (2014), uplift payments are typically correlated

with demand levels, input fuel costs and the magnitude of the divergences between day-

ahead and real-time prices. Moreover, Federal Energy Regulatory Commission (2014)

notes that the volatility of daily uplift costs have been increasing over time in California

and two other US markets. This logic implies that days with sizable day-ahead/real-

time price spreads are also likely to have large uplift charges, and a significant share

of these charges are paid by purely financial participants. This implies that sizable

day-ahead/real-time price differences can be rendered unprofitable by these uplift cost

allocations.

This discussion demonstrates that, although the marginal cost of submitting a virtual

bid and having it clear is less than one dollar, the annual average cost per MWh of clearing

13These transaction fees are listed in Session 7 of the Convergence Bidding tutorial published by
California’s independent system operator (CAISO (2015b)).

14Uplift charges reflect payments made to resources whose commitment and dispatch result in a
shortfall between the resources offers and the revenue earned from the market. There are three main
reasons for market revenue shortfalls that require uplift payments: (1) some of the operating costs and
limits of a resource are not reflected in market prices; (2) unmodeled system constraints; and (3) the
dispatch and commitment of inflexible resources or the commitment of resources ineligible to set price.
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Figure 1: Annual Uplift Charges for the 5 Major ISOs: 2009-2013

 6 

approximately $0.30/MWh and $1.40/MWh, a fraction of the energy market prices during 
these periods.    

 
 

 

 

Figure 1: Total Annual Uplift Credit by RTO and ISO ($/MWh) 

Notes: This figure is taken Federal Energy Regulatory Commission (2014). Annual average uplift
charges (in dollars per MWh) are calculated for each independent system operator (ISO) by dividing
total annual uplift credits (in dollars) by total annual electricity demand (in MWhs). Total uplift
charges and total electricity demand for CAISO for 2009 are based on the nine months of data after
4/1/2009. FERC estimated the total charges and electricity demand for ISO-NE for 2012. Uplift
charges for PJM for the years 2012 and 2013 exclude the credits associated with reactive services
(these credits amount to approximately 45 million dollars per year).

virtual bids in the California ISO is likely be considerably higher because of the monthly

fixed charge to participate in the California ISO markets, the foregone revenues on the

collateral posted, and the realized uplift charges during the days that virtual bid MWhs

cleared during the year for this market participant. The hourly actual transaction cost

can be significantly higher than the annual average because of the volatility in uplift

costs.

2.3 Profiting from Price Spreads With Versus Without EVB

Prior to the introduction of financial trading, only suppliers could profit from expected

day-ahead/real-time price spreads by selling more or less energy in the day-ahead market

than they expected to produce in real-time at the locations that they owned generation

units. Using physical bids rather than virtual bids to exploit expected day-ahead/real-

time price spreads is termed “implicit virtual bidding”. Prior to the introduction of

EVB, generation unit owners were only allowed to submit physical day-ahead offers at

locations where they inject electricity, their minimum offered quantity must be positive,

and their maximum offered quantity must be less than the unit’s capacity. Thus, prior to

EVB, a supplier that expects day-ahead prices to be far lower than real-time prices could
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at best submit zero quantity into the day-ahead market and offer their entire capacity

into the real-time market. This supplier also faced no competition for exploiting day-

ahead/real-time price spreads at locations where it alone owned generation units. This

is different from the case of EVB, where any market participant can submit virtual bids

at any allowed node in the transmission network.15

Implicit virtual bidding is only feasible at locations with generation units, because

load-serving entities are only allowed to submit demand bids at the level of their service

territory.16 For example, California’s Independent System Operator (ISO) requires its

three large distribution utilities—Pacific Gas and Electric (PG&E), Southern California

Edison (SCE), and San Diego Gas and Electric (SDG&E)—to bid their electricity demand

into the day-ahead market at the service-area or load aggregation point (LAP) level. The

California ISO then allocates this demand to all nodes in the utility’s service territory

using load-distribution factors (LDFs).17 Thus, it is very costly for a utility to implicitly

virtual bid one MWh at a single location, because this would effectively require the utility

to implicitly virtual bid one MWh at all nodes within its service territory.

3 How Purely Financial Participants Can Improve

Market Efficiency

Without EVB, only suppliers were able to participate in day-ahead and real-time elec-

tricity markets at the nodal level, and only at the nodes where they inject electricity.

Consequently, they face no direct competition from other suppliers that don’t inject

electricity at these locations. As noted earlier, load-serving entities must submit their

demand bids at the LAP level, which typically involves the system operator allocating

their service-territory level demand bid to up to thousands of nodes for the three large dis-

15The California ISO and other US wholesale markets typically restrict the set of nodes at which
virtual bidding is allowed. The California ISO eliminates nodes it deems are electrically equivalent to
other nodes where virtual bidding is allowed.

16The California ISO assigns collections of nodes to load-serving entities and each load-serving entity
is charged an hourly price equal to the weighted average of MWhs withdrawn at each of these nodes for
their wholesale electricity. This collection of nodes is a called a Load Aggregation Point (LAP) and this
price-setting mechanism is called LAP pricing.

17For example, if a utility is required to serve 100 MWhs of electricity demand and the ISO computes
equal LDFs for the ten nodes in its service area, then the LDFs are equal to 1/10 for each node. The
load aggregation point (LAP) level price received by the utility is equal to the LDF-weighted average of
the 10 nodal-level prices in its service area.
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tribution utilities in California. Thus, the introduction of explicit virtual bidding allows

far more opportunities for purely financial participants to contribute their information

to the day-ahead and real-time markets at each individual node in the form of virtual

bids.18

EVB allows both physical market participants and purely financial players to sub-

mit virtual bids in the day-ahead market at any location for any hour of the day. The

profit-maximizing actions of market participants seeking to exploit day-ahead/real-time

price spreads at any location on the grid creates incentives for the day-ahead schedules of

generation units to be as close as possible to their real-time output. This outcome means

that the California ISO has to accept fewer supply and demand offers from generation

units in the real-time market. These actions also create incentives for day-ahead genera-

tion schedules to be as close as possible to the real-time output levels that minimize the

cost of operating the transmission network in real-time. This section provides several

examples of how explicit virtual bidding can lead to market efficiency gains.

As noted earlier, solving for LMPs and generation unit dispatch levels in the day-

ahead market is an extremely challenging mixed-integer programming problem, particu-

larly during high demand hours when transmission constraints and generation unit run-

time and ramping constraints are likely to be binding. The LMP optimization problem

determines which generation units to start up and how much each of these generation

units are scheduled to produce. This optimization problem has thousands of choice vari-

ables and thousands of constraints and thus has many potential local optima. If virtual

bidders are able to figure out lower-cost solutions to meeting demand across the trans-

mission network, they will likely also earn profits from the resulting difference between

day-ahead and real-time prices for the reasons described below.

Consider the example of a transmission link between nodes A and B where the virtual

bidder believes that 3 MWs more transmission capacity will be made available in real-

time than is available in the day-ahead market, so that more energy can flow from A to

B in real-time. A virtual bidder can submit a virtual demand bid for 3 MWhs at node A.

This demand bid increases the amount of generation scheduled at node A by 3 MWhs.

Similarly, she can submit a virtual supply bid at node B for 3 MWhs that reduces the

amount of energy supplied at node B by this amount. These two virtual bids create

18See Appendix Tables A.1 and A.2 for a full list of both the physical and financial participants that
are licensed to place virtual bids in California’s wholesale electricity market.
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3 MWs of virtual transmission capacity between nodes A and B. When the real-time

market clears and it turns out that 3 MWs more transmission capacity between A and B

becomes available, the additional 3 MWhs of virtual supply provided in real-time at node

A will flow to node B, replacing the 3 MWhs of virtual demand provided in real-time

at node B. In this case, the virtual bidder is likely to earn a profit on both transactions

because she correctly anticipated the existence of the additional transmission capacity in

real-time.

It is important to emphasize that the purely financial participant does not have to

know that there is a difference between the amount of available transmission capacity

between node A and node B in the day-ahead versus real-time markets to find this

profitable strategy. She would only need to notice that day-ahead prices at node A are

lower than real-time prices and day-ahead prices at node B are higher than real-time

prices. This alone would cause her to submit a demand bid in the day-ahead market at

node A and submit a supply bid in the day-ahead market at node B.

Another market-efficiency enhancing action by purely financial traders is based on

the fact that load-serving entities submit demand bids at the LAP level in the day-ahead

market and the California ISO uses load-distribution factors to allocate this LAP-level

demand to individual nodes. If a purely financial market participant finds that too much

demand is allocated to a specific node in the day-ahead market relative to the quantity

of demand that will ultimately show up in real-time, he can submit a supply bid at that

node to sell energy in the day-ahead market. Then, when a smaller actual demand shows

up in real-time, he gets to buy his virtual supply back at the resulting lower real-time

price.

Just as in the previous case, it is not necessary that the purely financial player

understand the divergence between the quantity of demand that the retailer serves at

this node in real-time and the quantity of demand allocated to the node in the day-

ahead market through the LAP-level bidding process. Locations where more demand is

allocated in the day-ahead market than is demanded in real-time will have day-ahead

prices that are higher than real-time prices. The virtual bidder would thus profit from

selling in the day-ahead market and buying back in real-time at these locations.

Our final example concerns the case of whether to start a fossil fuel-fired generation

unit in anticipation of producing the next day. Because of the runtime constraints, if
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this unit is not committed in the day-ahead market it will not be available to operate in

real-time. This energy must instead be produced by units that are more responsive but

have higher operating costs. Suppose a purely financial player believes that committing

this unit in the day-ahead market provides a lower cost solution to meeting demand in

the peak hours of the day than turning on fast-responding but more expensive units.

This financial player can submit virtual demand bids at that unit’s location in the day-

ahead market for the peak hours of the day in order to commit the unit in the day-ahead

market, which in turn enables lower cost real-time dispatch. In real-time, the financial

player would then sell the virtual energy back at a higher average price for these hours.

Just as in the other two cases, the purely financial player would not need to under-

stand why day-ahead prices are lower than real-time prices at the location of the runtime-

constrained fossil fuel generation unit during these hours. Purely financial players would

only need to attempt to exploit this profitable arbitrage opportunity by submitting vir-

tual demand bids during peak hours of the day at this location. The implied sale in the

real-time market improves the efficiency of the real-time market outcome by dispatching

the run-time constrained unit in the day-ahead market.

With the introduction of explicit virtual bidding (EVB), all physical market

participants–generation unit owners and load-serving entities–as well as all purely fi-

nancial participants can submit virtual supply and demand bids at any of the thousands

of nodes where virtual bidding is allowed by the California ISO. As the above examples il-

lustrate, the process of exploiting profitable day-ahead/real-time arbitrage opportunities

at nodes throughout the transmission network can yield market efficiency gains.

The introduction of purely financial participation through virtual bidding increases

the likelihood that our empirical context of a multi-settlement wholesale electricity mar-

ket using the locational marginal pricing algorithm satisfies the ”separable” condition de-

scribed by Ostrovsky (2012). This condition is necessary for prices in a multi-settlement

market with a finite number of partially informed traders to aggregate all available infor-

mation. The existence of non-zero trading costs implies that the California ISO wholesale

market does not satisfy all of the conditions for the information aggregation result in Os-

trovsky (2012). That being said, the basic insight of the “separable” condition is that,

for every non-degenerate prior belief about states of the world, there exists a trader

who, with positive probability, receives an informative signal. Expanding the number
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of participants able to arbitrage day-ahead/real-time price differences at each node in

the transmission network increases the likelihood that some market participant receives

an informative signal about real-time conditions in the transmission network at that

location.

Before concluding this section, we should emphasize that all of the examples of vir-

tual bidding improving market efficiency are significantly more likely to occur during

high demand hours when both transmission network constraints and generation runtime

constraints are more likely to bind. Even the issue of non-representative load distribution

factors (LDFs) is more relevant during stressed system conditions when the differences

in day-ahead and real-time prices across nodes within a service territory are likely to

be larger. For this reason, our empirical framework for measuring the efficiency benefits

from introducing purely financial participants to California’s wholesale electricity mar-

ket relies on differences between high versus low demand periods before versus after the

introduction of EVB.

4 Statistical Test of Arbitrage With Trading Costs

This section develops a hypothesis testing framework to determine whether or not a

profitable trading strategy exists when accounting for the presence of transactions costs.

In this framework, a trader can buy and sell positions in hourly day-ahead/real-time price

spreads corresponding to each of the 24 hours-of-the-day. Trading strategies based on

the first lag of the vector of day-ahead/real-time price differences are not feasible because

market participants submit their offers into the day-ahead market for day t before the

vector of day-ahead/real-time price differences for date t − 1 is made public. Market

participants can thus condition their trading strategies on price differences from two or

more days prior.

In Appendix Section C.1, we formulate a statistical test of the null hypothesis that the

elements of the autocorrelation matrices between the current vector of day-ahead/real-

time price spreads and the second through tenth lags of this vector are jointly zero. We

find little empirical evidence against this null hypothesis, suggesting that traders cannot

earn significantly more profits by conditioning on day-ahead/real-time price differences

from two or more days prior to the current day. See Appendix Tables C.1 and C.2 for
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the results when applying this statistical test to price spreads calculated at the service-

area level for the three large investor-owned utilities in California and at the nodal level

respectively.

4.1 The Trader’s Problem

Our statistical test is based on a market participant who buys or sells hourly positions, ah,

associated with Xhd, where Xhd ≡ (PDA
hd −PRT

hd ) is the difference between the day-ahead

and real-time electricity prices in hour-of-the-day h in day-of-sample d. The trader can

condition her positions on the hour of the day, so that ah can take on different values for

for h ∈ {1, 2, ..., 24}. Moreover, ah can be positive or negative.19 Let a = (a1, a2, ..., a24)′

denote the 24 × 1 vector of hourly positions. Consistent with market rules, she chooses

positions for all hours of the day simultaneously. Holding a positive (negative) position

earns revenues if and only if the day-ahead price for hour h of day d is higher (lower) than

the real-time price in hour h of day d. In other words, a trader earns positive revenue if

and only if the position, ah, and realized price spread, Xd,h, have the same sign.

Let µh ≡ E(Xh,d) = E(PDA
h,d ) − E(PRT

h,d ) be the unconditional expectation of the

day-ahead/real-time price spread for hour h; define µ to be the 24× 1 vector composed

of (µ1, µ2, ..., µ24)′. The trader faces trading cost c associated with buying or selling one

MWh of any combination of these 24 assets. The trader’s expected profit-maximization

problem is:

max

a ∈ R24
a′µ− c

24∑
i=1

|ai|︸ ︷︷ ︸
Expected Profits

subject to
24∑
i=1

|ai| = 1 (1)

The vector of positions a∗(µ) ∈ R24 denotes the solution to the constrained optimization

problem described in Equation 1. We consider both the null hypothesis that profitable

trading strategies exist (i.e.: a∗(µ)′µ− c > 0) and the null hypothesis that no profitable

trading strategies exist (i.e.: a∗(µ)′µ− c ≤ 0).

The trader pays the same per-unit trading cost c regardless of whether they buy

or sell the asset; this is why overall trading costs are calculated based on the sum of

the absolute values of the portfolio weights (i.e.: c
∑24

i=1 |ai|). Canonical portfolio choice

19A positive (negative) value of ah implies selling (buying) energy in the day-ahead market and buying
(selling) it back in the real-time market.
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models (Markowitz (1952); Sharpe (1994)) instead impose a normalization based on “net

position” (
∑24

i=1 ai = 1). This normalization assumes that a positive position in one asset

can be offset by a negative position in another asset, which only makes sense in models

with zero transaction costs.

The revenues earned by solving the optimization problem presented in Equation 1

are:

φ(µ) ≡ a∗(µ)′µ =
max

h ∈ {1, ..., 24}
|µh| (2)

In words, the trader simply buys or sells 1 MWh of the asset with the highest expected

pay-off in absolute value.

4.2 Implementation of our Statistical Test of Arbitrage

We implement our hypothesis test using data on realized day-ahead/real-time price

spreads for each hour h of each day-of-sample d. Let Xd = (Xd,1, Xd,2, ..., Xd,24)′

be the 24 × 1 data vector composed of realized day-ahead/real-time price spreads

for day-of-sample d. Then, our estimate of the unconditional expectation of day-

ahead/real-time price spreads for each hour-of-the-day is simply the sample average (i.e.:

µ̂ ≡ X = 1
N

∑N
d=1 Xd). Our estimate of the revenue generated from the trader’s optimal

strategy, presented in Equation (2), is the element of X that is largest in absolute value

(i.e.: φ(X) ≡ max
h∈{1,...,24} |Xh|). Our test statistic is based on the difference between φ(X)

and per-unit trading cost c.

However, the maximum operator is not differentiable; we thus cannot use the Delta

Method to derive the asymptotic distribution of φ(X). Instead, we use the method devel-

oped by Fang and Santos (2018) for testing hypotheses involving directionally differen-

tiable functions of a regular parameter estimate. This method is applicable because φ(µ)

is a directionally differentiable function of the parameter vector µ and sample average X

is a regular estimator of µ0 (i.e.:
√
N(X − µ0) is asymptotically normally distributed).

Fang and Santos (2018) propose a modified bootstrap estimator for the asymptotic dis-

tribution of
√
N(φ(X)− φ(µ)).

To implement this estimator, we simulate the distribution of φ(X) using a procedure

based on numerical derivatives developed by Hong and Li (2018). For this procedure,

we first compute moving blocks bootstrap re-samples of X with block size equal to the
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largest integer less than or equal to N1/3 (Kunsch et al. (1989)).20 Let the sample average

calculated from the bth bootstrap re-sample be denoted X
b
. We next construct:

Zb =
φ(X +

√
N(X

b − X)ε) − φ(X)

ε
(3)

for b = 1, 2, ..., B. Hong and Li (2018) demonstrates that the asymptotic distribution

of
√
N(φ(X)− φ(µ)) can be approximated by the bootstrap distribution of Zb provided

that, as sample size N goes to infinity, ε tends to zero but
√
Nε tends to infinity. To

satisfy these conditions, we set ε = N−1/3, which is the value recommended by Hong

and Li (2018).

This estimate of the asymptotic distribution of
√
N(φ(X) − φ(µ)) allows us to test

for the existence of profitable arbitrage opportunities for any per-unit trading cost c.

However, setting c equal to the explicit transaction fee charged by the market operator

ignores both the monthly fixed charge to participate in California’s electricity market

and the opportunity cost of the money posted as collateral with the system operator.

Using the transaction fee for c also assumes that there is no opportunity cost associated

with the time and effort of the individual undertaking the trades as well as no operating

cost associated with scaling up a trading strategy. For these reasons, we instead use

our hypothesis testing procedure to calculate the per unit trading costs implied by just

rejecting the null hypothesis of profitable arbitrage as well as just rejecting the null of

no profitable arbitrage.

To do this, we estimate the distribution of φ(X) using moving blocks bootstrap; in

particular, the bth re-sample gives us:

φ(X)b = φ(X) +
Zb

√
N
. (4)

This bootstrap distribution is used to compute two values. The first, clower, is the smallest

value of the trading cost, c, that would cause rejection of the null hypothesis that a

20Given a sample {X1,X2, ...,XN}, each moving blocks bootstrap re-sample b ∈ {1, 2, ..., B} is
constructed as follows. First, we partition the data into K non-overlapping blocks of size M :
{B1,B2, ...,BK} ≡ {X1,X2, ...,XM}, {XM+1, ...,X2M}, ..., {XM(K−1)+1, ...,XKM}. Next, let S be

a discrete uniform variable over the integers {0, 1, ...,K}; we construct the bth bootstrap re-sample by
drawing K integers from S independently and identically and merging together blocks based on these
draws. For example, if we draw {2, 5,K, ..., 5}, then the bootstrap sample would be {B2,B5,BK , ...,B5}.
When implementing this procedure, we set M = floor(N1/3) and K ≡ floor(NM ), where floor(X) is X
rounded down to the nearest integer.
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profitable trading strategy exists (i.e.: reject the null hypothesis that a∗(µ)′µ − c > 0).

Therefore, clower is equal to the 5th percentile of the bootstrapped distribution of φ(X).

The second magnitude, cupper, is the largest value of the trading cost that results in

rejection of the null hypothesis that no profitable trading strategy exists (i.e.: reject the

null hypothesis that a∗(µ)′µ − c ≤ 0). As a result, cupper is simply the 95th percentile

of the distribution of φ(X). Our estimates are thus lower bounds on the true clower and

cupper required to reject the null hypotheses of arbitrage and no arbitrage respectively to

the extent that we are under-estimating the trading revenues that a market participant

can earn by exploiting expected day-ahead/real-time price spreads.

5 Estimates of Implied Trading Costs

This section describes the results from applying our statistical test of arbitrage with

transaction costs to hourly day-ahead and real-time electricity prices from California’s

wholesale electricity market.

5.1 Data

We use hourly data on day-ahead and real-time wholesale electricity prices at all pricing

locations (i.e.: nodes) in the transmission grid run by California’s Independent System

Operator (CAISO). Our data span from April 1, 2009 to December 31, 2012.21 There are

over 5,000 nodes, all with potentially different prices, depending on the level of demand,

configuration of the transmission network, set of available generation units and other

system operating constraints. We also consider the load aggregation point (LAP) level

prices faced by each of California’s three major electricity distribution utilities: Pacific

Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and

Electric (SDG&E). The LAP-level real-time price for a given hour is computed by taking

the quantity-weighted average over the real-time prices at all nodes in the utility’s service

area with a positive amount of energy withdrawn in that hour. LAP-level day-ahead

prices are computed the same way using day-ahead quantities.

Figure 2 presents a comparison by hour-of-the-day of the average difference between

21California introduced nodal pricing on April 1, 2009.
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the day-ahead and real-time prices faced by PG&E, SCE, and SDG&E before versus

after the introduction of financial trading (i.e.: explicit virtual bidding) on February 1,

2011. This figure provides descriptive evidence that day-ahead/real-time price spreads

are larger in absolute value before the introduction of explicit virtual bidding (EVB)

for each of the three distribution utilities.22 For example, day-ahead prices for PG&E

are much lower than real-time prices on average for the hours of 8PM to 12AM. We

demonstrate in Appendix Section C.2 that the reduction in average day-ahead/real-time

price differences after the introduction of purely financial participants is statistically

significant.

We next perform a joint test of the null hypothesis that the average differences

between day-ahead and real-time prices are zero for all 24 hours of the day. This test is

performed separately for each LAP before versus after the introduction of explicit virtual

bidding. We compute our chi-squared test statistics accounting for the potential for

up to 14 days of autocorrelation using the autocorrelation-consistent covariance matrix

estimator developed by Newey and West (1987).23 The test statistics corresponding to

these tests, presented in Table 1, are quite large. We reject the null hypothesis that all 24

of the hourly price difference means are zero for every LAP both before and after EVB.24

However, this result does not imply that traders can profitably arbitrage day-

ahead/real-time price spreads after the introduction of EVB. This is because the sta-

tistical tests presented in Table 1 do not account for the potentially sizable transaction

costs faced by purely financial participants in the California ISO. In the next subsec-

tion, we present results from a statistical test of arbitrage that accounts for the fact that

day-ahead/real-time price differences can differ from zero simply due to transaction costs.

5.2 Implied Trading Cost Estimates

We first implement the statistical test of arbitrage described in Section 4 using data on

the day-ahead and real-time electricity prices faced by each of the three major electricity

22Appendix Figure A.2 plots these hourly average day-ahead/real-time spreads along with their point-
wise 95% confidence intervals. This figure indicates that we can reject the null hypothesis that expected
price spreads are zero for some hours-of-the-day even after the introduction of financial trading.

23The Newey-West covariance matrix estimator is: Σ̂ = Λ̂0 +
∑m
j=1 w(j,m)(Λ̂j + Λ̂j

′
), where Λ̂j =

1
T

∑T
t=j+1(Xt −X)(Xt−j −X)′, X = 1

T

∑T
t=1Xt, and w(j,m) = 1− j

m+1 . We account for m = 14 days
of autocorrelation.

24The upper α = 0.05 critical value for the χ2
24 distribution is 36.415.
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Figure 2: Day-Ahead/Real-Time Price Spreads By Hour-of-Day: Before and After EVB

-1
0

-5
0

5
M

ea
n 

Pr
ic

e 
D

iff
er

en
ce

 (i
n 

D
ol

la
rs

 p
er

 M
W

h)

0 5 10 15 20 25
Hour of the Day

Before EVB After EVB

Time-Weighted Average Price Spreads For PGE

-1
5

-1
0

-5
0

5
M

ea
n 

Pr
ic

e 
D

iff
er

en
ce

 (i
n 

D
ol

la
rs

 p
er

 M
W

h)

0 5 10 15 20 25
Hour of the Day

Before EVB After EVB

Time-Weighted Average Price Spreads For SCE

-2
0

-1
5

-1
0

-5
0

5
M

ea
n 

Pr
ic

e 
D

iff
er

en
ce

 (i
n 

D
ol

la
rs

 p
er

 M
W

h)

0 5 10 15 20 25
Hour of the Day

Before EVB After EVB

Time-Weighted Average Price Spreads For SDGE

Notes: This figure presents the average for each hour-of-the-day of the difference between day-
ahead and real-time electricity prices for each of three major load aggregation points (LAPs) in
California. We plot this average price spread separately for the sample periods before versus after the
introduction of explicit virtual bidding (EVB). The three LAPs considered in this figure correspond
to the territories served by Pacific Gas and Electric (PG&E), Southern California Edison (SCE),
and San Diego Gas and Electric (SDG&E).

Table 1: Test Statistics for the Joint Test of Zero Mean Price Differences

Before EVB After EVB

PG&E 140.175 194.317
SCE 137.659 164.065

SDG&E 151.456 260.327
Notes: This table presents the chi-squared test statistic corresponding to the null hypothesis that
all 24 hour-of-the-day average day-ahead/real-time price spreads are equal to zero. This statistical
test is performed separately for each load aggregation point (LAP) before and after the introduction
of explicit virtual bidding (EVB). The three LAPs correspond to the territories served by Pacific Gas
and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E).
We compute these test statistics accounting for the potential for up to 14 days of autocorrelation
using the autocorrelation-consistent covariance matrix estimator developed by Newey and West
(1987). We reject the null hypothesis if the test statistic is larger than 36.415, which is the upper
α = 0.05 critical value for the χ2

24 distribution.
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Table 2: LAP-Level Implied Trading Costs: clower and cupper

LAP Before EVB After EVB

Lower 5% C.I. PG&E 8.290 4.509
(clower) SCE 11.728 4.662

SDG&E 16.028 6.594

Upper 95% C.I. PG&E 15.211 7.387
(cupper) SCE 21.307 8.827

SDG&E 36.281 10.740

Notes: This table presents the implied trading costs from our statistical framework, estimated sep-
arately for each load aggregation point (LAP) for sample periods before the introduction of explicit
virtual bidding (4/1/2009-2/1/2011) versus after the introduction of EVB (2/1/2011-12/31/2012).
The three LAPs considered in this table correspond to the territories served by California’s three
major electricity distribution companies: Pacific Gas and Electric (PG&E), Southern California
Edison (SCE), and San Diego Gas and Electric (SDG&E). clower is the smallest value of per-unit
trading costs c for which we can reject the null hypothesis that a profitable trading strategy exists
while cupper is the largest value of c such that we can reject the null hypothesis that no profitable
trading strategy exists.

distribution utilities in California: Pacific Gas and Electric (PG&E), Southern California

Edison (SCE), and San Diego Gas and Electric (SDG&E). Specifically, Table 2 reports

our estimated implied trading costs both before and after the introduction of explicit

virtual bidding for each load aggregation point (LAP). Recall that clower is the smallest

value of per-unit trading costs, c, for which we can reject the null hypothesis that a

profitable strategy exists while cupper is the largest value of c for which we can reject the

null hypothesis that no profitable trading strategy exists. Table 2 demonstrates that our

estimates of clower and cupper fell substantially after the introduction of explicit virtual

bidding for all three LAPs.25 This result is consistent with the logic outlined in Section

2.

In order to more formally compare implied trading costs before versus after the

introduction of explicit virtual bidding (EVB), Figure 3 plots the bootstrap distribution

of the difference in implied trading costs (i.e.: φ(X
pre

)− φ(X
post

)) for each LAP before

versus after EVB. The left vertical line in this figure is the 5th percentile of the distribution

of cpre − cpost and the right vertical line is the 95th percentile of this distribution. If the

5th percentile of the distribution of bootstrap estimates of cpre − cpost is greater than

zero, then we can reject the null hypothesis that cpre ≤ cpost at a 5% significance level.

25Appendix Figure A.3 plots the bootstrap distributions of implied trading costs for the pre-EVB and
post-EVB sample periods for each of the three LAPs.
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If the 95th percentile of the bootstrapped distribution of estimated cpre− cpost is less than

zero, then we can reject the null hypothesis that cpre ≥ cpost at a 5% significance level.

For both SCE and SDG&E, we reject the null hypothesis that our implied trading costs

are higher post-EVB relative to pre-EVB, but fail to reject the null hypothesis that our

implied trading costs are higher pre-EVB relative to post-EVB. However, we do not have

the statistical power to reject either null hypothesis for PG&E. Summarizing, Figure 3

provides statistical evidence that the implied costs of trading LAP-level price spreads fell

after the introduction of explicit virtual bidding for the SCE and SDG&E LAPs.

We also compute clower and cupper for each pricing node in the California ISO control

area. Figure 4 plots the values of clower and cupper for each node before and after the

introduction of EVB. This figure plots the across-node distributions of clower and cupper

separately for nodes associated with generation units (“Gen Nodes”) and nodes not

associated with generation units (“Non-Gen Nodes”). We see from Figure 4 that the

distributions of both clower and cupper are shifted downward post-EVB relative to pre-

EVB. Thus, for any fixed value of trading costs c, we reject the null hypothesis that a

profitable trading strategy exists for more nodes in the post-EVB sample period relative

to the pre-EVB sample period. Similarly, our estimated across-node distribution of cupper

indicates that the null hypothesis that no profitable trading strategies exist for a given

trading cost c can be rejected for more nodes before EVB relative to after EVB.

Next, we compute the bootstrap distribution of estimates of cpre − cpost for each of

the more than 4,000 nodes in the California ISO control area; “pre” refers to the sample

period before the introduction of explicit virtual bidding (4/1/2009-2/1/2011) and “post”

refers to the sample period after the introduction of explicit virtual bidding (2/1/2011-

12/31/2012). The first row of Table 3 reports the proportion of nodes for which we reject

the null hypothesis that implicit trading costs increased after the introduction of EVB

(i.e.: cpre ≤ cpost), separately for generation nodes (“Gen Nodes”) versus non-generation

nodes (“Non-Gen Nodes”). The second row of Table 3 reports the proportion of nodes

for which we reject the null hypothesis that implicit trading costs decreased after the

introduction of EVB (i.e.: cpre ≥ cpost), once again separately for generation nodes versus

non-generation nodes. We reject the null hypothesis that implicit trading costs increased

after the introduction of EVB for more than 70 percent of the nodes; the percentage

of rejections at non-generation nodes is slightly higher than at generation nodes. In
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Figure 3: Bootstrap Distribution of the Difference in Trading Costs
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Notes: This figure plots the bootstrap distribution of the difference in trading costs (i.e.: (φ(X
pre

)−
φ(X

post
)), where “pre” indicates the sample period before the introduction of explicit virtual bidding

(4/1/2009-2/1/2011) and “post” indicates the sample period after the introduction of explicit virtual
bidding (2/1/2011-12/31/2012). We plot this distribution separately for each of three LAPs; these
LAPs correspond to the territories served by California’s three major electricity distribution utilities:
Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric
(SDG&E). The left vertical line on the graph is the 5th percentile of the distribution of cpre − cpost
and the right vertical line is the 95th percentile of the distribution of cpre − cpost.
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Figure 4: Nodal-Level Distribution of Implied Trading Costs: Before and After EVB
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Notes: This figure plots the values of clower and cupper for each pricing location (i.e.: node) esti-
mated separately for the sample period before the introduction of explicit virtual bidding (4/1/2009-
2/1/2011) versus the sample period after the introduction of explicit virtual bidding (2/1/2011-
12/31/2012). clower is the smallest value of per-unit trading costs c for which we can reject the null
hypothesis that a profitable trading strategy exists while cupper is the largest value of c such that
we can reject the null hypothesis that no profitable trading strategy exists. We plot the across-node
distributions of clower and cupper separately for nodes associated with generation units and nodes not
associated with generation units. The box portion of this box and whiskers plot contains all nodes
within the 25% through 75% quantiles of the distribution of our implied trading costs. The whiskers
include nodes in the 1.5×IQR of the distribution of implied trading costs, where IQR (inter-quartile
range) is the distance between the 25% and 75% quartiles of a distribution. Finally, the remaining
nodes are outliers outside of the 1.5× IQR of the distribution of implied trading costs.
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Table 3: Proportion of Nodes that Reject cpre ≤ cpost or cpre ≥ cpost

Total 1(Gen Node) 1(Non-Gen Node)

H0 : cpre ≤ cpost 0.707 0.659 0.711
H0 : cpre ≥ cpost 0.042 0.076 0.039

Number of Nodes 4,316 355 3,961

Notes: This first row of this table reports the proportion of nodes for which we can reject the null
hypothesis that implied trading costs are larger after the introduction of explicit virtual bidding
(EVB) relative to before the introduction of EVB (i.e.: cpre ≤ cpost), separately for generation
nodes (“Gen Nodes”) versus non-generation nodes (“Non-Gen Nodes”). The second row of this table
reports the proportion of nodes for which we can reject the null hypothesis that implied trading costs
are larger pre-EVB relative to post-EVB (i.e.: cpre ≥ cpost), once again separately for generation
nodes and versus non-generation nodes.

contrast, we reject the null hypothesis that trading costs fell after the introduction of

EVB for less than 5 percent of the nodes. A rejection frequency of 5% is consistent with

the null hypothesis being true for all nodes because the size of each hypothesis test is

α = 0.05.

As discussed in Section 2, before the introduction of explicit virtual bidding (EVB)

suppliers could only exploit expected differences between day-ahead and real-time prices

using their physical bids at the locations where their generation units inject electricity

(“generation nodes”). Load-serving entities could only place physical bids at the service

territory or load aggregation point (LAP) level, making it extremely costly for load-

serving entities to exploit expected day-ahead/real-time price spreads using their physical

bids (termed “implicit virtual bidding”). Based on this, we expect implied trading costs

to be higher at non-generation nodes relative to generation nodes before EVB because

neither suppliers nor demanders could implicitly virtual bid at non-generation nodes. The

introduction of explicit virtual bidding allowed any market participant to place virtual

bids at any node; thus, we expect the mean reduction in implied trading costs after EVB

to be larger for non-generation nodes relative to generation nodes.

To test these two hypotheses, we regress the value of clower at each node both before

and after the introduction of EVB on a constant, an indicator variable for whether the

node is associated with a generation unit (i.e.: 1(Gen Node), an indicator variable for

whether the implied trading cost is from the post-EVB period (i.e.: 1(Post EVB)), and

an indicator variable for whether the observation is from a generation node during the

post-EVB period. The unit of observation for this regression is thus a node in the pre-
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EVB or post-EVB sample period. Heteroskedasticity-consistent standard errors are in

parentheses. Finally, we run the same regression with cupper as the dependent variable.

Table 4 presents the results of estimating this difference-in-differences specification

for both the 5% and 95% percentiles of the bootstrapped distribution of implied trading

costs for each node before versus after EVB. We see that the coefficient on Post EVB is

negative for both clower and cupper, indicating that the average level of implied trading

costs across locations fell after the implementation of EVB. Moreover, the results indicate

that both clower and cupper are significantly lower for generation nodes relative to non-

generation nodes prior to EVB. However, this difference across generation versus non-

generation nodes is essentially eliminated after the introduction of explicit virtual bidding.

Specifically, we fail to reject the null hypothesis that the sum of the coefficient estimates

corresponding to the variables 1(Gen Node) and 1(Post EVB)× 1(Gen Node) is zero for

both clower and cupper. As expected, the difference in implied trading cost before versus

after explicit virtual bidding (i.e: cpre− cpost) fell more for non-generation nodes than for

generation nodes.

Summarizing, Table 4 provides statistical evidence consistent with all three of our hy-

potheses: (1) implied trading costs are lower for generation nodes versus non-generation

nodes prior to EVB, (2) implied trading costs fell after EVB, and (3) implied trading

costs fell more for non-generation nodes relative to generation nodes after EVB.
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Table 4: Implied Trading Costs Before vs. After EVB For Gen. versus Non-Gen Nodes

(1) (2)
Dependent Variable clower cupper

1(Post EVB)× 1(Gen Node) 0.532 1.421
(0.174) (0.431)

1(Post EVB) -3.527 -5.404
(0.075) (0.193)

1(Gen Node) -0.654 -1.765
(0.119) (0.250)

Constant 10.72 19.16
(0.054) (0.118)

Mean of Dep. Var. 8.840 16.221
Std. Dev. of Dep. Var. 3.847 9.306

Number of Obs. 9,791 9,791
R2 0.202 0.080

Notes: This table reports the results from our difference-in-differences specification comparing im-
plied trading costs before versus after the introduction of explicit virtual bidding (EVB) for pricing
locations (i.e.: nodes) associated with generation units (i.e.: “Gen Nodes”) versus not associated
with generation units (i.e.: “Non-Gen Nodes”). The unit of observation for these regressions is a node
before versus after the introduction of EVB. We report heteroskedasticity-consistent standard errors
in parentheses. This specification includes an indicator 1(Post EVB) for implied trading costs esti-
mated for the sample period after the introduction of explicit virtual bidding (2/1/2011-12/31/2012);
the pre-EVB sample period is 4/1/2009-2/1/2011. We also include an indicator 1(Gen Node) that’s
one if and only if the node is associated with a generator. Finally, we include the interaction be-
tween these two variables (1(Post EVB) × 1(Gen Node)). We consider two dependent variables:
clower (Column 1) and cupper (Column 2). clower is the smallest value of per-unit trading costs c
for which we can reject the null hypothesis that a profitable trading strategy exists and cupper is
the largest value of c for which we can reject the null hypothesis that no profitable trading strategy
exists.
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6 Quantifying Market Efficiency Benefits in High

versus Low Demand Hours

This section describes the data, methodology, and results of our empirical analysis demon-

strating that the introduction of purely financial participants resulted in market efficiency

benefits in high demand hours relative to low demand hours. As discussed in Section 3,

the market efficiency benefits from introducing financial trading are likely to be largest

in the highest demand hours.

6.1 Data

We utilize hourly data on generator-level output from the California ISO, daily natural

gas prices for each of Northern and Southern California from SNL Financial26, and daily

fuel oil prices from the Energy Information Administration. These data span the sample

period 4/1/2009-3/31/2012. We also have information for each electricity generation

unit in the California ISO control area on its capacity, fuel type (i.e: natural gas, oil,

wind, etc.), total amount of thermal energy required to start up the unit, and its heat

rate curve. This heat rate curve tells us: “if a generation unit is currently utilizing X%

of their generation capacity, we need Y Million BTU (MMBTU) of thermal input in

order to produce one more MWh of electrical energy”. Combined, these data allow us to

compute the total quantity of thermal energy consumed by each generation unit during

each hour of our sample period.

We define generation unit i as starting in hour t if its output in hour t-1 is zero

(Qi,t−1 = 0) and its output in hour t is greater than zero Define the thermal energy

required to start up unit i to be ES
i . Each unit also submits the heat rate HRk

i relevant

for each of k = 1, 2, ..., 10 quantity steps. In particular, the thermal energy required to

produce Qi,t is:

EP
i,t =

10∑
k=1

HRk
i (Qi,t −

k−1∑
j=1

Q
j

i )
+

where the notation y+ ≡ y × 1(y > 0), Q
j

i corresponding to step j is the maximum level

of output for which heat rate HRj
i is applicable. Then, the total quantity of thermal

26We use the city-gate natural gas price corresponding to the Pacific Gas and Electric delivery point
and the Southern California Gas Citygate delivery point respectively.
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energy consumed by unit i in hour t is:

Ei,t = EP
i,t + ES

i 1(Qi,t > 0)1(Qi,t−1 = 0)

The total fuel costs associated with this quantity of energy consumed is simply:

TCi,t = Ei,t × P F
i,t

where P F
i,t is the daily fuel price (either natural gas or oil) applicable to that unit. For

natural gas fired units, we use the PG&E City-gate natural gas price if the unit is located

in Pacific Gas and Electric’s service territory and we use the SCE City-gate price if the

unit is located in either Southern California Edison’s service territory or San Diego Gas

and Electric’s service territory. We calculate the costs of the relatively small amount of

distillate fuel oil burned by generation units in California using the diesel fuel price paid

in Los Angeles.27 We sum the total fuel costs, total heat energy used, and total number

of starts over fossil-fired units for each hour-of-sample in order to construct our first three

market-level outcome variables. In particular, we assess how the introduction of financial

trading impacted the hourly aggregate fuel costs per MWh of electricity produced by

fossil-fuel fired units, the hourly aggregate thermal energy used per MWh, and whether

any fossil fuel fired unit was forced to start up in each hour.

The California ISO incurs ancillary service costs in order to procure sufficient ”reg-

ulation reserves,” “spinning reserves” and “non-spinning reserves ” to make certain that

electricity supplied equals electricity demanded at every instant in time even in the face

of generation and tranmission deratings and outages. Policymakers and regulators have

expressed concern that financial traders take advantage of physical constraints such as

transmission congestion in order to make profits, driving up these ancillary service costs.

Thus, we consider the ancillary service costs paid by CAISO per MWh of fossil-fuel-fired

electricity produced in each hour-of-sample as one of our market outcome measures.

Finally, we use hourly data on day-ahead and real-time electricity prices paid by each

of California’s three large, investor-owned utilities: Pacific Gas and Electric (PG&E),

Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). In par-

ticular, our last three outcome measures are the absolute differences between hourly

27In particular, we use data from the Energy Information Administration (EIA) on the “ultra-low
sulfur CARB diesel spot price” relevant to Los Angeles, California.
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day-ahead and real-time prices paid by the three utilities. This allows us to explore the

extent to which day-ahead/real-time price spreads converged after the introduction of

financial trading in relatively high demand hours.

6.2 Difference-in-Differences Methodology

For each market outcome Yt in hour-of-sample t, we employ the following difference-in-

differences framework:

Yt = αm + γh + θw +Xtφβ0HIGHp
t + δDDHIGHp

t × POSTEVBt + ut (5)

where we include month-of-sample fixed effects (αm), hour-of-the-day fixed effects (γh),

and an indicator for whether the day-of-sample is a weekday versus weekend (θw). This

specification also controls for a host of factors Xt: the log of total electricity demand,

two separate controls for the logs of the citygate natural gas prices paid in PG&E and

SCE, as well as separate controls for the log of total hourly production from (1) wind

and solar sources, (2) nuclear sources, and (3) hydro sources.

The indicator variable POSTEVBt is equal to one if the day-of-sample is after the

introduction of financial trading in 2/1/2011 and is equal to zero otherwise; this variable

is not included separately in the regression specification because it is absorbed by the

month-of-sample fixed effects. The indicator variable HIGHp
t is equal to one if and only

if aggregate electricity demand in hour-of-sample t is larger than the pth percentile of the

distribution of aggregate hourly demand across our 4/1/2009 to 3/31/2012 sample period.

Although our primary specifications are based on the p = 90th percentile of demand, we

show that our results are qualitatively similar for the 50, 75, 95, and 99 percentiles in a

sensitivity analyses. The independent variable of interest, HIGHp
t×POSTEVBt, captures

how the introduction of financial trading impacts each hourly market-level outcome Yt

in high demand hours relative to low demand hours. Finally, we cluster standard errors

by week-of-sample.
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6.3 Primary Findings

Table 5 presents the results from estimating the difference-in-differences specification

described in the previous subsection. We discuss the robustness checks, such as the pre-

trend analysis, pertaining to these results in the next subsection. Column (1) of Table

5 indicates that the introduction of financial trading to California’s wholesale electricity

market resulted in a 3.6% reduction in average fuel costs per MWh in high demand hours

relative to low demand hours. Similarly, we see a 4.2% reduction in average input heat

energy per MWh due to financial trading in relatively high demand hours. Translating

these effects to dollars, a 3.6% reduction in fuel costs per MWh across all of the power

plants in our sample results in a 4.2 million dollar reduction in the annual fuel costs paid

in high demand hours. Similarly, a 4.2% reduction in thermal energy per MWh, implies

a reduction in CO2 emissions of 145,000 tons, focusing only on high demand hours.

One source of the efficiency gains from purely financial participants described in

Section 3 is the incentive for these participants create for a lower cost dispatch of available

of generation units. Indeed, we see from Column (3) that at least one unit has to start

up in 4.2% less high demand hours after financial trading on average. Both the sign and

lack of statistical significance of this effect assuages concerns that physical and financial

participants are placing trades in order to profit from the physical constraints such as

start-up or ramping. To more directly address this concern, we consider total “ancillary

services” payments made to electricity suppliers in order to ensure that supply meets

demand at every instant in time. If the introduction of purely financial participants

resulted in an exacerbation of transmission, start-up, ramping, or other system operating

constraints, we would expect a marked increase in the ancillary services costs. This does

not turn out to be the case; Column (4) of Table 5 demonstrates that there is no statistical

difference in the ancillary costs per MWh paid out in relatively high demand hours before

versus after financial trading. In fact, the point estimate is negative, suggesting that

financial participation results in lower ancillary services costs per MWh in relatively

high demand hours.

Finally, the last three columns of Table 5 consider the effect of financial trading on

the absolute difference between the day-ahead and real-time electricity prices faced by

each of California’s three major distribution utilities: PG&E, SCE, and SDG&E. All

three columns indicate that the average absolute day-ahead/real-time price spread fell
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Table 5: Diff-in-Diff: High Demand vs. Low Demand Hours Before vs. After EVB

(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) -0.036 -0.042 -0.042 -0.071 -5.715 -13.902 -21.568
× 1(Post EVB) (0.012) (0.012) (0.028) (0.139) (3.003) (5.665) (9.864)

1(Demand > 90%) 0.032 0.036 0.008 0.123 2.496 6.231 7.882
(0.005) (0.005) (0.022) (0.055) (2.145) (4.395) (5.891)

R2 0.903 0.362 0.125 0.590 0.041 0.039 0.049
Avg. DV in Levels 32.63 8.048 0.686 1.704 13.199 15.055 16.426

Number of Obs. 26,277 26,277 26,277 26,276 26,277 26,277 26,277

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The dependent variables considered in this
table are: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh, (3) an indicator
of whether any fossil fuel fired units started up, (4) the log of ancillary services per MWh, (5)
the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of the day-
ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices in
SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications,
we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether
the day-of-sample is a weekday versus weekend, the log of total electricity demand, two separate
controls for the logs of the citygate natural gas prices paid in PG&E and SCE as well as separate
controls for the log of total hourly production from (1) wind and solar sources, (2) nuclear sources,
and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on market outcomes in high demand hours relative
to low demand hours. The data used for this table span the sample period 4/1/2009-3/31/2012.
California introduced explicit virtual bidding (EVB) on 2/1/2011; the “Post EVB” indicator is thus
one if and only if the day-of-sample is on or after 2/1/2011. Hours-of-sample with system demand
greater than the 90% of the distribution of hourly demands across our 4/1/2009-3/31/2012 sample
period are deemed to be “high demand” hours.
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significantly after 2/1/2011 in relatively high demand hours. Moreover, we demonstrate

in Appendix Section C.3 that the volatility in both day-ahead/real-time price spreads

and real-time prices fell after the introduction of purely financial participants. Combined,

our findings suggests that day-ahead electricity prices better predict expected real-time

prices, providing both electricity suppliers and demanders with the information to make

their day-ahead market outcomes more closely reflect real-time system conditions.

6.4 Robustness Checks

This subsection discusses the various robustness checks pertaining to our difference-in-

differences analysis. First, Appendix Table B.1 indicates that there is no statistical

difference in the trends over time in average outcomes in high demand hours versus low

demand hours prior to the introduction of financial trading on 2/1/2011. This provides

evidence that our results are not driven by pre-existing trends in how outcomes vary

across high versus low demand hours.

Next, the empirical results remain similar if we remove the 28 days before and after

2/1/2011 (see Appendix Table B.2); our findings do not seem to be due to any short-run

adjustments to the policy change. In addition, Appendix Table B.3 presents the results

using only data from the 6 months before and after the introduction of financial trading

on 2/1/2011. These empirical results are quantitatively quite similar to our primary

results from Table 5.

Appendix Table B.5 presents our specifications estimated on data aggregated to the

daily level. The results at the daily-level are broadly consistent with those presented in

Table 5 with the exception of the absolute day-ahead/real-time price spreads. This in

unsurprising given that day-ahead prices are far more likely to deviate substantially from

real-time prices during certain hours of the day; financial trading is especially beneficial

in reducing price spreads in those hours.

Finally, Appendix Table B.6 shows that our estimated effect of financial trading

on average fuel costs per MWh in relatively high demand hours remains quantitatively

similar if “high demand” is defined to hours-of-sample above the 50, 75, 95, and 99

percentiles of hourly demand rather than the p = 90th percentile as considered in our

primary specifications. We use this effect in order to calculate the efficiency benefits
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from slightly lowering the per-unit transaction costs in relatively high demand hours in

the next section. Thus, it is comforting that our physical efficiency benefit per MWh of

fossil-fuel-fired electricity production doesn’t change significantly based on our definition

of “relatively high demand”.

7 Implications for the Design of Electricity Markets

Allowing purely financial participants in multi-settlement LMP wholesale electricity mar-

kets is not without controversy. Many have argued that financial traders take advantage

of physical constraints such as transmission or the start-up/ramping of units in order

to profit at the expense of electricity consumers. We assess the empirical importance of

these concerns by comparing market outcomes in high versus low demand hours before

versus after California introduced financial trading to its electricity market on February

1st 2011. Using this difference-in-differences framework, we find that, in relatively high

demand hours, the introduction of financial trading resulted in a 3.6% (4.2%) reduction

in fuel costs (thermal energy) per MWh. This reduction in fuel costs per MWh implies

an annual fuel cost savings in relatively high demand hours of roughly 4.2 million dollars.

Moreover, the annual environmental benefit from the reduction in fuel used during high

demand hours due to financial trading is 145,000 tons of CO2. These market efficiency

gains do not appear to come with a deterioration in physical market conditions. Specifi-

cally, we find no statistical difference before versus after February 1st 2011 in either the

number of high demand hours in which at least one thermal unit was required to start

up or the per MWh ancillary services costs associated with ensuring that supply meets

demand in high demand hours.

Of course, the market efficiency gains from financial trading are directly tied to the

financial volumes traded in the market. This trading volume in turn is a function of the

transaction costs associated with financial trading. We develop a statistical framework

to estimate the implied per-unit trading costs faced by traders in California’s wholesale

electricity market. These implied trading costs are defined to be the trading cost that

just causes a failure to reject the null hypothesis of no profitable trading strategy. Our

empirical findings indicate that nodal-level implied trading costs decreased significantly

after California introduced purely financial participation in 2/1/2011. We find substantial
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heterogeneity across nodes in the distribution of implied trading costs; the 5% (95%)

quantile of the distribution of implied trading costs across locations is $5.29 ($12.84) per

MWh.

Our results thus indicate that both implied trading costs and the physical efficiency

benefits from financial trading vary over both time and space. This suggests the scope

for extracting additional efficiency benefits from financial trading by setting trading costs

that vary by location and hour-of-the-year. To underscore this point, we consider the

following back-of-the-envelope calculation in which we slightly increase (decrease) per-

unit transaction costs in low (high) demand hours. First, the 25% quantile (75% quantile)

of our across node distribution of implied trading costs is 2.47 (4.11) dollars per MWh

lower after the introduction of financial trading for generation nodes. The corresponding

25% and 75% quantiles of the reductions in implied trading costs across non-generation

nodes are 2.65 and 4.86 dollars per MWh respectively. Our market efficiency estimates

imply that the reduction in implied trading costs after 2/1/2011 results in a roughly 1.12

dollar per MWh reduction in fuel costs in relatively high demand hours. Dividing these

two estimates and multiplying by 0.05 gives us that a 5 cents per MWh reduction in

implied trading costs in high demand hours results in fuel cost savings ranging from 1-2

cents per Mwh in these hours depending on which location is considered.28

However, the operator’s ability to influence market outcomes using transaction fees

is limited by the extent to which the cost of trading is based on implicit factors such as

the opportunity cost of traders’ time and effort. Indeed, even after 2/1/2011, our average

estimated implied trading cost ($7.18 per MWh) is far higher than the roughly $0.50-$0.70

per MWh in transaction fees charged by the market operator. That being said, our back-

of-the-envelope calculation suggests that even a 5 cents per MWh reduction in transaction

fees in high demand hours can result in economically sizable efficiency benefits. There

is thus substantial scope for improvements to electricity market design even without

solving the difficult problem of setting transaction fees subject to equilibrium responses

by financial participants.

28As an example, financial trading reduced implied trading costs by 4.11 dollars per MWh at the 75%
quantile in the distribution of non-generation nodes. Assume that this 4.11 dollars per MWh reduction
in implied trading costs yielded a 1.12 dollar per MWh reduction in fuel costs savings in relatively high
demand hours. This back-of-the-envelope calculation implies that a 5 cent reduction in implied trading
costs would result in 1.4 = 0.05× 1.12

4.11 cents per MWh in fuel cost savings.
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A Additional Tables and Figures

Appendix Figure A.1 presents a map of the territories served by each of California’s

investor-owned utilities.

Appendix Tables A.1 and A.2 list the market participants that are registered to place

financial trades in California’s wholesale electricity market. Suppliers and demanders

that inject or withdraw electricity (“participants that schedule electricity”) are listed

separately from purely financial players (“participants that don’t schedule electricity”).

This list suggests that a sizable number of both physical and financial participants place

financial bids in this market.

Appendix Figure A.2 shows hourly average day-ahead/real-time spreads, along with

their pointwise 95% confidence intervals, for the PG&E, SCE, and SDG&E LAPs before

versus after the introduction of explicit virtual bidding (EVB). We can reject that the

average day-ahead/real-time price spread is zero for some hours of the day for all three

load-serving entities. Importantly, this by itself does not imply that financial traders can

profitably arbitrage LAP-level day-ahead/real-time price differences. One must also take

into account the potentially sizable transaction costs associated with these price spreads.

Appendix Figure A.3 plots the bootstrap distributions of implied trading costs for

the pre-EVB and post-EVB sample periods for each of the three LAPs. The solid vertical

lines correspond to the values of clower and cupper for the pre-EVB sample period and the

dotted vertical lines on each graph correspond to the values of clower and cupper for the

post-EVB sample. This figure indicates that both clower and cupper fell substantially after

the introduction of EVB. We consider a formal test of the null hypothesis that clower and

cupper remained the same before versus after EVB in Figure 3.
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Figure A.1: California’s Investor-Owned Utility Service Areas

Notes: This figure is a map of the territories served by each of California’s investor-owned electric
utilities. This map is provided by the California Energy Commission; see https://www.ferc.gov/
market-oversight/mkt-electric/california.asp.
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Figure A.2: Hourly Graphs of Price Differences with 95% C.I: Before and After EVB
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Notes: This figure presents average day-ahead/real-time price spreads for each hour-of-the-day
and each load aggregation point (LAP), separately for the sample periods before versus after the
introduction of explicit virtual bidding (EVB). The three LAPs correspond to Pacific Gas and
Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E).
This figure also includes pointwise 95% confidence intervals around the day-ahead/real-time price
spread averages for each hour-of-the-day.
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Figure A.3: Bootstrap Distribution of φ(X) with 95% C.I: Before and After EVB
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Notes: This figure plots the bootstrap distributions of implied trading costs separately for sample
periods before the introduction of explicit virtual bidding (4/1/2009-2/1/2011) versus after the
introduction of EVB (2/1/2011-12/31/2012) for each of three load aggregation points (LAPs). These
LAPs correspond to territories served by each of California’s three major electricity distribution
utilities: Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas
and Electric (SDG&E). The solid vertical lines correspond to the values of clower and cupper for the
pre-EVB sample period while the dotted vertical lines correspond to the values of clower and cupper
for the post-EVB sample. clower is the smallest value of per-unit trading costs c for which we can
reject the null hypothesis that a profitable trading strategy exists while cupper is the largest value of
c for which we can reject the null hypothesis that no profitable trading strategy exists.

48



Table A.1: List of Market Participants Registered to Explicit Virtual Bid: Part (1)

Participants that Schedule Electricity Participants that Don’t Schedule Electricity

(1) J. Aron and Company, LLC Amber Power

(2) Brookfield Energy Marketing LP Appian Way Energy Partners West, LLC

(3) BP Energy Company ATNV Energy

(4) Engelhart CTP (US), LLC Automated Algorithms LLC

(5) Calpine Energy Services, LP Bilton Wong Power, Inc.

(6) California Department of Water Resources Blackout Power Trading, Inc.

(7) Just Energy Calicot Energy LLC

(8) Citigroup Energy, Inc. Clear Power LLC

(9) ConocoPhillips Company Cumulus Master Fund

(10) Shell Energy North America (US), L.P. Darby Energy, LLLP

(11) CWP Energy, Inc. Dynasty Energy California Inc.

(12) DC Energy California, LLC Dynamis Capital, LLC

(13) DTE Energy Trading Inc. Eagle’s View Partners, Ltd

(14) EDF Trading North America, LLC EDP Renewables North America LLC

(15) Dynegy Marketing and Trade, LLC ETC Endure Energy LLC

(16) CP Energy Marketing (US), Inc. ETRACOM, LLC

(17) Boston Energy Trading and Marketing, LLC
(formerly Edison Mission Marketing and Trading) FANTODS, LLC

(18) Exelon Generation Company, LLC Freepoint Commodities, LLC

(19) NextEra Energy Marketing, LLC Golden Dome LLC (previously Ecesis LLC)

(20) Guzman Energy, LLC Gridmatic Inc.

(21) Rubicon NYP Corp Heartland Power Inc.

(22) Castleton Commodities Merchant Trading L.P. Hemsworth Capital Midwest LP

(23) Macquarie Energy LLC High Resolution Energy LLC

(24) MAG Energy Solutions, Inc. Hopewell Capital Partners, LP

(25) Modesto Irrigation District Inertia Power VII, LLC

(26) GenOn Energy Management, LLC LTSTE Investments, LLC

Notes: This table presents the first part of the list of market participants that are registered to place
financial bids in California’s wholesale electricity market (CAISO (2019a)). This table is split into
two columns: the first column lists physical participants who actually inject of withdraw electricity
from the grid while the second column lists purely financial participants that don’t actually inject
or withdraw electricity.
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Table A.2: List of Market Participants Registered to Explicit Virtual Bid: Part (2)

Participants that Schedule Electricity Participants that Don’t Schedule Electricity

(27) Morgan Stanley Capital Group Inc. Mercuria Energy America, Inc.

(28) Constellation NewEnergy, Inc. MET West Trading, LLC

(29) NRG California South, LP Monterey CA, LLC

(30) NRG Power Marketing LLC NDC Partners LLC

(31) Pacific Gas and Electric Company (PG&E - Trading) NorthStar SW Ltd.

(32) Portland General Electric Company Precept Power LLC

(33) Avangrid Renewables, LLC Red Wolf CT, LLC

(34) Public Service Company of Colorado (Xcel Energy) Saracen Energy West, LP

(35) Powerex Corp. Sesco Caliso, LLC

(36) Royal Bank of Canada Sirius Power Trading LLC

(37) Rainbow Energy Marketing Corporation Solios Power, LLC

(38) City of Roseville (Roseville Electric) Tios Capital, LLC

(39) Southern California Edison Company Tommy Energy Solutions Corp

(40) San Diego Gas and Electric Company Triolith Energy Fund, LP

(41) Calpine Energy Solutions TrueLight Energy Fund, LP

(42) Direct Energy Business, LLC Trumpet Trading, LLC

(43) Sempra Gas and Power Marketing, LLC Tungsten Power LP

(44) Sacramento Municipal Utility District Tyne Hill Investments LP

(45) TransCanada Energy Sales Ltd. Uncia Energy LP - Series C

(46) City of Tacoma
Department of Public Utilities, Light Division Velocity American Energy Master I, LP

(47) The Energy Authority, Inc XO Energy CAL, LP

(48) TEC Energy Inc. Yuma Electric, LLC

(49) TransAlta Energy Marketing (U.S.) Inc.

(50) Tenaska Power Services Co.

(51) Valley Electric Association, Inc.

(52) Vitol, Inc.

(53) Western Area Power Administration
Sierra Nevada Region (WAPA)

(54) ZGlobal Inc.

Notes: This table presents the second part of the list of market participants that are registered
to place financial bids in California’s wholesale electricity market (CAISO (2019a)). This table is
split into two columns: the first column lists physical participants who actually inject of withdraw
electricity from the grid while the second column lists purely financial participants that don’t actually
inject or withdraw electricity.
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B Difference-in-Differences Robustness Checks

This Appendix section describes the different robustness checks pertaining to the

difference-in-differences results presented in Table 5 in Section 6.

B.1 Pre-Trends Analysis

This subsection argues that the results presented in Table 5 are not driven by pre-

existing trends in outcomes between high versus low demand hours. Namely, in order

to interpret the findings from our difference-in-differences analysis as causal, trends over

time in outcomes should not be different across low and high demand outcomes prior

to the introduction of explicit virtual bidding (i.e.: financial trading). We test this

assumption in two ways. First, we show that the first difference in hourly outcomes prior

to explicit virtual bidding (EVB) is the same across high versus low demand hours. The

second approach is to estimate an event study framework, demonstrating that: (1) effects

estimated separately for each quarter-of-sample are not significantly different from zero

prior to EVB, and (2) there is no pre-existing trend in these effects prior to EVB.

B.1.1 Statistical Test on First-Differences

The definition of “common pre-existing trends” is that the slope over time in outcomes

is the same across high versus low demand hours. The “slope over time” is simply the

first difference in outcomes: Yt+1−Yt
t+1−t = Yt+1 − Yt. Thus, to formally test the “common

pre-existing trends” assumption, we estimate the following regression model using only

data from hours-of-sample before the introduction of financial trading on February 1st,

2011:

Yt − Yt−1 = αm + γh + θw +Xtφβ0HIGHp
t + ut (6)

where we include month-of-sample fixed effects (αm), hour-of-the-day fixed effects (γh),

and an indicator for whether the day-of-sample is a weekday versus weekend (θw). This

specification also controls for a host of factors Xt: the log of total electricity demand, two

separate controls for the logs of the citygate natural gas prices paid in PG&E and SCE,

as well as separate controls for the log of total hourly production from (1) wind and solar

sources, (2) nuclear sources, and (3) hydro sources. Finally, we cluster standard errors
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Table B.1: Diff-in-Diff Robustness Check: Pre-Trends Analysis

(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) 0.001 0.001 -0.007 0.002 0.848 -0.113 -1.173
(0.001) (0.001) (0.009) (0.009) (0.855) (1.823) (1.480)

R2 0.031 0.018 0.017 0.111 0.013 0.011 0.009
Average DV in Levels 33.396 8.002 0.677 1.229 13.402 15.66 17.275
Number of Obs. 16,078 16,078 16,078 16,078 16,078 16,078 16,078

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The dependent variables considered in this table
are the first differences of: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh,
(3) an indicator of whether any fossil fuel fired units started up, (4) the log of ancillary services per
MWh, (5) the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of
the day-ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices
in SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications,
we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether
the day-of-sample is a weekday versus weekend, the log of total electricity demand, two separate
controls for the logs of the citygate natural gas prices paid in PG&E and SCE as well as separate
controls for the log of total hourly production from (1) wind and solar sources, (2) nuclear sources,
and (3) hydro sources.

Table Description: This table presents the pre-trends analysis corresponding to the difference-in-
differences results presented in Table 5; in particular, we estimate the specification documented in
Equation (6) in Appendix Section B.1. The data used for this table span the sample period 4/1/2009-
1/31/2011, noting that California introduced explicit virtual bidding (i.e.: financial trading) on
2/1/2011. Hours-of-sample with system demand greater than the 90% of the distribution of hourly
demands across our 4/1/2009-3/31/2012 sample period are deemed to be “high demand” hours.

at the week-of-sample.

B.1.2 Event Study Framework

We also assess the common pre-existing trends assumption using an event study frame-

work. In particular, we estimate the following regression specification:

Yt = αm + γh + θw +Xtφβ0HIGHp
t

+
4∑

τ=−6

βτD
τ
t + βτ<−6D

τ<−6
t + βτ>6D

>6
t + ut

(7)

where, as before, we include month-of-sample fixed effects (αm), hour-of-the-day fixed

effects (γh), an indicator for whether the day-of-sample is a weekday versus weekend

(θw) as well as a host of other variables Xt: the log of total electricity demand, two

separate controls for the logs of the citygate natural gas prices paid in PG&E and SCE,
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as well as separate controls for the log of total hourly production from (1) wind and solar

sources, (2) nuclear sources, and (3) hydro sources. Standard errors are clustered at the

week-of-sample level.

Dτ
t is an indicator function that is equal to one if and only if: (1) hour-of-sample t

is a “high demand hour” and (2) the difference between the quarter-of-sample q and the

first quarter of 2011 (denoted f(q)) is equal to τ (i.e.: τ = q − f(q)). For example, the

quarter in which financial trading was introduced (i.e.: the first quarter of 2011) would

correspond to τ = 0. Dτ<−6
t (Dτ>6

t ) is equal to one if and only if: (1) hour-of-sample

t is a “high demand hour”, and (2) the difference between quarter of sample q and the

first quarter of 2011 is less than -6 (greater than 6). Finally, we normalize to zero the

coefficient corresponding to the quarter prior to the introduction of financial trading (i.e.:

βτ=−1 = 0).

The results of this event study analysis are plotted up in two separate figures. Ap-

pendix Figure B.1 focuses on the effects for the log of fuel costs per MWh, the log of

thermal energy per MWh, whether thermal units started up in the hour, and the log of

ancillary services costs per MWh. Appendix Figure B.2 plots the event study coefficients

corresponding to the absolute day-ahead/real-time price spreads for each of California’s

three major electricity distribution companies: Pacific Gas and Electric (PG&E), South-

ern California Edison (SCE), and San Diego Gas and Electric (SDG&E). In both cases,

the coefficient estimates corresponding to the first quarter of 2011 as well as four quarters

prior (i.e.: τ = 0 and τ = −4) are missing simply because there are no high demand

hours in those two quarters. Moreover, the coefficient estimates corresponding to the last

quarter of 2009 are generally substantially noiser than the other coefficient estimates, re-

flecting the relatively small number of high demand hours in this quarter. That being

said, across all seven panels, we do not see a substantial trend in effect in the quarters

prior to the introduction of financial trading. This provides comforting evidence in favor

of the common trends assumption required to interpret the results of Table 5 as causal.

B.2 Additional Robustness Checks

This subsection considers our remaining sensitivity analyses pertaining to the difference-

in-differences results presented in Table 5 in Section 6. First, Appendix Table B.2 shows
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Figure B.1: Event Study Estimates: Market Outcomes
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Notes: This figure presents the coefficient estimates and 95% confidence intervals corresponding to
the event study framework described in Equation (7). The dependent variables considered in this
figure are: (top left panel) the log of fuel cost per MWh, (top right panel) the log of input energy
per MWh, (bottom left panel) an indicator of whether any fossil fuel fired units started up, and
(bottom right panel) the log of ancillary services per MWh. The coefficient estimates reflect the
average outcomes in high relative to low demand hours τ quarters away from the introduction of
financial trading on February 1st, 2011; hours-of-sample with system demand greater than the 90%
of the distribution of hourly demands across our 4/1/2009-3/31/2012 sample period are deemed to
be “high demand” hours. The x-axis simply plots the number of quarters away from the first quarter
of 2011 (i.e.: τ). All coefficient estimates are relative to the quarter before the first quarter of 2011
(i.e.: βτ=−1 is normalized to be zero). For all of the event study specifications, we control for month-
of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether the day-of-sample is a
weekday versus weekend, the log of total electricity demand, two separate controls for the logs of the
citygate natural gas prices paid in PG&E and SCE as well as separate controls for the log of total
hourly production from (1) wind and solar sources, (2) nuclear sources, and (3) hydro sources.

that our empirical results remain similar if we estimate Equation (5) removing the 28 days

before and after 2/1/2011. Thus, our findings do not seem to be due to any short-run

adjustments to the policy change.

Next, Appendix Table B.3 presents the results using only data from the 6 months

before and after the introduction of financial trading on 2/1/2011. The empirical results

are quantitatively quite similar to our primary results from Table 5. Further, Appendix

Table B.4 presents our findings with the standard errors calculated using the Newey-West
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Table B.2: Diff-in-Diff Robustness Check: Excluding the 28 Days Before and After
2/1/2011

(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) -0.036 -0.042 -0.042 -0.062 -5.833 -14.090 -21.664
× 1(Post EVB) (0.012) (0.012) (0.027) (0.138) (3.009) (5.668) (9.878)

1(Demand > 90%) 0.030 0.035 0.003 0.142 3.205 6.831 8.395
(0.005) (0.005) (0.022) (0.054) (2.089) (4.345) (5.765)

R2 0.906 0.366 0.127 0.610 0.041 0.039 0.050
Avg. DV in Levels 32.485 8.043 0.684 1.731 12.987 14.888 16.264

Number of Obs. 24,909 24,909 24,909 24,908 24,909 24,909 24,909

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The dependent variables considered in this
table are: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh, (3) an indicator
of whether any fossil fuel fired units started up, (4) the log of ancillary services per MWh, (5)
the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of the day-
ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices in
SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications,
we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether
the day-of-sample is a weekday versus weekend, the log of total electricity demand, two separate
controls for the logs of the citygate natural gas prices paid in PG&E and SCE as well as separate
controls for the log of total hourly production from (1) wind and solar sources, (2) nuclear sources,
and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on market outcomes in high demand hours relative
to low demand hours. The data used for this table span the sample period 4/1/2009-3/31/2012; in
contrast with Table 5, we estimate Equation (5) removing the 28 days before and after 2/1/2011.
California introduced explicit virtual bidding (EVB) on 2/1/2011; the “Post EVB” indicator is thus
one if and only if the day-of-sample is on or after 2/1/2011. Hours-of-sample with system demand
greater than the 90% of the distribution of hourly demands across our 4/1/2009-3/31/2012 sample
period are deemed to be “high demand” hours.
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Figure B.2: Event Study Estimates: Absolute Price Spreads
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Notes: This figure presents the coefficient estimates and 95% confidence intervals corresponding to
the event study framework described in Equation (7). The dependent variables considered in this
figure are the absolute differences between day-ahead and real-time prices corresponding to each of
California’s three major investor-owned utilities: Pacific Gas and Electric (top left panel), Southern
California Edison (top right panel), and San Diego Gas and Electric (bottom middle panel). The
coefficient estimates reflect the average outcomes in high relative to low demand hours τ quarters
away from the introduction of financial trading on February 1st, 2011; hours-of-sample with system
demand greater than the 90% of the distribution of hourly demands across our 4/1/2009-3/31/2012
sample period are deemed to be “high demand” hours. The x-axis simply plots the number of
quarters away from the first quarter of 2011 (i.e.: τ). All coefficient estimates are relative to the
quarter before the first quarter of 2011 (i.e.: βτ=−1 is normalized to be zero). For all of the event
study specifications, we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an
indicator for whether the day-of-sample is a weekday versus weekend, the log of total electricity
demand, two separate controls for the logs of the citygate natural gas prices paid in PG&E and SCE
as well as separate controls for the log of total hourly production from (1) wind and solar sources,
(2) nuclear sources, and (3) hydro sources.

formula (Newey and West, 1987) accounting for 168 hours (i.e.: one week) of autocor-

relation in the outcome variables. Our conclusions remain the same when analyzing

Appendix Table B.4: financial trading improves market outcomes such as fuel costs per

MWh and absolute price spreads without exacerbating market constraints such as unit

start ups or ancillary services.

Appendix Table B.5 presents our specifications estimated on data aggregated to the
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Table B.3: Diff-in-Diff Robustness Check: 6 Months Before and After 2/1/2011

(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) -0.056 -0.062 -0.006 -0.463 -9.740 -14.367 -12.471
× 1(Post EVB) (0.016) (0.016) (0.030) (0.167) (4.879) (6.300) (6.105)

1(Demand > 90%) 0.062 0.064 -0.032 0.303 0.092 2.245 -1.367
(0.011) (0.011) (0.032) (0.099) (4.347) (5.681) (5.968)

R2 0.675 0.375 0.120 0.665 0.038 0.040 0.038
Avg. DV in Levels 34.635 8.226 0.706 2.588 15.298 17.023 18.27

Number of Obs. 9,503 9,503 9,503 9,503 9,503 9,503 9,503

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The dependent variables considered in this
table are: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh, (3) an indicator
of whether any fossil fuel fired units started up, (4) the log of ancillary services per MWh, (5)
the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of the day-
ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices in
SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications,
we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether
the day-of-sample is a weekday versus weekend, the log of total electricity demand, two separate
controls for the logs of the citygate natural gas prices paid in PG&E and SCE as well as separate
controls for the log of total hourly production from (1) wind and solar sources, (2) nuclear sources,
and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on market outcomes in high demand hours relative
to low demand hours. In contrast with Table 5, the data used for this table span the sample period
2/1/2010-8/31/2011 (i.e.: the 12 months before and after 2/2011). California introduced explicit
virtual bidding (EVB) on 2/1/2011; the “Post EVB” indicator is thus one if and only if the day-
of-sample is on or after 2/1/2011. Hours-of-sample with system demand greater than the 90% of
the distribution of hourly demands across our 4/1/2009-3/31/2012 sample period are deemed to be
“high demand” hours.
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Table B.4: Diff-in-Diff Robustness Check: Accounting for 168 hours of Autocorrelation

(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) -0.036 -0.042 -0.042 -0.071 -5.715 -13.902 -21.568
× 1(Post EVB) (0.012) (0.012) (0.028) (0.138) (3.029) (5.631) (9.505)

1(Demand > 90%) 0.032 0.036 0.008 0.123 2.496 6.231 7.882
(0.005) (0.005) (0.023) (0.054) (2.126) (4.418) (5.756)

R2 0.903 0.362 0.125 0.590 0.041 0.039 0.049
Avg. DV in Levels 32.63 8.048 0.686 1.704 13.199 15.055 16.426

Number of Obs. 26,277 26,277 26,277 26,276 26,277 26,277 26,277

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are cal-
culated using the Newey-West estimator (Newey and West, 1987) accounting for 168 hours (i.e.:
one week) of autocorrelation and are reported in parentheses. The dependent variables considered
in this table are: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh, (3) an
indicator of whether any fossil fuel fired units started up, (4) the log of ancillary services per MWh,
(5) the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of the
day-ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices in
SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications,
we control for month-of-sample fixed effects, hour-of-the-day fixed effects, an indicator for whether
the day-of-sample is a weekday versus weekend, the log of total electricity demand, two separate
controls for the logs of the citygate natural gas prices paid in PG&E and SCE as well as separate
controls for the log of total hourly production from (1) wind and solar sources, (2) nuclear sources,
and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on market outcomes in high demand hours relative
to low demand hours. The data used for this table span the sample period 4/1/2009-3/31/2012.
California introduced explicit virtual bidding (EVB) on 2/1/2011; the “Post EVB” indicator is thus
one if and only if the day-of-sample is on or after 2/1/2011. Hours-of-sample with system demand
greater than the 90% of the distribution of hourly demands across our 4/1/2009-3/31/2012 sample
period are deemed to be “high demand” hours.
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daily level. In particular, we take the daily sum over hours-of-the-day of electricity de-

mand, fuel costs, thermal input energy, electricity production by type (thermal, nuclear,

hydro, and renewables), number of thermal units started up and ancillary services costs;

daily total fuel costs, thermal input energy and ancillary services costs are the divided by

daily total electricity production from fossil-fuel-fired units in order to construct the out-

come variables considered in Appendix Table B.5. In contrast with Table 5, we consider

the log of the total number of thermal units that started up in the day rather than an

indicator of whether any thermal units started up in the hour. This is because at least

one fossil fuel fired unit started up in every day-of-sample. Finally, the hourly day-ahead

and real-time electricity prices for each service area are averaged to the daily-level; we

take the absolute difference between these day-ahead and real-time prices for our last

three outcome measures.

Our difference-in-differences specification thus considers days-of-sample above versus

below the 90% of the distribution of daily total electricity demand before versus after

the introduction of financial trading. The results of this analysis, presented in Appendix

Table B.5, are broadly consistent with those presented in Table 5 with the exception of the

absolute day-ahead/real-time price spreads. This in unsurprising given that day-ahead

prices are far more likely to deviate substantially from real-time prices during certain

hours of the day; financial trading is especially beneficial in reducing price spreads in

those hours.

Finally, Appendix Table B.6 shows that our estimated effect of financial trading

on average fuel costs per MWh in relatively high demand hours remains quantitatively

similar if “high demand” is defined to hours-of-sample above the 50, 75, 95, and 99

percentiles of hourly demand rather than the p = 90th percentile as considered in our

primary specifications. We use this effect in order to calculate the efficiency benefits

from slightly lowering the per-unit transaction costs in relatively high demand hours in

the next section. Thus, it is comforting that our physical efficiency benefit per MWh of

fossil-fuel-fired electricity production doesn’t change significantly based on our definition

of “relatively high demand”.
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Table B.5: Diff-in-Diff Robustness Check: Daily-Level

Log of Average Fuel Cost Per MWh
(1) (2) (3) (4) (5) (6) (7)

1(Demand > 90%) -0.022 -0.030 -0.176 -0.276 -2.810 -2.451 -2.293
× 1(Post EVB) (0.011) (0.012) (0.055) (0.119) (2.543) (2.743) (2.997)

1(Demand > 90%) 0.037 0.043 0.131 0.250 3.239 -1.022 -4.640
(0.006) (0.005) (0.044) (0.100) (2.243) (2.771) (5.444)

R2 0.983 0.750 0.544 0.841 0.124 0.103 0.173
Avg. DV in Levels 32.444 8.003 45.275 1.685 8.353 9.725 10.815

Number of Obs. 1,095 1,095 1,095 1,095 1,095 1,095 1,095

Notes: The unit of observation for these regressions is day-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The dependent variables considered in this
table are: (1) the log of fuel cost per MWh, (2) the log of input energy per MWh, (3) an indicator
of whether any fossil fuel fired units started up, (4) the log of ancillary services per MWh, (5)
the absolute value of the day-ahead/real-time prices in PG&E, (6) the absolute value of the day-
ahead/real-time prices in SCE, and (7) the absolute value of the day-ahead/real-time prices in
SDG&E. The row titled “Avg. DV in Levels” reports the mean of the dependent variable in levels
even if the dependent variable is logged when running the regression. For all of the specifications, we
control for month-of-sample fixed effects, an indicator for whether the day-of-sample is a weekday
versus weekend, the log of total electricity demand, two separate controls for the logs of the citygate
natural gas prices paid in PG&E and SCE as well as separate controls for the log of total hourly
production from (1) wind and solar sources, (2) nuclear sources, and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on market outcomes in high demand days relative
to low demand days. The data used for this table span the sample period 4/1/2009-3/31/2012.
California introduced explicit virtual bidding (EVB) on 2/1/2011; the “Post EVB” indicator is thus
one if and only if the day-of-sample is on or after 2/1/2011. Days-of-sample with system demand
greater than the 90% of the distribution of daily demands across our 4/1/2009-3/31/2012 sample
period are deemed to be “high demand” days.
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Table B.6: Diff-in-Diff Robustness Check: By Percentage of Demand

Log of Average Fuel Cost Per MWh
(1) (2) (3) (4) (5)

1(Demand > Cut-off) -0.011 -0.025 -0.036 -0.044 -0.022
× 1(Post EVB) (0.006) (0.010) (0.012) (0.013) (0.018)

1(Demand > Cut-off) -0.005 0.001 0.032 0.062 0.077
(0.003) (0.004) (0.005) (0.006) (0.009)

Demand Cut-Off 50% 75% 90% 95% 99%
R2 0.903 0.903 0.903 0.904 0.904

Avg. DV in Levels 32.63 32.63 32.63 32.63 32.63
Number of Obs. 26,277 26,277 26,277 26,277 26,277

Notes: The unit of observation for these regressions is hour-of-sample. Standard errors are clustered
by week-of-sample and are reported in parentheses. The row titled “Avg. DV in Levels” reports the
mean of fuel costs per MWh in levels even though fuel costs per MWh are logged when running the
regression. For all of the specifications, we control for month-of-sample fixed effects, hour-of-the-day
fixed effects, an indicator for whether the day-of-sample is a weekday versus weekend, the log of
total electricity demand, two separate controls for the logs of the citygate natural gas prices paid
in PG&E and SCE as well as separate controls for the log of total hourly production from (1) wind
and solar sources, (2) nuclear sources, and (3) hydro sources.

Table Description: This table presents the difference-in-differences results pertaining to the effect
of explicit virtual bidding (i.e.: financial trading) on fuel costs per MWh in high demand hours
relative to low demand hours. The data used for this table span the sample period 4/1/2009-
3/31/2012. California introduced explicit virtual bidding (EVB) on 2/1/2011; the “Post EVB”
indicator is thus one if and only if the day-of-sample is on or after 2/1/2011. Hours-of-sample
with system demand greater than the 50%, 75%, 90%, 95%, and 99% of the distribution of hourly
demands across our 4/1/2009-3/31/2012 sample period are deemed to be “high demand” hours for
the specification estimated in Columns 1, 2, 3, 4, and 5 of this table respectively.
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C Additional Empirical Results

C.1 Is there autocorrelation in daily price differences beyond

the first lag?

Our statistical test of arbitrage opportunities accounting for trading costs only considers

trading strategies that vary by hour-of-the-day. We do not allow for trading strategies to

be updated based on information from past days. However, trading strategies in practice

cannot be a function of information from the prior day because the values of the 24× 1

vector of real-time prices for day d − 1 are not known before offers are submitted to

the day-ahead market for day d. Thus, any trading strategies involving portfolios of the

24×1 vector of day-ahead/real-time price differences can only condition on realized day-

ahead/real-time price differences from k ≥ 2 days ago (Xd−k). Our analysis is restricted

to trading strategies that do not condition on any past values of Xd−k; this restriction

is valid if the autocorrelation matrices for the Xd process are zero beyond the first lag,

noting again that traders cannot utilize the realization Xd−1 in setting their trading

strategy for day d.

We formulate a statistical test of the null hypothesis that the first R autocorrelation

matrices associated with Xd beyond the first lag are equal to zero. In particular, consider

the τ th auto-correlation matrix (which is 24× 24): Γ(τ) = E[(Xt − µ)(Xt−τ − µ)′].

Consistent with our above discussion, we expect Γ(1) to be non-zero but restrict Γ(τ) = 0

for all τ > 1. Thus, we consider the Null hypothesis:

H : Γ(2) = 0,Γ(3) = 0, ...,Γ(R) = 0

for a fixed value of R. Empirically, we test using R = 10. This hypothesis test is

implemented by first defining ξ ≡ [vec(Γ(2))′, vec(Γ(3))′, ..., vec(Γ(L))′]′, where the

vec(.) operator takes each 24 × 24 auto-correlation matrix and stacks it column-wise to

create a 576 × 1 vector. Therefore, ξ has 5760 = 576 × 10 elements, all of which must

equal zero under the null hypothesis. We use the moving block bootstrap described more

fully in the previous subsection in order to estimate the 5760 × 5760 covariance matrix

associated with ξ̂. Our Wald statistic TS = ξ̂′Σ̂−1
ξ,bootξ̂ is asymptotically chi-squared

distributed with 242× (R− 1) degrees of freedom under the null hypothesis. We perform
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Table C.1: Test Statistics for Autocorrelation (1 < L ≤ 10) in Daily Price Differences

Before EVB After EVB
PG&E 2862.2 2767.0
SCE 2789.2 2842.6
SDG&E 3082.1 2700.7

Notes: This table presents the chi-squared test statistics for each load aggregation point (LAP)
before and after the introduction of explicit virtual bidding (EVB) corresponding to the null hy-
pothesis that the second through tenth autocorrelation matrices of the 24 × 1 vector of daily
day-ahead/real-time price differences are zero; in math, we are testing the null hypothesis that
Γ(2) = Γ(3) = ... = Γ(10) = 0. We consider the three LAPs corresponding to California’s three
major load-serving entities (read: electricity demanders): Pacific Gas and Electric (PG&E), South-
ern California Edison (SCE), and San Diego Gas and Electric (SDG&E). To conduct this statistical
test, we first estimate (Γ(2),Γ(3), ...,Γ(10)), which are each 24 × 24, pre-EVB and post-EVB for
each LAP and stack the elements column-wise; this results in a 5760 = 242 × 9 element vector. We
use a moving block bootstrap procedure in order to estimate the covariance matrix associated with
this 5760× 1 vector. The upper α = 0.05 critical value for these test statistics is χ2

5184 = 5352.6.

this test separately for the day-ahead/real-time price differences associated with each

location for sample periods before versus after the implementation of explicit virtual

bidding.

Our statistical test of arbitrage is based on calculating the most profitable strategy

to exploit expected differences between day-ahead and real-time prices that conditions

only on hour-of-day. In order to provide statistical evidence that more complex trading

strategies do not generate significantly higher revenues, we test the null hypothesis that

the second through tenth autocorrelation matrices associated with the 24 × 1 vector

of daily day-ahead/real-time price spreads are zero: Γ(2) = Γ(3) = ... = Γ(10) = 0.

We do not include the first autocorrelation matrix Γ(1) in this test because market

participants are required to submit offers into the day-ahead market cleared for day d

(for energy to be delivered in day d + 1) prior to the clearing of the real-time market

for day d; thus, traders cannot utilize information on realized day-ahead/real-time price

spreads for day d when forming trading strategies for day d + 1. Our statistical test for

autocorrelation is conducted separately for each of three load aggregation points (LAPs)

both before and after the introduction of explicit virtual bidding. We consider the three

LAPs corresponding to California’s three major load-serving entities (i.e.: electricity

demanders): Pacific Gas and Electric (PG&E), Southern California Edison (SCE) and

San Diego Gas and Electric (SDG&E). Test statistics are reported in Table C.1; the

upper α = 0.05 critical value for these test statistics is χ2(5184) = 5352.6.
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Table C.2: Proportion of Autocorrelation Tests that Fail to Reject (α = 0.05): Number
of Locations in Brackets

Before EVB After EVB
Non-Generation Node 0.299 0.912

[4,031] [4,386]

Generation Node 0.265 0.932
[669] [673]

Notes: This table presents the proportion of nodes (read: pricing locations) for which we fail to
reject a size α = 0.05 test of the null hypothesis that the second through tenth autocorrelation
matrices of the 24 × 1 vector of daily day-ahead/real-time price spreads are zero; in math, we are
testing the null hypothesis that Γ(2) = Γ(3) = ... = Γ(10) = 0. We perform this hypothesis
test separately for each node before and after the introduction of explicit virtual bidding (EVB).
We estimate covariance matrices (Γ(2),Γ(3), ...,Γ(10)), which are each 24× 24, pre-EVB and post-
EVB for each node and stack the elements column-wise; this results in a 5760 = 242 × 9 element
vector. We use a moving block bootstrap procedure in order to estimate the covariance matrix
associated with this 5760 × 1 vector. The upper α = 0.05 critical value for these test statistics is
χ2(5184) = 5352.6. Generators inject electricity at some nodes; these nodes are called “generation
nodes”. The remaining nodes are categorized as “non-generation” nodes. The number of nodes in
each cell is reported in brackets.

We fail to reject the null hypothesis that the second through tenth autocorrelation

matrices are zero for any LAP at the 5% level, either before or after the introduction of

explicit virtual bidding. This lends strong evidence in favor of our assertion that daily

price differences have zero autocorrelation matrices past the first lag. We repeat these

same autocorrelation tests at the nodal level in Table C.2, finding that the null hypothesis

that Γ(2) = Γ(3) = ... = Γ(10) = 0 can be rejected at a 5% level at approximately 70

percent of nodes before the introduction of explicit virtual bidding (EVB); these rejections

occur less frequently at locations where electricity generation is injected (i.e: “generation

nodes”), which is consistent with the fact that suppliers could implicitly virtual bid only

at the nodes where their generators were located. However, we reject the same null

hypothesis at only approximately 7-9% percent of both generation and non-generation

nodes after the implementation of explicit virtual bidding; this is consistent with the

intuition that financial traders would take advantage of any systematic auto-correlation

between day-ahead/real-time price spreads post-EVB. Summarizing, as traders cannot

condition on the previous day’s real-time price realizations when submitting into the

day-ahead market, the results from this subsection help to justify our focus on trading

strategies that do not condition on past lags of the daily price difference vector.
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C.2 Absolute Average Price Spreads Before Versus After Fi-

nancial Trading

This subsection describes our statistical test of whether expected day-ahead/real-time

price spreads decrease in absolute value after the introduction of explicit virtual bid-

ding (EVB). In particular, we formulate the statistical test of the null hypothesis that

|µpre| > |µpost|, where |µJ | for J ∈ {pre, post} is a 24 × 1 vector composed of the

absolute values of the average day-ahead/real-time price differences for each hour-of-

the-day h ∈ {1, 2, ..., 24} for a given location computed using the sample period before

(after) explicit virtual bidding for J = pre (J = post). We implement this statistical

test separately for each pricing location. This statistical framework can also be used to

test whether average day-ahead/real-time price spreads increase after the introduction

of explicit virtual bidding. Failing to reject the null hypothesis that |µpre| > |µpost| but

rejecting the null hypothesis that |µpost| > |µpre| gives us statistical evidence that arbi-

trage opportunities were present in the post-EVB sample period only if they were also

present in the pre-EVB sample period for a given transaction cost c.

These two multivariate nonlinear inequality constraints tests are implemented using

the methodology derived in Wolak (1989). In particular, we compute the following test

statistic in order to test the null hypothesis that |µpre| > |µpost|:

TS =
min

θ ≥ 0
(|Xpre| − |Xpost| − θ)′V̂ −1(|Xpre| − |Xpost| − θ)

where all objects with a “pre” (“post”) superscript are based on the 4/1/2009-2/1/2011

(2/1/2011-12/31/2012) period before (after) the introduction of explicit virtual bidding

(EVB). X
pre

(X
pre

) is a 24 × 1 vector of the average day-ahead/real-time price differ-

ences for each hour-of-the-day for the pre-EVB (post-EVB) sample. We calculate the

covariance matrix V̂ as follows:

V̂ =
1

Npre
diag[SIGN(X

pre
)]′Σ̂prediag[SIGN(X

pre
)]

+
1

Npost
diag[SIGN(X

post
)]′Σ̂postdiag[SIGN(X

post
)]

where the diag[Z] operator takes a vector Z and returns a diagonal matrix with the

elements of Z on the diagonal. Npre (Npost) is the number of days in the sample period
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Table C.3: LAP-level P-values for the Absolute Difference Tests

|µpre| > |µpost| |µpost| > |µpre|
PG&E 0.704 0.141
SCE 0.907 0.006
SDG&E 0.689 0.040

Notes: This table reports the p-value for each load aggregation point (LAP) associated with the
statistical test of the null hypothesis that |µpre| > |µpost| (Column 1) and the null hypothesis that
|µpost| > |µpre| (Column 2). µpre (µpost) is a 24× 1 vector composed of the average day-ahead/real-
time price spreads for a given LAP for each hour-of-the-day for the sample period before (after) the
introduction of explicit virtual bidding (EVB); the pre-EVB sample period is 4/1/2009-2/1/2011
while the post-EVB sample is 2/1/2011-12/31/2012. We consider the three LAPs corresponding to
California’s three major load-serving entities (read: electricity demanders): Pacific Gas and Electric
(PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E).

before (after) the introduction of explicit virtual bidding. Σ̂pre (Σ̂post) is a 24×24 estimate

of the asymptotic covariance matrix corresponding to X
pre

(X
post

); we compute these

covariance matrices using the autocorrelation consistent estimator proposed by Newey

and West (1987) with m = 14 days of lagged data. We reject the null hypothesis that

|µpre| > |µpost| if and only if

24∑
h=1

w(24, 24− h, V̂ )Pr[χ2
(h) > TS] < α

where χ2
(h) is a chi-squared random variable with h degrees of freedom, w(24, 24− h, V̂ )

are the weights defined in Wolak (1989), and α is the size of the hypothesis test.

The p-values corresponding to these statistical tests for each load aggregation point

(LAP) are presented below in Table C.3. From this table, we see that we cannot reject

the null hypothesis that |µpre| > |µpost| for any of the three LAPs, while we can reject

the null hypothesis that |µpost| > |µpre| at the 5% level for SCE and SDG&E.

We also run the statistical test of the null hypothesis that |µpre| > |µpost| separately

for each node; Column 1 of Table C.4 provides the proportion of nodes for which we fail

to reject this null hypothesis, separately for generation versus non-generation nodes. We

see from this table that we fail to reject the Null hypothesis that average hourly absolute

differences are higher pre-EVB relative to post-EVB for roughly 98% of nodes; there is

not a sizable difference in the proportion of nodes for which we fail to reject the null

hypothesis for generation versus non-generation nodes. Column 2 of Table C.4 presents

the proportion of nodes for which we fail to reject the null hypothesis that |µpost| > |µpre|.
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Table C.4: Proportion of Nodes for which we fail to reject the α = 0.05 sized Absolute
Difference Test

|µpre| > |µpost| |µpost| > |µpre|
Gen Node 0.983 0.015
Non-Gen Node 0.988 0.013

Notes: This table reports the proportion of nodes (read: pricing locations) for which we fail to reject
the null hypothesis that |µpre| > |µpost| (Column 1) and the null hypothesis that |µpost| > |µpre|
(Column 2). Note that µpre (µpost) is a 24× 1 vector composed of the average day-ahead/real-time
price differences for a given node for each hour-of-the-day for the sample period before (after) the
introduction of explicit virtual bidding. 653 generation nodes and 3,961 non-generation nodes are
in both the pre-EVB sample (4/1/2009-2/1/2011) and post-EVB sample (2/1/2011-12/31/2012).

We fail to reject this null hypothesis for only roughly 1.5% of nodes; as before, our

results are similar across generation versus non-generation nodes. Combining these two

findings, we have strong evidence that nodal-level absolute average day-ahead/real-time

price spreads fell after the introduction of financial trading. Interpreting this result in

another way, if market participants could trade the financial instrument at a fixed value

of trading costs c both before and after EVB, then traders would make profits from

exploiting expected day-ahead/real-time price spreads post-EVB only if they would also

make profits from exploiting expected day-ahead/real-time price spreads pre-EVB.

C.3 Volatility in Prices Before versus After Financial Trading

As described in Section 2, we also expect financial participation in wholesale electricity

markets to reduce day-ahead uncertainty regarding real time prices. We therefore expect

both the variance of day-ahead/real-time price differences and the variance of real-time

prices to fall after the introduction of explicit virtual bidding (EVB). To test this hypoth-

esis, let Λpre (Λpost) be the 24× 24 contemporaneous covariance matrix corresponding to

the 24×1 random vector of hourly realized day-ahead/real-time price spreads for the time

period before (after) explicit virtual bidding. The variance of day-ahead/real-time price

differences is larger before versus after the introduction of EVB if and only if Λpre−Λpost

is a positive semi-definite matrix. We construct a statistical test of this null hypothesis

by finding the eigenvalues ω̂j (j = 1, 2, ..., 24) of Λ̂diff ≡ Λ̂pre − Λ̂post; we test the joint

null hypothesis that all of these eigenvalues are greater than or equal to zero using the

same multivariate inequality constraints test employed in the previous subsection.
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Our test statistic is:

TS = min
z ≥ 0

(Λ̂diff − z)′[V ar(Λ̂diff )]
−1(Λ̂diff − z)

where the covariance matrix V ar(Λ̂diff ) is estimated using a moving-block bootstrap

procedure.29 As described in the previous subsection, the test statistic TS is asymptot-

ically distributed as the weighted sum of chi-squared random variables under the null

hypothesis. We also perform this test for the null hypothesis H2 that Λpost − Λpre is

a positive semi-definite matrix, which is equivalent to testing the null hypothesis that

day-ahead/real-time price spreads are more volatile after EVB relative to before EVB.

Failing to reject H1 but rejecting H2 would provide us with statistical evidence that the

introduction of explicit virtual bidding reduced the variance of day-ahead/ real-time price

spreads. Finally, we use the same testing procedure considering real-time prices instead

of day-ahead/real-time price spreads in order to provide evidence against the oft-cited

concern that EVB increases the volatility of real-time prices.

The p-values from this statistical test, conducted separately for each load aggregation

point (LAP), are documented in Table C.5.

From this table, we see that we fail to reject the null hypothesis that daily day-

ahead/real-time price differences are more volatile before versus after the introduction of

explicit virtual bidding for all three LAPs; similarly, the null hypothesis that daily real-

time prices are more volatile pre-EVB versus post-EVB can be rejected for all three LAPs.

In addition, we reject the opposite null hypothesis that the volatility of day-ahead/real-

time price differences is lower pre-EVB versus post-EVB for all three LAPs; the null

hypothesis that the volatility of real-time prices is lower pre-EVB versus post-EVB can

be rejected for PG&E and SCE, but not SDG&E.

We also conduct these statistical tests at the nodal level; Table C.6 presents the

proportion of nodes for which we fail to reject each of our aforementioned null hypotheses,

separately for nodes corresponding to locations with generators (“Gen Nodes”) versus

nodes that don’t correspond to locations with generators (“Non-Gen Nodes”). First,

29In particular, we construct L moving-block re-samples separately for sample periods before versus
after EVB. For each re-sample b ∈ {1, 2, ..., L}, we estimate Λ̂preb and Λ̂postb . This allows to compute

Λ̂diffb ≡ Λ̂preb − Λ̂postb as well as the eigenvalues associated with Λ̂diffb (which we denote ω̂b). Finally,
we find the empirical covariance of ω̂b across the L re-samples in order to obtain our estimate of the
covariance matrix for ω̂ (which we denote V ar(Λ̂diff )).
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Table C.5: LAP-level P-values for Volatility Tests

LAP Price Difference Real-Time Price
PGE 0.284 0.516

Pre - Post SCE 0.509 0.697
SDGE 0.476 0.647
PGE 0.001 0.016

Post - Pre SCE 0.001 0.034
SDGE 0.028 0.165

Notes: This table reports the p-values associated with our statistical test regarding the volatility
of day-ahead/real-time price spreads as well as the volatility of real-time prices before versus after
the introduction of explicit virtual bidding (EVB). We implement these tests separately for each
load aggregation point (LAP); the three LAPs we consider correspond the California’s three major
load-serving entities: Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San
Diego Gas and Electric (SDG&E). To implement our test, we estimate the covariance matrix of
the 24 × 1 vector of day-ahead/real-time electricity price spreads as well as the covariance matrix
of the 24 × 1 vector of real-time prices separately for each LAP for the sample period before EVB
(4/1/2009-2/1/2011) and after EVB (2/1/2011-12/31/2012). For both day-ahead/real-time price
spreads and real-time prices, we test the null hypothesis that the pre-EVB minus post-EVB difference
in covariance matrices is positive semi-definite (top panel) as well as the null hypothesis that the
post-EVB minus pre-EVB difference in covariance matrices is positive semi-definite (bottom panel).

note that there aren’t marked differences across the proportion of nodes for which we

reject any null hypothesis for generation versus non-generation nodes. Thus, focusing on

the rows corresponding to overall proportions (labeled “Total”), we see from Table C.6

that the proportion of nodes for which we reject the null hypothesis that the volatility

of day-ahead/real-time price spreads is higher (lower) pre-EVB relative to post-EVB is

0.737 (0.166). Similarly, the proportion of nodes for which we reject the null hypothesis

that the volatility of real-time prices is higher (lower) pre-EVB relative to post-EVB is

0.752 (0.128).

Combined, our statistical evidence indicates the volatility of day-ahead/real-time

price spreads fell after the introduction of explicit virtual bidding. This is consistent

with the intuition that the introduction of purely financial participants resulted in day-

ahead market outcomes that more closely resembled real-time market conditions. In

addition, we provided statistical evidence that the volatility of real-time prices is smaller

post-EVB relative to pre-EVB; this result runs counter to the claim that financial trad-

ing increases the volatility of real-time market outcomes, causing undue stress on the

electricity transmission network.
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Table C.6: Proportion of Nodes for which we fail to reject the α = 0.05 sized Volatility
Test

Node Type Price Difference Real-Time Price
1(Gen Node) 0.736 0.751

Pre-Post 1(Non-Gen Node) 0.744 0.758
Total 0.737 0.752
1(Gen Node) 0.168 0.132

Post-Pre 1(Non-Gen Node) 0.156 0.104
Total 0.166 0.128

Notes: This table reports the proportion of nodes (read: pricing locations) for which we fail to reject
different null hypotheses regarding the volatility of day-ahead/real-time price spreads as well as the
volatility of real-time prices before versus after the introduction of explicit virtual bidding (EVB). We
report these proportions separately for nodes where generators are located (“Gen Nodes”) versus
nodes without generators (“Non-Gen Nodes”); we also report the overall proportions aggregated
across all pricing locations (“Total”). To implement our tests, we estimate the covariance matrix of
the 24 × 1 vector of day-ahead/real-time electricity price spreads as well as the covariance matrix
of the 24 × 1 vector of real-time prices separately for each node for the sample period before EVB
(4/1/2009-2/1/2011) and after EVB (2/1/2011-12/31/2012). For both day-ahead/real-time price
spreads and real-time prices, we test the null hypothesis that the pre-EVB minus post-EVB difference
in covariance matrices is positive semi-definite (top panel) as well as the null hypothesis that the
post-EVB minus pre-EVB difference in covariance matrices is positive semi-definite (bottom panel).
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