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1 Introduction

1.1 Motivation

The design of the Patient Protection and Affordable Care Act of 2010 (“ACA”)—and,

more generally, of publicly-sponsored, private-provided health insurance—remains an

object of debate among policy makers (e.g. Einav and Levin, 2015; Handel and Kolstad,

2021; Handel and Ho, 2021). Addressing key design issues, such as the structure of

premium subsidies or the types of plans to offer, requires estimating demand. Recent

research has filled this need using parametric discrete choice models, such as condi-

tional logit (Chan and Gruber, 2010; Ericson and Starc, 2015), nested logit (Saltzman,

2019), and mixed (random coefficient) logit (Tebaldi, 2022; Polyakova and Ryan, 2019),

following approaches that are common to analyses of market regulation, consumer wel-

fare, and antitrust in a variety of contexts (see Berry and Haile, 2016, for a review).

These alternative logit models differ in how they deal with the independence of

irrelevant alternatives (e.g. Goldberg, 1995; McFadden and Train, 2000), and in how

they deal with the potential endogeneity of prices (e.g. Berry, 1994; Berry, Levinsohn,

and Pakes, 1995). However, they are all fully parametric, with the type I extreme value

distribution playing a key role. This raises the concerning possibility that the counter-

factual predictions and policy implications generated by such models are substantially

driven by specific parametric functional forms.

1.2 Methodological Contribution

We develop a new nonparametric approach for the discrete choice model

Yi = arg max
j∈J

Vij − Pij , (1)

where Yi is individual i’s choice from the discrete set of options j ∈ J = {0, 1, . . . , J}
with prices Pij and continuously distributed latent valuations Vij . We do not require

valuations to follow a specific distribution, such as normal (probit) or type I extreme

value (logit), and we allow them to be arbitrarily dependent across options for each

individual. We allow for prices and valuations to be correlated, and use instrumental

variables to address this endogeneity.

We analyze identification by developing a strategy that builds on Manski (2007),

who considered discrete choice under only the basic assumptions of rationality, without

the aid of choice model (1). Manski’s insight was that individuals facing a discrete

choice can be characterized by a discrete set of latent types based on what their choices

would be under any of a finite number of potential choice scenarios, such as different
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prices. The data provides some information on the relative frequency of the latent

types, while assumptions such as rationality eliminate other types altogether. Manski

showed how to use linear programming to combine these sources of information and

produce bounds on choice probabilities.

The number of types in Manski’s framework grows extremely quickly with the

number of choice sets. This is because rationality is a weak assumption: the number of

rational preference configurations compatible with even a small number of price vectors

is astronomically large even when the number of choices (J) is small. We eliminate

many of these types by assuming not only that individuals are rational, but also that

preferences are consistent with choice model (1), which can be viewed as requiring

quasilinearity. Under this choice model each type can be interpreted as a subset of

valuations, a point recognized by Koning and Ridder (2003, Figure 2). These subsets

divide the space of valuations into a finite partition of valuation space that we call the

minimal relevant partition (MRP).

We use the MRP to develop a practical approach for computing sharp bounds

on various target parameters, such as choice probabilities, elasticities, and changes in

consumer surplus. By definition, the sharp bounds cover the range of values for the

target parameter that could be generated by a joint distribution of latent valuations

(Vij) that satisfies the researcher’s a priori assumptions, and which could have also

produced the observed distribution of choices. But directly considering all possible

distributions of valuations is difficult, because the distribution of a continuous random

vector is an infinite-dimensional object.

Instead, we prove that one can find the sharp bounds by considering the overall

masses placed on the finite number of sets in the MRP. We use a constructive argu-

ment to show that this strategy preserves sharpness even under additional assumptions

that incorporate instrumental variables and known vertical orderings on the choice op-

tions. We show how to compute the sharp bounds by solving finite-dimensional linear

programs. Then, we apply our approach at scale, making use of recent advances in

estimation and inference under partial identification.

1.3 Empirical Results

We use our approach to estimate demand counterfactuals in the California ACA mar-

ketplace (Covered California) using administrative records from 2014. We focus on the

choice of coverage level (metal tier) for low-income individuals who are not covered un-

der employer-sponsored insurance or public programs. In addition to estimates from

our nonparametric approach, we also report estimates from comparable parametric
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logit, probit, and mixed logit models.

Our main empirical strategy leverages institutionally-induced variation in post-

subsidy premiums across age and income, similar to Polyakova and Ryan (2019). We

cast this as an instrumental variable strategy by dividing individuals into relatively

homogenous groups by age and income, then using residual variation in age and income

within that group to instrument for prices (post-subsidy premiums) while assuming

that latent variations remain stable. For all of our results we also conduct a sensitivity

analysis that relaxes or drops either invariance to age or invariance to income (or both).

The sensitivity analysis provides a transparent connection between the price variation

in the data and the estimated results.

We estimate target parameters related to choice shares and welfare for several dif-

ferent counterfactuals. The main counterfactual we consider—which is simple but

particularly policy-relevant—is a uniform increase in all post-subsidy premiums, which

from the consumer’s perspective is the same as a decrease in premium subsidies. We

also estimate substitution patterns by considering counterfactuals in which premiums

are increased for different metal tiers separately. The other counterfactuals we con-

sider concern regulatory design. In one, we consider the impacts of shifting premium

subsidies towards younger or older consumers. In another, we evaluate the consumer

surplus impact of removing Silver plans.

One theme that emerges throughout our results is that parametric models tend to

produce price sensitivity estimates that are attenuated compared to the nonparametric

bounds. For example, we estimate that a uniform $120 increase in yearly premiums

for all plans would cause between a 1.8% and 6.7% decline in the proportion of low-

income adults who purchase insurance, off of a base of 28%. The parametric models, by

contrast, produce point estimates that are all between 2.5% and 3.5%, suggesting that

they could be substantially understating price sensitivity. Other logit-based estimates

for Covered California have been similar, such as Tebaldi (2022) who estimates between

a 1% and 2% decline in the proportion enrolled in response to a $120 increase in yearly

premiums, Saltzman (2019), who estimates a 3.3% decline, and Saltzman (2021), who

estimates a 1.2% decline. The findings are consistent with the idea that the logit model

has a “flat” functional form that attenuates the role of price at large or small utilities.

Ho and Pakes (2014) and Compiani (2019) reached similar conclusions, albeit using

different methods in different empirical settings.

The differences between the nonparametric estimates and the comparable para-

metric models become more nuanced when considering consumer surplus. The non-

parametric estimate of the consumer surplus impact of decreasing subsidies by $120

annually is between $62 and $74 million annually when aggregated, with poorer indi-
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viduals incurring the bulk of the loss. Total annual savings on premium subsidies would

be between $207 and $602 million per year. The various mixed logit models—differing

only by which coefficients are random—produce consumer surplus estimates between

$63 and $84 million, with estimates of subsidy savings towards the lower end of our

bounds. For a shift in subsidies towards younger buyers, the parametric models pre-

dict an average consumer surplus impact of less than $1 per person, per month, while

the nonparametric bounds include impacts that could be almost three times as large.

The parametric models predict that removing Silver plans would create an aggregate

consumer surplus impact of anywhere between $149 to $292 million per year, whereas

the nonparametric model produces a lower bound of $12 million, while recognizing that

there is no logical upper bound. The results are consistent with long-standing concerns

about the use of logit models for welfare analysis, especially when the counterfactual

involves adding or removing a product (e.g. Hausman, 1996; Petrin, 2002; Ackerberg

and Rysman, 2005; Berry and Pakes, 2007)

1.4 Relationship to the Literature

This paper contributes to both the methodological literature on discrete choice models

and an empirical literature on the demand for subsidized health insurance.

The methodological contribution is most closely related to the previously-cited work

by Manski (2007), who developed a linear programming procedure for bounding choice

probabilities with exogenous prices under rationality. The most important difference

is the quasilinear structure of choice model (1), which facilitates computation at scale

and provides substantial identifying content. We also show how to use instruments

when prices are endogenous, as well as how to further restrict the number of types to

reflect known vertical orderings. In addition to bounding choice probabilities, we show

how to bound elasticities, as well as changes in consumer surplus resulting from price

changes or the removal of a choice option.

This paper is also related to Chesher, Rosen, and Smolinski (2013). Those authors

demonstrate that endogenous prices can lead to partial identification in a class of

discrete choice models that includes equation (1), even if one maintains the usual logit

parametric distribution (Chesher et al., 2013, Section 4.2). Using random set theory,

Chesher et al. (2013) show that whether a candidate value of the model parameters

belongs to the sharp identified set can be determined by checking a system of moment

inequalities. The system has a finite number of moment inequalities when the number

of prices is finite, as in our setting. Each moment inequality corresponds to a “core-

determining set” of valuations, which we show can be a much larger collection of sets

5



than the MRP (see Section 2.7.1).

Chesher et al. (2013) implement their identification analysis by checking whether

the moment inequalities hold for every candidate value of the model parameters. If the

model is nonparametric, as in our setting, then one component of the model parameters

is the distribution of valuations. Following the Chesher et al. (2013) strategy would

require checking whether every distribution of valuations satisfies a set of moment in-

equalities. This is computationally intractable: iterating over every distribution—even

approximately, using a grid—is simply not possible because the space of distributions

for continuous random variables is infinite-dimensional. Chesher et al. (2013, pg. 160)

also derive other nonparametric outer (non-sharp) bounds that are straightforward to

implement, but these do not exploit the assumption that choices were generated ac-

cording to choice model (1). In Appendix S5, we replicate a simulation in Chesher

et al. (2013), demonstrating that our sharp nonparametric bounds lie strictly between

their non-sharp nonparametric bounds and their sharp parametric bounds.

Our approach is computationally tractable because it focuses on specific scalar

target parameters, such as choice probabilities, elasticities, and changes in consumer

surplus. Instead of trying to iterate over the space of distributions, we check whether

there exists a distribution that is consistent with the data and reproduces a candidate

value of the target parameter. We prove that one can determine whether such a

distribution exists by solving a finite system of linear equations, thereby providing the

basis of our linear programming procedure. The strategy makes our nonparametric

approach feasible to implement at scale, as showcased by our application.

Like both Manski (2007) and Chesher et al. (2013), we embrace a partial iden-

tification view (Tamer, 2010; Ho and Rosen, 2017; Molinari, 2020). Nonparametric

point identification arguments for discrete choice models often require a large amount

of variation in prices (e.g. Manski, 1975; Thompson, 1989; Matzkin, 1993; Fox and

Gandhi, 2016). Yet variation in prices is limited in many applications, including ours.

Nonparametric point identification arguments with endogenous prices and instrumen-

tal variables also typically use an additional “completeness” condition (Chiappori and

Komunjer, 2009; Berry and Haile, 2010, 2014; Compiani, 2019), which in some cases is

also necessary for point identification (Newey and Powell, 2003; Santos, 2012).1 Com-

pleteness can be difficult to interpret, and has been shown to be untestable (Canay,

Santos, and Shaikh, 2013). Not assuming either large variation or completeness raises

the possibility of partial identification, which we allow for as the leading case, although

1 Berry and Haile (2014, Section 5) also provide nonparametric identification results that do not require
completeness and instead leverage both demand and supply under a shape restriction on the distribution of
unobservables; see also Berry and Haile (2018).
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our approach does not rule out point identification.

There are a number of papers on semi- and nonparametric discrete choice that

parameterize the valuations in choice model (1) using a linear index of choice and/or

individual characteristics, and then focus on identifying and estimating these index

parameters, while treating the distribution of unobservables as a nuisance parameter.

Examples include Manski (1975), Matzkin (1993), Lewbel (2000), Fox (2007), Pakes

(2010), Ho and Pakes (2014), Pakes, Porter, Ho, and Ishii (2006, 2015), Pakes and

Porter (2016), Shi, Shum, and Song (2016), and Khan, Ouyang, and Tamer (2019).

In contrast, we do not treat the distribution of unobservables as a nuisance param-

eter because it determines the counterfactuals we want to infer. Other semi- and

nonparametric papers that focus on counterfactuals but do not allow for endogeneity

and instruments include Thompson (1989), Manski (2007), Briesch, Chintagunta, and

Matzkin (2010), Chiong, Hsieh, and Shum (2017), Allen and Rehbeck (2019), and Fos-

gerau and Kristensen (2020). Manski (2014), Kline and Tartari (2016), and Kamat

(2020) use approaches similar to Manski (2007) for models different than equation (1).

Our empirical analysis contributes to a large literature on the demand for subsi-

dized health insurance, including Chan and Gruber (2010), Krueger and Kuziemko

(2013), Ericson and Starc (2015), Hackmann, Kolstad, and Kowalski (2015), Shep-

ard (2016), DeLeire, Chappel, Finegold, and Gee (2017), Finkelstein, Hendren, and

Shepard (2019), Saltzman (2019), Drake (2019), Polyakova and Ryan (2019), Jaffe and

Shepard (2020), and Tebaldi (2022). The estimates on alternative subsidy schemes

is related to the design of premium subsidies, as studied by Decarolis (2015), Einav,

Finkelstein, and Tebaldi (2019), Polyakova and Ryan (2019), and Decarolis, Polyakova,

and Ryan (2020). The effects of removing certain coverage options has been studied in

different contexts by Dafny, Ho, and Varela (2013) and Marone and Sabety (2019). We

contribute to the literature by providing nonparametric estimates that do not depend

on functional form choices: our estimates depend only on the structure of the choice

model together with instrumental variable assumptions and limited vertical orderings.

These assumptions have straightforward economic interpretations.

The primary drawback of our empirical analysis is that we do not model supply, so

all of our estimates must be interpreted as holding insurers’ decisions fixed. This is a

clear limitation, since one might expect potentially strong supply-side responses in the

counterfactuals we consider. Integrating our nonparametric approach for estimating

demand with a model of supply is an interesting avenue for further research.
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2 Methodology

2.1 Nonparametric Discrete Choice Model

Individual i chooses option Yi from a set J ≡ {0, 1, . . . , J} of J + 1 choices. Each

choice j has a potentially endogenous characteristic called price, Pij , which we model

as discretely distributed, and collect into the vector Pi ≡ (Pi0, Pi1, . . . , PiJ). Choice

j = 0 represents the outside option of not choosing any of the inside choices j ≥ 1, and

has its price normalized to Pi0 = 0. When we apply the model to Covered California,

we will have five choices (J = 4) with options 1, 2, 3, and 4 representing Bronze, Silver,

Gold, and Platinum plans.

Individual i has a vector Vi ≡ (Vi0, Vi1, . . . , ViJ) of valuations, one for each choice,

with the standard normalization that Vi0 = 0. The valuations are known to the indi-

vidual, but latent from the perspective of the researcher. We assume that individual

i’s indirect utility from choosing j is given by Vij −Pij , so that their choice is given by

Yi = arg max
j∈J

Vij − Pij . (1)

We do not assume that the distribution of Vi follows a specific functional form such as

type I extreme value (logit) or multivariate normal (probit). We also allow Vij and Vik

to be dependent for j 6= k.

The main economic restriction in equation (1) is the additive separability between

valuations and prices, which imposes restrictions on substitution patterns consistent

with quasilinear utility. If all prices were to increase by the same amount, then an

individual who chooses j ≥ 1 before the increase will either continue to choose j after

the increase, or will switch to the outside option (j = 0), but they will not switch to

a different inside choice k ≥ 1, k 6= j. This limits the role of income effects to the

extensive margin of choosing any inside choice versus taking the outside option. In

Appendix S1, we derive equation (1) from an insurance choice model similar to the

ones in Handel (2013) and Handel, Hendel, and Whinston (2015), in which individuals

have quasilinear utility and constant absolute risk aversion. Variation in Vi across

individuals arises from heterogeneity in unobserved preferences, risk factors, and risk

aversion.

The limited role of income effects in equation (1) pertain to conjectured variations

for a single individual i. When we take the model to the data we combine observations

on many individuals, so in practice we can allow for income effects by allowing for

dependence between an individual’s income and their valuations. We formalize this by

treating an individual’s income and other observed characteristics as part of a vector,
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Xi, and then restricting the dependence between Vi and the various components of Xi.

Throughout the paper, we model Xi as discretely distributed with finite support.

One observable characteristic that is particularly important is the individual’s mar-

ket. When we estimate demand we will do so conditional on a market, so that market-

level characteristics—both observable and unobservables—are held fixed in the coun-

terfactual (see e.g. Berry and Haile, 2010, pg. 5). To emphasize this we let Mi denote

individual i’s market, and we treat Mi as separate from Xi in the notation.

Our empirical setting is different than many discrete choice applications in which

prices only vary at the market level, such as Berry et al. (1995) or Nevo (2001). These

settings would have Pi constant conditional on Mi. The approach we develop in the

main text is not immediately useful for this case. In Appendix S2 we propose two ways

in which our approach could be extended to handle more aggregated price variation.

2.2 Comparison with a Common Parametric Model

A common parametric specification for discrete choice demand models is

Yim = arg max
j∈J

X ′ijmβim − αimPijm + ξjm + εijm, (2)

where i, j, and m index individuals, products, and markets, Pijm is price, Xijm are

observed characteristics, ξjm are unobserved product-market characteristics, βim and

αim are individual-level random coefficients, and εijm are idiosyncratic unobservables.

See, for example, equation (6) of Nevo (2011), or equation (1) of Berry and Haile

(2015). In the influential model of Berry et al. (1995), εijm are assumed to be i.i.d. logit

(type I extreme value), and (βim, αim) are assumed to be normally (or log-normally)

distributed. Our motivation for considering choice equation (1) is to preserve the

utility maximization structure in equation (2), while avoiding these types of parametric

assumptions.

The three indices in equation (2) reflect different possible levels of data aggregation.

If only market-level data is available, as in Berry et al. (1995) or Nevo (2001), then

equation (2) is aggregated to the (j,m) level, and the data is viewed as drawn from a

population of markets and/or products (Berry, Linton, and Pakes, 2004b; Armstrong,

2016). Our analysis presumes richer individual-level choice data as in Berry, Levinsohn,

and Pakes (2004a) or Berry and Haile (2010), but the number of markets we study is

small and fixed. To emphasize this, we index equation (1) only over i and j, and

we record individual i’s market using the random variable Mi. After subsuming m

subscripts into i subscripts, equation (1) can be seen to nest equation (2) by dividing
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through by αi and taking Vij ≡ α−1
i (X ′ijβi + ξij + εij).

2

2.3 The Density of Valuations

The primitive object in choice model (1) is the distribution of valuations, Vi, con-

ditional on prices Pi, market, Mi, and other covariates, Xi. We assume through-

out the paper that this distribution is continuous so that ties between choices occur

with zero probability. More formally, we assume that the distribution of Vi is abso-

lutely continuously distributed with respect to Lebesgue measure on RJ , conditional

on (Pi,Mi, Xi) = (p,m, x) for every (p,m, x) in the support of (Pi,Mi, Xi). Abso-

lute continuity means we can associate the conditional distribution of valuations with

a conditional density function f(·|p,m, x) for each realization Pi = p, Mi = m, and

Xi = x. Let F denote the set of all such conditional density functions.

2.4 Target Parameters

Common counterfactual quantities of interest can be written as integrals or sums of

integrals of f , see e.g. Section 4.2 of Berry and Haile (2014) or Section 3.4.1 of Berry

and Haile (2015). For example, a natural counterfactual quantity is the proportion

of individuals who would choose j at a new price vector, p?. The proportion can be

written in terms of f as ∫
1[vj − p?j ≥ vk − p?k for all k]︸ ︷︷ ︸

choose j if prices were p?

f(v|m,x) dv,

where f(v|m,x) ≡ E [f(v|Pi,m, x)|Mi = m,Xi = x] (3)

is the density of valuations conditional on market, m and other characteristics x, aver-

aged over the remaining variation in observed prices (if any). Another natural counter-

factual quantity is the impact on average consumer surplus caused by changing prices

from p to p?. The impact can be written as∫ {
max
j∈J

vj − p?j
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p?

−
∫ {

max
j∈J

vj − pj
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p

, (4)

where again the market, m, is being held fixed in the counterfactual.

2 This requires the mild assumption that αi > 0. As suggested by a referee, an advantage of normalizing
in this way is that Vij can be directly interpreted as willingness-to-pay relative to the outside option (see
e.g. Lewbel, 2019, Section 6.3).
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We view equations (3) and (4) as examples of target parameters; that is, functions

θ : F → Rdθ that map the collection F of all conditional density functions on RJ into

real vectors. The goal is to infer the values of θ(f) that are consistent with both the

observed data and the assumptions.

2.5 Assumptions

We augment the choice model (1) with two types of assumptions.

2.5.1 Instrumental Variables

Let Wi and Zi be two subvectors (or more general functions) of prices, market and

covariates, (Pi,Mi, Xi). Define the density of valuations conditional on Wi and Zi as

f(v|w, z) ≡ E
[
f(v|Pi,Mi, Xi)

∣∣∣Wi = w,Zi = z
]
. (5)

Assumption IV. f(v|w, z) = f(v|w, z′) for all z, z′, w and v.

Assumption IV says that the distribution of valuations is invariant to Zi, conditional on

Wi. That is, Zi are exogenous instruments and Wi are control variables. Assumption

IV nests exogenous prices as a special case by taking Zi = Pi and Wi to be deterministic

(e.g. Wi = 1). It also nests the unconditional instrumental variable assumption used

by Chesher et al. (2013, Restriction A.6) by taking Wi to be deterministic.

For Assumption IV to be useful, prices should shift with the instruments Zi while

conditioning on the controls Wi. This follows the usual intuition: if Zi is exogenous,

then changes in observed choice shares as Zi varies reflect changes in prices, rather than

changes in valuations. The more that prices vary with Zi, the more information we

have to pin down different parts of the density of valuations, f , and therefore the target

parameter, θ. Our approach does not require the instruments to have any particular

amount of variation, but greater variation produces more informative bounds.

In the application we also use the following generalization of Assumption IV, which

allows the instruments to be “imperfect” in the terminology of Nevo and Rosen (2012).

Assumption IV. (Generalized) For every z, z′, w and v,

(1− κ(z, z′, w))f(v|w, z′) ≤ f(v|w, z) ≤ (1 + κ(z, z′, w))f(v|w, z′),

where κ(z, z′, w) ≥ 0 is chosen by the researcher.

The generalization allows for a pointwise difference in the density of valuations between

z and z′ of up to (100 × κ(z, z′, w))%. Similar approaches to relaxing assumptions
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involving exact equalities have also been used in different contexts by Conley, Hansen,

and Rossi (2010), Manski and Pepper (2017), Torgovitsky (2019), and Rambachan and

Roth (2020). Taking κ(z, z′, w) = 0 returns the generalized assumption back to the

baseline case of an exogenous instrument.

2.5.2 Support

The second assumption is that the support of f is contained in a known subset of RJ .

Assumption SP.
∫
V•(w) f(v|w, z) dv = 1 for each w and z, where V•(w) is a known

subset of RJ .

In the application we use Assumption SP to exploit the fact that certain plans in the

ACA are unambiguously more attractive at equal prices than certain other plans.

2.6 The Identified Set

Suppose that we know the observed choice shares

sj(p,m, x) ≡ P[Yi = j|Pi = p,Mi = m,Xi = x]. (6)

Each density of valuations f ∈ F also implies a set of choice shares

sj(p,m, x; f) ≡
∫
Vj(p)

f(v|p,m, x) dv, (7)

where Vj(p) ≡
{

(v1, . . . , vJ) ∈ RJ : vj − pj ≥ vk − pk for all k
}
. (8)

A density f is consistent with the observed choice shares (“matches the data”) if

sj(p,m, x; f) = sj(p,m, x) for all j, p, m, and x. (MD)

The sharp identified set of valuation densities is defined as the subset of f ∈ F that

both match the data and satisfy Assumptions IV and SP. We call this subset F?:

F? ≡ {f ∈ F : f satisfies Assumptions IV, SP, and equation (MD)} . (9)

The object of interest is the sharp identified set for the target parameter, which is

defined as the image of F? under θ, and denoted as

Θ? ≡ {θ(f) : f ∈ F?} ≡ θ(F?).
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2.7 Identification Analysis

In this section we show how to compute Θ?. If F were a parametric class of densities,

then the results of Chesher et al. (2013) could be used to approximately compute Θ? by

iterating over a grid of f ∈ F that satisfy Assumptions IV and SP, checking whether

each such f satisfies a finite set of moment inequalities, and adding f to F? and θ(f)

to Θ? if and only if they are satisfied. In our model, f is nonparametric, so F is an

infinite-dimensional set. Iterating over even a grid of f ∈ F is not feasible in this case.

We develop a different strategy. Instead of trying to check a set of conditions

for every f ∈ F , we check whether there exists some f ∈ F? that would generate

a given candidate value t = θ(f) for the target parameter. As we prove ahead in

Proposition 1, the existence of such an f is equivalent to the existence of a solution

to a carefully-constructed finite-dimensional system of linear equations. The finite-

dimensional system is constructed by first partitioning the space of valuations into the

smallest number of sets needed to describe choice behavior under all relevant prices.

We call this partition the minimal relevant partition (MRP).

2.7.1 The Minimal Relevant Partition

Let P denote a finite set of prices that contains the observed prices, as well as any

additional prices relevant for evaluating the target parameter, θ. The MRP is the

smallest (coarsest) partition of valuation space (RJ) with the following property: any

two valuations in the same subset produce the same choice behavior for all p ∈ P,

while any two valuations in different subsets produce different choice behavior for at

least one p ∈ P. The formal definition is as follows.

Definition MRP. Let Y (v, p) ≡ arg maxj∈J vj−pj for any (v1, . . . , vJ), (p1, . . . , pJ) ∈
RJ , where v ≡ (v0, v1, . . . , vJ) and p ≡ (p0, p1, . . . , pJ) with v0 = p0 = 0. The minimal

relevant partition of valuations (MRP) is a collection V of sets V ⊆ RJ for which the

following property holds for almost every v, v′ ∈ RJ (with respect to Lebesgue measure):

v, v′ ∈ V for some V ∈ V ⇔ Y (v, p) = Y (v′, p) for all p ∈ P. (10)

Suppose that the data consists of a single observed price vector, pa, and that we are

concerned with behavior under a counterfactual price vector, p?. Take P = {pa, p?}.
We illustrate the MRP with J = 2 in Figure 1. Panel (a) shows that considering

choice behavior under price pa divides R2 into three sets depending on whether an

individual would choose options 0, 1, or 2 when faced with pa. Panel (b) shows the

analogous division under price p?. See e.g Thompson (1989, Figure 1), Chesher et al.
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Figure 1: Partitioning the space of valuations
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Notes: Panels (a) and (b) show the partition of valuation space created by prices pa and p?, respectively, for the case with
J = 2. Panel (c) shows how intersecting these two partitions yields a partition of six sets (the MRP). Panel (d) shows a richer
MRP based on the prices P = {pa, pb, pc, pd, pe, pf , p?}.

14



(2013, Figure 1), or Berry and Haile (2014, Figure 1) for similar diagrams. Intersecting

these two three-set collections creates the collection of six sets shown in panel (c). The

collection of six sets is the MRP generated by P = {pa, p?}. In Figure 1d, we show

the MRP constructed from a set P with seven prices. We describe an algorithm for

constructing the MRP in Appendix S3.

The MRP is the coarsest division of RJ that captures all choice behavior under the

prices in P. The six sets in Figure 1c correspond to the six types of individuals that

could exist under choice model (1), where a type is defined as a pair of choices under

(pa, p?). The characterization by types follows Manski (2007), but here we adapt it to

the quasilinear choice model (1), as in Koning and Ridder (2003).

The MRP is related to the class of core-determining sets (CDS) derived by Chesher

et al. (2013) and Chesher and Rosen (2014), but there are fewer sets in the MRP than

the CDS. With two prices and J = 2, the CDS consists of 12 sets (Chesher et al., 2013,

Figures 2–3) compared to 6 sets in the MRP. With seven prices and J = 2, the CDS

can consist of as many as 842 sets (Chesher, Rosen, and Smolinski, 2011, Table 1, pg.

28) compared to 35 sets in the MRP in Figure 1d. The MRPs in our application have

between 195,000 and 900,000 sets, depending on the region and target parameter.

2.7.2 Equivalent Finite-Dimensional Problem

The MRP is formed by organizing the continuum of valuations in RJ into sets that

yield identical choice behavior at all prices in P. If our concern is behavior that occurs

(or would occur) under these prices, then we can shift our attention from densities in

RJ to mass functions over the sets in the MRP. For example, in Figure 1c the share of

individuals who would choose 1 if prices were pa can be written as

s1(pa,m, x; f) =

∫
V5
f(v|pa,m, x) dv +

∫
V6
f(v|pa,m, x) dv,

which depends not on f per se, but only on the mass that f places on V5 and V6. Focus-

ing on these masses replaces the intractable infinite-dimensional problem of searching

over all f ∈ F into a tractable finite-dimensional problem of searching over a finite set

of non-negative numbers that sum to unity. As we now show, the replacement can be

done while preserving all of the information provided by the choice model, the data,

and Assumptions IV and SP.

We denote the set of conditional mass functions supported on V as

Φ ≡
{
φ ∈ R

dφ
+ :

∑
V∈V

φ(V|p,m, x) = 1 for all (p,m, x) ∈ supp(Pi,Mi, Xi)

}
, (11)
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where dφ is the cardinality of V × supp(Pi,Mi, Xi). Let Vj(p) ≡ {V ∈ V : Y (v, p) =

j for almost every v ∈ V} denote the sets in the MRP associated with choosing j under

price p ∈ P. Then φ ∈ Φ is consistent with an f that satisfies equation (MD) only if∑
V∈Vj(p)

φ(V|p,m, x) = sj(p,m, x) for all j ∈ J and (p,m, x). (MD’)

Each φ generates the conditional-on-(Wi, Zi) probability mass function

φ(V|w, z) ≡ E
[
φ(V|Pi,Mi, Xi)

∣∣∣Wi = w,Zi = z
]
.

To be consistent with an f that satisfies Assumption IV, φ should satisfy

(1− κ(z, z′, w))φ(V|w, z′) ≤ φ(V|w, z) ≤ (1 + κ(z, z′, w))φ(V|w, z′)
for all z, z′, w, and V. (IV’)

To be consistent with an f that satisfies Assumption SP, φ should satisfy∑
V∈V•(w)

φ(V|w, z) = 1 for all w and z, (SP’)

where V•(w) is the subset of V that intersects V•(w), i.e. V•(w) ≡ {V ∈ V : λ(V ∩
V•(w)) > 0}, with λ denoting Lebesgue measure on RJ .

Since our focus is not on f but on the target parameter, θ, we assume that it is

possible to represent θ in terms of φ.

Condition TP. For any f ∈ F , define φ(f) ∈ Φ as

φ(f)(V|p,m, x) ≡
∫
V
f(v|p,m, x) dv for all V ∈ V. (12)

Then there exists a known function θ : Φ→ Rdθ such that

θ(f) = θ(φ(f)) for every f ∈ F .

Since Φ depends on the MRP, and the MRP depends on P, Condition TP can always be

satisfied by choosing P to include all prices relevant for evaluating the target parameter,

θ. For example, if the target parameter is demand at the new premium vector p? in

Figure 1c, then Condition TP simply requires choosing P to include p?.

Under Condition TP, Θ? can be characterized in terms of the mass function φ

without having to consider the full density f . If t ∈ Θ?, then (by definition) there

16



exists an f ∈ F? with θ(f) = t. Since f ∈ F? satisfies equation (MD), Assumption IV,

and Assumption SP (again all by definition), taking the mass that any such f places on

the MRP yields a φ ∈ Φ that satisfies equations (MD’), (IV’), (SP’), and θ(φ) = t; for

example, take φ(f) defined in equation (12). The opposite direction is more delicate:

if θ(φ) = t for some φ ∈ Φ that satisfies equations (MD’), (IV’), and (SP’), then is

t ∈ Θ?? The following proposition shows that the answer is yes. The idea is to use

such a φ to construct an f ∈ F? that yields θ(f) = t. The proof is in Appendix S4.

Proposition 1. Suppose that Condition TP is satisfied. Let

Φ? ≡ {φ ∈ Φ : φ satisfies equations (MD’), (IV’), and (SP’)} , (13)

and for any t ∈ Rdθ , let Φ?(t) ≡ Φ? ∩ {φ ∈ Φ : θ(φ) = t}. Then t ∈ Θ? if and only if

Φ?(t) is non-empty.

Proposition 1 shows that Θ? is characterized by finite-dimensional systems of equa-

tions. If the target parameter is scalar, then Θ? can be computed more directly by

solving two optimization problems.

Proposition 2. If θ is continuous on Φ, then Θ? is a compact, connected set. In

particular, if dθ = 1, then Θ? = [t?lb, t
?
ub], where

t?lb ≡ min
φ∈Φ?

θ(φ) and t?ub ≡ max
φ∈Φ?

θ(φ). (14)

Each condition that defines Φ?—equations (MD’), (IV’), and (SP’)—is linear in φ.

If θ is also linear in φ, then problem (14) is a linear program. A change in choice shares,

like equation (3), yields a θ function that is linear in φ. A change in consumer surplus,

like equation (4), also does, although constructing θ is less obvious (see Appendix S6).

A discrete approximation to an elasticity produces a θ function that is nonlinear, but

the resulting optimization problem is linear-fractional, so can be reformulated as a

linear program using the Charnes and Cooper (1962) transformation; see Appendix S7

for more detail, and Kamat (2020) for a similar observation. Linearity ensures that

both the minimization and maximization problems can be solved reliably and relatively

quickly, even when the dimension of Φ is quite large.3

3 All of the linear (and quadratic) programs ahead were computed using Gurobi (Gurobi Optimization,
2015), and we checked a subset of the results using CPLEX (IBM, 2010).
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2.8 Estimation and Statistical Inference

The choice shares sj(p,m, x) are in practice replaced by estimates ŝj(p,m, x). Using the

estimated choice shares in equation (MD’) can lead to empty feasible sets in problem

(14), even when the model is correctly specified so that the feasible sets are non-empty

with the true choice shares. We solve this problem by applying an estimator of [t?lb, t
?
ub]

developed by Mogstad, Santos, and Torgovitsky (2018). The estimator has two steps.

In the first step, we find the best fit to the estimated choice shares by solving

Q̂? ≡ min
φ∈Φ

Q̂(φ) subject to equations (IV’) and (SP’), (15)

where Q̂(φ) ≡
∑

j,p,m,x

P̂[Pi = p,Mi = m,Xi = x]

∣∣∣∣∣∣ŝj(p,m, x)−
∑

V∈Vj(p)

φ(V|p,m, x)

∣∣∣∣∣∣ ,
and where P̂[Pi = p,Mi = m,Xi = x] are estimated probabilities. Defining Q̂ with

absolute deviations means that problem (15) can be reformulated as a linear program

by replacing terms in absolute values by the sum of their positive and negative parts

(e.g. Bertsimas and Tsitsiklis, 1997, pp. 19–20). The absolute deviations are weighted

so that Q̂(φ) is an estimate of the average absolute deviation in choice shares under φ.

In the second step, we collect values of θ(φ) for φ that come close to minimizing

problem (15). That is, we construct the set

Θ̂? ≡
{
θ(φ) : φ ∈ Φ, φ satisfies equations (IV’), (SP’), and Q̂(φ) ≤ (1 + η)Q̂?

}
,

which is never empty due to the definition of Q̂?. The qualifier “close” here reflects

the tuning parameter η, which is a small positive constant that must converge to zero

at an appropriate rate with the sample size to smooth out potential discontinuities

that could conceivably arise in the convergence of a set estimator. In our empirical

estimates we set η = 10−4 and found little sensitivity to values of η that were bigger or

smaller by an order of magnitude. However, there are currently no theoretical results

to guide the choice of this parameter.

We compute Θ̂? by solving

t̂?lb ≡ min
φ∈Φ

θ(φ) subject to equations (IV’), (SP’), and Q̂(φ) ≤ Q̂?(1 + η), (16)

and an analogous maximization problem for t̂?ub. The set estimator for Θ? is Θ̂? ≡
[t̂?lb, t̂

?
ub], which Mogstad et al. (2018, Section S3, Theorem 1) show is consistent for

[t?lb, t
?
ub] under fairly weak conditions. When θ is linear, problem (16) can be refor-
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mulated as a linear program, again by appropriately reformulating the absolute value

terms in Q̂(φ). The overall estimation procedure requires solving three linear programs:

problem (15), problem (16), and the maximization problem analogous to (16).

We conduct statistical inference using the test developed by Deb, Kitamura, Quah,

and Stoye (2021); see also Kitamura and Stoye (2018). The specifics of the test are nota-

tionally involved, so here we provide a high-level overview of what it entails. Appendix

S8 contains a detailed discussion of how we implement the test in our application.

The null hypothesis of the test is H0 : t ∈ Θ?, where t is a candidate value of the

target parameter. The test statistic is the minimum weighted sum of squares between

the estimated choice shares and the shares predicted by a φ ∈ Φ that satisfies equations

(IV’), (SP’), and θ(φ) = t, where θ is required to be linear in φ. The test statistic is thus

the optimal value of a quadratic program. A critical value is found by bootstrapping

the choice shares and, for each bootstrap replication, solving a tightened version of the

same quadratic program. The tightening effectively provides the type of generalized

moment selection used in the moment inequality literature (e.g. Andrews and Soares,

2010). The null hypothesis is rejected at the 5% level if the test statistic exceeds the

.95 bootstrapped quantile of the tightened problem.

We construct a 95% confidence interval by inverting 5% tests. That is, the con-

fidence interval contains all target parameter candidate values t for which the null

hypothesis H0 : t ∈ Θ? is not rejected. The confidence interval can be constructed rel-

atively efficiently by bisecting its endpoints. In our application, the overall procedure

of building confidence intervals is still computationally demanding, since it requires

solving an extremely large quadratic program for each bootstrap replication and each

trial value of t. For this reason, and because our sample size is quite large, we report

confidence intervals for only a few parameters.

3 Covered California

3.1 Institutional Details

Covered California is one of the largest state-level ACA marketplaces, accounting for

more than 10% of national enrollment. The marketplace offers health insurance plans

directed at individuals not covered by an employer or by a public program such as

Medicaid or Medicare.

The basic structure of Covered California is determined by federal regulation com-

mon to ACA marketplaces in all states. The regulation splits states into geographic

rating regions comprised of groups of contiguous counties or zip codes. In California,

there are 19 rating regions. Insurers are allowed to vary premiums across (but not
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Table 1: Standardized plan characteristics in Covered California

Panel (a): Characteristics by metal tier before cost-sharing reductions (CSRs)

Annual Annual max Primary E.R. Specialist Preferred Advertised
Tier deductible out-of-pocket visit visit visit drugs AV(∗)

Bronze $5,000 $6,250 $60 $300 $70 $50 60%
Silver $2,250 $6,250 $45 $250 $65 $50 70%
Gold $0 $6,250 $30 $250 $50 $50 79%
Platinum $0 $4,000 $20 $150 $40 $15 90%

Panel (b): Silver plan characteristics after cost-sharing reductions (CSRs)

Income Annual Annual max Primary E.R. Specialist Preferred Advertised
(%FPL) deductible out-of-pocket visit visit visit drugs AV(∗)

200-250% FPL $1,850 $5,200 $40 $250 $50 $35 74%
150-200% FPL $550 $2,250 $15 $75 $20 $15 88%
100-150% FPL $0 $2,250 $3 $25 $5 $5 95%

Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf

within) rating regions, and consumers face the premiums set for their resident region.

Each year in the spring, insurers announce their intention to enter a region in the sub-

sequent calendar year, then undergo state certification. Consumers purchase insurance

for the subsequent year during an open enrollment period at the end of the year.

Covered California differs from other ACA marketplaces in important ways. An

insurer who intends to participate in a rating region is required to offer a menu of four

plans classified into metal tiers of increasing actuarial value: Bronze, Silver, Gold, and

Platinum.4 Unlike other marketplaces, where insurers do not need to offer Bronze or

Platinum plans, in California an insurer must provide the entire menu of four plans in

any region it enters. Moreover, the actuarial features of the plans are required to have

the standardized characteristics shown in Table 1 (among others not shown).

Insurers are also regulated on how they can set premiums. Each insurer chooses a

base premium for each metal tier in each rating region. The base premium is multiplied

by a federally-determined adjustment factor that increases with a consumer’s age from

1 at age 21 to 3 at age 64 (see Orsini and Tebaldi, 2017, for further detail). The

insurer is not permitted to adjust premiums based on any non-age characteristics of

the consumer. Insurer premiums are thus a deterministic function of a consumer’s age

and resident rating region.

Individuals with household income below 400% of the Federal Poverty Level (FPL)

4 There is a fifth coverage tier called minimum (or catastrophic) coverage. This tier is not available to
the subsidized buyers we focus on (with a few, rare exceptions), so we omit it from the analysis.
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Figure 2: Post-subsidy premium variation by age and income
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Notes: Post-subsidy premiums shown are the median across insurers for rating region 16 (part of Los Angeles).

receive premium subsidies. The size of the premium subsidy is set so that the subsidized

premium of the second-cheapest Silver plan is lower than a so-called “maximum afford-

able amount” that varies with income. Post-subsidy premiums are thus a deterministic

function of a consumer’s age, resident rating region, and household income.

In Figure 2 we illustrate how post-subsidy premiums vary as a function of both age

and income. Holding age fixed, post-subsidy premiums increase with income equally

across all plans due to lower subsidies. Holding income fixed, post-subsidy premiums

increase with age differently across plans due to the adjustment factor.

In addition to premium subsidies, the ACA also provides cost-sharing reductions

(CSRs) for individuals with household income lower than 250% of the FPL. In Covered

California, CSRs are implemented by changing the actuarial terms of Silver plans by

income, with discrete changes at 150%, 200%, and 250% of the FPL; see Table 1.

The ACA had a universal coverage mandate that specified an income tax penalty

for remaining uninsured. We treat the tax penalty as affecting the value of the outside

option of not purchasing any Covered California plan. The universal mandate was

generally unenforced between 2014–2017 (Miller, 2017).

3.2 Data

Our primary data are administrative records on all individuals who purchased a plan

through Covered California in 2014. The records contain unique individual and house-

hold identifiers, as well as age, income measured in percentage of the FPL, gender,

zipcode of residence, choice of plan, and premium paid. Since post-subsidy premiums

are a deterministic function of demographics, we can also calculate premiums for plans

a consumer did not choose. We focus on adults aged 27–64 with household income
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between 140% and 400% of the FPL, which is 73% of the roughly 1.3 million enrollees.

The remaining 27% of enrollees are either ineligible for subsidies (11%), or are younger

than 26, so considered dependents under the ACA (16%).

We characterize each individual i by their resident rating region (market), Mi, and

a vector Xi consisting of their age and household income. We discretize age into 38

single-year bins running from 27 to 64, and household income into 52 FPL bins that

are 5% wide, running from 140% to 400%. When crossed with the 19 rating regions in

Covered California, we obtain 37,544 unique rating region × age × income bins of the

observable characteristics, (Mi, Xi).

As in most demand analyses, we do not directly observe individuals who chose

the outside option of not purchasing a plan through Covered California. To transform

quantities purchased into shares, we estimate the number of potential buyers using data

from the 2011–2013 American Community Survey public use file (via IPUMS, Ruggles

et al., 2015). Our potential buyer estimates use a flexible linear regression, similar to

Finkelstein et al. (2019) and Tebaldi (2022). More detail is provided in Appendix S9.

We combine potential buyer estimates with the administrative data to construct

choice shares for each of the region × age × income bins. To avoid excessive extrapo-

lation, we drop bins that are empty in the ACS sample. We also drop a few small bins

for which we estimate fewer potential buyers than there are enrollees in the adminis-

trative data. We are left with 30,007 bins that we use as the main estimation sample.

Since the number of individuals per bin varies greatly, we will report parameters that

average over (Mi, Xi), and therefore put greater weight on larger bins.

We focus on an individual’s choice of coverage level (metal tier), so that J = 4,

with j = 1, 2, 3, 4 denoting Bronze, Silver, Gold, and Platinum, respectively, and j = 0

denoting the outside option, as usual. The implicit assumption is that the choice of

coverage level is separable from the choice of insurer. We view this assumption as

reasonable for Covered California because the regulations ensure that the metal tiers

offered—as well as the financial characteristics of the tiers—do not vary by insurer. We

define premiums for each tier in each bin as the median post-subsidy premium across

insurers. Because of ACA regulations, Pi = π(Mi, Xi) is a deterministic function of a

consumer’s region, Mi, and demographic characteristics, Xi. We reflect this in notation

ahead by writing f(v|p,m, x) = f(v|m,x).

In Table 2 we provide some summary statistics. Each (Mi, Xi) bin contains 85

potential buyers on average. The average participation rate in Covered California is

28%, but participation varies widely across demographics and rating regions. Older

and poorer buyers in particular are more likely to purchase coverage. The impact of the

CSRs is evident in panel (b): buyers with income below 200% face monthly premiums
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Table 2: Summary statistics

Panel (a): Distribution of bin characteristics
Mean St. Dev. P-10 Median P-90

Number of buyers 85.32 91.07 14 55 195
Age 43.415 10.694 29 43 59
Income (FPL%) 243.991 72.037 155 230 355
Takeup rate 0.280 0.209 0.053 0.234 0.576
Average premium paid 174.495 89.324 68 162 298
Share choosing Bronze 0.065 0.073 0 0 0
Share choosing Silver 0.188 0.173 0 0 0
Share choosing Gold 0.015 0.021 0 0 0
Share choosing Platinum 0.012 0.018 0 0 0

Panel (b): Premiums and choice shares by age and income
Bronze Silver Gold Platinum

Premium Share Premium Share Premium Share Premium Share

By age:
27-34 120 0.050 174 0.122 229 0.010 272 0.010
35-49 117 0.058 181 0.175 248 0.013 299 0.011
50-64 104 0.086 207 0.259 321 0.022 409 0.016

By income (FPL%):

140-150 5 0.011 57 0.336 133 0.005 191 0.006
150-200 28 0.046 94 0.318 170 0.008 229 0.009
200-250 86 0.084 162 0.193 241 0.018 302 0.015
250-400 196 0.074 276 0.084 357 0.019 419 0.014

Notes: Panel (a) reports statistic taken across the 30,007 bins in our main estimation sample. All statistics are weighted by
number of potential buyers. For income, standard deviation means the standard deviation of the within-bin medians of income
and average premium paid. In panel (b), premium is the average premium paid for buyers of a given age/income group.

under $100 for a Silver plan with actuarial value of 88% or more (see Table 1). Over

30% of such consumers purchase a Silver plan, whereas among consumers with income

over 250% of the FPL, fewer than 9% purchase a more expensive and less generous

non-CSR Silver plan.

3.3 Identifying Assumptions

Insurers in Covered California choose the base premium for each rating region and cov-

erage level. This choice likely depends on differences in demand and costs specific to

each rating region, for example due to the underlying socioeconomic or health charac-

teristics of the residents in a region, or due to differences in provider networks. Using

variation across regions risks confounding premiums with these other unobservable

differences. For this reason, our primary empirical strategy uses only within-region

variation, and we do not impose any restriction on how preferences (the density of
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valuations f) vary across regions, Mi.
5

Instead, we assume—in a limited way—that valuations are locally invariant to age

and income. Within a region, post-subsidy premiums vary with age and income due to

ACA regulations. The variation is outside of the control of insurers, who only choose

base premiums for each region. The main concern with this strategy is that valuations

also change with age or income due to changes in latent risk factors. We defend against

this concern by only using local variation in age and income and then conducting a

sensitivity analysis using the imperfect instrument generalization of Assumption IV.

In the notation of Section 2, we let Wi denote a coarse aggregate of (Mi, Xi). The

aggregates are constructed by grouping Xi into age bins given by {27–30, 31–35, 36–

40,. . . , 56–60, 61–64} and income bins given in percentage of the FPL by {140–150,

150–200, 200–250, 250–300, 300–350, 350–400}. A value of Wi is then taken to be

the region indicator Mi crossed with all possibilities of these coarser age-income bins.

Conditional on Wi, we still observe variation in premiums due to variation in age and

income within the Wi bin. The assumption is that the distribution of latent valuations

does not change as Xi varies within this bin. In terms of Assumption IV, this means

taking Zi = Xi as the instrument, while conditioning on Wi.
6

For example, one value of Wi = w corresponds to individuals in the North Coast

rating region who are aged between 36 and 40 with incomes between 150% and 200%

of the FPL. Within this bin there are 50 values of Xi comprised of the ages 36, 37, 38,

39, and 40 crossed with the 10 income bins between 150% and 200% in steps of 5%.

We observe a different premium vector for each of these 50 values, and we assume that

observed choices are generated by the same distribution of valuations.

We evaluate sensitivity to this assumption by using the imperfect instrument gen-

eralization of Assumption IV. We specify κ as

κ(z, z′, w) =


κage, if z and z′ differ only in age, and only by a single bin

κinc, if z and z′ differ only in income, and only by a single bin

+∞, otherwise

where κage, κinc ≥ 0 are parameters that control how much the density of valuations is

allowed to vary. For example, taking κage = .2 and κinc = 0 allows for a 20% difference

5 As a consequence, we can estimate bounds region-by-region, which helps with computation. For statis-
tical inference, we need to consider all regions simultaneously, which is the main reason that inference is so
much more computationally intensive; see Appendix S8 for more detail.

6 Since Pi = π(Mi, Xi) does not have any unobserved stochastic components, this setting is an atypical
example of an instrumental variable. The simulations in Appendix S5 illustrate our method when the
endogenous variable depends on an additional unobservable component.
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in valuations for any two adjacent one-year age bins with the same income, while still

requiring adjacent income bins with the same age to have identical valuations.

In Appendix S10, we also implement an alternative empirical strategy that allows

for valuations to change arbitrarily across age and instead uses limited cross-region

variation in premiums, while still maintaining invariance across income. The demand

estimates from that strategy are broadly similar to the main results that use only

within-region variation in age and income.

Throughout all of the analysis we use Assumption SP to exploit unambiguous ver-

tical orderings between plans. We specify the support sets V•(w) as:

V•(w) =



{v ∈ R4 : v2 ≥ v4 ≥ v3 ≥ v1} if w has income below 150% FPL

{v ∈ R4 : v2 ≥ v1, v4 ≥ v3 ≥ v1} if w has income in 150–200% FPL

{v ∈ R4 : v4 ≥ v2 ≥ v1, v4 ≥ v3 ≥ v1}, if w has income in 200–250% FPL

{v ∈ R4 : v4 ≥ v3 ≥ v2 ≥ v1} if w has income above 250% FPL

This specification requires consumers to always have higher valuations for plans that

dominate on all actuarial characteristics. The different cases account for the CSRs,

which change at 150%, 200% and 250% of the FPL (see Table 1). We do not restrict

the ordering of Silver relative to Gold and Platinum for the 150–200% FPL bracket, or

relative to Gold for the 200–250% FPL bracket, because the CSRs make these plans

differ in ways that may be more or less attractive for different consumers. We also do

not assume that any of the plans are valued more than the outside option, that is, we

allow valuations for Covered California plans to be negative.

3.4 Parametric Models

For comparison, we also consider some fully parametric models, all of which follow a

specification similar to equation (2):

Yi = arg max
j∈J

1[j 6= 0] (γi − αiPij + βiavij) + εij , (17)

where γi is an individual-specific intercept, avij is the actuarial value of tier j for in-

dividual i (see Table 1), and αi and βi are individual slope coefficients. The indicator

normalizes the contribution of these terms to 0 for the outside option (j = 0). We

consider logit models in which εij is assumed to follow a type I extreme value distri-

bution, independently across j, as well as a probit model in which εij follows a normal

distribution. We always estimate model (17) region-by-region, so that all parameters
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vary by region in an unrestricted way.

The first model we estimate is a logit in which the price parameter, αi, is constant

within regions, but both γi and βi vary with age and income in coarse bins. In partic-

ular, the specification allows βi to vary freely by region with a different value in each

of the age bins used to define Wi: {27–30, 31–35, 36–40,. . . , 56–60, 61–64}. It allows

γi to vary freely by region, and within each region restricts γi = γinc
i + γage

i , where γinc
i

varies in income bins {140–150, 150–200, . . . , 350–400}, and γage
i varies in the same

age bins as βi. The second model is a probit with the same specification.7

We then consider three mixed logit models. In each of these models, γi and βi

vary with observables in the same way as in the first logit model. The three models

differ in whether γi (“mixed logit I”), αi (“mixed logit II”), or both (“mixed logit III”)

have an additional unobservable component that is normally distributed with unknown

variance. In the latter case, we also assume that the two unobservable components are

uncorrelated.

We use these five parametric models to contextualize the nonparametric results and

demonstrate some of the benefits—and limitations—of the nonparametric approach.

The comparison should be qualified by pointing out that the parametric approaches

also differ in other ways from the nonparametric approach. The limited verticality

we impose on the nonparametric model through Assumption SP cannot be imposed

in the parametric models because the distribution of εij has full support. Using ac-

tuarial value (avij) in equation (17) adds a notion of verticality that should make

the comparison closer.8 We impose some additive separability between income and

age because including more parameters created convergence problems in some regions.

Perhaps most substantively, the parametric models are estimated through maximum

likelihood, while our nonparametric bounds are estimated using the absolute devia-

tions approach in Section 2.8. As a consequence of these differences, the parametric

estimates need not lie inside the estimated nonparametric bounds.

3.5 Demand Only

We do not model supply, so all of the results should be interpreted as holding sup-

ply fixed. This is an important caveat to all of our counterfactual estimates, both

parametric and nonparametric.

7 The probit still has εij independent across j. We had difficulty allowing for correlation across j because
the likelihood is quite flat.

8 We also estimated specifications where avij was replaced by product–specific intercepts. These specifi-
cations produced less price sensitivity.
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4 Demand

We begin by estimating demand responses to uniform changes in monthly, per-person

premiums. The premium vectors in these counterfactuals take the form π(Mi, Xi) + δ

for various choices of δ. The first class of target parameters we consider are changes

in choice shares. For good j, region (market) m, and consumer characteristics x, these

can be written as

∆Shareδj(m,x; f) ≡
∫
Vj(π(m,x)+δ)

f(v|m,x) dv −
∫
Vj(π(m,x))

f(v|m,x) dv, (18)

where Vj(p) was defined in equation (8). We aggregate these changes in choice shares

into a single measure by averaging over regions and characteristics:

∆Shareδj(f) ≡
∑
m,x

∆Shareδj(m,x; f) P[Mi = m,Xi = x]. (19)

In Table 3 we report estimated bounds for ∆Shareδj across the four metal tiers

together with bounds on overall participation,
∑

j≥1 ∆Shareδj = 1 −∆Shareδ0. In the

first row of each panel of Table 3, δ is set to a $10 increase for all plans together. From

the consumer’s perspective, this is the same as a $10 decrease in premium subsidies or,

alternatively, the same as a $10 increase in the ACA’s “maximum affordable amount.”

In the next four rows of each panel of Table 3, δ is set to a $10 increase in per-person

monthly premiums in each of the four metal tiers alone.

4.1 Participation and Substitution

Estimated impacts on overall participation are shown in the first column of Table 3.

A $10 increase in all premiums reduces the proportion of individuals who purchase

coverage by between 1.8% and 6.7%. Panel (b) shows that the bounds are larger in

magnitude for lower income individuals, at between 2.0% and 9.1%, and panel (c) shows

that they are smaller in magnitude for higher income individuals, at between 1.6% and

3.7%. Comparing panels (b) and (c) more generally, we find a pattern consistent with

higher price sensitivity for lower income enrollees, which is consistent with the literature

(e.g. Abraham, Drake, Sacks, and Simon, 2017; Finkelstein et al., 2019).

Premium increases for Gold or Platinum plans would have little impact on overall

enrollment, which makes sense since there are relatively few buyers for these plans

to begin with, and $10 is a proportionally smaller increase in premiums for these

plans. For higher-income consumers, we estimate similar bounds on participation from

increasing premiums for either Bronze or Silver. For low-income consumers, increasing

27



Table 3: Nonparametric bounds on changes in choice shares

Change in probability of choosing
$10/month premium Any plan Bronze Silver Gold Platinum

increase for LB UB LB UB LB UB LB UB LB UB

Panel (a): Full sample (140 - 400% FPL)

All plans -0.067 -0.018 -0.012 -0.004 -0.051 -0.011 -0.004 -0.001 -0.003 -0.001
Bronze -0.011 -0.002 -0.047 -0.009 +0.004 +0.044 +0.000 +0.028 +0.000 +0.023
Silver -0.050 -0.003 +0.001 +0.124 -0.165 -0.017 +0.001 +0.121 +0.000 +0.097
Gold -0.003 -0.000 +0.000 +0.005 +0.000 +0.010 -0.013 -0.003 +0.000 +0.011

Platinum -0.002 -0.000 +0.000 +0.003 +0.000 +0.006 +0.001 +0.009 -0.010 -0.002

Panel (b): Lower income (140 - 250% FPL)

All plans -0.091 -0.020 -0.011 -0.003 -0.077 -0.015 -0.003 -0.001 -0.003 -0.001
Bronze -0.009 -0.001 -0.046 -0.008 +0.004 +0.044 +0.000 +0.027 +0.000 +0.023
Silver -0.076 -0.005 +0.001 +0.178 -0.237 -0.021 +0.001 +0.173 +0.000 +0.141
Gold -0.002 -0.000 +0.000 +0.004 +0.000 +0.009 -0.011 -0.002 +0.000 +0.010

Platinum -0.002 -0.000 +0.000 +0.004 +0.000 +0.006 +0.001 +0.010 -0.010 -0.002

Panel (c): Higher income (250 - 400% FPL)

All plans -0.037 -0.016 -0.015 -0.006 -0.018 -0.007 -0.004 -0.001 -0.003 -0.001
Bronze -0.013 -0.003 -0.049 -0.009 +0.003 +0.045 +0.000 +0.029 +0.000 +0.023
Silver -0.016 -0.001 +0.001 +0.053 -0.072 -0.012 +0.001 +0.054 +0.000 +0.040
Gold -0.003 -0.000 +0.000 +0.006 +0.000 +0.012 -0.016 -0.004 +0.000 +0.013

Platinum -0.002 -0.000 +0.000 +0.003 +0.000 +0.005 +0.001 +0.009 -0.010 -0.003

Notes: Each pair of columns contains the estimated lower and upper bound for the change in choice probability of the choice
indicated in columns in response to a $10/month premium increase for the plan(s) indicated in the rows. The column “Any
plan” means any choice j 6= 0, and the row “All plans” means all choices j 6= 0.

Silver premiums could decrease participation by as much as 7.6%, while an increase in

the Bronze premium would cause a decrease of at most 0.9%.

The estimated bounds on substitution patterns within and between coverage tiers

are also informative in many cases. For example, panel (a) shows that an increase in

Bronze premiums by $10 would lead to a decrease of between 0.9% and 4.7% in the

share of consumers choosing Bronze coverage, and an increase in the share choosing

Silver of between 0.4% and 4.4%.9 The upper bound on the increase in the share

choosing Gold or Platinum is significantly smaller, reflecting the closer substitutability

of the Bronze and Silver plans. The change in participation from a Bronze premium

increase is between 0.2% and 1.1%, which is naturally both smaller and tighter than

the change when all premiums are increased together. In contrast, increasing Platinum

premiums by the same amount would lead to a much smaller decline in the proportion

of buyers not purchasing coverage, which we measure to be at most 0.2%.

9 In Appendix Figure S2 we show that the joint identified set for the two choice shares is far from
rectangular. For example, if the effect on Bronze is a decrease of 4.7%, then the effect on Silver must be an
increase of between roughly 2% and 4.4%, narrower than the marginal bounds of 0.4% to 4.4%.

28



Table 4: Sensitivity to Assumption IV

Change in probability of purchasing coverage
if all per-person premiums increase by $10/month

κage = κ, κinc = 0 κage = 0, κinc = κ κage = κinc = κ

κ LB UB LB UB LB UB

0 -0.0674 -0.0183 -0.0674 -0.0183 -0.0674 -0.0183
0.2 -0.0691 -0.0192 -0.1076 -0.0344 -0.1017 -0.0223
0.3 -0.0699 -0.0196 -0.1227 -0.0395 -0.1083 -0.0258
0.4 -0.0705 -0.0198 -0.1355 -0.0436 -0.1191 -0.0314
0.6 -0.0718 -0.0204 -0.1556 -0.0485 -0.1415 -0.0311
+∞ -0.0865 -0.0158 -0.2602 -0.0293 -0.2798 -0.0000

Notes: Each pair of columns shows estimated lower and upper bounds on the change in choosing any inside choice (j 6= 0).
The first pair adjusts κage, while keeping κinc = 0. The second pair adjusts κinc, while keeping κage = 0. The third pair adjusts
both κinc and κage simultaneously.

4.2 Sensitivity

In Table 4 we report sensitivity to Assumption IV. The reported bounds are for the

change in participation due to a $10 decrease in subsidies (increase in all premiums).

The three pairs of columns correspond to allowing for variation across age but not

income bins (κage > 0, κinc = 0), allowing for variation across income but not age

bins (κage = 0, κinc > 0), and allowing for variation across both income and age bins

(κage = κinc > 0). The top row with κage = 0 and κinc = 0 is the same for each of the

three pairs of columns, and the same as reported in Table 3. At the opposite extremes,

the bottom row in the first pair of columns uses only premium variation in income, the

bottom row in the second pair uses only premium variation in age, and the bottom row

in the third pair uses neither. Intermediate values of κage and κinc limit the amount

by which adjacent bins can differ, with larger values representing weaker identifying

assumptions.10

The bottom row of the first pair of columns (κage = +∞ and κinc = 0) shows that

if we completely drop age invariance, the estimated bounds are 1.6% to 8.7%, which is

only modestly wider than the baseline estimates of 1.8% to 6.7%. The bottom row of

the second pair (κage = 0 and κinc = +∞) has much wider bounds, implying that the

estimates depend more on the income invariance assumption. When both income and

age invariance are completely removed, the bounds become completely uninformative

10 The bounds tend to be monotonic in κage and κinc, but this is not always the case. The population
bounds would necessarily be monotonic, since larger values of κage and κinc correspond to weaker assumptions.
However, this does not need to be the case when estimating the bounds using the procedure discussed in
Section 2.8. The reason is that as κage or κinc increases, the value of Q̂? always mechanically decreases,

and thus the set Θ̂? over which the bounds are taken in the second step also changes, potentially excluding
densities that fit the observed choice shares sufficiently well for smaller values of κage or κinc.
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and we cannot rule out that a $10 decrease in subsidies causes all 28% of the population

currently enrolled to stop participating. Setting κage = κinc = .6 allows for the density

of valuations in adjacent age and/or income bins to increase or decrease by 60%. The

bounds do widen considerably, but remain informative. For a more modest relaxation,

like κage = κinc = .2, the bounds are still close to the baseline estimates.

Overall, the results in Table 4 show that the participation estimates primarily rely

on the assumption that consumers in narrow income bins have similar preferences.

This makes sense given Figure 2, since post-subsidy premiums vary more with income

than with age. Assuming valuations are invariant to income is natural, since it gives

the additive separability in choice model (1) the interpretation of quasilinearity (within

coarse bins). The assumption could fail if either quasilinearity fails, or if higher income

individuals have systematically different valuations, for example due to lower health

risk. However, Table 4 shows that our results are largely robust to modest violations of

income invariance. While we view local invariance of valuations to age as reasonable for

the relatively homogenous groups of individuals within each 5 year bin, the assumption

is unlikely to hold exactly since risk factors change with age (see e.g. Ericson and

Starc, 2015; Geruso, 2017; Orsini and Tebaldi, 2017; Tebaldi, 2022). However, as

demonstrated in Table 4, age invariance plays a secondary role in our estimates.

4.3 Comparison to Parametric Models

In Figure 3a we plot the baseline bounds on the change in participation due to a

$10 decrease in subsidies (1.8% to 6.7%) together with 95% confidence intervals. For

comparison, it also plots point estimates and confidence intervals for the parametric

models discussed in Section 3.4. All of the point estimates lie within the nonparametric

bounds, towards the upper bound, where price sensitivity is lowest.

By definition, any value within the nonparametric bounds can be produced by a

distribution of valuations that matches the observed choice shares equally well. The

parametric models produce a single point estimate by further requiring the distribution

of valuations to also have a particular shape. The conclusion we take from Figure 3a is

therefore not that the parameterizations used in the parametric models do not matter.

Instead, it’s that the five parametric models we consider provide similar conclusions,

and that there are other distributions of valuations that match the data equally well

while leading to much different conclusions.

In Figure 3b we explore this comparison for subsidy changes of different sizes.

Larger changes reflect more ambitious counterfactuals that are more dissimilar from

what was observed in the data. The nonparametric bounds widen to reflect this in-
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Figure 3: Comparison to Parametric Models
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(a) Change in participation in response to a $10 decrease in subsidies
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(b) Change in participation in response to different sized changes in subsidies

Notes: Top panel: Bound and point estimates are shown in solid black, and 95% confidence intervals are indicated with grey
shading. The confidence interval for the logit and probit models are too narrow to be visible. Bottom panel: Nonparametric
upper and lower bounds on the overall probability of purchasing coverage (choosing j 6= 0) for each price change are shown
with light grey circles. Corresponding point estimates from mixed logit III are shown in black triangles.

creasing dissimilarity. They are also wider for premium decreases than for increases,

intuitively because we have less information on price sensitivity for the 72% of poten-

tial buyers who did not participate under the observed premiums. In contrast, the

richest mixed logit model produces a point prediction for both increases and decreases,

regardless of how dissimilar the counterfactual is to the observed data.11 The point pre-

diction hugs the lower bound for premium decreases and the upper bound for premium

increases, suggesting that it could be underestimating the degree of price sensitivity,

potentially by a considerable amount.

11 Confidence intervals for the mixed logit predictions in Figure 3b are not much different than those in
Figure 3a, even for the most distant counterfactuals.
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Table 5: Elasticities

% change in probability of choosing
1% premium Outside High deductible Low deductible
increase for Bounds/Point estimate Bounds/Point estimate Bounds/Point estimate

High deductible Nonparametric +0.025 +0.169 -9.797 -1.707 +0.256 +2.710
κage = 0.4 κinc = 0 +0.023 +0.190 -10.438 -1.787 +0.273 +3.002
κage =∞ κinc = 0 +0.000 +0.282 -11.369 -1.051 +0.074 +3.452
κage = 0 κinc = 0.4 +0.073 +0.387 -10.046 -2.632 +0.152 +2.707
κage = 0 κinc =∞ +0.112 +0.898 -10.646 -2.292 +0.077 +2.727

Logit +0.154 -1.997 +0.154
Probit +0.152 -1.902 +0.200
Mixed Logit I +0.152 -1.966 +0.203
Mixed Logit II +0.206 -4.411 +0.997
Mixed Logit III +0.176 -4.039 +1.282

Low deductible Nonparametric +0.207 +1.530 +1.364 +54.251 -15.491 -1.956
κage = 0.4 κinc = 0 +0.197 +1.583 +1.922 +59.219 -16.178 -2.183
κage =∞ κinc = 0 +0.052 +1.909 +0.235 +67.867 -18.444 -1.358
κage = 0 κinc = 0.4 +0.472 +3.064 +0.955 +52.746 -17.351 -3.638
κage = 0 κinc =∞ +0.449 +5.851 +0.195 +63.914 -20.367 -2.288

Logit +0.641 +0.641 -3.549
Probit +0.544 +1.200 -2.455
Mixed Logit I +0.619 +0.799 -3.426
Mixed Logit II +0.281 +2.876 -3.135
Mixed Logit III +0.182 +3.263 -3.187

Notes: High deductible is Bronze and low deductible is a bundle consisting of Silver, Gold, and Platinum. See Appendix S7
for further details on implementation and computation.

4.4 Elasticities

In Table 5 we report estimated bounds on discrete approximations to average region-

level elasticities. To avoid dividing by zero choice shares, we compute these elasticities

at an aggregated level by grouping Silver, Gold, and Platinum into a single low de-

ductible category, with the other option being high deductible Bronze plan. Appendix

S7 contains more details, showing how we use our method to estimate bounds on

discrete approximations of semi-elasticities, which we then turn into elasticities.

The Lerner index computed at the endpoints of the bounds implies a markup for

marginal buyers of between 10% and 59% for the Bronze plan, and between 6% and

51% for the low deductible plans.12

Own-price elasticity estimates from the parametric models tend to be towards the

nonparametric upper bounds, although there is considerable variation for the Bronze

plan. The same is true for cross-price elasticities with the exception of the elasticity of

the outside option to the price of Bronze, which the parametric models estimate to be

at or above the nonparametric upper bound.

The sensitivity analysis in Table 5 aligns with the price variation in the data (Figure

2). The elasticities of choosing the outside option rely more on income variation than

12 Markups for inframarginal buyers can be much smaller (possibly negative) if there is adverse selection
and higher risk buyers are less price sensitive (e.g. Einav, Finkelstein, and Cullen, 2010; Tebaldi, 2022; Einav
et al., 2019; Polyakova and Ryan, 2019).
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age variation, with the bounds widening only somewhat with κage > 0, but considerably

more with κinc > 0. On the other hand, cross-price elasticities rely more on age

variation, which “rotates” the tier prices in a way that income variation does not.

Own-price elasticities seem to use both sources of variation in equal measure.

5 Welfare and Market Design

5.1 Consumer Surplus and Government Spending

The change in consumer surplus from a change in premiums to π(Mi, Xi) + δ is

∆CSδ(m,x; f) ≡
∫ [

max
j∈J
{vj − πj(m,x)− δj} −max

j∈J
{vj − πj(m,x)}

]
f(v|m,x)dv.

The associated change in government spending is

∆GSδ(m,x; f) ≡
∑
j≥1

(Subj(m,x)− δj)×
[∫
Vj(π(m,x)+δ)

f(v|m,x) dv

]

−
∑
j≥1

Subj(m,x)×
[∫
Vj(π(m,x))

f(v|m,x) dv

]
,

where Subj(m,x) denotes the baseline premium subsidy for purchasing plan j. We

aggregate both ∆CSδ(m,x; f) and ∆GSδ(m,x; f) into single measures ∆CSδ(f) and

∆GSδ(f) by averaging over regions and demographics, the same as in equation (19).

In Figure 4 we show the estimated joint identified set for ∆CSδ and ∆GSδ when

δ corresponds to a $10 decrease in subsidies. The subsidy decrease would lead to a

reduction in average monthly consumer surplus of between $2.03 and $2.40 per person,

or between $62 and $74 million yearly when aggregated, and a reduction in government

spending of between $6.74 and $19.59 per person, for a total of between $207 and $602

million per year. The joint identified set is not rectangular: larger consumer surplus

declines would be accompanied by smaller declines in government spending. The large

spending declines are due to the marginal buyers who exit the market and relinquish

their entire premium subsidy, which in most cases is considerably greater than $10.

In Figure 4 we also plot the five point predictions from the parametric models

introduced in Section 3.4. The models yield similar predictions for the decline in

government spending, all of which are towards the nonparametric upper bound. This

is not surprising in light of Figure 3. Lower price sensitivity means fewer consumers

leave the market when subsidies decrease, and all of the parametric models produced

similarly insensitive participation responses.
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Figure 4: Changes in consumer surplus and government spending from a $10 decrease in subsidies
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Notes: Bound and point estimates are shown in solid black. One-dimensional 95% confidence intervals are shown in grey
vertical and horizontal bars.

More surprising is that the parametric models produce consumer surplus predic-

tions that are both larger and smaller than the nonparametric bounds. Only the richest

model (mixed logit III) makes a consumer surplus prediction within the nonparametric

bounds. The usual intuition is that lower price sensitivity would lead to larger con-

sumer surplus declines. However, the results in Figures 3a and 4 show that consumer

surplus predictions in the parametric models are also driven by the functional form of

unobserved heterogeneity, even among models that yield similar price sensitivity.

In Table 6 we report nonparametric consumer surplus changes by income. Changes

for the lower-income sample ($2.6–$3.1 per person monthly) are estimated to be roughly

twice as large as for the higher-income sample ($1.3–$1.5 per person monthly). This is

likely due to the higher participation rate among the lower-income sample. In Table 6

we also report sensitivity analysis for the consumer surplus and government spending

estimates. As with the participation estimates in the previous section, the results are

quite robust to relaxing the age invariance assumption and depend more on the income

invariance assumption.

The results indicate large differences between consumer surplus and government

spending changes, consistent with a growing number of empirical analyses showing

that consumers value individual health insurance significantly less than it costs in sub-

sidies to induce them to purchase a plan (e.g. Finkelstein et al., 2019). An important
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Table 6: Aggregate impacts from reducing premium subsidies by $10 per month

140 - 400% FPL 140 - 400% FPL 140 - 250% FPL 250 - 400% FPL
Change in government Change in consumer Change in consumer Change in consumer

spending ($ million/year) surplus ($ million/year) surplus ($/person-month) surplus ($/person-month)
Bounds/Point estimate Bounds/Point estimate Bounds/Point estimate Bounds/Point estimate

Nonparametric -601.73 -207.05 -73.67 -62.49 -3.10 -2.59 -1.50 -1.32
κage = 0.4 κinc = 0 -622.58 -217.51 -74.00 -62.17 -3.11 -2.58 -1.51 -1.31
κage =∞ κinc = 0 -750.84 -188.13 -75.78 -56.74 -3.17 -2.39 -1.57 -1.15
κage = 0 κinc = 0.4 -1136.26 -393.73 -72.10 -50.82 -3.02 -2.04 -1.49 -1.17
κage = 0 κinc =∞ -2092.82 -281.28 -74.55 -11.83 -3.08 -0.34 -1.60 -0.44

Logit -295.13 -81.08 -3.44 -1.78
Probit -268.52 -82.38 -3.39 -1.78
Mixed Logit I -286.42 -83.64 -3.51 -1.88
Mixed Logit II -339.43 -57.27 -2.32 -1.40
Mixed Logit III -266.55 -63.27 -2.60 -1.49

Notes: Each pair of columns corresponds to a different target parameter. Lower and upper bounds are shown for the nonpara-
metric model with different sensitivity to age and income, while single point estimates are shown for the parametric models.

caveat when interpreting welfare estimates in this context is that they do not account

for the existence of potentially large healthcare externalities such as the cost of un-

compensated care, debt delinquency, or bankruptcy (Finkelstein et al., 2012; Mahoney,

2015; Garthwaite, Gross, and Notowidigdo, 2018).

5.2 Linking Subsidies to Age

Regulated health insurance exchanges like Covered California rely on the participation

of healthy consumers. A growing body of research considers linking subsidies to de-

mographics as a tool for encouraging healthy consumers to participate (e.g. Polyakova

and Ryan, 2019; Decarolis et al., 2020; Tebaldi, 2022). In Figure 5a we diagram two

counterfactual regulatory changes that directly link premium subsidies to age. In one

counterfactual, subsidies are shifted from older buyers to younger buyers, while in the

other the shift goes the opposite way.

We report the estimated effects of the two counterfactuals in Figures 5b and 5c.

Shifting subsidies toward younger buyers could have a potentially large positive impact

on both their participation and on aggregate participation, while decreasing the par-

ticipation of older buyers comparatively less, even in the worst case. While the change

in consumer surplus would naturally be positive for younger buyers and negative for

older buyers, we find that average consumer surplus would unambiguously increase by

between $0.46 and $2.68 per person, per month. The impacts on government spending

could be either positive or negative, depending on exactly which sets of buyers change

their purchase decisions. In contrast, shifting subsidies toward older buyers would

increase government spending without necessarily increasing participation or average

consumer surplus.

Figures 5b and 5c also include estimated effects for the five parametric models. As
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Figure 5: Linking subsidies to age
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expected, they indicate price sensitivity toward the lower end of the nonparametric

bounds. The parametric models all predict positive aggregate consumer surplus im-

pacts from shifting subsidies toward younger buyers—like the nonparametric model—

but potentially understate the magnitude of these impacts by a large amount. The

parametric models predict no government spending impact from shifting subsidies to-

wards younger buyers, whereas the nonparametric model says the data is consistent

with either moderate decreases or large increases. Similarly, the parametric models

unambiguously predict that the average consumer surplus impact of shifting subsidies

towards older buyers would be negative, whereas the nonparametric model implies it

could be either positive or negative.

5.3 Removing Silver Plans

The CSRs in Covered California make Silver plans especially attractive for low-income

consumers (Tables 1 and 2). Without Silver plans, subsidized consumers would face a

more standard trade-off between premiums and actuarial value. If Silver plans (j = 2)

were removed, the consumer surplus impact would be

∆RS(m,x; f) ≡
∫ [

max
j∈(J\{2})

{vj − πj(m,x)} −max
j∈J
{vj − πj(m,x)}

]
f(v|m,x)dv.

As with the other parameters, we aggregate ∆RS(m,x; f) into ∆RS(f) by averaging

over regions and demographics.

An interesting property of the nonparametric model is that the sharp lower bound

on ∆RS is infinite (−∞), at least unless we observe a choke price for Silver plans in

the data (which we do not). The explanation is intuitive: without a parametric form

for f , there is nothing to restrict the tails of the valuation for Silver, allowing for the

possibility that some consumers have an unbounded preference for Silver plans. We

view this property as a transparent benefit of the nonparametric model. It implies

that parametric models rely on functional form to pick out a single consumer surplus

impact from an unbounded set of possibilities. While an arbitrarily large consumer

surplus impact is implausible, the fact that neither nonparametric assumptions nor the

data rule it out highlights the role played by the specific choice of parameterization.

We focus instead on estimating the sharp upper bound on the decrease in consumer

surplus from removing Silver plans. In Figure 6 we show that younger consumers would

experience less surplus loss in the best-case scenario. The finding makes sense because

these consumers also face a smaller premium differences between Bronze, Silver, and

Gold plans. In Figure 6 we also show that low income consumers would bear the brunt
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Figure 6: Upper bounds on the change in consumer surplus from removing Silver plans
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of the surplus loss, which also makes sense because it is these consumers who receive

the CSRs incorporated into the terms of Silver plans (Table 1). In Table 7 we show

that nearly $11 million of the aggregate best-case surplus change of $12.4 million would

be borne by consumers with income less than 250% of the FPL.

Estimates from the parametric models are also reported in Table 7. The para-

metric estimates all indicate consumer surplus impacts to be 7–10 times as large for

lower income consumers, similar to the ratio of the nonparametric upper bounds. The

magnitude of the estimates range from a decline of $149 to a decline of $292 million,

which is between 2.5–3.5 times as large as the estimated impact from increasing all

premiums by $10 per month. The sensitivity of the estimates to the precise type of

logit model used is reminiscent of findings by Petrin (2002). According to the nonpara-

metric model, any figure between $12.4 million and infinity is equally well-supported

by the observed choice shares.

The sensitivity estimates in Table 7 show that these conclusions rely on both invari-

ance to age and invariance to income. Fully removing either assumption renders the

bounds essentially uninformative. The intuition can again be seen from Figure 6. Fix-

ing income, post-subsidy premiums for Silver do not vary in age, making it difficult to

pin down substitution between Silver and non-participation. Fixing age, post-subsidy

premiums for Silver increase in lock-step with income, making it difficult to pin down

substitution between Silver and other tiers. Information on both types of substitution

are needed to infer the welfare impacts of removing Silver plans from the choice set.
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Table 7: Aggregate impacts from removing Silver plans

140 - 400% FPL 140 - 250% FPL 250 - 400% FPL
Change in consumer Change in consumer Change in consumer

surplus ($ million/year) surplus ($ million/year) surplus ($ million/year)
Bounds/Point estimate Bounds/Point estimate Bounds/Point estimate

Nonparametric −∞ -12.43 −∞ -10.78 −∞ -1.66
κage = 0.4 κinc = 0 −∞ -11.63 −∞ -10.25 −∞ -1.38
κage =∞ κinc = 0 −∞ -0.68 −∞ -0.68 −∞ -0.00
κage = 0 κinc = 0.4 −∞ -9.77 −∞ -8.36 −∞ -1.41
κage = 0 κinc =∞ −∞ -1.71 −∞ -1.39 −∞ -0.32

Logit -281.67 -248.97 -36.24
Probit -290.40 -260.62 -29.79
Mixed Logit I -292.09 -257.40 -38.29
Mixed Logit II -148.95 -135.53 -14.48
Mixed Logit III -173.74 -162.85 -11.65

Notes: See notes for Table 6.

6 Conclusion

We estimated the demand for health insurance in California’s ACA marketplace using

a new nonparametric approach. The central idea of the method is to divide consumer

valuations into a minimal relevant partition (MRP) of sets for which behavior remains

constant under all considered prices. Using the MRP, we developed a scalable linear

programming procedure for consistently estimating sharp identified sets for policy-

relevant target parameters. We believe the method should be useful for other discrete

choice problems as well. For example, it could be used to remove the large support

assumption in the ideological voting model analyzed by Merlo and de Paula (2016).

The nonparametric estimates point to the possibility of substantially greater price

sensitivity than would be recognized using comparable parametric models. This finding

is consistent with the folklore that logits are “flat” models. The greater price sensitivity

estimates in turn have important welfare implications for counterfactual policy changes

to subsidies or plan offerings. However, we also found direct evidence that specific

parametric functional forms have first-order impacts on consumer surplus estimates

that operate through channels other than price sensitivity. The results provide a clear

example in which functional form assumptions about the distribution of unobserved

heterogeneity are not innocuous, and actually play a leading role in driving empirical

conclusions.
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