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1 Introduction

The real value of nominal debt equals the present value of real primary surpluses. Higher

inflation devalues nominal government debt. Higher inflation must therefore correspond

to lower surplus/GDP ratios, lower GDP growth, or higher discount rates for government

debt. I develop a set of linearized identities that expresses this identity. I measure the

components via impulse-response functions of a simple vector autoregression (VAR).

I look first at an unanticipated movement in inflation. Two thirds of the total in-

flationary effect of that shock corresponds to a change in discount rates, one third from

a change in growth, and essentially none to a change in surplus/GDP ratios.

I look next at a shock in which both inflation and growth move unexpectedly and

together. This exercise is motivated by events such as 2008-2009. There is a big recession,

with large and persistent deficits. Yet inflation falls, raising the real value of nominal debt.

How can this be? Well, perhaps people expect higher subsequent primary surpluses to

pay back the cumulated deficits, and more. Aside from its implausibility, I do not find this

pattern in the data. But nominal and real interest rates on government debt fall sharply,

which raise the value of government debt, a deflationary force. I find that the decline

in expected returns is large and persistent enough quantitatively to account for inflation

shocks in a recession, and vice versa in a boom.

I also examine persistent shocks to surpluses and shocks to discount rates. These

shocks come with essentially no inflation. Shocks to surpluses are highly correlated with

shocks to discount rates, so the surplus and discount rate terms of the present value for-

mula largely offset. Viewed in ex-post terms, persistent deficits come at the same time

as low returns. Low returns bring back the value of debt, without needing repayment

via later surpluses, or devaluation via an initial inflation. The strong correlation between

discount rates and deficits provide fiscal roots of the absence of inflation in the presence

of large variation in surpluses and discount rates.

The first and third observations are not contradictory. There are multiple sources

of variation in the data. Not all business cycles are alike. When we isolate a shock to infla-

tion, we see events in which discount rates and deficits do not offset. When we isolate a

shock to discount rates or deficits, we see a different slice of data, in which they do offset

and there is not much inflation or deflation.

I also find an important role for long-term debt. Simple models focus on one-
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period debt, and price-level jumps devalue such debt. With long-term debt, a slow infla-

tion can devalue long-term bonds when they come due. Expectation of such future infla-

tion lowers nominal bond prices, restoring present value balance in place of a price-level

jump. This mechanism is evident in the data, with expected future inflation accounting

for large fractions of changes in the present value of debt.

I interpret the results through the lens of the fiscal theory of monetary policy:

models with interest rate targets, fiscal theory of the price level, and potentially sticky

prices, as described in Cochrane (2021a), Cochrane (2020). (More literature below.) In

this interpretation, changes in expected surpluses and discount rates cause unexpected

inflation. In this interpretation, we study the fiscal roots rather than the fiscal conse-

quences of inflation. This paper establishes a set of facts that will be useful for construct-

ing such models. My causal language below refers to this interpretation.

But the identities whose terms I measure hold in almost all macroeconomic mod-

els used to quantitatively address inflation, and therefore form a widely useful set of styl-

ized facts for monetary and fiscal interaction. The computations of this paper are de-

liberately “measurement without theory.” I do not estimate any structural parameters,

identify any structural shocks, or test one model vs. another. A “shock” only means a

movement in a variable that is not forecast by the VAR, without structural interpretation.

In particular, standard new-Keynesian / DSGE models posit an opposite causality.

Equilibrium-selection policy by the central bank determines unexpected inflation. Fis-

cal policy reacts “passively,” raising or lowering surpluses to validate inflation-induced

changes in the value of government debt. These fiscal underpinnings are not often exam-

ined, but they should be as they are also important parts of the model, just as monetary-

fiscal coordination is important to classic monetarist thought. The results of this paper

can also be interpreted as measures of the fiscal adjustments to inflation that a standard

new-Keynesian model must envision. The fact that discount rates do much of the adjust-

ing, and the measured time-path of surpluses following inflation shocks, are important

fiscal underpinnings of such models.

Since the analysis is based on identities, and since I make no effort to identify

structural shocks of a model or exogenous policy shocks, the empirical results do noth-

ing to establish one or another causal story. But which element in an identity moves –

whether surpluses or discount rates account for inflation-induced variation in the value
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of government debt – is still an interesting measurement, that bears on the construction

of any theory.

More narrowly, this paper addresses a common attempt at armchair refutation of

fiscal theory: We have huge debt and deficits, and no inflation. Debt and deficits increase

in recessions, where inflation declines. The theory must be wrong. No. First, a low real

interest rates quantitatively account for the disinflation and rise in the value of govern-

ment debt in recessions. Second, since the government debt valuation equation holds

equally in conventional monetary theories, if there is a puzzle in the fiscal foundations

of inflation, it applies equally to conventional theories. It does not reject fiscal theory in

favor of those other theories.

As a paper on pure facts, I do not offer here theory or evidence on why surpluses

or expected returns on government bonds vary as they do. Given their variation, inflation

makes fiscal sense.

2 Literature

The technique in this paper is adapted from asset pricing. The general approach to lin-

earizing the valuation identity follows Campbell and Shiller (1988). The summary of this

literature in Cochrane (2011b) and the treatment of identities in Cochrane (2008) are ob-

vious precursors to this work. The uniting theme in the former is that asset price and

return variation corresponds in great measure to variation in discount rates.

The analysis of government finances, how debt is paid off, grown out of, or inflated

away, is a huge literature. Hall and Sargent (1997), Hall and Sargent (2011) are the most

important recent precursors. Hall and Sargent focus on the market value of debt, as I

do, not the face value reported by the Treasury, and consequent proper accounting for

interest costs. Cochrane (1998) constructs a linearized present value equation similar to

that used here, and uses it to decompose the value of government debt. Cochrane (2019)

improves on that calculation, using the value identity (2). Both papers find that variation

in expected primary surpluses is an important determinant of the value of debt.

The main methodological novelty is that this paper uses the innovation identities,

(3) and (5) below, to focus on inflation rather than the value of government debt, parallel-

ing VAR-based return (rather than price-dividend ratio) decompositions such as Camp-
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bell and Ammer (1993). I find a greater role for discount rates in this inflation accounting,

where varying expected surpluses are more important in accounting for variation in the

level of the value of debt.

The fiscal theory of monetary policy is the latest step in a long literature on the fis-

cal theory of the price level, starting with Leeper (1991), that integrates fiscal theory with

sticky-price models and interest rate targets. Leeper and Leith (2016) offers an excellent

example and literature review. Cochrane (2020) offers an extensive literature review.

Cochrane (2021a) works a fiscal theory of monetary policy model with the s-shaped

surplus processes I find here, and calculates inflation decompositions and response func-

tions from the model. It is not quite the theory paper corresponding to this work. I do

not here identify the structural monetary and fiscal policy shocks studied there. I do not

there extend the model with the dynamic embellishments and multiple shocks necessary

to match responses of this paper. Bringing theory and data closer together is obviously

an important goal for future work.

3 Identities

Start with a linearized version of the government debt flow identity,

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1. (1)

I derive this identity in Online Appendix. The quantity vt is the log of the ratio of the

market value of debt to GDP, henceforth just “debt.” Debt at the end of period t + 1,

vt+1, is equal to debt at the end of period t, vt, increased by the log nominal return on

the portfolio of government bonds rnt+1, less inflation πt+1, less log GDP growth gt+1, and

less the scaled real primary surplus to GDP ratio st+1. The measured return rnt+1 includes

any effects of maturity structure or of liquidity premiums accruing to government debt.

The parameter ρ is a constant of linearization, which I take to be ρ = 1 in the numerical

results. We can express ρ in terms of return r and growth g values around which we take

the linearization as ρ = e−(r−g).

All variables in (1) are logs, except the surplus. I Taylor expand the level of the

surplus, to allow the surplus to be negative. As a result the surplus is scaled to generate

percentage units: The variable st is ρ times the ratio of primary surplus to GDP scaled
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by the debt to GDP ratio at the linearization point. With ρ = 1, st can also represent

the real primary surplus divided by the previous period’s debt. Either definition leads

to the same linearization. In the data, I impute the surplus from the other terms of (1),

so its definition only matters when one wishes to assess an independent data source on

surpluses. For brevity, I refer to st simply as the “surplus,” or when necessary for clarity

as “surplus to GDP ratio.” With ρ < 1 there is also a constant in the linearization, or the

variables are deviations from steady state.

Iterating forward, we have a present value identity,

vt =

∞∑
j=1

ρj−1st+j +

∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
. (2)

Taking expected values, the debt to GDP ratio is the present value of future surplus

to GDP ratios, discounted at the ex-post real return, and adjusted for growth. Higher GDP

growth, with the same surplus to GDP ratio, gives rise to greater surpluses.

Taking time t+ 1 innovations

∆Et+1 ≡ Et+1 − Et

and rearranging, we have an unexpected inflation identity,

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

ρj∆Et+1st+1+j−

−
∞∑
j=0

ρj∆Et+1gt+1+j +
∞∑
j=1

ρj∆Et+1rt+1+j ,

(3)

where

rt+1 ≡ rnt+1 − πt+1

denotes the ex-post real return on the portfolio of government debt. A decline in the

present value of surpluses, coming either from a decline in surplus to GDP ratios, a de-

cline in GDP growth, or a rise in discount rates, must correspond to a lower real value

of the debt. This reduction can come about by unexpected inflation, or by a decline in

nominal long-term bond prices and hence a negative ex-post return. I use time t + 1

to denote unexpected events, and time 1 as the date of a shock in the impulse-response
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functions.

What determines the bond return rnt+1? I linearize the return of the government

bond portfolio around a geometric maturity structure, in which the face value of maturity

j debt declines at rate ωj , yielding

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1r
n
t+1+j = −

∞∑
j=1

ωj∆Et+1 (rt+1+j + πt+1+j) . (4)

Lower nominal bond prices, and a lower ex-post bond return, mechanically correspond

to higher bond expected nominal returns, which in turn are composed of real returns

and inflation. The Online Appendix presents the algebra.

We can then eliminate the bond return in (3)-(4) to focus on inflation and fiscal

affairs alone,

∞∑
j=0

ωj∆Et+1πt+1+j = −
∞∑
j=0

ρj∆Et+1st+1+j −
∞∑
j=0

ρj∆Et+1gt+1+j+

+
∞∑
j=1

(ρj − ωj)∆Et+1rt+1+j .

(5)

I focus on this decomposition. Each of the terms is, directly, a sum of the elements of an

impulse-response function.

Identity (5) highlights several interesting mechanisms which we can look for in

the data and models. Consider the simple case with constant expected returns Etrnt+1 =

Etπt+1. With one-period debt, ω = 0, there is only one term on the left-hand side of (5),

∆Et+1πt+1. Shocks to the present value of surpluses must be soaked up by a price-level

jump.

With long-term debt, ω > 0, however, a shock to the present value of surpluses

can result in a drawn-out period of inflation, which slowly devalues outstanding long-

term bonds. In the identity (3), the term rnt+1 marks the future inflation to market, as

future inflation in (4) lowers that return. In fact, equation (5) allows the entire effect of

the fiscal shock to show up in expected future inflation with no movement in current

inflation ∆Et+1πt+1 = 0. Drawn-out inflation accompanying fiscal problems is more

realistic than one-time price-level jumps. So, we can productively look for fiscal roots of

drawn-out inflation.
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With one-period debt, expected inflation may continue to be high after an initial

inflation shock, but this fact has no impact on one-period unexpected inflation or this fis-

cal accounting. With ω = 0, ∆E1πj for j > 1 is irrelevant in (5). With long-term debt, the

weighted sum of changes in expected inflation substitutes for inflation at time 1, but only

the ω-weighted sum. Additional persistence in inflation, though interesting for matching

data, has no fiscal consequence or consequence for understanding unexpected inflation.

Higher discount rates, a higher expected real bond return, are an inflationary force

exactly parallel to low surpluses. They lower the value of government debt, and thus

require current or future inflation.

As the maturity structure of government debt lengthens, ω increases, and the dis-

count rate terms in the last part of (5) get smaller. When ω = ρ, almost a perpetuity,

the discount rate term drops out. Intuitively, a government that funds itself with near-

perpetuities can pay off its current debt while ignoring real interest rate variation, just as

a household that takes out a fixed-rate mortgage is immune from interest rate variation.

The identity (5) is also useful for understanding the operation of models and model

predictions for responses to policy shocks. For example Cochrane (2021a) uses the iden-

tity to understand how long-term debt is useful to generate a negative inflation response

to a monetary policy shock, and how monetary policy by controlling expected inflation

can smooth the effects of a fiscal shock over time.

3.1 What about r < g?

To get to (2), I iterate forward the flow identity (1) to

vt =
T∑
j=1

ρj−1st+j +

T∑
j=1

ρj−1gt+j −
T∑
j=1

ρj−1rt+j + ρT vt+T . (6)

Then I assume that the expected value of the terminal condition vanishes, and the sums

converge. With all variables stationary, this assumption requires ρ ≤ 1, i.e. r ≥ g. What

about r < g?

First, the parameter ρ = e−(r−g) represents a point of linearization. It does not

have to be calculated from the sample or population mean of the government bond re-

turn and growth rate. So take ρ ≤ 1 even if E(r) < E(g). The return linearization is not

sensitive to the linearization point, since the variables vary by so much relative to their
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means. Then, with stationary variables, the terms of the linearized identities all converge.

Indeed, convergence depends more on the stationarity of the variables than it does on

ρ. The limit limT→∞ ρ
TEt(vt+T ) = 0 not because ρ < 1 but because vt is stationary, and

the formula applies to deviations from the mean, so limT→∞Et(vt+T ) = 0. The point es-

timate of 0.98 autocorrelation would allow ρ as large as 1.02. The terms converge in the

estimates, which is really all that matters for these decompositions.

The worry, then, is that the configuration of the economy which produces r < g is

one in which the true present value does not operate. In a perfect-certainty frictionless

economy with r < g, the economy will always grow out of debt, so deficits (st < 0) need

not require later surpluses. Debt is the accumulation of past deficits, but does not require

future surpluses. A linearization with ρ ≤ 1 misses this crucial fact. In this circumstance,

we should linearize with ρ > 1 and also solve backwards.

However, our economy does not feature perfect certainty and no frictions. Even if

it is true thatE(r) < E(g) in our economy, that fact does not imply that debts do not have

to be repaid in present value, that fiscal expansion has “no fiscal cost” in the provocative

analysis of Blanchard (2019). The present value of debt can be well defined, properly us-

ing the stochastic discount factor, contingent claim price, or marginal utility to discount,

and large deficits still need to be repaid by subsequent surpluses, yet the economy dis-

plays E(r) < E(g). In this case, the linearized present value formula remains valid as

long as its terms converge, which they do. For small r < g or for liquidity premiums or

seignorage which do not scale, one may also apply the linearized identities to deviations

about the mean, even if the mean causes trouble, i.e. due to a small perpetual deficit.

Bohn (1995) gives an early classic example. Bassetto and Cui (2018) analyze the

issue with a specific eye to fiscal theory, and Bassetto and Sargent (2020) give a general

discussion. Reis (2021) gives a detailed example emphasizing discounting at the marginal

product of capital, which is higher than the growth rate. Cochrane (2021b) offers a short

summary of the issues. The Online Appendix gives a fuller analysis in this context.

4 Data

I use data on the market value of government debt held by the public and the nominal

rate of return of the government debt portfolio from Hall, Payne, and Sargent (2018). I
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use standard BEA data for GDP and total consumption. I use the GDP deflator to measure

inflation. I use CRSP data for the three-month Treasury rate. I use the 10-year constant

maturity government bond yield from 1953 on and the yield on long-term United States

bonds before 1953 to measure a long-term bond yield.

I measure the debt to GDP and surplus to GDP ratios by the ratios of debt and sur-

plus to consumption, times the average consumption to GDP ratio. For brevity, I still refer

to ratios as ratios to GDP. We conventionally reference debt to GDP, but there is no fun-

damental economic reason to divide debt by GDP rather than another macroeconomic

aggregate. For most uses, we want some measure of debt relative to the government’s

long-term taxing power and spending habits. In time-series work we want a divisor that

renders debt stationary. But dividing debt by GDP introduces additional dynamics due

to GDP dynamics. Is it interesting, for example, to say that the debt to GDP ratio declines

in a recovery because GDP grows, mechanically raising the denominator? Dividing by a

measure of trend or permanent GDP produces a stationary series in which variation in

the debt ratios comes more from fiscal affairs than from predictable dynamics in the de-

nominator. Potential GDP has a severe look-ahead bias for a VAR. Consumption, being

close to a random walk, is a good stochastic trend for GDP and divisor for debt for this

time-series analysis.

I infer the primary surplus from the flow identities. This calculation measures

how much money the government actually borrows. NIPA surplus data, though broadly

similar, does not obey the flow identity.

I infer the surplus/GDP st for the VAR from the linearized identity (1), at an annual

frequency. By doing so, the data obey the identity exactly. Therefore VAR estimates of the

decompositions add up exactly with no approximation error. The approximation errors

are much smaller than sampling errors, so this choice just produces clearer tables.

I approximate around r = g or ρ = 1. The variables are all stationary, impulse-

responses and expected values converge, so weighting higher-order terms by, say, 0.99j

vs. 1.0 makes little difference to the results. One can also view the unweighted ρ = 1

identities as r → g limits.

Figure 1 presents the surplus/GDP and compares three measures. The “Linear, st”

line imputes the surplus/GDP from the linearized flow identity (1) directly at the one-

year horizon, which is the measure I use below.
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Figure 1: Surplus/GDP. “Linear” is inferred from the linearized flow identity, and is the
definition used in VAR analysis. “sv ” is the exact ratio of the primary surplus to the
previous year’s market value of the debt. “sy” is the exact ratio of surplus to consumption,
scaled by the average consumption to GDP ratio and the average value of debt. Vertical
shading denotes NBER recessions.

There are primary surpluses. One’s impression of endless deficits comes from the

deficit including interest payments on the debt. NIPA measures (not shown) also show

regular positive primary surpluses. Steady primary surpluses from 1947 to 1975 helped

to pay off WWII debt. The year 1975 started an era of large primary deficits, interrupted

by the strong surpluses of the late 1990s. Postwar primary surpluses also have a clear

cyclical pattern. The primary surplus correlates very well with the unemployment rate

(not shown), a natural result of procyclical tax revenues, automatic spending such as

unemployment insurance, disability and food stamps, and regular discretionary coun-

tercyclical “stimulus” spending.

To measure the accuracy of the linear approximation, I also infer the real primary

surplus from the exact nonlinear flow identity, as detailed in the Online Appendix. The

“svt” line presents the ratio of the exact surplus to the previous year’s value of the debt.
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The “syt/ev” line presents the exact surplus to GDP ratio – actually, the ratio of surplus to

consumption, times the average consumption to GDP ratio – scaled by the average value

to GDP ratio eE(vt). The linearization applies equally to either concept.

The three surplus measures in Figure 1 are close. The linearization is less accurate

when the value of debt is far from its mean, both in WWII and in the 1970s.

I use a postwar data sample 1947-2018 for the main VAR analysis, as is conven-

tional in empirical macroeconomics. Financing that war, and expectations and reality

of paying off war debt, clearly follow a different pattern than fiscal-monetary policy in

the subsequent decades of largely cyclical deficits. The WWII deficits come with very low

unemployment and high output, contrary to the postwar pattern, and the war featured

extensive price controls.

The Online Appendix includes results from 1930-2018, including the great depres-

sion and WWII. The results are quite different, in ways traceable to a few influential data

points. That analysis suggests that using full sample results to characterize the post-

WWII regime is not a good idea.

5 Vector autoregression

Table 1 presents OLS estimates of the VAR coefficients. Each column is a separate regres-

sion. The order of variables has no significance. The VAR includes the central variables

for the inflation identity – nominal return on the government bond portfolio rn, con-

sumption growth rate g, inflation π, surplus s and value v. I include the three-month

interest rate i and the 10 year bond yield y as they are important forecasting variables for

growth, inflation, and long-term bond returns.

It is important to include the value of debt vt in the VAR, even if we are calculating

terms of the innovation identity (3) that does not reference that variable. When we de-

duce from the present value identity (2) expressions vt = E(·|It), we must include vt in

the information set It that takes the expectation. Moreover, the surplus typically follows

an s-shaped process, in which deficits today are followed by surpluses in the future. The

process is not properly recovered by VARs that exclude the value of debt. Leaving out the

value of debt is simply a mistake.

I use a single lag. Adding the last variable, the long-term rate, already introduces
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rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.17** -0.02 -0.10** -0.32* 0.28* -0.08* 0.04*

gt -0.27* 0.20* 0.16* 1.37** -2.00** 0.28** 0.06
πt -0.15 -0.14* 0.53** -0.25 -0.29 0.09 0.04
st 0.12** 0.03 -0.03* 0.35** -0.24* -0.04* -0.04**

vt 0.01 -0.00 -0.02** 0.04* 0.98** -0.01 -0.00
it -0.32* -0.40* 0.29* 0.50 -0.72 0.73** 0.36**

yt 1.93** 0.54** -0.17 -0.04 1.60* 0.11 0.46**

100× std(εt+1) 2.18 1.53 1.12 4.75 6.55 1.27 0.82
Corr ε, επ -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31

R2 0.71* 0.17* 0.73* 0.48* 0.97* 0.82* 0.90*

100× std(x) 4.08 1.68 2.16 6.61 37.00 2.96 2.63

Table 1: OLS VAR estimate. Sample 1947-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

slight wiggles in the impulse-response function indicative of overfitting. The results de-

pend on long-run forecasts, which are controlled by the most persistent combination of

variables. Fast-moving variables that improve short-term forecasts have little effect on

long-term forecasts.

I compute standard errors from a Monte Carlo, described in the Online Appendix.

The stars in Table 1 represent one or two standard errors above zero. Since we aren’t

testing anything, stars are just a visual way to show standard errors without another table.

In the first column, the long-term bond yield yt forecasts the government bond

portfolio return rnt+1 (1.93). The negative coefficient on the three-month rate it means

that the long-short spread also forecasts those returns. Since the yt and it coefficients

are not repeated in forecasting inflation and growth, the long rate and long-short spread

forecast real, growth-adjusted, and excess returns on government bonds, as we expect

from the long literature in which yield spreads forecast bond risk premia (Fama and Bliss

(1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005)). The long rate yt is

thus an important state variable for measuring expected bond returns, the relevant dis-

count rate for our present value computations.

Growth gt is only very slightly persistent (0.20). The term spread yt−it also predicts

economic growth, and reinforcing the importance of the interest rates as state variables.

Inflation πt is moderately persistent (0.53). The interest rate and growth help a bit
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to predict inflation, but not much else does. We will see inflation responses that mostly

look like AR(1) decay.

The surplus/GDP is somewhat persistent (0.35). Growth gt predicts higher sur-

plus/GDP, an important and realistic feedback mechanism. Inflation forecasts deficits

(-0.25), so we expect that to some extent inflation may be related to subsequent deficits.

Debt also forecasts surplus/GDP (0.04), which is important to the following dy-

namics. Deficits raise debt, and then larger debts lead to surpluses which slowly pay off

some of the debt accumulated from the deficits. The 0.04 VAR coefficient of surplus/GDP

on debt does not mean that the estimates measure a passive fiscal policy. Surpluses

that follow a completely exogenous s-shaped process will produce this coefficient, and

surpluses may respond to past deficits but not to off-equilibrium inflation. See Leeper

and Li (2017), an extensive counterexample in Cochrane (2021a) and long discussion in

Cochrane (2020).

The value of the debt is very persistent (0.98). It thus becomes the most important

state variable for long-run calculations. A larger surplus/GDP st forecasts lower debt,

vt+1, (−0.24), as one expects. The long-run yield yt forecasts a rise in the value of debt

vt+1, as we expect given its effect on the expected return rnt+1.

The short rate it and long yield yt are also persistent (0.73, 0.46) and the interest

rate forecasts the long yield, again reflecting standard yield curve dynamics. The com-

bination of interest rate and long yield form the second most persistent state variable,

which drives medium term responses that differ from those responding to the value of

debt.

For calculations reported below, I use the standard notation

xt+1 = Axt + εt+1 (7)

to denote this VAR.

6 Responses and decompositions

I start by examining the fiscal roots of a simple inflation shock, an unexpected movement

in inflation ∆E1π1 = επ1 = 1. I allow all other variables to move contemporaneously to the

inflation shock. In either reading of causality, we want to measure simultaneous move-
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ments of inflation and other variables. To measure how much other variables typically

move conditional on seeing an inflation shock, I fill in shocks to the other variables by

running regressions of their shocks on the inflation shock. For each variable z, I run

εzt+1 = bz,πε
π
t+1 + ηzt+1.

Then I start the VAR (7) at

ε1 =
[
brn,π bg,π επ1 = 1 bs,π ...

]′
.

This procedure is equivalent to the usual orthogonalization of the shock covariance ma-

trix with inflation last, but it is more transparent and it generalizes more easily later. I

denote the VAR innovations as the change in expectations at time 1, so the response of

variable x, j periods in the future is ∆E1xj .

Figure 2 plots responses to this inflation shock. The “Inflation” rows of Table 2

present the terms of the inflation and bond return decompositions for these responses.

(I discuss the remaining rows of Table 2 later.) Figure 2 also presents some of the main

terms in the decomposition identities, (3), (4), (5).

In any interpretation, these responses and calculations answer the question, “if we

see an unexpected 1% inflation, how should we revise our forecasts of other variables?”

In a fiscal-theoretic interpretation, they answer “what changes in expectations caused

the 1% inflation?” As shown in the Online Appendix, the inflation decompositions are

also decompositions of the variance of unexpected inflation: They answer the question,

“What fraction of the variance of unexpected inflation is due to each component?”

Table 3 presents Monte Carlo quantiles of the sampling distributions of the terms

of the inflation decompositions in Table 2. Figure 9, below, plots quantiles of the impulse-

response functions. I discuss sampling variation below, after seeing the message in point

estimates.

In Figure 2, the inflation shock is moderately persistent, largely following the AR(1)

dynamics we noticed in the VAR coefficients. As result, the weighted sum
∑∞

j=0 ω
j∆E1π1+j

= 1.59%, greater than the 1% initial shock.

The inflation shock coincides with a deficit s1, which builds with a hump shape.

That shape largely reflects the -0.25 coefficient by which inflation forecasts surplus/GDP.
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Figure 2: Responses to a 1% inflation shock.

One might think these persistent deficits account for inflation. But surplus/GDP eventu-

ally rises to offset almost all of the incurred debt. The sum of all surplus/GDP s responses

is−0.06%, essentially zero.

Inflation also is also correlated with a persistent decline in economic growth g.

The stagflationary episodes of the 1970s drive this result. The growth decline contributes

0.49% to the inflation decompositions.

Lower growth means a lower actual surplus for given surplus/GDP. Thus, of the

total 1.59% inflation on the left hand side, a decline in surpluses, accounts for 0.49+0.06

= 0.55%, about one third, and almost all of that via lower growth not lower surplus/GDP.

The line marked r plots the response of the real discount rate, ∆E1r1+j = ∆E1(r
n
1+j−

π1+j). These points are plotted at the time of the ex-post return, 1 + j, so they are the ex-

pected return one period earlier, at time j. The line starts at time 2, where the terms

of the discount-rate sums in the inflation decompositions start, and representing the

time-1 expected return. After two periods, this discount rate rises and stays persistently

positive. The weighted sum of discount rate terms is 1.04% while the unweighted sum is
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1r1+j
π = s g r

Inflation 1.59 = -( -0.06) -( -0.49) +( 1.04)
Recession -2.36 = -( -1.15) -( -1.46) +( -4.96)
Surplus -0.10 = -( -0.66) -( -0.34) +( -1.10)
Disc. Rate -0.18 = -( -0.54) -( -0.28) +( -1.00)
Surplus, no i 0.38 = -( -0.52) -( -0.48) +( -0.62)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -0.56) = -( -0.06) -( -0.49) +( 1.00)
Recession -1.00 -( 1.19) = -( -1.15) -( -1.46) +( -4.79)
Surplus 0.02 -( 0.27) = -( -0.66) -( -0.34) +( -1.25)
Disc. Rate -0.03 -( 0.28) = -( -0.54) -( -0.28) +( -1.13)
Surplus, no i 0.36 -( 0.03) = -( -0.52) -( -0.48) +( -0.67)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞

j=1 ω
j∆E1π1+j

rn = r π

Inflation -0.56 = -( -0.03) -( 0.59)
Recession 1.19 = -( 0.17) -( -1.36)
Surplus 0.27 = -( -0.15) -( -0.12)
Disc. Rate 0.28 = -( -0.13) -( -0.15)
Surplus, no i 0.03 = -( -0.05) -( 0.02)

Table 2: Terms of the inflation and bond return identities. Each entry is the indicated
sum of response functions.

1.00% (really 1.004%). I choose the weight ω = 0.69 to make the identity (4) hold exactly

for this response function. The value 0.69j declines rapidly, so weighting by 1 vs. 1 − ωj

makes little difference in the face of this persistent response.

Weighted or unweighted, the discount rate terms account for 1% inflation, and

about 2/3 of the overall inflation. A higher discount rate lowers the value of government

debt, an inflationary force.

Overall, then,

• A 1% shock to inflation corresponds to a 1.6% decline in the present value of sur-

pluses. A rise in discount rate contributes about 1%, and a decline in growth accounts
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1r1+j
π = s g r

Inflation 25 % 1.38 = -( -0.69) -( -0.72) +( 0.16)
Inflation 75 % 1.64 = -( 0.23) -( -0.22) +( 1.46)
Recession 25 % -2.41 = -( -1.28) -( -1.45) +( -4.84)
Recession 75 % -2.05 = -( 0.49) -( -0.57) +( -2.43)
Surplus 25 % -0.11 = -( -0.78) -( -0.39) +( -1.11)
Surplus 75 % 0.02 = -( -0.61) -( -0.22) +( -0.98)
Disc. Rate 25 % -0.26 = -( -0.63) -( -0.34) +( -1.00)
Disc. Rate 75 % -0.13 = -( -0.46) -( -0.18) +( -1.00)
Surplus, no i 25 % 0.21 = -( -0.78) -( -0.48) +( -0.76)
Surplus, no i 75 % 0.45 = -( -0.52) -( -0.22) +( -0.50)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 25% 1.00 -( -0.71) = -( -0.69) -( -0.72) +( 0.16)
Inflation 75% 1.00 -( -0.39) = -( 0.23) -( -0.22) +( 1.55)
Recession 25% -1.00 -( 0.96) = -( -1.28) -( -1.45) +( -4.84)
Recession 75% -1.00 -( 1.40) = -( 0.49) -( -0.57) +( -2.35)
Surplus 25% 0.00 -( 0.21) = -( -0.78) -( -0.39) +( -1.30)
Surplus 75% 0.09 -( 0.34) = -( -0.61) -( -0.22) +( -1.15)
Disc. Rate 25% -0.07 -( 0.25) = -( -0.63) -( -0.34) +( -1.24)
Disc. Rate 75% -0.01 -( 0.42) = -( -0.46) -( -0.18) +( -1.10)
Surplus, no i 25% 0.18 -( -0.08) = -( -0.78) -( -0.48) +( -0.86)
Surplus, no i 75% 0.38 -( 0.07) = -( -0.52) -( -0.22) +( -0.57)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞

j=1 ω
j∆E1π1+j

rn = r π

Inflation 25% -0.71 = -( -0.12) -( 0.38)
Inflation 75% -0.39 = -( 0.19) -( 0.64)
Recession 25% 0.96 = -( -0.17) -( -1.41)
Recession 75% 1.40 = -( 0.28) -( -1.05)
Surplus 25% 0.21 = -( -0.24) -( -0.13)
Surplus 75% 0.34 = -( -0.12) -( -0.05)
Disc. Rate 25% 0.25 = -( -0.24) -( -0.20)
Disc. Rate 75% 0.42 = -( -0.11) -( -0.11)
Surplus, no i 25% -0.08 = -( -0.18) -( 0.00)
Surplus, no i 75% 0.07 = -( -0.00) -( 0.10)

Table 3: Monte Carlo quantiles of the inflation and bond return identities.
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for about 0.6% of that decline. Changes in the surplus/GDP ratio account for nearly

nothing. The additional 0.6% fiscal shock corresponds to a persistent rise in expected

inflation, which slowly devalues outstanding long-term bonds, and produces a 1.6%

overall rise in inflation weighted by the maturity structure of debt.

This is an important finding for matching the fiscal theory to data, for understand-

ing the fiscal side of standard passive-fiscal models, or for questions of cyclical fiscal pol-

icy and debt sustainability in general. Thinking in all contexts has focused on the pres-

ence or absence of surpluses, or surplus to GDP ratios, not discount rate effects, time-

varying returns. Thinking in all contexts has considered one-period unexpected infla-

tion, to devalue one-period bonds, not a rise in expected inflation that slowly devalues

outstanding long-term bonds.

Turn to Table 2 for a more systematic view of the inflation decompositions, and

to see the role of one-period bond returns ∆E1r
n
1 . The top row of the top panel presents

the just-discussed overall decomposition (5) of current and expected future inflation in

terms of surplus, growth and discount rate shocks. The second and third panels express

the decomposition of one-period inflation, using the bond return rn1 . The sum of surplus

and growth rate terms are the same in this second panel as in the top panel, but I repeat

them so one can see the terms of each identity more clearly. In the first row of the second

panel, the 1% inflation shock corresponds to a roughly 1.56% overall fiscal shock. That

shock comes similarly from the same tiny 0.06% decline in surplus/GDP, a 1.004% rise

in discount rate and 0.49% reduction in growth. In this decomposition, the extra 0.56%

fiscal shock is absorbed by a 0.56% decline in the value of government debt, rn1 . Turning

to the last panel, we see that -0.56% return on government debt comes almost entirely

from expected inflation (0.59%) not a higher real discount rate (0.03%). That fact ties

together the decompositions of the first and second panels. The government bond return

essentially marks to market the expected future inflation of the top panel.

Discount rates matter in the inflation decompositions of the top two panels but

not in this return decomposition because the former have weights that emphasize long-

term movements (1 and 1 − ωj), while the ωj weights of the bottom panel emphasize a

short-run movement in discount rate.

In sum,

• The 1.6% fiscal shock that comes with 1% unexpected inflation is buffered by an 0.5%
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decline in bond prices, which corresponds to 0.5% additional expected future in-

flation. The additional expected inflation slowly devalues long-term bonds as they

come due, a loss in value marked to market in the initial fall in bond prices.
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Figure 3: Responses to 1% inflation shock

Figure 3 adds detail and intuition to the interest rate and return responses. The

interest rate i, bond yield y, and expected return rn all move together and persistently.

(The sawtooth pattern in rn at time 3 comes from a slightly negative eigenvalue of the

VAR, which is far below statistical significance.) The return shock rn1 moves down sharply

as expected subsequent returns rise. Bond prices decline when yields rise. The rise in

expected return is largely driven by the rise in the interest rate, with smaller contribution

from a larger risk premium.

In turn, the rise in real discount rates we saw in Figure 2 stems from the apparent

disconnect between nominal returns and inflation that we see in Figure 3. Inflation is

initially above nominal rates, giving a few periods of lower real rates. When inflation

declines below the more persistent nominal rates, implied real interest rates rise on the

right hand side of the graphs, and persistently. In the VAR, interest rates do not forecast
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inflation as strongly as they forecast interest rates, which generates the high real rates

from persistently high nominal rates.
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Figure 4: Responses to 1% inflation shock

Figure 4 plots the response of surplus/GDP and value of debt to the unexpected

inflation shock. The debt-to-GDP ratio v1 declines −0.65% on impact, reflecting the off-

setting forces of deficits, inflation, bond returns, and growth in the innovation version of

the flow identity (1). The long string of deficits then raises the value of debt. But, cru-

cially, higher debt leads to higher surpluses. Eventually, therefore, surpluses rise and pay

down the debt.

The s-shaped surplus/GDP response is a crucial lesson. It means that early debts

are repaid, at least in part, by following surpluses. The surplus/GDP does not follow an

AR(1)-like process. Mechanically, this pattern is a result of the VAR coefficient of sur-

plus/GDP on lagged debt, and the persistence of debt. Thus, the finding is econometri-

cally robust; it does not rely on a tenuous measurement of high-order surplus autocorre-

lations.

However, this analysis illustrates the vital practical importance of including debt
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in the VAR. Without debt in the VAR, the surplus/GDP is positively autocorrelated through-

out, and surplus/GDP never rises to pay off deficits.

I use the words “shock,” and “response,” which are conventional in the VAR lit-

erature, and compactly describe the calculations for those familiar with VARs. The cal-

culations do not imply or require a causal structure, nor do they make any pretense to

measure structural shocks. A “shock” here is only an “innovation,” a movement in a vari-

able not forecast by the VAR. A “response” is a change in VAR expectations of a future

variable coincident with such a movement.

In fact, my fiscal theory interpretation offers a reverse causal story: News about

future surpluses and discount rates causes inflation to move today. That news in turn

reflects news about future productivity, fiscal and monetary policy and other truly ex-

ogenous or structural disturbances. Many VAR exercises attempt to find an “exogenous”

movement in a variable by careful construction of shocks, or they attempt to measure

structural shocks, and they attempt to measure responses as causal effects of such iden-

tified structural or exogenous policy shocks. I do not.

I do not assume that people use only the VAR information set to form expectations.

Since we start with an identity (1) that holds ex-post, or under people’s information sets,

the identity holds using any coarser information set that includes the value of debt. The

model vt = E(xt+1|Ωt) implies vt = E(xt+1|It ⊂ Ωt), so long as vt ∈ It. But “unexpected”

here means relative to the VAR information set. People may see a lot more. The VAR

forecasts are correct on average, but they integrate out other variables which people may

see.

6.1 Recession or aggregate demand shocks

We can use the same procedure to understand the fiscal underpinnings or correlates of

other shocks. For any interesting ε1, we can compute impulse-response functions, and

thereby the terms of the inflation decompositions. I show in the Online Appendix that

we can consider these calculations as a decomposition of the covariance of unexpected

inflation with the shock ε1, rather the decomposition of the variance of unexpected in-

flation.

I start with a shock that moves inflation and growth in the same direction. The

inflation shock in Figure 2 is stagflationary, in that growth falls when inflation rises. Un-
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expected inflation is, in this sample, negatively correlated with unexpected growth. The

stagflationary 1970s drive this correlation.

However, it is interesting to examine the response to disinflations which come

in recessions, and inflations that come in expansions, following a conventional Phillips

curve. Such events are common, as in the recession following the 2008 financial crisis.

But they pose a fiscal puzzle. In such a recession, deficits soar, yet inflation declines. How

is this possible? As I outlined in the introduction, future surpluses or lower discount rates

could give that deflationary force, needed whether fiscal policy is active or passive. Can

we see these effects in the data, and which one is it?

To answer that question, I simply specify επ1 = −1, εg1 = −1. The model is linear, so

the sign doesn’t matter, but the story is clearer for a recession. To give it a name, I call this

a “recession shock” in the tables. We could also call it an “aggregate demand” shock, be-

cause output and inflation move in the same direction, as opposed to “aggregate supply”

shocks which move output and inflation in opposite directions.

Again, we want shocks to other variables to have whatever value they have, on

average, conditional on the inflation and output shock. To initialize the other shocks of

the VAR, then, I run a multiple regression

εzt+1 = bz,πε
π
t+1 + bz,gε

g
t+1 + ηzt+1

for each variable z. I fill in the other shocks at time 1 from their predicted variables given

επ1 = −1 and εg1 = −1, i.e. I start the VAR at

ε1 = −
[
brn,π + brn,g εg1 = 1 επ1 = 1 bs,π + bs,g ...

]′
.

Figure 5 presents responses to this shock, and Table 2 collects the inflation decom-

position elements in the “Recession” rows.

Both inflation π and growth g responses start at -1%, by construction. Inflation is

once again persistent, with a ω-weighted sum of current and expected future inflation

equal to -2.36%. Growth g returns rapidly, but does not much overshoot zero, so the level

of consumption does not recover much at all. Consumption is roughly a random walk

in response to this shock. The nominal interest rate i falls in the recession, and recovers

a bit more slowly than inflation. Long-term bond yields y also fall, but not as much as

the short-term rate, for about 4 years. We see here the upward-sloping yield curve of a
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Figure 5: Responses to a recession or aggregate demand shock, επ1 = εg1 = −1.
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recession. The expected bond return follows the long-term yield. The persistent fall in

expected return corresponds to a large positive ex-post bond return ∆E1r
n
1 . The reces-

sion includes a large deficit s, which continues for three years. In short, we see a standard

picture of a recession similar to 2008-2009.

Why do we not see inflation at times with such large deficits? Surplus/GDP sub-

sequently turns positive, paying down some of the debt. But the total surplus/GDP re-

sponse is still -1.15. Left to their own devices, surplus/GDP would produce a 1.15% in-

flation during the recession. Growth also adds an inflationary force. The decline in con-

sumption is essentially permanent, and would lead on its own to another 1.46% inflation.

Discount rates are the central story for disinflation in recessions. After one period,

expected real returns ri decline persistently, accounting for 4.96% cumulative deflation.

In terms of the unexpected inflation accounting in the second and third panels

of Table 2, again surplus/GDP and growth provide a total 1.15% + 1.46% = 2.61% fiscal

loosening, an inflationary force. The unweighted sum of future discount rates provides

a 4.79% deflationary force, for an overall fiscal shock of 2.19% deflation. Of that, 1% re-

sults in unexpected deflation and 1.19% is soaked up by lower long-term bond prices. In

the bottom panel, that 1.19% overwhelmingly represents lower expected inflation, essen-

tially marking it to market for a one-period accounting.

In sum, rounding the numbers,

• Disinflation in a recession is driven by a lower discount rate, reflected in lower in-

terest rates and bond yields. For each 1% disinflation and growth shock, the ex-

pected return on bonds falls so much that the present value of debt rises by nearly

5%. This discount rate shock overcomes a 1.1% inflationary shock coming from per-

sistent deficits, and 1.5% inflationary shock coming from lower growth. The overall

fiscal shock is 1.6%, with the extra 0.6% spread to future disinflation and soaked up

by long-term bond prices.

The opposite conclusions hold of inflationary shocks in a boom. Discount rate

variation gives us a fiscal Phillips curve, accounting for the otherwise puzzling correla-

tion of deficits with disinflation and surpluses with inflation.

The relative magnitudes of the inflation and growth shocks that I use in this cal-

culation are obviously arbitrary. The plots and calculations correctly report the answer

to the question, “If we see a -1% growth shock and a -1% inflation shock together, how
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does that observation change our forecasts of all variables?” The labels “aggregate de-

mand” or “recession” are just suggestive to give the exercise a label, with no pretense to

identify structural shocks. The only question is whether that combination of shocks is

interesting, or whether some other combination of growth, inflation, and other shocks

might present a more interesting calculation.

To produce a better-named shock one should write a model and find an identi-

fication in the data. One might separate “aggregate supply” shocks or “stagflationary”

“Phillips-curve shift” shocks from “aggregate demand” shocks or “movement along the

Phillips curve” shocks. Those restrictions might include the other variables as well. Even

these concepts refer to ideas from the 1970s. Today’s intertemporal models specify ob-

jects such as technology shocks, financial friction shocks, marginal cost shocks, and so

forth. Rather than belabor the point with such calculations, or fill the paper with mul-

tiple graphs, I choose a simple and transparent value, consistent with the measurement

without theory philosophy of the rest of this paper.

The Online Appendix includes plots of GDP growth and CPI inflation, as well as

the growth and inflation VAR residuals. The 1970s show the opposite sign: inflation and

growth move in opposite directions, stagflation, and basically one for one. These large

events drive the negative full sample correlation. By contrast, 1982 saw a sharp decline

in inflation along with the comparably sized recession. Inflation moved a bit less than

growth in the 2000 recession, but again moved about one for one with growth in 2008.

The late 1940s and early 1950s also show roughly one for one positive comovement. Of

course, no historical event is the pure result of a single external or policy shock. The point

is only, some recessions involve inflation that moves roughly one for one with growth,

and some involve inflation that moves in the opposite direction. It’s interesting to plot

responses to the former kind of event and one for one is in the range of experience.

6.2 Surplus and discount rate shocks

We have studied what happens to surpluses and to discount rates given that we see un-

expected inflation. What happens to inflation if we see changes in surpluses or discount

rates? These are not the same questions. An inflation shock may come, on average, with

a discount rate shock, but a discount rate shock may not come on average with inflation.

The average person who gets hit by a bus has tried to cross the street, but the average
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person who crosses a street does not get hit by a bus.

I calculate here how the variables in the VAR react to an unexpected change in cur-

rent and expected future primary surpluses including growth, ∆E1
∑∞

j=0(st+j + gt+j) =

−1, and other shocks to the VAR take their average values given this innovation. I call

this a “surplus shock.” This is, by construction, a shock that is not repaid by subsequent

surpluses, so it either must correspond to inflation or to a change in discount rate. The

results are almost the same with or without the growth term in the shock definition. Then

I calculate how the variables in the VAR react to an unexpected change in discount rates,

∆E1
∑∞

j=1(1 − ωj)(rnt+1 − πt+1) = 1, again letting all other variables take their average

values given this innovation. I call this a “discount rate shock.”

These are not monetary and fiscal policy shocks, as studied in Cochrane (2021a),

most models, and VAR literature. The fiscal shock may be, and is, correlated with a

change in interest rates, and the discount rate shock may be, and is, correlated with fiscal

changes, where “policy shocks” are more interestingly defined to be orthogonal to each

other. I also make no attempt to orthogonalize these shocks relative to forecasts of infla-

tion, growth, or other variables, to call them “exogenous.” In fact, they are the opposite,

deliberately reflecting news to the economy as a whole, changing expectations of true

and future structural and policy disturbances.

The response of the sum of future surpluses and growth to any shock ε1 is

∆E1

∞∑
j=0

(s1+j + gt+j) = (as + ag)
′ (I −A)−1ε1.

To calculate how VAR shocks respond to a surplus shock, I run for each variable z a re-

gression

εzt+1 = bz
[
(as + ag)

′ (I −A)−1εt+1

]
+ ηzt+1 (8)

where az pulls variable z from the VAR, a′zxt = zt.Then, I start the surplus-shock response

function at

ε1 = −
[
brn bg bπ ...

]′
.

I plot a negative surplus shock, i.e. a deficit shock, as that sign tells an easier story.

Similarly, to calculate responses to a discount-rate shock, I run

εzt+1 = bz
{

(arn − aπ)′
[
A(I −A)−1 − ωA(I − ωA)−1

]
εt+1

}
+ ηzt+1.
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I start the discount-rate response function with the negative of these regression coeffi-

cients as well, capturing the response to a discount rate decline.

Figure 6 presents the responses to the deficit shock, and Figure 7 presents the re-

sponses to the discount rate shock. Table 2 collects relevant contributions to the inflation

decompositions.

The sum of surplus/GDP and growth responses to the deficit shock are -0.66 -

0.34 = -1.00 by construction. Surplus/GDP still has an s-shaped response, but the initial

deficits are not matched by subsequent surpluses.

This decline in surpluses and growth has essentially no effect on inflation. Starting

in year 2, inflation declines – the “wrong” direction given deficits and lower growth – by

less then a tenth of a percent, and the overall weighted sum of inflation declines by a

tenth of a percent. Why is there no inflation? Because discount rates also decline, with a

weighted sum of 1.10%, almost exactly matching the surplus decline. The lower panel of

Figure 6 adds insight. We see a sharp and persistent decline in the interest rate, long-term

bond yield, and expected bond return, along with deficits and the growth decline.

This figure captures the event of a widening deficit, accompanied by a decline

in growth and interest rates, i.e. a recession. These deficits are on average not directly

repaid by subsequent surpluses or growth. Instead, real interest rates decline persistently

in the recession and its aftermath. This decline in real returns essentially pays for the

deficits. Ex-post, a low real return brings the value of debt back rather than larger taxes

or lower spending. There is, on average, very little inflation or deflation. The opposite

sign occurs for positive shocks.

The response to the discount rate shock in Figure 7 is, surprisingly, almost exactly

the same. The weighted discount rate response (
∑

1 − ωj) is -1.00 here by construction.

This discount rate decline should be deflationary, and it is – but the disinflation peaks at

-0.1% and the weighted sum is only -0.18%. A sharp growth and surplus decline accom-

panies this discount rate decline, with a pattern almost exactly the same as we found

from the growth and surplus shock. In the bottom panel, the expected return decline

comes with a decline in interest rates and bond yields, as we would expect.

Clearly, the surplus + growth shock and the expected return shock have isolated

essentially the same events – recessions in which growth falls, deficits rise persistently,

interest rates fall, and, on average in this sample, inflation doesn’t move much, and the
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Figure 6: Responses to a surplus and growth shock, ∆E1
∑∞

j=0 (s1+j + g1+j) = −1.
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converse pattern of expansions. The correlation of the surplus+growth and discount rate

shocks is 0.96.

The responses to a one-period surplus shock, ∆E1s1 = 1, a pure growth shock

∆E1g1 = 1 and a one-period discount rate shock ∆E1r
n
2 = 1 are all quite similar as well.

The fiscal roots of the absence of inflation, in the end, characterize these business-

cycle movements in the data. Since well-run fiscal and monetary policies borrow and

repay without excessive inflation, that outcome is just as interesting.

In sum,

• Surplus and discount rate shocks paint the same picture: Persistent deficits that are

not repaid by subsequent growth or surpluses do not produce inflation. Instead, such

deficits come with periods of extended low expected returns. Discount rate declines

come with offsetting deficits and do not produce much deflation.

6.3 A surplus shock without accommodation

The fact that interest rates move in opposition to the surplus shock is obviously key to the

noninflationary result. What if there is a surplus shock and the Federal Reserve does not

accommodate the shock, or its economic correlates, with the prominent interest decline

seen in Figure 6? To answer this question, I modify the surplus+growth shock so that the

short-term interest rate remains constant for two years. I now run

εzt+1 = bz,s
[
(as + ag)

′ (I −A)−1εt+1

]
+ bz,i0ε

i
t+1 + bz,i1

(
a′iAεt+1

)
+ ηzt+1.

The last term before the error is the expected interest rate one year forward. Then, I

initialize the VAR at

ε1 = −
[
brn,s bg,s bπ,s ...

]′
.

Figure 8 presents the responses, and Table 2 collects the terms of the identities.

Starting in the bottom panel of Figure 8, verify that the interest rate i now stays constant

for two years, by construction. This behavior contrasts with the strong interest rate de-

cline in the bottom panel of Figure 6. Except for the one-period expected return decline

in year two, the long-term bond yields and expected returns follow the interest rate. All

decline eventually.

Turning to the upper panel, the sum of surplus (-0.52) and growth (-0.48) shocks
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remains -1.00% by construction. Deficits are initially much larger than 0.52%, but much

of this immediate deficit is repaid by higher long-term surpluses, so in the end the fiscal

shock is split equally between surpluses and growth. The discount rate term is now re-

duced to 0.62% - 0.67%, however, so the surplus shock now produces 0.36% immediate

and 0.38% weighted sum inflation.

In sum, without the interest rate response, the fiscal shock does result in unex-

pected inflation. We see here a parallel of the theoretical analysis that central bank ac-

commodation of shocks, via the interest rate target, smooth forward and thereby reduce

unexpected inflation, even though the bank cannot control fiscal policy.

Will the real recession please stand up? How do we have by one calculation re-

cessions with disinflations, and by another recessions with no change in inflation? Alas,

our macroeconomy is not a one-factor model, with all time-series moving in lockstep.

Different (true, structural) shocks dominate different events. The recessions of the 1970s

featured stagflation, those since 1990 did not. All recessions are not the same. Sometimes

inflation falls, sometimes it doesn’t. I have examined five, hopefully interesting, slices of

the full covariance matrix of shocks. They are different.

7 Standard errors

I have delayed a discussion of standard errors because there is nothing important to test.

Identities are identities. If x = y+z and xmoves, y or z must move, and all we can do is to

measure which one moves. Standard errors only serve to give us a sense of how accurate

the measurement is. In addition, unlike the case in asset pricing, no important economic

hypothesis rests on whether one of surpluses or discount rates do not move. Asset pricing

finds the hypothesis that expected returns are constant over time interesting to test.

I run a Monte Carlo to evaluate sampling distributions. The Online Appendix gives

details. Most of the interesting statistics – variance decompositions, impulse-response

functions, (I − A)−1, etc. – are nonlinear functions of the underlying data, and the near-

unit root in value vt also induces non-normal distributions. For these reasons, I largely

characterize the sampling distribution by its 25% and 75% percentiles.

Table 3 collects the sampling quantiles for the variance decompositions of Table

2. Figure 9 presents the main components of the impulse-response function relevant to

the inflation variance decomposition presented in Figure 2. The bands are 25% and 75%
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points of the sampling distribution, the dashed line is the median, and the solid line is

the estimate.

Start with the “Inflation” shock in Table 3. In the second panel, inflation quantiles

are 1.00 because the shock is defined as a 1% movement in inflation in every sample.

Likewise, there is no sampling variation in the first inflation response of the top left panel

of Figure 9. The 1.59% weighted sum of inflation has 1.38% to 1.64% quantiles in the top

panel of Table 3. The -0.06% sum of future surpluses has quartiles -0.69% to 0.23%. The

-0.49% sum of growth rates has quantiles -0.72% to -0.22% The 1.04% (weighted) and

1.00% (unweighted) discount rate term has quantiles 0.16% to 1.46% and 0.16% to 1.55%.

That discount rates matter is a pretty solid conclusion, but deficits may contribute more
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to unexpected inflation than the point estimate suggests.

There are several sources of this rather large sampling variation. First, the shocks

are large. As shown in Table 1, the surplus innovation has a 4.75 percentage point stan-

dard deviation, and value 6.55 percentage points, compared to 1.12 percentage points

for inflation. Our friend σ/
√
T starts off badly.

Second, the shocks are imperfectly correlated. This matters, because in each case

I find movements in other variables contemporaneous with the shock of interest by run-

ning a regression of the other shocks on the shock of interest. The sampling uncertainty

of this orthogonalization adds to that of the VAR coefficient estimates. We see a cor-

respondingly wide band around the initial surplus and growth responses in Figure 9.

Higher frequency data may better measure shock correlations, at the cost that one must

model the strong seasonal in primary surpluses. Other shock identifications may have

better-measured correlations.

Third, we measure sums of future surpluses and discount rates. The value of the

debt vt is the main long-run state variable, and uncertainty about its evolution adds to the

uncertainty about the sum of surpluses. The coefficient of debt vt on its own lag is 0.98

in Table 1, so small variations in that value lead to large variation in (I −A)−1 sums. The

Online Appendix shows that the last two sources of variation contribute about equally.

A larger or smaller value of this coefficient raises and lowers all the long-run responses

together, so the apparently reasonably-measured individual responses of Figure 9 all add

up to larger sampling variation of the decomposition terms.

Table 3 also presents 25% and 75% quantiles for the recession, surplus and dis-

count rate shocks of Table 2. The -1.15% total surplus response to a recession shock has

quantiles -1.28% to 0.49%, spanning zero, while the -4.96% and -4.79% discount rate re-

sponse has quantiles from -4.84% to -2.43% and -4.84% to -2.35%. The conclusion that

discount rate variation is a central part of the story for understanding aggregate-demand

inflation is fairly solid. The small inflation and offsetting surplus and discount rate re-

sponses to surplus and discount rate shocks are similarly measured.

It would be nice if the elements of the identities were more precisely measured.

But there is nothing one can do within the framework of this VAR to improve on them,

so it’s worth examining point estimates while awaiting more data or other approaches

such as model-based estimates that impose prior structure. The rather large sampling



FISCAL INFLATION 35

variation should, however, discourage one from the inevitable temptation to split up the

sample or add complexity to the specification.

8 Concluding comments

One can apply these decompositions to any VAR, or to the impulse-responses of theoret-

ical models. Such calculations beckon.

In particular, it is interesting to apply the inflation decompositions to model pre-

dictions or empirical estimates of monetary and fiscal policy shocks. Cochrane (2021a)

presents such calculations from a simple fiscal theory of monetary policy model. Mak-

ing such calculations in data require one to solve the formidable identification problems

of estimating policy rules, given that the right-hand variables react to the disturbances,

and identifying sufficiently orthogonal shocks. The state of the art goes well beyond the

simple recursive and long-run strategies available in the annual VAR here, to include

instruments, high frequency data, narrative approaches, and other devices. The liter-

ature still does does not offer a robustly successful approach (Ramey (2016), Cochrane

(2011a)). Teasing out monetary policy shocks that are also orthogonal to fiscal policy

shocks requires some thought. I attempted monetary and fiscal policy shocks by recur-

sive identification in this data, but one-year interest-rate, inflation, and growth shocks

are all highly correlated. Assuming all of that correlation flows from interest rates to in-

flation and growth results in positive effects of interest rates on inflation and growth. As-

suming all correlation reflects rule-like responses of interest rates to inflation and growth

eliminates the unexpected inflation response we wish to measure. Obviously, reality lies

in between.

Additional measurements beckon. Quarterly or monthly data are attractive, of-

fering potentially better measurement of correlations and shock orthogonalization but

requiring us to model the strong seasonality in surpluses, and not to let seasonal adjust-

ment, which uses ex-post data, influence forecasts. Debt data go back centuries, allowing

and requiring us to think what is the same and different across different periods of his-

tory. Inflation through wars and under the gold standard may well have different fiscal

foundations than in the postwar environment. The Online Appendix finds quite differ-

ent behavior in 1930-1947, though that sample is dominated by a few influential data

points and does not offer by itself enough evidence to measure a different regime. A



36 COCHRANE

narrative counterpart, especially for big episodes such as the 1970s and 1980s, awaits.

Different countries under different monetary and exchange rate regimes and different

fiscal constraints will behave differently. US interest rates go down, and the dollar rises

in recessions, from a flight to quality. Other countries’ interest rates go up, and their cur-

rencies fall. A parallel investigation of exchange rates beckons, following Jiang (2019a),

Jiang (2019b). One could define shocks in many additional interesting ways.

I omitted analysis of the remaining shocks in the VAR. A shock to any other vari-

able, orthogonal to the inflation shock, can move all of the other terms of the infla-

tion identities. Such movements must offset: In (5), if a shock does not move the in-

flation term, but does move the sum of future surpluses, then it must also move the sum

of growth rates or discount rates. These additional effects are large. The variation in

∆E1
∑∞

j=0 s1+j when other shocks move is large; the corresponding movement in the

discount rate term is also large, and the two movements are negatively correlated. We

get a hint of that behavior in the surplus+growth and discount rate shock responses. I

do not pursue this question because it is much more interesting if one can give some

structural or economic interpretation to the shocks to other variables.

Perhaps most of all, linking these theory-free characterizations to explicit models

is an obviously important step. Why do discount rates vary as they do? What fiscal poli-

cies generate the observed pattern of surpluses? One needs economic models to answer

such questions, but the identities help to summarize and characterize the forces at work

in models.
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Online Appendix to “The Fiscal Roots of Inflation”
John H. Cochrane

Hoover Institution, Stanford University

A Derivation of the linearized identities

In this appendix I derive the linearized identities (1), (2), and (3),

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1 (9)

vt =

∞∑
j=1

ρj−1st+j +

∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
and

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

ρj∆Et+1st+1+j−

−
∞∑
j=0

ρj∆Et+1gt+1+j +
∞∑
j=1

ρj∆Et+1

(
rnt+1+j − πt+1+j

)
.

(10)

I also define the variables more carefully.

The symbols are as follows:

Vt = Mt +
∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t

is the nominal end-of-period market value of debt, where Mt is non-interest-bearing

money, B(t+j)
t is zero-coupon nominal debt outstanding at the end of period t and due

at the beginning of period t+ j, and Q(t+j)
t is the time t price of that bond, with Q(t)

t = 1.

Taking logs,

vt ≡ log

(
Vt
YtPt

)
is log market value of the debt divided by GDP, where Pt is the price level and Yt is real

GDP or another stationarity-inducing divisor such as consumption, potential GDP, etc.

I use consumption times the average GDP to consumption ratio in the empirical work,

but I will call Y and ratios to Y “GDP” for brevity. The quantity

Rnt+1 ≡
Mt +

∑∞
j=1Q

(t+j)
t+1 B

(t+j)
t

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

(11)
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is the nominal return on the portfolio of government debt, i.e. how the change in prices

from the end of t to the beginning of t+ 1 affects the value of debt held between periods.

The quantity

rnt+1 ≡ log(Rnt+1)

is the log nominal return on that portfolio. The symbols

πt ≡ log

(
Pt
Pt−1

)
, gt ≡ log

(
Yt
Yt−1

)
are log inflation and GDP growth rate.

We can accommodate explicit default, so the formulas can also apply to countries

that borrow in foreign currency such as the members of the Euro. An explicit default is a

reduction in the nominal quantity of debt between periods. The B(t+j)
t in the numerator

of (11) represents the post-default number of bonds outstanding, i.e. at the beginning of

period t + 1, while the B(t+j)
t in the denominator represents the pre-default number of

bonds outstanding, i.e. at the end of period t. A partial default then shows up as a low

return. To handle default one would, of course, add notation distinguishing the pre- and

post-default quantity of debt in the definition of return.

We start with the nonlinear flow identity,

Mt +

∞∑
j=1

Q
(t+j)
t+1 B

(t+j)
t = Pt+1spt+1 +Mt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1 . (12)

Here, spt+1 denotes the real primary (not including interest payments) surplus or deficit.

At the beginning of period t + 1, money Mt and bonds B(t+1+j)
t are outstanding. Money

Mt+1 at the end of period t+1 and beginning of period t+2 then equals moneyMt, money

printed up to redeem bondsB(t+1)
t+1 , less money soaked up by a primary surplusPt+1spt+1,

or conversely printed to finance a primary deficit, and less money soaked up by net new

bond sales, or printed to finance long-term bond purchases,
∑∞

j=1Q
t+1+j
t+1 (B

(t+1+j)
t+1 −

B
(t+1+j)
t ).

Using the definition of return, (12) becomesMt +
∞∑
j=1

Q
(t+j)
t B

(t+j)
t

Rnt+1 = Pt+1spt+1 +

Mt+1 +
∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1

 ,
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or,

VtR
n
t+1 = Pt+1spt+1 + Vt+1.

The nominal value of government debt is increased by the nominal rate of return, and

decreased by primary surpluses. This seems easy. The algebra all comes from properly

defining the return on the portfolio of government debt.

Expressing the result as ratios to GDP, we have a flow identity

Vt
PtYt

×
Rnt+1

Gt+1

Pt
Pt+1

=
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1
, (13)

where Gt+1 ≡ Yt+1/Yt.

We can iterate this flow identity (13) forward to express the nonlinear government

debt valuation identity as

Vt
PtYt

=

∞∑
j=1

j∏
k=1

1

Rnt+k/(Πt+kGt+k)

spt+j
Yt+j

. (14)

where Πt+1 ≡ Pt+1/Pt. The market value of government debt at the end of period t, as a

fraction of GDP, equals the present value of primary surplus to GDP ratios, discounted at

the government debt rate of return less the GDP growth rate.

The nonlinear present value identities (13) and (14) are cumbersome, and as ex-

plained below they may not converge even when the true present value and linearized

identities do converge. I linearize the flow equation (13) and then iterate forward to ob-

tain a linearized version of (14). Taking logs of (13), we have

vt + rnt+1 − πt+1 − gt+1 = log

(
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1

)
. (15)

I linearize this equation in the level of the surplus, not its log as one conventionally

does in asset pricing, since the surplus is often negative. To linearize in terms of the

surplus/GDP ratio, Taylor expand the last term,

vt + rnt+1 − πt+1 − gt+1 = log(ev + sy) +
ev

ev + sy
(vt+1 − v) +

1

ev + sy
(syt+1 − sy)

where

syt+1 ≡
spt+1

Yt+1
(16)
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denotes the surplus to GDP ratio, and variables without subscripts denote a steady state

of (15). With r ≡ rn − π,

r − g = log
ev + sy

ev
.

Then,

vt + rnt+1 − πt+1 − gt+1 =

[
log(ev + sy)− ev

ev + sy

(
v +

sy

ev

)]
+

ev

ev + sy
vt+1 +

ev

ev + sy

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 =

[
v + r − g − ev

ev + sy

(
v +

ev + sy

ev
− 1

)]
+ ρvt+1 + ρ

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 = [r − g + (1− ρ) (v − 1)] + ρvt+1 + ρ
syt+1

ev
(17)

where

ρ ≡ e−(r−g). (18)

Suppressing the small constant, and thus interpreting variables as deviations from means,

the linearized flow identity is

vt + rnt+1 − πt+1 − gt+1 = ρ
syt+1

ev
+ ρvt+1. (19)

Iterating forward, the present value identity is

vt =
T∑
j=1

ρj−1
[
ρ
syt+j
ev
−
(
rnt+j − πt+j − gt+j

)]
+ ρT vT . (20)

If we linearize around r − g = 0, then the constant in (19) is zero (sy = 0), and we obtain

the linearized flow and present value identities (9) and (10), with the symbol st represent-

ing syt/ev. There is nothing wrong with expanding about r = g. The point of expansion

need not be the sample mean.

To approximate in terms of the surplus to value ratio, write (15) as

vt + rnt+1 − πt+1 − gt+1 = log

(
Vt
PtYt

spt+1

Yt+1

Vt
PtYt

+
Vt+1

Pt+1Yt+1

)

rnt+1 − πt+1 − gt+1 = log

( spt+1

Yt+1

Vt
PtYt

+

Vt+1

Pt+1Yt+1

Vt
PtYt

)
rnt+1 − πt+1 − gt+1 = log

(
svt+1 + evt+1−vt) .
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At a steady state

r − g = log (1 + sv) . (21)

er−g = 1 + sv.

Taylor expanding around a steady state,

rnt+1 − πt+1 − gt+1 = log (1 + sv) +
1

(1 + sv)
(svt+1 − sv + vt+1 − vt)

vt + (1 + sv)
[
rnt+1 − πt+1 − gt+1

]
= [(1 + sv) log (1 + sv)− sv] + svt+1 + vt+1. (22)

The linearized flow identity (9) follows, with the symbol st representing the surplus to

value ratio st = svt, if we suppress the constant, using deviations from means in the

analysis, or if we use r = g or sv = 0, as a point of expansion.

The linearizations in terms of the surplus to value ratio svt are more accurate. The

units of the flow identities (9), (19) are rates of return. Dividing the surplus by the previous

period’s value gives a better approximation to the growth in value, when the value of debt

is far from the steady state.

A constant ratio of surplus to market value of debt for any price level path leads to

a passive fiscal policy: An unexpected deflation raises the real value of debt. If surpluses

always rise in response, they validate the lower price level. Thus, although on the equilib-

rium path one can describe dynamics via either linearization, if one wants to think about

how fiscal-theory equilibria are formed, it is better to describe a surplus that does not re-

act to price level changes, so only one value vt emerges, as is the case in (20). For such

purposes, the surplus to GDP definition is appropriate, as well as adopting a lineariza-

tion point r > g and ρ < 1. It’s also better to use the nonlinear versions of the identities

for determinacy issues. The analysis of this paper is about what happens in equilibrium,

and does not require an active-fiscal assumption, so the difference is irrelevant here.

I infer the surplus from the linearized flow identity (9) so which concept the sur-

plus corresponds to makes no difference to the analysis. The difference is only the accu-

racy of approximation, how close the surplus recovered from the linearized flow identity

corresponds to a surplus recovered from the nonlinear exact identity (15).
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B Linearizing the bond return formula

Here I derive the linearized identity

rnt+1 ≈ ωqt+1 − qt,

which leads to (4),

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
.

I also derive expectations-hypothesis bond-pricing equations.

Etr
n
t+1 = it

ωEtqt+1 − qt = it.

These equations are used in the sticky-price model Cochrane (2021a).

Denote the maturity structure by

ωj,t ≡
B

(t+j)
t

B
(t+1)
t

and Bt ≡ B(t+1)
t . Then the end of period t nominal market value of debt is

∞∑
j=1

B
(t+j)
t Q

(t+j)
t = Bt

∞∑
j=1

ωj,tQ
(t+j)
t .

(I ignore money to keep the formulas simple.) Define the price of the government debt

portfolio

Qt =

∞∑
j=1

ωj,tQ
(t+j)
t .

The return on the government debt portfolio is then

Rnt+1 =

∑∞
j=1B

(t+j)
t Q

(t+j)
t+1∑∞

j=1B
(t+j)
t Q

(t+j)
t

=

∑∞
j=1 ωj,tQ

(t+j)
t+1∑∞

j=1 ωj,tQ
(t+j)
t

=
1 +

∑∞
j=1 ωj+1,tQ

(t+1+j)
t+1

Qt
. (23)

I loglinearize around a geometric maturity structure, B(t+j)
t = Btω

j−1, or equiva-

lently ωj,t = ωj−1. I use variables with no subscripts to denote the linearization points,
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and tildes to denote deviations from those points.

When we linearize, we move bond prices holding the maturity structure at its

steady-state, geometric value, and then we move the maturity structure while holding

bond prices at their steady-state value. As a result, changes in maturity structure have no

first-order effect on the linearized bond return. At the steady state Qt+jt = 1/(1 + i)j ,

Rnt+1 =

∑∞
j=1 ωj,t/(1 + i)j−1∑∞
j=1 ωj,t/(1 + i)j

= (1 + i)

independently of {wj,t}. Intuitively, at the steady state bond prices, all bonds give the

same return, so all portfolios of bonds give the same return. Moreover, maturity structure

is a time-t variable in the definition of returnRnt+1. The return from t to t+1 is not affected

by the time t+1 maturity structure. (Changes in maturity structure might affect returns if

there is price pressure in bond markets. These are formulas for measurement, however,

and such effects would show up as changes in measured prices coincident with changes

in quantities.)

Maturity structure only has a second-order interaction effect on the bond portfolio

return. For example, a longer maturity structure at t raises the bond portfolio return at

t + 1 if there is also a level shock, raising long-maturity bond returns at t + 1. A longer

maturity structure at t raises the expected return if the yield curve at t is also temporarily

upward sloping. But a linear VAR and a linear decomposition do not include interaction

effects.

To be clear, I measure the bond portfolio return rnt+1 directly, and exactly, and this

measure includes effects of maturity structure, as well as liquidity and other effects. With

a longer maturity structure, the same movement in interest rates will give a larger return.

The linearization only affects the decomposition of the bond portfolio return to future

inflation and future expected returns. A second-order approximation would effectively

use a different ω in the decomposition formula for different dates, as well as estimate a

VAR with parameters that depend on the maturity structure or interaction terms. But

variation in the geometric maturity structure parameter ω makes little difference to the

results. And the sample is too short to add more variables, interaction terms, or time-

varying parameters.

The term of the linearization with steady-state bond prices and shocks to matu-

rity thus adds nothing. The linearization only includes a linearization with steady-state,
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geometric maturity structure and changing bond prices. Linearizing (23) then, we have

rnt+1 = log (1 + ωeqt+1)− qt ≈ log

(
1 + ωQ

Q

)
+

ωQ

1 + ωQ
q̃t+1 − q̃t (24)

where as usual variables without subscripts are steady state values and tildes are devia-

tions from steady state. In a steady state,

Q =

∞∑
j=1

ωj−1
1

(1 + i)j
=

(
1

1 + i

)(
1

1− ω
1+i

)
=

1

1 + i− ω
. (25)

The limits are ω = 0 for one-period bonds, which gives Q = 1/(1 + i), and ω = 1 for

perpetuities, which gives Q = 1/i. The terms of the approximation (24) are then

1 + ωQ

Q
= 1 + i

ωQ

1 + ωQ
=

ω

1 + i

so we can write (24) as

rnt+1 ≈ i+
ω

1 + i
q̃t+1 − q̃t.

Since i < 0.05 and ω ≈ 0.7, I further approximate to

rnt+1 ≈ i+ ωq̃t+1 − q̃t. (26)

I find the value of ω that best fits the return identity, rather than measure the maturity

structure directly, so the difference betweenω andω/(1+i) makes no practical difference.

To derive the bond return identity (4), iterate (26) forward to express the bond

price in terms of future returns,

q̃t = −
∞∑
j=1

ωj r̃nt+j .

Take innovations, move the first term to the left hand side, and divide by ω,

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1r̃
n
t+1+j . (27)
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Then add and subtract inflation to get (4),

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(r̃nt+1+j − π̃t+1+j) + π̃t+1+j

]
. (28)

The expectations hypothesis states that expected returns on bonds of all maturi-

ties are the same,

Etr
n
t+1 = it

i+ ωEtq̃t+1 − q̃t = it

ωEtq̃t+1 − q̃t = ı̃t.

In the text, all variables are deviations from steady state, so I drop the tilde notation.

C What if r is less than g?

Does r < g imply that the present value of debt is infinite, so deficits do not have to be

repaid by subsequent surpluses, and the forward-looking present value is fundamentally

wrong? I give here a deeper treatment of the issue.

Again, the present value of debt can be well defined, properly using the stochastic

discount factor, contingent claim price, or marginal utility to discount, and large deficits

still need to be repaid by subsequent surpluses, yet the economy displays E(r) < E(g).

In essence, though debt is grown out of on many paths and on average, there are

paths with low growth and high contingent claim value where growing out of debt fails.

The lesson is that one should not take the mean values of r and g from a stochastic econ-

omy and use them in perfect certainty discounting formulas. (Bohn (1995), Bassetto and

Cui (2018), Bassetto and Sargent (2020), Reis (2021), Cochrane (2021b))

The approach here, which discounts using the stochastic ex-post return, is still not

out of the woods. While one can always use the ex-post return to discount a finite stream

of payoffs – 1 = Et(R
−1
t+1Rt+1) – that assurance does not extend to an infinite stream.

Discounting using returns can fail, even stochastic returns, while the true present value

formula holds.

Here is what can happen. Suppose the value of debt is well-defined using the
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stochastic discount factor, contingent claims price, or marginal utility Λt. Suppose

Vt
Yt

= Et

T∑
j=0

Λt+j
Λt

Yt+j
Yt

st+j
Yt+j

+ Et
Λt+T

Λt

Yt+T
Yt

Vt+T
Yt+T

(29)

is well defined, and the right hand term tends to zero. I include GDP terms which com-

plicate the formula but you can see they just multiply and divide the basic present value

formula.

Now, try to discount using ex post returns rather than the discount factor. Start

with the identity

Vt+1 = Rt+1 (Vt − st) .

Rearrange to
Vt
Yt

=
st
Yt

+
1

Rt+1

Yt+1

Yt

Vt+1

Yt+1

and iterate forward

Vt =
T∑
j=0

j∏
k=0

1

Rt+k

Yt+k
Yt+k−1

st+j +
T∏
k=0

1

Rt+k

Yt+k
Yt+k−1

Vt+T
Yt+T

. (30)

This is the exact nonlinear version of the present value identity (2). It can happen that

the expected value of this limiting term explodes, and the present value term explodes in

the opposite direction, even though the true present value formula (29) is well-behaved.

And, with stationary debt to GDP ratio, you can see that a nonlinear stochastic version of

r < g is exactly the condition for this pathological case.

In sum, by 1 = Et(R
−1
t+1Rt+1), the inverse return is a discount factor under mild

conditions, basically that moments exist. The inverse return is only an infinite period

discount factor if in addition the sums and terminal condition converge.

This result seems to put the whole project of discounting by returns in jeapordy.

But that is not necessarily so. For the terms of the linearized identity (6) and those of

the true present value formula (29) may converge, while the terms of the the nonlinear

identity (30) do not converge. I linearize the return formula and then iterate forward.

I do not take a direct Taylor approximation of the return-based identity (30). The con-

dition for a substitute discount factor to work is, first, that it prices one-period claims,

and second, that the sums converge. The linearized return-based present value formula

can work when the nonlinear one does not. “Work” means that the formula gives a good
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approximation to the true, discount-factor, based result.

For example, if E(rn − π) < E(g), the linearized identity (2) indicates that the

government can finance a small steady deficit/GDP ratio E(s) < 0, while maintaining a

steady debt/GDP ratio. But any large additional deficits must still be financed by subse-

quent surpluses.

If the government issues only non-interest-bearing money, then rn = 0. This is the

familiar case of seignorage, which can finance a small steady deficit, but large additional

spending must still be financed by borrowing and repayment. The identity indicates that

the same principle applies for other sources of r < g.

The linearized identity captures this fact of the true present value formula, that

the nonlinear return-based present value formula may not capture.

D A variance decomposition

I use the elements of the impulse response function and their sums to calculate the terms

of the unexpected inflation identity (3). We can interpret this calculation as an decom-

position of the variance of unexpected inflation. Multiply both sides of (3) by ∆Et+1πt+1

and take expectations, giving

var (∆Et+1πt+1)− cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1 − gt+1

)]
= (31)

= −
∞∑
j=0

cov [∆Et+1πt+1,∆Et+1st+1+j ] +

+
∞∑
j=1

cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

Unexpected inflation may only vary to the extent that it covaries with current bond re-

turns, or if it forecasts surpluses or real discount rates.

Dividing by var (∆Et+1πt+1), we can express each term as a fraction of the variance

of unexpected inflation coming from that term. This decomposition adds up to 100%,

within the accuracy of approximation, but it is not an orthogonal decomposition, nor are

all the elements necessarily positive. Each term is also a regression coefficient of future

long-run variables on unexpected inflation.

The two approaches give exactly the same result – the terms of (31) are exactly the
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terms of the impulse-response function, to an inflation shock orthogonalized last, i.e. a

shock that moves all variables at time 1 including ∆E1π1.

To see this fact, write the VAR in standard notation

xt+1 = Axt + εt+1 (32)

so

∆Et+1

∞∑
j=1

xt+j = (I −A)−1εt+1.

Let a denote vectors which pull out each variable, i.e.

πt = a′πxt, st = a′sxt, (33)

etc. Then the present value identity (3) reads and may be calculated as

a′πεt+1 − (arn − ag)′εt+1 = −a′s(I −A)−1εt+1 + a′rg(I −A)−1Aεt+1 (34)

where

arg ≡ arn − aπ − ag.

We can calculate the variance decomposition (31) by

a′πΩaπ − (arn − ag)′Ωaπ = −a′s(I −A)−1Ωaπ + a′rg(I −A)−1AΩaπ

where Ω = cov(εt+1, ε
′
t+1), and then divide by a′πΩaπ to express the result as a fraction,

1− (arn − ag)′
Ωaπ
a′πΩaπ

= −a′s(I −A)−1
Ωaπ
a′πΩaπ

+ a′rg(I −A)−1A
Ωaπ
a′πΩaπ

. (35)

To show that this variance decomposition is the same as the elements and sum

of elements of the impulse-response function to an inflation shock, orthogonalized last,

note that the regression coefficient of any other shock εz on the inflation shock is

bεz ,επ =
cov(εzt+1, ε

π
t+1)

var(επt+1)
=
a′zΩaπ
a′πΩaπ

,

so the VAR shock, consisting of a unit movement in inflation επ1 = 1 and movements
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εz1 = bεz ,επ in each of the other variables is given by

ε1 =
Ωaπ
a′πΩaπ

.

We recognize in (35) the responses and sums of responses to this shock. Dividing (31) by

the variance of unexpected inflation, or examining the terms of (35), we recognize that

each term is also the coefficient in a single regression of each quantity on unexpected

inflation.

In an analogous way, we can interpret the responses to other shocks as a decom-

position of the covariance of unexpected inflation with that shock, based on

cov (∆Et+1πt+1εt+1)− cov
[
εt+1,∆Et+1

(
rnt+1 − gt+1

)]
= −

∞∑
j=0

cov [εt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
εt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

This variance decomposition is similar in style to the decomposition of return

variance in Campbell and Ammer (1993). To avoid covariance terms, however, it fol-

lows the philosophy of the price/dividend variance decomposition in Cochrane (1992),

extended to a multivariate context. With x = y+z, I explore var(x) = cov(x, y)+ cov(x, z)

rather than var(x) = var(y) + var(z) + 2cov(y, z).

E Monte Carlo details

To evaluate sampling distributions I run a simple Monte Carlo. I start with the estimated

VAR. I find the covariance matrix of the residuals εt+1. The identity (1) implies

εs,t+1 = εrn,t+1 − εg,t+1 − επ,t+1 − εv,t+1. (36)

Since I infer the surplus data st from (1), the data obey this identity and the covariance

matrix of residuals is singular. Thus I simulate iid shocks from the covariance matrix of

all shocks except the surplus, and then I infer the surplus shock from the identity (36).

I initialize the VAR at the first data point, thereby generating the conditional sam-

pling distribution. I simulate forward 50,000 artificial data samples using the estimated

VAR parameters. I re-estimate the VAR and I calculate impulse responses and inflation

decompositions in each artificial sample. I tabulate the sampling distribution of these
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quantities and report quantiles.

In a very few artificial samples, the VAR estimate has eigenvalues greater than or

equal to one, so (I −A)−1 cannot be computed. I omit these 38 out of 50,000 samples. As

a result the reported quantiles are slightly smaller than actual quantiles. Avoiding these

infinities and beyond is one reason that I report quantiles rather than standard errors.

More generally, the distribution of statistics is not normal.

It is also not always possible to find ω ∈ [0, 1] to satisfy the return identity, so many

Monte Carlo draws use a best fit value of ω in which the return identity does not hold.

Weights have little effect on the results however, so this fact seems to have little effect.

Since this is what I would have done in sample had I not been able to find an ω ∈ [0, 1]

that satisfied the return identity, this fact just fills out the correct sampling distribution.

I run the Monte Carlo using sample estimates, and in particular the estimated 0.98

coefficient of debt on lagged debt. Near unit roots are biased down, and one might wish

also to run a Monte Carlo with a bias-corrected estimate with eigenvalues closer to one.

That procedure would likely lead to somewhat larger sampling distributions.

Between the conditional Monte Carlo – starting at the first data point – the prob-

lem of draws withA eigenvalues greater than one, near-unit roots, and non-normal error

distributions, one could likely find sampling experiments that produce even larger dis-

tributions.

But remember, I am not testing anything, so the point is simply to give a sense

of the sampling error of the measurements. My main conclusion is that the sampling

distribution of the response functions and decompositions, though narrow enough that

the qualitative results are reasonably reliable, is still pretty wide already, steering me away

from model complications. Sampling exercises that produce even wider distributions

would only emphasize that point.

F Sources of sampling variation

Table 4 includes the regression of other shocks on inflation shock that starts off the main

inflation decomposition, and thus determines the instantaneous response in Figures 2

and 9. The table also includes the correlation matrix of the shocks.

To measure the relative contribution of the shock correlation and the long-run

response function given the shock identification as sources of variation, Table 5 includes
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rn g π s v i y

Regression of other shocks on inflation shock
Coefficient -0.56 -0.33 1.00 -0.58 -0.65 0.24 0.23

Std. err. (0.24) (0.17) (0.00) (0.53) (0.74) (0.14) (0.24)
Correlation matrix of VAR shocks

rn 1.00 -0.25 -0.29 -0.27 0.63 -0.74 -0.93
g -0.25 1.00 -0.24 0.39 -0.56 0.41 0.20
π -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31
s -0.27 0.39 -0.14 1.00 -0.88 0.35 0.26
v 0.63 -0.56 -0.11 -0.88 1.00 -0.63 -0.60
i -0.74 0.41 0.21 0.35 -0.63 1.00 0.75
y -0.93 0.20 0.31 0.26 -0.60 0.75 1.00

Table 4: Regression of other shocks on inflation shock, and correlation matrix of VAR
shocks

Fraction No b No A
Component Estimate 25% 75% 25% 75% 25% 75%
Inflation π1 1.00

Bond return (rn1 − g1) -0.23 -0.45 0.00 -0.23 -0.23 -0.45 0.00
Future Σs -0.06 -0.69 0.23 -0.60 0.14 -0.69 0.23

Future Σr − g 1.17 0.42 1.57 0.63 1.37 0.42 1.57

Table 5: Decomposition of unexpected inflation variance – distribution quantiles. No b
holds the initial response constant across trials. No A holds the VAR regression coeffi-
cients constant across trials
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two other sampling calculations. The “no b” columns resample data using the original

regression of shocks εzt+1 on inflation shocks επt+1, the top row of Table 4, in each sample.

The VAR coefficients still vary across samples, but the identification of the inflation shock

does not. The “no A” columns likewise keep constant the VAR regression coefficients, but

reestimate the shock regression in each sample. Turning off either source of sampling

variation reduces that variation, but not as much as you might think. Sampling variation

is still large in either case, and variances add, not standard deviations. Moreover the

sampling variation associated with shock orthogonalization – the “no A” exercise – does

not go away no matter how small the shocks. Both left and right hand sides of the shock

on shock regressions get smaller at the same rate.

G 1980-2018 subsample results

This section presents results using the 1980-2018 subsample. Much monetary macroeco-

nomics isolates this period as having a different set of correlations that the earlier 1970s

inflation, 1960s under Bretton woods, etc. Breaking the sample also allows us to see if the

results are stable across subsamples.

rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.22* 0.05 -0.10** -0.25* 0.08 -0.04 0.07*

gt -0.11 0.13 0.06 0.76 -1.06 0.20* -0.04
πt -0.04 -0.57* 0.67** -1.55 1.41 -0.08 -0.12
st 0.10* 0.07* -0.02 0.38** -0.34* -0.02 -0.04*

vt -0.00 0.00 -0.00 0.05 0.95** 0.01 0.00
it -0.12 -0.27* 0.20* 1.14* -1.19 0.61** 0.31*

yt 1.61** 0.67** -0.08 0.05 0.98 0.32* 0.57**

100× std(εt+1) 2.44 1.10 0.51 5.17 7.00 1.15 0.93
Corr ε, επ -0.40 0.14 1.00 0.11 -0.31 0.27 0.42

R2 0.73* 0.54* 0.88* 0.50* 0.94* 0.85* 0.89*

100× std(x) 4.74 1.63 1.48 7.30 28.88 2.97 2.84

Table 6: OLS VAR estimate. Sample 1980-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

Table 6 presents OLS VAR regression coefficients, parallel to Table 1. Table 7 com-

piles inflation decompositions, parallel to Table 2. Figures 10, 11 and 12 plot responses
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1r1+j
π = s g r

Inflation 2.32 = -( 0.19) -( 0.52) +( 3.03)
Recession -2.50 = -( -0.31) -( -1.67) +( -4.49)
Surplus -0.08 = -( -0.46) -( -0.54) +( -1.08)
Disc. Rate -0.12 = -( -0.40) -( -0.49) +( -1.00)
Surplus, no i 0.07 = -( -0.70) -( -0.30) +( -0.92)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -1.92) = -( 0.19) -( 0.52) +( 3.63)
Recession -1.00 -( 2.44) = -( -0.31) -( -1.67) +( -5.42)
Surplus -0.01 -( 0.32) = -( -0.46) -( -0.54) +( -1.33)
Disc. Rate -0.02 -( 0.35) = -( -0.40) -( -0.49) +( -1.25)
Surplus, no i 0.07 -( -0.01) = -( -0.70) -( -0.30) +( -0.92)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞

j=1 ω
j∆E1π1+j

rn = r π

Inflation -1.92 = -( 0.60) -( 1.32)
Recession 2.44 = -( -0.94) -( -1.50)
Surplus 0.32 = -( -0.25) -( -0.07)
Disc. Rate 0.35 = -( -0.25) -( -0.09)
Surplus, no i -0.01 = -( -0.00) -( 0.00)

Table 7: Terms of the inflation and bond return identities. Sample 1930-2018.

to inflation shocks, paralleling Figures 2, 3, and 4.

The broad pattern of Figure 10 is similar to the full postwar sample. There are

some differences. The surplus and growth shocks are now positively correlated with the

inflation shock, seen in the period 1 responses. There is less need to isolate a separate

growth+inflation shock in this period, dominated by “aggregate demand” rather than

“stagflation” episodes.

However, the surplus and growth responses turn negative after one period, as they

are in the full sample. Higher inflation strongly forecasts a lower surplus, -1.55 in Table

6 rather than -0.25 in Table 1, and similarly higher inflation forecasts lower growth -0.57

rather than -0.14. The overall responses are then similar to the full period.
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Figure 10: Response to inflation shocks, sample 1980-2018.

Surpluses then recover and turn positive as before. The sum of the surplus re-

sponse remains small, 0.19 rather than -0.06.

Figure 11 explores the long-run surplus response, and you can see the same dy-

namics playing out. Inflation forecasts a rise in debt (1.41 in Table 6), and the period of

deficits also raises debt (-0.34). But the rise in debt leads to a rise in surpluses, which

slowly pay down much of that debt.

The expected return also rises in Figure 10, and accounts for all the inflation and

more in this subsample as it does in the main estimate.

Figure 12 shows the interest rate response in more detail. The wiggly response,

which I pointed out in the postwar sample and is a result of slight overfitting there, is

even more pronounced here. However, wiggles aside, the basic picture is similar. Interest

rates and the expected bond return rise together, and almost permanently in response to

the inflation shock. They do not rise as much as inflation, giving a few periods of negative

expected returns, but their rise is so much more persistent than that of inflation that we

see a very long period of high expected returns on the right side of the graph. As in the full
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Figure 11: Response to inflation shocks, sample 1980-2018.

sample, the much greater persistence of yield-curve changes than of inflation generates

the long-term discount rate rise which accounts for most of the inflation shock.

The impulse-response quantiles, plotted in Figure 13, are even larger than those

of the full sample, but not so large that the results are meaningless.

Overall, we see a comfortingly similar picture, and many signs of weak estimation

in a short sample. At least it is comforting not to see the point estimates paint a much

different picture, as they do in the prewar sample studied in the next section.

I do not present results for the 1947-1980 subsample to save space, since it too

paints about the same picture. The near-term (5 years) response functions are similar.

However the point estimate has an eigenvalue of the transition matrix greater than one,

so one must either reduce that or make calculations based on the first few responses only,

not (I −A)−1 calculations.



20 COCHRANE

0 1 2 3 4 5 6 7 8 9 10

Years

-0.2

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
t

r
n

i

y

Figure 12: Response to inflation shocks, sample 1980-2018.



FISCAL INFLATION 21

Inflation 

0 2 4 6 8 10

0

0.5

1

Surplus s

0 2 4 6 8 10

-2

0

2

Bond return rn

0 2 4 6 8 10

-2

0

2

Real return r

0 2 4 6 8 10

-3

-2

-1

0

1

Value v

0 2 4 6 8 10

-6

-4

-2

0

2

Growth g 

0 2 4 6 8 10

-0.5

0

0.5

Figure 13: Inflation shock response quantiles, sample 1980-2018.
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H Full sample results

This section presents results using the full sample of data that I have been able to collect,

1930-2018.

rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.23** 0.06 -0.02 -0.12 -0.14 -0.06* 0.05*

gt 0.02 0.42** 0.25** 0.52* -1.17** 0.07* -0.01
πt -0.11* 0.05 0.53** -0.75** 0.05 0.02 0.02
st 0.01 -0.02 -0.02 0.65** -0.61** 0.00 -0.01*

vt 0.01 0.01* 0.01 0.08** 0.91** -0.00 -0.00*

it -0.32* -0.35* 0.26 0.63 -0.87 0.79** 0.31**

yt 1.85** 0.40* -0.05 0.59 0.90 0.14 0.52**

100× std(εt+1) 2.22 2.15 2.28 7.34 9.04 1.24 0.77
Corr ε, επ -0.14 0.21 1.00 -0.07 -0.28 0.15 0.17

R2 0.68* 0.32* 0.56* 0.54* 0.96* 0.84* 0.91*

100× std(x) 3.92 2.61 3.44 10.80 42.76 3.05 2.60

Table 8: OLS VAR estimate. Sample 1930-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

Table 8 presents OLS VAR regression coefficients, parallel to Table 1. Table 9 com-

piles inflation decompositions, parallel to Table 2. Figures 14, 15, and 16 plot responses

to inflation shocks, paralleling Figures 2, 3, and 4. Figure 17 presents sampling quantiles,

paralleling Figure 9.

Start with the impulse response function for the inflation shock, Figure 14, paral-

leling Figure 2. The general pattern is similar. But the magnitudes are completely dif-

ferent. The 1% inflation shock still corresponds to a prolonged deficit, and the deficit

eventually turns to surplus. But the deficit is larger and longer, and following surpluses

no longer pay off the accumulated debts. The sum of the surplus responses is -2.59, not

-0.06, accounting for more than all of the 1.83% weighted sum of inflation.

Discount rates follow the same general pattern as well. But the decline in discount

rate is longer lasting, and the subsequent rise much smaller, so discount rates now ac-

count for -0.52% inflation, not +1.004% inflation.

The growth response goes the other way, now rising with inflation rather than de-

clining, and therefore contributes -0.93% inflation rather than +0.49%.
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1r1+j
π = s g r

Inflation 1.83 = -( -2.59) -( 0.93) +( 0.17)
Recession -2.00 = -( 2.59) -( -2.13) +( -1.54)
Surplus 0.09 = -( -1.04) -( 0.04) +( -0.91)
Disc. Rate -0.05 = -( -0.89) -( -0.05) +( -1.00)
Surplus, no i 0.30 = -( -1.27) -( 0.27) +( -0.70)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -0.14) = -( -2.59) -( 0.93) +( -0.52)
Recession -1.00 -( 0.17) = -( 2.59) -( -2.13) +( -0.72)
Surplus 0.07 -( 0.13) = -( -1.04) -( 0.04) +( -1.05)
Disc. Rate -0.01 -( 0.16) = -( -0.89) -( -0.05) +( -1.11)
Surplus, no i 0.26 -( 0.01) = -( -1.27) -( 0.27) +( -0.75)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞

j=1 ω
j∆E1π1+j

rn = r π

Inflation -0.14 = -( -0.69) -( 0.83)
Recession 0.17 = -( 0.82) -( -1.00)
Surplus 0.13 = -( -0.14) -( 0.02)
Disc. Rate 0.16 = -( -0.11) -( -0.05)
Surplus, no i 0.01 = -( -0.05) -( 0.04)

Table 9: Terms of the inflation and bond return identities. Sample 1930-2018.

In sum, the full sample data paint a picture more than diametrically opposite. A

1% inflation shock, drawn out to 1.83% cumulative weighted inflation, is more than ac-

counted for by 2.53% cumulative deficits, and buffered by an 0.52% disinflationary de-

cline in discount rates, and 0.93% disinflationary rise in growth.

The full-sample results appear to support a simple fiscal theory, which would be

convenient – inflation comes from persistent deficits. Discount rates only mitigate that

result.

Why then do I emphasize the postwar sample in the text, and relegate these to an

online appendix? Clearly, the full sample results do not carry through the postwar period

to the present. As in essentially all macroeconomics and monetary economics, which
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Figure 14: Response to inflation shocks, sample 1930-2018.

studies the post-1947 sample, the post-1959 sample, or, increasingly, the post-1980 sam-

ple, the war and prewar data behave differently. My interest in this paper is to charac-

terize the behavior of inflation in postwar recessions, and the peacetime inflation of the

1970s and 1980s. Making an inference about that behavior from war and prewar data,

when the central results switch in a postwar-only sample would be hugely misleading.

The nature of the prewar and war regime is interesting. Alas, the 1930-1947 sample

is too short for these VAR methods. An investigation of the prewar regime with a long

historical time series beckons.

What are the stylized facts and influential data points behind this switch in behav-

ior? As before, long-run forecasts are driven by slow-moving state variables. Think of a

system

xt+1 = αyt + εx,t+1

yt+1 = ρyt + βεx,t+1 + εy,t+1.
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Figure 15: Response to inflation shocks, sample 1930-2018.

In the second equation, I express the y shock in terms of a component correlated with

the x shock and an orthogonal component. In this system, the variable y is the persistent

state variable for long-run responses. The long-response of x to the εx shock depends on

how much the state variable y moves, β, and the persistence of the y variable. In response

to εx,1 = 1, the long-run x response is

∆E1

∞∑
j=0

x1+j = 1 +
αβ

1− ρ
.

With this insight, let us understand the responses of Figure 14. Three state vari-

ables matter most. From Table 8, inflation basically follows its own AR(1), unaffected by

other variables, with a a persistence of 0.53, the same value as the postwar sample. The

value of debt is the most important state variable for long-run responses with an 0.91 co-

efficient on its own lag. However, this debt to GDP ratio does respond strongly (-0.61) to

surpluses, and to lagged growth (-1.1) as we would expect, so at medium runs it evolves

jointly with these other variables. The surplus has a strong coefficient on its lag, 0.65, so
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Figure 16: Response to inflation shocks, sample 1930-2018.

in part any shock to surpluses coincident with the inflation shock will persist. The sur-

plus also responds positively though with a small value 0.08 to the debt. This coefficient

does not account for much of the short run dynamics, as the movements of surplus and

debt are roughly the same size, but is the dominant force behind very long run surpluses

which repay debts. The surplus responds and negatively -0.75 to inflation. This key coef-

ficient is only -0.25 in the postwar sample. Interest rates also have a persistent response,

but they move so little in this estimate that they are not an important state variable.

So, what accounts for the long deficits in Figure 14? The surplus does not jump

down by a large amount with the shock, declining only 0.25, so the surplus’ autocor-

relation is not a big part of the story. The big decline in surplus follows from its -0.75

coefficient on inflation, and the inflation AR(1) response. If inflation this year forecasts

deficits next year, then a very simple fiscal theory story that inflation is accounted for by

deficits follows swiftly.

But deficits should raise the value of debt, and the rise in the value of debt, which

is very persistent, should pull deficits back to surplus, no? Here, another difference in



FISCAL INFLATION 27

Inflation 

0 2 4 6 8 10

0

0.5

1

Surplus s

0 2 4 6 8 10

-1

-0.5

0

Bond return rn

0 2 4 6 8 10

-0.2

-0.1

0

0.1

Real return r

0 2 4 6 8 10

-1

-0.5

0

Value v

0 2 4 6 8 10

-1

0

1

Growth g 

0 2 4 6 8 10

0

0.1

0.2

Figure 17: Inflation shock response quantiles, sample 1930-2018.

the full sample is key. In the full sample, the value of debt v jumps down by 1.10% when

inflation jumps up 1%, where in the postwar sample the value of debt jumps down half as

much, 0.65%. Now, a low value of debt does not put into motion additional surpluses. So,

the effect seen in the postwar sample of Figure 3, that deficits quickly give rise to higher

debt which then triggers surpluses, is absent here because so much debt was wiped out

by the inflation shock.

Contrasting Figures 15 and 3 help to explain the differing behavior of the discount

rate. In both cases, the behavior of nominal interest rates is disturbingly disconnected

from the behavior of inflation. In the postwar sample, nominal rates rise immediately

and very persistently. When inflation declines and passes by the higher nominal rates,

real rates are higher. In the full sample, nominal rates move much less, reflecting the zero

bound in the great depression and interest rate targets in WWII and the early postwar

period. The resulting real rate the inverse of the inflation AR(1), and mostly negative.

The massive deficits of 1943 and 1944 are key influential data points that account

for the shift in behavior of the full sample. Estimates from the 1940-2018 sample, not
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Figure 18: Surplus and inflation during WWII

shown, are similar. Figure 18 plots inflation and surplus during WWII. The WWII deficits

are immense. Inflation, more volatile in the pre-1947 period, was above its mean in the

years prior to these immense deficits. Thus, this inflation preceding deficits of 1943 and

1944 drives the result that inflation forecasts deficits in the full sample, and thus the result

that inflation shocks are accounted for by deficits. This is clearly not a robust result, or

one that should be taken as evidence that inflation today is due to deficits.

The strong negative correlation between shocks to inflation and to the value of

debt in the full sample comes from a different set of influential observations. The infla-

tion of 1943 and 1944 was largely expected, according to the VAR, and preceded rather

than coincided with increased debt. Instead, the sharp and unexpected (by the VAR)

postwar inflation of 1947 coincided with a sharp decline in the real value of debt, and

the sharp deflation of 1932 coincided with a sharp rise in the real value of debt. These

events are conventionally regarded as times in which deflation raised the value of debt,

in the first, and inflated it away, in the second. But again, one is loath to let these two

observations double our estimate of the correlation between shocks to inflation and the
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value of debt for the postwar period.

The inflation shock is already positively correlated with a growth shock in the full

sample, due to a strong positive correlation in the 1930s. As a result, the response to

the inflation + growth shock (not shown) is not much different from the response to the

inflation shock. Again, the 1% deflation and 2% cumulative inflation corresponds to 2.6%

cumulative rise in surpluses. This time a long-run decline in discount rate contributes to

deflation, but an equally large decline in growth contributes to inflation.

I Growth and inflation plots

This section plots growth and inflation, to document that responses to a shock that com-

bines 1% lower growth and 1% lower inflation is interesting. Figure 19 presents GDP

growth and CPI inflation.

Figure 19: CPI inflation and real GDP growth; percent changes from a year earlier.

Growth and inflation move in opposite directions during the 1970s stagflation

episodes. By contrast, inflation declined in 1982 along with the comparably sized re-

cession. This decline was permanent, not a u shape, but nonetheless coincident with the
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recession. Inflation moved a bit less than growth in the 2000 recession, but again moved

about one for one with growth in 2008. The late 1940s and early 1950s also show roughly

one for one positive comovement.
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Figure 20: VAR residuals to growth (consumption growth) and inflation (GDP deflator).
Annual data 1948-2018.

Figure 20 presents the growth and inflation VAR residuals. These are not as clear,

being annual data, consumption growth, GDP deflator, but tell roughly the same story.


