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ABSTRACT 

The paper develops a model in which targeting of the nominal interest 

rate is a reasonable guide for monetary policy. Expected real interest rates 

and output are exogenous with respect to monetary variables, and the central 

bank ends up influencing nominal interest rates by altering expected 

inflation, In this model the monetary authority can come arbitrarily close 

in each period to its (time-varying) target for the nominal interest rate, 

even while holding down the forecast variance of the price level. The latter 

objective pins down the extent of monetary accommodation to shifts in the 

demand for money and other shocks, and thereby makes determinate the levels 

of money and prices at each date. Empirical evidence for the tlnited States 

in the post-World War II period suggests that the model's predictions accord 

reasonably well with observed behavior for nominal interest rates, growth 

rates of the monetary base, and rates of inflation. Earlier periods, 

especially before World War I, provide an interesting contrast because 

interest-rate smoothing did not apply. The behavior of the monetary base and 

the price level at these times differed from the post-World War II experience 

in ways predicted by the theory. 

Robert J. Barro 
Harvard University 
Cambridge, MA 02138 



Central bankers, including those at the Federal Reserve, seem to talk 

mainly in terms of controlling or targeting interest rates. Given the 

pervasiveness of this outlook, it would probably be useful for economists to 

assign interest rates a major role in a positive theory of monetary policy. 

Nevertheless, many monetary theorists—especially those of an 'equilibrium' 

persuasion (and sometimes called 'monetarists")—have viewed monetary policy 

mainly in terms of the behavior of monetary aggregates. In this view the 

targeting of interest rates is either impossible or undesirable (see, for 

example, Friedman, 1968, and Brunner, 1968). One aspect of modern versions 

of this skepticism concerns price-level determinism under an interest-rate 

rule (see Sargent and Wallace, 1975, and McCallum, 1981). A major result 

here is that an interest-rate target requires some additional mechanism to 

pin down the levels of nominal variables. However, this observation does not 

distinguish an interest-rate rule from rules related to monetary growth or 

inflation, which may also be incomplete with respect to the levels of money 

and prices. In any event, since any of these rules can be extended to 

achieve price-level determinism, this criticism does not constitute a serious 

attack on the logic or desirability of this class of policies. 

Part of the difficulty in thinking of monetary policy in terms of 

interest rates concerns the familiar distinction between real and nominal 

rates. It may be that systematically and significantly influencing expected 

real interest rates—which is what many macroeconornists imagine when they 

view monetary policy in terms of interest rates—is beyond the power of 

monetary authorities over periods of interesting length. In fact, my 

assumption throughout this paper is that expected real interest rates are 

exogenous with respect to monetary policy. But even with this extreme 

assumption about real rates, the nominal interest rate is a perfectly fine 



nominal variable that the monetary authority ought to be able to control—at 

least if it does not try simultaneously to regulate some other nominal rate 

of change, such as the inflation rate, the growth rate of a monetary 

aggregate. or the rate of change of the exchange rate. Moreover, since 

interest rates can be observed rapidly and with great accuracy, they are good 

candidates for variables that the monetary authority could monitor and react 

to in a feedback manner. In this respect, feedback from nominal interest 

rates to monetary instruments seems more attractive than some alternative 

suggestions that involve the inflation rate or the growth rate of nominal 

GNP. 

In this paper I explore the behavior of monetary policy that is 

consistent with an objective of interest-rate smoothing. I argue that such 

an objective appears reasonable, and leads in a theoretical model to well- 

defined behavior for the monetary base and the price level. Furthermore, 

this behavior for money and prices provides testable hypotheses about these 

variables under a regime where the monetary authority targets nominal 

interest rates. The empirical results suggest that this regime is a good 

approximation to reality in the United States in the post-World War II 

period, and perhaps also in the interwar period. The sample before World War 

I reveals very different behavior for the nominal interest rate, and 

therefore provides an interesting contrast to the recent experience. 

Part I sets out the theoretical model. Part II considers optimal 

monetary policy within this model. Part III views this optimal policy as a 

positive theory to derive hypotheses about the behavior of the nominal 

interest rate, the growth rate of the monetary base, and the inflation rate. 

Part IV extends the analysis to incorporate seasonal elements. Then Part V 

relates the theory to empirical evidence for the United States since 1890. 



I. The Basic Theoretical yodel 

I use a simple stochastic model of money supply and demand, which builds 

on models of Goodfriend (1987), 4cCallum (1986), and Hetzel (1987). The 

private economy is described by two equations, the first pertaining to 

interest-rate determination, and the second to the real demand for money: 

(1) R = Etpt+I 
- 

Pt 
+ r + Vt 

(2) m- 

where the variables are 

nominal interest rate, 

log of price level, 

Etpt+i: expectation of next period's log of price level, based on 

information available at date t, 

m: log of quantity of money (measured empirically as the monetary 

base), 

r: permanent part of the expected real interest rate, 

Vt: temporary shock to the expected real interest rate, distributed 

independently as white noise, (mean 0, variance 

a: permanent part of level of real demand for money, 

t: temporary shock to real demand for money, distributed 

independently as white noise, (0, o), 

jJ > 0: coefficient of the nominal interest rate in the money-demand 

function. 

The permanent components of the expected real interest rate and money demand 

follow random walks, 



rt 
= ri 
= + at 

where w and at are distributed independently as white noise, (mean 0, 

variances and , respectively). If the expected real interest rate is 

stationary, then = 0. 

Equation (I) says that the expected real interest rate, rt 
+ v, is the 

sum of a random-walk and a white-noise component. The main restriction in 

this specification is that movements in the expected real rate are 

independent of monetary disturbances; that is, of shifts in the demand for 

money. at 
and or in the supply of nominal money. It is straightforward 

to allow for nonzero covariances between the shocks to the expected real 

interest rate and the shocks to money demand. However, it is more important 

that 'monetary policy' cannot affect the expected real interest rate in this 

model. 

The specification of money demand in equation (2) is similar in spirit. 

The shifts to money demand, at and 
include effects from changes in output 

(permanent and transitory, respectively). But these changes—and other 

shifts to the level of the money-demand function—are treated as independent 

of the behavior of the nominal money stock, However, monetary policy can 

influence the nominal interest rate, Rt, 
and thereby affect the quantity of 

real money demaded) The particular functional form, with the constant 

semi-elasticity -fi, is solely for analytical convenience. 

There are, of course, models in which monetary shocks can affect the 

expected real interest rate and output. In equilibrium-style frameworks 

(such as Lucas, 1972, 1973, and Barro, 1976, 1980), the real effects of money 

depend on incomplete information about monetary aggregates and price levels. 
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Since the gaps in information may be small and short lived, the quantitative 

significance of these effects has often been questioned on a priori grounds. 

Even when the information lags are important, the direction of effect of 

money on the real variables is ambiguous (Barro and King, 1984). In any case, 

the empirical evidence (Barro, 1981a) suggests that the impact of monetary 

shocks on expected real interest rates is small. 

Other models where money has real effects involve the influence of 

expected inflation on transaction costs and the quantity of real cash 

balances. However, these channels are usually viewed as quantitatively 

unimportant. Finally, money may influence the expected real interest rate 

and output in models with sticky prices, although convincing theoretical 

accounts of stickiness that matters for real allocations are still absent. 

Overall, I treat the expected real interest rate and output as exogenous 

with respect to money because I lack an alternative specification that I 

regard as theoretically or empirically superior. However, even if this 

assumption is wrong, it may still be satisfactory in the present context if 

money matters mostly for nominal variables—such as the price level and the 

nominal interest rate—and only secondarily for real variables. 

The monetary authority controls the quantity of nominal money (the 

monetary base), 
iii, 

in each period. Civen the assumed dichotomy between 

money and real variables, it is difficult to motivate a meaningful objective 

for the monetary authority. For example, any concern about output and 

expected real interest rates would not matter for the choice of monetary 

policy. I assume that the monetary authority cares about two things: first, 

the departure of the nominal interest rate, R, from a target value, R; and 

second, the spread between the price level, p, and people's prior 

expectation, Eip. In particular, I assume (as detailed below) that the 
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authority wants to hold down the magnitudes of the two gaps, Rt 
- and 

Pt 
- E61p . Fundamentally. these concerns must reflect some real 

consequences from the two types of gaps, which implies that monetary policy 

is not fully neutral. My basic assumption is that these non-neutralities are 

important enough to motivate an interest in monetary policy, but. not 

important enough to generate significant effects on the time pattern of 

expected real interest rates and outputs. In particular. the real effects 

can be neglected for the purpose of using equations (1) and (2) to determine 

the time path of the price level and the nominal interest rate. 

It turns out in this model that the monetary authority can keep the 

nominal interest rate, R, close to its target, k, in each period. 

Therefore, if were constant, the model would predict little variation in 

nominal interest rates. But it is well known that, especially in recent 

years, nominal interest rates move around a good deal and in a largely 

unpredictable manner. In fact, even for short-term rates, a random walk is a 

pretty good description of the recent data. In order to accord with this 

observation, the model incorporates a time-varying target for the nominal 

interest rate that follows a random walk, 

(4) = + 
ut, 

where u is an independent, white-noise process with moments, (0, u). 

The subsequent results would change little if equation (4) were modified 

to = p-1 + u, where p is close to but below unity. The interest-rate 

target would then have a long-run tendency to revert to a stationary mean. 

But this change would matter little for the high-frequency properties of the 

nominal interest rate, monetary growth, and inflation, which are the main 



concerns of this study. In addition, it would be straightforward to allow 

for nonzero covariances between u and the other disturbance terms. 

One motivation for equation (4) is that the nominal interest rate is the 

tax rate on money, and the government sets this tax rate as part of an 

overall problem of optimal public finance. The desire to smooth taxes 

intertemporally, as stressed in Barro (1979) and Mankiw (1987), tends also to 

motivate smoothness in individual components of the tax package, such as the 

tax rate on money. In this context smoothness means that the government 

avoids predictable movements up and down of the tax rates. Consequently, tax 

rates—here the target nominal interest rate, Lt_would 
follow a Martingale 

process, as implied by the random-walk model in equation (4). 

Many economists are understandably skeptical that this optimal-tax 

argument is a major element in the conduct of monetary policy in the United 

States or many other countries. However, for subsequent purposes, the only 

significant consideration is that policy involve an interest-rate target, , 
that shifts unpredictably over time. This behavior could likely be motivated 

by models of monetary policy that have nothing to do with fiscal concerns. 

Because of the lower bound of zero on the nominal interest rate, equation 

(4) cannot apply universally. However, a random walk may be a satisfactory 

approximation for a broad range of nominal interest rates, even if not for 

samples (such as that for the 1940s and early 1950s in the United States) 

where the rates get close to zero. 

I assume that the monetary authority and the private agents have 

symmetric information, with each observing m, Rt, and during period t. 

In contrast, observations on the price level arise with a lag (say 1 to 2 

months for accurate indices). I model this information lag by assuming that 



data on become available during period t. Therefore, the iag in 

obtaining data on the general price level essentially defines the length of 

the period in the model. This setup accords with the notion that interest 

rates are observable more rapidly (and with greater accuracy) than are price 

indices. Also, the approach embodies the idea that the lag in publishing 

figures on the money stock (say the monetary base) is short enough to 

neglect . 

A number of economists (such as Brunner, Cukierman, and Meitzer, 1980) 

stress that the monetary authority cannot readily distinguish permanent 

shifts to money demand from temporary shifts. I model this problem by 

assuming that information about the permanent shock arrives with a one-period 

lag; that is, is known at date t. More realistically, the o's would 

never be observed directly, and estimates of ai (formed at date t) would 
utilize the observed time series of real cash balances, mtt 

- 

- t-2' etc. The inclusion of in date t's information set is a 

tractable approximation to this specification. Similarly, I assume that 

people observe the permanent component of the expected real interest rate 

with a one-period lag; that is, rti is known at date t. 

Given this informational setup, the monetary authority's optimal choice 

of can be expressed as a function of the state of the economy at date t. 

Because the model is linear and the monetary authority's objective is assumed 

(below) to be quadratic, the optimal rule would be a linear function of the 

state of the economy. In particular, monetary growth can be written in the 

form 

(5) mt 
- mti = A0 

+ AlRt + 
+ 

A3R1 
+ + Asei + 

+ A7rti 



9 

The coefficients A will be determined by the policymaker's optimization 

problem. 

Many macroeconomic models can be thought of in terms of the sign of 

starting from = and for given k, if Rt rises do you print more money 

(A > 0) or less money (A1 K 0) to get R back down to target? The condition 

A1 > 0 (which central bankers know is right, and 
which in fact applies in 

this model) tends to arise in Keynesian models where monetary expansion has 

an inverse effect on the expected real interest rate. But, in the present 

model, the expected real interest rate is exogenous. Therefore, a positive 

response of nt-mt1 to an increase 
in R (A1 > 0) can work to reduce Rt in 

this model only if expected inflation, Ep+i-p, declines. This reduction 

in expected inflation tends to occur if expected future monetary growth, 

Etmt+imt, 
falls. In other words, an increase in must create a tendency 

for some of today's infusion of money to be taken back in the future; for 

example, in the next period. This effect follows from the term, A3Ri in 

equation (5), if A3 < 0. In fact, it is the negative value of 
A3, 

and not 

the value of 
A1, 

that matters for interest-rate targeting. The value of A1 

is irrelevant in this context because it turns out to affect equally the 

levels of money (and prices) for periods t and t+1. However, the choice of 

A1 
matters if the monetary authority cares not only about targeting nominal 

interest rates, but also—as I assume—about the predictability of the price 

level. This last consideration will pin down the desired response of today's 

money to today's interest rate, which then determines the value of 
A1, 

and 

thereby makes determinate the levels of money and prices at each date. For 

this reason, the problem of price-level indeterminism (as discussed in 

Sargent and Wallace, 1975; and McCallunm, 1981) will not arise here. 
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The linear model described by equations (1)- (5) can be solved (after a 

lot of algebra) in the usual way by the method of undetermined coefficients 

(see Lucas, 1973, Barro, 1976, McCallurn, 1983, 1986, and 6oodfriend. 1987). 

The main complication is that the expected price level, in equation 

(1), depends on the expectations, Ea and Etwt. That is, lacking full 

current information about this period's permanent shocks to money demand and 

the expected real interest rate_at and w_people 
form expectations 

conditioned on limited current information. This information is conveyed by 

observing today's nominal interest rate, R. and money stock, mt. (Recall 

that 
Pt 

iS not observable at date t.) 

In any event, the result from this exercise is an equilibrium 

solution for R, Pt and mt as linear functions of current shocks, 

(ar, w, v, ut), and lagged variables.Z The results involve the 

8 \-coefficients that characterize monetary policy in equation (5). 

II. onetary Policy 
Given the equilibrium solution described in Section I, the monetary 

authority chooses its policy coefficients, Ar,,.. 'r' to minimize the 

expression, 

(6) A.E(R 
- )2 + B.E(p - Eip)2 

where A and B are positive constants. The objective penalizes interest-rate 

gaps and price-level surprises in the typical future period, which is well 

defined because the two expectations of squared gaps in expression (6) end up 
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being the same for all dates t. (The results would not change if the 

objective involved an expected present value of the terms shown in 

equation (6).) 

Instead of examining the solution to the model for arbitrary choices of 

the A-coefficients, I begin with the optimizing conditions that are 

intuitive, and then use these restrictions to collapse the equilibrium 

solution to a manageable form. Recall that equation (5) is 

mt 
- m1 = + A1R + A2R + A3Ri ÷ A4Ri + Asti + A602 + A7r1 

The policymakers optimization implies the following conditions: 

1) + 
A2 

+ 
A3 

+ 
A4 

= 1—in the long run, a higher value of nominal 

interest rates and nominal-interest-rate targets must, for a given expected 

real rate, correspond one-to-one to a higher monetary growth rate (if not, 

the term, E(Rt 
- )2 is unbounded as t —> ). 

2) A7 
= -1—given the long-term behavior of nominal interest rates, an 

increase in the permanent component of the expected real rate implies a 

one- to one reduction of the inflation rate, and hence, of the monetary growth 

rate (again needed to keep E(Rt 
- 

bounded). 

3) A0 
= O—without sustained real growth, monetary growth corresponds in 

the long run to the inflation rate, and hence to the difference between the 

nominal and expected real interest rates; more generally, A0 equals the 

long-term growth rate of real money demanded (this condition keeps down 

E(Rt 
- with no implications for Pt 

- Eip). 
4) A5 -A6 

= 1—the first part, A5 
= 

-A6, is necessary to keep 

E(R 
- 
k)2 bounded as t —> the second part says that permanent shifts to 

money demand, at = - 
°t-2' 

are fully accommodated once they are 
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recognized as permanent. This response holds down E(p 
- Ef ipt) 

without 

affecting itt 

- 

Given conditions (l)—(4), the form for the monetary growth rate can be 

written as 

- -i = i(Rt - ) + 3(Rti Rti) 
+ Rtl + l + - 

+ ai - 

The next optimizing condition is 

5) + = -fl---a (permanent) shift in the target, u = - (and 

hence, in actual nominal interest rates, which are being targeted), depresses 

real money demanded by the amount -. The reduction in monetary growth by 

this amount avoids a price level response and, therefore, holds down 

E(pt 
- Eip) (without affecting R, - Re). 

Given conditions (1)—(5), the monetary growth rate is given by 

(7) m - mt-i = t(Rt - + 3(Ri - t-1 + -i - t ÷ a1 - 

This form highlights the role of the coefficients A1 and which describe 

monetary reactions to current and lagged interest-rate gaps. Corresponding 

to equation (7), the models equilibrium solution can be used to derive the 

following results: 

- (t÷at÷\t÷wt) 
(8) R - = 

(1-A3+) 



13 

— (Pt÷at)(1-Ai_A3) (vt+w)(Ai÷3) 
(9) t - Etipt - - (l-A3+) 

+ 
(1-A3+) 

Since the economy cannot distinguish in the current period between temporary 

and permanent shocks, the two money-demand disturbances enter as the sum, 

+ at, and the two real-interest-rate disturbances enter as the sum, + w. 
In the absence of a monetary response, a positive shock to money demand, 

+ at, lowers Pt 
- Et1P. To the extent that the economy views the shock 

as temporary, Ep+j 
- 

Pt rises (that is, the temporary disturbance would not 

affect Etp+i), so that Rt 
- increases. The reaction, A, of n 

- 
m11 to 

Rt 
- offsets the tendency of - Eip to fall in equation (9). If 

A3 
< 0, the negative reaction of m+i 

- 
mt lowers Ep+i 

- 
Pt and thereby 

reduces 
Rt 

in equation (8). 

A positive shock to the expected real interest rate, v + w, raises 
- k. directly in equation (8). The reaction of monetary growth, A1, and 

the reduction in money demand, , lead to increases in Pt 
- Etipt in 

equation (9). To the extent that 
mt+i 

- m declines (with A3 < 0), the 

response of R - to 
vt 

+ w gets smaller in equation (8). 

Define the overall variance of money-demand and real-interest-rate 

shocks as 

(10) 

The results in equations (8) and (9) imply that the terms appearing in the 

policymaker's objective in equation (6) are given by 
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(11) E(R 2 = 
( -A3+ 

)2 (r2+r2)(+Th2 
(12) 

- E1p)2 = + 

Note that 
E(Rt 

- in equation (10) is independent of . (The 

contemporaneous reaction, A, of money to the interest rate affects the 

levels of money and prices, but not the rates of change that matter for the 

nominal interest rate) Hence, ) can be chosen to minimize E(p - Et1pt)2 
for a given value of In particular, the solution for as a function of 

does not depend on the weights, A and B, in expression (6). The resulting 

condition is 

- 2÷2) 
(13) 

17) 
V 

Oiven this choice for as a function of A, E(pt 
- Etp)2 in equation 

(12) becomes 

(22) (2+2) 2 ia vw 
(14) E(p 

- Eip) = 
2 

which is independent of 
A3. 

As long as the current and prospective reactions 

of money to interest-rate gaps, A and A3, maintain the correct relationship 
—dictated by equation (13)—the overall level of the reaction does not 

matter for the determination of p. Therefore, A3 
can now be chosen 
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(independently of the weights A and B in expression (6)) to minimize 

E(R 
- It follows immediately from equation (11) that the best choice 

is Equation (13) then implies A — , but the ratio, A1/A3, remains 

finite and is given by 

- A1 (+o) 
(lo) x=- q2 

—that is, as the ratio of money-demand variance to the sum of money-demand 

and expected-real-interest-rate variance. Hence 0 
1A1/A31 � 1—the current 

reaction of money to the nominal interest rate is smaller in magnitude and 

opposite in sign to the prospective reaction. However, in the limit, each 

reaction become infinite in order to keep the nominal interest rate, R, 

arbitrarily close to its target, , in each period. 

Using the form of the monetary rule from equation (7) and the optimal 

choices for 
A1 

and 
A3, 

the equilibrium solutions for R, t' and mt turn out 

to be 

(16) Rt 
= = ÷ 

ut 

(17) Pt 
= 

mt1 
- []( + 

at) + + wt) + (1 + 

- + v1) - - ri 
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r +r 

(18) mt 
= mti + _!L_. (p + at + v + w) 

- + 

- (p + v1) - 

Equation (18) shows that monetary growth partially accommodates the 

current shocks to money demand and the expected real interest rate, 

that is, the coefficient is ( + 2)/2 (where 2 is the total 
variance). The result says that contemporaneous monetary accommodation is 

greater the larger the variance of money demand ( + relative to that of 

the expected real interest rate ( + c). Interpreting + as the 

variance of the L( curve and + as the variance of the IS curve, the 

results are reminiscent of those found by Poole (1970). However, in the 

present model, the tradeoff is not between targeting nominal interest rates 

and targeting monetary aggregates. The targeting of the nominal interest 

rate is complete here independently of the variances of money demand and the 

expected interest rate (that is, of the relative volatility of the LM and IS 

curves). In the present model, the tradeoff that determines the extent of 

current accommodation comes, in equation (17), from the negative response of 

Pt 
to the money-demand shock, i + a and the positive response to the 

real-interest-rate shock, v + w. (The former reflects the negative effect 

on prices from an increase in money demand less the positive effect from the 

monetary response. The latter reflects only the monetary reaction.) The 

extent of monetary accommodation is the one that makes the overall variance 

of 
Pt 

from these two sources of disturbances as small as possible. 

With a one-period lag, monetary growth exhibits an inverse, one-to-one 

reaction to the temporary shocks + v1 in equation (18)). This 

response generates the reduction in expected inflation that allows the 
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monetary authority to offset au incipient excess of over In 

particular, although the temporary shock, + v, induces an increase iii 

today's monetary growth, it also generates a reversal pattern where next 

period's monetary growth falls by more than todays increase. 

A permanent shock to money demand, at 
= - is accommodated 

partially (since it cannot be disentangled from a temporary shock), but there 

is no adjustment of monetary growth at date t + 1 when the value of at is 

revealed. Hence the reversal pattern for monetary growth does not arise for 

permanent shifts to money demand. (If at 
were observable at date t, money 

growth would react one-to-one immediately, and subsequent growth rates of 

money would be unchanged.) 

Finally, a shock to the interest-rate target, ut 
= - Rti_hich1 I 

assume is observable at date t—affects monetary growth by the amount -/3, and 

thereby leaves p unchanged. (If any of the other disturbances—17, at, Vt, 

w_were observable, the policymaker could similarly insulate the price level 

from these shocks.) 

One of the prime sources of shifts to money demand, + 
at, 

would be 

movements in output. The results in equations (17) and (18) imply (for a 

given expected real interest rate) that these exogenous shifts in output 

would be contemporaneously negatively correlated with the price level and 

contemporaneously positively correlated with the money supply. Thus the 

results are consistent with Fair's (1979) findings about the relation between 

shocks to output and prices for the United States in the post-World War II 

period. Also, the results accord with many analyses that report a positive 

correlation between money and output, although the relation in this model 

reflects only the endogenous response of the money supply (which has been 
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stressed by King and Plosser, 1984). On the other hand, lagged output (that 

is, t-1) would be negatively correlated 
with current money (and prices). 

This result means that monetary growth would exhibit a countercyclical 

reaction to lagged output. This type of relation has been found for Ml 

growth in the post-World War II United States in Barro (1981b). 

III. Ip1ications of the Theory for onetary-Base Growth and Inflation 

Let 
ARt 

= -- = (the growth rate of the monetary base), 

and = (the inflation rate). Equation (16) implies thatAR is 

white noise. (If L were not a random walk, but instead had a mean-reverting 

tendency in the long run, then the process for R would change accordingly.) 
Equations (17) and (18) prescribe the patterns for Ap and that are 

consistent with this process for These predictions about inflation and 

monetary-base growth are the principal empirical content of the theory. 

Taking first differences of equation (18) leads to 

(19) = Amti + []( + at + Vt + wt) 
- 

flut 
- []ati 

- 

[i 
+ 

](ti+vti÷wti) 
+ (1 + fl)uti + (t2 + v2) 

= + = Amti + e + aiei + 

where Et is a composite error term and et is a white-noise disturbance. In 

other words, the model implies that Am is an ARIMA (0,1,2) process. 

Furthermore, the theory imposes restrictions on the coefficients of this 
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process. The unitary coefficient on reflects the nonstationarity in 

monetary growth that is induced by the nonstationarity of the 

nominal-interest-rate target in equation (4) (and also by any nonstationarity 

of the expected real interest rate in equation (3)). 

The two MA coefficients must satisfy the conditions, 

2 22 2 22 
(20) a1(l 

+ a2)r = CUY(E, Et) = 
- [] r - [ + ] (r + 

22 22 
- [] [ + - (1 + fl) <0 

2 (2+2)(22) 
(21) a2re 

= 
COV(E, E2) = 

'7 

q2 

'7 � 0 

where is the variance of e. Hence, a1 � 0 and a2 � 0. Moreover, the 

magnitude of 
a1 

is much greater than that of a2—one inequality that holds is 

Ia1F � 4a2/(l+a2), or equivalently, a2 � a11/(4 
- 

1a1[). As and 

become small, the solution approaches stationarity for and 
rt, 

and hence 

for monetary growth and inflation. In particular, as and o approach 
zero, the solution tends toward 

a1+a2 
= -1. 

The equation for the inflation rate comes from first differencing of 

equation (17). After substituting for mt on the right side (using 
equation (18)) and simplifying, the results are 
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22 22 
(22) = {]ot + a) + + w) 

+ 
+ [j ot- i + a 

22 u 
- 

[t 
+ ](vi + wi) + Utl + 

= + F = + t + bif i 
+ b2f2 

where Ft is a composite error term and is a white-noise disturbance (which 

is not generally independent of et). 
As before, Apt 

is an ARIMA (0,1,2) 

process; the unitary coefficient on Aptl again reflects mainly the 

nonstationarity of the nominal-interest-rate target. The two MA coefficients 

satisfy 

2 22 
2 2 2 

(23) b1(l+b2)f 
= 

COV(Ft, Fri) 
= + 

+ a]( + 92) 
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22 +0 
(24) b2 = COY(F, Ff2) 

= � 

where is the variance of Hence, b1 
0 and b2 0. The magnitude of 

b1 tends to be much greater than that of 
b2, 

with 
1b11 

? 4b2/(1 
+ b2) 

applying. Again, o = = 0 implies b1÷b2 
= -1. 

The precise forms of the time-series processes for and depend on 

the distributional specifications for the underlying stochastic shocks. 

Furthermore, the results are sensitive to discrepanies between the period in 

the theory and that in a data set. However, the general nature of the 

results should be robust to these problems. Namely, first, monetary growth 

and inflation have a unit root if there is a unit root in the nominal 

interest rate; second, monetary growth and inflation each have a reversal 

pattern, which shows up with a short lag as a negative and substantial 

moving-average term; and third, a weaker but positive moving-average term 

appears at a longer lag. 

One other result involves a comparison of the variance of R 
given from equation (16) as o—with the one-period variances of monetary 

growth and inflation. Inspection of equation (22) shows that the variance of 

- -l involves o plus other positive terms —therefore, this variance 
(VAR(Ft)) 

exceeds that of 
Rt 

- Ri. Similarly, equation (19) implies that 

the variance of - 
(VAR(Et)) 

exceeds o. Hence the model predicts 

that inflation and monetary growth are each more volatile than the nominal 

interest rate. This result seems to conflict with the common view that 

inflation moves relatively little in the short run. However, the prediction 

turns out to accord with the data. 
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IV. Seasonals 

So far, the model contains no systematic seasonals. but these are known 

to be important for money in the post-World War II period, and for nominal 

interest rates before the founding of the Federal Reserve (see, for example, 

Kemmerer, 1910, Ch. 2; Macaulay, 1938, Chart 20; Shilier, 1980, pp. 136- 137: 

Clark, 1986; Miron, 1986; and Mankiw, Miron and Weil, 1986). I consider 

briefly here the implications of systematic seasonals in money demand and in 

the real interest rate. For simplicity, I now neglect the various stochastic 

terms considered before. Given the linearity of the model, the new effects 

would be additive to those from the stochastic terms. 

The model with deterministic seasonals and no stochastic shocks is 

(25) Rt 
= r + - + 

(26) ni 
- = a - flltt + 

(27) 
- = + 

where 
Tt, S, and are seasonal factors, and Ep+i 

= applies in this 

deterministic model. Suppose, as has been argued is true of the Federal 

Reserve, that the monetary authority sets to offset the effects of Tt and 

St on the noninal 
interest rate. Then, with R = PL, equation (25) implies 

- 

Pt 
= - r - Tt 
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Using R = , equation (26) implies 

mt 
- mtt = Pt 

- + S - S1 

Substituting into this last relation for 
pr,- 

from above (with a 

one-period lag) and for mt-mti from equation (27) yields (after setting 

p = -r) 

= _Tt-l + St - Stl 
This seasonal pattern for monetary growth eliminates the seasonal in the 

nominal interest rate—that is, achieves Rt 
= L 

The implied relations for monetary growth and inflation are 

(28) 
= p - Ti + S - S1 

(29) = p - Tti 

Note that, if the seasonal applied to money demand (St), but not to the real 

interest rate 
(Tt), 

then the seasonal in monetary growth would eliminate the 

seasonal in inflation along with that in the nominal interest rate. But, if 

there is a seasonal in the real interest rate, then a seasonal in inflation 

remains. 

Since the seasonals in money demand and the real interest rate were 

assumed to be deterministic and understood by the monetary authority, the 

seasonal in the nominal interest rate could be eliminated by introducing a 

deterministic seasonal into monetary growth. More generally, the seasonals 
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in money demand and the real interest rate could evolve stochastically, and 

also be unknown to the monetary authority. But, even in this case, the 

policymaker could remove the seasonal in the nominal interest rate by 

pursuing the type of feedback reaction to the nominal interest rate that was 

considered before. Hence, if the elimination of seasonals in nominal 

interest rates is deemed to be desirable (on public-finance grounds?), then 

the possibility of removing them in this way strengthens the case for 

interest-rate targeting. 

V. Epirical Findings 

The empirical results involve seasonally unadjusted data since 1890 on 

nominal interest rates (4- to 6-month prime commercial paper9), the monetary 

base (unadjusted for changes in reserve requirements), the consumer price 

index (CPI-IJ, available since 1913, except that the index without the shelter 

component was used since 1970), and the producer price index (PPI, all 

commodities). All variables are monthly but observed at the quarterly 

intervals of January, April, July, and October. The identification of the 

period in the theory with quarters is, of course, somewhat arbitrary. 

(Recall that the period in the theory relates especially to the flow of 

information about the price level.) 

The underlying data are monthly averages of daily figures for interest 

rates and the monetary base (except that before August 1917 the figures on 

the monetary base are at the end of each month). The price indices are an 

average of observations during each month, although for the CPI some of the 

components are sampled less frequently than once per month. The 3-month 

spacing between each observation should minimize the problems related to 



25 

time-averaged data. That is, the formulation approximates point-in-time data 

observed once per quarter. 

Figures 1-4 depict the four time series under study.10 
All variables are 

measured at annual rates. Figure 1 shows the nominal interest rate at a 

quarterly interval from 1860 to 1987. The interest rate displays more high 

frequency movement before 1914 (when the Fed was established) 
than 

afterwards. As noted by Macaulay (1938, Chart 20), Shiller (1980, pp. 

136-137), Miron (1986), Clark (1986), and Mankiw, Miron, and Well (1986), 

among others, this pattern turns out to reflect seasonals 
and other temporary 

movements in the nominal interest rate that were much more important during 

the earlier period than later on. In addition, the nominal interest rate 

appears to be stationary in the earlier sample and non-stationary in the 

later one. Note also that the graph shows the extremely low nominal interest 

rates from the mid 1930s to the early 1950s, which includes the period of 

explicitly pegged Treasury Bill rates from April 1942 to mid 1947 (and 
with a 

moving peg from then to the Fed-Treasury Accord of March 1951 and its 

confirmation by the Fed in March 195311). However, it is unclear from the 

graph whether this pegging involves a special policy 
or was instead just the 

consequence of the nominal interest rate coming close to its lower bound of 

zero. Probably it is no accident that the period of precise pegging 

coincides with the time of lowest nominal interest rates. 

Figure 2 shows the growth rate of the monetary base at 
a quarterly 

interval from 1879 to 1987. The growth rate for each quarter is expressed 
at 

an annual rate. For the entire sample period, the plot indicates a great 

deal of high frequency variation, which turns out to reflect seasonals and 

other temporary fluctuations. Unlike for the nominal interest rate, it is 
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less clear visually what sort of break in the monetary process night have 

occurred around 1914. 

Figure 3 shows the annualized growth rate of the consumer price index at 

a quarterly interval from 1913 to 1987. Similarly, Figure 4 indicates the 

growth rate of the producer price index at a quarterly interval from 1860 to 

1987. The decreasing volatility of each series over time probably reflects, 

at least in part, the increasing coverage of goods. 

Table 1 contains regression results for the recent period, 1954.1 to 

1987.4. Starting in 1954 avoids the extremely low nominal interest rates 

through the early 1950s, for which the lower bound of zero would be 

significant (so that nominal interest rates could not be approximated as a 

random walk). Also, this sample excludes any effects on measured price 

indices from the controls during World War II and the Korean War. 

The basic format of the empirical results consists of estimated equations 

for an ARMA representation with systematic seasonals, 

(30) Y = 1S1 + q2S26 + 3S3 + 4S4 + 

+ e + ciet 1 
+ 

2 
+ c3et + 

c4e6 

where e is a white-noise error and Y represents R, or 
A(PPI)t. 

(It is the commercial paper rate, AM is the growth rate of the monetary base, 

LP is the growth rate of the CPI, and A(PPI) is the growth rate of the 

producer price index.12) The variable S1 is a seasonal dummy for the first 

quarter (1 for January, 0 otherwise), and similarly for 52t (for April), S3 

(for July), and S4 (for October). For R as the dependent variable, the 



hypothesis under a regime of interest-rate smoothing is q1 
= 
q2 

= 
q3 

= q = 0 
(or possibly a constant), p = 1, 

c1 
= 

c2 
= 

c3 
= 

c4 
= 0. For and 

the model under interest- rate smoothing suggests nonzero values for 

q1, q2. q3, 
and 

q4. p 
= 1, c1 < 0, and c2 0. with c1 much greater than c2 

and 
c1 

+ c2 -1. S{ore generally, the theory suggests that the 

moving-average coefficients will be negative and of substantial magnitude 

over the near term (such as c1, and positive but of much smaller size later 

Aside from the estimated coefficients and (asymptotic) standard errors, 

the table reports the following statistics: 

Q(10i: Box-Pierce Qstatistic for serial correlation of residuals 

with 10 lags, with degrees of freedom and asymptotic significance level 

(based on the distribution) shown in parentheses. 

Seasortals: likelihood-ratio statistic (equal to -2.log of 

likelihood ratio) for the equation with seasonals against the null 

hypothesis of the same equation except for no seasonality (q1 
= q9 = 

q3 
= 

q4), with the asymptotic significance level (based on the 

distribution with 3 degrees of freedom) shown in parentheses. 

The random-walk model, Rt 
= + constant (where the constant could be 

set to zero here), is satisfactory for the nominal interest rate in the 

post-1954 period. Notably, Q(10) from line 1 of Table 1 has a significance 

level of .18, while the likelihood-ratio statistic for seasonals has a 

significance level of .6713 The unrestricted estimate of is .934, 

s.e. = .030. The implied "t—value" relative to unity is 2.2, which is below 

the .10 critical value of 2.6 from the Dickey- Fuller test (Fuller, 1976, 

Table 8.5.2, the section for 
ri). 

Given the random-walk-like behavior of the 



nominal interest rate, the theory's other predictions should apply to 

monetary-base growth and inflation. 

The estimated equation in the ARIMA (0, 1, 2) form for the growth rate of 

the monetary base appears in line 4 of the table. The equation exhibits 

strong seasonality, with a likelihood-ratio statistic of 109. The 

q-statistic for serial correlation of residuals is 9.2, which is significant 

at only the .33 level. The estimated MA(l) coefficient is highly 

significant, 
- .79, s.c. = .09, and conforms in sign and rough magnitude with 

the model's predictions. Corresponding to an MA(1) value of 
- .79, the model 

implies 0 MA(2) .25. The estimated MA(2) coefficient on line 4 is 
- .07, 

s.e. = .09, which is insignificantly below zero, but significantly less 

than 25. 

Line 6 of the table shows that the inclusion of more moving-average terms 

leads to an estimated MA(4) coefficient of .15, s.e. = .09. Thus, the 

results accord with the prediction that the moving-average terms will be 

negative and large in magnitude over the near term (lag 1), and positive hut 

small in size later on (in this case at lag 4, but not at lags 2 or 3). 

Lines 5 and 7 show that freely estimated coefficients of tin1 (.990, 
se. = 

.098, and .952, s.c. = .114, respectively) differ insignificantly from one 

according to the Dickey-Fuller test.14 

The ARIMA (0, 1, 2) form for the CPI inflation rate appears on line 9 of 

Table 1. The seasonals are again significant, although less dramatically 

than for the monetary base. The Q-statistic is now significant at the .07 

level. The estimated (A(1) coefficient, 
- .66, s.c. = .09, again accords with 

the theory. Corresponding to MA(l) = - .66, the theory predicts 

0 < MA(2) < .20, which is consistent with the estimated value for MA(2) of 
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.09, se. = .09. The inclusion of more moving-average terms on line 11 leads 

to MA(3) = .26, s.e. = .09. Finally, lines 10 and 12 show that freely 

estimated coefficients for 
Aptl are insignificantly different from one 

(.944, s.e. = .074, and .870, s.e. = .088, respectively). 

The underlying theory regarded the nominal interest rate as controllable 

by the monetary authority, but treated the expected real interest rate as 

exogenous with respect to monetary variables. Hence monetary policy affected 

the nominal interest rate only by influencing the expected rate of inflation. 

Many economists are skeptical about this model because they think of nominal 

interest rates as highly flexible and of actual and expected inflation rates 

as sticky in the short run. The results in Table 1 conflict with this view 

in that the residual standard deviation for quarterly CPI inflation—2,47. per 

year on line 9—is about double that of the nominal interest rate—l.27. per 

year on line 1. Similarly, as the theory predicts, the residual standard 

deviation for monetary base growth—3.37. per year on line 4—exceeds that for 

the nominal interest rate.15 

Table 2 shows comparable results for the interwar period, 1922.1- 1940.4. 

There is now some indication of predictable movements in the nominal interest 

rate. For example, in line 2 of the table, the estimated MA(l) coefficient 

is .24, s.e. = .12, and the likelihood-ratio statistic for the seasonals has 

a significance level of .04. However, the seasonal coefficients are small in 

magnitude. The unrestricted estimate of on line 3—.949, s.e. = .029— 

again differs insignificantly from one. Overall, these results for the 

interest rate turn out to be a middle ground between those shown in Table 1 

for the post-1954 period and those examined below for the pre-1914 period, 

which reveal substantial predictable movements in the nominal interest rate. 
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The ARIMA (0, 1, 2) process for monetary-base growth, shown on line 5 of 

Table 2, again exhibits pronounced seasonality, although the pattern differs 

from that for the post-1954 period. The MA(1) coefficient is substantially 

negative (- .66, s.e. = .12), but the new element is the significantly 

negative MA(2) value (- .28, s.e. = .12). Even with the inclusion of more 

moving-average terms (line 7), the results do not reveal the eventually 

positive terms predicted by the theory. However, the coefficients of mt1 
(lines 6 and 8) still differ insignificantly from one. 

For CPl inflation, the ARIMA (0,1,2) process on line 10 looks similar to 

that estimated for the post-1954 period. There is, however, no appearance of 

positive MA coefficients at longer lags (line 12). The estimated 

coefficients for _i (lines 11 and 13) still differ insignificantly from 
one 

Table 3 shows results for the period 1890.1- 1913.4, which applies to the 

gold standard and precedes the founding of the Federal Reserve. For this 

period the nominal interest rate may be stationary and a coefficient of zero 

for R1 is satisfactory (lines 2 and 3 of the table). However, the 

estimated coefficient of Rtl on line 3—16, s.e. 
= .37—also differs 

insignificantly from one according to the .10 critical value of the 

Dickey-Fuller test. There is now substantial short-run predictability of 

movements in the nominal interest rate; in line 2 the likelihood-ratio 

statistic for seasonality has a significance level of .001. In addition, the 

first three MA coefficients are positive and significant (.49, s.e. = .11; 

.22, s.e. = .11; and .26, s.e. = .11). 

Given the absence of interest-rate smoothing, the behavior of the 

monetary base and the price level before 1914 should differ from that found 
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in the later periods. The results suggest that the growth rate of the 

monetary base before 1914 (which coincides in this period with currency in 

circulation) is stationary, and a coefficient of zero for is 

satisfactory (lines 5 and 6 of Table 3). (The estimated coefficient of mt1 
is - .21, s.e. = .36, which differs six'ificantly from I at about the .01 

level according to the Dickey-Fuller test.) There are significant seasonals 

in nonetary- base growth, as shown on line 5 by the significance level of .000 

for the likelihood-ratio statistic.'6 However, this seasonal in the nonetary 

base did not eliminate the seasonal in the nominal interest rate. In fact. 

since the United States was on the gold standard, the behavior of the 

monetary base (and the U.S. price level) would have been largely constrained 

to be consistent with the world price level, including its seasonal pattern 

if it had one. Therefore, it would not generally be possible under this type 

of monetary system to choose a seasonal in the monetary base that removed the 

seasonal in the nominal interest rate. 

Aside from the seasonals, the results for the growth rate of the monetary 

base on line 5 indicate a positive (A(l) coefficient, .28, s.e. = .11. The 

simple specification that monetary-base growth is an !i(A(1) with seasonais 

appears satisfactory according to the Q- statistic. 

Viewed jointly, the results for the nominal interest rate and the 

monetary base in Tables 1-3 are consistent with the viewpoint (expressed 

recently by Maukiw, Miron, and Weil, 1986) that shifts in monetary policy 

after the founding of the Federal Reserve in 1914 were responsible for the 

elimination of predictable temporary movements, including seasonals, in the 

nominal interest rate. The present analysis identifies these shifts in 

monetary policy with specific changes in the process for monetary-base 
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growth. Namely, the growth rate became non-stationary, a substantially 

negative MA(l) coefficient appeared, and the seasonal patterns changed. 

Moreover, the results for the interwar period suggest that the Federal 

Reserve did not get the monetary process right immediately. Only in the 

post-1954 period does all the short-term predictability of nominal interest 

rate movements seem to disappear. On the other hand, the results are 

consistent with the idea that the elimination of a serious gold standard— 

also occurring in 1914—was responsible for the changed behavior of nominal 

interest rates. The elimination of the gold standard may have been a 

prerequisite for the implementation of a monetary policy that successfully 

targeted nominal interest rates. 

Results for the PPI inflation rate from 1890 to 1913 appear on lines 7 

and 8 of Table 3. This inflation rate exhibits significant seasonality and 

appears to be stationary (the estimated coefficient of 5p1 on line 8 of 
Table 3 is .23, s.e. = .10, which is significantly below 1). The estimatcd 

MA coefficients are insignificant, except for a negative MA(4) (- .35, s.c. = 

.11), which might reflect stochastic variation in seasonals. The CPI is 

unavailable for this period, except for rough estimates on an annual basis. 

(For the later samples, the time-series parameters estimated for PPI 

inflation accord in a rough way with those for CPI inflation.) 

Concluding Observations 

Theoretical reasoning suggests that interest-rate targeting is a 

reasonable guide for monetary policy. In a model where expected real 

interest rates and output are exogenous with respect to monetary variables, 

the central bank influences nominal interest rates by altering expected rates 



of inflation. It turns out that the monetary authority can come arbitrarily 

close to meeting its (time-varying) target for the nominal interest rate. 

even while holding down the forecast variance of the price level. The latter 

objective pins down the extent of accommodation of the money supply to 

shifts in the demand for money. The greater the variance of shocks to money 

demand (i.e., of the LI curve) relative to that of the expected real interest 

rate (i.e., the IS curve), the greater the degree of accommodation. 

Incipient increases in the nominal interest rate (caused by shocks to 

money demand or the expected real interest rate) lead in the usual way to 

monetary expansion—e.g.. to open-market purchases of bonds. This response 

lowers expected inflation because the influx of money is temporary. That is, 

the central hank plans to take back later some of today's infusion of money, 

and people's expectations of this behavior lowers anticipated growth rates of 

money and prices Therefore, the nominal interest rate falls back toward its 

target value even though the expected real interest rate does not change. 

If the target nominal interest rate moves as a random walk, the 

successful targeting by the central bank implies that the nominal interest 

rate also follows this pattern. Given this policy of interest-rate 

targeting—and the assumed specification for money demand and the expected 

real interest rate—the growth rate of the monetary base and the price level 

must follow ARIMA (0,1,2) processes. The unit roots in these processes 

reflect mainly the non- stationarity of the nominal interest rate. The 

moving-average terms correspond to the responses to temporary shocks—in 

particular, the tendency for infusions of money (in response to incipient 

rises in the nominal interest rate) to be followed by removal of money in the 

future. 



Empirical evidence for the United States since 1890 accords in the main 

with the theoretical propositions. In particular, the results indicate that 

shifts in monetary policy after the founding of the Fed in 1914 led to the 

elimination of predictable temporary movements, including seasonals, in the 

nominal interest rate (on short-term commercial paper). The results identify 

the changes in monetary policy with specific changes in the process for 

monetary-base growth. Namely, the growth rate became non-stationary, a 

substantially negative moving-average term appeared (indicating the tendency 

for reversals In monetary growth), and the seasonal patterns changed. The 

results suggest that it was not until the post-1954 period that the Fed 

smoothed the nominal interest rate in the sense of achieving nearly 

random-walk like behavior in this rate. 

One interesting topic for future research involves applying the model to 

other countries. At a theoretical level this extension raises questions 

about the interplay between the exchange-rate regime and the possibilities 

for independent interest-rate targeting by individual central banks. One 

issue is why the elimination of predictable short-run movements in nominal 

interest rates appeared to occur simultaneously around World War I in several 

industrialized countries (see Clark, 1986, and Mankiw, Miron and Weil, 1986). 

The founding of the Fed and the elimination of the classical gold standard 
are possible explanations that are worth exploring. 

The empirical work for the United States (or other countries) can be 

usefully extended to consider in more detail the joint determination of the 

nominal interest rate, monetary base, and the price level. Such a joint 

treatment would allow testing of the model's detailed predictions about the 

cross-relations among the time-series processes. However, these predictions 
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tend to be sensitive to parts of the specification—such as the independence 

of the underlying shocks—that here not crucial for the results obtained thus 

far. Thus, it will probably be necessary to make the model less restrictive 

in this respect. 'With these extensions, it would be possible to estimate 

parameters, such as the interest-sensitivity of money demand, and the 

relative variances of the different disturbances. 
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Footnotes 

*This research is supported by the National Science Foundation. I have 

benefited from comments by 4arvin Goodfriend, Bob King, Greg 4ankiw. Allan 

Meltzer, Ben McCallum, and Bill Schwert. 

1Since 
rn 

refers to the monetary base, the money-demand shocks could reflect 

shifts in reserve requirements or in other financial regulations. In this 

broader sense, monetary policy can alter the quantity of real money demanded 

at a given nominal interest rate. But these kinds of policies are not 

considered here. 

2Lucas (1984) views the tax rate on money as a determinant of the relative 

cost of cash and credit goods. Therefore, if the tax rate on final output 

is set optimally, it is unclear that the tax rate on money should be 

positive—that is, that money-using goods should be taxed more heavily than 

credit- (or barter-) using goods. (For a similar argument, see Kimbrough, 

1986.) However, a positive tax rate on money does allow the government to 

tax some black-market activities where final product is not taxed. Also, if 

the main existing taxes are on some of the factor inputs, especially labor, 

then it may be desirable to tax other inputs, such as monetary services. 

3Given that Pt is not observed 
at date t, it is possible that Pt should 

be 

replaced by Ep in equation (1). However, in a setting such as Barro 

(1976), equation (1) can arise as the aggregation over local markets, each of 

which observes the current local price, p(z). 



41t would be possible to assume that the monetary authority knows but the 

private sector does not. However, in the present model, the equilibrium 

value for would reveal anyway. 

5Because is observable at date t, the lagged price level, turns 

out not to enter in equation (5). 

6Shiller (1980, p. 130) recognizes this possibility but regards it as 

implausible: "he usually think that increasing high-powered money is, if 

anything, a signal of higher inflation. It would seem implausible, then, 

that these lower interest rates are due to lower inflationary expectations. 

It is conceivable that exogenous increases in the money stock might be a sign 

of lower inflation over a certain time horizon if the parameters of our model 

were just right." In the present model the parameters turn out to "just 

right" as a consequence of the monetary authority's optimizing behavior. 

use McCallum's (1983, 1986) procedure for selecting the unique bubble-free 

solution. 

8The choice A3 
-+ m seems also to work. However, A3 � (1+) can be ruled out 

on grounds discussed by McCallum (1986, p. 140, n.7). In particular, if 

A3 � (1÷fl), then the realization of a shock—say 17__causes an unstable 
dynamic response of the price level. 

9Results for the nominal interest rate are similar with the 3-month time loan 

rate used by Mankiw, Miron and Weil (1986). 
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10 
The nominal interest rate applies to 4- to 6-month commercial paper 

(6-month paper in recent years). as reported since 1890 in IJ.S. Board of 

Governors of the Federal Reserve System, Banking and Jionetary StaJistics; 

Banking and lonetary Statistics, 1941-1970: 1nnual Stalisttcal Digest. 

1970-1979 and later issues; and the Federal Reserve Bulletin. Earlier data, 

from 4acaulay (1938. Appendix Table 10), refer to 60-90 day commercial paper. 

(These were adjusted upward by .014 to merge with the other series in 1890.) 

The monetary base since 1914 runes from the Federal Reserve sources noted 

above. Earlier data come from the National Bureau of Economic Research. The 

CPI since 1913 is from the Bureau of Labor Statistics (CPI-IJ, with the CPI 

less shelter used since 1970 to avoid problems with mortgage interest costs). 

The PPI (all commodities) since 1913 comes from the Bureau of Labor 

Statistics. Data from 1890 to 1912 are from U.S. Department of Labor, 1928 

(kindly provided by Jeff (iron). Data before 1890 are from 'warren and 

Pearson, 1933. Table 1. 

11For a discussion of the Accord, see Friedman and Schwartz, 1963, pp. 623ff. 

12Schwert (1987b, Table 9) shows that an ARIMA (0,1,4) process works well on 

seasonally adjusted monthly data for the growth rate of the monetary base, 

CPI inflation, and PPI inflation. 

'3Weak evidence of seasonality in the nominal interest rate appears in some 

sub-samples of the post-1954 period—for example, for 1954.1-1959.4 and the 

1970s. However, the seasonals look very different for these two periods. 

The seasonal found for the 1954- 1959 period seems to be consistent with the 

results of Diller (1969, Ch. 3). 



t4Schwert's (1987a, Table 3) Monte Carlo results indicate that the 

Dickey- Fuller test for a unit root works well if the underlying process is 

ARIMA (0,1,1). Therefore this test should be appropriate in the present 

context. 

15The estimated residual standard errors for inflation and monetary growth 

correspond to amd e for equations (22) and (19), respectively. The 

corresponding standard errors for Ft 
and are .028 and .042, respectively. 

These values each exceed the residual standard error for the nominal interest 

rate, .012, as predicted by the theory. 

16 have made no adjustment here for the fact that the end-of-month data 

before August 1917 apply to different days of the week. The finding of 

significant seasonals in monetary-base growth before 1914 accords in a 

general way with Kemmerer (1910, Ch. 6), but seems to conflict with results 

reported by Clark (1986, pp. 106ff.). 

17Clark (1986, pp. 85ff.) points out that the main seasonal in nominal 

interest rates ended at about the same time—around 1914—in a number of 

industrialized countries. This outcome accords with the idea that the ending 

of the gold standard freed up all the central banks simultaneously. However, 

it would be worthwhile to examine the changes in the monetary processes for 

the various countries. Also, it is worth considering whether interest-rate 

targeting by more than one country is feasible under fixed exchange rates 

(even in the absence of a serious gold standard). 
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