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Optimal Time-Consistent Monetary, Fiscal and Debt

Maturity Policy

Eric M. Leeper∗ Campbell Leith† Ding Liu‡

1 Introduction

Conventional monetary-�scal policy analysis assigns monetary policy the task of controlling
demand and in�ation and �scal policy the job of ensuring �scal sustainability. Optimal policy
analyses support this policy assignment. In sticky price New Keynesian models with one-
period government debt, Schmitt-Grohe and Uribe (2004b) show that even a mild degree of
price stickiness implies negligible use of in�ation surprises to stabilize debt and near random
walk behavior in government debt and tax rates when policy makers can commit to time-
inconsistent monetary and �scal policies, in response to shocks. In other words, monetary
policy should be used to stabilize in�ation, not debt, while a tax smoothing �scal policy
ensures �scal sustainability.1

Despite this apparent consensus on broad features of a desirable policy mix, empirical
evidence suggests that policy makers, even in recent years, often do not behave in this
way (see Bianchi and Ilut (2017) and Chen et al. (2018) for the United States). And the
ability of policy makers to commit, which is implicit in the consensus policy assignment,
is also doubtful. This paper studies jointly optimal monetary and �scal policy when policy
makers cannot commit. We augment a standard New Keynesian model with optimally chosen
distortionary taxation and government spending, as well as government debt issued with a
realistic maturity structure. The policy maker may operate with a mild degree of myopia.
Myopia serves as a proxy for the political frictions in policy making that lead the policy
maker to give more weight to the short-run costs of �scal consolidation than to the longer-
term gains of lower debt.2 We solve the non-linear model using global solution methods. The

∗University of Virginia and NBER; eleeper@virginia.edu
†University of Glasgow; campbell.leith@glasgow.ac.uk
‡Southwestern University of Finance and Economics; dingliumath@swufe.edu.cn.
1Although Sims (2013) questions the robustness of this result when government can issue long-term

nominal bonds since this implies variations in bond prices can be used as a device to stabilize debt, Leeper
and Leith (2017) �nd that, as part of a Ramsey problem, the consensus policy assignment remains largely
optimal.

2See Alesina and Passalacqua (2017) for a recent survey of the political economy of government debt.
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equilibrium produces a plausible steady-state and, by allowing for switches in the degree of
policy maker myopia, captures the major trends in the American debt-to-GDP ratio that
Figure 1 depicts.

Four key �ndings emerge:

1. A trade-o� between the costs of in�ation and the desire to generate surprise in�a-
tion drives the equilibrium. That trade-o� varies with the level and the maturity of
government debt. The policy maker faces a temptation to use in�ation surprises to
o�set ine�ciencies that arise from monopolistic competition and distortionary taxa-
tion. There is an additional temptation to use in�ation surprises to in�uence the real
value of outstanding government debt�a temptation that grows with the level of debt
and shrinks with the average maturity of that debt. This state-dependent in�ation
bias induces the policy maker to return debt to steady state, which the Ramsey policy
maker would not do, to create a costly debt-stabilization bias.

2. Changes in how myopically the policy maker behaves allow the model to capture key
�scal trends in the �gure. The post-war reduction in debt-to-GDP stems from higher
taxes and an increase in in�ation that the debt-dependent in�ationary bias creates.
Conversely, increases in debt�as in the 1980s�arise from signi�cant tax cuts and a
sharp reduction in in�ation when a relatively myopic policy maker discounts the im-
plications of rising debt levels. This is a new interpretation of the Volcker disin�ation.
In the long run, though, the patient policy maker who achieves a lower debt-to-GDP
ratio will enjoy lower tax rates and in�ation than a myopic policy maker who chooses
to sustain a higher debt-to-GDP ratio.

3. The state-dependent in�ation bias implies that the optimal time-consistent policy re-
sponse to shocks depends on debt levels. A relatively myopic policy maker sustains
higher debt and in�ation in the long-run. In such a state, the policy maker's response
to cost-push shocks largely re�ects a desire to mitigate the �scal repercussions of the
shock. Mark-up shocks are more in�ationary in a New Keynesian model augmented
with �scal policy and government debt.

4. Unlike the case of commitment, allowing the policy maker to choose the relative pro-
portions of short- versus long-term debt as part of the time-consistent policy problem
does not result in the policy maker constructing an extreme portfolio where a large
stock of short-term assets is funded by issuing long-term debt in order to bene�t from
shifts in the yield curve in the face of shocks (see Debortoli et al. (2017) and the dis-
cussion in Leeper and Leith (2017)). Instead, the policy maker issues a small amount
of short-term debt alongside long-term debt which they vary to in�uence the policy
mix. For example, during a period of �scal consolidation, increasing the proportion of
short-term debt leads to a relaxtion of monetary policy ceteris paribus, which supports
a slower rate of debt reduction.

These results touch upon a number of literatures, which appendix A discusses. The
paper proceeds as follows. The benchmark model is described in section 2 and the optimal
time consistent policy problem in section 3. Section 4, describes the solution method and 5
presents the numerical results. Section 6 concludes.
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2 The Model

The model is a standard New Keynesian model, but augmented to include the government's
budget constraint where government spending is �nanced by distortionary taxation and/or
long-term borrowing.3

2.1 Households

The utility function of the representative household takes the speci�c form

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− Nt

1+ϕ

1 + ϕ

)
(1)

Households appreciate private consumption, Ct, as well as the provision of public goods, Gt,
and dislike supplying labor, Nt. Private consumption is made up of a basket of goods de�ned
by,

Ct ≡
(∫ 1

0

Ct(j)
εt−1
εt dj

) εt
εt−1

(2)

where j denotes the good's variety and εt > 1 is the elasticity of substitution between
varieties. This is assumed to be time-varying, following the AR(1) process,

ln(εt) = (1− ρε) ln(ε) + ρε ln(εt−1) + σεεt, εt ∼ N(0, 1) (3)

as a device for introducing mark-up shocks.
The households' optimal allocation of consumption across individual goods implies their

demand for good j,

Ct(j) =

(
Pt(j)

Pt

)−εt
Ct

where Pt(j) is the price of good j and the aggregate price level is de�ned as, Pt ≡
(∫ 1

0
Pt(j)

1−εtdj
) 1

1−εt .

The budget constraint at time t is given by

PM
t BM

t ≤ Ξt + (1 + ρPM
t )BM

t−1 +WtNt(1− τt)− PtCt + Trt (4)

where
∫ 1

0
Pt(j)Ct(j)dj = PtCt, Ξt is the representative household's share of pro�ts in the

imperfectly competitive �rms producing these goods,Wt are wages, and τt is an wage income
tax rate. There is also an exogenous �scal transfer to the household, Trt = Pttr, which
is introduced to ensure the model re�ects the data in terms of the breakdown of �scal
expenditures into public consumption and transfers.4 In period t households buy government

3Most countries issue long-term nominal debt such that even modest changes in in�ation and interest rates
can have substantial impact on the market value of debt - see Hall and Sargent (2011) and Sims (2013) for
the empirical �ndings on the contribution of this kind of �scal �nancing to the decline in the U.S. debt-GDP
ratio from 1945 to 1974.

4It is important to note that real transfers are an exogenously given constant and are not considered to
be a policy instrument. Allowing transfers to be chosen optimally would enable the policy maker to levy a
lump-sum tax in order to �nance a negative distortionary labor income tax and o�set the distortion arising
from monopolistic competition,. This is a typical, but unrealistic, assumption in linear-quadratic analyses
of optimal �scal and monetary policy in New Keynesian models.
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bonds, BM
t , at price PM

t , which, following Woodford (2001), are actually a portfolio of many
bonds which pay a declining coupon of ρj dollars j+ 1 periods after they were issued, where
0 < ρ ≤ β−1. A measure of the duration of the bond is given by (1− βρ)−1, which allows
calibration of ρ to capture the observed maturity structure of government debt.5 Households
bring nominal wealth of (1 + ρPM

t )BM
t−1 into period t.

Households maximize utility subject to the budget constraint (4) to obtain the optimal
allocation of consumption across time and price the declining payo� consols,

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
= PM

t (5)

It is convenient to de�ne the stochastic discount factor (for nominal payo�s) for later use,

Qt,t+1 ≡ β
(

Ct
Ct+1

)σ (
Pt
Pt+1

)
where EtQt,t+1 = R−1

t is the inverse the short-term interest rate

which is the policy instrument of the monetary authority.
The second �rst order condition (FOC) relates to their labor supply decision and is given

by,

(1− τt)
(
Wt

Pt

)
= Nϕ

t C
σ
t (6)

That is, the marginal rate of substitution between consumption and leisure equals the after-
tax wage rate.

Besides these FOCs, necessary and su�cient conditions for household optimization also
require the households' budget constraints to bind with equality. De�ning Dt ≡ (1 +
ρPM

t )BM
t−1, the no-Ponzi-game condition can be written as,

lim
T→∞

Et

[
1

Rt,T

DT

PT

]
≥ 0 (7)

where Rt,T ≡
T−1∏
s=t

(
1+ρPMs+1

PMs

Ps
Ps+1

)
for T ≥ 1 and Rt,t ≡ 1.

2.2 Government

Aggregate public consumption takes the same form as private consumption,6

Gt =

(∫ 1

0

Gt(j)
εt−1
εt dj

) εt
εt−1

(8)

such that government demand for individual goods is given by,

Gt(j) =

(
Pt(j)

Pt

)−εt
Gt

5In the special case where ρ = 0, the bonds reduce to the familiar single period bonds typically studied
in the literature.

6An alternative modeling approach would be to introduce an `aggregator' �rm which converts the indi-
vidual goods to a �nal output which is purchased by households and the government. The model implies,
equivalently, that households and the government perform this aggregation themselves.
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Government expenditures, consisting of transfers, Trt, and consumption, Gt, are �nanced
by levying labor income taxes at the rate τt, and by issuing long-term bonds BM

t . The
government's sequential budget constraint is then given, in real terms, by

PM
t bt = (1 + ρPM

t )
bt−1

Πt

− wtNtτt +Gt + tr (9)

where real debt is de�ned as, bt ≡ BM
t /Pt, and real wages, wt ≡ Wt/Pt. Transfers tr =

Trt/Pt are �xed at a data-consistent average. Fiscal policy instruments are tax rates, τt and
government consumption, Gt.

2.3 Firms

Firm j faces three constraints, �rstly a linear production function,

Yt(j) = Nt(j) (10)

where the real marginal cost of production is de�ned as mct ≡ Wt/Pt = (1 − τt)N
ϕ
t C

σ
t .

Secondly, a demand curve for their product,

Yt(j) =

(
Pt(j)

Pt

)−εt
Yt

which is the sum of private and public demand, where Yt =
[∫ 1

0
Yt(j)

εt−1
εt dj

] εt
εt−1

. Finally,

quadratic adjustment costs in changing prices, as in Rotemberg (1982), de�ned for �rm j as,

ηt (j) ≡ φ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (11)

where φ ≥ 0 measures the degree of nominal price rigidity. The adjustment cost, which
accounts for the negative e�ects of price changes on the customer��rm relationship, increases
in magnitude with the size of the price change and with the overall scale of economic activity
Yt.

The problem facing �rm j is to maximize the discounted value of nominal pro�ts,

max
Pt(j)

Et

∞∑
z=0

Qt,t+zΞt+z (j)

subject to these constraints above, where nominal pro�ts are de�ned as,

Ξt(j) ≡ Pt(j)Yt(j)−mctYt(j)Pt −
φ

2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt

The FOCs imply the following non-linear Phillips curve relationship,

Πt (Πt − 1) = βEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
+ φ−1((1− εt) + εtmct) (12)

where Πt ≡ Pt/Pt−1 is the gross rate of in�ation.
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2.3.1 Market Clearing Goods market clearing requires, for each good j,

Yt(j) = Ct(j) +Gt(j) + ηt(j)

such that, in a symmetrical equilibrium,

Yt

[
1− φ

2
(Πt − 1)2

]
= Ct +Gt (13)

There is also market clearing in the bonds market where the portfolio of long-term bonds
held by households evolves according to the government's budget constraint.

That completes the description of the model. Before analyzing the optimal policy problem
the competitive equilibrium is de�ned as follows.

De�nition 1 (Competitive equilibrium). A competitive equilibrium consists of government
policies,

{
Rt, Gt, τt, b

M
t

}∞
t=0

, prices,
{
wt, P

M
t

}∞
t=0

, and private sector allocations, {Ct, Nt, Yt,Ξt,Πt}∞t=0,
satisfying ∀ {εt}∞t=0, (i) the private sector optimization taking government policies and prices
as given, that is, the household budget constraint (4), the production function Yt = Nt, and
the optimality conditions, (5), (6) and (12); (ii) the market clearing condition (13); (iii) the
government's budget constraint (9); and (iv) the no-Ponzi-game condition (7), for a given
initial level of government debt b−1.

3 Optimal Policy Under Discretion

The policy under discretion seeks to maximize the value function,

V (bt−1, εt) = max

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ
+ β̃Et [V (bt, εt+1)]

}

subject to the resource constraint (13), the New Keynesian Phillips curve (12), and the
government's budget constraint,(9). The possibility that the policy maker su�ers from a
degree of myopia is captured by assuming they may discount the future more heavily than
households, β̃ ≤ β.

In conducting this optimization the policy maker is constrained to act in a time-consistent
manner. In other words the policy maker cannot make time-inconsistent promises as to how
they will behave in the future in order to have a bene�cial impact on current policy trade-o�s
through expectations as they would under Ramsey policy. Instead, they take expectations
as given except to the extent that the debt stock they bequeath to the future a�ects time-
consistent policy choices in the future. To capture this future expectations are replaced by
the following state-dependent auxiliary functions,

M(bt, εt+1) ≡ (Ct+1)−σ Yt+1Πt+1 (Πt+1 − 1) (14)

L(bt, εt+1) ≡ (Ct+1)−σ(Πt+1)−1(1 + ρPM
t+1) (15)
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Ct
C−σt − λ1t + λ2t

[
σεt(1− τt)−1Y ϕ

t C
σ−1
t + σφβCσ−1

t Y −1
t Et [M(bt, εt+1)]

]
+λ3t

[
σβbtC

σ−1
t Et [L(bt, εt+1)]− ρσβ bt−1

Πt
Cσ−1
t Et [L(bt, εt+1)] + σ

(
τt

1−τt

)
(Yt)

1+ϕCσ−1
t

]
= 0

Yt
−Y ϕ

t + λ1t

[
1− φ

2
(Πt − 1)2]+ λ3t

[
(1 + ϕ)Y ϕ

t C
σ
t

(
τt

1−τt

)]
+λ2t

[
εtϕ(1− τt)−1Y ϕ−1

t Cσ
t − φβCσ

t Y
−2
t Et [M(bt, εt+1)]

]
= 0

τt εtλ2t + λ3tYt = 0

Gt χG
−σg
t − λ1t − λ3t = 0

Πt −λ1t [Ytφ (Πt − 1)]− λ2t [φ (2Πt − 1)] + λ3t

[
bt−1

Π2
t

(1 + ρβCσ
t Et [L(bt, εt+1)])

]
= 0

bt
−β̃Et

[
λ3t+1

1
Πt+1

(1 + ρPM
t+1)
]

+ λ2t

[
φβCσ

t Y
−1
t Et [M1(bt, εt+1)]

]
+βλ3t

[
Cσ
t Et [L(bt, εt+1)] + btC

σ
t Et [L1(bt, εt+1)]− ρ bt−1

Πt
Cσ
t Et [L1(bt, εt+1)]

]
= 0

and the Lagrangian for the policy problem can be written as,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ
+ β̃Et[V (bt, εt+1)]

}

+ λ1t

[
Yt

(
1− φ

2
(Πt − 1)2

)
− Ct −Gt

]
+ λ2t

[
(1− εt) + εt(1− τt)−1Y ϕ

t C
σ
t − φΠt (Πt − 1)

+φβCσt Y
−1
t Et [M(bt, εt+1)]

]
(16)

+ λ3t

[
βbtC

σ
t Et [L(bt, εt+1)]− bt−1

Πt
(1 + ρβCσt Et [L(bt, εt+1)])

+
(

τt
1−τt

)
(Yt)

1+ϕCσt −Gt − tr

]
where the model equilibrium also requires us to de�ne bond prices, PM

t = βCσ
t Et [L(bt, εt+1)]

since these are embedded in the auxiliary function L(bt, εt+1). The policy maker optimizes
(16) by choosing Ct, Gt, Yt, Πt, τt, bt and the multipliers, λ1t, λ2t, λ3t. It should be noted
that even though the policy maker optimizes with respect to all endogenous variables, they
are not acting as a social planner. Instead, they are choosing standard policy instruments in
order to in�uence the decentralized equilibrium in a manner which maximizes their objective
function subject to the time-consistency constraint. The FOCs for the policy problem are
detailed below.

The discretionary equilibrium is determined by the system given by the FOCs, the con-
straints in (16), the auxiliary equations, (14) and (15), bond prices, PM

t = βCσ
t Et [L(bt, εt+1)],

and �nally the exogenous process for the markup shock, (3). The solution to this system is
a set of time-invariant Markov-perfect equilibrium policy rules yt = H(st−1) mapping the vec-
tor of states st−1 = {bt−1, εt} to the optimal decisions for yt = {Ct, Gt, Yt,Πt, τt, bt, P

M
t , λ1t, λ2t, λ3t}

for all t ≥ 0.
Further insight into the trade-o�s facing the policy maker can be generated considering

speci�c FOCs. The FOC for taxation reveals a key feature of the underlying policy problem.
In the absence of a need to satisfy the budget constraint through distortionary taxation,
λ3t = 0, the tax instrument would be used to eliminate the costs associated with the output-
in�ation trade-o� implicit in the NKPC, λ2t = 0 . In other words, if it were not for the need
to raise tax revenues to satisfy the government's budget constraint, taxes could be adjusted to
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eliminate any undesired movements in in�ation, including that arising from mark-up shocks.
Similarly, the FOC for in�ation highlights the nature of the in�ationary bias contained

in the model. The �rst two terms of the FOC capture the standard in�ationary bias prob-
lem. The �rst term measures the costs of raising in�ation, and the second term the output
bene�ts of doing so (given in�ationary expectations) which are evaluated positively when
the economy operates at a suboptimally low level due to tax and monopolistic competition
distortions. However, in the presence of debt the third term in the FOC for in�ation captures
an additional reason for wanting to raise in�ation relative to expectations - the erosion of
the real value of debt. Economic agents will anticipate that higher debt increases the gov-
ernment's desire to introduce in�ation surprises, implying that in�ationary expectations are
increasing in the level of government debt, Et [M1(bt, εt+1)] > 0 until in�ation is su�ciently
high to eliminate policy surprises (in the absence of further shocks). The state dependence
of the in�ationary bias will be key in driving the policy maker's desire to reduce debt relative
to what we would observe under a time-inconsistent Ramsey policy - a tendency we label
the �debt stabilization bias�.

The remaining key FOC is for government debt which highlights the �debt stabilization
bias�. This bias can be understood by considering the FOC for debt, which can be simpli�ed
as,

PMt λ3t − β̃Et
[
λ3t+1

Πt+1
(1 + ρPMt+1)

]
︸ ︷︷ ︸

tax smoothing

−λ3tC
σ
t

(
φε−1βEt [M1(bt, εt+1)]−

[
(bt − ρ

bt−1

Πt
)EtL1(bt, εt+1)

])
︸ ︷︷ ︸

debt stabilization bias

= 0 (17)

whereX1(bt, εt+1) ≡ ∂X(bt, εt+1)/∂bt for the functions, X = {L,M}. Equation (17) describes
the policy maker's optimal debt policy which can be decomposed into two elements. The �rst
line gives the optimal trade-o� between current and future distortions associated with the
need to satisfy the government's intertemporal budget constraint, that is achievable when
the government can commit. The second line, captures wedges which are introduced when
the policy maker is unable to commit, de�ning the debt stabilization bias.

Consider the debt policy implied by the standard trade-o� between current and future
distortions, re�ected in the relationship between λ3t and λ3t+1 in the �rst line of this expres-
sion. This re�ects the tax-smoothing argument in Barro (1979), requiring that the marginal
costs of taxation are smoothed over time.

Initially assume the policy maker is not myopic, so β̃ = β. In this case, when the return
(adjusted for any covariance with the future costs of satisfying the government's intertem-
poral budget constraint, λ3t+1) on holding the government bonds is equal to the household's
rate of time preference, the distortions associated with satisfying the budget constraint are
constant over time and steady-state debt will follow a random walk. E�ectively, under tax
smoothing, the policy maker trades-o� the short-run costs of reducing the stock of debt
against the discounted value of the long-term bene�ts. When debt service costs are consis-
tent with the household/government's rate of time preference, these will be exactly balanced
at a debt level which depends upon the history of the shocks hitting the economy.

Reintroducing myopia, such that β̃ < β, implies that when real interest rates di�er from

8
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the policy maker's rate of time preference, then the policy maker will choose to tilt these
distortions backwards (forwards) in time depending on whether debt service costs are below
(above) the policy maker's rate of time preference. For example, when the real rate of return

on debt, rt = Et

[
1

Πt+1

(1+ρPMt+1)

PMt

]
= β−1, this implies Et

[
λ3t+1

λ3t
1

Πt+1

(1+ρPMt+1)

PMt

]
= β̃−1 > β−1 such

that λ3t is rising over time. The myopic policy maker would allow debt to rise.
However (17) is a generalized Euler equation, which, in the second line, includes partial

derivatives of policy functions with respect to debt due to the time-consistency requirement.
In general the form of these auxiliary functions is unknown, which is why the policy prob-
lem needs to be solved numerically. However, that numerical solution robustly gives clear
signs for these derivatives, M1(bt, εt+1) > 0 and L1(bt, εt+1) < 0 which have an intuitive
interpretation.

The �rst term on the second line of (17) re�ects the fact that in�ation expectations rise
with debt levels (through the in�ation biases discussed above - see the FOC for in�ation),
M1(bt, εt+1) > 0, and since this is costly in the presence of nominal inertia, there is a desire to
deviate from tax smoothing, in order to reduce debt and the associated increase in in�ation.
This is the �rst reason for wanting to reduce debt relative to the level that would be supported
by a benevolent Ramsey planner.

The second term in square brackets in the second line captures the impact of higher
debt on bond prices. Since higher debt raises in�ation, which in turn reduces bond prices,
L1(bt, εt+1)< 0, this term also serves to encourage a reduction in debt levels, when debt is
relatively short-term. Why? High, but falling debt levels imply an upward trend in bond
prices which makes it cheaper to issue new debt, but more costly to buy-back the existing
debt stock. As debt maturity is increased, the latter e�ect rises relative to the former, and
hence the desire to reduce debt levels is reduced, ceteris paribus. This trade-o� between
tax-smoothing and time-consistency determines the equilibrium level of debt and in�ation,
where in�ation is expected to be closer to zero as debt maturity rises, for a given level of
debt.

4 Solution Method and Calibration

For the model described in the previous section, the equilibrium policy functions cannot
be computed in closed form and local approximation methods are not applicable, as the
model's steady state around which local dynamics should be approximated is endogenously
determined as part of the model solution and thus a priori unknown. This necessitates the
use of global solution methods. Speci�cally, the Chebyshev collocation method with time
iteration. The detailed algorithm is presented in appendix E. In general, optimal discre-
tionary policy problems can be characterized as a dynamic game between the private sector
and successive governments. Multiplicity of equilibria is a common problem in dynamic
games of this kind. Since the solution algorithm uses polynomial approximations, it is, in
e�ect, searching only for continuous Markov-perfect equilibria where agents condition their
strategies on payo�-relevant state variables, see Judd (2004) for a discussion.

Before solving the model numerically, the benchmark values of structural parameters
must be speci�ed. The calibration of parameters is summarized in Table 1. We set β =
(1/1.02)1/4 = 0.995, which implies a 2% annual real interest rate. The intertemporal elas-
ticity of substitution is set to one half (σ = σg = 2) which is in the middle of standard
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estimates.7 The Labor supply elasticity is set to ϕ−1 = 1/3. The steady-state elasticity of
substitution between intermediate goods is chosen as ε = 14.33, which implies a monopolis-
tic markup of approximately 7.5%, similar to Siu (2004), and in the middle of conventional
estimates.

The �scal variables are calibrated to ensure the benchmark model mimics the key ratios
in U.S. data over the period 1954-2008 as discussed in B and reported in the �rst column of
Table 2. Parameter χ = 0.0076 ensures government consumption is 7.8% of GDP, transfers
are set to be 9% and the myopia of the policy maker is set to β̃ = 0.982 (an e�ective time
horizon of just under 20 years) which supports an annualized steady-state debt-to-GDP
ratio of 31%. The coupon decay parameter, ρ = 0.95, corresponds to around 5 years of debt
maturity, consistent with U.S. data. The implied ratio of tax revenues to GDP in steady-
state is slightly higher than the data average of 17.5% re�ecting the fact that actual policy
has often run a de�cit in recent decades.

The price adjustment cost parameter, φ = 50, implies, given the equivalence between the
linearized NKPCs under Rotemberg and Calvo pricing (see Leith and Liu, 2016), that on
average �rms re-optimize prices every six months - in line with empirical evidence. Finally,
the cost-push shock process is parameterized as ρε = 0.939 and σε = 0.052 in line with
estimates in Chen et al. (2017) and Smets and Wouters (2003).

With this benchmark parameterization, the model solution generates a maximum Euler
equation error over the full range of the grid is of the order of 10−6. We plot these errors in
F. As suggested by Judd (1998) , this order of accuracy is reasonable.8

5 Numerical Results

This section explores the properties of the equilibrium under optimal time-consistent policy.
Subsection 5.1 considers the steady-state under a series of alternative parameterizations.
Subsection 5.2 introduces switches in the degree of policy maker myopia enabling the model
to mimic observed movements in the U.S. debt-to-GDP ratio. The optimal policy response
to shocks is discussed in subsection 5.3 and the debt maturity decision is endogenized in
subsection 5.4.

5.1 Steady State

Table 2 summarizes the steady state values for a variety of parameterizations, contrasting
them with the data averages contained in column 1. Beginning with the benchmark calibra-
tion but temporarily removing policy maker myopia such that β̃ = β - column 3 of Table 2.
We can see the key trade-o�s underpinning this steady-state equilibrium by considering the
(deterministic) steady-state value of the FOC for debt, equation (17),

b(1− ρ 1

Π
)L1(b, ε) = φε−1βM1(b, ε) (18)

7In the robustness exercises conducted in appendix J the elasticity for public spending is lowered in line
with the evidence in Debortoli and Nunes (2013). However, this does not a�ect the key results.

8All other model variants considered are equally well approximated - these results are available upon
request.
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As noted above, the numerical solution of the policy problem implies L1(b, ε) < 0 and
M1(b, ε) > 0. Assuming ρ < Π, this equation can only hold with a negative debt stock.9

This is indeed what we �nd with bPM

4Y
= −153% and a steady-state in�ation rate of −1.1%.

In this equilibrium the policy maker has accumulated assets, but these fall short of the war
chest level needed to support the �rst best allocation.10 There is a steady-state de�ation
which ensures the policy maker is not tempted to introduce any further surprise de�ation to
increase the value of the assets it has accumulated.

Introducing policy maker myopia can overturn this result - see the second column of
Table 2, labeled �benchmark�. The benchmark has been calibrated to replicate a positive
debt-to-GDP ratio of 31% and government consumption to output of 7.8%.11 The steady-
state rate of in�ation this implies is 3%. The key equation de�ning this steady-state is the
FOC for debt given by

b(1− ρ 1

Π
)L1(b, ε) = φε−1βM1(b, ε)− C−σPM(1− β̃

β
) (19)

where the myopia can turn the RHS of this condition negative, thereby supporting a positive
steady-state debt-to-GDP ratio. The debt stabilization bias is reduced, as the policy maker
is less inclined to incur the costs of debt reduction in order to achieve longer-term bene�ts.
It is notable that this change does little to a�ect the other key �scal ratios of government
consumption and taxation relative to GDP.

Column 4 increases policy maker myopia further to β̃ = 0.975, which is equivalent to
reducing the policy maker's time horizon from 20 to 12 years. This more than doubles the
steady-state debt-to-GDP ratio to 75.6% and in�ation rises to 4.5%.

Increasing the �exibility of prices means both that the costs of in�ation are lower, and
that monetary policy is less e�ective in a�ecting the real economy. As a result the government
is able to sustain a higher debt-to-GDP ratio which rises by 5.5%, as they are less driven to
reduce the state-dependent in�ationary bias problem. This leads to a larger steady-state rate
of in�ation of 3.8%, but it should be remembered that in�ation is now less costly. Finally,
reducing the mark-up is important since it implies the in�ationary bias problem is lower for
a given level of debt. As a result the desire to in�uence the state-dependent in�ationary
bias problem by reducing debt is less - the debt stabilization bias has been reduced. This
leads to a substantial increase in the steady-state debt-to-GDP ratio to almost 90% and an
associated increase in the steady-state rate of in�ation to 3.7%.

Table 3, considers the impact of changes in the maturity structure of debt. Column 1
adopts the common assumption that debt is only of a single period's duration (one quarter in
the context of the model parameterization). In this case the steady-state debt-to-GDP ratio

9No parameter permutations have been found which imply ρ > Π such that the model without myopia
can sustain a positive steady-state debt stock. Intuitively, unless debt stocks are negative, the economy
remains su�ciently distorted that the in�ationary bias problem ensures Π > ρ.

10The war chest asset stock would be 4,636% of GDP.
11An alternative device, that has been used in the literature (see for example Schmitt-Grohe and Uribe

(2004b) and Niemann et al. (2013)), is to introduce a monetary friction to generate a positive steady-state
debt-to-GDP ratio. Embedding such a device in the current model (see appendix G) can achieve this aim
but not robustly. It is only when price stickiness is reduced to implausibly low levels (φ < 4, an e�ective
average price duration of less than 4 months) that the debt-to-GDP ratio turns mildly positive.
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turns negative, -11% and in�ation is 3.5%. While, increasing debt maturity to 30 years, leads
to a signi�cant increase in the debt-to-GDP ratio to over 102% of GDP and in�ation to over
5%. This re�ects the discussion above - longer maturity debt reduces the debt stabilization
bias allowing the government to sustain a higher steady-state debt-to-GDP ratio.

In summary, myopia, monopolistic competition distortions and debt maturity are the key
drivers of the equilibrium rate of in�ation and debt-to-GDP ratio, while other endogenously
determined steady-state �scal ratios are largely una�ected by these changes. This highlights
the importance of the state-dependent in�ationary bias and the associated debt stabilization
bias in jointly determining the equilibrium outcomes for in�ation and debt.

5.2 Transition Dynamics

The model, despite macthing key �scal data averages, cannot capture the key trends in the
debt-to-GDP ratio seen in the data. For example, the standard deviation of the annual-
ized debt-to-GDP ratio is only 0.7% under the benchmark calibration despite the equivalent
volatility in the data being 9%. This implies that the �scal consequences of mark-up shocks
are insu�cient to capture the movements in debt despite being calibrated in line with empir-
ical estimates of such shock processes.12 Therefore, in order to generate plausible movements
in the debt-to-GDP ratio, there is a need to go beyond standard economic shocks and con-
sider political frictions.

Speci�cally, the degree of policy maker myopia is assumed switch between two regimes,
{β̃L, β̃H} where β̃L > β̃H where the former `L' regime has a low degree of myopia and corre-
spondingly supports a lower level of debt. Conversely, the high myopia regime is consistent
with a higher debt level. There is an associated transition probability matrix governing the

evolution of this two-state Markov process,

[
pL 1− pL

1− pH pH

]
where pi is the probability of

remaining in regime i (i = H,L) given we are currently regime i and 1−pi is the probability
of exit to the other regime j, , j = (H,L), j 6= i. The policy maker is assumed to not be
in con�ict with their future selves but to discount the future in line with whatever degree
of myopia is in place at the time. As a result, the degree of myopia becomes an additional
state variable so that the value function is de�ned as,

V (bt−1, εt, β̃i,t) = max

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ
+ β̃i,tEt

[
V (bt, εt+1, β̃i,t+1)

]}

subject to the same constraints as before but where all auxiliary functions are based on this
expanded state-space where β̃it = β̃L or β̃H . The implications of this model extension for
the description of optimal policy are outlined in H.

The calibration of this Markov switching process follows Chen et al. (2018) in identifying
key shifts in the trend of the U.S. debt-to-GDP ratio - see Figure 1. Between 1954 and
the �rst budget of the Reagan presidency in 1981 debt is on a downward trend. Similarly
following Clinton's �rst budget until the �rst budget of the George W. Bush there is a

12Other shocks such as technology and transfer shocks are also unable to do so. Even allowing for tem-
porarily unstable paths for transfers as in Bi et al. (2013) cannot generate data-consistent movements in
debt-to-GDP ratios as the policy maker aggressively raises taxes to �nance the rising transfers.
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sustained reduction in the debt-to-GDP ratio. We label these episodes as being periods of
low myopia. In contrast the periods of rising debt-to-GDP ratios covering all other periods
are labeled as high myopia. Given this labeling the implied transition matrices between the

two regimes can be estimated as,

[
0.9859 1− 0.9859

1− 0.9868 0.9868

]
. β̃L = 0.9866 and β̃H = 0.9759

are chosen to replicate the peaks and troughs of the debt-to-GDP ratio found in the data,
while the remainder of the benchmark calibration is retained. The success of this exercise
can be seen in Figure 1 where the model implied dynamics of the debt-to-GDP ratio track
the data both in the sense of ensuring the model can achieve the highs and lows seen in the
data, but also the pace at which debt increases or decreases over time.

The �rst set of experiments looks at the transitions between high and low debt regimes.
The solid line in Figure 3 plots the movements of key variables as a relative patient policy
maker seeks to reduce debt (as was the case following the end of WWII). Similarly, the
debt build-up from the 1980s onwards can be explored by examining the implications of a
relatively myopic policy maker inheriting a low level of debt. In both cases the transitional
dynamics are strikingly di�erent from the ultimate steady-state (conditional on remaining
in the particular myopia regime). A relatively patient government inheriting a large debt
stock faces, for a given rate of in�ation, greater incentives to induce in�ation surprises
to reduce that debt burden. This induces them to raise taxation sharply and to a lesser
extent reduce government consumption to facilitate the reduction in debt. At the same time
monetary policy is tightened to partially o�set the increase in in�ation. In the longer term,
the successful reduction in the debt-to-GDP ratio allows the economy to sustain lower taxes,
higher government consumption and lower in�ation.

The converse is true when a relatively myopic government inherits a low debt stock.
Since they care less about the future costs of servicing debt, their incentives to reduce a
given level of debt through surprise in�ation are lower. This enables them to dramatically
reduce taxes and, to a lesser extent, increase government consumption in the short-run,
while simultaneously enjoying relatively low in�ation. Indeed it is only when the myopic
government has raised the debt-to-GDP ratio by around 15% relative to the patient policy
maker that the paths of in�ation cross. However, ultimately the myopic policy maker su�ers
from higher taxation, lower government consumption and higher in�ation as a result of the
debt they accumulate in the long-run.

A key element in this is the maturity of the debt stock. Table 3 shows that increasing
debt maturity from the common assumption of single period debt to the ultra long maturity
of 30 years raises the steady-state debt-to-GDP ratio from -11% to 102%. It also impacts
the transitional dynamics. In Figure 3 the initial debt stock is �xed to be common across all
experiments at 58% of GDP and the Figure then describes the transition to the steady-state.
The shorter the maturity structure of the debt, the more rapidly the policy maker undertakes
their �scal consolidation. Consistent with the analysis above, the in�ationary bias problem
is notably worse as debt maturity shortens implying much higher rates of in�ation for an
identical state of the economy. This in turn encourages the policy maker to reduce debt
levels more rapidly and to a lower steady-state level when debt maturity is shorter i.e. the
debt stabilization bias is greater for a shorter maturity debt stock.

13



Leeper, Leith & Liu: Optimal Time-Consistent Policy

5.3 Responding to Shocks

In the context of a model which mimics the major movements in the U.S. debt-to-GDP ratio,
this subsection considers how debt levels a�ect the optimal policy response to shocks. In the
standard New Keynesian economy the only shocks generating meaningful policy trade-o�s
for the policy maker are cost-push/mark-up shocks. If we remove all the �scal elements
of our model and apply a mark-up shock which raises the desired mark-up εt

εt−1
by 0.5%

then the optimal monetary policy response is to tighten policy to reduce in�ation until the
output costs of further monetary tightening are too great. The paths for output, in�ation
and interest rate under such a policy are given by the green dotted lines in the bottom three
sub-panels of Figure 4.

Adding distortionary taxation to such a model potentially introduces a very e�ective
policy instrument for dealing with such shocks. Temporarily ignoring the implications for
government debt of such a policy, the tax rate entering the NKPC could be varied to o�set
the impact of the variations in εt. Figure 4 shows the reduction in taxation which would
achieve this negation of the in�ationary and output consequences of a positive mark-up
shock and leave the economy at its steady-state - see the dotted magenta line in the tax rate
sub-panel of Figure 4.

Turning now to the benchmark model, such a �scal response to shocks is tempered by
the fact that the policy maker must also ensure �scal solvency and does not have access to
lump-sum taxes with which to do so. Figure 4 plots the optimal time-consistent response
to a mark-up shock conditional on being in the high (solid blue lines) or low (dashed red
lines) debt regime. The existence of debt ampli�es the impact of the shock, especially when
we are in the high debt regime. Moreover, although tax cuts could in theory o�set the
in�ationary consequences of the mark-up shock (the dotted magenta line in Figure 4) this
would exacerbate the increase in debt which drives the in�ationary bias problem discussed
above. As a result the policy maker raises tax rates to ensure that debt falls as a more
e�ective way of mitigating the in�ationary consequences of the mark-up shock. Nevertheless
the higher tax rates do increase in�ation and monetary policy is tightened to help o�set
that. The end result is that the response to the mark-up shock is overwhelmingly driven by
the desire to reduce debt through tax increases and thereby mitigate the state-dependent
in�ationary bias problem. Government spending largely moves in line with output such that
there is negligible variation in the ratio of G/Y - government consumption is hardly used as
an instrument of either macroeconomic or �scal stabilization.13

5.4 Debt Management and the Debt Stabilization Bias

Up until this point, the level of debt maturity has been held �xed by parameterizing ρ. This
subsection allows for the policy maker to have some control over the maturity structure as
part of the time-consistent optimal policy problem, by allowing them to issue a mixture

13If the intertemporal elasticity of substitution for government consumption is reduced to σg = 1 in line
with the evidence summarized in Debortoli and Nunes (2013), the standard deviation of the G/Y ratio rises
from 0.8% to 1.4%, which is closer to the data average of 1.9%. However, this does not have a signi�cant
impact on either the transition between high/low debt regimes or the response to shocks other than to
marginally enhance the role played by government consumption. See Appendix J.
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of shorter and longer-maturity debt, possibly of opposite signs (i.e. one can be held as an
asset and the other a liability). The reason why this is conjectured to be an interesting debt
management policy is that the results obtained so far suggest that high debt levels imply
a large state-dependent in�ationary bias, which can turn to a de�ationary bias when the
government holds assets even although the economy is still operating at a less than e�cient
level. These biases are more acute, ceteris paribus, when the bond is short term. Therefore,
issuing a short-term asset may o�set the in�ationary bias associated with a large stock of
long-term debt.

To explore this possibility the supply of single-period bonds is no longer assumed to be
zero. The wealth of the existing bondholders entering period t is now Dt ≡ (1+ρPM

t )BM
t−1 +

BS
t−1, the household then buys bonds, PM

t BM
t + P S

t B
S
t and as a result the government's

budget constraint becomes,

PM
t bMt + P S

t b
S
t =

bSt−1

Πt

+ (1 + ρPM
t )

bMt−1

Πt

− Wt

Pt
Ntτt +Gt + tr

The remainder of the policy problem is unchanged, except for the fact that policy functions
now have three arguments, the elasticity of substitution between goods, εt, and the levels of
both maturities of bond, bSt−1 and bt−1. Appendix I derives the resultant FOCs.

By varying the relative proportions of these two types of bonds, the policy maker can
in�uence the average maturity of the outstanding stock of debt and the associated in�ation
bias. Figure 5 plots the transition dynamics for the benchmark calibration, with and without
the government possessing the ability to issue short-term bonds in addition to long-term debt.
Despite the high overall debt-to-GDP ratio, the quantity of short-term debt issued is very
low. Under optimal but time-consistent policy, the policy maker does not issue long-term
debt to purchase short-term assets.14 Instead, there is an extremely modest issuance of
short-term debt, even when overall debt levels are very high. The short-term debt serves to
support changes in the time-consistent policy mix. Speci�cally, monetary policy is relaxed
relative to the case where no short-term debt is issued. This lower real interest rate slows
the speed of �scal consolidation allowing taxation to be lower in the short-run.

6 Conclusions

The existence of nominal debt induces a state-dependent in�ation bias problem as the policy
maker wishes to utilize in�ation surprises to o�set monopolistic competition and tax distor-
tions and reduce the real value of debt. This temptation is greater with higher debt levels
and shorter debt maturity, resulting in a debt stabilization bias as the policy maker deviates
from Ramsey policy by returning debt to steady state to mitigate the associated in�ation
biases.

Allowing for switches in a modest degree of policy maker myopia allows the model to
replicate the key trends in the post-WWII debt-to-GDP ratio in the United States. The
response to shocks in such an environment seeks to avoid exacerbating these biases, while
endogenizing the debt maturity decision reduces the speed of �scal correction.

14Such portfolios have been used as a hedging device when policy makers can commit (see Debortoli et al.
(2017) and Leeper and Leith (2017)).
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A Tables

Parameter Value De�nition
β 0.995 Quarterly discount factor, household.

β̃ 0.982 Quarterly discount factor, policy maker.
σ 2 Relative risk aversion coe�cient
σg 2 Relative risk aversion coe�cient for government spending
ϕ 3 Inverse Frish elasticity of labor supply
ε 14.33 Elasticity of substitution between varieties
ρ 0.95 Debt maturity structure (5 years)
χ 0.0076 Scaling parameter associated with government spending
ρε 0.939 AR-coe�cient of cost-push shock
σε 0.052 Standard deviation of cost-push shock
φ 50 Rotemberg adjustment cost coe�cient

Table 1: Parameterization

Variable Data Benchmark No Myopia
Myopia

β̃ = 0.975

Price Flexibility
φ = 30

Markup
ε
ε−1 = 5%

bPM

4Y 31.2% 31.2% -152.9% 75.6% 36.7% 89.8%
(Π4 − 1) 3.5%/2.4% 3.0% -1.1% 4.5% 3.8% 3.7%
(R4 − 1) 5.66%/4.9% 5.1% 0.9% 6.7% 5.9% 5.8%
Y N.A. 0.977 0.985 0.975 0.977 0.980
G/Y 7.84% 7.82% 7.93% 7.76% 7.81% 7.75%
τ 17.5% 18.9% 15.3% 19.8% 19.0% 19.5%

Table 2: Steady-State: Myopia, Price Flexibility and Monopolistic Competition. Over the
full sample the average in�ation rate was 3.5% (with a standard deviation of 2.3%), while
following the Great Moderation (post 1985) the average in�ation rate falls to 2.4% with a
standard deviation of 0.76%.

Variable Benchmark
1 Qtr Maturity

ρ = 0
1 Yr Maturity
ρ = 7538

10 Yr Maturity
ρ = 0.9799

30 Yr Maturity
ρ = 0.9966

bPM

4Y 31.2% -11.1% 12.8% 53.6% 102.0%
(Π4 − 1) 3.0% 1.5% 2.5% 3.62% 5.1%
(R4 − 1) 5.1% 3.5% 4.6% 5.7% 7.2%
Y 0.977 0.979 0.978 0.976 0.973
G/Y 7.82% 8.01% 7.80% 7.83% 7.82%
τ 18.9% 18.2% 18.4% 19.4% 20.4%

Table 3: Steady-State: Maturity
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Figure 1: U.S. debt-to-GDP Ratio and Model Simulation. Solid line is the U.S. debt-to-GDP
ratio between 1954 and 2008. For data source see B. The red dashed line is the simulated
debt-to-GDP from benchmark model assuming higher policy maker myopia between �rst
Reagan and Clinton administration budgets, and following George W. Bush administration's
�rst budget.
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Figure 2: Transition between High/Low Debt Regimes. Blue solid line represents the tran-
sition from the high myopia/high debt regime to the low myopia/low debt regime. Red
dot-dashed line is the opposite transition from low myopia/debt regime to high myopia/debt
regime.
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Figure 3: Debt Maturity and Fiscal Consolidation. All �gures start from a debt-to-GDP of
58% and plot the transition to a low myopia/debt steady-state across di�erent debt matu-
rities. 1 year debt (solid blue line), 5 year maturity (red dot-dash line), 10 year maturity
(green dotted line).
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Figure 4: Impulse Response to Mark-Up Shock under High/Low Debt Regimes Government
consumption and output measured as percentage deviation from steady-state. All other
variations as deviation from steady-state. New Keynesian model without �scal policy -
green dotted line. Hypothetical tax rate which would o�set shock - dotted magenta line.
Monetary and �scal response under high myopia/debt regime - blue solid line. Monetary
and �scal response under low myopia/debt regime - red dot-dash line.
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Figure 5: Endogenous Debt Maturity and Fiscal Consolidation. Endogenous debt maturity
- solid blue line. Benchmark case of exogenous debt maturity - red dot-dash line.
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Appendices

A Related Literature

The current paper is related to several strands of the optimal monetary and �scal policy
literature and the following discussion highlights those that are most closely related in terms
of topics and numerical methods.

The contribution of the paper is most closely related to the literature that studies optimal
�scal and monetary policy in sticky price New Keynesian models using non-linear solution
techniques. Following the work of Schmitt-Grohe and Uribe (2004b) and Siu (2004), Faraglia
et al. (2013) solve a Ramsey problem using a parameterized expectation algorithm (PEA)
to examine the implications for optimal in�ation of changes in the level and maturity of
government debt. Similarly, Leeper and Zhou (2013) consider a model similar to the current
one, �nding that in�ation surprises are a small but signi�cant part of the optimal policy
response to shocks. We study the discretionary equivalent of this policy, which is radically
di�erent in terms of equilibrium outcomes. Niemann and Pichler (2011) globally solve for
optimal �scal and monetary policies under both commitment and discretion in an economy
featuring a cash-in-advance constraint which alters the in�ationary bias problem relative to
that obtained in our more standard cashless New Keynesian model.15 Additionally, they do
not consider debt levels as large as recently observed in a number of advanced economies.
Niemann et al. (2013) study time-consistent policy in the model of Schmitt-Grohe and Uribe
(2004b) and identify a simple mechanism that generates in�ation persistence. Government
spending is exogenous in the latter two papers which also do not consider long-term debt.
Similarly, abstracting from long-term debt, Matveev (2014) compares the e�cacy of discre-
tionary government spending and labor income taxes for the purpose of �scal stimulus at the
liquidity trap. In contrast the analysis presented here considers large deviations of debt from
steady-state and debt of di�erent maturities (both features which can radically a�ect the
optimal policy response to shocks), time-consistent optimal policy making, and endogenous
determination of the maturity structure and government consumption as part of the policy
problem.

Aside from the relatively small literature exploring optimal monetary and �scal policy
in non-linear New Keynesian models, there is a vast literature on Ramsey �scal and mon-
etary policy in the tradition of Lucas and Stokey (1983), which tends to focus on real or
�exible-price economies. In �exible-price environments, the government's problem consists
in �nancing an exogenous stream of public spending by choosing the least disruptive com-
bination of in�ation and distortionary income taxes. In an incomplete-markets version of
Lucas and Stokey (1983), Aiyagari et al. (2002) simulate the model globally and show that
the level of welfare in Ramsey economies with and without real state-contingent debt is vir-
tually the same. In addition, they rea�rm the random-walk results of debt and taxes from
Barro (1979). Angeletos et al. (2013) introduce collateral constraints and a liquidity role
for government bonds into Aiyagari et al. (2002). They use the Value Function Iteration
(VFI) method to globally solve the modi�ed model and �nd that the steady-state level of

15Monetary frictions are sometimes introduced as a means of ensuring a positive steady-state debt to GDP
ratio. This modeling device is discussed in Appendix G.

22



Leeper, Leith & Liu: Optimal Time-Consistent Policy

debt is no longer indeterminate, when government bonds can serve as collateral. Cao (2014)
extends Angeletos et al. (2013) with long-term debt and studies how the cost of in�ation for
commercial banks a�ects the design of �scal and monetary policy. Likewise, Faraglia et al.
(2014) use PEA methods to solve a Ramsey problem with incomplete markets and long-term
bonds. They show that many features of optimal policy are sensitive to the introduction of
long-term bonds, in particular tax variability and the long run behavior of debt. The cur-
rent �ndings convey the same message that maturity lengths like those observed in actual
economies can substantially alter the nature of optimal policies, but the policy problem in a
sticky price economy where the policy maker is unable to commit is fundamentally di�erent.

There is also a literature on optimal �scal and monetary policy in monetary models, which
do not contain nominal inertia, but may contain a cost to in�ation. Schmitt-Grohe and Uribe
(2004a) study Ramsey policy in a �exible-price model with cash-in-advance constraint, which
essentially extends the model of Lucas and Stokey (1983) to an imperfectly competitive
environment. A global numerical method is used to characterize the dynamic properties
of the Ramsey allocation. In a cash-in-advance model, Martin (2009) studies the time
consistency problems that arise from the interaction between debt and monetary policy,
since in�ation reduces the real value of nominal liabilities. He uses projection methods to
deal with the generalized Euler equations, see also Martin (2011), Martin (2013) and Martin
(2014) where time consistent policies are studied in variants of the monetary search model
of Lagos and Wright (2005). Monetary frictions are considered in Section G, but most of
the analysis abstracts from such frictions and emphasizes nominal price stickiness as the
conventional approach to generating sizable real e�ects from monetary policy.

Moving away from models which jointly model monetary and �scal policy, there is also
a literature on optimal time-consistent �scal policy in real models. This literature typically
focuses on Markov-perfect policy, where households' and the government's policy rules are
functions of payo�-relevant variables only. Local approximations around a non-stochastic
steady state are typically infeasible for these models, since optimal behavior is characterized
by generalized Euler equations that involve the derivatives of some equilibrium decision rules,
and thus it is impossible to compute the steady state independent of these rules. Hence
global solution methods are required. Klein and Rios-Rull (2003) compare the stochastic
properties of optimal �scal policy without commitment with those properties under a full-
commitment policy in a neoclassical growth model with a balanced government budget, see
also Krusell et al. (2006) and Klein et al. (2008). Ortigueira (2006) studies Markov-perfect
optimal taxation under a balanced-budget rule, while Ortigueira et al. (2012) deal with the
case of unbalanced budgets. In a version of Lucas and Stokey (1983) model with endogenous
government expenditure, Debortoli and Nunes (2013) �nd that when governments cannot
commit, debt is no longer indeterminate and often converges to a steady-state with no debt
accumulation at all. This is a quite striking di�erence in the behavior of debt between the
full commitment and the no-commitment cases. Similarly, Grechyna (2013) also considers
endogenous government spending in the environment of Lucas and Stokey (1983) with only
one-period debt and shows that around the steady state, the properties of the �scal variables
are very similar, regardless of commitment assumptions. More recently, Debortoli et al.
(2017) consider a Lucas and Stokey (1983) economy without state-contingent bonds and
commitment, and show that the government actively manages its debt positions and can
approximate optimal policy by con�ning its debt instruments to consols. Solving the policy
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problem set out below shares the same technical problem due to the presence of generalized
Euler equations, but nominal rigidities make the model setup quite di�erent from these
papers.

Finally, the new political economy literature (see Alesina and Passalacqua (2017) for
a comprehensive survey) considers how various aspects of the political process a�ect the
accumulation of government debt, and the tendency of some economies to be prone to a de�cit
bias. While there are numerous mechanisms through which political economy considerations
in�uence �scal policy, including the use of debt as a strategic variable, wars of attrition over
who bears the burden of �scal reforms and the nature of the budgetary process itself, in
essence these political frictions imply that policy makers may not fully internalize the long-
term bene�ts of lower debt, while remaining acutely aware of the short-term costs of any
�scal correction. This implicit myopia is captured informally, by considering the implications
of the policy maker discounting the future at a rate which is higher than that of society as
a whole.

B Data

We follow Chen et al. (2018) and Bianchi and Ilut (2017) in constructing our �scal variables.
The data for government spending, tax revenues and transfers, are taken from National
Income and Product Accounts (NIPA) Table 3.2 (Federal Government Current Receipts and
Expenditures) released by the Bureau of Economics Analysis. These data series are nominal
and in levels.

Government Spending. Government spending is de�ned as the sum of consumption
expenditure (line 21), gross government investment (line 42), net purchases of nonproduced
assets (line 44), minus consumption of �xed capital (line 45), minus wage accruals less
disbursements (line 33).

Total tax revenues. Total tax revenues are constructed as the di�erence between
current receipts (line 38) and current transfer receipts (line 16).

Transfers. Transfers is de�ned as current transfer payments (line 22) minus current
transfer receipts (line 16) plus capital transfers payments (line 43) minus capital transfer
receipts (line 39) plus subsidies (line 32).

Federal government debt. Federal government debt is the market value of privately
held gross Federal debt, which is downloaded from Dallas Fed web-site

The above three �scal variables are normalized with respect to Nominal GDP. Nominal

GDP is taken from NIPA Table 1.1.5 (Gross Domestic Product).
Real GDP. Real GDP is take download from NIPA Table 1.1.6 (Real Gross Domestic

Product, Chained Dollars)
The GDP de�ator. The GDP de�ator is obtained from NIPA Table 1.1.5 (Gross

Domestic Product).
E�ective Federal Funds Rate. E�ective Federal Funds Rate is taken from the St.

Louis Fed website.
The implied ratios are presented in the �rst column of Table 2.
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C Summary of Model

We now summarize the model and its steady state before turning to the time-consistent
policy problem. Consumption Euler equation,

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1 (20)

Pricing of longer-term bonds,

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
= PM

t (21)

Labour supply,

Nϕ
t C

σ
t = (1− τt)

(
Wt

Pt

)
≡ (1− τt)wt

Resource constraint,

Yt

[
1− φ

2
(Πt − 1)2

]
= Ct +Gt (22)

Phillips curve,

0 = (1− εt) + εtmct − φΠt (Πt − 1) (23)

+ φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
Government budget constraint,

PM
t bt = (1 + ρPM

t )
bt−1

Πt

−
(

τt
1− τt

)
(Yt)

1+ϕCσ
t +Gt + tr (24)

Technology,
Yt = Nt (25)

Marginal costs,
mct = Wt/Pt = (1− τt)−1Y ϕ

t C
σ
t

The objective function for social welfare is given by,

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ

)
(26)

There are two state variables, real debt bt and the elasticity of substitution between good
varieties, εt.
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C.1 The Deterministic Steady State

Given the system of non-linear equations, the corresponding steady-state system can be
written as follows:

βR

Π
= 1

β

Π

(
1 + ρPM

)
= PM

(1− τ)w = NϕCσ

Y

[
1− φ

2
(Π− 1)2

]
= C +G

(1− ε) + εmc+ φ (β − 1) [Π (Π− 1)] = 0

PMb = (1 + ρPM)
b

Π
−
(

τ

1− τ

)
Y 1+ϕCσ +G+ tr

Y = N

mc = w = (1− τ)−1Y ϕCσ

PM =
β

Π− βρ

mc = w =
ε− 1

ε

C

Y
=

[
(1− τ)

(
ε− 1

ε

)]1/σ

Y −
ϕ+σ
σ

G

Y
= 1− C

Y
= 1−

[
(1− τ)

(
ε− 1

ε

)]1/σ

Y −
ϕ+σ
σ

PMb =
β

1− β

[
τ

(
ε− 1

ε

)
− G

Y

]
Y

Note that,

Y ϕ+σ

(
1− G

Y

)σ
= (1− τ)

(
ε− 1

ε

)
(27)

which will be used to contrast with the allocation that would be chosen by a social planner.
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D First-Best Allocation

In some analyses of optimal �scal policy (e.g., Aiyagari et al., 2002), it is desirable for the
policy maker to accumulate a `war chest' which pays for government consumption and/or
�scal subsidies to correct for other market imperfections. In order to assess to what extent
our optimal, but time-consistent policy attempts to do so, it is helpful to de�ne the level
of government accumulated assets that would be necessary to mimic the social planner's
allocation under the decentralized solution. The �rst step in doing so is de�ning the �rst-
best allocation that would be implemented by the social planner. The social planner ignores
the nominal inertia and all other ine�ciencies, and chooses real allocations that maximize
the representative consumer's utility, subject to the aggregate resource constraint and the
aggregate production function. That is, the �rst-best allocation {C∗t , N∗t , G∗t} is the one that
maximizes utility (26), subject to the technology constraint (25), and aggregate resource
constraint Yt = Ct +Gt.

The �rst order conditions imply that

(C∗t )−σ = χ (G∗t )
−σg = (Nt

∗)ϕ = (Yt
∗)ϕ

That is, given the resource constraints, it is optimal to equate the marginal utility of private
and public consumption to the marginal disutility of labor e�ort and the optimal share of
government consumption in output is

G∗t
Y ∗t

= χ
1
σg (Yt

∗)
−ϕ+σg

σg

In a deterministic steady state and assuming σ = σg, this implies the optimal share of
government consumption in output is

G∗

Y ∗
=
(

1 + χ−
1
σ

)−1

and the �rst-best level of steady-state output is given by,

(Y ∗)ϕ+σ

(
1− G∗

Y ∗

)σ
= 1 (28)

It is illuminating to contrast the allocation achieved in the steady state of the decen-
tralized equilibrium with this �rst best allocation. We do this by �nding policies and prices
that make the �rst-best allocation and the decentralized equilibrium coincide. Appendix C
shows that the steady-state level of output in the decentralized economy is given by,

Y ϕ+σ

(
1− G

Y

)σ
= (1− τ)

(
ε− 1

ε

)
(29)

Comparing (29) and (28), and assuming the steady state share of government consumption
is the same, then the two allocations will be identical when the labor income tax rate is set
optimally to be,

τ ∗ = 1− ε

ε− 1
=
−1

ε− 1
(30)
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Notice that the optimal tax rate is negative, that is, it is e�ectively a subsidy which o�sets
the monopolistic competition distortion. This, in turn, requires that the government has
accumulated a stock of assets de�ned as,

PM∗b∗

4Y ∗
=

β

4 (1− β)

[
−1

ε
−
(

1 + χ−
1
σ

)−1

− tr

Y

]
Using our benchmark calibration below, this would imply that a stock of assets of 4636%
of GDP would be required to generate su�cient income to pay for government expenditure
(consumption and �scal transfers) and a labor income subsidy which completely o�sets the
e�ects of the monopolistic competition distortion. In the absence of policy maker myopia,
the steady-state level of debt in our optimal policy problem while negative, falls far short of
this `war chest' value.

It is also interesting to note the implied optimal share of government spending in GDP
that would be chosen by the social planner is 7.7% which is very close to that chosen by the
policy maker in our decentralized (7.82%) distorted economy implying that G is 3.9% lower
than the �rst best while GDP is 5.4% smaller than it would be under the social planner's
allocation.

E Numerical Algorithm

This section describes the Chebyshev collocation method with time iteration used in the
paper. See Judd (1998) for a textbook treatment of the involved numerical techniques.

Let st = (bt−1, εt) denote the state vector at time t, where real stock of debt bt−1 is
endogenous and elasticity of substitution between goods εt is exogenous and respectively,
with the following laws of motion:

PM
t bt = (1 + ρPM

t )
bt−1

Πt

− wtNtτt +Gt + tr

ln(εt) = (1− ρε) ln(ε) + ρε ln(εt−1) + σεεt, εt ∼ N(0, 1)

where 0 ≤ ρε < 1.
There are 7 endogenous variables and 3 Lagrangian multipliers. Correspondingly, there

are 10 functional equations associated with the 10 variables
{
Ct,Yt,Πt,bt,τt,P

M
t ,Gt,λ1t,λ2t,λ3t

}
.

De�ning a new function X : R2 → R10, in order to collect the policy functions of endogenous
variables as follows:

X(st) =
(
Ct(st), Yt(st),Πt(st), bt(st), τt(st), P

M
t (st), Gt(st), λ1t(st), λ2t(st), λ3t(st)

)
Given the speci�cation of the function X, the equilibrium conditions can be written more
compactly as,

Γ (st, X(st), Et [Z (X(st+1))] , Et [Zb (X(st+1))]) = 0

where Γ : R2+10+3+3 → R10 summarizes the full set of dynamic equilibrium relationships,
and

Z (X(st+1)) =

 Z1 (X(st+1))
Z2 (X(st+1))
Z3 (X(st+1))

 ≡
 M(bt, εt+1)
L(bt, εt+1)

(Πt+1)−1 (1 + ρPM
t+1

)
λ3t+1


28



Leeper, Leith & Liu: Optimal Time-Consistent Policy

with
M(bt, εt+1) = (Ct+1)−σ Yt+1Πt+1 (Πt+1 − 1)

L(bt, εt+1) = (Ct+1)−σ(Πt+1)−1(1 + ρPM
t+1)

and

Zb (X(st+1)) =


∂Z1(X(st+1))

∂bt
∂Z2(X(st+1))

∂bt
∂Z3(X(st+1))

∂bt

 ≡


∂M(bt,εt+1)
∂bt

∂L(bt,εt+1)
∂bt

∂[(Πt+1)−1(1+ρPMt+1)λ3t+1]
∂bt


More speci�cally,

L1(bt, εt+1) =
∂
[
(Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)
]

∂bt

= −σ(Ct+1)−σ−1(Πt+1)−1(1 + ρPM
t+1)

∂Ct+1

∂bt

− (Ct+1)−σ(Πt+1)−2(1 + ρPM
t+1)

∂Πt+1

∂bt
+ ρ(Ct+1)−σ(Πt+1)−1∂P

M
t+1

∂bt

and

M1(bt, εt+1) =
∂
[
(Ct+1)−σ Yt+1Πt+1 (Πt+1 − 1)

]
∂bt

= −σ(Ct+1)−σ−1Yt+1Πt+1 (Πt+1 − 1)
∂Ct+1

∂bt
+ (Ct+1)−σ Πt+1 (Πt+1 − 1)

∂Yt+1

∂bt

+ (Ct+1)−σ Yt+1 (Πt+1 − 1)
∂Πt+1

∂bt
+ (Ct+1)−σ Yt+1Πt+1

∂Πt+1

∂bt

= −σ(Ct+1)−σ−1Yt+1Πt+1 (Πt+1 − 1)
∂Ct+1

∂bt
+ (Ct+1)−σ Πt+1 (Πt+1 − 1)

∂Yt+1

∂bt

+ (Ct+1)−σ Yt+1 (2Πt+1 − 1)
∂Πt+1

∂bt

Note we are assuming Et [Zb (X(st+1))] = ∂Et [Z (X(st+1))] /bt, which is normally valid using
the Interchange of Integration and Di�erentiation Theorem. Then the problem is to �nd a
vector-valued function X that Γ maps to the zero function. Projection methods can be used.

Following the notation convention in the literature, we simply use s = (b, ε) to denote
the current state of the economy st = (bt−1, εt), and s

′ to represent next period state that
evolves according to the law of motion speci�ed above. The Chebyshev collocation method
with time iteration, which we use to solve this nonlinear system, can be described as follows:

1. De�ne the collocation nodes and the space of the approximating functions:

• Choose an order of approximation (i.e., the polynomial degrees) nb and nε for each
dimension of the state space s = (b, ε), then there are Ns = (nb + 1) × (nε + 1)
nodes in the state space. Let S = (S1, S2, ..., SNs) denote the set of collocation
nodes.

29



Leeper, Leith & Liu: Optimal Time-Consistent Policy

• Compute the nb + 1 and nε + 1 roots of the Chebychev polynomial of order nb + 1
and nε + 1 as

zib = cos

(
(2i− 1)π

2(nb + 1)

)
, for i = 1, 2, ..., nb + 1.

ziε = cos

(
(2i− 1)π

2(nε + 1)

)
, for i = 1, 2, ..., nε + 1.

• Compute collocation points εi as

εi =
εmax + εmin

2
+
εmax − εmin

2
ziε =

εmax − εmin
2

(
ziε + 1

)
+ εmin

for i = 1, 2, ..., nε + 1, which map [−1, 1] into [εmin, εmax]. Note that the number
of collocation nodes is nε + 1. Similarly, compute collocation points bi as

bi =
bmax + bmin

2
+
bmax − bmin

2
zib =

bmax − bmin
2

(
zib + 1

)
+ bmin

for i = 1, 2, ..., nb + 1, which map [−1, 1] into [bmin, bmax]. Note that

S = {(bi, εj) | i = 1, 2, ..., nb + 1, j = 1, 2, ..., nε + 1}

that is, the tensor grids, with S1 = (b1, ε1), S2 = (b1, ε2), ..., SNs = (bnb+1, εnε+1).

• The space of the approximating functions, denoted as Ω, is a matrix of two-
dimensional Chebyshev polynomials. More speci�cally,

Ω (S) =



Ω (S1)
Ω (S2)

.

.

.

Ω (Snε+1)

.

.

.

Ω (SNs )


=

=



1 T0(ξ(b1)T1(ξ (ε1)) T0(ξ(b1)T2(ξ (ε1)) · · · Tnb (ξ(b1)Tnε (ξ (ε1))

1 T0(ξ(b1)T1(ξ (ε2)) T0(ξ(b1)T2(ξ (ε2)) · · · Tnb (ξ(b1)Tnε (ξ (ε2))

.

.

.

.

.

.

.

.

. · · ·
.
.
.

1 T0(ξ(b1)T1(ξ (εnε+1)) T0(ξ(b1)T2(ξ (εnε+1)) · · · T0(ξ(b1)Tnε (ξ (εnε+1))

.

.

.

.

.

.

.

.

. · · ·
.
.
.

1 T0(ξ(bnb+1)T1(ξ (εnε+1)) T0(ξ(bnb+1)T2(ξ (εnε+1)) · · · T0(ξ(bnb+1)Tnε (ξ (εnε+1))


Ns×Ns

where ξ(x) = 2 (x− xmin) / (xmax − xmin)−1 maps the domain of x ∈ [xmin, xmax]
into [−1, 1].

• Then, at each node s ∈ S, policy functions X(s) are approximated by X(s) =
Ω(s)ΘX ,

where
ΘX =

[
θc, θY , θΠ, θb, θτ , θp̃, θG, θλ1 , θλ2 , θλ3

]
is a Ns × 10 matrix of the approximating coe�cients.

2. Formulate an initial guess for the approximating coe�cients, Θ0
X , and specify the

stopping rule εtol, say, 10−6.
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3. At each iteration j, we can get an updated Θj
X by implement the following time

iteration step:

• At each collocation node s ∈ S, compute the possible values of future policy
functions X(s′) for k = 1, ..., q. That is,

X(s′) = Ω(s′)Θj−1
X

where q is the number of Gauss-Hermite quadrature nodes. Note that

Ω(s′) = Tjb(ξ(b
′))Tjε (ξ(ε′))

is a q × Ns matrix, with b′ = b̂(s; θb), ln(ε′) = (1 − ρε) ln(ε) + ρε ln(ε) + zk
√

2σ2
ε ,

jb = 0, ..., nb, and jε = 0, ..., nε. The hat symbol indicates the corresponding
approximate policy functions, so b̂ is the approximate policy for real debt, for
example. Similarly, the two auxiliary functions can be calculated as follows:

M(s′) ≈
(
Ĉ(s′; θc)

)−σ
Ŷ (s′; θy)Π̂(s′; θπ)

(
Π̂(s′; θπ)− 1

)
and,

L(s′) ≈
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1
(

1 +
ρP̂M

(
s′; θp̃

)
1− ρβ

)
Note that we use P̃M

t = (1− ρβ)PM
t rather than PM

t in numerical analysis, since
the former is far less sensitive to maturity structure variations.

• Now calculate the expectation terms E [Z (X(s′))] at each node s. Let ωk denote
the weights for the quadrature, then

E [M(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Ĉ(s′; θc)

)−σ
Ŷ (s′; θy)Π̂(s′; θπ)

(
Π̂(s′; θπ)− 1

)
≡M (s′, q)

E [L(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1
(

1 +
ρP̂M

(
s′; θp̃

)
1− ρβ

)
≡ L (s′, q)

and

Et

[(
1 + ρPM

t+1

Πt+1

)
λ3t+1

]
≈ 1√

π

q∑
k=1

ωk

1 +
ρP̂M(s′;θp̃)

1−ρβ

Π̂(s′; θπ)

 λ̂3(s′; θλ3) ≡ Λ (s′, q) .

Hence,

E [Z (X(s′))] ≈ E
[
Ẑ (X(s′))

]
=

 M (s′, q)
L (s′, q)
Λ (s′, q)


• Next calculate the partial derivatives under expectation E [Zb (X(s′))].
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• Note that we only need to compute ∂Ct+1/∂bt, ∂Yt+1/∂bt, ∂Πt+1/∂bt and ∂P
M
t+1/∂bt,

which are given as follows:

∂Ct+1

∂b
≈

nb∑
jb=0

nε∑
jε=0

2θcjbjε
bmax − bmin

T ′jb(ξ(b
′))Tjε(ξ(ε

′)) ≡ Ĉb (s′)

∂Yt+1

∂bt
≈

nb∑
jb=0

nε∑
jε=0

2θyjbjε
bmax − bmin

T ′jb(ξ(b
′))Tjε(ξ(ε

′)) ≡ Ŷb (s′)

∂Πt+1

∂bt
≈

nb∑
jb=0

nε∑
jε=0

2θπjbjε
bmax − bmin

T ′jb(ξ(b
′))Tjε(ξ(ε

′)) ≡ Π̂b (s′)

∂PM
t+1

∂bt
≈

nb∑
jb=0

nε∑
jε=0

2θp̃jbjε
(bmax − bmin) (1− ρβ)

T ′jb(ξ(bi))Tjε(ξ(εj)) ≡ P̂M
b (s′)

Hence, we can approximate the two partial derivatives under expectation

∂E [M(s′)]

∂b

≈ 1√
π

q∑
k=1

ωk


−σ
(
Ĉ(s′; θc)

)−σ−1

Ŷ (s′; θy)Π̂(s′; θπ)
(

Π̂(s′; θπ)− 1
)
Ĉb (s′)

+
(
Ĉ(s′; θc)

)−σ
Π̂(s′; θπ)

(
Π̂(s′; θπ)− 1

)
Ŷb (s′)

+
(
Ĉ(s′; θc)

)−σ
Π̂(s′; θπ)

(
2Π̂(s′; θπ)− 1

)
Π̂b (s′)


≡ M̂b (s′, q) ,

∂E [L(s′)]

∂b

≈ 1√
π

q∑
k=1

ωk


−σ
(
Ĉ(s′; θc)

)−σ−1 (
Π̂(s′; θπ)

)−1

(1 +
ρP̂M(s′;θp̃)

1−ρβ )Ĉb (s′)

−
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−2

(1 +
ρP̂M(s′;θp̃)

1−ρβ )Π̂b (s′)

+ρ
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1

P̂M
b (s′)


≡ L̂b (s′, q) .

That is,

E [Zb (X(s′))] ≈ E
[
Ẑb (X(s′))

]
=

[
M̂b (s′, q)

L̂b (s′, q)

]
4. At each collocation node s, solve for X(s) such that

Γ
(
s,X(s), E

[
Ẑ (X(s′))

]
, E
[
Ẑb (X(s′))

])
= 0

The equation solver csolve written by Christopher A. Sims is employed to solve the re-
sulted system of nonlinear equations. WithX(s) at hand, we can get the corresponding
coe�cient

Θ̂j
X =

(
Ω (S)T Ω (S)

)−1

Ω (S)T X(s)
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5. Update the approximating coe�cients, Θj
X = ηΘ̂j

X + (1− η) Θj−1
X , where 0 ≤ η ≤ 1 is

some dampening parameter used for improving convergence.

6. Check the stopping rules. If
∥∥Θj

X −Θj−1
X

∥∥ < εtol, then stop, else update the approxi-
mation coe�cients and go back to step 3.

When implementing the above algorithm, we start from lower order Chebyshev poly-
nomials and some reasonable initial guess. Then, we increase the order of approximation
and take as starting value the solution from the previous lower order approximation. This
informal homotopy continuation idea facilitates obtaining the solution.

Remark. Given the fact that the price PM
t �uctuates signi�cantly for larger ρ, in numer-

ical analysis, the rule for PM
t is scaled by (1− ρβ), that is, P̃M

t = (1− ρβ)PM
t . In this way,

the steady state of P̃M
t is very close to β, and P̃M

t does not di�er hugely as we change the
maturity structure.

F Euler Equation Errors

To assess the accuracy of solutions, we calculate the Euler equation errors on an evenly-
spaced grid that consists of 40 points of bt and 40 points of log(εt). The results are similar
on a �ner grid.
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Figure 6: Euler equation errors in the state space used to the solve the benchmark model.
This �gure plots the Euler equation errors on an evenly-spaced grid. Euler equation errors
for other model variants are available upon request.
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Figure 7: Euler equation errors in the state space used to the solve the benchmark model
augmented with switching in the degree of policy maker myopia. This �gure plots the Euler
equation errors on an evenly-spaced grid. Euler equation errors for other model variants are
available upon request.

G Model with Money

In this Section we introduce a monetary friction which has been used as a device to achieve
a positive steady-state debt-to-GDP ratio in models similar to the model analyzed in our
paper.

G.1 Households' Problem

The budget constraint at time t is given by∫ 1

0

Pt(j)Ct(j)dj(1 + s(vt)) + PM
t BM

t +Mt ≤ Ξt + (1 + ρPM
t )BM

t−1 +Mt−1 +WtNt(1− τt)

where Pt(j) is the price of variety j , Ξ is the representative household's share of pro�ts in the
imperfectly competitive �rms, W are wages, and τ is an wage income tax rate. Money, Mt,
facilitates consumption purchases since consumption purchases are subject to a proportional
transaction cost s(vt), which depends on consumption-based money velocity,
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vt =

∫ 1

0
Pt(j)Ct(j)dj

Mt−1

The transaction cost function satis�es the same assumptions as in Schmitt-Grohe and Uribe
(2004b). Speci�cally, s(v) satis�es:(i) s(v) is non-negative and twice continuously di�er-
entiable; (ii)there is a satiation level of velocity, v, such that s(v) = s′(v) = 0; (iii)
(v−v)s′(v) > 0 for v 6= v; and (iv)2s′(v)+vs′

′
(v) > 0 for all v ≥ v. Note, however, following

Niemann et al. (2013), that we have changed the timing assumption of Schmitt-Grohe and
Uribe (2004b) to make this more akin to a cash in advance constraint. This ensures that
unanticipated in�ation is costly in the absence of sticky prices, just as anticipated in�ation
is.

As a result of introducing this transactions cost, the households' �rst order conditions
become,

βRtEt

{
µt+1

µt

(
Pt
Pt+1

)}
= 1 (31)

where

µt ≡
C−σt

(1 + s(vt) + s′(vt)vt)

and the declining payo� consols,

βEt

{
µt+1

µt

(
Pt
Pt+1

)(
1 + ρPM

t+1

)}
= PM

t (32)

Their second FOC relates to their demand for money,

1 = βEt

(
µt+1

µt

)(
Pt
Pt+1

)
(1 + s′(vt+1)v2

t+1)

The �nal FOC relates to their labour supply decision and is given by,

(1− τt)
(
Wt

Pt

)
= Nϕ

t µ
−1
t

That is, the marginal rate of substitution between consumption and leisure equals the after-
tax wage rate.

G.2 Firms' Problem

The problem facing �rms is the same as previously except the stochastic discount factor

used to discount future pro�ts is now given by, Qt,t+1 = β
(
µt+1

µt

)
Π−1
t+1, such that the NKPC

becomes,

0 = (1− ε) + εmct − φΠt (Πt − 1) (33)

+ φβEt

[(
µt+1

µt

)
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
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G.3 Market Clearing

Goods market clearing requires, for each good j,

Yt(j) = Ct(j)(1 + s(vt)) +Gt(j) + ηt(j)

which allows us to write,
Yt = Ct(1 + s(vt)) +Gt + ηt

with ηt =
∫ 1

0
ηt (j) dj. In a symmetrical equilibrium,

Yt

[
1− φ

2
(Πt − 1)2

]
= Ct(1 + s(vt)) +Gt

G.4 The Government

The government's sequential budget constraint is adjusted to account for the seigniorage
revenues,

PM
t BM

t + P S
t B

S
t +Mt + τtWtNt = PtGt +BS

t−1 + (1 + ρPM
t )BM

t−1 +Mt−1

which can be rewritten in real terms

PM
t bt +mt = (1 + ρPM

t )
bt−1

Πt

+
mt−1

Πt

− Wt

Pt
Ntτt +Gt (34)

where real debt is de�ned as, bt ≡ BM
t /Pt, and real money balances, mt = Mt

Pt
.

G.5 The Discretionary Policy Problem

The policy under discretion can be described as a set of decision rules for {Ct, Yt,Πt, bt, τt, Gt}
which maximize the following Lagrangian,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ
+ βEt[V (bt,mt, εt+1)]

}

+ λ1t

[
Yt

(
1− φ

2
(Πt − 1)2

)
− Ct(1 + s(vt))−Gt

]
+ λ2t

[
(1− ε) + ε(1− τt)−1Y ϕ

t µ
−1
t − φΠt (Πt − 1)

+φβµ−1
t Y −1

t Et [M(bt,mt, εt+1)]

]
(35)

+ λ3t

[
βbtµ

−1
t Et [L(bt,mt, εt+1)]− bt−1

Πt

(
1 + ρβµ−1

t Et [L(bt,mt, εt+1)]
)

+
(

τt
1−τt

)
(Yt)

1+ϕ µ−1
t −Gt +mt − mt−1

Πt

]
+ λ4t

[
1− βµ−1

t EtN(bt,mt, εt+1)
]

+ λ5t

[
µt −

C−σt
(1 + s(vt) + s′(vt)vt)

]
+ λ6t[vt −

CtΠt

mt−1

]
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where the auxiliary functions are de�ned as,

M(bt,mt, εt+1) = µt+1Yt+1Πt+1 (Πt+1 − 1) (36)

L(bt,mt, εt+1) = µt+1(Πt+1)−1(1 + ρPM
t+1) (37)

N(bt,mt, εt+1) = µt+1(Πt+1)−1(1 + s′(vt+1) (vt+1)2) (38)

We can write the �rst order conditions (FOCs) for the policy problem as follows:
The FOC for consumption,

C−σt − λ1t [1 + s(vt)]− λ6t
vt
Ct

+ λ5tµtσC
−1
t = 0 (39)

output,

−Y ϕ
t + λ1t

[
1− φ

2
(Πt − 1)2

]
+λ2t

[
εϕ(1− τt)−1Y ϕ−1

t µ−1
t − φβµ−1

t Y −2
t Et [M(bt,mt, εt+1)]

]
+ λ3t

[
(1 + ϕ)Y ϕ

t µ
−1
t

(
τt

1− τt

)]
= 0 (40)

taxation,
ελ2t + λ3tYt = 0 (41)

government consumption,
χG
−σg
t − λ1t − λ3t = 0 (42)

in�ation

−λ1t [Ytφ (Πt − 1)]− λ2t [φ (2Πt − 1)]

+ λ3t

[
bt−1

Π2
t

(
1 + ρβµ−1

t Et [L(bt,mt, εt+1)]
)

+
mt−1

Π2
t

]
− λ6t

vt
Πt

= 0 (43)

marginal utility, µt,

λ2tµ
−2
t [−ε(1− τt)−1Y ϕ

t − φβY −1
t Et [M(bt,mt, εt+1)]]

+ λ3tµ
−2
t [−βbtEt [L(bt,mt, εt+1)] +

bt−1

Πt

ρβEt [L(bt,mt, εt+1)]− τt
1− τt

(Yt)
1+ϕ] (44)

+λ4t

[
βµ−2

t Et [N(bt,mt, εt+1)]
]

+ λ5t = 0

and velocity,
−λ1tCts

′(vt) + λ6t

+ λ5tµt

[
(2s′(vt) + s′′(vt)vt)

(1 + s(vt) + s′(vt)vt)

]
= 0 (45)
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The remaining FOCs are for government debt,

0 = −βEt
[
λ3t+1

Πt+1

(1 + ρPm
t+1)

]
+ λ2t

[
φβµ−1

t Y −1
t Et [M1(bt,mt, εt+1)]

]
+ βλ3t

[
µ−1
t Et [L(bt,mtεt+1)] + btµ

−1
t Et [L1(bt,mt, εt+1)]− ρbt−1

Πt

µ−1
t Et [L1(bt,mt, εt+1)]

]
(46)

−λ4t

[
βµ−1

t Et [N1(bt,mt, εt+1)]
]

and money balances,

βEt[−λ3t+1
1

Πt+1

+ λ6t+1
vt+1

mt

]

+ λ2t

[
φβµ−1

t Y −1
t Et [M2(bt,mt, εt+1)]

]
+βλ3t

[
β−1 + btµ

−1
t Et [L2(bt,mt, εt+1)]− ρbt−1

Πt

µ−1
t Et [L2(bt,mt, εt+1)]

]
− λ4t

[
βµ−1

t Et [N2(bt,mt, εt+1)]
]

= 0 (47)

The discretionary equilibrium is determined by the system given by the FOCs, (39),
- (47), the constraints in (35) , the auxiliary equations, (36)-(38), bond prices, PM

t =
βCσ

t Et [L(bt, εt+1)], and the exogenous process for the markup shock,

ln(εt) = (1− ρε) ln(ε) + ρε ln(εt−1) + σεεt, εt ∼ N(0, 1)

The solution to this system is a set of time-invariant Markov-perfect equilibrium policy rules
yt = H(st−1) mapping the vector of states st−1 = {bt−1,mt−1, εt} to the optimal decisions for
yt = {Ct, Gt, Yt,Πt, τt, bt,mt, P

M
t , λ1t, λ2t, λ3t, λ4t, λ5t, λ6t} for all t ≥ 0.

Solving this model can generate a positive steady-state debt-to-GDP ratio. However, it
is only when price stickiness is reduced to implausibly low levels (φ < 4, an e�ective average
price duration of less than 4 months) that the debt-to-GDP ratio can be turned mildly
positive. For example with φ = 2.5 (equivalent to a Calvo probability of no price change of
0.14 and an average price duration of just under 3.5 months), the steady-state debt-to-GDP
ratio is 13.3%, but this implies very large in�ation response to shocks alongside negligible
movements in the debt-to-GDP ratio. This suggests that the mild myopia adopted in this
paper is a more data-consistent motivation for existence of a positive steady-state debt
and the observed �uctuations in debt relative to that steady-state, which also facilitates a
comparison with the commonly used cashless economy framework of much New Keynesian
analysis of optimal policy.

H Switches in Policy Maker Myopia

In order to replicate the observed �uctuations in the debt-to-GDP ratio in the US, it is
necessary to allow the degree of policy maker myopia to �uctuate between high and low

levels, β̃H and β̃L as a two state Markov process with transition matrix,

[
pH 1− pH

1− pL pL

]
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where pi is the probability of remaining in regime i, i = H,L from the current period to the
next. As a result of this change the policy problem is reformulated as,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ
+ β̃i,tEt[V (bt, εt+1, β̃i,t+1)]

}

+ λ1t

[
Yt

(
1− φ

2
(Πt − 1)2

)
− Ct −Gt

]
+ λ2t

[
(1− εt) + εt(1− τt)−1Y ϕ

t C
σ
t − φΠt (Πt − 1)

+φβCσ
t Y
−1
t Et

[
M(bt, εt+1, β̃i,t+1)

] ]
(48)

+ λ3t

 βbtC
σ
t Et

[
L(bt, εt+1, β̃i,t+1)

]
− bt−1

Πt

(
1 + ρβCσ

t Et

[
L(bt, εt+1, β̃i,t+1)

])
+
(

τt
1−τt

)
(Yt)

1+ϕCσ
t −Gt − tr


The policy maker optimizes this Lagrangian by choosing Ct, Gt, Yt, Πt, τt, bt and the mul-
tipliers, λ1t, λ2t, λ3t. The only di�erence between these FOCs and those in the benchmark
model are that the FOC for debt now depends upon the myopia of the current policy maker,

β̃i,t, such that

PMt λ3t − β̃i,tEt
[
λ3t+1

Πt+1
(1 + ρPMt+1)

]
︸ ︷︷ ︸

tax smoothing

−λ3tC
σ
t

(
φε−1βEt

[
M1(bt, εt+1, β̃i,t+1)

]
−
[
(bt − ρ

bt−1

Πt
)EtL1(bt, εt+1, β̃i,t+1)

])
︸ ︷︷ ︸

debt stabilization bias

= 0 (49)

The solution to the resultant system of FOCs is a set of time-invariant Markov-perfect
equilibrium policy rules yt = H(st−1) mapping the vector of states st−1 = {bt−1, εt, β̃i,t} to the
optimal decisions for yt = {Ct, Gt, Yt,Πt, τt, bt, P

M
t , λ1t, λ2t, λ3t} for all t ≥ 0. In formulating

the policy problem in this way the policy maker does not try to tie the hands of their future
selves. They simply accept that there are periods in which they will be relatively more or
less patient. To allow for con�ict between two policy makers of di�erent degrees of myopia, it
would be necessary for each policy maker to evaluate the anticipated policy outcomes when
their opponent was in power using their own discount factor and adjust policies in in�uence
their opponent's behavior. It would be interesting to consider these strategic interactions in
future work.
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I Optimal Policy Under DiscretionWith Endogenous Short-Term
Debt

The Lagrangian for the policy problem can be written as,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt)

1+ϕ

1 + ϕ
+ βEt[V (bt, εt+1, β̃it+1,b

S
t )]

}

+ λ1t

[
Yt

(
1− φ

2
(Πt − 1)2

)
− Ct −Gt

]
+ λ2t

[
(1− εt) + εt(1− τt)−1Y ϕ

t C
σ
t − φΠt (Πt − 1)

+φβCσ
t Y
−1
t Et

[
M(bt, εt+1, β̃it+1, b

S
t )
] ]

+ λ3t


βbtC

σ
t Et

[
L(bt, εt+1, β̃it+1, b

S
t )
]

+ βbSt C
σ
t Et

[
K
(
bt, εt+1, β̃it+1, b

S
t

)]
− bt−1

Πt

(
1 + ρβCσ

t Et

[
L(bt, εt+1, β̃it+1, b

S
t )
])

− bSt−1

Πt
+
(

τt
1−τt

)
(Yt)

1+ϕCσ
t −Gt − tr


where

M(bt, εt+1, β̃it, b
S
t ) = (Ct+1)−σ Yt+1Πt+1 (Πt+1 − 1)

L(bt, εt+1, β̃it, b
S
t ) = (Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)

K
(
bt, εt+1, β̃it, b

S
t

)
= C−σt+1Π−1

t+1

We can write the �rst order conditions for the policy problem as follows: consumption,

C−σt − λ1t + λ2t

[
σε(1− τt)−1Y ϕ

t C
σ−1
t + σφβCσ−1

t Y −1
t Et

[
M(bt, εt+1, β̃it+1, b

S
t )
]]

+λ3t

 σβbtC
σ−1
t Et

[
L(bt, εt+1, β̃it+1, b

S
t )
]

+ σβbSt C
σ−1
t Et

[
K
(
bt, εt+1, β̃it+1, b

S
t

)]
−ρσβ bt−1

Πt
Cσ−1
t Et

[
L(bt, εt+1, β̃it+1, b

S
t )
]

+ σ
(

τt
1−τt

)
(Yt)

1+ϕCσ−1
t

 = 0

government spending,
χG
−σg
t − λ1t − λ3t = 0

output,

−Y ϕ
t + λ1t

[
1− φ

2
(Πt − 1)2

]
+λ2t

[
εϕ(1− τt)−1Y ϕ−1

t Cσ
t − φβCσ

t Y
−2
t Et

[
M(bt, εt+1, β̃it+1, b

S
t )
]]

+λ3t

[
(1 + ϕ)Y ϕ

t C
σ
t

(
τt

1− τt

)]
= 0

taxation,
ελ2t + λ3tYt = 0

in�ation,
−λ1t [Ytφ (Πt − 1)]− λ2t [φ (2Πt − 1)]
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+λ3t

[
bt−1

Π2
t

(
1 + ρβCσ

t Et
[
L(bt, εt+1, b

S
t )
])

+
bSt−1

Π2
t

]
= 0

and the FOCs for government debt bt and b
S
t , respectively,

−β̃i,tEt
[
λ3t+1

Πt+1

(1 + ρPM
t+1)

]
+ λ2tφβC

σ
t Y
−1
t Et

[
M1(bt, εt+1, β̃it+1, b

S
t )
]

+βCσ
t λ3t

 Et

[
L(bt, εt+1, β̃it+1, b

S
t )
]

+ btEt
[
L1(bt, εt+1, b

S
t )
]

+ bSt Et

[
K1

(
bt, εt+1, β̃it+1, b

S
t

)]
−ρ bt−1

Πt
Et

[
L1(bt, εt+1, β̃it+1, b

S
t )
]  = 0

and

−β̃i,tEt[
λ3t+1

Πt+1

] + λ2tφβC
σ
t Y
−1
t Et

[
M3(bt, εt+1, β̃it+1, b

S
t )
]

+βCσ
t λ3t

 btEt

[
L3(bt, εt+1, β̃it+1, b

S
t )
]

+ Et

[
K
(
bt, εt+1, β̃it+1, b

S
t

)]
+ bSt Et

[
K3

(
bt, εt+1, β̃it+1, b

S
t

)]
−ρ bt−1

Πt
Et

[
L3(bt, εt+1, β̃it+1, b

S
t )
]  = 0

J Lower Intertemporal Elasticity of Substitution for Govern-
ment Consumption

This section recreates Figure 4, but reduces the inverse of the elasticity of substitution
for government consumption in utility to σg = 1. This increases the use of government
consumption as a �scal policy instrument, but without changing any of the conclusions of
the main paper. See Figure 8 below.
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Figure 8: Impulse Response to Mark-Up Shock under High/Low Debt Regimes: Robustness
Check. Government consumption and output measured as percentage deviation from steady-
state. All other variations as deviation from steady-state. New Keynesian model without
�scal policy - green dotted line. Hypothetical tax rate which would o�set shock - dotted
magenta line. Monetary and �scal response under high myopia/debt regime - blue solid line.
Monetary and �scal response under low myopia/debt regime - red dot-dash line.
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