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ABSTRACT

Recent advances in artificial intelligence are primarily driven by machine learning, a prediction
technology. Prediction is useful because it is an input into decision-making. In order to appreciate
the impact of artificial intelligence on jobs, it is important to understand the relative roles of
prediction and decision tasks. We describe and provide examples of how artificial intelligence
will affect labor, emphasizing differences between when automating prediction leads to
automating decisions versus enhancing decision-making by humans.
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Much of the public attention paid to artificial intelligence concerns its impact on jobs.
Understanding this impact requires comprehending the capabilities of this technology. The
majority of recent achievements in artificial intelligence are the result of advances in machine
learning, a branch of computational statistics. Most of the concepts in standard machine learning
textbooks (like Alpaydin 2010 and Hastie, Tibshirani, and Friedman 2009) are familiar to
economists, like regression, maximum likelihood estimation, clustering, and nonparametric
regression. Other techniques are just entering the econometrician’s toolkit: regression trees,
neural networks, and reinforcement learning (for discussions, see Varian 2014;
Mullainathan and Spiess 2017; Athey and Imbens 2017). Over the past decade or so, advances in
computer speed, data collection, data storage, and algorithms have led to substantial improvements
in these techniques such that their use for commercial applications is proceeding rapidly.

Machine learning does not represent an increase in artificial general intelligence of the
kind that could substitute machines for all aspects of human cognition, but rather one particular
aspect of intelligence: prediction (Agrawal, Gans, and Goldfarb 2018). We define prediction in
the statistical sense of using existing data to fill in missing information. As deep-learning pioneer
Geoffrey Hinton (2016) said, “Take any old problem where you have to predict something and
you have a lot of data, and deep learning is probably going to make it work better than the existing
techniques.”

Prediction is useful because it is an input into decision-making. Prediction has no value in
the absence of a decision. In this sense, each prediction task is a perfect complement to a decision
task. A prediction specifies the confidence of a probability associated with an outcome under
conditions of uncertainty. As an input into decision-making under uncertainty, prediction is
essential to many occupations, including service industries: teachers decide how to educate
students, managers decide who to recruit and reward, and janitors decide how to deal with a given
mess. This wide breadth of application means that developments in artificial intelligence represent
what Bresnahan and Trajtenberg (1995) called a “general purpose technology.”

Prediction, however, is not the only element of a decision. Effective decision-making also
requires collection and organization of data, the ability to take an action based on a decision, and
the judgment to evaluate the payoffs associated with different outcomes. We characterize the

decision task as distinct from the prediction task (Agrawal, Gans, and Goldfarb 2018, 2019a).



We examine four direct effects through which advances in prediction technology may
affect labor in a task-based framework: 1) substituting capital for labor in prediction tasks, 2)
automating decision tasks when automating prediction increases the relative returns to capital
versus labor, 3) enhancing labor when automating the prediction task increases labor productivity
in related decision tasks and thereby increases the relative returns to labor versus capital in those
tasks, and 4) creating new decision tasks when automating prediction sufficiently reduces
uncertainty as to enable new decisions that were not feasible before.

First, artificial intelligence may directly substitute capital for labor in prediction tasks.
Some tasks, like demand forecasting, are already prediction tasks. Where humans currently
perform these prediction tasks, they are increasingly replaced by artificial intelligence. At the
same time, other tasks that were not historically viewed as prediction tasks are being transformed
into prediction-oriented tasks as machine learning improves and the quality-adjusted cost of
prediction decreases. For example, many parts of the workflow in human resources are being
broken down into prediction tasks so that they can then be performed by artificial intelligence
tools. For example, recruiting is the task of predicting, based on resumes, cover letters, LinkedIn
profiles, and interview transcripts, which subset of applicants will perform best in the job.
Promotion is the task of predicting which existing employees will perform best in a higher-level
position. And retention is the task of predicting which star employees are most likely to leave and
which of the available incentive options could most effectively be employed to encourage them to
stay.

Second, when automated prediction can increase the relative returns to capital versus labor
in complementary decision tasks, it can lead to the complete automation of a complementary
decision task. For example, human reaction times are slower than those for machines. The returns
to a machine predicting a potential car accident a few seconds or even a fraction of a second before
a human would predict the accident is higher when the response time is faster. Thus, automating
the prediction task increases the returns to also automating certain decision tasks associated with
vehicle control. Sometimes, the artificial intelligence is able to make better predictions than a

human could because it has access to different data, such as feeds from cameras, RADAR, and



LIDAR around a car.! Once the prediction task is automated, it increases the returns to automating
some of the complementary tasks, such as those associated with vehicle control.

Third, automating the prediction task, in some cases, may have no impact on the
productivity of capital performing a complementary task but may increase the productivity of
labor. For example, ODS Medical developed a way of transforming brain surgery for cancer
patients. Previously, a surgeon would remove a tumor and surrounding tissue based on previous
imaging (say, an MRI). However, to be certain all cancerous tissue is removed, surgeons frequently
end up removing more brain matter than necessary. The ODS Medical device, which resembles a
connected pen-like camera, uses artificial intelligence to predict whether an area of brain tissue
has cancer cells or not. Thus, while the operation is taking place, the surgeon can obtain an
immediate recommendation as to whether a particular area should be removed. By predicting with
more than 90% accuracy whether a cell is cancerous, the device enables the surgeon to reduce both
type I errors (removing non-cancerous tissue) and type Il errors (leaving cancerous tissue). The
effect is to augment the labor of brain surgeons. Put simply, given a prediction, human decision-
makers can in some cases make more nuanced and improved choices.

The fourth and final type of direct impact of artificial intelligence on labor happens when
automated prediction sufficiently reduces uncertainty as to enable new decision tasks that did not
exist before. The new tasks can be performed by capital or labor, depending on the relative costs
of each (Agrawal, Gans, and Goldfarb, 2019a, 2019b). Some tasks that are not economically viable
when uncertainty is high become viable as prediction technology reduces the level of
uncertainty. This relates to the reinstatement force in Acemoglu and Restrepo (2019) where a
freeing up of labor as a result of automation increases the returns to technologies that use labor
for new tasks. At this early stage in the development and use of machine learning, there are few
tangible examples of new tasks that have already arisen because of recent advances in prediction
technology.

The interaction of these four forces determines the net direct effect of cheaper
quality-adjusted predictions on labor demand. There are also indirect effects: As some tasks
become more efficient, demand for upstream and downstream tasks might change. For
example, an artificial intelligence that automates translation on an online trading platform

significantly enhances international trade (Brynjolfsson, Hui, and Liu, 2018). The application of

For an example of artificial intelligence detecting a crash two cars ahead via RADAR, before it was humanly possible
to predict, see https:/www.youtube.com/watch?v=FadR7ETT _1k (accessed on October 3, 2018).




this technology not only affects translators, but also the labor involved upstream and downstream
on both sides of the trade.

For individual workers, the relative importance of these forces will depend on the degree
to which the core skill they bring to their job is predicated on prediction. Workers, whose core skill
is something other than prediction, such as the brain surgeon described above, may find that
automated prediction enhances the value of their occupation. On the other hand, workers whose
core skill is prediction, such as human resource workers who screen resumes, may find the value
of their occupation diminished.

In our work with the Creative Destruction Lab at the University of Toronto, looking
systematically at several hundred artificial intelligence startups in the last few years, we have found
that these firms often discuss how their technology will affect labor markets in specific occupations
through substitution, complementarity, and demand expansion. We have seen very few companies
building unambiguously labor-replacing technologies.

Overall, we cannot assess the net effect of artificial intelligence on labor, even in the short
run. Instead, most applications of artificial intelligence have multiple forces that impact jobs, both
increasing and decreasing the demand for labor. The net effect is an empirical question and will

vary across applications and industries.

Automating Prediction Tasks

In this section, we describe examples that highlight substitution of human prediction by
machine prediction in real-world applications. The subsequent two sections describe how such
substitutions could increase either the relative returns to capital or to labor in the decision task and

therefore result in automating or increasing the demand for labor in the decision task, respectively.

Prediction in Legal Services

A number of artificial intelligence applications substitute capital for labor by automating
prediction tasks in legal work, while still leaving the decision tasks to the human lawyer. We
describe two examples.

Kira Systems uses artificial intelligence technology to scan contracts and summarize
relevant content. This may involve predicting which party in a particular lease agreement is liable

for what actions or expenses or it may involve scanning all of the contracts signed by a firm to



predict which ones would be impacted if that firm were involved in a merger or acquisition. It is
still up to human lawyers to make the decisions (as regulation requires), but Kira’s technology
predicts the relevance of clauses and information in a fraction of the time it would take a lawyer
or paralegal.

In addition, artificial intelligence technology is being used to predict likely judicial
outcomes based on earlier legal judgments. Blue J Legal’s artificial intelligence scans tax law and
decisions to provide firms with predictions of their tax liability. As one example, tax law is often
ambiguous on how income should be classified (as discussed in Alarie 2018). At one extreme, if
someone trades securities multiple times per day and holds securities for a short time period, then
the profits are likely to be classified as business income. In contrast, if trades are rare and assets
are held for decades, then profits are likely to be classified by the courts as capital gains. Currently,
a lawyer who takes on a case collects the specific facts, conducts research on past judicial decisions
in similar cases, and makes predictions about the case at hand. Blue J Legal uses machine learning
to predict the outcome of new fact scenarios in tax and employment law cases. In addition to a
prediction, the software provides a “case finder” that identifies the most relevant cases that help
generate the prediction.

The end result of this process is not certainty. In the securities trading example above, the
artificial intelligence predicts the likelihood of particular case facts being classified as business
income or capital gains. As Blue J Legal founder Benjamin Alarie (2018) describes it, judges take
the input of facts found at trial and output a judgment, using legal reasoning as a mapping function
from inputs to outputs. In contrast, the Blue J Legal artificial intelligence utilizes test-facts that are
assumed and entered into the system by the user, rather than the case facts found by trial. Instead
of legal reasoning, the mapping function is a prediction generated by machine learning that is based
on training data of past cases. Blue J Legal claims 90 percent accuracy. Given the uncertainty, a
lawyer still makes the ultimate decision.

These examples show how a machine can save time and improve accuracy in generating
predictions. In legal work, lawyers still make the ultimate decision. Thus, it is hard to forecast how
the effect of these artificial intelligence technologies will show up in the aggregate labor statistics
for legal work. They substitute for lawyers’ prediction tasks but may create opportunities at the
decision-task level because better prediction might affect prices and quantities in a way that

increases demand for legal decision-making overall.



Prediction in Driving

The potential for mass adoption of fully autonomous vehicles generates headlines, but
prediction technology is already changing driving in a number of ways that do not replace human
drivers with machines.

For example, vehicle manufacturers use artificial intelligence to warn drivers about
imminent risks like “there is probably a car in your blind spot” or “there is likely a pedestrian
behind your car” in the form of a beep or blinking light. The machine provides the prediction, but
the driver is still responsible for the decision of whether to stop, turn, or proceed.

Vehicle maintenance scheduling is another a prediction problem. Decades ago, Rust (1987)
developed an empirical model of Harold Zurcher, who was the superintendent of maintenance at
the Madison Wisconsin Metropolitan Bus Company. Using statistical predictions of Zurcher’s
decisions, the model could be used to substitute for his predictions about when buses would break
down. Today, advances in sensors and prediction algorithms have led to many new products that
predict when a vehicle will break down and thus inform the decision of whether to bring a vehicle
in for maintenance.

Finally, prediction is changing commercial driving by providing effective predictions of
the most efficient route between two locations at any given time. Perhaps the most dramatic
example is the case of London taxicabs. For decades, earning a taxi license in London meant
acquiring “The Knowledge,” which involved learning the location of every address in London as
well as the shortest route between any two addresses. To pass the resulting test took two to four
years of study with the help of specialist training schools. But now, best-route prediction apps like
Waze deliver “The Knowledge” to any driver with a smartphone, which is part of what enables
ride-sharing services such as Uber to compete with London taxis. Although the skill of London
cabbies did not diminish, their competitive advantage was seriously eroded by artificial
intelligence.

The end result on employment is unclear. While it is surely negative for the incomes of
London cabbies, overall it may be positive if more drivers (are allowed by regulators to) enter the
market. This provides some insight into the types of jobs likely to be most negatively affected by

artificial intelligence: jobs in which the core skill involves a prediction task.



Predictions in Email Responses

Composing an email response can be formulated as a prediction problem. Google
developed Smart Reply for its email service, Gmail, using artificial intelligence to scan incoming
emails and predict possible responses. Smart Reply doesn’t automate sending the email response
but rather predicts possible responses and provides the user with three suggestions. In 2018, within
weeks of Google rolling out Smart Reply as a default setting for all of its 1.4 billion active Gmail
accounts, 10% of all Gmail responses sent were generated by Smart Reply (as reported by Marcelis
and MacMillan 2018). This saves the user the time of composing a response in cases where one of
the three predicted replies are sufficient. However, the user must still decide whether to send a
predicted response or to compose one directly.

In some cases, this kind of artificial intelligence implementation might lead to a setting
where a worker must still apply judgment about the benefits and costs of a particular decision
before deciding or taking an action; in others, it might automate the full decision.

To understand how drafting email might affect different types of jobs differently, we turn
to the O*NET database. Sponsored by the U.S. Department of Labor through a grant to the North
Carolina Department of Commerce, O*NET offers detailed descriptions of the tasks involved in

almost 1,000 occupations (https://www.onetcenter.org).

This data includes a task described as “Prepare responses to correspondence containing
routine inquiries.” The job of Executive Assistants includes this task, along with eight other
occupations: Correspondence Clerks, Tellers, Receptionists and Information Clerks, License
Clerks, Legal Secretaries, Insurance Policy Processing Clerks, Medical Secretaries, and Loan
Interviewers and Clerks. Executive Assistants would typically draft possible responses for
someone else to decide whether or not to send, and so a system like Gmail’s Smart Reply fully
automates the Executive Assistant’s decision. In the other jobs, the worker might make use of this
technology but still retain the decision task of what to ultimately send. So, in the former case the
artificial intelligence replaces labor and in the latter case it enhances labor.

In this section, we provided examples in which machine prediction displaces human
prediction. However, we can say little about the overall effect on jobs, which depends on the

impact of better prediction on the decision tasks that they inform.

Automating Decision Tasks



Under certain conditions, automating the prediction task increases the relative returns to
automating the decision task, compared to performing the decision task with human labor. In other
words, when artificial intelligence is used to automate prediction, it can enhance the usefulness of
implementing other technologies to automate the decision. If both the prediction and the decision
are automated, it must be possible to specify the desired action to be taken for each realization of
uncertainty (that is, for each realization of a prediction). For reasons of simplicity, the most
common type of machine-based decision is binary — say, to reject or accept a credit application or
to recommend or reject a candidate for a job interview. As artificial intelligence improves, it will
provide better predictions in more complex environments.

We have started to see this type of automation in environments where machine-learning
techniques are applied to mimic human decision-making. For example, a machine fitted with
sensors is trained by observing the choices made by a human operator. With sufficient
observations, the machine learns to predict what action a human would take given different sensory
inputs. For instance, the autonomous operation of vehicles on public roads has been advanced by
humans driving millions of kilometers in vehicles that are able to collect both the perception data
regarding environmental conditions on the road (input) and the action data regarding the decisions
made by human drivers behind the wheel (output) in response to the perception data. In many
cases, the response time of an automated control system is sufficiently faster than that of a human
so machines are better able to take advantage of the higher fidelity predictions generated by
artificial intelligence compared to predictions generated by humans. Thus, the returns to
automating the action decision (control of the vehicle) increase upon automating the prediction
task. So, the application of artificial intelligence to automate the prediction task leads to
automating the entire driving task resulting in a full substitution of labor for capital.

Autonomous driving gets a great deal of attention because so many people spend so much
time driving. The labor-saving time from automation is therefore potentially large. However, this
is also an area where removing human operation completely involves substantial risks, because
the cost of failure can be so high. At present, a measure of human supervision is still required due
to the probability of edge cases arising for which the machine has not been appropriately trained.

Commercial cleaning illustrates a more pedestrian attempt at automation. A&K Robotics
takes existing, human-operated cleaning devices, retrofits them with sensors and a motor, and then

trains a machine learning-based model using human operator data so the machine can eventually



be operated autonomously. Artificial intelligence enables prediction of the correct path for the
cleaning robot to take and also can adjust for unexpected surprises that appear in that path. Given
these predictions, it is possible to pre-specify what the cleaning robot should do in a wide range of
predicted scenarios, and so the decisions and actions can be automated. If successful, the human
operators will no longer be necessary. The company emphasizes how this will increase workplace
productivity, reduce workplace injuries, and reduce costs.

Artificial intelligence also has enabled the automation of vehicles which move items from
the storage part of a warehouse to the packing and shipping department. Much of this automation
occurred without machine learning, by simply using dedicated tracks for delivery vehicles.
However, recent applications of artificial intelligence enable swarms of robots to predict optimal
routes and avoid collisions, eliminating the need for human controllers to decide on route planning.
Under these conditions, warehouse vehicles can be fully automated.

Similarly, vehicle automation is growing in the mining industry, in particular for remote
operations. In Australia’s Pilbara region, the iron-ore mining sites are over 1000 miles from the
nearest major city. Given the remoteness of the region and the extremely hot temperatures, human
truck drivers are unusually expensive. Mining giant Rio Tinto initially addressed this problem by
driving the trucks remotely from the offices in Perth, but in 2016 the company went a step further
and deployed dozens of self-driving trucks. Artificial intelligence made this automation of the
steering decision task possible by predicting hazards in the roads and by coordinating the trucks
with each other. As with robot cleaning and robots in warehouses, with better prediction other
technologies made automation of the decision tasks possible. Automated prediction was the last
step in removing humans from the decisions involved.

Unlike autonomous vehicles on public roadways, in these controlled environments with far
fewer “edge” cases, cheap prediction has already led to widespread automation of the decisions.
In this way, jobs in which the core bottleneck to automation is prediction become more likely

candidates for elimination.

Augmenting Labor on Decision Tasks

Discussions of artificial intelligence often envision a future of full automation. Although
this may happen in some situations, in this section we discuss examples where the automation of

prediction through artificial intelligence can improve decision-making by humans and
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consequently the productivity of labor, specifically by allowing workers to make state-contingent

decisions that reduce errors, enhancing payoffs.

Bail Decisions

Judges make decisions about whether to grant bail and thus to allow the temporary release
of an accused person awaiting trial, sometimes on the condition that a sum of money is lodged to
guarantee their appearance in court. Kleinberg et al. (2017) study the predictions that inform this
decision:

Soon after arrest, a judge decides where defendants will await trial, at home or in jail. By
law, this decision should be based solely on a prediction: What will the defendant do if
released? Will they flee or commit a new crime? ... Currently the predictions on which
these decisions are based are, in most jurisdictions, formed by some judge processing
available case information in their head. ... A judge must trade off these risks [flee or
commit a new crime] against the cost of incarceration. This is a consequential decision for
defendants since jail spells typically last several months (or longer); recent research
documents large costs of detention even over the long term. It is also costly to society: at
any point in time the US has over 750,000 people in jail, disproportionately drawn from
disadvantaged and minority populations.
Bail risk-prediction software will not replace people. Judges will continue to weigh the relative
costs of errors, and in fact the US legal system requires human judges to decide. But artificial
intelligence could enhance the productivity of judges. The main social gains here may not be in
hours saved for judges as a group but rather from the improvement in prediction accuracy. Police
arrest more than 10 million people per year in the United States. Based on Als trained on a large
historical dataset to predict decisions and outcomes, the authors report simulations that show
enhanced prediction quality could enable crime reductions up to 24.7 percent with no change in
jailing rates or jailing rate reductions up to 41.9 percent with no increase in crime rates. In other

words, if judicial output were measured in a quality-adjusted way, output and hence labor

productivity could rise significantly.

Emergency Medicine

Prediction technology additionally has the potential to make medicine more efficient and
effective through the personalization of treatment. In particular, machine learning can identify
those patients for which a given treatment will be most effective.

In the United States in particular, many prominent policymakers, economists, and medical

researchers have argued that doctors test too much. For example, doctors appear to test too much
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for heart attacks among patients who arrive at the emergency department of hospitals, in the sense
that the average return to testing appears to be less than the average cost. Mullainathan and
Obermeyer (2018, on who we draw heavily in this discussion) emphasize that prediction tools
enable doctors to use the theoretically relevant object: marginal benefits and marginal costs. Using
machine learning, Mullainathan and Obermeyer demonstrate that not only does the system suffer
from over testing (many low-risk patients are tested), but it also suffers from under testing (many
high-risk patients go untested). Using better prediction models when patients arrive at the
emergency department could substantially increase health outcomes for the same spending (or
substantially reduce spending for equal health outcomes).

Automation of the prediction of who to test does not change the workflow. The machine
prediction saves only a little time for the doctors, nurses, and staff working in the emergency
department, who would otherwise make the testing decision quickly, but it improves efficiency
and outcomes, both reducing the number of unnecessary tests and increasing necessary ones, thus
saving lives. In other words, automating the prediction task improves the productivity of
emergency medicine in the context of heart attacks without much substitution for human work.
Furthermore, by helping to overcome problems of under-testing, it increases demand for labor in
complementary downstream tasks such as surgery, the subject of the next section.

In this section, we highlighted how automation of the prediction task can enhance labor in
the decision task. The prediction tasks in these examples do not require much human labor, and so
the net effect could be labor-enhancing with better and sometimes more decision tasks done by

labor.

Indirect Effects: Augmenting Labor on Other Tasks

When automated prediction leads to better decisions, labor can also be augmented through

tasks that are upstream or downstream of the improved decision task.

Drug Discovery
A company called Atomwise uses artificial intelligence to enhance the drug discovery
process. Traditionally, identifying molecules that could most efficiently bind with proteins for a

given therapeutic target was largely based on educated guesses and, given the number of potential



12

combinations, it was highly inefficient. Downstream experiments to test whether a molecule could
be of use in a treatment often had to deal with a number of poor-quality candidate molecules.
Atomwise automates the task of predicting which molecules have the most potential for
exploration. Their software classifies foundational building blocks of organic chemistry and
predicts the outcomes of real-world physical experiments. This makes the decision of which
molecules to test more efficient. This increased efficiency, specifically enabling lower cost and
higher accuracy decisions on which molecules to test, increases the returns to the downstream lab
testing procedure that is conducted by humans. As a consequence, the demand for labor to conduct
such testing is likely to increase. Furthermore, higher yield due to better prediction of which
chemicals might work increases the number of humans needed in the downstream tasks of bringing
these chemicals to market. In other words, automated prediction in drug discovery is leading to
increased use of already-existing complementary tasks, performed by humans in downstream

occupations.

Language Translation

Machine language translation offers another example of machine prediction affecting a
wide variety of downstream decisions. In this setting, artificial intelligence predicts how a human
would translate a string of characters from one language into another. In one of the first attempts
to estimate the economic impact of a commercial deployment of artificial intelligence,
Brynjolfsson, Hui, and Liu (2018) measure the effect of an improvement in the quality of
translation by an artificial intelligence on the volume of trade conducted on the online platform
eBay. The authors find that moving to a translation using artificial intelligence resulted in a 17.5%
increase in the volume of trade. This improvement in the prediction task results in a significant
increase in downstream trade activity, much of which we can assume is performed by human labor.
Of course, increased trade has many forms of impact on economic activity, and so we cannot draw
any conclusions on the overall impact of this implementation of artificial intelligence on labor in
equilibrium.

This section provided examples of the effects of improved prediction on workers in other

parts of the production chain, beyond the focal prediction and decision tasks.
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The Case of Radiology

Radiology offers an example of how artificial intelligence is leading to the automation of
an occupation. At an artificial intelligence conference several years ago, deep learning pioneer
Geoffrey Hinton (2016) publicly asserted, “We should stop training radiologists now,” comparing
the profession to Wile E. Coyote from the Road Runner cartoon who has run off the cliff but hasn’t
yet looked down. However, the effect of artificial intelligence on the number of workers in
radiology turns out, on closer examination, to be ambiguous and nuanced. This occupation offers
a useful case study that employs several of the themes developed so far.

Hinton’s remark was motivated by the progress of artificial intelligence tools that are
increasingly applied to identify abnormalities in medical images. IBM and GE commercialized
artificial intelligence tools that identify breast, lung, and other cancers from medical images.
Smaller companies and startups have similar products. For example, Zebra Medical Vision
received approval from the Food and Drug Administration to predict whether coronary heart
disease is present in a CT scan. Zebra also develops tools to predict the presence of various medical

issues, including bone, liver, and lung disease (as discussed at http://www.zebra-med.com).

A common practice is to embed image-recognition technology using artificial intelligence
into the software that radiologists use to read scans. The software highlights areas predicted to be
abnormalities. Radiologists examine the highlighted image when interpreting and reporting on the
results. This approach uses artificial intelligence to augment the diagnosis decisions of humans
rather than replace them altogether (Wang et al 2016). In these cases, a human radiologist remains
in the loop for each scan, but the readings become faster and more accurate. If the number of scans
stays fixed, then the demand for radiologists declines. On the other hand, if readings are faster,
more accurate, and cheaper, then the number of scans could increase enough to counteract the
increased number of scans read per radiologist. This scenario belongs in the earlier section where
artificial intelligence automates the prediction task but not the decision.

However, some recent research suggests that machine prediction can meet or even surpass
human diagnostic accuracy in detecting some types of disease (for example, Lee et al. 2017). While
the current level of technology suggests a human should remain in the loop, it is plausible that over
time artificial intelligence will lead to full automation of the image interpretation task. In this

scenario, if the “interpret imaging results” task is done by machine, and to the extent that this task
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takes up a significant fraction of the overall time, then automating this task could reduce the
demand for radiologists.

But even in this situation, many tasks in the workflow of diagnostic radiologists would
remain: choosing the exam, directing the technologists, reporting on the results, and deciding on
an action given the probabilities reported by the machine. Many radiologists serve as the “doctor’s
doctor,” communicating the meaning of images to other patient-facing doctors (Hall 2009). The
interpretation of scans is often probabilistic, and radiologists have expertise in interpreting
probabilities to help the patient-facing doctor recommend a course of action. Thus, reporting on
the results may require a human intermediary between the machine prediction and the doctor who
requested a test. For example, a human is needed to consider payoffs in order to recommend a
course of action. What is the cost of conducting a biopsy if no disease is present? What is the cost
of failing to conduct a biopsy if disease is present? In other words, what is the probability of disease
threshold over which a biopsy (or some other further action) should be conducted? How does that
vary based on patient characteristics, whether fully codifiable (such as age and medical history) or
not (such as the doctor’s sense of the patient’s personality and preferences)? As the prediction task
becomes better, faster, and cheaper, the demand for these related, complementary tasks may
increase. In other words, it is plausible that automating the image prediction task, while reducing
the demand for labor to perform that specific task, may increase the overall demand for labor due
to an increased demand for complementary tasks.

In Table 1, we list the 29 different tasks that comprise the radiologists’ workflow according
to the occupational classification database O*NET. Only two of these tasks are directly affected
by an image recognition Al: #3 and #25. Overall, the 29 tasks reveal that even if image
interpretation becomes fully automated, plenty of tasks for humans remain. The key open question
is whether those tasks are best conducted by a radiologist. Perhaps some of these tasks might be
better performed by medical practitioners with different expertise? For example, judgment on the
best course of action for a patient might be best decided by a primary care physician or perhaps
even a social worker. The supervision of radiology technologists might be better managed by more

experienced radiology technologists.

Table 1
Twenty-nine Tasks Associated with the Occupation of Radiologist
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10.
11.
12.
13.
14.

15.

16.
17.

18.
19.

20

Obtain patients' histories from electronic records, patient interviews, dictated reports, or
by communicating with referring clinicians.

Prepare comprehensive interpretive reports of findings.

Perform or interpret the outcomes of diagnostic imaging procedures including magnetic
resonance imaging (MRI), computer tomography (CT), positron emission tomography
(PET), nuclear cardiology treadmill studies, mammography, or ultrasound.

Review or transmit images and information using picture archiving or communications
systems.

Communicate examination results or diagnostic information to referring physicians,
patients, or families.

Evaluate medical information to determine patients' risk factors, such as allergies to
contrast agents, or to make decisions regarding the appropriateness of procedures.

Provide counseling to radiologic patients to explain the processes, risks, benefits, or
alternative treatments.

Instruct radiologic staff in desired techniques, positions, or projections.

Confer with medical professionals regarding image-based diagnoses.

Coordinate radiological services with other medical activities.

Document the performance, interpretation, or outcomes of all procedures performed.
Establish or enforce standards for protection of patients or personnel.

Develop or monitor procedures to ensure adequate quality control of images.

Recognize or treat complications during and after procedures, including blood pressure
problems, pain, oversedation, or bleeding.

Administer radiopaque substances by injection, orally, or as enemas to render internal
structures and organs visible on x-ray films or fluoroscopic screens.

Participate in continuing education activities to maintain and develop expertise.

Participate in quality improvement activities including discussions of areas where risk of
error is high.

Supervise and teach residents or medical students.

Implement protocols in areas such as drugs, resuscitation, emergencies, power failures, or
infection control.

. Schedule examinations and assign radiologic personnel.
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21. Provide advice on types or quantities of radiology equipment needed to maintain facilities.
22. Participate in research projects involving radiology.

23. Perform interventional procedures such as image-guided biopsy, percutaneous transluminal
angioplasty, transhepatic biliary drainage, or nephrostomy catheter placement.

24. Administer or maintain conscious sedation during and after procedures.

25. Interpret images using computer-aided detection or diagnosis systems.

26. Serve as an offsite teleradiologist for facilities that do not have on-site radiologists.

27. Develop treatment plans for radiology patients.

28. Treat malignant internal or external growths by exposure to radiation from radiographs (x-

rays), high energy sources, or natural or synthetic radioisotopes.
y g gy y Y

29. Conduct physical examinations to inform decisions about appropriate procedures

Source: O*NET, https://www.onetonline.org/link/summary/29-1069.10.

Technology using artificial intelligence will also affect radiology in a variety of other ways,
apart from predicting abnormalities in scans. For example, radiologists often dictate their reports.
Past practice was that the recorded reports were sent to a (human) transcription service (as in Task
#4 in Table 1). But many radiology departments already use artificial-intelligence-based
transcription services to automate the transcription task. While this step can reduce costs and
reduce wait times for radiologists and patients, the direct effect is the elimination of transcription-
related jobs (as discussed in Thrall et al 2018), not radiologists.

The overall message here is that even when considering what may seem at first to be a
clear-cut case—automation of the prediction related to reading medical image scans—the overall
effects on jobs can be complex. Humans working in radiology who are not radiologists and do not
work on scans—such as those providing transcription services—may have their jobs automated
completely. Radiologists perform many other non-prediction tasks, and so artificial intelligence is
unlikely to automate these tasks; however, it is not clear that radiologists will be the humans who
perform these tasks if reading scans becomes automated. It is ultimately not obvious even whether
the number of radiologists will rise or fall, since that will depend on whether radiologists perform
the non-prediction tasks and whether overall demand for radiology services rises as radiology

becomes more efficient.
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New Tasks Through New Decisions

As artificial intelligence improves prediction, it may allow for new decisions to be made
where previously it was impossible or too costly to do so. As Herbert Simon (1972) emphasized,
when rationality is bounded — for example, in terms of being able to distinguish adequately
between important outcomes in a complex environment — economic agents will instead resort to
rules. Those rules can take various forms: they may be followed by individuals, be part of
operational procedures in companies, or be embedded in machines. However, when uncertainty is
reduced, generic rules may be replaced with probability-driven decisions. This is important
because state-contingent choices can be consequential for companies. For example, Google
deployed artificial intelligence developed by its DeepMind unit to optimize the use of air
conditioners in its data centers. The artificial intelligence enables new decisions on energy usage.
The end result was a 40% reduction in energy used in a highly energy intensive operation (Evans
and Gao 2016).

New tasks may also be performed by humans. As highlighted above in the context of drug
discovery, artificial intelligence is already having an impact on scientific research. Uncertainty is
pervasive in many aspects of research, and so prediction technology is likely to have a large effect
on the production of science. Cockburn, Henderson, and Stern (2019) show that machine learning
is used by scientists in a wide variety of fields. Figure 1 shows the number of publications in
computer science and applications journals by artificial intelligence field. The blue, dark red, and
dark green lines show publications in three different artificial intelligence subfields of computer
science: machine learning, robotics, and symbolic logic. The results show a slow and steady
increase in publications in all three, with the largest increase in machine learning. The most striking
result in the figure, however, is the yellow line. It shows the increase in publications outside of
computer science that mention machine learning. In other words, it demonstrates that, since 2012,
the biggest change in artificial intelligence publications did not occur in computer science. It
occurred in other fields of science that use machine learning. The same is not true for robotics and
symbolic logic (light blue and pink lines). This use of machine learning as an input into innovation
is apparent in our own field of economics, in which researchers are increasingly using machine

learning to improve our statistical models and advance our knowledge of economics (Athey 2019).
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Figure 1: Publications in Computer Science versus Application Journals, by artificial
intelligence Field
Source: Cockburn, Henderson, and Stern (2019, Figure 4)

In this way, the recent advances in machine learning can be seen as an invention in the
method of inventing, as highlighted in Griliches (1957) for hybrid corn. Cockburn, Henderson,
and Stern (2019) describe this insight: “The challenge presented by advances in artificial
intelligence is that they appear to be research tools that not only have the potential to change the
method of innovation itself, but also have implications across a wide range of fields.” Agrawal,
McHale, and Oettl explain how artificial intelligence may influence the knowledge production
function (2019a) and model the implications of using artificial intelligence to produce a map of
the complex combinatorial search space of ideas for the purpose of reducing the cost of predicting
which combinations of ideas offer the greatest promise (2019b). In the context of Atomwise, new
tasks may arise if drug discovery becomes more efficient and drugs can be better-targeted to
narrower populations. In other words, in addition to increasing demand for existing tasks, artificial
intelligence is likely to create innovations that lead to new industries and new types of jobs with
new tasks in those industries.

At this early stage in the diffusion of machine learning technology, examples of new tasks
created by artificial intelligence are scarce and speculative. However, we provide three examples
that apply artificial intelligence in unique areas that suggest the potential for new industries, jobs,

and tasks.



19

At the University of Toronto, Alan Aspuru-Guzik’s research group is developing a “self-
driving chemistry lab” that enables the discovery of chemicals and materials at a fraction of the
price of a current lab. Using advances in robotics and machine learning, the lab could be deployed
in thousands of locations around the world, without the need for a local workforce with deep
expertise in chemistry. This would enable industries in rural areas and developing countries to
have access to a wide variety of materials. The inventors emphasize that this tool could “provide
the scientific community with an easy-to-use package to facilitate novel discovery at a faster pace”
(Roch et al. 2018, p. 1) and “democratize autonomous discovery” (p. 12). One can imagine many
new tasks associated with the arrival of an autonomous chemistry lab with the capability of on-site
discovery.

The commercialization of space offers another example of how machine learning could
generate a new industry at a commercial scale. Uncertainty is a key challenge to operating assets
in space. For example, the risk of destruction from debris is a well-established deterrent for
deploying commercial satellites (Liou and Johnson 2006). The company Seer Tracking has built
an artificial intelligence to predict the trajectory of space debris. Most directly, this could create a
set of (human and machine) tasks focused on moving space assets out of the way of incoming
debris. Perhaps more importantly, it could enable more commercial opportunities in space by
reducing the risk that a space asset will be destroyed by debris. In other words, the uncertainty
associated with space debris may mean that some decision tasks are never undertaken. Resolving
this uncertainty could enable new commercial opportunities in space.

Another example is the management of chronic disease. One such disease, diabetes, leads
to hundreds of thousands of deaths annually. Key to preventing hospital admissions and severe
complications is the control of blood glucose levels; however, many diabetes patients have
difficulty maintaining a relatively safe level of glucose control. Better prediction of current glucose
levels could substantially reduce complications by enabling response (Ismail 2017). This improved
prediction could generate a new set of tasks that benefit from lower cost and more accurate
monitoring. Potential new tasks in managing chronic diseases like diabetes include managing the
sensors, interpreting the data, and real-time advising on dietary and exercise habits. Inherent in

these new tasks is the ability to tailor medical decisions and treatment to individual patients
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(Contreras and Vehi 2018). Improved management of chronic disease could arise because of the
new individual-level decisions enabled by better prediction.

These examples are speculative. The technology is too early and the diffusion is too limited
to offer definitive examples of new tasks arising from recently automated predictions. At the time
of this writing, the most likely consequences of artificial intelligence on labor come from existing
tasks that are affected from better, faster, and cheaper prediction. We already observe real
examples of the reduction of labor due to automating existing prediction tasks, and we also see
examples of increased demand for labor due to enhanced demand for certain existing tasks that are
complements to prediction. Our broader theme is that uncertainty can render certain activities
economically infeasible and so reduced uncertainty can enable new opportunities and new tasks to

be implemented by some mixture of capital and labor.

Conclusion

Our contribution to the task-based model of technology and labor (as discussed
in Autor and Acemoglu 2011; Acemoglu and Restrepo 2019) is to highlight the usefulness of
thinking in terms of prediction tasks and decision tasks, where decision tasks are perfect
complements to prediction tasks, in the sense that prediction has no value without a decision.
This structure describes how artificial intelligence directly substitutes capital for labor in the case
of prediction tasks and may indirectly effect decision tasks by increasing or decreasing the
relative returns to labor versus capital for decision tasks. It may also lead to increases in
labor tasks upstream or downstream.

For any given worker, a key predictor of whether artificial intelligence will substitute for
their job is the degree to which the core skill they bring to the job involves prediction. Transcription
jobs are being automated as the core skill of that labor is predicting which words to type upon
hearing a recording. For London taxi drivers, when artificial intelligence was employed to predict
the optimal route through the City’s streets, their jobs were put at risk (though other drivers’ labor
became augmented).

Artificial intelligence does not fit easily into existing analyses of the effect of automation
on labor markets. The reasons are threefold. First, prediction is always strictly complementary to
other tasks — namely decision-related tasks. Those tasks can be existing or newly possible because

of better prediction. Second, better prediction improves decisions—whether taken by labor or
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capital—by enabling more nuanced decisions through the reduction of uncertainty. Finally, it is
not yet possible to say whether the net impact on decision tasks — whether existing or new — is
likely to favor labor or capital. We have found important examples of both, and there is no obvious
reason for a particular bias to emerge. Thus, we caution on drawing broad inferences from the
research on factory automation (for example, Acemoglu and Restrepo 2017; Autor and Salomons

2018) in forecasting the net near-term consequences of artificial intelligence for labor markets.
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