
NBER WORKING PAPER SERIES

AVERAGE CROSSING TIME:
AN ALTERNATIVE CHARACTERIZATION OF MEAN AVERSION AND REVERSION

John B. Donaldson
Rajnish Mehra

Working Paper 25519
http://www.nber.org/papers/w25519

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2019

We thank Parantap Basu and George Constantinides for their helpful comments and Tyler 
Beason, Seunghoon Na and Sergio Villar for programming assistance. The views expressed 
herein are those of the authors and do not necessarily reflect the views of the National Bureau of 
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by John B. Donaldson and Rajnish Mehra. All rights reserved. Short sections of text, not 
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Average Crossing Time: An Alternative Characterization of Mean Aversion and Reversion
John B. Donaldson and Rajnish Mehra
NBER Working Paper No. 25519
January 2019
JEL No. C13,C53,E3,E44,E47,G1,G12

ABSTRACT

We evaluate the properties of mean reversion and mean aversion in asset prices and returns as 
commonly characterized in the finance literature. The study is undertaken within a class of well-
known dynamic stochastic general equilibrium models and shows that the mean reversion/
aversion distinction is largely artificial. We then propose an alternative measure, the ‘Average 
Crossing Time’ that both unifies these concepts and provides an alternative characterization. 
Ceteris paribus, mean reverting processes have a relatively shorter average crossing time as 
compared to mean averting processes.

John B. Donaldson
Columbia Business School
3022 Broadway, Uris Hall
New York, NY 10027
jd34@gsb.columbia.edu

Rajnish Mehra
Department of Economics
W. P. Carey School of Business
Arizona State University
PO Box 879801
Tempe, AZ  85287-9801
and NBER
rajnish.mehra@asu.edu



 2 

 

1. Introduction 
 

There has been a long-standing debate in the asset pricing literature as to 

whether time series of equity and bonds returns are ‘mean reverting’ or ‘mean 

averting’. While the conventional wisdom is that the former returns are mean 

reverting and the latter mean averting, the issue is by no means settled.1 The 

debate has also diffused to the predictability literature. The implicit underlying 

belief in predictability studies is that the predicting variables (dividend-price 

ratios, earnings-price ratios) follow stationary processes that revert to some 

unspecified normal value (the mean of the process). As Campbell and Shiller 

(2001) put it: “It seems reasonable to suspect that prices are not likely ever to 

drift too far from their normal levels relative to indicators of fundamental value, 

… when stock prices are very high relative to these indicators, then prices will 

eventually fall in the future to bring the ratios back to more normal historical 

levels”. Intuitively, a mean reverting process captures this property: above 

average values of the stochastic process must regularly be followed by below 

average values and vice-versa. Conversely, mean aversion intuitively suggests 

that the stochastic process drifts away from its mean and implies that mean 

aversion is unlikely to be a characteristic of a stationary time series. We show 

that this intuition is misleading. 

                                                
1 There is a plethora of empirical studies on mean reversion in stock prices at various time 
horizons. See for example, papers by Summers (1986), Campbell and Mankiw (1987), Fama and 
French (1988), Lo and MacKinlay (1988) and Poterba and Summers (1988). Others, most notably 
Kim, Nelson and Startz (1991) and Richardson and Stock (1989) have challenged some of their 
conclusions. See also the conflicting perspectives in, e.g., Lewellen (2004), Torous et al. (2004), 
and Campbell and Yogo (2006) versus Goyal and Welch (2003), Welch and Goyal (2008) and 
Bossaerts and Hillion (1999). Other important work includes Cochrane(2011), Kim and Nelson 
(1998), Bessembinder et al. (1995) and Daniel (2001). Zakamulin (2015), provided an excellent 
summary of this literature and explores the evidence for mean reversion and predictability over 
periods exceeding ten years. 
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There are at least four characterizations of mean reversion in the finance 

literature and it is our intention to evaluate their relationship vis-à-vis the above 

intuition. Multiple characterizations of mean reversion (aversion) have arisen, in 

part, because the empirical literature is hampered by the insufficiency of financial 

time series of data for discriminating statistical tests. We sidestep this issue by 

considering stochastic model economies that allow the generation of arbitrarily 

long return series. Specifically, we call into service several widely used dynamic 

production-based macro-finance models, where the time series of security prices 

and their returns are stationary by construction, and explore the extent to which 

they satisfy these various characterizations. A key finding for these models is that 

the measures of mean reversion/aversion used in the literature classify some of 

these series as mean reverting and others as mean averting.  

 Negative (positive) autocorrelation in financial return series, for example, 

is sometimes cited as the identifying characteristic of mean reversion (aversion) 

and we adopt it as our benchmark property. In particular, this identifying 

characteristic classifies the stationary time series characterizing equity returns as 

‘mean reverting’ yet the stationary time series characterizing bond returns is 

mean averting (a result consistent with conventional understanding) in the case 

of the simplest baseline equilibrium model. This result demonstrates that mean 

reversion, as defined by the benchmark property, is not unique to the 

phenomenon that ‘above average values of stochastic process must regularly be 

followed by below average values and vice-versa’ since mean averting time series 

are equally consistent with this characterization. We later show that more 

realistic macroeconomic versions of the model generically display benchmark 

mean aversion in all financial time series, whether equity or debt, a result that 

leads us to question the usefulness of that characterization. 

In this paper we propose an alternative measure, “Average Crossing Time” 

(ACT) to characterize  mean reversion/aversion. We  argue that it provides not 

only a more useful measure of the degree of mean reversion/aversion, but also a 
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more intuitive sense of one time series being ‘more strongly mean-

reverting/averting’ than another. It also allows us to rank existing 

characterizations of mean reversion according to how restrictive their measure of 

mean reversion actually is. 

As its name suggests, the ACT measures the average number of periods in 

the evolution of a discrete time stochastic process that the process is strictly 

above or below its mean value.  Broadly speaking, mean reverting processes have 

a relatively shorter average crossing time as compared to mean averting ones. 

Using the ACT measure we explore the antecedent probability structures behind 

the traditional notions of mean reversion and aversion. We identify the properties 

of the ACT measure and compare them with the traditional autocorrelation 

measures for the class of macroeconomic models referred to above. Our analysis is 

both analytical and computational, with the latter consisting of wide-ranging 

numerical simulations.  

An outline of the paper is as follows: In section 2 we identify four 

definitions of mean reversion and mean aversion found in the literature, and 

partially characterize their interrelationships. In Section 3, these definitions are 

applied to the analysis of a simple baseline dynamic macroeconomic model.2 The 

ACT characterization of “mean reversion” is introduced in Section 4. In Section 5 

we add additional features to the Baseline model and study the resulting 

implications for the strength of mean reversion/aversion in model-generated 

                                                
2 The primary intellectual antecedents of the present study are Basu and Vinod (1994), Cecchetti 
et al. (1990), Guvenen (2009), and Lansing (2015). In a Lucas (1978) style exchange model where 
dividends follow a Markov switching regime (see Hamilton (1989)), Cecchetti et al. (1990) are 
able to replicate the observed patterns of mean reversion measures at various horizons. Guvenen 
(2009) explores asset pricing in a model where firm owners and workers have differential access to 
securities markets: firm owners trade both equity and default free bonds while workers are limited 
to bond trading. Lansing (2015) explores the asset pricing consequences of variation in factor 
shares. Both report slight negative correlation in equity returns based on data, and as equilibrium 
outcomes of their models. We note that the analysis in Basu and Vinod (1994) explores some of 
the same issues and motivates the present study. None of these studies, however, explores the 
fundamental information being conveyed by the mean reversion / aversion property, but rather 
focus on identifying this property in model generated return series. 
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equity returns and equity premium data. Section 6 relates these concepts to the 

data by computing empirical autocorrelations and ACTs for prominent financial 

return series while Section 7 concludes. 

 

2.  Mean Reversion 

The empirical finance literature proposes multiple  characterizations of 

“mean reversion.” In the discussion below we examine these alternate 

characterizations and explore their interrelationships. They are as follows, 

expressed in terms of an arbitrary stationary stochastic process .  

A stationary stochastic process  is said to be mean reverting if and  

only if: 

I.           (1) 

II.      , for any j ≥ 1.    (2) 

Property I is cited by Guvenen (2009) and Lansing (2015). An early 

proponent of Property II is Summers (1986). Property II is also used in Poterba 

and Summers (1988) and Mukherji (2011) for their discussions of mean reversion 

in stock price and rate of return series.3  

The relationship between Properties I and II is captured in Proposition 

2.1. 

Proposition 2.1:  Let  be a stationary, mean reverting, stochastic 

process with an ergodic probability distribution. With respect to that 

distribution, statistical properties I and II detailed above are related according to  

a) II I 

                                                
3 Property II stands in specific contrast to the analogous property of a random walk where 
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b) If  for all j    (3) 

then        I II. 4   

Proof:  See the Technical Appendix. 

Condition (3) captures the idea that a process displays strong comovement 

in adjacent elements but that the effect diminishes very rapidly for series 

elements progressively in the future.  

The significance of Proposition 2.1, simple as it is, lies in Part a): if the 

financial series generated by a particular model fails to satisfy Property I, it will 

fail to satisfy Property II as well. In this sense Property II is a more restrictive 

criterion than Property I. For this reason we focus on assessing how restrictive 

Property I actually is, knowing that Property II is even more so. In fact, they 

will be shown by the ACT measure to be so strikingly restrictive that it is not 

surprising to find they are not robustly satisfied in data.  

III.   For any time integers , 

  .     (4) 

Property III, to our knowledge first proposed in Exley et al. (2004), is a 

comment about sequential changes in the values of the stochastic process  

rather than a statement about the statistical properties of the values themselves.  

Interpreting , the price of equity (capital) at time t, Property III suggests 

that increases in the price of equity over a particular interval of time will 

generally be followed by reductions in the price in future time intervals. As such, 

it represents a sense of mean reversion different from Properties I and II. In all of 

                                                
4 For mean aversion the connections of Proposition 2.1 are reversed. Using the notation of 
Proposition 2.1 they are: 
a) I  II 

b) If  for all j  then II  I.              (3a) 
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the characterizations we consider, if the identifying inequality is reversed, the 

series is said to be mean averting.  

Property III can be guaranteed if certain sufficient conditions are satisfied.  

For any time integers , define  as: 

    

This allows a simple statement of the following proposition: 

Proposition 2.2:  If is concave then  is mean reverting by 

 Property III.5  

Proof: See Exley et al. (2004). 

If condition (4) were not satisfied, then increases in the value of the series 

would, on average, be followed by further increases and declines by further 

declines. Accordingly, the range of possible evolutions of a series would tend to 

fan out with the variance of the difference exploding as the difference in time 

indices grew, as in a random walk. Concavity of  precludes this effect: 

increases in  𝑥"# must be followed, on average, by eventual decreases and vice 

versa, a weak sense of mean reversion. 

Property III is rarely employed in the empirical finance literature, and, as 

we demonstrate later, neither implies nor is it implied by either Property I or II. 

We will thus largely focus on Properties I and II since they are the most 

frequently cited. 

IV.  ,            (5) 

where  is the period t conditional expectations operator,  is the 

unconditional mean of the series  and  a constant.6 

                                                
5 If is convex then  is mean averting  
6 This characterization is emphasized in Bekaert and Hodrick (2017). It is also expressed as 
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Property IV identifies a mean reverting process as one that is always being 

“pulled towards its mean”: if, at some t, the process is above its mean , 

the expected change next period should be negative and vice versa, with the 

“strength” of the pull-back determined by  and the extent of the current 

deviation . Of all the characterizations of mean reversion this is the most 

intuitively obvious.  

As noted in the introduction, the notion of mean reversion is one of above-

average realizations of the series being regularly followed by below-average values 

and vice versa. Which of the above properties is consistent with this intuition? 

Are the properties consistent with one another? To what extent do they refine 

the basic concept of stationarity?7 Since the context of these questions is one of 

equilibrium economic and financial time series, we choose to address them first 

within the framework of the simplest stochastic general equilibrium 

macroeconomic model. 

 

3. Modeling Perspective and the Baseline Paradigm 

 We first focus on a simple representative agent neoclassical stochastic  

macroeconomic model with “planning” representation:  

                                                
7 As regards these questions, we can get an indication of the answer by looking at the simplest 
“canonical mean reverting process”, an AR(1): 

 

For this process,  which is mean averting by Property I. Furthermore, since 
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        (6) 

  s.t.     

   ,  given, .   

   . 

Adopting the customary notation,  represents the representative 

agent’s period utility function defined over his period t consumption  and 

leisure, (1 – ), where is labor supplied,  denotes the representative 

firm’s CRS production function of capital stock  and labor supplied with 

the stochastic total factor productivity shock. The probability distribution 
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 As the notation suggests, the state variables for this economy are  and 
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8 The productivity disturbance  will typically be of the form  where  is an AR(1) 
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joint process on  is stationary.9, 10 As a result the stochastic processes 

governing investment, , consumption, c , labor service, n  and 

output  are also stationary. The same investment and 

consumption functions arising as the solution to (6) coincide with the aggregate 

investment and consumption functions arising from an analogous decentralized 

market economy in recursive competitive equilibrium, a fact well known to the 

literature; see, e.g., Prescott and Mehra (1980), or Brock (1982). 

 These decentralization schemes for (6) may be generalized to 

accommodate an implied financial market where risk free debt and equity are 

competitively traded.11 Under this expanded interpretation, the period t dividend 

satisfies 

            (7) 

while the ex-dividend aggregate equity price, , is identified with 

next period’s capital stock: 

                                                
9 Our notion of (strong) stationarity for a discrete time Markov process is as follows: let s, t 

be arbitrary time indices and X the state space with , and  a subset.  
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As for part (ii), the stochastic kernel, the expression  in footnote 3 can be shown to be 

increasing, order reversing and to satisfy the “Feller Property.” By Theorem 3.2 in Kamihigashi 
and Stachurski (2014) a unique stationary probability distribution exists with the indicated 
properties. 
11 As such, the financial market can be regarded as “complete.” 
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 .12             (8) 

In (7) denotes the competitive wage rate, which, in equilibrium, satisfies 

    . 

Accordingly,      

       (by CRS)    (9) 

where  denotes the net return on unlevered equity from 
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 The period price, , of a risk-free bond paying one unit of consumption in 

period t+1, irrespective of the realized state, is 

    (10) 

with the risk-free rate  
 
satisfying . Accordingly, 

the equity premium is defined by . 

As continuous bounded functions of the economy’s state variables,

, ,  and  are also stationary stochastic 

processes.  

 

 3.1. The Baseline Model 

We first restrict problem (6) by requiring that: 

 , ,  ≡ 1,    (11) 

                                                
12 In a related study, Lansing (2015) refers to this dividend expression as the “macroeconomic 
dividend.” With this identification the dividend is assumed to be exclusively financed out of 
capital’s income share. 
13 Identification (9) does not hold in more elaborate models with costs of adjusting the capital 
stock. 

   pt
e = k

t+1

 wt

    
w

t
= f

2
k

t
, n

t( )λt

   
1+ r

t+1
e =

p
t+1
e +d

t+1

p
t
e     

= f
1

k
t+1

, n
t+1( )λt+1

+ 1−Ω( )

    
r
t+1
e = f

1
k

t+1
, n

t+1( )λt+1
−Ω

 pt
b

     

p
t
b = pb k

t
,λ

t( ) = β
u

1
!c
t+1

,1− !n
t+1( )

u
1

c
t
,1−n

t( )
dG !λ

t+1
;λ

t( )∫

    
r
t
b = rb k

t−1
,λ

t−1( )
   
1+ r

t+1
b( ) = 1/ p

t
b

  rt
p = r

t
e −r

t
b

    
pe k

t
,λ

t( ),

    
pb k

t
, λ

t( )
    
re k

t
, λ

t( )
    
rb k

t
, λ

t( )
    
r
t
p k

t
, λ

t( )

   
u c

t( ) = ℓn c
t( )

     
y

t
= f k

t
, n

t( ) !λt
= !k

t
α!λ

t  nt   Ω = 1



 12 

and   a strictly positive i.i.d. stochastic process.     (12) 

It is widely known that the optimal policy functions assume the form 

    and     (13)  

        (14) 

Accordingly, 

 ,      (15)  

    
(16)
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Proof: See the Technical Appendix. 
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equivalent, and that the distinction arises in the simplest equilibrium 

macroeconomic models.  

Corollary 3.1 Dividends, equity prices and default-free debt prices are 

mean averting under Property II.  

Proof: A consequence of Proposition 2.1 (see footnote 5).  

Furthermore, these observations are generic in the sense expressed in the 

following result: 

Proposition 3.2:  Consider any equilibrium model of the general form (6) 

for which the equilibrium investment function  is continuous and 

increasing in both its arguments. Suppose also that the period t price of equity 

and the period t+1 level of the capital stock coincide (no costs of adjustment). 

Then under both Properties I and II  will be mean averting. If , 

where 
 
is continuous and increasing in both its arguments, then  will be 

mean averting as well. 

Proof:  See the Technical Appendix. ■ 

 Most of the macroeconomic models to be considered in this paper satisfy 

the conditions of the above proposition. Hence the results in Proposition 3.2  

apply quite generally.  

We next examine mean reversion (Property I) in the equity and bond 

return series for this model. 

Proposition 3.3: For Model (6), specialized by (11) and (12): 

a.   ; so that equity returns may be mean 

reverting by Property I.  
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Proof: See the Technical Appendix.    
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 It is clear (see the Proof of Proposition 3.3) that the concavity of the 

production function  plays the key role in inducing mean reversion (as 

characterized by Property I) in equity returns, a fact first observed in Basu and 

Vinod (1994). Risk-free returns, however, are mean averting. 

 Taken together, Propositions 3.1 and 3.3 remind us that mean reversion 

in equity returns need not imply mean reversion in equity prices (at least by the 

criterion of Property I).16 That mean reversion in returns is compatible with 

mean aversion in prices is already well known (Spierdijk and Bikker (2012)). It is 

surprising, however, to find this compatibility in the simplest possible dynamic 

equilibrium context. 

 It is difficult to derive fully general results for Property III without further 

specialization of the productivity process.17 Consider Proposition 3.4. 

Proposition 3.4:  Consider model (6) specialized as per (11) with a 

productivity shock of the form , where  i.i.d. 18 .  Then, 

 (i) The equity price series and dividend series are mean averting by 

Property III; 

 (ii) The return on equity is mean reverting by Property III. 

 Proof:  See Donaldson et al. (2015). 

 The proof of Proposition 3.4 reveals that concavity in production  

is also key in generating Property III mean reversion in equity returns. These 

results are entirely consistent with those obtained for our earlier analysis of 

Properties I and II. Nevertheless, the fact that Property III is not discriminating 

                                                
16 Indeed, in this simple model both equity prices and dividends are mean averting, yet equity 
returns are nevertheless mean reverting. 
17 To show, for example, that  is mean averting, it is sufficient to show  is convex 

as a function of t-s, where . Variances of products of random 

variables are complex quantities. 
18 This shock process is typically used in the business-cycle-literature. 
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across AR(1) processes for various  tends to disqualify it as a critical mean 

reversion characterization. 

 For the Baseline Model, Property IV is not satisfied; there appears no 

single  for which condition (5) holds. It is strongly mean reverting, however, in 

the sense that if  for all t, then  implies  and vice 

versa if . 

If the notion of mean reversion is intended to capture the property that 

above average values of a stochastic process must regularly be followed by below 

average values, then all the series considered thus far, , and 

 qualify: each follows a stationary stochastic process that converges to a 

unique, irreducible ergodic set. Yet, as Propositions 3.1. – 3.3 make clear,  

(i) mean aversion in a time series (by Properties I – III) does not imply non-

stationary, and (ii) stationary of a series does not guarantee mean reversion by 

any of the Properties I – IV.  

Properties I – IV thus appear to represent artificially restrictive 

distinctions relative to the basic intuitive sense of a mean reverting series. A 

more useful characterization of mean reversion should allow easy comparisons of 

the following sort: when is one time series more highly mean-reverting than 

another? Intuitively, a more highly mean reverting series should cross its mean 

more often; that is, with greater “frequency.”19 Crossing the mean with greater 

frequency must in turn imply less persistence as regards the series being 

exclusively either in states above or below its mean. In the next section we 

develop this concept of persistence and relate it to the various characterizations 

of mean reversion presented thus far. 

 

                                                
19 A crossing of the mean from above at time t would signify that 𝑥# ≥ 𝑥̅, yet  𝑥#&' < 𝑥̅, and 
analogously for crossing the mean from below. 
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4. An Alternative Metric 

In view of the preceding discussion, we propose “Average Crossing Time” 

(ACT) as a simple measure of persistence. Intuitively a larger ACT would 

roughly correspond to less frequent crossings of the mean in turn suggesting 

weaker mean reversion. We offer the simple ACT measure because not only does 

it help to evaluate Properties I – IV, but because it that provides an intuitive 

sense of one series being more weakly mean reverting than another. 

 A discrete-time stochastic process’s average crossing time (ACT) is the 

average number of time periods before the process transitions from above its 

unconditional mean to below its unconditional mean or vice versa. Subject to 

certain modest refinements, the ACT can be computed by dividing the length of 

the series by the number of crossings of the mean observed over its duration. 

Under this concept, an economic time series is said to be mean reverting if and 

only if its ACT is finite. To gain some intuition for the ACT -autocorrelation 

relationship, we computed these quantities for the financial time series generated 

by the Baseline model. Table 4.1 presents the results. 

Table 4.1 

Baseline Model: Correlations and ACTs (i) 

 

       

 .39 .39 -.30 .39 .03 

 ACT  ACT  ACT  ACT  ACT  

 2.70 2.70 1.66 2.70 2.02 

(i)These ACT computations (averages) include the period of crossing. See footnote (23) 
ahead for the justification behind this convention. In all cases, the series length is 
100,000.  

 

Two observations stand out. First, the ordering (smallest to largest) of 

correlations and ACT s is the same, subject to rounding and numerical 

approximations: a more positive autocorrelation is associated with a larger ACT, 
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which implies less frequent “crossings.” Second, the single negatively 

autocorrelated series, {𝑟#*}, is the only one for which the ACT is less than two. In 

the remainder of this section, we explore the generality of these observations. 

First note that the state variables for any DSGE model follow a Markov 

process for an appropriately defined state space and thus can be well-

approximated by a Markov chain of sufficiently high dimension. The same is true 

for all the endogenous return series arising in equilibrium. Accordingly, we focus 

our attention on chain representations. Furthermore, when appropriately 

constructed, a specific two state Markov chains turns out to be all that is 

necessary for the ACT computation. 

To see this, consider an N state irreducible Markov chain   with states 

indexed by , transition probabilities  

and ergodic probabilities  20 We will subsequently interpret 

these quantities as return or price measurements. Let T denote the chain’s transition 

probability matrix with entries . Without much loss of generality, we may assume 

there exists a state  such that  

,  

a restriction that allows the unambiguous definition of the sets  and , 

where  

 and  .21  

We construct a derivative (two state) Markov chain  on the sets  

and  by defining its  transition probabilities as follows: 

                                                
20  will subsequently represent equilibrium price or return series. 

21 If, for some  then  is in neither  nor  which distorts the relationship of 

the original transition matrix, which includes , to the “aggregated” process .  
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 , 

, 

 and 

. 

 

 

Let  denote the transition probability matrix with the above entries, 

        

 = 
     

       , 

  

and denote the long run ergodic probabilities governing the relative frequency of 

observing, respectively, elements of  and  by  and  where  

 , and  . 

For any discrete time Markov process , we define the average crossing 

time from above as the average number of periods the process assumes values 

above its mean, inclusive of the first period it “crosses”; i.e., assumes a value 
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j= ĵ+1

N

∑

 T
AB

  γ
A

  γ
B

 T
AB   γ

A

  φAA   φAB

  γ
B

  φBA   φBB

  γ
A

  γ
B

  πA   πB

   

π
A

= π
j

γj ∈ γ
A
∑

   

π
B

= π
j

γj ∈ γ
B
∑

    
!η

t{ }



 19 

below its mean. We denote this quantity by . The average crossing time 

from below is defined analogously and is denoted by . In the case of the 

two state Markov chain , these quantities are easily computed as follows: 

  

               

     .22 

Similarly,  

. 

With these quantities in mind, we focus exclusively on the “set chain”  

rather than its antecedent, . The justification for this choice takes the form 

of a small proposition: 

Proposition 4.1:  For any irreducible Markov chain   

 and . Accordingly, 

 

Proof:  See the Technical Appendix.  

                                                
22 One could also define the average crossing time from  to  by the average time the process 

remains in state , not including the period of crossing. Identify this quantity as  where 

 and   

    Clearly , as the respective formulae confirm. We choose to work with  

rather than and the analogous  rather than as to do so proves to be 
algebraically simpler. 
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Proposition 4.1 simply claims that the ACTA and ACTB values for the 

original chain and its derived “set chain” are identical.  Hence, we shift our focus 

to the latter. We do not claim, however, that , or 

that any other statistical properties beyond ACTA and ACTB are the same for 

both series. 

We next initiate a straightforward characterization of . Its 

properties are listed below. All the calculations are entirely straightforward and 

are provided in the Technical Appendix. 

A.   and ,  

where  represent, respectively, the ergodic probabilities of the process 

being in set  or .  

B.  As noted earlier,  and . Accordingly, 

“Average Crossing Time,” ACT, satisfies   

 

      (18) 

C.  .     (19) 

From equation (19), we see that the same autocorrelation can arise from 

many different   pairs; to illustrate, any 

  yields a , yet the 

corresponding ACTs are, respectively, 2, 2.762, and 19.053. Independence, as 

measured by , can, in fact, be consistent with many patterns 

(as captured by the  values). 
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D. Proposition 4.2:  If , then . 

If , then  implies . 

First observe that Proposition 4.2 is consistent with the values presented 

in Table 4.1: the only negative autocorrelation is  and its 

ACT = 1.66, suggesting very frequent crossings. Note that the values in Table 

4.1 also confirm the observation formalized as Proposition 4.1: although the 

statistics computed there are based on the full series “ ” the ACT -

correlation relationship expressed in Proposition 4.2 for the “{𝛾"#-.}” series is 

observed. 

As modest as it is, Proposition 4.2 is a result of interest. Essentially it says 

that if Properties I or II are to be satisfied, the process in question must have an 

ACT of two or less which suggests very frequent crossings relative to the model 

time period. If real world data were subject to either Property I or II criteria, it 

is almost certain that tests for mean reversion will fail. To put it more starkly, 

the ACT of “white noise” is also 2. 

Figure 1 jointly illustrates observations C and D for various 

magnifications: in particular the range of ACTs associated with any degree of 

autocorrelation, and that all ACTs ≤ 2 are identified with negative 

autocorrelation.  
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E.  Consider two distinct, irreducible two-state Markov chains,  and 

 with transition probability matrices  and , respectively, where   

 

 

Suppose  and . Then  

if and only if .       (20) 

From the example in part (C) above, it is clear that the statement of our 

original motivating assertion is not generally true: a higher ACT value is not 

equivalent to higher autocorrelation. Yet, this assertion appears to capture the 

relative autocorrelation-ACT pattern observed in Table 4.1, which suggests that 

the underlying multi-state probability transition matrices are “approximately” 

symmetric, a fact that follows intuitively from the technology shock symmetry.  

F.  By continuity, assertion (E) can be generalized in the following way. 

Consider a family of irreducible, two state Markov chains of the form . Let      

0𝛾"#
12 and 0	𝛾"#

4444	2  be two such chains and let us associate them with transition 

probability pairs  and , respectively. We are interested to 

identify the set A, where 

 : for any , where (i)  and (ii) 

, then  (iii) . 

By (C) it is also true that for set A: (iv) . If 

either inequality (i) or (ii) is strict, then (iii) and (iv) are strict. 
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That the set A is non-empty follows from E and continuity: there must 

exist a region surrounding the 45º line (where ) for which greater 

ACTs and greater (more positive) autocorrelations increase hand in hand. The 

question remains only “how large” the region is. The answer is: quite large. This 

region is portrayed in Figure 2 and was numerically constructed using the 

following alternative representation of the set A:. 

 and .  
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AA = φBB

    
A = φAA, φBB( ) : ∂ACT /{ ∂φAA ≥ 0
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For  that are far from symmetric (that is,  and  are very 

different; i.e., the non-shaded region of Figure 2), we do not observe ACT and 

autocorrelation increasing in tandem as our original intuition suggested. While 

individually  and  uniformly, it does not 

necessarily follow that, e.g., . To illustrate, compare the ACTs 

for =(.9, .05) and =(.9, .10): 

   

  

The phenomenon arises because the relative stationary probabilities change as 

 increases: more probability weight is placed on the lower , 

causing the overall ACT to decline. If , there is little change in the 

corresponding  when either  or is marginally increased, so that 

the more intuitive relationship between the ACT and its corresponding 

autocorrelation is observed.  

Observation C also suggests that to identify mean reversion solely with 

either Property I or II is to forgo information. Any value that this particular 

measurement assumes is clearly compatible with a wide range of stochastic 

structures ( ). It is rather the knowledge of  and  that is 

critical to a comprehensive description of a “mean-reverting” process for 

investors. If the intuitive notion of “mean reversion” is the sense of “frequent 

crossings,” then as regards the ACT measurement, a mean reverting process by 

Properties I or II is not far from a sequentially independent one. 

The results in Table 4.1 are also in the spirit of Observations E and F. 

Recall that the time series on which the values reported in Table 4.1 are 

generated arise by approximating the underlying real economy about its steady 

state. Given i.i.d. productivity shocks, the economy evolves symmetrically (about 
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its steady state), suggesting that to a first approximation . The lock-

step increases in ACT and correlation that are manifest in Table 4.1 follow 

naturally from Observation F; equivalently, the series described in Table 4.1 all 

have corresponding .  

Note also that the statistics computed for Table 4.1 were created from the 

basic underlying  processes rather than its “aggregate state” process . 

The fact that the relationships of Proposition 4.2, which are based on the 

transformed  , are borne out in ACT data generated by the original  

again confirms that 𝐴𝐶𝑇(𝛾"#-.) = 𝐴𝐶𝑇;𝛾"# <  as per Proposition 4.1. 

 Certain distinctive results in Table 4.1 are unique to the Baseline 

parameterization (in particular, to the  assumptions). In particular 

 and ACT = ACT . These identities follow 

from the fact that . Accordingly,  exceeds its mean when 

 does and vice versa. With identical ACTs, their autocorrelations must be 

identical. Furthermore, since ,  will exceed its mean if and only if 

 falls short of its mean, and vice versa, leading to identical ACTs for  and 

. These relationships do not generally apply to more elaborate versions of 

the Baseline formulation (  is necessary).  

 Let us in this context reinforce our earlier remarks concerning the 

commonplace characterizations of mean reversion. The results of Table 4.1 clearly 

suggest that to identify a mean reverting series exclusively with negative 

autocorrelation is not fully informative: all the series in Table 4.1 mean revert 

(they have finite ACT measurements), yet only  is negatively autocorrelated. 
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Negative autocorrelation means “extremely frequent crossings of the mean” (a 

very small ACT value) nothing more and the nature of these crossings can differ 

widely (Observation C). 

 We conclude this section with some summary remarks: 

1.  Multiple ACTs map into the same autocorrelation measure, so that the latter 

is the coarser measure (and, therefore, less informative). 

2.  ACTA and ACTB provide more information as they directly measure the 

inverse of the frequency of transition. 

3.  Properties I and II, most especially, thus represent very restrictive 

characterizations of mean reversion. 

The Baseline model falls short, however, of a full-fledged business cycle 

model on many dimensions. In particular, none of the aggregate series is 

sufficiently persistent vis-à-vis the data. In the next section we remedy this 

particular shortcoming and explore the consequences of this and other model 

generalizations for “mean reversion.” 
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5. Model Generalizations 

 In this section we explore how the ACTA, ACTB, ACT and autocorrelation 

of security prices and returns are affected by adding a variety of model features 

to the Baseline formulation. It is well known that these added features, especially 

in combination, allow the Baseline model to approximate fairly well much of the 

observed statistical behavior of the U.S. economy’s macro aggregate time series. 

In particular, we consider: (1) persistence in the productivity shocks, (2) 

incomplete depreciation, (3) greater concavity in the representative agent’s period 

utility function, (4) habit formation, (5) the addition of a labor-leisure choice,  

and (6) factor share uncertainty. We describe in detail the consequences of (1) 

and (2) as these modifications have substantial implications. Because their effects 

are largely marginal, we only offer a brief summary of the results arising from (3) 

– (6). 

 

5.1 Adding Persistence in the Productivity Shocks 

Table 5.1 and Proposition 5.2 illustrate the consequences of introducing  

persistence in the productivity shocks into the Baseline Model in a the way 

typical of the DSGE literature. We specialize the production technology to be of 

the form  where ;  is i.i.d., , and 

. Even with persistence in the productivity shocks of this type, the decision 

rules take the same form as (13) – (14).23  

                                                
23 The necessary and sufficient conditions for the optimal investment function is: 

 . For the indicated functional forms and decision rules, this 
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Furthermore, the addition of persistence also does not alter the expressions 

for  and . However, the expressions for  and  are modified as follows: 

 with .   (21) 

As regards prices and dividends, the results mirror their earlier 

counterparts. 

Proposition 5.1:  For the Baseline model, where  the equity price 

series , the dividend series {dt}, and the risk free asset price series  are 

all mean averting by Property I. 

Proof: See the Technical Appendix. 

 Our analysis of returns relies on numerical simulations of (13) – (17). 

Panel A of Table 5.1 documents the correlations while panel B gives the 

corresponding ACTs; for representative cases the individual   and  

are provided as well. 
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Table 5.1 
Model 2: Autocorrelations, ACTs (i) 

  

(ii) 

Panel A: Autocorrelations: Various  

       
 .39 .54 .68 .80 .90 .98 

 .39 .63 .80 .84 .67 .46 

 -.30 -.16 -.02 .12 .25 .35 

 .39 .63 .80 .84 .68 .46 

 .03 .03 .03 .03 .03 .03 

Panel B: ACTs 

        

 2.70 3.14 3.83 4.91 7.20 13.89 

 2.68  3.80   13.18 

 2.71  3.86   14.44 

 2.70 3.52 4.87 5.39 3.71 2.84 

 2.69  4.88   2.82 

 2.71  4.86   2.87 

 1.66 1.80 1.97 2.17 2.41 2.60 

 1.65  1.96   2.60 

 1.69  1.98   2.61 

 2.70 3.51 4.90 5.40 3.72 2.84 

 2.67  4.84   2.85 

 2.71  4.95   2.82 

 2.02 2.02 2.02 2.02 2.02 2.02 

 2.02  2.02   2.02 

 2.02  2.02   2.02 
 
(i)   Statistics based on the original base time series of length 10,000 
(ii) The numbers reported in this table are unaffected by the magnitude of . They are also 

unaffected by the choice of , .  
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 While the results of Table 5.1–Panel A for equity returns mirror the 

conclusions of Propositions 3.3 for the  case, they are not robust: sufficient 

persistence in the random productivity disturbance yields an equity return series that 

is mean averting (by Properties I and II). The other patterns are consistent with the 

conclusions of Proposition 4.2, negative autocorrelated series have ACTs < 2, and 

Observation F: for all series ACTs and correlations increase and decrease in tandem. 

This latter fact follows from the recognition that all the financial series evolve 

roughly symmetrically about their unconditional means, with the implication that 

their corresponding TAB matrices are close to symmetric. 

The results of Table 5.1 for the  series are partially rationalized in 

Proposition 5.2. 

Proposition 5.2: Consider the model defined by (13) and (14) with production 

technology and shock process specialized to  where  

. A sufficient condition for bond and equity returns to be mean averting 

by Properties I and II is that . 

Proof: See the Technical Appendix. 

 Proposition 5.2 argues that sufficiently persistent productivity disturbances in 

conjunction with production function concavity results in Property I  mean 

aversion (risk free returns are always so). Therefore, if a model of this sort is to come 

close to matching the observed high persistence in output, equity returns will be 

mean averting by Property I and thus Property II.24 

 None of these results is surprising in the least: the process on the disturbance 

component, , is itself highly mean averting (by Property I) 

                                                
24 This follows from Proposition 2.1. 
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only if , a  selection inconsistent with the behavior of its counterpart, the Solow 

residual. For calibrations customary to the macro-finance literature  mean 

aversion in equity returns results as well. It is not obvious what model features would 

allow high persistence in aggregate series (as the data reveals) to be compatible with 

mean reversion in equity returns and the equity premium, at least as characterized by 

Properties I and II. Cogley and Nason (1995) emphasize the close relationship of the 

properties of the productivity process to the derived properties of DSGE models’ state 

variables and thus security prices and returns. 

 

Proposition 5.3: Consider a stochastic process of the form 

, where  is i.i.d. . Define a new stochastic process by 

  . Then,  

   . 

Proof:  See the Technical Appendix25.  

 

Proposition 5.3 bears upon two other unexpected features of Table 5.1. First, as 

productivity persistence 	increases, , while always positive, first 

increases (seeming to peak at ) and then monotonically declines. The same 

pattern is observed for , although this is to be expected in view of the 

close association of  and  noted earlier. For the indicated shock process the 

price of the bond is specialized to the form indicated in footnote 26 and is composed of 

                                                
25 We thank Sergio Villar for his help in proving Proposition 5.3. 
 
 

   ρ < 0

   
ρ > 0( )

     !xt
= ρx

t−1
+ !ε

t     
!ε
t{ }

    
N 0,σ

ε
2( )

    
!λ
t

= e !xt

     
cov !λ

t
, !λ

t+1( ) > 0 if 1 > ρ > 0
< 0 if−1 <ρ < 0

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

 ρ     
corr !p

t
b, !p

t+1
b( )

   ρ = .6

    
corr !r

t
b, !r

t+1
b( )

   
!p

t
b{ }    

!r
t
b{ }



 
 
 

34 

three building clocks, the positive constant , a capital stock term  

and a productivity shock term . While the second term is mean averting for all 

values of , the third term is Property I mean averting for , and 

Property I mean reverting for   by Proposition 5.3 with the switch 

occurring for  slightly greater than .6 (since ). Thus for low values of , the 

mean aversion across the two terms is reinforcing as  increases; for  exceeding .64, 

the (Property I) mean reversion of the third term works against the (Property I) mean 

aversion of the second to bring about the observed effect. We lack an intuitive 

explanation. 

The second curious fact is the near independence of the  series, as 

identified by  (since this measurement includes the period of 

crossing, the average number of periods strictly above and strictly below the mean are 

individually each about one). In fact, this near independence is robust to all the model 

modifications considered in this paper.	

  Turning to Property III, as shock persistence increases ( ) our earlier 

Property III results (Proposition 3.4) are weakened for prices: Table 5.2 summarizes 

the results of extensive numerical simulations that compute  for a 

wide class of {r, s, t, u}, where , and  is chosen from 
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Table 5.2 

Correlations: Various Series 
 

 

Simulation Results for s = r+i, t = s+j, u = t+k 

 

 

Series Correlation Range of Values across all i, j, k 

(i)   ambiguous (–0.08, 0.07) 

(ii)  (–0.18, 0.00) 

(iii)  (–0.15, 0.00) 

 

 These results are largely inconsistent with earlier results concerning 

for Property I (see Table 5.1, right most column), a fact that 

accounts for our earlier comment that Property III represents a fundamentally 

different measurement from either Property I or II.26  

We close Section 5.1 with a summary of what we have learned: First, 

persistence in the productivity disturbance generically overturns specific results 

relative to the case of independence: equity returns appear necessarily to be Property 

I mean reverting only in the presence of low persistence productivity disturbances. 

Proposition 5.3 further suggests that this particular phenomenon is likely to be 

pervasive across many DSGE formulations, implying that the search for mean 

reversion in equity returns and the equity premium, at least as characterized by 

Properties I and II, and III, is unlikely to be fruitful – if the present family of models 

                                                
26 For this reason it deserves greater recognition and evaluation. The patterns in Table 5.2 are largely 
consistent with Proposition 3.4. We thank Natalia Gershun for her many contribution to Table 5.2. 
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has anything to say about actual economies. To put it differently, we find it 

unsurprising from a theoretical perspective, that evidence for mean reversion in 

historical equity returns is weak if, indeed, it is based on the economic fundamentals 

emphasized in the present, simplified macro-analysis. 

5.2 Incomplete Depreciation 

 In this section we modify the model of Section 5.1 to admit partial 

depreciation. As a result, the equation of motion on capital stock becomes: 

   . 

 With this change, closed form expressions for the risk-free bond price and its 

rate of return are not available. We therefore continue to rely exclusively on 

numerical simulation. Table 5.3 summarizes the results. 

   
k
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t
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Table 5.3  
Autocorrelations, ACTs 

Baseline Case: ,  
Various Ω, r 

 
Panel A: Autocorrelations 

          

          

 0.39 0.68 0.98 0.67 0.84 0.99 0.97 0.98 1.00 

 0.39 0.80 0.46 0.67 0.87 0.67 0.97 0.60 0.93 

 -0.30 -0.02 0.35 -0.13 0.20 0.63 0.02 0.41 0.93 

 0.39 0.80 0.46 0.67 0.87 0.67 0.97 0.60 0.93 

 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

 0.39 0.68 0.98 0.67 0.82 0.98 0.97 0.98 1.00 

 0.39 0.68 0.98 0.67 0.84 0.99 0.97 0.98 1.00 

Panel B: ACTs 

 2.696 3.827 13.89 3.77 5.49 19.92 11.31 16.89 74.63 

 2.697 4.876 2.84 3.78 6.11 3.81 11.19 3.35 8.51 

 1.658 1.968 2.61 1.83 2.32 3.58 2.01 2.737 8.33 

 2.691 4.898 2.84 3.77 6.07 3.81 11.22 3.35 8.52 

 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 
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The message of Panels A and B of Table 5.3 is unambiguous: lower 

depreciation rates (smaller ) increase autocorrelations for all price and returns 

series except the premium, which is largely unaffected. Compatible results are found 

in the ACT measurements. When  all series become positively 

autocorrelated, even for  when , in contrast to the conclusions of 

Proposition 3.3 (which applies only to the  case).  

 Why is this observed? When the depreciation rate declines, then, ceteris 

paribus, the period t+1 capital stock becomes more similar to its period t predecessor. 

At the same time, investment, which is volatile, shrinks as a proportion of period t+1 

capital. The consumption series is similarly affected. As a result, both capital stock 

and consumption become more highly autocorrelated as indicated at the bottom of 

Panel A. If capital stock becomes more highly autocorrelated so also must be the 

series  and . If consumption becomes more highly autocorrelated, so will the 

risk-free bond price series and the risk-free return. The lack of consequences for the 

premium.  
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5.3 Other Parameter Changes 

As mentioned earlier, we also explored the consequences of increasing risk 

aversion ( directly or indirectly, via external habit formation), the addition of 

endogenous labor/leisure choice etc. These results are summarized below; the 

underlying tables and the full explanatory text can be found in the on-line Appendix. 

In all cases the conclusions reported are based on the values (entry by entry) 

associated with the same parameters ( ) as employed in Table 5.2. 

5.3.1 Greater Risk Aversion27 

Entry by entry we see that higher risk aversion, ceteris paribus, increases 

autocorrelations and ACTs  across all return and price series except for the premium 

which is unaffected. Greater representative agent risk aversion translates into the 

desire for a smoother intertemporal consumption stream, which leads to higher 

consumption autocorrelation. It directly follows that the price of one unit of 

consumption next period, the risk-free bond price, and its associated return will 

become more highly autocorrelated as well.  

On the equity side, in order to promote a smoother consumption path, the 

path of the capital stock, must be made intertemporally more stable – more 

positively autocorrelated at the expense of greater investment volatility (to which the 

representative agent is indifferent). Accordingly, the equity price and return series 

becomes more highly autocorrelated. In summary, within the CRRA class of 

preference orderings, greater risk aversion promotes Property I mean aversion for all 

financial series; ACT patterns follow in tandem.  

It is well known that habit formation causes the agent to behave in a more 

risk averse fashion28. Following the conclusions earlier in this section, we find that the 

                                                
27 Here we expand the basic model to include period preference orderings captured by 
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addition of habit formation increases autocorrelations and ACTs across the board (all 

cases of returns and prices except for the premium). The logic behind this effect is 

also unchanged from earlier. Higher degrees of risk aversion further compound the 

effect.  

5.3.2 Adding a Labor/Leisure Choice29  

 First, if , then the addition of a labor/leisure choice under either 

specification has no impact on the autocorrelations or ACTs for any of the financial 

series we study. If , then the addition of a labor/leisure choice slightly 

diminishes the autocorrelations and ACTs for all the series. 

In the cases where Ω = 1, the equilibrium level of hours worked,  is 

independent of the shock and capital stock values. The extent of hours represents a 

level effect alone, and the ACTs are thus unaffected. In the cases where Ω < 1, the 

fact that the ACTs are all somewhat diminished indicates that the addition of a labor 

decision variable tends to pull the capital stock and consumption series back towards 

their means, relative to an environment in which it is absent. The effect is very 

modest, however, and greatest in the  cases where the decline in ACT 

                                                                                                                                                   
28 In the Baseline case, this means modifying the representative agent’s period utility function to be of 

the form ; with higher risk aversion, CRRA utilities are modified similarly 

 
29 We do this in two related ways by specifying the representative agent’s period utility function to be 

either  

  (1)                
 

 or 

  (2)            

where,  is the hours of labor supplied in period t. In either case the production function is 

generalized to be of the form  
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magnitude is about 10%. This is a way of saying that variations in the supply of the 

agent’s labor do assist in stabilizing both the economy’s capital stock series (and thus 

reduce the ACTs of  and ), and its consumption series (and thus reduce the 

ACTs of  and ), a fact well known in the business cycle literature. The effect 

is small, however, not only because the agent also prefers low variation in leisure, 

, but also for the fact that the capital stock and hours series are themselves 

very highly positively correlated. The ACTs exceed 2. 

We summarize these observations as follows: 

1. For the representative agent class of models and the standard mean 

reversion characterization, mean aversion, as defined by Properties I and II, in equity 

and risk free return is the norm, except in the Baseline case where Ω = 1, and shock 

correlation is low. 

2. Conditional on the same levels of Ω and ρ, the previous sections 

demonstrate that the addition (individually or collectively) of a wide variety of model 

features to the Baseline paradigm only serves to increase the Property I--II mean 

aversion in most of the time series of interest (the premium is the exception). If the 

source of uncertainty is a multiplicative productivity shock, we venture to suggest 

that this feature will generally be observed, whatever additional features are imposed. 

3. The equity premium remains slightly Property I mean averting for the wide 

class of models that we have studied. 

In short, Property I or II “mean aversion” appears to rule for all financial time 

series within this family of DSGE models. This must be the case if the models are to 

have empirical relevance. 
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5.4 Factor Share Uncertainty 

 The decision to introduce factor share uncertainty arises from the results 

reported in Guvenen (2009). He observes a mild negative autocorrelation in the 

equity premium at lags of 1, 2, 3, 5 and 7 years arising in an incomplete markets 

model where shareholders trade both equity and debt, but workers trade only debt 

securities, a restriction that generates time varying income shares to these two 

groups. Following Lansing (2015), we capture variation in factor shares by a reduced 

form model where uncertainty arises via a stochastic production parameter . In the 

family of complete market models we have been considering, { t } represents the 

share of income to capital30. 

  For all indicated parameter combinations, both the correlations and the 

corresponding ACT’s are, by and large, similar in the two tables except for the mild 

negative autocorrelation of  as per Guvenen’s (2009) results. In addition, the 

return on equity is very slightly mean averting for all ρ values unlike in the Baseline 

case, and the monotonicity in equity return autocorrelations and ACTs observed in 

the Baseline case is lost. Otherwise, if uncertainty in the capital share parameter is 

                                                
30 In particular, we explore the extent of mean reversion in the simple complete markets model 

identified by the following optimum formulation: 

     

            

     

 

Note that the optimal decision rules for the model of this footnote are identical to those for the 

Baseline formulation. 
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introduced into model (6) does not radically alter the correlation and ACT structure 

revealed in the Baseline formulation. 

We next explore average crossing times for several important US financial time 

series. 

 

6. Empirical Support 

 Table 6 presents the ACTs and autocorrelations for a representative collection 

of U.S. financial return time series. They are: AGG (Barclays Aggregate Bond Fund), 

EEM (MSCI Emerging Markets Index ETF), SPY (SPDR S&P 500 ETF), GLD 

(SPDR Gold Shares), USO (United States Oil Fund ETF), TIP (Barclays TIPS Bond 

Fund ETF), VTI (Vanguard Total Stock Market EFT), VNQ (Vanguard Real Estate 

EFT) and VIX (CBOE Volatility Index). We provide the data at daily, monthly, and 

quarterly frequencies. The quarterly series best corresponds to the implicit time 

period in the model economies. Nevertheless, all three frequencies should generate 

ACT and autocorrelation relationships generally in accordance with Proposition 4.2 

and Observations A. – F. 



     
 

Table 6.1 
Average Crossing Times, Autocorrelations and Conditional Probabilities: Various Financial Return Series 

Panel A: Quarterly Frequency 
Series(i) Data Period ACT ACTA ACDB    
SPY 2.1993 – 4.2017(ii) 2.3 2.61 2 .092 .62 .5 
EEM 3.2003 – 4.2017 2.23 2.31 2.15 .207 .57 .54 
AGG 4.2003 – 4.2017 1.9 1.87 1.93 -.21 .46 .48 
TIP 1.2004 – 4.2017 1.87 1.87 1.87    .05(iii) .46 .46 
VNQ 4.2004 – 4.2017 2.30 2.25 2.36 .15 .56 .57 
GLD 1.2005 – 4.2017 1.86 1.86 1.86    .04(iii) .46 .46 
VTI 3.2001 – 4.2017 2.13 2.53 1.75 .12 .61 .43 
USO 3.2006 – 4.2017 2 2.27 1.75 .14 .56 .43 
VIX 2.1990 – 4.2017 1.82 1.43 2.19 -.31 .30 .54 
(i) The series corresponding to these abbreviations are found in the text 
(ii) The notation 2.1993 indicates the second quarter of 1993, etc. 
(iii) Indicates departures from theory. 

 
Panel B: Monthly Frequency 

Series Data Period ACT ACTA ACDB    
SPY 02.1993 – 12.2017(i) 2.02 2.26 1.78 .068 .56 .44 
EEM 05.2003 – 12.2017 2 2.05 1.95 .12 .51 .49 
AGG 10.2003 – 12.2017 2.16 2.21 2.13 .04 .55 .53 
TIP 01.2004 – 12.2017 1.78 1.77 1.81 -.03 .43 .45 
VNQ 10.2004 – 12.2017 1.96 2.10 1.82    .05(ii) .52 .45 
GLD 12.2004 – 12.2017 1.99 1.97 2 -.11 .49 .5 
VTI 06.2001 – 12.2017 2.09 2.40 1.79 .16 .58 .44 
USO 05.2006 – 12.2017 2.09 2.18 2 .29 .54 .5 
VIX 02.1990 – 12.2017 1.73 1.47 2 -.16 .32 .5 
(i) The notation 02.1993, signifies the 2nd month of 2003, etc. 
(ii) Indicates departure from theory. 

 
Panel C: Daily Frequency 

Series Data Period ACT ACTA ACDB    
SPY 02.01.1993 – 12.29.2017(i) 1.92 1.97 1.87 -.06 .49 .46 
EEM 04.14.2003\ – 12.29.2017 1.95 2.02 1.88 -.10 .51 .47 
AGG 09.29.2003 – 12.29.2017 1.85 1.89 1.81 -.12 .47 .45 
TIP 12.08.2003 – 12.29.2017 1.96 1.98 1.96     .01(ii) .50 .49 
VNQ 09.30.2004 – 12.29.2017 1.96 2.00 1.91 -.18 .50 .47 
GLD 11.19.2004 – 12.29.2017 1.92 1.96 1.87 -.02 .49 .47 
VTI 06.01.2001 – 12.29.2017 1.95 2.04 1.85 -.06 .51 .46 
USO 04.11.2006 – 12.29.2017 1.93 1.96 1.89 -.05 .49 .47 
VIX 01.03.1990 – 12.29.2017 1.99 1.81 2.15 -.08 .45 .53 
(i) 02.01.1993 is to be read as February 1, 1993, etc. 
(ii) Indicates departure from theory. 

 ρ   φ
AA

  φ
BB

 ρ   φ
AA

  φ
BB

 ρ   φ
AA

  φ
BB



     
 

 There are a number of relevant observations. First, note that at quarterly 

frequencies (Panel A), the majority (5 out of 9) of return series are Property I mean 

averting as was the case for all the models of Section 5, when they were subject to  

empirically relevant productivity autocorrelations. Unlike the present models, 

empirical bond returns (the AGG series) are mean reverting; this is also true of the 

VIX although it has no counterpart in the model-generated return series. In contrast,  

all series but one are Property I mean reverting at daily frequency; the sole exception 

(the TIPS series) being essentially independently distributed on a set basis through 

time (note that ). Nothing here is surprising; it is to be expected that the 

underlying processes governing daily returns, whatever they are, will be largely 

unrelated to an economy’s aggregate investment and consumption processes. 

By Proposition 4.2, if ACT ≤ 2, Property I mean reversion should be observed. 

At daily frequencies, this is the case for all series except for TIPs. For monthly and 

quarterly series the exceptions are TIPs and GLD (quarterly) and VNG (monthly). 

Due to the relative lack of data at quarterly frequencies, it is not entirely surprising 

that the greatest number of inconsistencies are found there. At all frequencies the 

VIX series strongly endorses the theory. 

Note that at daily frequencies all the corresponding T matrices are not far off 

independence with the VIX the possible exception. At monthly and quarterly 

frequencies, however, this is generally not so, with the VIX return series again being 

the most asymmetric in both cases; the VTI is the next most extreme in this regard. 

In particular, at quarterly frequencies, the VIX has a .30 probability ( ) of 

remaining in the above-mean state, while only experiencing a mildly less-than-even 

chance of returning to it ( ). At quarterly frequencies the VTI series 

remains in the above mean state with probability .61 and returns to it only with 

probability .57. As a result, it has a high ACTA. By comparison the ACT for the VIX 

φAA = φBB

    φ
AA = .3

    1−φ
BB = .46
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is the lowest of all the series for all data frequencies. We leave the rationale for this 

pattern to those more familiar with its underlying determination. 

Observation E makes clear that there is no necessary positive association 

between an increasing ACT and an increasing autocorrelation across the series, and 

we do not observe it in the data. With ACTs around 2 (all of our series) the range of 

(ACT, correlation) possibilities is large (see Figures 1 and 2). Nevertheless, there is a 

weak positive association between a series’ ACT and its autocorrelation, an assertion 

captured in Figure 3, where we undertake the following simple cross-sectional 

regression: 

   

We find  with an R2 of .0656 for monthly series and a T statistic of .65, which 

is unfortunately not significant. We suspect this is due to the high dispersion in the 

estimates; the results are similar at the other frequencies we consider. The fact that 

the R2 is low derives from the observation that many of the series have set transition 

matrices that are far from symmetric, as manifest in ∅-- being significantly different 

from ∅.. (and, as a result, ACTA and ACTB differing considerably). This being said, 

the modest theory presented in Section 4 finds modest empirical support. 

   

     autocorrelationi = α+ βACTi + !ε
i
.

   β > 0
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Figure 3 
Autocorrelation vs. ACT  

       

7. Conclusion    

 In this paper, we have argued that the notions of mean reversion and mean 

aversion can be synthesized under one metric, the Average Crossing Time (ACT) 

with ACTA and ACTB as its underlying constituents. By the ACT measure, the mean 

aversion/reversion distinction is entirely artificial, with a mean reverting (stationary) 

process being only identified with a finite ACT value. One may think of mean 

averting processes as those with larger ACTs but there is nothing in the ACT concept 

that specifies a mean reversion/aversion demarcation value. The ACT concept does 

provide, however, a simple, intuitive sense of one time series being more strongly 
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mean reverting than another: its ACTA and ACTB are each lower than its comparison 

counterparts. 

As an identifying measure, the ACT allows us to evaluate other time series 

characteristics that have been “traditional identifiers” of “mean reversion.” We 

considered four of these, classifying them as Properties I – IV. Properties I and II 

were shown to be satisfied in the case of the ACT being less than or equal to two, 

which strikes us as an extremely strong criterion for “mean reversion.” Most of the 

analysis in the paper concerns these properties, as they are the most widely employed. 

A careful analysis of Property III is left to future work, for two reasons. First it does 

not discriminate in any way for the canonical “mean reverting” AR(1) process across 

autocorrelation parameters. Second, it is not often seen. The same should be said for 

Property IV; it is very restrictive, not being satisfied in the traditional stationary 

models such as those reviewed in Section 5. 

Is there any real mean reversion/aversion distinction regarding stationary time 

series? Our analysis suggests the distinction is purely arbitrary. 
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Technical Appendix 

 

In this appendix we extensively use a special case of the Fortunin, Kasteleyn and 

Ginibre (1971) inequality 1  (henceforth FKG) in Harris (1960). This inequality 

(adapted to our setting) states that for any probability measure on R, and increasing 

functions f(x) and g(x), . 

 

Proof of Proposition 2.1 
 

a.  Property II  Property I 

  (by Property II)  

  . 

 Since , this implies that , 

Hence Property I holds.  

 

b.   Property I together with the covariance condition (3) implies Property II. 

The proof is by induction. 

Let j = 1,  <  

(this follows by Property I and the fact that  ) 

Let j = 2,  

  

																																																								
1 We thank Awi Federgruen for bringing the FKG inequality to our attention. 
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By Property I,   

and by condition (3),  

Again by Property I, . Therefore, 

 . 

Suppose, by Property I and condition (3),   

holds. We show by induction that this implies 

. 

 

  

  

 (by induction) 

By Property I,  Thus by condition (3), 

 . 

Therefore, since   

. 

For I  II, the persistence of the series must rapidly decline.  
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Proof of Proposition 3.1 

a.  The equity price relationship follows from an application of Jensen’s 

inequality: 

  

  

, since  is concave and  

by Jensen’s inequality. 

 . 

 

b.  Mean aversion in dividends 

By (17),   

   

  

  

   

. 

  By FKG or the Harris inequality 

  , and 

 . Thus, 
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≥ 0. 

 

c.  Derivation of risk free bond price. 

   

     

     

    , since  is i.i.d. 

 

Thus, , where  is constant for all t. As a result, 

we henceforth omit the time subscript from this term. 
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 . 

Since {λt} is i.i.d. and the fact that kt is determined in period t – 1 independent 

of λt or λt+1 , we may equivalently write  

 

   . 

Let .  

Since both  are increasing functions of k, and ,  

by FKG or the Harris inequality,  . 

Similarly, 

 . 

Thus,   

   

The inequality is strict if  is log-normally distributed. The proof in this 

case follows identically. 
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Proof of Proposition 3.2 

 a)  

  

  

 Let .  

Both f1 ( ) and f2 ( ) are increasing functions of their arguments by assumption. 

Hence by FKG or Harris inequality, 

   

 

Thus, . 

In the case of , 

 where  is given by (10).   

        .  

 In general  will be a decreasing function of each of its arguments, as it 

is for specification (15). However, if  is a decreasing function 

 is increasing. Furthermore, 

   , 

 and the argument above may be applied. 

 

 

 

Proof of Proposition 3.3 
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t( )+ 1−Ω( )!kt( )

= !k
t
,−k( ) i !kt, !λt( )+ 1−Ω( )!kt −k( )dF !kt( )dG !λt( )∫∫

f
1
!k
t
, !λ
t( )= !kt −k , and f2 !kt, !λt( )= i !kt, !λt( )+ 1−Ω( )!kt −k

!k
t
,−k( ) i !kt, !λt( )+ 1−Ω( )!kt −k( )dF !kt( )dG !λt( )∫∫

≥ !k
t
,−k( )dF !kt( )dG !λt( )∫∫ × i !k

t
, !λ
t( )+ 1−Ω( )!kt −k( )dF !kt( )dG !λt( )= 0∫∫

cov p
t−1
e ,p

t
e( )= cov !kt, !kt+1( )≥ 0

p
t
b

cov p
t
b,p

t+1
b( )= cov h !kt, !λt( ),h !kt+1, !λt+1( )( ) h !k

t
, λ
t( )

= cov −h !k
t
, !λ
t( ), −h i !kt, !λt( )+ 1−Ω( )!kt, !λt+1( )( )

h !k
t
, λ
t( )

h !k
t
, !λ
t( )

−h !k
t
, !λ
t( )

cov h !k
t
, !λ
t( ), h !kt+1, !λt+1( )( )= cov −h !kt, !λt( ), −h !kt+1, !λt+1( )( )



 
	

59 

a)  

  

(by independence of ). 

 . (TA 1) 

 We wish first to explore constituents of the preceding expression: 

   vs. . 

These expressions are of the general form  

  and  where .   

Define   , and .   

Since   is an increasing function of , and .  

Thus,   

by the FKG or Harris inequality.  

Accordingly, . 

We may thus conclude that expression (TA 1) above is 

  

    

 

(by Jensen’s inequality, since  is a convex function of )  

  

Again by Jensen’s inequality, since  is a concave function of  

cov !r
t
e, !r

t+1
e ,( )= cov α!kta−1 !λt, α αβ!ktα!λt⎡

⎣⎢
⎤
⎦⎥
α−1 !λ

t+1

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= α2 αβ( )α−1E !λt+1( ) E !kta
2−1!λ

t
α( )−E !ktα−1!λt( )E !kta

2−α!λ
t
α−1( ){ }

!λ
t{ }

= α2 αβ( )α−1E !λt+1( ) E !kta
2−1( )E !λtα( )−E !ktα−1( )E !kta

2−α( )E !λt( )E !λtα−1( ){ }

E !k
t
a2−1( ) E !k

t
a−1( )E !kta

2−α( )

E !k
t

γ0+γ1( ) E !k
t

γ0( )E !ktγ1( ) γ
0
< 0, γ

1
< 0

!x
t
= !k

t

γ0 g !x
t( )= !xt

γ1/γ0( )

γ
1
/ γ

0( )> 0, g !xt( ) !x
t

g !x
t( )= !ktγ1

E !k
t

γ0+γ1( )= E !xt g !xt( )( )>E !xt( )E g !xt( )( )= E !ktγ0( )E !ktγ1( )

E !k
t
α2−1( )≥E !ktα−1( )E !ktα

2−α( )

cov !r
t
e, !r

t+1
e ,( )≥ α2 αβ( )α−1E !λt+1( ) E !kta

2−1( )E !λtα( )−E !kta2−1( )E !λt( )E !λtα−1( ){ }
≥ α2 αβ( )α−1E !λt+1( )E !kta

2−1( ) E !λtα( )−E !λt( )E !λtα−1( ){ }

≥ α2 αβ( )α−1E !λt+1( )E !kta
2−1( ) E !λtα( )−E !λt( ) E !λt( )( )

α−1⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

!λα−1, 0< α<1 !λ

cov !r
t
e, !r

t+1
e ,( )≥ α2 αβ( )α−1E !λt+1( )E !kta

2−1( ) E !λtα( )− E !λt( )( )
α⎧

⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

!λα, 0< α<1 !λ
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Hence, .	 can be negative. 

 

b) . 

     

 

    

 By the properties of the covariance function and that and   

are all independent of one another, the RHS expression becomes 

, 

 for some positive constant M. Let  and ; each is a 

decreasing function of k, furthermore,  which is also 

decreasing in k. By the FKG or Harris inequality 

   and 

  . 

Thus   

We have been unable to derive any definitive result for the premium. 

 

E !λ
t
α( )− E !λt( )( )

α
< 0

cov !r
t
e, !r

t+1
e ,( )≥−M,  M > 0 cov !r

t
e, !r

t+1
e ,( )

cov !r
t
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b( )≥ 0

cov !r
t
b,!r
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αβ( )2
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!k
t

α α−1( ) !λ
t
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αβ( )2

βE !λ−1( )
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α α−1( ) !λ
t+1
α−1,

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

=
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βE !λ−1( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

2
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t
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t
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t
α !λ
t( )α α−1( ) !λ
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α−1⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟
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βE !λ−1( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

2
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t
α2−α !λ

t
α−1, !k

t
α3−α2 !λ

t
α2−α !λ
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α−1( )

!k
t
, !λ
t
, !λ
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=M E !λ
t+1
α−1( ) E !ktα

3−α( )E !λtα2−1( ){ }−E !ktα2−α( )E !λtα−1( )E !ktα
3−α2( )E !λtα2−α( )

f
1
!k( )= !k α2−α f

2
!k( )= !k α3−α2

f
1
!k( ) f2 !k( )= !k α

3−α

E !k
t
α3−α( )≥E !ktα2−α( )E !ktα3−α2( )

E !λ
t
α2−1( )≥E !λtα−1( )E !λtα
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cov !r

t
b, !r
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Proof of Proposition 4.1 

This follows simply from the construction of the derived process . 

Every period the process  assumes a value above its mean, it is assuming 

a value in set . Furthermore, if the process  is in set , then it is 

assuming a value above its mean. Thus the average number of periods the 

process  is above its mean must coincide with the average 

number of periods it is in set . Thus . A similar 

identification establishes that . 

Properties of   

We first restrict attention to a consideration of arbitrary two state Markov 

chains. We adopt the convention that any measurement of the ‘time to 

crossing’ includes the crossing period itself.  

 

A. Consider an arbitrary two state Markov chain with states , and 

transition matrix: 

  

 
where 0 ˂ ˂ 1 and 0 ˂ ˂ 1. The associated ergodic probability distribution 

( ) satisfies 

 

  

!γ
t
AB{ }

!γ
t{ }

γA !γ
t
AB{ } γA

!γ
t{ } !γ

t
∈ γA( )

γA ACT
!γt{ }
A = ACT

!γt
AB{ }
A

ACT
!γt{ }
B = ACT

!γt
AB{ }
B

!γAB{ }

γ
1
γ
2

             γ
1

     γ
2

   
γ

1

γ
2

ϕ
1

1−ϕ
1

1−ϕ
2
ϕ

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ϕ
1

ϕ
2

π
1
,π
2

π
1
,π
2

⎡
⎣⎢

⎤
⎦⎥ = π1,π2
⎡
⎣⎢

⎤
⎦⎥
ϕ
1

1−ϕ
2

1−ϕ
1

ϕ
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,
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with solution  and    

 
B. Suppose the process is in state . The average time to crossing to 

state 2, ACT1 , is given by: 
 

 

 

Similarly,   

. 
Accordingly, the average crossing time, ACT, satisfies 
 

 

 

           

 

C. We compute  

 

  

 
Without loss of generality, we assume  and , since the 

 is determined by the structure of the transition matrix and not 

the specific values assumed by .2 

																																																								
2 Consider a stochastic process ; then for any a > 0 and any , .  

π
1
=

1−φ
2

2− φ
1
+φ

2( )
π
2
=

1−φ
1

2− φ
1
+φ

2( )

!γ = γ
1
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1
=
n=1

∞
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!γ = γ

2

in step n
|

!γ = γ
1
, for

the n−1 prior  steps

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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∞

∑nϕ1n−1 1−ϕ1( )= 1−ϕ1( )
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∞
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⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠
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1
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2
=
1
1−ϕ 2
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1
+ π

2
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2
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1
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1

⎛

⎝
⎜⎜⎜⎜

⎞
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1
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⎛

⎝
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⎞

⎠
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1
+φ
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⎣
⎢
⎢
⎢
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⎦
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⎥
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t
!γ
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)−E(!γ
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)
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= 1 γ
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t
+ b, a !γ
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The correlation computation requires the following constituents: 

(i)    

       

(ii)   

(iii)    

        

     

        

        

        

																																																																																																																																																																														
We can thus assume   and , if constants a, b as per the above correlation equality satisfy 

 and  . The solution to this simple system of equations is  and 

.  

E(!γ
t
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1

1−φ
2
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1
+φ

2( )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠
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⎛

⎝

⎜⎜⎜⎜⎜
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⎜⎜⎜⎜⎜
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1
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⎛
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1
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(iv)     

       

      

     

   

(v)   

    

   

(after considerable simplification) 

    

    

      (A) 
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⎡
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⎢
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D. Proposition 4.2. To show  implies . 

We show  implies .  

    

     

The second term in the ACT expression is of the form  , which assumes 

a minimum at . Therefore, 

 , or 

  ; equivalently 

    or 

   .  

Suppose  and . 

Then  

 

 

E.  When , the ACT reduces to  

  , and 
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 , if and only if 

 , if and only if  

 , if and only if 

 , if and only if 

 . 

 

F.  The region A is computed by searching for the pairs  

such that   

  and . 

The indicated region (Figure 2) was constructed numerically. 

 

Proof of Proposition 5.1 

(a)  We first offer the proof for ;  is analyzed similarly, since 
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  ,   

  By FKG or the Harris inequality 

   

   

Thus, .  
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          M 
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2

e 1−α−ρ( )!λt

cov !p
t
b, !p

t+1
b( )= β2eσε2 αβ( )−2α cov !ktα−α

2

e 1−α−ρ( )!λt , αβ!k
t
αe
!λt( )
α−α2

e 1−α−ρ( ) ρ!λt+!εt+1( )⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= β2eσε
2

αβ( )−2α αβ( )α−α
2

cov !k
t
α−α2e 1−α−ρ( )!λt( , !k

t
α2−α3e

α−α2( )!λt e 1−α−ρ( ) ρ!λt+!εt+1( ))

=M cov !k
t
α−α2e 1−α−ρ( )!λt , !k

t
α2−α3e

α−α2+ρ 1−α−ρ( )( )!λte 1−α−ρ( )!εt+1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=Me 1−α−ρ( )2σε2/2 E !k
t
α−α3e

α−α2+ 1+ρ( ) 1−α−ρ( )!λt( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟−E

!k
t
α−α2e 1−α−ρ( )!λt( )E !ktα2−α3e α−α

2+ρ 1−α−ρ( )( ) !λt⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

g !k
t
, !λ
t( )= !ktα−α

2

e 1−α−ρ( )!λt

f !k
t
, !λ
t( )= !ktα

2−α3e
α−α2+ρ 1−α−ρ( )( )!λt

α+ ρ <1

f
1 ( )> 0 f2 ( )> 0, g1 ( )> 0 g2 ( )> 0
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By the FKG or the Harris inequality we conclude immediately that 

, provided .   

 

Proof of Proposition 5.2 

 (a)   

   

          But `  and  ; thus: 

      

    

 

 Let   

       

             

  . 

 Hence,  is increasing 

     and  is increasing. Thus,  

  

cov !p
t
b, !p

t+1
b( )≥ 0 α+ ρ <1

cov !r
t
b,!r
t+1
b( )= cov !rt+1b ,!rt+2b( )

=
αβ( )α

β
e−σε

2/2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2

L
! "##### $#####

cov %k
t
α2−αe α+ρ−1( )!λt , !k

t+1
α2−αe α+ρ−1( )!λt+1( )

k
t+1
= αβk

t
αe
!λt !λ

t+1
= ρ!λ

t
+ !ε

t+1

= L αβ( )α
2−α
cov !k

t
α2−αe α+ρ−1( )!λt , !k

t
α3−α2 e

!λt α
2−α( )e α+ρ−1( )ρ!λt + α+ρ−1( )!εt+1⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= L αβ( )α
2−α
cov !k

t
α2−αe α+ρ−1( )!λt , !k

t
α3−α2 e

α2−α( )+ α+ρ−1( )ρ⎡
⎣
⎢

⎤
⎦
⎥ !λt ⋅ e α+ρ−1( )!εt+1⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= L αβ( )α
2−α
e α+ρ−1( )2σε2/2 E !k

t
α3−αe

α2−α( )+2 α+ρ−1( )⎡
⎣
⎢

⎤
⎦
⎥ !λt⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−E

!k
t
α2−αe α+ρ−1( )!λt( )E !ktα3−α2 e α

2−α( )+ α+ρ−1( )ρ⎡
⎣
⎢

⎤
⎦
⎥ !λt⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

g1 !k, !λ( )= !ktα
2−α( )e α+ρ−1( )!λt

g 2 !k, !λ( )= !ktα
3−α2 e

α2−α( )+ α+ρ−1( )ρ⎡
⎣
⎢

⎤
⎦
⎥ !λt

g
1
1 !k, !λ( )< 0 g

2
1 !k, !λ( )< 0 if α+ ρ <1

g
1
2 !k, !λ( )< 0 g

2
2 !k, !λ( )< 0 if α+ ρ <1

−g1 !k
t
, !λ
t( )

−g 2 !k
t
, !λ
t( )

−g1 !k
t
, !λ
t( ) −g 2 !kt, !λt( )( )dF !kt, !λt( )∫ ≥ −g1 !k

t
, !λ
t( )dF !kt, !λt( )∫ −g 2 !k

t
, !λ
t( )dF !kt, !λt( )∫
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, 

 
        (by the FKG or the Harris inequality). 
 

 Thus, .  

 

(b)      

   

  

  

  

     M > 0 

    

      (TA 2) 

 

(i)  From the proof of Proposition 3.3, 

 . 

(ii)   If  then  and  are all increasing functions of 

. Thus, by the FKG or the Harris inequality, 

 . 

Since (TA 2) is equivalent to (TA 3)  

         (TA 3) 

g1 !k
t
, !λ
t( )g 2 !kt, !λt( )dF !kt, !λt( )∫ ≥ g1 !k

t
, !λ
t( )dF !kt, !λt( )∫ g 2 !k

t
, !λ
t( )dF !kt, !λt( )∫

cov !r
t
b, !r

t+1
b( )≥ 0

cov !r
t
e, !r

t+1
e( )

= cov α!k
t
α−1e

!λt , α!k
t+1
α−1e

!λt+1( )

= cov α!k
t
α−1e

!λt , α αβ !k
t
αe
!λt( )
α−1

eρ
!λt+!εt+1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= cov α!k
t
α−1e

!λt , ααβα−1 !k
t
α2−α

e α−1( )!λt eρ
!λt+!εt+1( )

= α1+αβα−1 cov !k
t
α−1e

!λt , !k
t
α2−α e α+ρ−1( )!λt e !εt+1( )

=M E !k
t
α2−1e α+ρ( )!λte !εt+1( ){ −E !k

t
α−1e

!λt( )E !ktα2−αe α+ρ−1( )!λte !εt+1( )}
=Me σε

2/2 E !k
t
α2−1e α+ρ( )!λt( )−E !ktα−1e !λt( )E !ktα2−αe α+ρ−1( )!λt( ){ }

E !k
t
α2−1( )>E !ktα−1( )E !ktα

2−α( )
α+ ρ( )>1, e α+ρ( )!λt , e

!λt e α+ρ−1( )!λt

!λ
t

E e α+ρ( )!λt( )≥E e !λt( )E e α+ρ−1( )!λt( )

=Meσε
2/2 E !k

t
α2−1( )E e α+ρ( )!λt( )−E !ktα−1( )E e !λt( )E !ktα2−α( )E e α+ρ−1( )!λt( ){ }
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then by relationship (i), (ii) noted previously, we have  

, provided . 

 

Proof of Proposition 5.3 (This result is due to Sergio Villar) 

This proof uses the fact that if , then   

For the AR(1) process,  : 

     

    

    

  =   

    

 

   

  

  

  

cov !r
t
e, !r

t+1
e( )≥ 0 α+ ρ( )>1

!y ~N 0,v( ) E exp(!y)⎡
⎣⎢

⎤
⎦⎥ =
v
2

Var !x
t( )= σ2

1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Cov !λ
t
, !λ
t+1( )= Cov exp !xt( ), exp ρ!xt + !εt+1( )( )

= E exp !x
t( )exp ρ!xt + !εt+1( )⎡

⎣⎢
⎤
⎦⎥ −E exp

!x
t( )⎡

⎣⎢
⎤
⎦⎥E exp ρ!xt +

!ε
t+1( )⎡

⎣⎢
⎤
⎦⎥

= E exp ρ+1( )!xt + !εt+1( )⎡
⎣⎢

⎤
⎦⎥
−E exp !x

t( )⎡
⎣⎢

⎤
⎦⎥E exp ρ!xt +

!ε
t+1( )⎡

⎣⎢
⎤
⎦⎥

E exp ρ+1( )!xt( )⎡
⎣⎢

⎤
⎦⎥
E exp !ε

t+1( )⎡
⎣⎢

⎤
⎦⎥ −E exp

!x
t( )⎡

⎣⎢
⎤
⎦⎥E exp ρ!xt( )⎡
⎣⎢

⎤
⎦⎥E exp

!ε
t+1( )⎡

⎣⎢
⎤
⎦⎥

= E exp !ε
t+1( )⎡

⎣⎢
⎤
⎦⎥ E exp ρ+1( )!xt( )⎡
⎣⎢

⎤
⎦⎥( )−E exp !xt( )⎡

⎣⎢
⎤
⎦⎥E exp ρ!xt( )⎡
⎣⎢

⎤
⎦⎥

= exp
σ2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
exp

1
2
ρ+1( )2 σ2 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
− exp

1
2
σ2
1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
exp

1
2
ρ2σ2

1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= exp
σ2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
exp

1
2
ρ2 + 2ρ+1( )σ2 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
− exp

1
2
ρ2 +1( )σ2 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= exp
σ2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
exp

1
2
ρ2 +1( )σ2 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
exp ρσ2

1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= exp
σ2

2
+
1
2
ρ2 +1( )σ2 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
exp ρσ2

1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= exp
σ2

2
1+ ρ2 +1( ) 1−ρ

2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
exp ρσ2

1−ρ2t

1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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Thus  . 

Now, clearly, the first element is positive since it is an exponent. Further, since 

  ,  

we know that the second element is a strictly increasing function of ρ, reaching 

a value of zero at ρ = 0. Therefore, for ρ < 0, the expression is negative, while 

for    ρ > 0 the expression is positive. 

 

 

 

Cov !λ
t
, !λ
t+1( ) = exp σ

2

2
1+ ρ2 +1( ) 1−ρ
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1−ρ2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
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⎞

⎠
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⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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⎛

⎝
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⎠
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