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1 Introduction

In models of rational inattention (proposed by Christopher Sims and surveyed in Sims

(2010)), a decision maker (DM) chooses her action based on a signal that provides only an

imperfect indication of the true state. The information structure that generates this signal

is optimal, in the sense of allowing the best possible state-contingent action choice, net of

a cost of information. In Sims’ theory, the cost of any information structure is proportional

to the Shannon mutual information between the true state of the world and the signals

generated by that information structure.

It is not obvious, though, that the theorems that justify the use of mutual information in

communications engineering (Cover and Thomas (2012)) provide any warrant for using it

as a cost function in a theory of attention allocation, either in the case of economic deci-

sions or that of perceptual judgments.1 Moreover, the mutual-information cost function has

implications that are unappealing on their face, and that seem inconsistent with evidence

on the nature of sensory processing, as discussed, for example, in Woodford (2012), Caplin

and Dean (2013), Dewan and Neligh (2017), and Caplin et al. (2018b).

We propose an alternative family of information costs, which we call “neighborhood-

based” cost functions. These information costs have two particular properties (in addition

to the standard ones described in, e.g., De Oliveira et al. (2017)) that we view as desirable.

First, they can be viewed as summarizing the results of a process of sequential evidence

accumulation, in which each successive increment to the cumulatively available evidence

is only very minimally informative. Second, these information costs can capture the idea

that certain pairs of states are easy to distinguish, whereas others are difficult to distinguish.

This second property allows the neighborhood-based cost functions avoid some of the prob-

1As explained in Cover and Thomas (2012), these theorems rely upon the possibility of “block coding” of
a large number of independent instances of a given type of message, that can be jointly transmitted before any
of the messages have to be decoded by the recipient. In our situation, an action must be taken in an individual
decision problem, without waiting to learn about a large number of problems of the same form.

1



lematic implications of mutual information. The two properties are connected by an object

we call the “information-cost matrix function,” which encodes the difficulty of distinguish-

ing between pairs of states and summarizes the cost of a small amount of information in

the sequential evidence accumulation problem.

The neighborhood-based costs functions differ from mutual information because mu-

tual information imposes a type of symmetry across different states of nature, so that it is

equally difficult to distinguish between any two states that are equally probable ex ante.

This implies that under an optimal information structure, actions differ across states only

to the extent that the associated payoffs differ across those states, and action probabil-

ities jump discontinuously when payoffs jump. An extensive experimental literature in

psychophysics finds that subjects’ probabilities of making perceptual judgments (the ac-

tion) vary continuously with changes in the stimulus magnitude along some dimension

(the state), even when subjects are rewarded based on whether the magnitude is greater or

smaller than some threshold (generating a discrete jump in payoffs).2 Such behavior can

be optimal only if it is costly to have an information structure that generates very different

signals in similar states, while making it less costly to distinguish states that are dissimilar.

In other words, the information cost must capture some notion of “perceptual distance.”

Motivated by these issues, we consider the properties that a plausible cost function

should satisfy. As discussed in Fehr and Rangel (2011) and Woodford (2014), a large

literature in psychology and neuroscience has argued that data on both the frequency of

perceptual errors and the frequency distribution of response times can be explained by

models of sequential sampling. More recently, some authors have proposed that data on

stochastic choice and response time in economic contexts can be similarly modeled.3 Con-

sequently, one property we desire in a cost function is that it should summarize the results

2See further discussion in section 5.2.
3Additional recent examples include Krajbich et al. (2014) and Clithero (2018). Shadlen and Shohamy

(2016) provide a neural-process interpretation of sequential-sampling models of choice.
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of a sequential evidence accumulation process. In this paper, we begin with a continuous-

time model of sequential evidence accumulation, and then show that the resulting state-

contingent choice probabilities are identical to those of a static rational inattention model

with a uniformly posterior-separable cost function.4 We derive this continuous time diffu-

sion model from a discrete time model in Hébert and Woodford (2018).5

The use of diffusion processes to model the evolution of an internal belief state has been

popular in the aforementioned literature from mathematical psychology and computational

neuroscience, and in the economic applications reviewed by Fehr and Rangel (2011). In

that literature, however, it is common to take as exogenous both the dynamics of the belief

state as a function of the true decision situation, and the criterion used to decide when to

stop deliberating and make a decision. Our goal instead is to derive both the nature of

instantaneous evidence accumulation (and hence the dynamics of the resulting belief state)

and the stopping rule (as well as the rule that determines the action to be taken) from an

optimization principle, under an explicit model of the cost of information gathering.

Our paper is not the first that seeks to derive at least some features of such models from

a theory of optimal information sampling. Moscarini and Smith (2001) consider both the

optimal intensity of information sampling per unit of time and the optimal stopping prob-

lem, when the only possible kind of information is given by the sample path of a Brownian

motion with a drift that depends on an unknown state.6 Fudenberg et al. (forthcoming)

consider a variant of this problem with a continuum of possible states, and an exogenously

4For more on this class of cost functions, see Caplin et al. (2018b). Morris and Strack (2017) provide a
related foundation for this class, in the special case in which there are only two possible states and signals
are exogenous. Note, however, that with only two states, because beliefs must diffuse on a line, there is little
distinction between “endogenous” and “exogenous” signals.

5In section C.1 of the Technical Appendix, we consider an extension of our results to a continuous-time
evidence accumulation process with Poisson jumps (also derived in Hébert and Woodford (2018)), as in the
models of optimal evidence accumulation proposed by Che and Mierendorff (2017) and Zhong (2018). For a
discussion of the differences between these approaches, see Hébert and Woodford (2018).

6Moscarini and Smith (2001) allow the instantaneous variance of the observation process to be freely
chosen (subject to a cost), but this is equivalent to changing how much of the sample path of a given Brownian
motion can be observed by the DM within a given amount of clock time.
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fixed sampling intensity.7 Woodford (2014) instead takes as given a stopping rule, but al-

lows a flexible choice of the information sampling process. Our approach differs from these

earlier efforts in seeking to endogenize both the nature of the information that is sampled at

each stage of the evidence accumulation process and the stopping rule that determines how

much evidence is collected before a decision is made. We also consider decision problems

with an arbitrary number of choice alternatives, as opposed to the binary choice problems

of Fudenberg et al. (forthcoming) and Woodford (2014).

The key “parameter” of our diffusion model is a matrix-valued function that describes

the local cost of information acquisition. If the DM chooses to have her beliefs diffuse with

higher variance in some dimension, she is gathering information in this dimension, and the

information-cost matrix function describes the cost of this information. It encodes, on its

diagonal, how difficult each state is to learn about, and on its off-diagonal, how difficult

it is to discriminate between states. Mutual information generates problematic predictions

because its corresponding information-cost matrix function has a kind of symmetry that

implies that equally likely states are equally difficult to discriminate.

The information-cost matrix function provides a bridge between the first property we

consider desirable (equivalence to a sequential problem) and the second property (captur-

ing perceptual distance). Given an information cost function in the sequential evidence

accumulation problem, there is a static rational inattention problem with a particular uni-

formly posterior separable cost function that generates the equivalent joint distribution of

actions and states. Moreover, the comparative statics of this joint distribution with respect

to changes in payoffs are governed by the information cost matrix function. Intuitively, if

the information cost matrix function makes it very costly to discriminate between some pair

of states, the DM will not do so even if her payoff jumps across those states. As a result,

there are uniformly posterior separable cost functions that can both summarize sequential

7See also Tajima et al. (2016) for analysis of a related class of models.
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evidence accumulation and capture the idea of perceptual distance.

We introduce a family of such cost functions, the neighborhood-based cost functions.

The idea of this class of information-cost specifications is that information structures are

more costly the greater the extent to which they allow intrinsically similar states of the

world (states that share a “neighborhood”) to be discriminated; the dependence on a con-

cept of intrinsic similarity between states (the “neighborhood structure”) distinguishes

these cost functions from the mutual information cost function. We show that using in-

formation costs in this family can explain the continuous variation of response frequen-

cies in the perceptual experiments mentioned previously. Dean and Neligh (2018) study

neighborhood-based cost functions in an experimental setting, and find that these costs fit

observed behavior better than several other alternatives, including mutual information.

We also specialize this family to a particularly useful case, in which the states can be

ordered on a line. Throughout the paper, we use as a running example the case of a potential

buyer of a security whose payoff depends on the value of some assets (an example based on

Yang (2017)). In this case, it is natural to suppose that the relevant states of the world are

the asset values, and that it may be difficult for the DM to discriminate between nearby asset

values even as the DM is more easily able to acquire information about whether the asset

values will be very high or very low. We extend our analysis of this case to a continuum

of states (in the rest of the paper, we use a discrete state space) and show that the limit

of the neighborhood-based cost function for this neighborhood structure is the average

Fisher information. This is the average value over the state space of a local measure of

the discriminability of nearby states. Like mutual information, this measure is uniquely

defined up to a scale parameter, and it can be used instead of mutual information in almost

any context in which the states can be ordered on a line or a circle.

After we introduce the neighborhood-based cost functions, and show that they satisfy

the two properties of cost functions that we view as desirable, we discuss four applications
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that illustrate how they are different from or similar to mutual information. We study per-

ceptual experiments, global games (building on Morris and Yang (2016)), security design

(building on Yang (2017)), and a linear-quadratic-Gaussian setting (as in Sims (2010)). In

the first three of these, the neighborhood-based cost functions generate different predic-

tions than mutual information. In the popular linear-quadratic-Gaussian case, reassuringly,

mutual information and the average Fisher information generate identical predictions.

Section 2 presents our continuous-time model of sequential evidence accumulation, and

introduces the information cost matrix function as a way of parameterizing flow informa-

tion costs. Section 3 proves the equivalence of sequential evidence accumulation and static

rational inattention problems with uniformly posterior-separable costs. In section 4, we

introduce the neighborhood-based cost functions. We apply the neighborhood-based cost

functions in a series of applications in section 5. In section 6 we conclude.

2 Continuous-Time Sequential Evidence Accumulation

We begin by introducing our continuous-time model of sequential evidence accumulation.

We derive this model from a discrete-time dynamic evidence accumulation problem in

Hébert and Woodford (2018). Our derivation depends on a few key assumptions, whose

import we discuss below. During the setup of the model, we will use as an example our

security design application (Section 5.1), which is based on Yang (2017).

Let x ∈ X be the underlying state of the nature, and a ∈ A be the action taken by the

decision maker (DM). For simplicity, A and X are finite sets, and the number of states is

weakly larger than the number of actions, |X | ≥ |A|. The DM’s utility from taking action

a in state x at time t is ua,x− κt. The parameter κ > 0 governs the penalty for delaying

making a decision; the DM does not discount the future.

The DM does not initially know the state x ∈ X , but can learn about which states are
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more or less likely. At each time t, the DM holds beliefs qt ∈P(X), where P(X)⊂ R|X |

denotes the probability simplex over X . That is, qt is a vector of length |X |, whose elements,

denoted qx,t , are the probability, under the DM’s beliefs at time t, of state x. Time begins

at t = 0, when the DM holds prior beliefs q0. At each moment in time, the DM faces

two decisions: whether to gather information about the state x ∈ X , and whether to stop

and make a decision. When stopping with beliefs qτ at time τ , the DM will choose a to

maximize uT
a ·qτ , where ua is the vector of utilities associated with action a. Define

û(qτ) = max
a∈A

uT
a ·qτ ,

and note that û(qτ)−κτ is the payoff if the DM stops with beliefs qτ at time τ and then

chooses the optimal action given those stopping beliefs.

Example. Suppose the DM is considering buying a security whose payoff is a function

of the value of some assets. In this case, X is a set of possible values for the assets,

and the actions are to either accept (L, “like”) or reject (R) the offer, A = {L,R}. The

utility of rejecting the offer is normalized to zero (uR,x = 0), and the utility of accepting

the offer is uL,x = sx−K, where sx is the security payoff and K is the price. The stop-

ping payoff û(·) involves deciding, under the current beliefs, whether to accept or reject:

û(qτ) = max{qT
τ s−K,0}, where s is the vector of security payoffs.

When the DM gathers information, she chooses the variance-covariance matrix of pos-

sible changes in her beliefs, subject to certain constraints. The DM’s beliefs evolve as

dqx,t = qx,tσx,t ·dBt , (1)

where dBt is an |X |-dimensional Brownian motion,8 σt is a matrix that can be chosen by

8The |X |-th dimension is redundant since beliefs stay in the simplex; we keep it for notational convenience.
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the DM, and σx,t is a particular row of that matrix. This process is derived from Bayesian

updating, and imposes two restrictions on the DM’s beliefs. First, beliefs are martingales,

and second, dqx,t = 0 if qx,t = 0, meaning that if the DM believes a particular state is not

possible, she will never come to believe that state is possible at some point in the future.

The DM’s choice of σt is subject to restrictions — a trivial one to ensure that the beliefs

stay in the simplex, and an economic restriction that limits the amount of information the

DM can acquire. The trivial restriction is that

ι
T ·dqt = 0

always, where ι is a vector of ones. This restriction is equivalent to requiring that σT
t qt =~0.

We will use M(qt) to denote the set of |X |× |X | matrices satisfying this condition.

The non-trivial restriction limits the quantity of information the DM can acquire:

1
2

tr[σT
t k(qt)σt ]≤ χ, (2)

where k(qt) is an |X | × |X | dimensional matrix-valued function we will refer to as the

“information-cost matrix function”, tr[·] is the trace, and χ is a positive constant that in-

dexes the tightness of the constraint. We discuss this constraint, and the information-cost

matrix function, in more detail below. Our derivation in Hébert and Woodford (2018)

shows that the information-cost matrix function satisfies certain properties: for any qt ,

k(qt) is symmetric and positive semi-definite, and its null space is the space of vectors that

are constant for all x ∈ X in the support of qt . Because the information cost matrix func-

tion k(qt) is strictly positive-definite outside of this space, every matrix σt ∈ M(qt) that

generates volatility in beliefs also generates a strictly positive value for tr[σT
t k(qt)σt ] .9

9Lemma 1 below proves (among other things) this fact.
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Using her control of the volatility of her beliefs, and subject to the constraints imposed

by the information-cost matrix function, our DM attempts to maximize her expected payoff.

Her sequence problem can be written, given beliefs qt at time t,

V (qt) = sup
{σs∈M(qs)},τ≥t

Et [û(qτ)−κ(τ− t)],

where τ is the DM’s endogenous stopping time, subject to the constraint (2).

Anywhere this value function is twice-differentiable and the DM does not choose to

stop, the Hamilton-Jacobi-Bellman (HJB) equation associated with this problem is

sup
σt∈M(qt)

1
2

tr[σT
t Diag(qt)Vqq(qt)Diag(qt)σt ] = κ, (3)

subject to
1
2

tr[σT
t k(qt)σt ]≤ χ,

where Diag(qt) is a diagonal matrix with the elements of qt on its diagonal, and Vqq(qt) is

the Hessian of V (q) evaluated at q = qt .10

The DM’s optimal stopping rule is characterized by the standard value-matching and

smooth-pasting conditions. Let Ω⊂P(X) be the open subset of the simplex on which the

DM continues to search for information, and let ∂Ω denote its boundary. For all q ∈ ∂Ω,

the value matching condition, V (q) = û(q), and smooth pasting condition, Vq(q) = ûq(q),

will hold. Note, however, that the derivative ûq(q) does not exist everywhere — at beliefs

where the DM is just indifferent between two actions with distinct state-contingent payoffs,

the stopping payoff is non-differentiable.11 However, it will never be optimal for the DM

10The function V (q) is defined on the probability simplex P(X), but we find it convenient to extend it to
the space of measures, R|X |+ , by assuming it is homogeneous of degree one. This assumption does not restrict
the function’s values on the simplex. Under this assumption, vectors in the tangent space are simply vectors
in R|X |, which we express using the natural set of basis vectors corresponding to each element of X . The
Hessian matrices appearing in equations such as (3) above and (10) below should be understood in this way.

11We have yet to show that V (q) is differentiable everywhere, but prove this as part of Theorem 1.
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to stop at one of these indifference points.

Next, we provide some intuition for the volatility constraint and the information-cost

matrix function. The constraint is a limit on the information the DM can acquire, because

it limits the volatility of her beliefs. Our DM is a Bayesian, meaning that she can never

expect to revise her beliefs in a particular direction — her beliefs must be a martingale; this

is why there can be no drift term in equation (1). If she receives a mostly uninformative

signal at a particular moment, her beliefs have a small amount of volatility at that moment.

In contrast, if she receives an informative signal, her beliefs will be very volatile.

We derive the information constraint (2) from a model in which the DM can choose

any information structure each time period, as in standard rational inattention models. One

result of our derivation is that the DM can choose any volatility matrix σt . This is, in a

sense, a familiar idea — Kamenica and Gentzkow (2011), for example, emphasize the idea

of choosing a distribution of posteriors, subject to the constraint that the mean posterior is

equal to the prior. Our DM appears to choose only the volatility, and not the higher cu-

mulants of the distribution of posteriors, but this is because she finds it optimal to smooth

her information gathering over time, and the instantaneous volatility is sufficient to charac-

terize the resulting process for beliefs. This result permits both a relatively parsimonious

specification of the information sampling strategies available to the DM, and a relatively

parsimonious specification of possible forms for the information constraint.

Because we model the evolution of the DM’s beliefs as a diffusion process, our model

resembles, e.g., Krajbich et al. (2014) and Fudenberg et al. (forthcoming). Unlike those

authors, we endogenize the diffusion process through which additional information arrives

while sampling continues. Additionally, our model emphasizes the “unconditional” dy-

namics of beliefs (that is, not conditional on any particular state being the true state),

whereas the models discussed by those authors are described in terms of their “conditional”

dynamics (that is, conditional on some particular state being the true state).
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The information-cost matrix function k(qt) is more than simply a way of obtaining a

single (scalar) measure of the “size” of the elements of σt . The relative size of different

elements of the matrix also allows us to specify the degree to which it is more relatively

costly to obtain certain kinds of information. In Hébert and Woodford (2018), we construct

the matrix function k(q) from the cost of receiving signals about the different states. The

diagonal elements kxx control the cost of receiving signals, conditional on the true state

being x, that differ from the unconditional distribution of signals. The elements kxx are

always positive, and the larger they are, the more costly it is to distinguish the state x

from the other states. The off-diagonal elements, kxx′ , control the cost of receiving signals

conditional on state x that differ from the signals received conditional on x′. If kxx′ < 0,

receiving similar signals conditional on x and x′ reduces the overall information cost, and

the magnitude of kxx′ controls the size of this effect. For this reason, we think of −kxx′ as a

measure of how difficult the states x and x′ are to discriminate.12

An example of an information-cost matrix function that satisfies our assumptions (and

will be important for the discussion below) is the “inverse Fisher information matrix,”

k(q) = g+(q) = Diag(q)−qqT =



q1(1−q1) −q1q2 . . . −q1q|X |

−q1q2 q2(1−q2) . . . −q2q|X |
...

...
. . .

...

−q1q|X | −q2q|X | . . . q|X |(1−q|X |)


. (4)

In this case, the off-diagonal element kxx′(q) is equal to −q(x)q(x′) for any pair of states

x,x′; thus it depends only on the prior probabilities of the two states, and is otherwise

the same regardless of the states selected. Consequently, all pairs of distinct states with

identical probabilities are assumed to be equally easy or difficult to tell apart. While this

12If kxx′ > 0, receiving very different signals conditional on x and x′ reduces the information cost. We
cannot rule this out on theoretical grounds, but none of our examples feature positive off-diagonal elements.
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kind of symmetry might seem appealing on a priori grounds for some applications, we view

it as implausible for many cases of economic relevance.

Example. Continuing the example of a buyer considering a security, suppose the buyer’s

current beliefs qt are uniformly distributed over the various asset values x∈ X . If k(q) is the

inverse Fisher information matrix, the buyer finds it equally costly to discriminate between

any pair of asset values x,x′, regardless of how close or far apart those asset values are.

In many applications, we have a notion of some pairs of states x,x′ being closer or

farther apart than others. In the case of payoffs, quantities, or other economic variables

that can be summarized by a single number, we usually think that it is harder to sharply

discriminate between values that are close together than values that are far apart. Perceptual

experiments, in which subjects are asked to classify stimuli that differ from one another in

intensity or magnitude along a single dimension, are another application with this feature.

An alternative information-cost matrix function, also satisfying our assumptions, is

k(q) =



q1q2
q1+q2

− q1q2
q1+q2

0 . . . 0

− q1q2
q1+q2

q1q2
q1+q2

+ q2q3
q2+q3

− q2q3
q2+q3

. . .
...

0 − q2q3
q2+q3

. . .
. . . 0

...
. . .

. . .
q|X |−1q|X |−2

q|X |−2+q|X |−1
+

q|X |q|X |−1
q|X |−1+q|X |

− q|X |−1q|X |
q|X |+q|X |−1

0 . . . 0 − q|X |q|X |−1
q|X |+q|X |−1

q|X |−1q|X |
q|X |+q|X |−1


. (5)

In this case, the only non-zero off-diagonal elements kxx′(q) are negative elements when

x′ directly follows x in the ordering of states (or vice versa). This form of matrix k(q)

implies that an information structure is costly only to the extent that there are pairs of

“neighboring” states x,x′ for which the distribution of signals conditional on those states

are different. This information cost matrix function is closely related to the neighborhood-

based cost functions we introduce in Section 4.
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Example. Continuing the example of a buyer considering a security, if k(q) is the “neighborhood-

based” function described in equation (5) above, the buyer finds discriminating between

adjacent asset values costly, and the total information cost depends on how rapidly the

signals the buyer receives change as a function of the asset value.

Aside from its a priori appeal, this alternative information-cost matrix function has

different implications for the behavior of the DM, which we describe in the next section.

For a large class of information-cost matrix functions k(qt), including both of these

examples, we can solve the continuous time sequence problem described in this section,

and show that the solution is equivalent to a certain static rational inattention problem. We

present these results in the next section. The remainder of this section briefly discusses an

additional restriction on the functions k(q), the importance of linear time costs as opposed

to exponential discounting, and our assumption that beliefs follow a diffusion process.

In Hébert and Woodford (2018), we derive this model from more primitive consider-

ations, and our derivation shows that there exists a positive constant m such that k(q)−

mg+(q) is positive semi-definite.13

We also derive a more general continuous time problem, involving a controlled jump-

diffusion process for beliefs, that features both exponential (standard) discounting and lin-

ear time costs. The model presented in this paper corresponds to a special case, in which

only linear time costs are present and the information cost technology exhibits what we call

a “preference for gradual learning.” Under these assumptions, it is always weakly optimal

for the DM to choose not to have jumps in her beliefs, meaning that her beliefs will follow

a pure diffusion process. No-discounting generates a great deal of tractability (and deci-

sion times are often short relative to the rate of time preference), and this “preference for

gradual learning” allows us to focus on models that are closely related to existing models

in psychology, neuroscience, and economics.
13The example in (5) does not satisfy this for any m > 0, but is the limit of a sequence that does.
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Other authors (e.g. Che and Mierendorff (2017), Zhong (2018)) have explored models

in which beliefs are assumed to follow a jump process. In Hébert and Woodford (2018),

we discuss conditions under which beliefs will follow a diffusion-like or jump-like process,

with and without exponential discounting, and how our results relate to those papers. For

robustness, in this paper, we show in Appendix Section C.1 that our equivalence result

(Theorem 1 below) can be derived from an alternative model in which beliefs follow a pure

jump process. Our subsequent results depend only on this theorem and thus are relevant

to both diffusion-based and jump-based models. To preserve this robustness, we do not

discuss topics like stopping times, which likely differ between diffusion-based and jump-

based models, even when those models are both equivalent to the same static model.

3 Static and Dynamic Rational Inattention Problems

In most theories of rational inattention, including the classic formulations of Sims, only a

single signal is collected for each decision that must be made. In a decision problem where

an action is chosen once from a set of possibilities, the rational inattention problem is

static; a signal is obtained (once) that depends on the state, an action is taken that depends

on the signal, and that is all. The kind of dynamic optimization model proposed in the

previous section seems quite different. Nonetheless, we establish below that in a broad

class of cases, there is an equivalence between the information that is ultimately acquired

in the dynamic model of the previous section and the information acquired in a static model

of rational inattention, with a particular type of cost function. Thus, our dynamic model

does not necessarily have different implications, on some dimensions, than a static rational

inattention model; however, the dynamic optimization problem can provide a reason for

interest in static information-cost functions of particular types.

We begin by explaining the form of a static rational inattention problem, and then de-
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scribe our equivalence result. After introducing our equivalent result, we will discuss com-

parative statics, and relate those comparative statics to the information cost matrix function

introduced in the previous section.

3.1 Static Models of Rational Inattention

Much of the notation from the previous section carries over to static models. We continue

to use x ∈ X as the underlying state of nature, and ua,x as the payoff from taking action

a ∈ A in state x. We continue to define û(q) as the payoff from taking the optimal action

with beliefs q, and let q0 denote the DM’s initial beliefs, prior to gathering information.

In static rational inattention models, the DM chooses a “signal structure,” consisting

of a signal alphabet S (a finite set) and a conditional probability, for each state x, of each

signal, p= {px ∈P(S)}x∈X . The signal structure p generates, under the prior beliefs q0, an

unconditional probability of each signal, πs(p,q0). After receiving a signal s ∈ S, the DM

will hold beliefs qs(p,q0), defined by Bayes’ rule. Let C(p,q0;S) : P(S)|X |×P(X)→ R

be the cost of choosing a signal structure p and alphabet S, given initial prior q0. The

standard static rational inattention problem, given the signal alphabet S,14 is

max
{px∈P(S)}x∈X

∑
s∈S

πs(p,q0)û(qs(p,q0))−θC(p,q0;S), (6)

where θ > 0 is a multiplicative factor that parameterizes the cost of information. Note

that the problem can be rewritten as a choice of the signal probabilities πs and posteriors

qs, instead of the signal structure p; for any πs and qs such that ∑s∈S πsqs = q0, there is a

unique signal structure p such that πs = πs(p,q0) and qs = qs(p,q0).

In the classic formulation of Sims, a problem of the form of (6) is considered, in which

14The full problem includes a choice over the signal alphabet S. A standard result, which will hold for all
of the cost functions we study, is that |S|= |A| is sufficient.
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the cost function C(p,q; S) is given by the mutual information between the signal and the

state. Mutual information can be defined using Shannon’s entropy,

HShannon(q) ≡ −∑
x∈X

(eT
x q) ln(eT

x q), (7)

where ex ∈ RX is the vector with a one corresponding to state x, and zeros elsewhere.

Shannon’s entropy can be used to define a measure of the degree to which each posterior

qs differs from the prior q0, the Kullback-Leibler (KL) divergence,

DKL(qs||q0) ≡ HShannon(q0)−HShannon(qs)+(qs−q0)
T HShannon

q (q0). (8)

Mutual information is the expected value of the KL divergence over possible signals,

IShannon(p,q0;S) ≡ ∑
s∈S

πs(p,q0)DKL(qs(p,q0)||q0). (9)

It is a measure of the informativeness of the signal structure p, in that it provides a mea-

sure of the degree to which the signal changes what one should believe about the state, on

average. Mutual information is not, however, the only possible measure of the informa-

tiveness of an information structure, or the only plausible cost function for a static rational

inattention problem. We introduce alternatives in the next section, but first return to our

discussion of the continuous-time problem introduced in Section 2.

3.2 The Equivalence of Static and Dynamic Models

To prove our equivalence result, we restrict our attention to information-cost matrix func-

tions that are “integrable,” in the sense described by the following assumption.

Assumption 1. There exists a twice-differentiable function H : R|X |+ → R such that, for all

16



qt in the interior of the simplex,

Diag(qt)
−1k(qt)Diag(qt)

−1 = Hqq(qt). (10)

This class includes a number of information-cost matrix functions of interest: for ex-

ample, it includes the case in which k(qt) is the inverse Fisher information matrix, which

we will show corresponds to the standard rational inattention model, and the case in which

k(qt) is the “neighborhood-based” function that we introduce in section 4. It is, however,

more restrictive than the class of information-cost matrix functions defined in Section 2.15

We shall refer to the function H as the “entropy function,” for reasons that will become

clear below. Note that H(q) is convex, by the positive semi-definiteness of k(q), and ho-

mogenous of degree one (qT ·Hqq(q) = ιT k(q)Diag(q)−1 =~0).

For every convex function H, there is a “Bregman divergence,”

DH(qs||q) = H(qs)−H(q)− (qs−q)T Hq(q). (11)

The Kullback-Leibler divergence, for example, is a Bregman divergence (see (8)), with a

entropy function equal to the negative of Shannon’s entropy.

To analyze our continuous time problem, we begin by proving that the information

constraint (2) binds. Because the constraint binds, we can substitute the constraint into the

HJB equation (3), and obtain the following result:

Lemma 1. Anywhere the value function V (qt) is twice-differentiable and the DM chooses

not to stop, for all σ ∈M(qt),

tr[σT{Diag(qt)Vqq(qt)Diag(qt)−θk(qt)}σ ]≤ 0, (12)

15It rules out, e.g., constant k(q) (a hypothetical H would have asymmetric third-derivative cross-partials).
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where θ = χ−1κ , with equality under the optimal policy.

Proof. See the Appendix, Section B.1.

The parameter θ , introduced in the lemma, describes the race between information

acquisition and time in this model. The larger the penalty for delay, and the tighter the

information constraint, the larger the parameter θ . We now describe our equivalence result,

and then outline the key step of its proof, which relies on this lemma.

Theorem 1. Under Assumption 1, the value function that solves the continuous time se-

quential evidence accumulation problem is

V (q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)(uT
a ·qa)−θ ∑

a∈A
π(a)DH(qa||q0),

subject to the constraint that ∑a∈A π(a)qa = q0, where DH is the Bregman divergence as-

sociated with the entropy function H that is defined by Assumption 1.

There exist maximizers π∗ and q∗a such that π∗ is the unconditional probability, in

the continuous time problem, of choosing a particular action, and q∗a, for all a such that

π∗(a)> 0, is the unique belief the DM will hold when stopping and choosing that action.

Proof. See the Appendix, Section section B.2.

The continuous time sequential evidence accumulation problem is equivalent to a static

rational inattention problem, with a particular kind of static information-cost function,

C(p,q0; S) = ∑
s∈S

πs(p,q0)DH(qs(p,q0)||q0), (13)

with the signal space S identified with the set of possible actions A. Following Caplin et al.

(2018b), we call such a cost function “uniformly posterior-separable.”
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The mutual information cost function (9) proposed by Sims is one such cost function. In

this case, the entropy function H is the negative of Shannon’s entropy (7), the corresponding

information-cost matrix function is the inverse Fisher information matrix (4), the Bregman

divergence is the Kullback-Leibler divergence (8), and the information measure defined by

(13) is mutual information (9). Thus Theorem 1 provides a foundation for the standard

static rational inattention model, and hence for the same predictions regarding stochastic

choice as are obtained by Matêjka et al. (2015).

On the other hand, Theorem 1 also implies that other cost functions can also be justified.

Indeed, any (twice-differentiable) uniformly posterior-separable cost function (13) can be

given such a justification, by choosing the information cost matrix function defined by

equation (10). However, not all information cost matrix functions are reasonable. As

discussed in the previous section, the information cost matrix function describes how hard

it is to distinguish any pair of states. In many economic applications, there is a natural

ordering or structure of the states, and we would like the information cost matrix function

and the associated entropy function and Bregman divergence to reflect this structure. In the

next section, we propose such a cost function.

First, however, we outline the key step of our proof, and then illustrate the important

role that the information cost matrix function plays in comparative statics for the DM’s

choices. Our proof strategy is best described as “guess and verify,” in that we start with the

static value function described in Theorem 1 and then show that it is the value function of

the continuous time model described in Section 2. The key step of the proof is to show that

the static value function satisfies (12) in Lemma 1.16 For expositional purposes, we will

16Technical footnote: the “anywhere the value function is twice differentiable” caveat of Lemma 1 is
relevant for our problem. The PDE described by equation (12) is “degenerate elliptic” and hence will not in
general have a classical solution. Indeed, we do not prove that our static value function is twice differentiable
everywhere, and suspect it is not at points where the “consideration set” (the set of actions with π(a) > 0,
Caplin et al. (2018a)) changes. In our proof, we establish that the static problem value function is convex
and continuously differentiable, which is sufficient to invoke a generalized version of Ito’s lemma for convex
functions to verify that the static value function is the solution to the continuous time problem.
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assume that the optimal policies of the static model, π∗(a;q0) and q∗a(q0), are differentiable

with respect to q0 and strictly interior (we do not require these assumptions in the proof).

We begin by examining the first-order conditions with respect to qa, and applying

the envelope theorem. Let κ(q0) denote the vector of multipliers on the constraint that

∑a∈A π(a)qa = q0. We have

FOC: ua−κ(q0)−θHq(q∗a(q0))+θHq(q0) = 0, ∀a ∈ A, (14)

ET: Vq(q0) = κ(q0)+ ∑
a∈A

π
∗(a;q0)(q∗a(q0)−q0)

T ·Hqq(q0) = κ(q0).

Now consider a perturbation q0→ q0 + εz, for some tangent vector z. Combining the FOC

and ET, and then differentiating with respect to ε and evaluating at ε = 0,

Vqq(q0) · z = θHqq(q0) · z−θHqq(q∗a(q0)) ·
dq∗a(q0 + εz)

dε
|ε=0, ∀a ∈ A. (15)

Observe that, due to the constraint, ∑a∈A
d(π∗(a;q0+εz)q∗a(q0+εz))

dε
|ε=0 = z. Multiplying both

sides of equation (15) by d(π∗(a;q0+εz)q∗a(q0+εz)T )
dε

|ε=0, and then taking sums,

zT ·Vqq(q0) · z = θzT ·Hqq(q0) · z

−θ ∑
a∈A

π
∗(a;q0)(

dq∗a(q0 + εz)
dε

|ε=0)
T ·Hqq(q∗a(q0)) ·

dq∗a(q0 + εz)
dε

|ε=0

−θ ∑
a∈A

dπ∗(a;q0 + εz)
dε

|ε=0 q∗a(q0)
T ·Hqq(q∗a(q0)) ·

dq∗a(q0 + εz)
dε

|ε=0.

By Assumption 1, qT ·Hqq(q) = 0, and hence the last line in this expression is zero. By the

convexity of H, the summation on the second line is positive. Therefore, by Assumption 1,

zT ·Vqq(q0) · z≤ zT ·Diag(q0)
−1k(q0)Diag(q0)

−1 · z,
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establishing that (12) holds. To show that there is a direction z∗ in which (12) holds with

equality, it is sufficient to show that dq∗a(q0+εz∗)
dε

|ε=0 = 0 for all a ∈ A. In any direction

z spanned by the initial q∗a(q0)− q0, it is not optimal for the DM to change the q∗a(q0),

only the probabilities π∗(a,q0) (this property, “Locally Invariant Posteriors,” was shown

by Caplin et al. (2018b)). Thus, any of these directions can serve as z∗.17

3.3 Comparative Statics

Any uniformly posterior-separable cost function can be justified by some information cost

matrix function. In this subsection, we ask whether the cost function matters in terms of the

DM’s observable behavior. In some sense, the recoverability result of Caplin et al. (2018b)

shows that the answer must be “yes”– if the cost function can be uniquely recovered from

data on the likelihood of the DM’s action in each state, then that likelihood must be influ-

enced by the cost function. Our particular point is to relate the comparative statics of the

DM’s posteriors with respect to payoffs to the information cost matrix function.

To illustrate this point, we return to our running example of a buyer considering pur-

chasing a security. The comparative statics of this case are particularly transparent, be-

cause there are only two actions, A = {L,R}; similar but more complicated formulas can

be obtained in the many-action case. Combining the first-order conditions (14) for the

two actions, and using the homogeneity of degree zero of Hq(·) (which follows from the

homogeneity of degree one of H), we find that, continuing to assume interior solutions,

s−Kι = θHq(π
∗
Lq∗L)−θHq(q0−π

∗
Lq∗L).

Now consider a perturbation of the security payoff for a particular asset value x∈ X , s(ε) =

17That any such direction can serve as z∗ indicates that there are (usually) many optimal policies in the
continuous time problem that achieve the same value function. Intuitively, at each point, if the DM does not
learn in some particular direction, she could always learn in that direction in the next instant.
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s+εex, and its effect on the probability of accepting the security conditional on some other

x′ ∈ X . Assuming that q∗L 6= q0, meaning that the buyer gathers some information,18 we can

differentiate the above first-order equation and derive the comparative static

d(π∗L(ε)e
T
x′q
∗
L(ε))

dε
|ε=0 = eT

x′[θHqq(π
∗
Lq∗L)+θHqq(q0−π

∗
Lq∗L)]

−1ex. (16)

For this two-action model, this can be viewed as a definition of whether learning about

the states x and x′ are complements or substitutes (note that it is symmetric). If the reward

for acceptance in state x increases, and learning about states x and x′ are complements,

the DM will endogenously choose to accept more often in state x′. By Assumption 1, the

Hessians Hqq(q) are transformed versions of the information cost matrix function k(q).

Intuitively, the difficulty of discriminating between the states x and x′ , -kxx′(q), is closely

related to whether or not they are complements or substitutes with respect to learning.

To understand the role of the matrix inverse, decompose the matrix Hqq(π
∗
Lq∗L)+Hqq(q0−

π∗Lq∗L) into a diagonal matrix Hdiag(πLqL) and the negative of an off-diagonal matrix Ho f f (πLqL),

Hqq(π
∗
Lq∗L)+Hqq(q0−π

∗
Lq∗L) = Hdiag−Ho f f .

Note that Hdiag has entirely positive entries, and that the off-diagonal entries Ho f f are scaled

versions of the off-diagonal entries of k(q). We can write, ignoring the issue of whether the

infinite sum converges,

[θHqq(π
∗
Lq∗L)+θHqq(q0−π

∗
Lq∗L)]

−1 = θ
−1H−1

diag

∞

∑
j=0

(H−1
diagHo f f )

j.

We can think of our comparative static (16) as consisting a sequence of “rounds” of ef-

fects. The “zero-round” effect is to increase the likelihood of the state x whose payoff has

18This condition ensures that Hqq(πLqL)+Hqq(q0−πLqL) is positive-definite.
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increased. The “first-round” effect is governed by the difficulty of discriminating between

x and x′. If it is difficult to discriminate between x and x′, but easy to discriminate between

x and x′′, the DM will want to make acceptance relatively more likely conditional on x′.

However, this involves discriminating between x′ and x′′, and hence leads to a “second-

round” effect. Third- and higher-round effects can be defined in similar fashion. With the

inverse Fisher information matrix as the cost function, these rounds of effects are a function

only of πLqL and q0 and hence are identical for pairs (x,x′) and (x̃, x̃′) with identical prob-

abilities under qL and q0. With the example neighborhood-based information cost matrix

function (5), first-round effects occur only between adjacent states, second round effects

only between states that are “two spaces apart,” and so on.

At this point, we have shown that any uniformly posterior-separable cost function can

be justified by our continuous time framework, with some information cost matrix function,

that the information cost matrix function describes the difficulty or ease with which the DM

can discern certain states, and that this difficulty or ease matters for behavior. Given these

results, our next section proposes a specific class of information cost matrix functions,

and hence uniformly posterior-separable cost functions, that we will argue are superior in

certain respects to the standard mutual information cost function.

4 Neighborhood-Based Cost Functions

We begin by introducing a structure on the state space, to capture the idea that some pairs

of states are harder to discern than others. Using this structure, we describe an information

cost matrix function and the associated uniformly posterior-separable cost function.
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4.1 The Neighborhood Framework

Suppose that the state space X can be written as the union of a finite collection of “neigh-

borhoods” {Xi}, and let I denote the set of these neighborhoods. Suppose furthermore

that the state space is connected, in the sense that any two states can be connected by a

sequence of overlapping neighborhoods.19 Define the selection matrices Ei as the |Xi|×|X |

matrices that select each of the elements of Xi from a vector of length |X |.

For any belief q ∈P(X), let q̄i ≡ ∑x∈Xi eT
x q be the prior probability that some state

belonging to neighborhood Xi occurs. Let qi ∈P(Xi) be the conditional probability distri-

bution over states in neighborhood Xi, given the belief q and conditional on the state being

in neighborhood Xi. That is, for all x ∈ Xi, qi ≡ 1
q̄i

Eiq. The information cost matrix function

has a neighborhood structure if, for all q in the interior of the simplex,

kN(q;ρ) =


∑i∈I ciq̄i|Xi|1−ρ ET

i (g
+(qi))

2−ρEi ρ 6= 2,

∑i∈I ciq̄i|Xi|−1 ET
i (I−qiι

T )(I− ιqT
i )Ei ρ = 2.

where g+(·) is the inverse Fisher information matrix, ρ ≥ 1 is a constant, and the constants

ci are strictly positive for each i ∈ I . Within each neighborhood, we have assumed that

the cost of information is proportional to the inverse Fisher information to some power, to

retain to some of the tractability of the original rational inattention model. However, by

varying the neighborhood structure, we can impose a variety of assumptions about how

difficult it is to discriminate between various states. In the special case in which there is

only a single neighborhood and ρ = 1, kN is simply the inverse Fisher information matrix.

We should emphasize that using the inverse Fisher information matrix to some power

within each neighborhood is useful from a tractability perspective, but is in no way essential

19That is, for any two states x, x′ ∈ X , there exists a sequence of states {x0, . . . ,xn} with x0 = x, xn = x′,
and the property that for any 1≤ m≤ n, states xm and xm−1 belong to a common neighborhood.
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to the idea of using neighborhoods. One could use a neighborhood structure with almost

any “neighborhood” information cost matrix function. Our introduction of the exponent ρ

(as opposed to simply using ρ = 1) follows Dean and Neligh (2018), who provide experi-

mental evidence consistent with a neighborhood information structure, but find that values

of ρ substantially larger than one provide the best fit to their experimental data. More gen-

erally, there is no reason aside from parsimony to assume that the same “neighborhood”

information cost matrix function applies within each neighborhood.

We can use the information-cost matrix function in our continuous-time problem (the

problem defined in Section 2).20 It satisfies the Assumption 1, and hence Theorem 1 ap-

plies. That is, there is an entropy function HN(q) that can be used to define the static

rational-inattention problem which is equivalent to the solution to the dynamic model.

Lemma 2. Let HGen(qi;ρ) be the generalized entropy index of Shorrocks (1980) on the

neighborhood i ∈I , defined for any interior qi as

HGen(qi;ρ) =



1
|Xi|

1
(ρ−2)(ρ−1) ∑x∈Xi{(|Xi|eT

x qi)
2−ρ −1} ρ /∈ {1,2}

− 1
|Xi|∑x∈Xi ln(eT

x qi) ρ = 2

∑x∈Xi eT
x qi ln(eT

x qi) ρ = 1.

The entropy function HN(q;ρ) associated with the neighborhood-based information-cost

matrix function kN(q;ρ) is, for any q in the relative interior of the simplex,

HN(q;ρ) = − ∑
i∈I

ciq̄i HGen(qi;ρ),

and is defined on the boundary by continuity for ρ < 2 and as infinity for ρ ≥ 2.
20Our derivation of the continuous-time model (Hébert and Woodford (2018)) requires that kN(q)−

mg+(q) ≥ 0 for some strictly positive constant m. We can satisfy this requirement by including a neigh-
borhood containing all states, with an arbitrarily small constant ci associated with that neighborhood.
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Proof. See the Appendix, Section B.3.

The special case of ρ = 1 corresponds to (the negative of) Shannon’s entropy within

each neighborhood. The exponent ρ controls the curvature of the entropy function (Dean

and Neligh (2018) use the following analogy: HGen(qi;ρ) is to Shannon’s entropy as CRRA

utility is to log utility). Using the our generalized entropy function HN(q;ρ), we can define

a Bregman divergence, DN(qs||q;ρ), as in (11), and a static rational inattention problem21

(as in Theorem 1),

VN(q) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)(uT
a ·qa)−θ ∑

a∈A
π(a)DN(qa||q;ρ). (17)

It is sometimes more convenient to work with cost functions defined over signals {px ∈

P(S)}x∈X , as opposed to posteriors qa and unconditional probabilities π (e.g. (6)). Below

we rewrite the problem with a neighborhood cost function in this form, using Bayes’ rule.

Lemma 3. The static rational inattention problem in (17) can be written as

VN(q) = max
{px∈P(S)}x∈X

∑
s∈S

πs(p,q0)û(qs(p,q0))

−θ ∑
i∈I

ci|Xi|1−ρ q̄ρ−1
i ∑

x∈Xi

(eT
x q)2−ρDρ(px||pET

i qi),

where

Dρ(px||π) =



1
(ρ−2)(ρ−1) ∑s∈S:πs>0 πs((

px,s
πs

)2−ρ −1) ρ 6= {1,2}

∑s∈S:πs>0 πs ln( πs
px,s

) ρ = 2

∑s∈S:πs>0 px,s ln( px,s
πs

) ρ = 1.

Proof. See the Appendix, Section B.4.

The divergences Dρ are known as the α-divergences (under a different parameterization)

21To deal with the boundaries in the ρ ≥ 2 case, we assume q has full support in this problem.
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and are a transformed version of the Renyi divergences (Amari and Nagaoka (2007)). In

the special case of ρ = 1, Dρ is the Kullback-Leibler divergence. If ρ = 1 and there is only

a single neighborhood, this is the standard rational inattention problem. The relevance of

alternative neighborhood structures is illustrated by the following observation.

Corollary 1. Consider a rational inattention problem with a neighborhood-based information-

cost function (Lemma 3), and let x,x′ be two states with the property that (i) ua,x = ua,x′ for

all actions a ∈ A, (ii) qx = qx′ , and (iii) the set of neighborhoods {Xi} such that x ∈ Xi is

the same as the set such that x′ ∈ Xi. Then under the optimal policy, p∗x = p∗x′. If ρ = 1, this

result holds even if qx 6= qx′ .

Proof. The result follows directly from the problem in Lemma 3.

The significance of Corollary 1 can be seen if we consider the predictions of rational

inattention for a standard form of perceptual discrimination experiment, an application we

describe in the next section. In these experiments, payments are based on correct and incor-

rect responses. As a result, two states in which the correct response and ex-ante likelihoods

are identical will (for a single-neighborhood cost function) have the same likelihood of a

correct response. Experimental evidence (intuitively) shows that in some states it is more

difficult to determine the correct response than in other states.

4.2 A Specific Proposal: The Fisher Information Cost Function

Our neighborhood-based framework is flexible enough to accommodate a wide range of

structures on the state space. However, in practice, we believe there is a particular structure

that it relevant in many settings: when the states can be ordered on a line. Suppose there

are M+1 ordered states, XM = {0,1, . . . ,M}, and that each pair of adjacent states forms a

neighborhood, Xi = {i, i+1}, for all i∈ {0,1, . . . , M−1}. Thus two states belong to a com-

mon neighborhood if and only if one comes immediately after the other in the sequence.
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This captures the idea that the available measurement technologies all respond similarly in

states that are “similar,” in the sense of being at nearby positions in the sequence, so that re-

peated measurements are necessary to reliably distinguish between two states if and only if

they are near each other in the sequence. Suppose further that ci = 1 for all i, implying that

it is equally difficult to distinguish two neighboring states at all points in the sequence.22

Under these assumptions, for any q with full support,

HN(q;ρ,M) =
1

ρ−2
1

ρ−1

M−1

∑
j=0

(
1
2
(eT

j + eT
j+1)q)×

{(
eT

j q
1
2(e

T
j + eT

j+1)q
)2−ρ +(

eT
j+1q

1
2(e

T
j + eT

j+1)q
)2−ρ −2}. (18)

Defining the function g(x;ρ) = 1
ρ−2

1
ρ−1x2−ρ , we can rewrite this expression as

HN(q;ρ,M)=
M−1

∑
j=0

(
1
2
(eT

j +eT
j+1)q){g(1−

1
2(e

T
j+1− eT

j )q
1
2(e

T
j + eT

j+1)q
;ρ)+g(1+

1
2(e

T
j+1− eT

j )q
1
2(e

T
j + eT

j+1)q
;ρ)−2g(1;ρ)}.

This function penalizes differences in the function g(·;ρ) between states i and i+1 and their

average. Because the g(·;ρ) function is convex, any changes in probability are penalized.

As a result, it will be optimal in the static rational inattention problem for the DM to smooth

posterior probabilities across states of the world.

If qi and qi+1 are close to each other for all i, a second-order Taylor approximation of

the function g(u;ρ) around u = 1 clarifies this point:

HN(q;ρ,M)≈ 1
4

M−1

∑
j=0

((eT
j+1− eT

j )q)
2

1
2(e

T
j + eT

j+1)q
. (19)

Note that this approximation is exact in the ρ = 0 case, and that the approximation is the

22If ci is the same for all i, we can without loss of generality set it equal to one, as the multiplier θ can still
be used to scale the overall magnitude of information costs.
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same for all values of ρ . Intuitively, all of the HGen(qi;ρ) resemble each other in the

neighborhood of the uniform distribution, and hence when applied to a neighborhood with

two states with similar probabilities are approximately identical.

For many applications, it is more convenient to work with a continuous state space.

Based on this approximation result, it is tempting to infer that, in the limit as the number

of states M→ ∞, if the discrete distributions qM converge to differentiable function q,

lim
M→∞

HN(qM;ρ,M) =
1
4

ˆ
supp(q)

(q′(x))2

q(x)
dx,

where supp(q) denotes the support of q. From this, we define a continuous state rational

inattention problem:

VN(q) = sup
π∈P(A),{qa∈PLipG}a∈A

∑
a∈A

π(a)
ˆ

supp(q)
ua(x)qa(x)dx

− θ

4 ∑
a∈A
{π(a)

ˆ
supp(q)

(q′a(x))
2

qa(x)
dx}+ θ

4

ˆ
supp(q)

(q′(x))2

q(x)
dx, (20)

subject to the constraint that, for all x,

∑
a∈A

π(a)qa(x) = q(x).

In this expression, x is the exogenous state, ua(x) is the utility of action a∈ A in state x, q(x)

is the prior over the states, and qa(x) is the posterior belief conditional on taking action a.

This problem has an alternative formulation as a choice of signal structure:

VN(q) = sup
{pa}a∈A∈PLipG(A)

ˆ
supp(q)

q(x) ∑
a∈A

pa(x)ua(x)dx − θ

4

ˆ
supp(q)

q(x) ∑
a∈A

(p′a(x))
2

pa(x)
dx,

(21)

where PLipG(A) is the set of mappings {pa : supp(q)→ R+}a∈A such that for each x,
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∑a∈A pa(x) = 1, and for each action a, the function pa(x) is a differentiable function of x

with a Lipschitz-continuous derivative.

This alternative formulation shows that our proposed static information-cost function is

just the weighted (by q(x)) average of the Fisher information (Cover and Thomas (2012),

sec. 11.10), a measure of the local discriminability of states.23 It is for this reason that we

refer to our proposal as the “Fisher information cost function.” Like mutual information,

the Fisher-information cost function is a single-parameter cost function, and it can also

be applied in almost any context, as long as the state space is continuous. Unlike mutual

information, the Fisher information depends on the topological structure of the state space.

We prove the convergence of the static problem described in Theorem 1 to this problem

formally in the Technical Appendix, Section C.2, under some regularity assumptions on the

prior q (differentiability, with a Lipschitz-continuous derivative, and support on a compact

set), for the specific case of ρ = 1.24 In the proof, we show that the limiting optimal pos-

teriors qa are also differentiable and have the same support as q (so the Fisher information

integrals make sense) and that their derivatives are also Lipschitz-continuous (which helps

prove convergence). We refer to the set of full-support, differentiable probability distribu-

tion functions with Lipschitz-continuous derivatives as PLipG. The proof is quite technical,

and the relevant economics are summarized by the approximation (19).

We have proposed a neighborhood structure that captures the idea that states might be

ordered on a line. We now turn to applications, to illustrate the effects of using our proposed

alternative in the place of the standard rational inattention cost function.

23The equivalence of the two formulations is shown in the Technical Appendix, section C.2, where we also
provide further discussion of the connection with Fisher information.

24We also assume bounded utilities. We think the result holds for other values of ρ , and without some of
our regularity assumptions, but generalizing our quite technical proof is difficult.
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5 Applications of Neighborhood-Based Cost Functions

In this section, we apply our results to several applications of rational inattention. The

first three applications concern binary choices, the fourth a linear-quadratic-Gaussian en-

vironment. These two environments cover a wide range of existing applications of rational

inattention (for a survey, see Mackowiak et al. (2018)).

5.1 Security Design

In this application, we apply our framework to the mode of security design model with

adverse selection in Yang (2017),25 which builds on the buyer’s decision problem that

we have used as an example thus far. We will briefly summarize the environment, and

encourage readers to refer to Yang (2017) for a richer exposition.

A seller offers a security s∈R|X |+ , whose payoffs are contingent on the realized value of

the assets backing the security, x ∈ X ⊆ R+, to a buyer at a price K. The buyer’s problem

(our example earlier in the paper) is to gather information about which asset values x ∈ X

are most likely and then accept (“like,” L) or reject (R) this take-it-or-leave it offer. Both

parties are risk-neutral, and the seller discounts the cashflows by a factor β < 1, relative to

the buyer. The security is constrained by limited liability, 0≤ eT
x s≤ x.

The seller designs the security and offers a price, solving

max
s,K≥0

πL(s,K)qL(s,K)T (Kι−β s)·

subject to the limited liability constraint. In this expression, πL(s,K) and qL(x;s,K) are

the optimal policies of the buyer who solves a rational inattention problem of the form of

25Our neighborhood cost function could also be applied in the same fashion to the model of security design
with moral hazard in attention described in the appendix of Hébert (2018).
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Theorem 1, specialized to the case of two actions,

V (q0;s,K) = max
πL∈[0,1],qL,qR∈P(X)

πLqT
L (s−Kι)

−θπLDH(qL||q0)−θ(1−πL)DH(qR||q0),

subject to the constraint that πLqL +(1−πL)qR = q0.

Yang (2017) shows that, with the standard rational inattention cost function (DH is

the Kullback-Leibler divergence), the optimal security design is a debt contract, s(x) =

min{v(x), v̄} for some positive constant v̄. The analysis involves two different cases, de-

pending on whether the seller attempts to ensure acceptance with certainty (πL = 1) or not,

but the form of the optimal security is the same in both cases. To simplify our exposition,

we will focus on the case with some possibility of rejection (πL < 1), and discuss the case

of acceptance with certainty in appendix section §C.3.

We explore, numerically, how the result of Yang (2017) changes with alternative H(·)

functions. We consider three alternatives, our neighborhood-based function HN with our

pairwise neighborhood structure (equation (18)), a generalized entropy index cost function

(the neighborhood cost function with only one neighborhood), and a “weighted” Shannon’s

entropy. Weighted Shannon’s entropy (see, e.g., Nawrocki and Harding (1986)) is

Hw(q) = ∑
x∈X

(eT
x w)(eT

x q) ln(
eT

x q
ιT q

),

where w is a vector of weights. Constant weights correspond to Shannon’s entropy.

Summarizing our results, we replicate numerically the proof of Yang (2017) that, with

mutual information, the optimal security design is always a debt. In contrast, for weighted

mutual information and the generalized entropy index, the shape of the security design

depends on the weights and the prior, respectively. The neighborhood cost function, on the
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other hand, appears to always generate the same shape irrespective of the prior, a result we

speculate could be proven analytically in the continuous-state version of the model.

Below, we describe our calculation procedure, and the parameters we use to generate

figures 3 and 4. In general, our choice of parameters is guided by a desire to illustrate the

differences between the cost functions, and to ensure that acceptance is not certain (πL < 1).

Our numerical calculation uses the “first-order approach,” solving

max
s,K≥0,πL∈[0,1],qL∈P(X)

πLqT
L (Kι−β s)

subject to the buyer’s first order condition and that beliefs remain in the simplex,

s−Kι +θHq(q0−πLqL) = θHq(πLqL),

eT
x (q0−πLqL)≥ 0, ∀x ∈ X ,

and the limited liability constraints.26

Combining the first-order conditions of this security design problem and the constraints,

(1−β )s∗ = θHq(q−π
∗
Lq∗L)−θHq(π

∗
Lq∗L)+

+θ [Hqq(q−π
∗
Lq∗L)+Hqq(π

∗
Lq∗L)](βπ

∗
Lq∗L−λ +ν),

where λ and ν are the multipliers on the limited liability constraints. This illustrates that the

optimal security design is determined by the entropy function, and hence the information

cost matrix function, subject to the caveat that π∗Lq∗L is endogenous.27

Our numerical experiment uses an X with twenty-one states, with values of x evenly

spaced from 0 to 10. We use a seller β of 0.5, and prior q that is an equal-weighted mixture

26We conjecture, but have not proven, that the first-order approach is valid in this context.
27Our discussion of comparative statics in section §3 anticipates this result.
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of a uniform and binomial (21 outcomes of a 50-50 coin flip) distribution. We have chosen

these parameters to help illustrate the differences between the cost functions.28

For the generalized entropy and neighborhood-based cost functions, we use ρ = 13.

This value is close to the estimated parameter of Dean and Neligh (2018) for these two

cost functions, although there is no particular reason to apply parameters estimated for

perceptual experiments to security design. The various cost functions are not of the same

“scale,” so the same values of θ do not necessarily result in the securities of the same scale.

We have chosen θ = 1
2 for Shannon’s entropy, θ = 1 for weighted Shannon’s entropy and

the neighborhood cost function, and θ = 1
50 for the generalized entropy function, which

results in securities that are of the same scale but distinct in our graphs.

For our weighted Shannon’s entropy, we use

w(x) =
3
2
+

x
10

.

This linear weight structure effectively assumes that it is more costly for the buyer to learn

about good states than about bad states. We will see that this induces the seller to offer

the buyer more in good states, and hence makes the buyer’s security more equity-like.

The more general point, which we believe could be shown analytically, is that almost any

security design could be reverse-engineered as optimal given some weight matrix. This

reinforces the need to consider what kinds of information costs are reasonable.

Our numerical results are shown in figures 3 and 4. The first of these shows the optimal

security designs, the second the optimal monotone (in x) security designs. Our numerical

calculations recover the result of Yang (2017) for the case of Shannon’s entropy. They

28In particular, the effects of weighted vs. standard Shannon’s entropy are proportional to ln(β ), so we
choose a value of β significantly different from one. The differences between the generalized entropy index
and Shannon’s entropy disappear with a uniform prior, so we use the binomial part of the prior to highlight
those differences. At the same time, it is helpful for numerical purposes to ensure the prior is significantly
different from zero in each state, which is why we have the uniform part of the prior.
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also illustrate our point that, with upward-sloping weights, the result for weighted Shan-

non’s entropy is equity-like. The “inverse hump-shape” of the optimal security with the

generalized entropy index cost function is caused by the “hump-shape” of the prior.29 The

optimal securities for mutual information and weighted mutual information are monotone,

and hence do not differ between the two graphs, whereas the optimal securities for the

neighborhood based cost function and (imperceptibly) the generalized entropy index are

non-monotone, and hence do differ. For weighted mutual information and the generalized

entropy index, monotonicity or a lack thereof is not guaranteed, as the shape of the optimal

security depends on the weights and prior, respectively.

Our results for the neighborhood cost function appear, regardless of parameters, to

result in the same “debt-like,” but non-monotone, optimal security. This security is non-

monotone and rapidly changing in one area. Rapid changes in security values would cause

rapid changes in buyer behavior with Shannon’s entropy, and hence be sub-optimal, but this

is not the case with neighborhood cost functions. As a result, it is possible for the optimal

security to have rapid changes. However, when we restrict the security to be monotone,

the optimal security is a debt, suggesting that the result of Yang (2017) is robust to using

neighborhood cost functions (but not the other two alternatives) under this additional re-

striction. We conjecture that it is possible to prove the optimality of debt among monotone

securities with a Fisher information cost, in the continuous state case.

Observant readers might notice a second feature of the optimal security for neighborhood-

based cost functions: the “flat” part isn’t exactly flat. This feature arises from the “tri-

diagonal” nature of the information cost matrix function k(q), which leads to a difference

equation describing the optimal security. As the number of states increases, the “flat” part

of the security becomes increasingly flat. In the continuous state case, the difference equa-

tion becomes a differential equation, and we conjecture that the flat part is truly flat.

29With a uniform prior, the optimal security with the generalized entropy index cost is also a debt.
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5.2 Psychometric Functions

In this application, we discuss our theory in the context of perceptual experiments (for

example, Shadlen et al. (2007) or Dean and Neligh (2018)). Suppose that the different

states X = {0,1,2, . . . ,M}, where M is an odd integer, represent different stimuli that may

be presented to the subject, and that the subject is asked to classify the stimulus that is

presented as one of two types (L or R); R is the correct answer if and only if x > M/2.

For example, the stimuli might be visual images with different orientations relative to the

vertical, with increasing values of x corresponding to increasingly clockwise orientations;

the subject is asked whether the image is tilted clockwise or counter-clockwise relative

to the vertical. The subject’s goal is often simply to give as many correct responses as

possible; hence we suppose that ux,a = 1 if a = R and x > M/2 or if a = L and x < M/2,

while ux,a = 0 in all other cases. Each of the possible stimuli is presented with equal prior

probability, and hence both responses have equal ex ante probability of being correct.

Both mutual information and generalizations based on the generalized entropy index

correspond to a special case of a neighborhood-based cost function, in which all states be-

long to the unique neighborhood. Hence condition (iii) of Lemma 1 holds for any pair of

states, and by assumption conditions (i) and (ii) hold as well. In the problem just posed,

Lemma 1 implies that the probability of response R must be the same for all states x<M/2,

and also the same (but higher) for all states x > M/2. Changing the severity of the informa-

tion constraint changes the degree to which the probability of responding R is higher when

x > M/2, but the response probabilities still will depend only on whether x is greater or

less than M/2. This is illustrated in Appendix Figure 1, which plots the optimal response

frequencies as a function of x, for alternative values of the cost parameter θ , in a numerical

example in which C is given by mutual information and M = 20.

Alternatively, consider a neighborhood-based cost function in which the neighborhoods
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are given by Xi = {i, i+1} for i = 1,2, . . . ,M−1, and the constants ci are equal to one for

all neighborhoods, as in Section 4.2. Suppose further that ρ = 1 (noting that our approxi-

mation results suggest this choice does not matter very much). These assumptions suffice

to completely determine a static information cost function (Lemma 2).

With this alternative neighborhood structure, Corollary 1 no longer requires that the

response frequencies be identical for any two states. Moreover, because the cost function

penalizes large differences in signal frequencies (and hence in response frequencies) in the

case of neighboring states, in this case an optimal policy involves a gradual increase in the

probability of response R as x increases, even though the payoffs associated with the differ-

ent actions jump abruptly at a particular value of x. This is illustrated in Appendix Figure

2, which again shows the optimal response frequencies as a function of x, for alternative

values of θ , in the case of the neighborhood cost function just described. The sigmoid

functions predicted by rational inattention with this cost function — with the property that

response frequencies differ only modestly from 50 percent when the stimuli are near the

threshold of being correctly classified one way or the other, and yet approach zero or one

in the case of stimuli that are sufficiently extreme — are characteristic of measured “psy-

chometric functions” in perceptual experiments of this kind.30

5.3 Global Games and The Fisher-Information Cost Function

The continuity of choice probabilities despite discrete changes in payoffs is also an impor-

tant issue for the global games literature (Morris and Yang (2016)). This literature typically

30For the general concept of a psychometric function, see, for example, Gabbiani and Cox (2010), chap.
25, especially Figures 25.1 and 25.2, and discussion on p. 360; or Gold and Heekeren (2014), p. 356. For an
example of an empirical psychometric function for the kind of task discussed in the text (classification of the
dominant direction of motion for a field of moving dots), see Shadlen et al. (2007), Figure 10.1A. Note not
only that the curve is monotonically increasing, with many data points corresponding to different response
probabilities between zero and one, but also that the subject’s reward function is clearly of the kind assumed
in the text: only two possible reward levels (for correct vs. incorrect responses), with a discontinuous change
in the reward where the sign of the “motion strength” changes from negative to positive.

37



assumes a continuum of states, so for this application we will discuss the continuous state

limit described in (20). We will compare the Fisher information cost function we proposed

in Section 4.2 with the more standard mutual information cost function.

This application is motivated by the work of Yang (2015) and Morris and Yang (2016),

who study global games (e.g. Morris and Shin (1998)) with endogenous information ac-

quisition. In the well-known analysis of Morris and Shin (1998), with exogenous private

information, there is a unique equilibrium despite the incentives for coordination across

DMs (subject to some caveats and details that are not relevant for our discussion). In con-

trast, Yang (2015) demonstrates that allowing for endogenous information acquisition, with

mutual information as the information cost, restores a multiplicity of equilibria.

The key to Yang’s result is that DMs can tailor the signals they receive to sharply dis-

criminate between nearby states of the world, as discussed in our previous example. As a

result, they can all coordinate their decision (say, to invest or not) on a particular threshold,

and there are many such thresholds that can represent equilibria if coordinated upon. But

this result depends on the fact that the mutual-information cost function does not make

it costly to have abrupt changes in signal probabilities as the state of the world changes

continuously. Morris and Yang (2016) develop the complementary result, showing that

even in the case of an endogenous information structure, if signal probabilities must vary

continuously with the state, there is again a unique equilibrium.

Here we show that a neighborhood-based cost function can provide a justification for

the kind of continuity condition that the result of Morris and Yang (2016) requires. Those

authors study a global game with two possible actions, “invest” and “not-invest,” with equi-

librium behavior characterized by a probability s(x) of investing when the state is x. Their

equilibrium uniqueness result depends on an assumption of continuous choice, meaning

that for all information costs θ > 0 and all parameterizations of the relevant utility func-

tion, s(x) is absolutely continuous on a compact interval for which q(x) has full support.
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In our continuous state rational inattention problem (20), agents always choose posteri-

ors that are differentiable, with a Lipschitz-continuous derivative. By assumption, the prior

is also differentiable with a Lipschitz-continuous derivative. Therefore the function

s(x) =
qinvest(x)

q(x)
πinvest

is differentiable with respect to x in the support of q. By the Lipschitz-continuity of the

derivatives q′invest(x) and q′(x), and the fact that q(x) has full support over the relevant

compact interval, the derivative of s(x) is bounded, and hence s(x) is absolutely continuous.

Thus, our proposal provides a micro-foundation for the continuous choice assumption

required by Morris and Yang (2016), and hence for uniqueness in global games.

5.4 Linear-Quadratic Gaussian Environments

In this application, we consider the classic “Linear-Quadratic-Gaussian” (LQG) tracking

problem, which is a major application of the standard theory of rational inattention (see,

e.g., Sims (2010)). To consider this application, we extend the continuous-state version of

our model, with the Fisher information cost function, to a continuous action space (we do

not formally prove convergence). The message of this application, unlike the message of

our three previous applications, is that the model predicts the same behavior regardless of

whether the information cost is mutual information or Fisher information.

Let the state space X be the real line, and let the space of possible actions A be the real

line as well. We assume that the DM’s task is to estimate the value of the state (i.e., to

“track” variation in the state), with a reward given by ua(x) = −(x− a)2. In other words,

the goal is to minimize the mean squared error of the DM’s estimate.

We assume that the prior distribution over the state space X is a Gaussian distribution,

with mean µ and variance σ2. We assume that information costs are given by the Fisher-
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information cost function, which we now generalize to allow for a continuum of actions.31

It is convenient to consider the conditional probabilities {pa(x)}a∈A, as in (21). Our prob-

lem is to choose the functions {pa(x)}a∈A so as to minimize

ˆ
∞

−∞

q(x)
ˆ

∞

−∞

[pa(x)(a− x)2 +
θ

4
(p′a(x))

2

pa(x)
]dadx,

subject to the constraint that ∑a∈A pa(x) = 1 for all x ∈ X .

This is a problem in the calculus of variations. We show in Technical Appendix, Section

C.4, that if θ < 4σ2, the optimal information structure is equivalent to observing a noisy

signal s = x + ε , with the “measurement error” ε ∼ N(0,ν2). Consequently, defining

β = σ2

σ2+ν2 , the DM’s posterior mean (and optimal action) is

E[x|s] = (1−β )µ +β s,

Moreover, the optimal degree of noise in the signal s is given by ν2 = σ2[2σ2θ−
1
2 −1]−1,

which is an increasing function of θ for all θ < 4σ2.

In this solution, pa(x) is a normal density function for each value of x, with a mean

that is a linear function of x, and a variance that is independent of x. As θ approaches

the bound 4σ2, the optimal value of ν2 grows without bound, and β approaches zero; in

the limit, the information structure becomes perfectly uninformative. We further show in

the technical appendix that for any θ ≥ 4σ2, it is optimal for the information structure

to be purely uninformative, and for the DM to choose an action a = µ regardless of the

state. Therefore, this model, like the rational inattention model of Sims, allows for the

possibility of a corner solution in which there is no attention at all paid to some features

of the environment, despite the fact that tracking them would allow the DM to achieve a

31We also generalize the model use the entire real line instead of a bounded interval as the state space.
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higher level of welfare, and despite a finite information cost parameter θ .

More generally, the main features of our results are exactly the same those of the LQG

tracking problem with a mutual information. We include these results to show that, if one

considers the tractability of the LQG problem an appealing feature of mutual information,

the problem remains equally tractable (and the results equally sensible) with the Fisher

information cost function.

6 Conclusion

What kinds of information cost functions should be used in static rational inattention prob-

lems? We have argued that two particular, related properties are desirable. First, the cost

function should represent the results of a sequential evidence accumulation problem, one

that can be related to the existing literature in psychology and neuroscience. Second, the

cost function should capture the idea that certain states are easier or harder to discriminate

than others. These two properties are linked, in our continuous time model, by the infor-

mation cost matrix function, which controls both the ultimate choice probabilities (via the

entropy function) and describes the difficulty of discriminating between pairs of states.

We have shown that all uniformly posterior separable cost functions satisfy the first

property, and we have introduced the neighborhood-based cost functions as a subset of that

also satisfy the second property. We have also extended our model to the continuous state

case, and shown that Fisher information is the continuous state analog of the cost functions

we advocate. In most of our applications, our proposed cost functions and mutual infor-

mation generate very different predictions, but (reassuringly) they generate the same pre-

dictions for the linear-quadratic-Gaussian problem. We believe these neighborhood-based

cost functions can and should be used in almost all applications of the rational inattention

theory in the place of mutual information.
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Figure 1: Predicted response probabilities with a mutual-information cost function, for
alternative values of the cost parameter θ .
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Figure 2: Predicted response probabilities with a neighborhood-based cost function, in
which each neighborhood consists only of two adjacent states.
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Figure 3: Optimal Security Designs by Entropy Function

Figure 4: Optimal Monotone Security Designs by Entropy Function
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B Proofs

B.1 Proof of Lemma 1

In the continuation region, everywhere the value function is twice differentiable,

sup
σt∈M(qt)

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = κ,

subject to
1
2

tr[σT
t k(qt)σt ]≤ χ.

First, suppose that the constraint does not bind and a maximizing optimal policy exists:

1
2

tr[σ∗Tt k(qt)σ
∗
t ] = aχ,

where σ∗t is a maximizer, for some a ∈ [0,1) (a ≥ 0 by the positive semi-definiteness of
k(qt)). For any c∈ (1,a−1), with a−1 =∞ for a = 0, if we used σt = cσ∗t instead, the policy
would be feasible and we would have

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = c2

κ >
1
2

tr[σ∗Tt D(qt)Vqq(qt)D(qt)σ
∗
t ] = κ,

a contradiction by the fact that κ > 0. Therefore, either the constraint binds under the
optimal policy or an optimal policy does not exist. The latter would require that, for some
non-zero vector z ∈ R|X | with zzT ∈M(qt),

zT D(qt)Vqq(qt)D(qt)z > 0

and zT k(qt)z = 0, but the null space of k(qt) consists only of vectors whose elements are
constant over the support of qt , and therefore satisfy qT z 6= 0, implying that zzT /∈M(qt).
Therefore, the constraint binds, and an optimal policy exists.

Using θ as defined in the lemma, it must be the case (anywhere the DM chooses not to
stop and the value function is twice differentiable) that

max
σt∈M(qt)

1
2

tr[σtσ
T
t (Diag(qt)Vqq(qt)Diag(qt)−θk(qt))] = 0.
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B.2 Proof of Theorem 1

Define φ(qt) as the static value function in the statement of the theorem (we will prove that
it is equal to V (qt), the value function of the dynamic problem). We first show that φ(qt)

satisfies the HJB equation, can be implemented by a particular strategy for the DM, and
that any other strategy for the DM achieves weakly less utility. We begin by observing that

ι
T k(qt)Diag(qt)

−1 = 0 = ι
T Diag(qt)Hqq(qt) = qT

t Hqq(qt),

and therefore converse of Euler’s homogenous function theorem applies. That is, Hq(qt) is
homogenous of degree zero, and H(qt) is homogeneous of degree one.

We start by showing that the function φ(qt) is twice-differentiable in certain directions.
Substituting the definition of the divergence into the statement of theorem,

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uT
a ·qa +θH(q0)−θ ∑

a∈A
π(a)H(qa),

subject to the same constraint. Define a new choice variable, q̂a = π(a)qa. By definition,
q̂a ∈ R|X |+ , and the constraint is ∑a∈A q̂a = q0. By the homogeneity of H, the objective is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A,{q̂a∈P(X)}a∈A

∑
a∈A

uT
a · q̂a +θH(q0)−θ ∑

a∈A
H(q̂a).

Any choice of q̂a satisfying the constraint can be implemented by some choice of π and qa

in the following way: set π(a) = ιT q̂a, and (if π(a)> 0) set

qa =
q̂a

π(a)
.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,

∑a∈A π(a)= 1, and the fact that the elements of qa are weakly positive will ensure π(a)≥ 0.
Similarly, ιT qa = 1 for all a ∈ A, and the elements of qa are weakly greater than zero.
Therefore, we can implement any set of q̂a satisfying the constraints.

Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X |}a∈A

min
κ∈R|X |,{νa∈R

|X |
+ }a∈A

∑
a∈A

uT
a · q̂a +θH(q0)

−θ ∑
a∈A

H(q̂a)+κ
T (q0−∑

a∈A
q̂a)+ ∑

a∈A
ν

T
a q̂a.
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Observe that φ(q0) is convex in q0. Suppose not: for some q = λq0 + (1− λ )q1, with
λ ∈ (0,1), φ(q) < λφ(q0)+ (1−λ )φ(q1). Consider a relaxed version of the problem in
which the DM is allowed to choose two different q̂a for each a. Because of the convexity of
H, even with this option, the DM will set both of the q̂a to the same value, and therefore the
relaxed problem reaches the same value as the original problem. However, in the relaxed
problem, choosing the optimal policies for q0 and q1 in the original problem, scaled by
λ and (1− λ ) respectively, is feasible. It follows that φ(q) ≥ λφ(q0) + (1− λ )φ(q1).

Note also that φ(q0) is bounded on the interior of the simplex. It follows by Alexandrov’s
theorem that is is twice-differentiable almost everywhere on the interior of the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine
and a feasible point exists. Therefore, the KKT conditions are necessary. Anywhere the
objective function is continuously differentiable in the choice variables and in q0, and there-
fore the envelope theorem applies. We have, by the envelope theorem,

φq(q0) = θHq(q0)+κ,

and the first-order conditions (for all a ∈ A with q̂a 6=~0),

ua−θHq(q̂a)−κ +νa = 0. (22)

If q̂a =~0, we must have qT (ua− κ) ≤ θH(q) for all q, meaning that ua− κ is a sub-
gradient of H(q) at q = 0. In this case, we can define νa =~0 and observe that the first-order
condition holds for an appropriately-chosen sub-gradient. Define q̂a(q0), κ(q0), and νa(q0)

as functions that are solutions to the first-order conditions and constraints.
We next prove the “locally invariant posteriors” property described by Caplin et al.

(2018b). Consider an alternative prior, q̃0 ∈P(X), such that

q̃0 = ∑
a∈A

α(a)q̂a(q0)

for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), κ(q̃0) = κ(q0), and νa(q̃0) =

νa(q0). By the homogeneity property,

Hq(α(a)q̂a(q0)) = Hq(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is
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satisfied, the complementary slackness conditions are satisfied, and q̂a and νa are weakly
positive. Therefore, all necessary conditions are satisfied, and by the concavity of the
problem, this is sufficient. It follows that the conjecture is verified.

Consider a perturbation
q0(ε;z) = q0 + εz,

with z ∈ R|X |, such that q0(ε;z) remains in P(X) for some ε > 0. If z is in the span of
q̂a(q0), then there exists a sufficiently small ε > 0 such that the above conjecture applies.
In this case that κ is constant, and therefore φq(q0(ε;z)) is directionally differentiable with
respect to ε . If q0(−ε;z) ∈P(X) for some ε > 0, then φq is differentiable, with

φqq(q0) · z = θHqq(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span
of q̂a(q0) is strictly larger than the line segment connecting zero and q0 (in other words, all
q̂a(q0) are not proportional to q0). Define this region as the continuation region, Ω. Outside
of this region, all q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uT
a ·q0,

as required for the stopping region. Within the continuation region, the strict convexity of
H(q0) in all directions orthogonal to q0 implies that, as required,

φ(q0)> max
a∈A

uT
a ·q0.

Now consider an arbitrary perturbation z such that q0(ε;z) ∈ R|X |+ and q0(−ε;z) ∈ R|X |+

for some ε > 0. Observe that, by the constraint,

εz = ∑
a∈A

(q̂a(ε;z)− q̂a(q0)).

It follows that

(κT (q0(ε;z))−κ
T (q0))εz = ∑

a∈A
(κT (q0(ε;z))−κ

T (q0))(q̂a(ε;z)− q̂a(q0)).
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By the first-order condition,

(κT (q0(ε;z))−κ
T (q0))(q̂a(ε;z)− q̂a(q0)) =

[θHq(q̂a(q0))−θHq(q̂a(ε;z))+ν
T
a (q0(ε;z))−ν

T
a (q0)](q̂a(ε;z)− q̂a(q0)).

Consider the term

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0))= ∑

x∈X
(νT

a (q0(ε;z))−ν
T
a (q0))exeT

x (q̂a(ε;z)− q̂a(q0)).

By the complementary slackness condition,

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0)) =−ν

T
a (q0(ε;z))q̂a(q0)−ν

T
a (q0)q̂a(ε;z)≤ 0.

By the convexity of H,

θ(Hq(q̂a(q0))−θHq(q̂a(ε;z)))(q̂a(ε;z)− q̂a(q0))≤ 0.

Therefore,
(κT (q0(ε;z))−κ

T (q0))εz≤ 0.

Thus, anywhere φ is twice differentiable (almost everywhere on the interior of the simplex),

φqq(q)� θHqq(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost every-
where in the continuation region. Moreover, by the convexity of φ ,

(Hq(q0(ε;z))−Hq(q0))
T

εz≥ (φq(q0(ε;z))−φq(q0))
T

εz≥ 0,

implying that the “Hessian measure” (see Villani (2003)) associated with φqq has no pure
point component. This implies that φ is continuously differentiable.

Next, we show that there is a strategy for the DM in the dynamic problem which can
implement this value function. Suppose the DM starts with beliefs q0, and generates some
q̂a(q0) as described above. As shown previously, this can be mapped into a policy π(a,q0)
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and qa(q0), with the property that

∑
a∈A

π(a,q0)qa(q0) = q0.

We will construct a policy such that, for all times t,

qt = ∑
a∈A

πt(a)qa(q0)

for some πt(a) ∈P(A). Let Ω (the continuation region) be the set of qt such that a πt ∈
P(A) satisfying the above property exists and πt(a) < 1 for all a ∈ A. The associated
stopping rule will be the stop whenever πt(a) = 1 for some a ∈ A.

For all qt ∈Ω, there is a linear map from P(A) to Ω, which we will denote Q(q0):

Q(q0)πt = qt .

Therefore, we must have
Q(q0)dπt = Diag(qt)σtdBt .

By the assumption that |X | ≥ |A|, there exists a |A|× |X | matrix σπ,t such that

Q(q0)σπ,t = Diag(qt)σt

and dπt = σπ,tdBt . Define φ̃(πt) = φ(qt). As shown above,

QT (q0)φqq(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)−θH(Q(q0)πt)

is a martingale. We also have to scale σπ,t to respect the constraint,

1
2

tr[σtσ
T
t k(qt)] = χ > 0.
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This can be rewritten as

1
2

tr[σπ,tσ
T
π,tQ

T (q0)Diag+(Q(q0)πt)k(Q(q0)πt))Diag+(Q(q0)πt)Q(q0)] = χ,

where Diag+ denotes the pseudo-inverse of the diagonal matrix.
By the positive-definiteness of k in all directions except those constant in the support

of Q(q0)πt , we will always have 1
2tr[σπ,tσ

T
π,t ] > 0. Under the stopping rule described pre-

viously, the boundary will be hit a.s. as the horizon goes to infinity. As a result, by the
martingale property described above, initializing π0(a) = π(a,q0),

φ̃(π0) = E0[φ̃(πτ)−θH(Q(q0)πτ)+θH(Q(q0)π0)].

By Ito’s lemma,

θH(Q(q0)πτ)−θH(Q(q0)π0) =

ˆ
τ

0
χθdt = µτ.

By the value-matching property of φ , φ̃(πτ) = û(Q(q0)πτ). It follows that, as required,

φ(q0) = φ̃(π0) = E0[û(qτ)−µτ].

Finally, we verify that alternative policies are sub-optimal. Consider an arbitrary control
process σt and stopping rule described by the stopping time τ . We have, by the convexity
of φ and the generalized Ito formula for convex functions (noting that we have shown that
the Hessian measure associated with φqq has no pure point component), interpreting φqq in
a distributional sense,

E0[φ(qτ)]−φ(q0) =
1
2

E0[

ˆ
τ

0
tr[σT

t D(qt)φqq(qt)D(qt)σt ]dt].

By the feasibility of the policies, anywhere in the continuation region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ]≤

1
2

θ tr[σT
t k(qt)σt ]≤ θ χ.

In the stopping region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ] = 0 < θ χ.
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Therefore,

φ(q0)≥ E0[φ(qτ)]−
ˆ

τ

0
θ χdt.

By inequality φ(qτ)≥ û(qτ), φ(q0)≥ E0[û(qτ)−µτ] for all policies, verifying optimality.

B.3 Proof of Lemma 2

We have, for any interior q,

HN(q;ρ) =− ∑
i∈I

ciq̄iHGen(qi;ρ)

= ∑
i∈I

ciq̄i
1
|Xi|

1
(ρ−2)(ρ−1) ∑

x∈Xi

{( eT
x q

1
|Xi| q̄i

)2−ρ −1}.

Differentiating,

∂HN(q;ρ)

∂qx′
=− ∑

i∈I : x′∈Xi

ci|Xi|1−ρ 1
ρ−1

q̄ρ−1
i (eT

x′q)
1−ρ

+ ∑
i∈I : x′∈Xi

ci|Xi|1−ρ 1
ρ−2

q̄ρ−2
i ∑

x′′∈Xi

(eT
x′′q)

2−ρ

− ∑
i∈I : x′∈Xi

ci
1
|Xi|

1
(ρ−2)(ρ−1)

.

Differentiating again,

∂ 2HN(q;ρ)

∂qx′∂qx′′
= δx′,x′′ ∑

i∈I : x′∈Xi

ci|Xi|1−ρ q̄ρ−1
i q−ρ

x′

− ∑
i∈I : x′,x′′∈Xi

ci|Xi|1−ρ q̄ρ−2
i q1−ρ

x′

− ∑
i∈I : x′,x′′∈Xi

ci|Xi|1−ρ q̄ρ−2
i q1−ρ

x′′

+ ∑
i∈I : x′,x′′∈Xi

ci|Xi|1−ρ q̄ρ−3
i ∑

x′′′∈Xi

q2−ρ

x′′′ .
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Thus,

qx′(
∂ 2HN(q;ρ)

∂qx′∂qx′′
)qx′′ = ∑

i∈I : x′,x′′∈Xi

ci|Xi|1−ρ q̄i{δx′,x′′(
qx′

q̄i
)2−ρ

− (
qx′

q̄i
)2−ρ(

qx′′

q̄i
)− (

qx′′

q̄i
)2−ρ(

qx′

q̄i
)+(

qx′′

q̄i
)(

qx′

q̄i
)( ∑

x′′′∈Xi

(
qx′′′

q̄i
)2−ρ)}.

Note that this equation also holds in the ρ = 2 and ρ = 1 cases. We can write this as

qx′(
∂ 2HN(q;ρ)

∂qx′∂qx′′
)qx′′ = ∑

i∈I
ci|Xi|1−ρ q̄ieT

x′E
T
i m(qi)Eiex′′,

where

m(qi) = Diag(qi)
2−ρ −Diag(qi)

2−ρ
ιqT

i −qiι
T Diag(qi)

2−ρ +qiι
T Diag(qi)

2−ρ
ιqT

i

= (I− ιqT
i )

T Diag(qi)
2−ρ(I− ιqT

i ).

The result immediately follows in the ρ = 2 case. For any ρ 6= 2,

m(qi)
1

2−ρ = (I−qiι
T )Diag(qi)(I− ιqT

i )

= Diag(q)−qiqT
i −qiqT

i +qiqT
i

= g+(qi).

If ρ < 2, HN(q;ρ) is a bounded convex function on the relative interior of the simplex, and
hence by theorem 10.3 of Rockafellar (1970) there is a unique extension to the simplex.

B.4 Proof of Lemma 3

First, note that if ρ ≥ 2 and qs does not have full support, then px will not have full support
for the state x such that eT

x qs = 0, and we will have Dρ(px||pET
i qi) =∞ for any i with x∈Xi,

as required. For ρ < 2, continuity holds, and therefore both boundary cases are satisfied,
provided the result holds for interior qs.

To prove this claim, it is sufficient to show that, if all qs are interior,

∑
i∈I

ci|Xi|1−ρ q̄ρ−1
i ∑

x∈Xi

(eT
x q)2−ρDρ(pex||pET

i qi) =−HN(q)+∑
s∈S

(eT
s pq)HN(eT

s pDiag(q)).
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Using Lemma 2,

∑
s∈S

πsHN(qs) = ∑
s∈S:πs>0

πs ∑
i∈I

ciq̄i,s
1
|Xi|

1
(ρ−2)(ρ−1) ∑

x∈Xi

{( eT
x qs

1
|Xi| q̄i,s

)2−ρ −1}.

Using Bayes’ rule, πsq̄i,s = q̄i p̄i,s, where p̄i,s = pET
i qi, and therefore

∑
s∈S

πsHN(qs) = ∑
i∈I

ci|Xi|1−ρ q̄ρ−1
i

1
(ρ−2)(ρ−1) ∑

x∈Xi

(eT
x q)2−ρ

∑
s∈S:πs>0

p̄ρ−1
i,s (eT

s pex)
2−ρ

− ∑
i∈I

ciq̄i
1

(ρ−2)(ρ−1)
.

Therefore,

−HN(q)+∑
s∈S

πsHN(qs) = ∑
i∈I

ci|Xi|1−ρ q̄ρ−1
i ∑

x∈Xi

(eT
x q)2−ρDρ(px||pET

i qi),

as required. The proof is essentially identical in the ρ = 1 and ρ = 2 cases.
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