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I. Introduction 

 Under perfect information, an externality market failure can be efficiently solved using 

either a price or a quantity instrument.  For example, pollution can be reduced to its efficient 

level through either a pollution tax or a cap-and-trade scheme.  Under certain types of 

information asymmetry, the equivalence between price and quantity instruments breaks down 

(Weitzman 1974).  It has been argued that an advantage of quantity instruments over price 

instruments is that quantity instruments are bankable.  For example, pollution permits in a cap-

and-trade scheme can be banked for future use if abatement costs are lower than expected in the 

current period.  Many real-world tradable pollution permit markets, like the Regional 

Greenhouse Gas Initiative and the European Union Emissions Trading Scheme, allow for 

banking or borrowing (Chevallier 2012). 

 Several papers that extend the framework of Weitzman (1974) consider the use of 

banking and borrowing of permits and its effect on efficiency.  Fell et al. (2012) evaluate the 

welfare effects of allowing limited banking and borrowing, and they numerically simulate to find 

that allowing for banking and borrowing can make a quantity policy nearly as effective as a price 

policy.  Williams (2002) argues that banking is optimal for stock but not flow pollutants.  

Kollenberg and Taschini (2016) model a policy in which the emissions cap is updated by 

policymakers in response to the number of permits in the bank to reduce costs.  Most closely 

related to this study are two papers that use two-period models to study the efficiency of 

allowing banking.  Pizer and Prest (2016) show that banking can improve efficiency and in some 

cases achieve the first best; by contrast Weitzman (2018) shows that banking is always 

dominated by either non-bankable ("fixed") quantities or non-bankable prices. 
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 The purpose of this paper is to consider another policy option that has until now been 

ignored by policy modelers: what I call bankable prices.  Intertemporal trading, or bankability, 

can be built into a price policy as well as into a quantity policy.  The firm is given a price in each 

period but can choose to defer payment for its actual output or emissions until the future – that is, 

the firm can bank some of its quantity in order to pay the price on it in a future period.  Similarly, 

the firm can borrow forward, with no restrictions.  The firm has the option of deferring or 

accelerating its tax liability.  I develop a model allowing for bankable prices, and I compare that 

policy to three other policies: bankable quantities, non-bankable quantities, and non-bankable 

prices.  Under several different scenarios regarding the correlation of shocks across time and 

regarding the ability of the planner to observe those shocks, I provide expressions (analogous to 

the well-known result from (Weitzman (1974)) for the expected welfare difference between one 

policy and another. 

 This study is the first to my knowledge that models bankable prices.  It follows closely 

from the models in Pizer and Prest (2016) and Weitzman (2018), both of which compare non-

bankable prices, non-bankable quantities, and bankable quantities, but omit bankable prices.  

Like Pizer and Prest (2016), this model allows for policy updating: the planner can observe the 

first-period shocks before the second period and adjust its policy in response.  Like Weitzman 

(2018), this model allows for shock values that differ across time but are correlated.  By allowing 

for both of these features, this models resolves the somewhat contradictory results from those 

two papers, in addition to its contribution of modeling bankable prices.  

 I find that the advantage of bankable prices depends on whether the planner can observe 

the shocks and whether the shocks differ across periods.  In the simplest scenario where the 

shocks are identical across periods and the planner never observes them, bankability offers no 
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advantage to either a price or a quantity policy.  When the planner observes the shocks after the 

first period so policy updating is possible, bankability offers an advantage (in fact, it allows the 

planner to achieve the first best). But, the advantage is identical for either a bankable price or a 

bankable quantity policy; and thus bankability does not uniquely confer an advantage upon 

quantity instruments.  When the shocks differ across the two periods and are correlated, but the 

planner never observes them, then bankable prices does not offer any advantage over non-

bankable prices.  Finally, in the most complete scenario when the shocks differ across periods 

and the planner can update policy after observing the first-period shocks, the advantage of 

bankability is more complicated and cannot a priori be signed.  Whenever prices dominate 

quantities, then bankability dominates non-bankability.  However, when quantities dominate 

prices, then bankability may or may not dominate non-bankability.  The comparison between a 

bankable quantity policy and a non-bankable quantity policy identifies one term in which non-

bankable quantities dominate if marginal costs are steeper than marginal benefits, as identified in 

Weitzman (2018).  But in addition to this term, there is a term that represents an unambiguous 

advantage of bankability, regardless of the slope of marginal cost or benefit curves.  This 

represents the fact that the firm can smooth its production over time in the face of the shock 

value that it observes.     

 Lastly, I provide a back-of-the-envelope numerical simulation exercise to gauge the 

magnitude of the efficiency differences across policies when applied to global climate change 

policy.  Under the base-case parameter values, the bankable price policy strictly dominates all 

other policies, and the efficiency gain of moving from a non-bankable price policy to a bankable 

price policy is about one-tenth of the efficiency gain from moving from a quantity policy to a 
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price policy.  Under other parameterizations, the efficiency gain of bankability can exceed the 

efficiency gain of a price policy over a quantity policy.   

 The following section presents the model and results from these four different scenarios 

regarding the observation of shock values.  Then, section III briefly explores the implications 

through numerical simulations. 

 

II. Model 

 I begin with a simple two-period model to provide the main intuition.  Consider the 

standard specification of quadratic benefits and costs of some choice variable 𝑞𝑡 as in Weitzman 

(1974, 2018): 

𝐶(𝑞𝑡, 𝜃𝑡) = 𝑐0 + (𝑐1 + 𝜃𝑡)(𝑞𝑡 − 𝑞̂) +
𝑐2

2
(𝑞𝑡 − 𝑞̂)2 

𝐵(𝑞𝑡, 𝜂𝑡) = 𝑏0 + (𝑏1 + 𝜂𝑡)(𝑞𝑡 − 𝑞̂) −
𝑏2

2
(𝑞𝑡 − 𝑞̂)2 

The random variables, 𝜃𝑡 and 𝜂𝑡, affect the first but not the second derivative of the cost and 

benefit functions, respectively.  That is, they shift the level but not the slope of the marginal cost 

and marginal benefit functions.  In expectation the random variables are equal to zero and 

uncorrelated, and define 𝑐1 = 𝑏1.1  These assumptions imply that in expectation net benefits 𝐵 −

𝐶 are maximized at 𝑞𝑡 = 𝑞̂.  There are two time periods, 𝑡 = 1 and 𝑡 = 2, and I ignore 

discounting (i.e. set the discount factor = 1).   

 I consider four different policies available to the planner, who always seeks to maximize 

expected welfare (i.e. expected net benefits) 𝐸[𝐵(𝑞1, 𝜂1) − 𝐶(𝑞1, 𝜃1) + 𝐵(𝑞2, 𝜂2) − 𝐶(𝑞2, 𝜃2)].  

First, the planner can set a non-bankable quantity policy {𝑞̃1, 𝑞̃2}, detailing how much the firm 

                                                 
1 This is equivalent to a normalization that ensures that in expectation 𝑞̂ is the optimal quantity; see Weitzman 

(2018). 
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can produce each period.  Given this policy, the firm's decision is trivial: it must produce 𝑞𝑡 = 𝑞̃𝑡 

in each period.   

Second, the planner can set a non-bankable price policy {𝑝1, 𝑝2}, in which the firm faces 

a price per unit of output in each period.  The firm's optimization problem in period 𝑡 is  

max
𝑞𝑡

𝑝𝑡𝑞𝑡 − 𝐶(𝑞𝑡, 𝜃𝑡). 

 Third, the planner can set a bankable quantity policy, setting {𝑞̃1, 𝑞̃2} but allowing the 

firm to choose a quantity 𝐵 to bank (𝐵 > 0) or borrow (𝐵 < 0) between the two periods.2  At the 

start of period 2, the firm would find itself with a bank 𝐵 and be required to produce 𝑞2 = 𝑞̃2 +

𝐵.  If 𝐵 > 0, some of the first period's allotment 𝑞̃1 was banked, so the firm can (and must) 

produce more than its allotment 𝑞̃2.  If 𝐵 < 0, then some of the second period's allotment was 

borrowed back in the first period, so the firm in the second period must produce less than its 

allotment 𝑞̃2.  At the start of period 1, the firm chooses both its actual quantity produced 𝑞1 and 

the amount that it banks or borrows 𝐵 subject to 𝑞1 = 𝑞̃1 − 𝐵.   

 Fourth and finally, the planner can set a bankable price policy, setting {𝑝1, 𝑝2} but 

allowing the firm to choose a quantity 𝐵 to bank or borrow between periods.  If 𝐵 > 0, then the 

firm banks some of its output to the second period, and therefore faces the second-period price 

on that quantity.  Thus, its first-period maximand is 𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃1).  In the second 

period, the firm faces the second-period price on its actual second-period output plus the banked 

output, so its maximand is 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃2).  When 𝐵 < 0, these maximand expressions 

are unchanged, though the interpretation of 𝐵 is borrowing from period 2 to period 1. 

                                                 
2 What I refer to as a "bankable" policy is actually both bankable and borrowable; for conciseness I will just use the 

term "bankable."  
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 For each policy, I solve for the firm's optimal response to a given policy level.  Given 

that, I solve for the planner's optimal policy level, set to maximize expected welfare given the 

firm's response. Lastly, I solve for expected welfare given optimal policy and optimal firm 

response.  I compare expected welfare across the four policies to see which policy the planner 

would prefer ex ante.3  I do this comparison for several different scenarios involving the 

specification of the shocks and realization of the uncertainty over the random variables.   

 

II.A. Scenario A: Identical shocks, No policy updating 

 I begin with a simple specification of uncertainty before moving on to more interesting 

and complicated cases.  Nonetheless, even in this simplest of scenarios the intuition behind the 

paper's main results can be seen. 

 The random variables in this scenario are identical across the two periods; that is, 𝜃1 =

𝜃2 ≡ 𝜃 and 𝜂1 = 𝜂2 ≡ 𝜂.  𝐸[𝜃] = 𝐸[𝜂] = 𝐸[𝜃𝜂] = 0, and 𝜎𝜃
2 ≡ 𝐸[𝜃2] and 𝜎𝜂

2 ≡ 𝐸[𝜂2].  The 

firm observes its random variables before the start of period 1, but the planner never observes 

them.  Therefore, the planner is unable to update the policy between periods 1 and 2.  The first-

best outcome is 𝑞1 = 𝑞2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
.  This result and all others are proven in the Appendix. 

First consider the non-bankable quantity policy {𝑞̃1, 𝑞̃2}. The firm's response to this 

policy is trivial: 𝑞𝑡 = 𝑞̃𝑡.  Knowing this response, the planner chooses 𝑞̃1 and 𝑞̃2 to maximize 

expected net benefits.  That is, the planner's problem is 

max
𝑞̃1,𝑞̃2

𝐸[𝐵(𝑞̃1, 𝜂) − 𝐶(𝑞̃1, 𝜃) + 𝐵(𝑞̃2, 𝜂) − 𝐶(𝑞̃2, 𝜃)]  

                                                 
3 While the planner can choose which of the four policy options yields the highest expected welfare, the firm does 

not have the option to choose which policy it is subject to, as in Krysiak and Oberauner (2010).   
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Given the specification of the benefit and cost functions and the structure of the uncertainties, it 

is straightforward to show that the planner's optimal policy is to set 𝑞̃1 = 𝑞̃2 = 𝑞̂.  Given this 

policy and the firm's (trivial) response to it, the expected net benefits of the non-bankable 

quantity policy is 

 𝐸𝑊𝑁𝐵𝑄
𝐴 = 2(𝑏0 − 𝑐0) (1) 

The acronym 𝐸𝑊 is for expected welfare (i.e. expected net benefits), the subscript 𝑁𝐵𝑄 

indicates the non-bankable quantity policy, and the superscript 𝐴 indicates scenario A (identical 

shocks, no policy updating).   

Second, consider the non-bankable price policy {𝑝1, 𝑝2}.  In response to this policy, the 

firm chooses the quantity in each period to maximize 𝑝𝑡𝑞𝑡 − 𝐶(𝑞𝑡, 𝜃).  Each period, this yields 

the firm's response function 𝑞𝑡 = ℎ(𝑝𝑡, 𝜃) ≡ 𝑞̂ +
𝑝̃𝑡−𝑐1−𝜃

𝑐2
.  Knowing that response, the planner 

chooses 𝑝1 and 𝑝2 to maximize expected net benefits.  Solving for the planner's optimal policy 

yields 𝑝1 = 𝑝2 = 𝑐1 (the planner sets the price equal to the expected marginal cost).  Given this 

optimal policy and the firm's response to it, the expected net benefits of the non-bankable price 

policy is 

 
𝐸𝑊𝑁𝐵𝑃

𝐴 = 2(𝑏0 − 𝑐0) +
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 
(2) 

 

Comparing this equation to equation 1, the difference in expected welfare between the non-

bankable quantity policy and the non-bankable price policy is 

 
Δ𝑁𝐵𝑃,𝑁𝐵𝑄

𝐴 =
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 
(3) 

 

Here Δ indicates the difference in expected welfare between two policies, where the subscript 

𝑁𝐵𝑃, 𝑁𝐵𝑄 indicates that it is the difference between the non-bankable price and the non-
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bankable quantity policy (i.e.  Δ𝑁𝐵𝑃,𝑁𝐵𝑄
𝐴 ≡ 𝐸𝑊𝑁𝐵𝑃

𝐴 − 𝐸𝑊𝑁𝐵𝑄
𝐴 ).  The expression for Δ𝑁𝐵𝑃,𝑁𝐵𝑄

𝐴  is 

simply the standard Weitzman (1974) prices-vs-quantities expression multiplied by two because 

this is a two-period model. 

 Third, consider the bankable quantity policy.  In period 1, the firm chooses how much to 

emit and how much to bank, 𝐵.  If 𝐵 < 0, then this means the firm borrows from the next period.  

For now assume no restrictions on banking or borrowing and no discount or penalty for banking 

or borrowing.  The firm's problem is 

max
𝑞1,𝑞2,𝐵

−𝐶(𝑞1, 𝜃) − 𝐶(𝑞2, 𝜃) 

𝑠. 𝑡. 𝑞1 = 𝑞̃1 − 𝐵, 𝑞2 = 𝑞̃2 + 𝐵 

Because the firm's cost function is identical across periods (because of the identical shock) and 

concave, the firm will always want to perfectly smooth out production: 𝑞1 = 𝑞2 =
𝑞̃1+𝑞̃2

2
.  The 

planner's optimal policy is the same as under the non-bankable quantity policy: 𝑞̃𝑡 = 𝑞̂ in each 

period (actually the planner can set any pair 𝑞̃1, 𝑞̃2 such that 𝑞̃1 + 𝑞̃2 = 2𝑞̂ knowing that the firm 

will smooth production across periods).   As a result, the outcome under this policy will be 

identical to the outcome under the non-bankable quantity policy from equation 1: 𝐸𝑊𝐵𝑄
𝐴 =

𝐸𝑊𝑁𝐵𝑄
𝐴  and Δ𝑁𝐵𝑄,𝐵𝑄

𝐴 = 0.  Under this simplest of assumptions about identical shocks and no 

policy updating, banking offers no advantage to a quantity policy. 

 Fourth and finally, consider the bankable price policy.  The firm faces prices in each 

period 𝑝1 and 𝑝2.  It is able to bank some of its output (or emissions) 𝐵 and pay the price in the 

following period.  Alternatively, if 𝐵 < 0, it borrows forward some of its output from the second 

period and pays for it at the first-period price.  The firm's problem thus is 

max
𝑞1,𝑞2,𝐵

𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃) + 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃) 
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𝑠. 𝑡. 𝑞1 − 𝐵 ≥ 0, 𝑞2 + 𝐵 ≥ 0 

The non-negativity constraints ensure that the firm cannot borrow or bank more than the total 

produced.  Other than that, there are no restrictions on banking or borrowing.  Given an arbitrary 

policy 𝑝1, 𝑝2, it can be shown that the firm's problem has the following solution: 

 
𝑞1 = 𝑞2 = 𝑞̂ +

max{𝑝1, 𝑝2} − 𝑐1 − 𝜃

𝑐2
 

(4) 

 

For any price pair, the firm chooses to face the price in the higher-price period (if output 

represents emissions and the price is an emissions tax, then higher price means a lower tax).  If 

period 1 has the higher price, then the firm will borrow all of its quantity from the second period 

and pay it all in the first period.  This is merely the simple intuition that, when the firm can 

choose its price, it will choose the highest price that it can get.4  But, because the cost function is 

identical across periods and convex, the firm chooses to actually produce an equal amount in 

each period (𝑞1 = 𝑞2).  Given the firm's solution, the planner's optimal policy is to set price 

equal to expected marginal cost in each period, 𝑝𝑡 = 𝑐1 (more generally, the planner could set 

either period's price anything lower than 𝑐1 and the other period's price equal to 𝑐1, since the firm 

will choose to get paid the higher price).  It follows that the outcome will be the same under this 

policy as it is under the non-bankable price policy (equation 2), so that 𝐸𝑊𝐵𝑃
𝐴 = 𝐸𝑊𝑁𝐵𝑃

𝐴  and 

Δ𝑁𝐵𝑃,𝐵𝑃
𝐴 = 0.  Just like with the quantity policy, in scenario A banking offers no advantage to a 

price policy. 

                                                 
4 In all scenarios considered in this paper, this simple intuition remains, since the firm can always perfectly 

anticipate the planner's policy and both period's prices.  An extension to this framework would be to consider a case 

where the firm does not know the prices with certainty and may hedge by banking only some of its emissions. 
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 The first row of Table 1 summarizes the expected welfare under each of the four policy 

options, each expressed relative to expected welfare under non-bankable quantities (2(𝑏0 − 𝑐0)).  

The remaining rows present the corresponding expressions for the remaining scenarios below. 

 

II. B. Scenario B: Identical shocks, Policy updating 

 Maintain the assumption that the shocks are identical across periods.  But now the 

planner is able to observe the value of the shocks 𝜃 and 𝜂 at the end of period 1 and update its 

period 2 policy in response.5  This is identical to the main specification of uncertainty in Pizer 

and Prest (2016).  As in scenario A, the ex-post first-best output level is 𝑞1 = 𝑞2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
.     

 Under a non-bankable price policy the firm's problem is again trivial (𝑞𝑡 = 𝑞̃𝑡).  The 

planner's problem can be considered separately by the two periods, since the planner has 

different information in each period.  At the start of period 2, the planner observes the values of 

the shocks and chooses its quantity constraint 𝑞̃2.  The planner's optimal policy in period 2 is to 

set the constraint just equal to the optimal quantity: 𝑞̃2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
.  In the first period, the 

planner knows that it will set that quantity in the second period but doesn't yet know what values 

the shocks take.  Choosing the first-period quantity that maximizes expected welfare yields 𝑞̃1 =

𝑞̂.  Given this policy, the expected welfare of the non-bankable price policy is 

 
𝐸𝑊𝑁𝐵𝑄

𝐵 = 2(𝑏0 − 𝑐0) +
1

2
(

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
) 

(5) 

 

                                                 
5 The planner can update in response to the observed values of the shocks but not in response to observing the level 

of the bank 𝐵 as in Kollenberg and Taschini (2016).  
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 For a non-bankable price policy, the firm's response to policy is identical to what it is in 

scenario A: 𝑞𝑡 = ℎ(𝑝̃𝑡, 𝜃) ≡ 𝑞̂ +
𝑝̃𝑡−𝑐1−𝜃

𝑐2
.  At the start of period 2, the planner observes the 

shocks and sets the price policy to maximize welfare. This results in the planner achieving the 

first-best output level in period 2, 𝑞2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
, by setting 𝑝2 = 𝑐1 +

𝑏2𝜃+𝑐2𝜂

𝑏2+𝑐2
.  In the first 

period, the planner will set 𝑝1 = 𝑐1 (without observing the shock value the planner just sets price 

equal to expected marginal cost), which yields 𝑞1 = 𝑞̂ −
𝜃

𝑐2
.  As a result, the expected welfare 

will be 

 
 𝐸𝑊𝑁𝐵𝑃

𝐵 = 2(𝑏0 − 𝑐0) +
1

2
(

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
) +

𝜎𝜃
2

2𝑐2
2

(𝑐2 − 𝑏2) 
(6) 

 

Comparing this equation to equation 5 yields 

 
Δ𝑁𝐵𝑃,𝑁𝐵𝑄

𝐵 =
𝜎𝜃

2

2𝑐2
2

(𝑐2 − 𝑏2) 
(7) 

 

This expression is identical to the original Weitzman (1974) prices vs. quantities expression, 

because here the two outcomes are identical to each other in the second period, and in the first 

period the problem is identical to the one-period Weitzman (1974) problem. 

 Next is the bankable quantity policy.  Just as in scenario A without policy updating, the 

firm will always want to perfectly smooth its output across the two periods, given its identical 

and convex cost curves and its unlimited ability to bank and borrow.  So, for any allocated 

quantities 𝑞̃1 and 𝑞̃2 it will choose a level of banking or borrowing to achieve 𝑞1 = 𝑞2 =
𝑞̃1+𝑞̃2

2
.  

In the second period, after the planner has observed the values of the shocks, it will choose a 

second-period policy level 𝑞̃2 to induce the optimal level of second-period output 𝑞2 = 𝑞̂ +
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𝜂−𝜃

𝑏2+𝑐2
.  To induce this, the planner can set any arbitrary quantity 𝑞̃1 in the first period, knowing 

that once it observes the shocks before the second period, it can respond by setting its second-

period quantity policy so that the sum 𝑞̃1 + 𝑞̃2 = 2 (𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
), in which case the firm will 

smooth and achieve the optimal output in each period.6 Therefore, a bankable quantity policy 

with updating yields the first-best, as shown in Pizer and Prest (2016).  This first-best outcome 

results in expected welfare of 

 
𝐸𝑊𝐵𝑄

𝐵 = 2(𝑏0 − 𝑐0) + (
𝜎𝜂

2 + 𝜎𝜃
2

𝑏2 + 𝑐2
) 

(8) 

 

Comparing this to equation 5 yields the difference 

 
Δ𝐵𝑄,𝑁𝐵𝑄

𝐵 =
1

2
(

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
) > 0 

(9) 

 

Bankable quantities dominate non-bankable quantities.  Furthermore, comparing bankable 

quantities to non-bankable prices (equations 8 and 6) yields 

 
Δ𝐵𝑄,𝑁𝐵𝑃

𝐵 =
1

2(𝑏2 + 𝑐2)
[𝜎𝜂

2 + (
𝑏2

𝑐2
)

2

𝜎𝜃
2] > 0 

(10) 

 

This is the main result from Pizer and Prest (2016): bankable quantities dominate non-bankable 

prices under policy updating. 

 However, Pizer and Prest (2016) do not allow for bankable prices.  The firm's response to 

this policy is the same as its response under scenario A: 

 
𝑞1 = 𝑞2 = 𝑞̂ +

max{𝑝1, 𝑝2} − 𝑐1 − 𝜃

𝑐2
 

(11) 

                                                 
6 The firm observes its shocks before period 1, and the firm knows what the planner's response to any arbitrary 

shock will be, therefore the firm can perfectly anticipate the planner's second-period strategy at the start of the first 

period though the planner does not choose it until the second period.  
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That is, just as with bankable prices, the firm will perfectly smooth its output over the two 

periods.  Furthermore, the firm will be able to "choose" its price among the two period's prices 

by banking or borrowing such that it receives the maximum of the two prices.  Given this firm 

response, the planner is able to induce the first best in both periods.  In the second period, after 

observing the shock, it sets the price that induces the optimal outcome, 𝑝2 = 𝑐1 +
𝑏2𝜃+𝑐2𝜂

𝑏2+𝑐2
.  The 

first-period price can be anything arbitrary low enough to ensure that it is always lower than the 

first-period price.  Thus, the planner knows that the firm will actually face the second-period 

price, and it knows that by the second period it will have enough information to set that price to 

achieve the first-best.  Therefore, the bankable price policy induces the first-best outcome  𝑞1 =

𝑞2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
, just as the bankable quantity policy does, so that  Δ𝐵𝑄,𝐵𝑃

𝐵 = 0.  In contrast to the 

result from Pizer and Prest (2016), here quantities do not strictly dominate prices under policy 

updating.  They do so in the Pizer and Prest (2016) model where only quantities are allowed to 

be banked.  But, when a price policy also allows banking, then both the price and the quantity 

policy are equivalent (and both strictly dominate a non-bankable price policy and a non-bankable 

quantity policy). 

 The specification of uncertainty that allows for policy updating (used here in Scenario B 

and also in Scenario D) requires some assumptions that may be seen as heroic.  The firm and 

planner are engaged in a mutual rational expectations equilibrium where each one's optimal 

action is contingent on a self-fulfilling expectation of the other's action.  The firm knows its 

shock values from the start, and it knows that the planner will observe those values only after 

period 1.  The firm knows that the planner will update optimally after period 1 and makes its 

decisions with that in mind.  The planner anticipates the firm's decision and sets its policy with 
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that in mind.  This degree of rationality may be unrealistic to assume in a situation where real-

world regulators are interacting with real-world firms.  

 The second row of Table 1 summarizes the results for Scenario B.  As in the first row, 

each expected welfare expression is relative to the expected welfare of non-bankable quantities 

in scenario A; that is, it omits the term 2(𝑏0 − 𝑐0). 

 

II. C. Scenario C: Correlated shocks, No policy updating 

 In this scenario no longer allow for policy updating; that is, the planner never observes 

the shocks and so cannot alter the policy between the two periods.  However, here the shocks are 

not identical across the two periods.  Instead, they follow autoregressive processes given by: 

𝜃2 = 𝜌𝜃𝜃1 + 𝜀𝜃 

𝜂2 = 𝜌𝜂𝜂1 + 𝜀𝜂 

The first-period shock values 𝜃1 and 𝜂1 are normally distributed with variances 𝜎𝜃
2 and 𝜎𝜂

2, 

respectively, and they are independent of the second-period innovations 𝜀𝜃 and 𝜀𝜂.  Thus, for the 

planner, as in the previous scenarios, 𝐸[𝜃1] = 𝐸[𝜃2] = 𝐸[𝜂1] = 𝐸[𝜂2] = 𝐸[𝜃𝑙𝜂𝑚] = 0, and 

𝐸[𝜃1
2] = 𝜎𝜃

2, 𝐸[𝜂1
2] = 𝜎𝜂

2.  However, now 𝐸[𝜃2
2] = 𝜎𝜃

2(𝜌𝜃
2 + 1), 𝐸[𝜃1𝜃2] = 𝜌𝜃𝜎𝜃

2, 𝐸[𝜂2
2] =

𝜎𝜂
2(𝜌𝜂

2 + 1), 𝐸[𝜂1𝜂2] = 𝜌𝜂𝜎𝜂
2.7  In this scenario the ex-post first-best outcome is 𝑞1 = 𝑞̂ +

𝜂1−𝜃1

𝑏2+𝑐2
 

and 𝑞2 = 𝑞̂ +
𝜂2−𝜃2

𝑏2+𝑐2
. 

                                                 
7 Weitzman (2018), which allows for correlated heterogeneous shocks but not policy updating, considers a more 

general specification that allows for any joint distribution of the two periods' shock values.  The specification here is 

a special case of that more general specification, although the intuitions gleaned from the general case can also be 

gleaned from the special case. 
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 First consider the non-bankable quantity policy.  The firm's response to this policy is as 

always trivial: 𝑞1 = 𝑞̃1; 𝑞2 = 𝑞̃2.  Given this response, the planner chooses 𝑞̃1 = 𝑞̃2 = 𝑞̂ to 

maximize expected welfare, which ends up being 

 
𝐸𝑊𝑁𝐵𝑄

𝐶 = 2(𝑏0 − 𝑐0) 
(12) 

 

 Next consider the non-bankable price policy.  The firm's response to these prices is the 

same as in the previous scenarios, except now noting that the firm observes different shocks each 

period: 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃1

𝑐2
;  𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃2

𝑐2
.  Knowing these responses but only knowing the 

distribution and not the values of all of the shocks, the planner maximizes expected welfare by 

choosing 𝑝1 = 𝑝2 = 𝑐1; that is, the planner sets price equal to expected marginal damages (just 

as in scenario A).  Then, given this optimal policy, the expected welfare under the non-bankable 

price policy is 

 
𝐸𝑊𝑁𝐵𝑃

𝐶 = 2(𝑏0 − 𝑐0) +
𝜎𝜃

2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 
(13) 

 

It follows that the advantage of non-bankable prices over non-bankable quantities is 

 
Δ𝑁𝐵𝑃,𝑁𝐵𝑄

𝐶 =
𝜎𝜃

2

𝑐2
(𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 
(14) 

 

This is a slightly modified version of the standard Weitzman (1974) result, accounting for the 

two periods and the correlation of the cost shock across periods 𝜌𝜃.  This result is identical to the 

corresponding result in Weitzman (2018) (his equation 42) after imposing the specification of the 

AR process for the shock. 

 Next consider the bankable quantity policy.  Now, the firm will still want to smooth 

output over the two periods since it is free to bank and borrow.  However, it will not perfectly 
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smooth to the point where 𝑞1 = 𝑞2, since the shocks are different across periods.  Its cost-

minimizing response to the policy is 

𝑞1 =
1

2
(𝑞̃1 + 𝑞̃2) −

𝜃1 − 𝜃2

2𝑐2
 

𝑞2 =
1

2
(𝑞̃1 + 𝑞̃2) +

𝜃1 − 𝜃2

2𝑐2
 

𝐵 =
1

2
(𝑞̃1 − 𝑞̃2) +

𝜃1 − 𝜃2

2𝑐2
 

The smoothness is perfect across the two periods (
1

2
(𝑞̃1 + 𝑞̃2)) except for the adjustment 

𝜃1−𝜃2

2𝑐2
.  

If that expression is positive, i.e. 𝜃1 > 𝜃2, then the cost is higher in the first period than it is in 

the second period, so the firm produces a little bit less in the first period than in the second 

period and vice versa.  Only the bank value 𝐵 depends on the difference in the assigned 

quantities across periods; the chosen output levels only depend on their sum and on the shocks. 

Given this firm response, the planner can set the quantities 𝑞̃1 and 𝑞̃2 to maximize expected 

welfare.  However, as in the previous scenarios, the planner actually need only choose the sum 

𝑞̃1 + 𝑞̃2, since firms will respond just to that sum.8  The optimal policy for the planner is 𝑞̃1 +

𝑞̃2 = 2𝑞̂; i.e., it chooses the expected value of welfare-maximizing quantity.  Lastly, given this 

optimal policy by the firm, the expected welfare under this policy is 

 
𝐸𝑊𝐵𝑄

𝐶 = 2(𝑏0 − 𝑐0) +
𝜎𝜃

2

4𝑐2
2 (𝜌𝜃

2 − 2𝜌𝜃 + 2)(𝑐2 − 𝑏2) 
(15) 

 

 (This is identical to the corresponding equation in Weitzman (2018), equation 25, after imposing 

the AR structure.)  The term in parenthesis (𝜌𝜃
2 − 2𝜌𝜃 + 2) is strictly positive since 0 < 𝜌𝜃 < 1. 

                                                 
8 That is, the firm's response to {𝑞̃1, 𝑞̃2} is identical to its response to  {𝑞̃1 + 𝑥, 𝑞̃2 − 𝑥}. 
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 At this point, before considering the bankable price policy, compare the three policies 

considered so far in scenario C.  These are the same three policies considered in Weitzman 

(2018), which (like Pizer and Prest (2016)) ignores bankable prices.  As shown earlier, the 

advantage of non-bankable prices over non-bankable quantities is Δ𝑁𝐵𝑃,𝑁𝐵𝑄
𝐶 =

𝜎𝜃
2

𝑐2
(𝜌𝜃

2 + 2)(𝑐2 −

𝑏2), which is positive whenever 𝑐2 > 𝑏2, i.e. marginal cost is steeper than marginal benefit.  The 

advantage of bankable quantities over non-bankable quantities is 

 
Δ𝐵𝑄,𝑁𝐵𝑄

𝐶 =
𝜎𝜃

2

4𝑐2
2 (𝜌𝜃

2 − 2𝜌𝜃 + 2)(𝑐2 − 𝑏2) 
(16) 

 

This expression has the same sign as (𝑐2 − 𝑏2), so bankable quantities dominate non-bankable 

quantities if and only if marginal cost is steeper than marginal benefit.  This is identical to the 

surprising result in Weitzman (2018) (his equation 47) that bankable quantities are not 

unambiguously preferred to non-bankable quantities.  The explanation is that bankable quantities 

are unambiguously preferred on cost grounds, but not necessarily so when benefits are factored 

in as well (as they are in the calculation of expected welfare).  The non-bankable quantity policy 

keeps quantity equal across periods, which is definitely not cost-effective.  But, maintaining a 

constant quantity is welfare-improving vis-à-vis benefits.  When marginal benefits are steeper 

than marginal costs, this smoothing over benefits dominates the lack of smoothing over costs.   

The advantage of bankable quantities over non-bankable prices is 

 
Δ𝐵𝑄,𝑁𝐵𝑃

𝐶 =
𝜎𝜃

2

4𝑐2
2 (𝜌𝜃

2 + 2𝜌𝜃 + 2)(𝑏2 − 𝑐2) 
(17) 

 

This is positive whenever 𝑏2 > 𝑐2, so bankable quantities dominate non-bankable prices if and 

only if marginal benefit is steeper than marginal cost.  When comparing only these three policies, 

this yields the result that non-bankable prices dominate bankable quantities, which dominate 
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non-bankable quantities whenever 𝑐2 > 𝑏2, and that non-bankable quantities dominate bankable 

quantities, which dominate non-bankable prices, whenever 𝑐2 > 𝑏2, the result found in 

Weitzman (2018).   

 Does adding the fourth policy option – bankable prices – affect that ranking?  The answer 

is no, because bankable prices in this scenario are equivalent to non-bankable prices.  To see 

that, consider first the firm's response under bankable prices.  It will still choose the period with 

the highest price to bank or borrow all of its quantity to, and optimize in each period based on 

that price.  Its optimal output in each period is 

𝑞1 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃1

𝑐2
 

𝑞2 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃2

𝑐2
 

The planner thus only needs to choose one effective price 𝑝, and its optimal price is 𝑝 = 𝑐1.  In 

response, the firm will choose 𝑞1 = 𝑞̂ −
𝜃1

𝑐2
 and 𝑞2 = 𝑞̂ −

𝜃2

𝑐2
, and this will result in expected 

welfare of 

 
𝐸𝑊𝐵𝑃

𝐶 = 2(𝑏0 − 𝑐0) +
𝜎𝜃

2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 
(18) 

 

This expression is identical to the expression for 𝐸𝑊𝑁𝐵𝑃
𝐶  in equation 13, since under either policy 

the planner chooses price such that the firm faces the expected marginal cost 𝑐1 in each period.  

It follows that in scenario C, the addition of bankable prices does not change the ranking found 

earlier when just considering the three other policies.  Unlike in the case with policy updating 

(scenario B), here in scenario C with correlated shocks, bankability provides no advantage over 

non-bankability to a price policy. 
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 The third row of Table 1 summarizes the results from scenario C.  It is not the case that 

scenario C reduces to scenario A when 𝜌𝜃 = 𝜌𝜂 = 1, because there are innovations in the 

second-period (𝜀𝜃 and 𝜀𝜂) that prevent the two periods' shock values from being identical to each 

other.9  Furthermore, when 𝜌𝜃 = 0, expected welfare under scenarios A and C are identical to 

each other for both price policies, though it is not the case that the two scenarios are identical to 

each other.  

 

II. D. Scenario D: Correlated shocks, policy updating 

 The final scenario is the most general, since it includes both correlated shocks and policy 

updating.  After the first period, the planner observes the values of the first-period shocks 𝜃1 and 

𝜂1 and can set the second-period policy in response to it.  The planner never observes the second-

period shocks.  This scenario thus generalizes both the model from Pizer and Prest (2016), which 

considers only policy updating, and from Weitzman (2018), which considers only correlated 

shocks.  In addition to this generalization of those two models, here I also consider a bankable 

price policy in addition to the other three policies.  As in scenario C, the ex-post first-best 

outcome is 𝑞1 = 𝑞̂ +
𝜂1−𝜃1

𝑏2+𝑐2
 and 𝑞2 = 𝑞̂ +

𝜂2−𝜃2

𝑏2+𝑐2
. 

 First I consider the non-bankable quantity policy, where the firm's problem is again 

trivial since it must choose 𝑞1 = 𝑞̃1 and 𝑞2 = 𝑞̃2.  The planner will set 

𝑞2 = 𝑞̂ +
𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
 

𝑞1 = 𝑞̂ 

                                                 
9 In order to nest scenario A as a special case of scenario C, I would have to specify that the innovation to the 

second-period cost shock (𝜀𝜃) has a different variance (say, 𝜎𝜃2
2 ) than the first-period cost shock (say, 𝜎𝜃1

2 ), and 

likewise for the benefit shocks.  This would introduce another variable and in my assessment make the model less 

tractable without providing additional insight. 
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In both periods, the planner sets the quantity policy equal to the value that maximizes expected 

net welfare, conditional on the planner's information set.  In period 1, before observing any 

shocks, that value is just 𝑞̂.  After the planner observes the first-period shocks, the optimal 

quantity is updated.   Given this optimal policy, the expected welfare is 

 
𝐸𝑊𝑁𝐵𝑄

𝐷 = 2(𝑏0 − 𝑐0) +
1

2

𝜌𝜂
2𝜎𝜂

2 + 𝜌𝜃
2𝜎𝜃

2

𝑏2 + 𝑐2
 

(19) 

 

 Next consider the non-bankable price policy.  As in scenario B, the firm's response to the 

pair of prices is to produce 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃1

𝑐2
 and 𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃2

𝑐2
.  The planner's problem is 

again in two stages: the period 2 policy 𝑝2 is chosen after the observation of the first-period 

shocks, while the period 1 policy 𝑝1 is chosen before.  The planner's optimal policy is 

𝑝1 = 𝑐1 

𝑝2 = 𝑐1 +
𝑐2𝜌𝜂𝜂1 + 𝑏2𝜌𝜃𝜃1

𝑏2 + 𝑐2
 

This pair of prices will result in the firm producing 𝑞1 = 𝑞̂ −
𝜃1

𝑐2
 and 𝑞2 = 𝑞̂ +

1

𝑐2

𝑐2𝜌𝜂𝜂1+𝑏2𝜌𝜃𝜃1

𝑏2+𝑐2
−

𝜃2

𝑐2
.  Substituting these values into the expression for expected welfare (evaluated before 

observing the values of the shocks) yields 

 
𝐸𝑊𝑁𝐵𝑃

𝐷 = 2(𝑏0 − 𝑐0) +
1

2

𝜌𝜂
2𝜎𝜂

2 + 𝜌𝜃
2𝜎𝜃

2

𝑏2 + 𝑐2
+

𝜎𝜃
2

𝑐2
2

(𝑐2 − 𝑏2) 
(20) 

 

Comparing expected welfare under the non-bankable quantity policy to expected welfare under 

the non-bankable price policy yields the difference 

 
Δ𝑁𝐵𝑃,𝑁𝐵𝑄

𝐷 =
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 
(21) 
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Prices dominate quantities whenever 𝑐2 > 𝑏2, as in Weitzman (1974). 

 Next consider the bankable quantity policy.  Just as in scenario C, the firm's response to 

policy is 𝑞1 =
1

2
(𝑞̃1 + 𝑞̃2) −

𝜃1−𝜃2

2𝑐2
 and 𝑞2 =

1

2
(𝑞̃1 + 𝑞̃2) +

𝜃1−𝜃2

2𝑐2
.  Here the planner's policy 

choice is to set the sum 𝑞̃1 + 𝑞̃2 to maximize expected welfare.  After the first period the planner 

observes 𝜃1 and 𝜂1, and so it can set its second-period policy 𝑞̃2 as a function of these variables.  

It cannot do so in the first period.  However, the planner can choose any arbitrarily low first-

period policy (e.g. 𝑞̃1 = 0) knowing that the firm will respond only to the sum of the two policies 

𝑞̃1 + 𝑞̃2, and so the firm can set this sum after the second period and in response to the first-

period shock values.  The planner's problem is thus to choose the sum 𝑞̃1 + 𝑞̃2 to maximize 

expected welfare, conditional on observing the first-period shocks, and subject to constraints 

given by the firm's response.  This problem yield's the planner's solution 𝑞̃ ≡
1

2
(𝑞̃1 + 𝑞̃2) = 𝑞̂ +

1

2

𝜂1(1+𝜌𝜂)−𝜃1(1+𝜌𝜃)

𝑏2+𝑐2
.  The planner sets the average quantity across the two periods equal to the 

planner's best guess about what the optimal quantity will be on average, knowing only the first-

period shocks.  The firm's response to this policy is  

𝑞1 = 𝑞̂ +
1

2

𝜂1(1 + 𝜌𝜂) − 𝜃1(1 + 𝜌𝜃)

𝑏2 + 𝑐2
−

𝜃1 − 𝜃2

2𝑐2
 

𝑞2 = 𝑞̂ +
1

2

𝜂1(1 + 𝜌𝜂) − 𝜃1(1 + 𝜌𝜃)

𝑏2 + 𝑐2
+

𝜃1 − 𝜃2

2𝑐2
 

Evaluating ex-ante expected welfare (not conditional on the first-period shocks), given these 

quantity values, yields  

 
𝐸𝑊𝐵𝑄

𝐷 = 2(𝑏0 − 𝑐0) +
1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2

+
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(2 + 𝜌𝜃
2 − 2𝜌𝜃) 

(22) 
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Comparing this expected welfare to that of the expected welfare under non-bankable prices 

yields the difference 

 
Δ𝐵𝑄,𝑁𝐵𝑄

𝐷 =
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(2 + 𝜌𝜃
2 − 2𝜌𝜃)

+
1

4

𝜎𝜂
2 ((1 + 𝜌𝜂)

2
− 2𝜌𝜂

2) + 𝜎𝜃
2((1 + 𝜌𝜃)2 − 2𝜌𝜃

2)

𝑏2 + 𝑐2
 

(23) 

 

The first term in this expression has the same sign as 𝑐2 − 𝑏2.  This term is analogous to the 

result found here in equation 16 and in Weitzman (2018) that bankable quantities dominate non-

bankable quantities only when 𝑐2 > 𝑏2.  However, in addition there is the second term of 

equation 23, which is strictly nonnegative.  This second term captures the fact that there is an 

advantage of bankability, regardless of the slopes of the marginal cost and marginal benefit 

curves, since the firm (which has more information than the planner) is able to smooth out the 

shocks and reduce costs with bankability.  This term is missing in the model from Weitzman 

(2018) since that model does not consider policy updating.   

 Lastly consider the bankable price policy.  As in scenario C, the firm's optimal response 

to a policy is 𝑞1 = 𝑞̂ +
max{𝑝̃1,𝑝̃2}−𝑐1−𝜃1

𝑐2
; 𝑞2 = 𝑞̂ +

max{𝑝̃1,𝑝̃2}−𝑐1−𝜃2

𝑐2
.  The planner's problem is 

similar to its problem under the bankable quantity policy – since it observes the first-period 

shock values before the start of the second period, it can set its first-period price arbitrarily low 

so that the second-period price is always binding, and therefore it can set this price to maximize 

expected welfare conditional on observing the first-period shock values.  Doing so, the planner 

chooses 𝑝 = 𝑐1 +
1

2(𝑏2+𝑐2)
(𝑏2(1 + 𝜌𝜃)𝜃1 + 𝑐2(1 + 𝜌𝜂)𝜂1).  This is the planner's expected value 

of the average marginal cost across the two periods given its observation of the first-period 

shocks.  In response to this policy, the firm chooses to produce 
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𝑞1 = 𝑞̂ +
1

2𝑐2

𝑐2𝜂1(1 + 𝜌𝜂) + 𝑏2𝜃1(1 + 𝜌𝜃)

𝑏2 + 𝑐2
−

𝜃1

𝑐2
 

𝑞2 = 𝑞̂ +
1

2𝑐2

𝑐2𝜂1(1 + 𝜌𝜂) + 𝑏2𝜃1(1 + 𝜌𝜃)

𝑏2 + 𝑐2
−

𝜃2

𝑐2
 

Ex-ante expected welfare given these quantities produced is 

 
𝐸𝑊𝐵𝑃

𝐷 = 2(𝑏0 − 𝑐0) +
1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2

+
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(3 + 𝜌𝜃
2 − 2𝜌𝜃) 

(24) 

 

The second term is positive (and is identical to a term in the expression for 𝐸𝑊𝐵𝑄
𝐷 ), and the third 

term has the same sign as 𝑐2 − 𝑏2 (since 3 + 𝜌𝜃
2 − 2𝜌𝜃 > 0).  This expression can be compared 

with both 𝐸𝑊𝑁𝐵𝑃
𝐷 , to see to advantage that bankability offers to prices, and with 𝐸𝑊𝐵𝑄

𝐷 , to see the 

advantage that prices have over quantities when both are bankable.  First, 

 
Δ𝐵𝑃,𝑁𝐵𝑃

𝐷 =
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(−1 + 𝜌𝜃
2 − 2𝜌𝜃)

+
1

4

𝜎𝜂
2 ((1 + 𝜌𝜂)

2
− 2𝜌𝜂

2) + 𝜎𝜃
2((1 + 𝜌𝜃)2 − 2𝜌𝜃

2)

𝑏2 + 𝑐2
 

(25) 

 

The first term has the opposite sign as 𝑐2 − 𝑏2.  Compare that to the first term in equation 23, 

which has the same sign as 𝑐2 − 𝑏2. These terms represent the same effect, which goes in 

opposite directions for bankable prices and bankable quantities.  When marginal cost is steeper 

than marginal benefit, there is an effect that yields an advantage to bankability for quantity 

policies. This same effect yields an advantage to non-bankability over bankability for quantity 

when marginal benefit is steeper than marginal cost.  This is the effect identified in Weitzman 

(2018).  But for price policies, this effect works in the opposite direction.  When marginal cost is 
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steeper than marginal benefit, non-bankability is preferred to bankability for price policies, and 

when marginal benefit is steeper than marginal cost, bankability is preferred.  

The explanation for this, just like the explanation for the first term in equation 23, lies in 

the trade-off between achieving cost-effectiveness and achieving "benefit-effectiveness," or 

smoothing between periods so that marginal benefits are equal.  For a quantity policy, making it 

bankable ensures cost-effectiveness since firms will smooth to minimize costs, but this may 

come at a cost of reducing benefits.  For a price policy, making it bankable ensures that the firm 

faces the same price in each period, which is not necessarily cost-effective since the cost shocks 

vary across the two periods.  But, relative to non-bankable prices, it forces the firm to more 

efficiently internalize benefits.  Thus, when marginal benefits are steeper and internalizing these 

benefits is relatively more important, bankability dominates non-bankability for prices.  

In addition to that effect, there is another effect, captured in the second term in equation 

25, and also in the second term in equation 23, that is unambiguously positive, so that it yields an 

advantage to bankability regardless of the relative slopes, for either quantities or prices.  This 

term is absent in Weitzman (2018) and is due to policy updating – the planner's ability to do so 

allows the firm to more cost-effectively smooth output over the two periods than it otherwise 

would have.   

Equation 25 demonstrates that when 𝑐2 > 𝑏2 there are two offsetting effects in the 

ranking of bankable versus non-bankable prices. The first term is negative and the second term is 

positive.  However, it can be shown that the first term is always dominated by the second term so 

that the sign of Δ𝐵𝑃,𝑁𝐵𝑃
𝐷  is always positive.  Equation 25 can be rearranged to yield 

 
Δ𝐵𝑃,𝑁𝐵𝑃

𝐷 =
𝜎𝜃

2𝑏2
2

4𝑐2
2(𝑏2 + 𝑐2)

(1 − 𝜌𝜃
2 + 2𝜌𝜃) +

1

4

𝜎𝜂
2 ((1 + 𝜌𝜂)

2
− 2𝜌𝜂

2)

𝑏2 + 𝑐2
 

(26) 

 



26 

 

All terms in equation 26 are unambiguously positive.  Thus there is an important distinction 

between the advantage that bankability offers to price policies and the advantage that it offers to 

quantity policies.  Bankability is unambiguously preferred for price policies, but sometimes non-

bankability can dominate bankability for quantity policies, as shown in equation 23.  Later, in the 

numerical simulations, I verify this claim by finding parameter values that make it true.   

Next, 

 
Δ𝐵𝑃,𝐵𝑄

𝐷 =
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2) 
(27) 

 

This has the same sign as 𝑐2 − 𝑏2.  Just as in the original Weitzman (1974) model, prices 

dominate quantities whenever marginal cost is steeper than marginal benefit; this holds even 

when both prices and quantities are bankable, and even when shocks are correlated and policy 

updating is available.   

 Comparing all four policy options in Scenario D allows me to make the following claim.  

When 𝑐2 > 𝑏2, then non-bankable prices dominate non-bankable quantities (from Δ𝑁𝐵𝑃,𝑁𝐵𝑄
𝐷 , the 

standard Weitzman (1974) result), bankable prices dominate bankable quantities (from Δ𝐵𝑃,𝐵𝑄
𝐷 ), 

and bankable prices dominate non-bankable prices (from Δ𝐵𝑃,𝑁𝐵𝑃
𝐷  in equation 26).  When 𝑐2 <

𝑏2, then non-bankable quantities dominate non-bankable prices, bankable quantities dominate 

bankable prices, but the advantage of bankable quantities over non-bankable quantities is 

ambiguous (from Δ𝐵𝑄,𝑁𝐵𝑄
𝐷 ).  That is, quantities unambiguously dominate prices, but whether 

bankability dominates non-bankability depends upon the parameter values.   

 

II. E. Multi-period (𝑇 > 2) 
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 All of the previous scenarios consider just two time periods, but the basic intuitions 

derived in them extend to a model with more than two time periods.  For instance, when a 

policy-maker can update after each period, she will choose to set the policy in the period in 

which she has the most information, which is the final period.  With bankable quantities, the 

quantity allocated in the final period will determine the total quantity available, and with 

bankable prices, the price set in the final period will be the binding price.  In other words, while 

in the two-period model, the policy-maker will "true up" the policy in the second period after 

observing the shock, when 𝑇 > 2 the policy-maker will true up after observing as much as 

possible in the final period. 

 More concretely, consider the extension of Scenario D to the 𝑇 > 2 case.  For the non-

bankable quantity policy, the optimal policy is 𝑞̃𝑡 = 𝑞̂ in all periods, and expected welfare is 

𝐸𝑊𝑁𝐵𝑄
𝑀𝑃 = 𝑇(𝑏0 − 𝑐0), where the 𝑀𝑃 superscript denotes "multi-period."  For the non-bankable 

price policy, the optimal policy is 𝑝𝑡 = 𝑐1 in all periods, resulting in a quantity of 𝑞𝑡 = 𝑞̂ −
𝜃𝑡

𝑐2
, 

and expected welfare is 𝐸𝑊𝑁𝐵𝑃
𝑀𝑃 = 𝑇 (𝑏0 − 𝑐0 +

𝜎𝜃
2

2𝑐2
2 (𝑐2 − 𝑏2)).  The ranking between these two 

policies is identical to that in the two-period case. 

 The bankable quantity and bankable price policies are more complicated in the 𝑇 > 2 

case.  Consider first the bankable quantity case.  The firm's problem is to choose its production 

profile 𝑞1, … 𝑞𝑇 to minimize costs in response to the policy variables 𝑞̃1, … , 𝑞̃𝑇 and its observed 

shock values 𝜃1, … , 𝜃𝑇.  The banking and borrowing constraint is ∑ 𝑞𝑡
𝑇
𝑡=1 = ∑ 𝑞̃𝑡

𝑇
𝑡=1 .  It can be 

shown that the firm's solution is to produce in each period 𝑞𝑡 =
∑𝑞̃𝑡

𝑇
+

∑𝜃𝑡

𝑇𝑐2
−

𝜃𝑡

𝑐2
.  The first term is 

just the average allotment; if there were no cost shocks 𝜃 the firm would perfectly smooth 
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production.  The second term is the adjustment based on the average cost shock, and the third 

term is the adjustment based on the period 𝑡 cost shock.  

 Given the firm's solution, the planner's solution is to choose the profile of policy variables 

𝑞̃1, … , 𝑞̃𝑇 to maximize expected welfare, though only the sum ∑ 𝑞̃𝑡
𝑇
𝑡=1  matters.  Since the planner 

can true up the sum after observing the second-to-last-period shock, the expectations are taken 

conditional on all shocks except for 𝜂𝑇 and 𝜃𝑇.  The expression for expected welfare that must be 

maximized includes expectations of random variables across multiple time periods (e.g. 𝐸[𝜂𝑠𝜂𝑡] 

for arbitrary 𝑠 and 𝑡) and is thus generally intractable. 

 Consider next the bankable price case.  The firm's problem is to choose its production 

profile 𝑞1, … 𝑞𝑇 and the amount of output subject to the price in each period 𝑞1
𝐵, … , 𝑞𝑇

𝐵 to 

maximize net revenue in response to the policy variables 𝑝1, … , 𝑝𝑇 and its observed shock values 

𝜃1, … , 𝜃𝑇.  That is, 𝑞𝑡 is the amount actually produced in period 𝑡, while 𝑞𝑡
𝐵 is the amount for 

which the firm earns revenue 𝑝𝑡𝑞𝑡
𝐵 in period 𝑡 after banking or borrowing.  The banking and 

borrowing constraint is ∑ 𝑞𝑡
𝑇
𝑡=1 = ∑ 𝑞𝑡

𝐵𝑇
𝑡=1 .  Obviously the firm will choose to earn all revenue in 

the period with the highest price; let 𝑝 = max{𝑝̃1, … , 𝑝𝑇}, then 𝑞𝑡
𝐵 = ∑ 𝑞𝑡

𝑇
𝑡=1  and 𝑞𝑠

𝐵 = 0 ∀𝑠 ≠ 𝑡. 

This yields the firm's solution 𝑞𝑡 = 𝑞̂ +
𝑝̃−𝑐1−𝜃𝑡

𝑐2
.   

 Given the firm's solution, the planner will choose a 𝑝 in the final period, after observing 

all of the shock values except for the final period's 𝜂𝑇 and 𝜃𝑇, to maximize expected welfare.  As 

with the solution for the optimal bankable quantity policy, the solution here is generally 

intractable. 

 Though closed-form solutions are not presented here for bankable policies in the 𝑇 > 2 

case, the intuition from the two-period model remains.  With policy updating possible, the 
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planner will wait until the last period to use all available information before setting the binding 

policy variable.10     

 

III. Simulations 

 I provide numerical simulations of the analytical results presented from scenario D to 

assist in the interpretation of the effects that have been identified.  Several parameter values are 

taken from the previous literature when applying the model to the case of regulating carbon 

dioxide to combat climate change.  From Pizer and Prest (2016), I set the marginal benefit slope 

𝑏2 = 0 $/𝑡𝑜𝑛2 and the marginal cost slope 𝑐2 = 1.6 × 10−7 $/𝑡𝑜𝑛2.  Pizer and Prest (2016) use 

56 ($/𝑡𝑜𝑛)2 as the variance of the benefit shock 𝜎𝜂
2.  For the variance of the cost shock 𝜎𝜃

2, I use 

169 ($/𝑡𝑜𝑛)2, which was used by Newell and Pizer (2003).  Finally, Newell and Pizer (2003) 

set the persistence of the cost shock 𝜌𝜃 = 0.8.  All of these parameter values are the base-case 

values.  I could not find a source for the persistence of the benefit shock 𝜌𝜂, which is absent in 

Newell and Pizer's (2003) model.   

 Regardless of the value of 𝜌𝜂, at these base-case values the results from scenario D 

demonstrate that a bankable price policy always dominates the other three policies.  Because 

𝑐2 > 𝑏2, prices dominate quantities, and equation 26 demonstrates that bankable prices always 

dominate non-bankable prices.  I use equation 26 (or equation 25) to evaluate the dollar value of 

the expected gain from bankable prices relative to non-bankable prices.  This value depends on 

𝜌𝜂 and is higher with a higher value of 𝜌𝜂.  It ranges from $88 million when 𝜌𝜂 = 0 to $175 

million when 𝜌𝜂 = 1.  Since this is a two-period model, and that is the total expected welfare 

                                                 
10 A model with infinite periods may produce more complications – in particular a lack of an equilibrium due to the 

fact that the firm may keep putting off paying any taxes indefinitely.   
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benefit over both period, the annual welfare gain of a bankable price policy relative to a non-

bankable price policy ranges from $44 million to $88 million.  By comparison, the annual 

welfare gain of a non-bankable price policy relative to a non-bankable quantity policy is $528 

million (independent of 𝜌𝜂).  Thus, the gain in adding bankability to a price policy is about an 

order of magnitude smaller than the gain in moving from a quantity to a price policy. 

 While this holds for the base case, for other parameter values the gain in moving from 

non-bankable prices to bankable prices can be even larger than the gain in moving from non-

bankable quantities to non-bankable prices.  For instance, when the variances of the cost and 

benefit shock are switched for each other compared to the base case (so that 𝜎𝜂
2 = 169 ($/𝑡𝑜𝑛)2, 

greater than 𝜎𝜃
2 = 56 ($/𝑡𝑜𝑛)2), then the annual welfare gain of a bankable price policy relative 

to a non-bankable price policy ranges from $132 million to $264 million; the annual welfare gain 

of a non-bankable price policy relative to a non-bankable quantity policy is $175 million.   

 The base-case parameters provide an unambiguous dominance of bankable prices, so I 

consider an alternate parameterization in which this is not so.  I assume that all the parameters 

are identical to the base case except that I allow the marginal benefit slope 𝑏2 to vary from 0 (the 

base case) to 3.2 × 10−7 $/𝑡𝑜𝑛2, which is twice the marginal cost slope 𝑐2 (ensuring a region 

where prices dominate and a region where quantities dominate).  I also allow the persistence of 

the benefit shock 𝜌𝜂, for which there is no base-case value, to vary from 0 to 1.   

Figure 1 presents simulation results from this alternative parameterization.  The two 

parameters 𝜌𝜂  and 𝑏2 are varied along the two dimensions.  The figure displays which of the 

policy options dominates: red when bankable prices dominates, blue when bankable quantities 

dominates, and green when non-bankable quantities dominates.   
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Whenever 𝑏2 < 𝑐2 = 1.6 × 10−7 $/𝑡𝑜𝑛2, bankable prices strictly dominates.  When 

𝑏2 > 𝑐2, quantities dominate prices, but the ranking between bankable and non-bankable 

quantities can vary.  In fact, the figure demonstrates that non-bankable quantities dominate only 

for the highest values of 𝑏2 (at least 2.88 × 10−7 $/𝑡𝑜𝑛2, almost double 𝑐2).  This corresponds 

to the fact that the second term in equation 23 is strictly positive, so must be kept small in 

magnitude for non-bankable quantities to dominate.   

 

IV. Conclusion 

 I extend the literature comparing prices, quantities, and bankable quantities by 

developing a model that allows also for bankable prices.  The advantage that bankability offers to 

a quantity policy can also be extended to a price policy.  Whether or not bankability offers an 

advantage depends on both the relative slopes of the marginal cost and benefit curves and on the 

correlation across periods between the shock values.  All else equal, bankability tends to offer an 

advantage, but that advantage may be dominated by another effect favoring non-bankability.  

While the model is very simple, it confirms the intuition that the advantage afforded by 

banking is not unique to quantity instruments.  Several assumptions can be dropped to see how 

bankable and non-bankable prices and quantities compare under alternative scenarios.  For 

example, the social benefit of the output can be a stock rather than a flow, as would be the case 

for a stock pollutant like carbon dioxide.11 Uncertainty could be added on the firm's part – for 

example, the firm might only observe its second-period shock values after the first period.  The 

policymaker may be allowed to modify the trading ratio between periods, or be allowed to set 

nonlinear policies.  The model could be extended to consider policies that combine a price and 

                                                 
11 See e.g. Hoel and Karp (2002) or Pizer (2002). 
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quantity instrument (Pizer 2002, Burtraw et al. 2018) or political economy frictions (Weitzman 

2017). 

The policy implications of this paper are in a sense obvious – I identify cases in which 

allowing bankable prices can be welfare-improving.  However, the real-world application may be 

questionable: is a bankable price policy feasible?  Bankable quantity policies have been proven 

feasible, since most existing cap-and-trade markets have some provisions for intertemporal 

trading.12 I am not aware of any emissions tax policies that offer any form of intertemporal 

trading, but intertemporal trading is allowed for other types of taxes.  For example, with a 

traditional Individual Retirement Account (IRA), earnings and gains are taxed not when earned 

but when distributed – the taxpayer gets to defer payment to a later period, with limits.  A tax 

loss carryforward is a tax policy that allows capital losses to be carried forward to future tax 

years to offset capital gains in those years. Shon and Veliotis (2010) find evidence that 

individuals strategically pre-pay deductible state income taxes to reduce their federal tax liability 

– what is called "the December effect."  Corporations have the option of accelerated depreciation 

for their fixed assets, to reduce their tax liability.  Given these real-world examples of bankable 

taxes, it seems feasible that a provision for bankability could be worked in to an emissions 

pricing policy.  This paper demonstrates when it would be efficient to do so. 

 

  

                                                 
12 See Table 1 in Hasegawa and Salant (2014) – all six policies presented offer some form of banking or borrowing. 
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Figure 1 – Policy Simulations 

 
Note: This picture displays which of the four policy options dominates for each value of 𝜌𝜂 ∈ [0,1] and 𝑏2 ∈ [0,3.2 × 10−7].  All 

other parameter values are kept at the base case values described in the text. 

 



36 

 

Table 1 – Expected Welfare (Relative to Non-Bankable Quantities) 

 Non-Bankable 

Quantities 

Non-Bankable 

Prices 

Bankable Quantities Bankable Prices 

Scenario 

A 0 
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 0 
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 

Scenario 

B 1

2
(

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
) 

1

2
(

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
)

+
𝜎𝜃

2

2𝑐2
2

(𝑐2 − 𝑏2) 

(
𝜎𝜂

2 + 𝜎𝜃
2

𝑏2 + 𝑐2
) (

𝜎𝜂
2 + 𝜎𝜃

2

𝑏2 + 𝑐2
) 

Scenario 

C 0 

𝜎𝜃
2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2

− 𝑏2) 

𝜎𝜃
2

4𝑐2
2 (𝜌𝜃

2 − 2𝜌𝜃 + 2)(𝑐2 − 𝑏2) 
𝜎𝜃

2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 

Scenario 

D 

1

2

𝜌𝜂
2𝜎𝜂

2 + 𝜌𝜃
2𝜎𝜃

2

𝑏2 + 𝑐2
 

1

2

𝜌𝜂
2𝜎𝜂

2 + 𝜌𝜃
2𝜎𝜃

2

𝑏2 + 𝑐2

+
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 

1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2

+
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(2

+ 𝜌𝜃
2 − 2𝜌𝜃) 

1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2

+
𝜎𝜃

2

4𝑐2
2

(𝑐2 − 𝑏2)(3

+ 𝜌𝜃
2 − 2𝜌𝜃) 

Note: This table presents the expected welfare under each policy, relative to the expected welfare under non-bankable prices in Scenario A.  That 

is, each element in the table is the corresponding expression for 𝐸𝑊 minus the term 2(𝑏0 − 𝑐0). 
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Appendix 

A.1 Proofs of results in text 

A.1.a Scenario A 

First Best 

 The first-best outcome is the solution to 

max
𝑞1,𝑞2

𝐵(𝑞̃1, 𝜂) − 𝐶(𝑞̃1, 𝜃) + 𝐵(𝑞̃2, 𝜂) − 𝐶(𝑞̃2, 𝜃), 

that is,  

max
𝑞1,𝑞2

𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2 

The derivative with respect to 𝑞1 is 

(𝑏1 + 𝜂) − 𝑏2(𝑞1 − 𝑞̂) − (𝑐1 + 𝜃) − 𝑐2(𝑞1 − 𝑞̂). 

Setting this equal to zero (noting that 𝑏1 = 𝑐1) and solving for 𝑞1 yields the solution 𝑞1 = 𝑞̂ +

𝜂−𝜃

𝑏2+𝑐2
.  The derivative with respect to 𝑞2 is identical except that 𝑞2 appears in it, therefore 𝑞2 =

𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
 also. 

Non-bankable quantity 

 Under the non-bankable quantity policy, the planner's problem is to maximize expected 

utility, not knowing the values of the shocks: 

max
𝑞1,𝑞2

 𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

This becomes 
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max
𝑞1,𝑞2

𝑏0 + 𝑏1(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − 𝑐1(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0 + 𝑏1(𝑞2 − 𝑞̂)

−
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − 𝑐1(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2 

Taking the first-order condition with respect to 𝑞1 yields 𝑞1 = 𝑞̂, and likewise for 𝑞2: 𝑞2 = 𝑞̂.  

Given this policy, the expected welfare is expected net benefits evaluated at 𝑞1 = 𝑞2 = 𝑞̂.  

Expected welfare is 

𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

In this expression, all terms with 𝑞1 − 𝑞̂ or 𝑞2 − 𝑞̂ become zero, so 𝐸𝑊𝑁𝐵𝑄
𝐴 = 2(𝑏0 − 𝑐0). 

Non-bankable price 

 Next consider the non-bankable price policy.  Given a set of policies {𝑝̃1, 𝑝2}, the firm's 

problem is 

max
𝑞1,𝑞2

𝑝1𝑞1 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −
𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑝2𝑞2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂)

−
𝑐2

2
(𝑞2 − 𝑞̂)2 

The first-order condition with respect to 𝑞1 is  

𝑝1 − (𝑐1 + 𝜃) − 𝑐2(𝑞1 − 𝑞̂) = 0 

Solving this for 𝑞1 yields 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃

𝑐2
.  The first-order condition with respect to 𝑞2 is 

identical except for replacing 𝑞1 with 𝑞2, so 𝑞2 = 𝑞̂ +
𝑝̃2−𝑐1−𝜃

𝑐2
.  Given this response, the planner 

sets the prices to maximize expected net benefits: 
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max
𝑝̃1,𝑝̃2

 𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

Such that 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃

𝑐2
 and 𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃

𝑐2
.  The maximization problem becomes 

max
𝑝̃1,𝑝̃2

 𝐸 [𝑏0 + (𝑏1 + 𝜂) (
𝑝1 − 𝑐1 − 𝜃

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1 − 𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑝1 − 𝑐1 − 𝜃

𝑐2
)

−
𝑐2

2
(

𝑝1 − 𝑐1 − 𝜃

𝑐2
)

2

+ 𝑏0 + (𝑏1 + 𝜂) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

− 𝑐0

− (𝑐1 + 𝜃) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
) −

𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

] 

Given that 𝐸[𝜃] = 𝐸[𝜂] = 𝐸[𝜃𝜂] = 0, and 𝐸[𝜃2] = 𝜎𝜃
2, the problem can be written as 

max
𝑝̃1,𝑝̃2

 [𝑏0 + 𝑏1 (
𝑝1 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2

𝑐2
2 − 𝑐0 − 𝑐1 (

𝑝1 − 𝑐1

𝑐2
) +

𝜎𝜃
2

𝑐2
−

𝑐2

2
(

𝑝1 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2

𝑐2
2 + 𝑏0 + 𝑏1 (

𝑝2 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2

𝑐2
2 − 𝑐0 − 𝑐1 (

𝑝2 − 𝑐1

𝑐2
) +

𝜎𝜃
2

𝑐2

−
𝑐2

2
(

𝑝2 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2

𝑐2
2 ] 

The first-order condition for choice of 𝑝1 is  

𝑏1

𝑐2
−

𝑏2

2𝑐2
2 2(𝑝̃1 − 𝑐1) −

𝑐1

𝑐2
+

1

2𝑐2
2(𝑝̃1 − 𝑐1) = 0 

Solving this yields 𝑝1 = 𝑐1.  The first-order condition for 𝑝2 is symmetric, so 𝑝2 = 𝑐1.   Given 

these policies, the firm will choose to produce 𝑞1 = 𝑞2 = 𝑞̂ −
𝜃

𝑐2
 in each period, from the solution 

to its maximization problem found above.  Substitute these values for 𝑞1 and 𝑞2 into the 

expression for expected welfare 
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𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

= 𝐸 [𝑏0 + (𝑏1 + 𝜂) (−
𝜃

𝑐2
) −

𝑏2

2
(−

𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (−
𝜃

𝑐2
) −

𝑐2

2
(−

𝜃

𝑐2
)

2

+ 𝑏0

+ (𝑏1 + 𝜂) (−
𝜃

𝑐2
) −

𝑏2

2
(−

𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (−
𝜃

𝑐2
) −

𝑐2

2
(−

𝜃

𝑐2
)

2

] 

= 𝑏0 −
𝑏2

2𝑐2
2 𝜎𝜃

2 − 𝑐0 +
𝜎𝜃

2

𝑐2
−

𝑐2

2𝑐2
2 𝜎𝜃

2 + 𝑏0 −
𝑏2

2𝑐2
2 𝜎𝜃

2 − 𝑐0 +
𝜎𝜃

2

𝑐2
−

𝑐2

2𝑐2
2 𝜎𝜃

2 

= 2(𝑏0 − 𝑐0) +
𝜎𝜃

2

𝑐2
2

(𝑐2 − 𝑏2) 

Bankable quantity 

 The firm's problem is 

max
𝑞1,𝑞2,𝐵

−𝐶(𝑞1, 𝜃) − 𝐶(𝑞2, 𝜃) 

𝑠. 𝑡. 𝑞1 = 𝑞̃1 − 𝐵, 𝑞2 = 𝑞̃2 + 𝐵 

max
𝑞1,𝑞2,𝐵

−[𝑐0 + (𝑐1 + 𝜃)(𝑞̃1 − 𝐵 − 𝑞̂) +
𝑐2

2
(𝑞̃1 − 𝐵 − 𝑞̂)2 + 𝑐0 + (𝑐1 + 𝜃)(𝑞̃2 + 𝐵 − 𝑞̂) +

𝑐2

2
(𝑞̃2 + 𝐵 − 𝑞̂)2] 

The first-order condition with respect to 𝐵 yields B = 
𝑞̃1−𝑞̃2

2
. This implies 𝑞1 =  𝑞̃1 − 𝐵 =

𝑞̃1+𝑞̃2

2
 . 

Similarly, 𝑞2 = 𝑞̃2 + 𝐵 = 
𝑞̃1+𝑞̃2

2
 .  Let 𝑞̃1 + 𝑞̃2 ≡  𝑞̃.  Given this response, the planner sets the 

quantities {𝑞̃1, 𝑞̃2} to maximize expected net benefits: 

max
𝑞̃

 𝐸 [𝑏0 + (𝑏1 + 𝜂) (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

+ 𝑏0

+ (𝑏1 + 𝜂) (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

] 



41 

 

Given that 𝐸[𝜃] = 𝐸[𝜂] = 𝐸[𝜃𝜂] = 0, and 𝐸[𝜃2] = 𝜎𝜃
2, the problem can be written as 

max
𝑞̃

 [𝑏0 + 𝑏1 (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − 𝑐1 (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

+ 𝑏0 + 𝑏1 (
𝑞̃

2
− 𝑞̂)

−
𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − 𝑐1 (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

] 

Simplifying, this becomes 

max
𝑞̃

  2[𝑏0 + 𝑏1 (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − 𝑐1 (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

] 

 

The first-order condition with respect to 𝑞̃ yields 𝑞̃ = 2𝑞̂. Given these policies, the firm will 

choose to produce 𝑞1 =  𝑞2 = 𝑞̂ in each period, from the solution to its maximization problem 

found above.  Since the quantity produced in each period here is same as under the non-bankable 

quantity policy, the expected welfare will also be equal: 𝐸𝑊𝐵𝑄
𝐴 = 𝐸𝑊𝑁𝐵𝑄

𝐴 =  2(𝑏0 − 𝑐0). 

Bankable price 

The firm faces prices in each period 𝑝1 and 𝑝2.  It is able to bank some of its output (or 

emissions) 𝐵 and pay the price in the following period.  Alternatively, if 𝐵 < 0, it borrows 

forward some of its output from the second period and pays for it at the first-period price. The 

firm's problem thus is 

max
𝑞1,𝑞2,𝐵

𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃) + 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃) 

𝑠. 𝑡. 𝑞1 − 𝐵 ≥ 0, 𝑞2 + 𝐵 ≥ 0 

The non-negativity constraints come from the fact that the total amount banked cannot be 

negative in any period.  I use the Kuhn-Tucker method to solve this optimization problem with 

inequality constraints. 
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ℒ(𝑞1, 𝑞2, 𝐵;  𝜆1,𝜆2 ) = 𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃) + 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃) +  𝜆1 (𝑞1 − 𝐵) +

 𝜆2 (𝑞2 + 𝐵)  

𝜕ℒ

𝜕𝑞1
 = 𝑝1 − 𝐶′(𝑞1, 𝜃)+ 𝜆1  = 0    (1) 

𝜕ℒ

𝜕𝑞2
 = 𝑝2 − 𝐶′(𝑞2, 𝜃)+ 𝜆2  = 0   (2) 

𝜕ℒ

𝜕𝐵
 =   − 𝑝̃1 + 𝑝2 − 𝜆1 +  𝜆2  = 0   (3) 

𝜕ℒ

𝜕𝜆1 
 = 𝑞1 − 𝐵  0, 𝜆1  0 and 𝜆1(𝑞1 − 𝐵) = 0 (4) 

𝜕ℒ

𝜕𝜆2 
 = 𝑞2 + 𝐵  0, 𝜆2  0 and 𝜆2(𝑞2 + 𝐵) = 0 (5) 

 

Consider four cases regarding the sign of the non-negativity multipliers 𝜆1 and 𝜆2. 

Case 1:  𝝀𝟏 =  𝝀𝟐 = 𝟎 

Using (3):  𝑝1 = 𝑝2  

Using (1) and (2): 𝑝1 = 𝐶′(𝑞1, 𝜃) and 𝑝2 = 𝐶′(𝑞2, 𝜃) 

Therefore, 𝐶′(𝑞1, 𝜃) = 𝐶′(𝑞2, 𝜃)  q1 = q2  

Using (4):  𝑞1  𝐵; and Using (5):  𝑞2  –B,  

q1 = q2    𝑞1  𝐵  and  𝑞1  –B   B  [−𝑞1,  𝑞1]  

Now, 𝑝1 = 𝐶′(𝑞1, 𝜃) = (𝑐1 + 𝜃) + 𝑐2(𝑞̃1 − 𝐵 − 𝑞̂) 

This gives  𝑞1 =  𝑞̂ +  
𝑝̃1− 𝑐1−𝜃

𝑐2
 = 𝑞2 (by symmetry).  Case 1 holds only when the two period's 

prices are equal to each other. 

Case 2: 𝝀𝟏 =  𝟎, 𝝀𝟐 > 𝟎 

Using (1): p̃1 = C′(q1, θ)      q1 =  q̂ +  
p̃1− c1−θ

c2
 

Using (3): λ2  =  p̃1 − p̃2 > 0   p̃1 > p̃2 
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Using (2): p̃2 − C′(q2, θ)+ p̃1 − p̃2 = 0     p̃1 = C′(q2, θ)     q2 = q1 =  q̂ +  
p̃1− c1−θ

c2
 

Using (5): B = −q2 =  −q̂ −  
p̃1− c1−θ

c2
 

Using (4):  q1 − B  0    q1 − (−q2)  0    q1 + q2  0  which is true. 

Case 2 represents the case where 𝑝1 > 𝑝2, so that the firm borrows forward all of its second-

period output (𝐵 = −𝑞2) to get paid the higher period-1 price. 

Case 3: 𝝀𝟏 >  𝟎, 𝝀𝟐 = 𝟎 

Using (2): 𝑝2 = 𝐶′(𝑞2, 𝜃)    q2 =  q̂ +  
p̃2− c1−θ

c2
 

Using (3): λ1  =  p̃2 − p̃1 > 0   p̃2 > p̃1 

Using (1): 𝑝1 − 𝐶′(𝑞1, 𝜃)+ p̃2 − p̃1 = 0    p̃2 = C′(q1, θ)     q1 = q2 =  q̂ +  
p̃2− c1−θ

c2
 

Using (4):  q1 = B 

Case 3 represents the case where 𝑝2 > 𝑝1, so that the firm banks all of its first-period output 

(𝐵 = 𝑞1) to get paid the higher period-2 price. 

Case 4: 𝝀𝟏 >  𝟎, 𝝀𝟐 > 𝟎 

Using (4):  q1 = B  

Using (5):  q2 = −B    q2 = − q1   q2 +  q1 = 0 

Using (1): 𝑝1 − 𝐶′(𝑞1, 𝜃)+ λ1  = 0 

Using λ2 from (3) and substituting in (2) yields: 𝑝1 − 𝐶′(𝑞2, 𝜃)+ λ1  = 0 

 𝑝1 − 𝐶′(𝑞1, 𝜃)+ λ1  = 𝑝1 − 𝐶′(𝑞2, 𝜃)+ λ1   

 𝐶′(𝑞1, 𝜃) = 𝐶′(𝑞2, 𝜃) 

 𝐶′(𝑞1, 𝜃) = 𝐶′(−𝑞1, 𝜃) since  q2 = − q1 

  q1 = − q1 
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  q1 = 0 

  q2 =  q1 = 0 = 𝐵 

Using (1): λ1  =  −p̃1 + (𝑐1 + 𝜃 + 𝑐2(−𝑞̂)) >  0 

Using (2): λ2  =  −p̃2 + (𝑐2 + 𝜃 + 𝑐2(−𝑞̂)) >  0 

Case 4 is thus the trivial case where the both prices are so low that the firm chooses to produce 

nothing in either period; I ignore this case. 

Collecting the results from all four cases yields 

𝑞1 = 𝑞2 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃

𝑐2
 

The quantity produced in each period here is same as under the non-bankable price policy. So, 

the expected net benefits will also be equal. 

𝐸𝑊𝐵𝑃
𝐴 = 𝐸𝑊𝑁𝐵𝑃

𝐴 =  2(𝑏0 − 𝑐0) +
𝜎𝜃

2

𝑐2
(𝑐2 − 𝑏2)  

 

A.1.b Scenario B 

First Best 

Identical to scenario A, ex-post first-best output level is 𝑞1 = 𝑞2 = 𝑞̂ +
𝜂−𝜃

𝑏2+𝑐2
. 

Non-bankable quantity 

The firm has no choice but to produce {𝑞̃1, 𝑞̃2}.  The planner's problem is now a two-

period problem, since it can update its quantity policy after the first period. The second-period 

problem is: 

max
𝑞̃2

 [𝑏0 + (𝑏1 + 𝜂)(𝑞̃2 − 𝑞̂) −
𝑏2

2
(𝑞̃2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞̃2 − 𝑞̂) −

𝑐2

2
(𝑞̃2 − 𝑞̂)2] 

The first-order condition yields: 
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𝑞̃2 = 𝑞̂ +
𝜂 − 𝜃

𝑏2 + 𝑐2
 

The first period problem is: 

max
𝑞̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞̃1 − 𝑞̂) −
𝑏2

2
(𝑞̃1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞̃1 − 𝑞̂) −

𝑐2

2
(𝑞̃1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞̃2 − 𝑞̂) −
𝑏2

2
(𝑞̃2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞̃2 − 𝑞̂) −

𝑐2

2
(𝑞̃2 − 𝑞̂)2] 

max
𝑞̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞̃1 − 𝑞̂) −
𝑏2

2
(𝑞̃1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞̃1 − 𝑞̂) −

𝑐2

2
(𝑞̃1 − 𝑞̂)2 + 𝑏0

− (𝑏1 + 𝜂) (
𝜂 − 𝜃

𝑏2 + 𝑐2
) −

𝑏2

2
(

𝜂 − 𝜃

𝑏2 + 𝑐2
)

2

− 𝑐0 + (𝑐1 + 𝜃) (
𝜂 − 𝜃

𝑏2 + 𝑐2
)

−
𝑐2

2
(

𝜂 − 𝜃

𝑏2 + 𝑐2
)

2

] 

max
𝑞̃1

 [𝑏0 + 𝑏1(𝑞̃1 − 𝑞̂) −
𝑏2

2
(𝑞̃1 − 𝑞̂)2 − 𝑐0 − 𝑐1(𝑞̃1 − 𝑞̂) −

𝑐2

2
(𝑞̃1 − 𝑞̂)2 + 𝑏0 +  

𝐸(𝜂2)

𝑏2 + 𝑐2

−
𝑏2

2(𝑏2 + 𝑐2)2
 [𝐸(𝜂2) +  𝐸(𝜃2)] − 𝑐0 +

𝐸(𝜃2)

(𝑏2 + 𝑐2)

−
𝑐2

2(𝑏2 + 𝑐2)2
[𝐸(𝜂2) +  𝐸(𝜃2)]] 

The first-order condition with respect to 𝑞̃1 is 

𝑏1 −  𝑏2 (𝑞̃1 − 𝑞̂) −  𝑐1 − 𝑐2(𝑞̃1 − 𝑞̂) = 0 

Therefore,  

𝑞̃1 = 𝑞̂ 

Substituting these two solutions for 𝑞̃1and 𝑞̃2 into the expresstion for expected welfare (note that 

all of the first-period terms with 𝑞̃1 − 𝑞̂ become zero) yields 
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𝐸𝑊𝑁𝐵𝑄
𝐵 =  𝑏0 − 𝑐0 + 𝑏0 +  

𝜎𝜂
2

𝑏2 + 𝑐2
−

𝑏2

2(𝑏2 + 𝑐2)2
 [𝜎𝜂

2 +  𝜎𝜃
2] − 𝑐0 +

𝜎𝜃
2

(𝑏2 + 𝑐2)

−
𝑐2

2(𝑏2 + 𝑐2)2
[𝜎𝜂

2 + 𝜎𝜃
2] 

     =  2(𝑏0 − 𝑐0) +  
1

2(𝑏2+𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] 

Non-bankable price 

Given a set of policies {𝑝1, 𝑝2}, the firm's problem is same as in scenario A. Thus, 𝑞1 =

𝑞̂ +
𝑝̃1−𝑐1−𝜃

𝑐2
 and 𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃

𝑐2
.  Given this response, the planner’s second-period problem is 

as follows: 

max
𝑝̃2

 [𝑏0 + (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

= max
𝑝̃2

 [𝑏0 + (𝑏1 + 𝜂) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
)

−
𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

 

The first-order condition is 

𝑏1 + 𝜂

𝑐2
−

𝑏2

𝑐2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
) −

𝑐1 + 𝜃

𝑐2
− (

𝑝2 − 𝑐1 − 𝜃

𝑐2
) = 0 

Solving this expression gives  

𝑝2 = 𝑐1 +  
𝜃𝑏2 +  𝜂𝑐2

𝑏2 + 𝑐2
 

This implies that the firm's chosen 𝑞2 is 

𝑞2 = 𝑞̂ +
𝜂 −  𝜃

𝑏2 + 𝑐2
 

The planner's first-period problem is 
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max
𝑝̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

such that 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃

𝑐2
 and 𝑞2 = 𝑞̂ +

𝜂− 𝜃

𝑏2+𝑐2
 

max
𝑝̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂) (
𝑝1 − 𝑐1 − 𝜃

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1 − 𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑝1 − 𝑐1 − 𝜃

𝑐2
)

−
𝑐2

2
(

𝑝1 − 𝑐1 − 𝜃

𝑐2
)

2

+ 𝑏0 + (𝑏1 + 𝜂) (
𝜂 −  𝜃

𝑏2 + 𝑐2
) −

𝑏2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

− 𝑐0

− (𝑐1 + 𝜃) (
𝜂 −  𝜃

𝑏2 + 𝑐2
) −

𝑐2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

] 

After taking the expectation, the first-order condition with respect to 𝑝1 yields 

𝑝1 = 𝑐1 

The firm's 𝑞1 is 

𝑞1 = 𝑞̂ −
 𝜃

𝑐2
 

Substituting the firm's choices for 𝑞1and 𝑞2 into expected welfare gives: 

𝐸𝑊𝑁𝐵𝑃
𝐵 = 𝐸 [𝑏0 + (𝑏1 + 𝜂) (−

 𝜃

𝑐2
) −

𝑏2

2
(−

 𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (−
 𝜃

𝑐2
) −

𝑐2

2
(−

 𝜃

𝑐2
)

2

+ 𝑏0

+ (𝑏1 + 𝜂) (
𝜂 −  𝜃

𝑏2 + 𝑐2
) −

𝑏2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝜂 −  𝜃

𝑏2 + 𝑐2
)

−
𝑐2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

] 

= 𝑏0 −
𝑏2

2𝑐2
2

𝜎𝜃
2 − 𝑐0 +

𝜎𝜃
2

𝑐2
−

𝑐2

2𝑐2
2

𝜎𝜃
2 + 𝑏0 +  

𝜎𝜂
2

𝑏2 + 𝑐2
−

𝑏2

2(𝑏2 + 𝑐2)2
 [𝜎𝜂

2 +  𝜎𝜃
2] − 𝑐0

+
𝜎𝜃

2

(𝑏2 + 𝑐2)
−

𝑐2

2(𝑏2 + 𝑐2)2
[𝜎𝜂

2 +  𝜎𝜃
2] 
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This expression finally simplifies to: 

𝐸𝑊𝑁𝐵𝑃
𝐵 =  2(𝑏0 − 𝑐0) +  

1

2(𝑏2 + 𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] +  

𝜎𝜃
2

2𝑐2
2

 (𝑐2 – 𝑏2) 

Bankable quantity 

The firm's problem here is the same as the bankable quantity policy under scenario A. 

Therefore, 𝑞1 =  𝑞̃1 − 𝐵 =
𝑞̃1+𝑞̃2

2
 . Similarly, 𝑞2 = 𝑞̃2 + 𝐵 = 

𝑞̃1+𝑞̃2

2
. Let 𝑞̃1 + 𝑞̃2 ≡  𝑞̃. Given this 

response, the planner’s second period problem becomes 

max
𝑞̃

 𝐸 [𝑏0 + (𝑏1 + 𝜂) (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

]] 

The first-order condition with respect to 𝑞̃ yields 

𝑞̃

2
=  𝑞̂ +

𝜂 −  𝜃

𝑏2 + 𝑐2
 

𝑞̃2 =  2𝑞̂ + 2
𝜂 −  𝜃

𝑏2 + 𝑐2
− 𝑞̃1 

Planner’s first period problem would be: 

max
𝑞̃

 [𝑏0 + 𝑏1 (
𝑞̃

2
− 𝑞̂) −

𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − 𝑐1 (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

+ 𝑏0 + 𝑏1 (
𝑞̃

2
− 𝑞̂)

−
𝑏2

2
(

𝑞̃

2
− 𝑞̂)

2

− 𝑐0 − 𝑐1 (
𝑞̃

2
− 𝑞̂) −

𝑐2

2
(

𝑞̃

2
− 𝑞̂)

2

] 

such that 

𝑞̃2 =  2𝑞̂ + 2
𝜂 −  𝜃

𝑏2 + 𝑐2
− 𝑞̃1 

and, 

𝑞̃1 + 𝑞̃2 =  𝑞̃ 

The firm responds only to the sum 𝑞̃1+ 𝑞̃2: 
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          𝑞1 =  𝑞2 = 
𝑞̃1+𝑞̃2

2
 =  𝑞̂ +

𝜂− 𝜃

𝑏2+𝑐2
 

Substituting these values into expected welfare gives 

𝐸𝑊𝐵𝑄
𝐵 =  𝑏0 + (𝑏1 + 𝜂)(𝑞1 − 𝑞̂) −

𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2 

    = 2 𝐸 [𝑏0 + (𝑏1 + 𝜂) (
𝜂 −  𝜃

𝑏2 + 𝑐2
) −

𝑏2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝜂 −  𝜃

𝑏2 + 𝑐2
) −

𝑐2

2
(

𝜂 −  𝜃

𝑏2 + 𝑐2
)

2

] 

= 2[𝑏0 +  
𝜎𝜂

2

𝑏2 + 𝑐2
−

𝑏2

2(𝑏2 + 𝑐2)2
 [𝜎𝜂

2 +  𝜎𝜃
2] − 𝑐0 +

𝜎𝜃
2

(𝑏2 + 𝑐2)
−

𝑐2

2(𝑏2 + 𝑐2)2
[𝜎𝜂

2 + 𝜎𝜃
2]] 

This expression finally simplifies to: 

𝐸𝑊𝐵𝑄
𝐵 =  2(𝑏0 − 𝑐0) +  

1

(𝑏2 + 𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] 

Therefore, 

𝐸𝑊𝐵𝑄
𝐵 − 𝐸𝑊𝑁𝐵𝑄

𝐵 =   
1

2(𝑏2 + 𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] 

Additionally, 𝐸𝑊𝐵𝑄
𝐵 − 𝐸𝑊𝑁𝐵𝑃

𝐵 = 2(𝑏0 − 𝑐0) +  
1

(𝑏2+𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] −  2(𝑏0 − 𝑐0) −

 
1

2(𝑏2+𝑐2)
[𝜎𝜂

2 +  𝜎𝜃
2] −  

𝜎𝜃
2

2𝑐2
2  (𝑐2 – 𝑏2) 

On further simplification, we get: 

𝐸𝑊𝐵𝑄
𝐵 − 𝐸𝑊𝑁𝐵𝑃

𝐵 =  
1

2(𝑏2+𝑐2)
[𝜎𝜂

2 + 𝜎𝜃
2 (

𝑏2

𝑐2
)

2

] > 0 

Bankable price 

The firm's response to this policy is the same as its response under scenario A: 

𝑞1 = 𝑞2 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃

𝑐2
 

Assuming that 𝑝2is the binding price, the planner's second-period problem is 
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max
𝑝̃2

𝑏0 + (𝑏1 + 𝜂) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃) (
𝑝2 − 𝑐1 − 𝜃

𝑐2
)

−
𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃

𝑐2
)

2

  

The first-order condition with respect to 𝑝2 yields 

𝑝2 = 𝑐1 +
𝑏2𝜃 + 𝑐2𝜂

𝑏2 + 𝑐2
 

Substituting this 𝑝2 into the firm's choice for 𝑞2 yields 

𝑞2 = 𝑞̂ +
𝜂 − 𝜃

𝑏2 + 𝑐2
=  𝑞1 

The first-period price can be anything arbitrary low enough to ensure that it is always lower than 

the first-period price.  Thus, the planner knows that the firm will actually face the second-period 

price, and it knows that by the second period it will have enough information to set that price to 

achieve the first-best.  

 The resulting quantities are identical to those under the bankable price policy, and thus 

the expected welfare is identical to the expected welfare under that policy. 

 

A.1.C Scenario C 

In this scenario: 

𝜃2 = 𝜌𝜃𝜃1 + 𝜀𝜃 

𝜂2 = 𝜌𝜂𝜂1 + 𝜀𝜂 

and,  

  𝐸[𝜃1] = 𝐸[𝜃2] = 𝐸[𝜂1] = 𝐸[𝜂2] = 𝐸[𝜃𝑙𝜂𝑚] = 0, 𝐸[𝜃1
2] = 𝜎𝜃

2, 𝐸[𝜂1
2] = 𝜎𝜂

2,  

  𝐸[𝜃2
2] = 𝜎𝜃

2(𝜌𝜃
2 + 1), 𝐸[𝜃1𝜃2] = 𝜌𝜃𝜎𝜃

2, 𝐸[𝜂2
2] = 𝜎𝜂

2(𝜌𝜂
2 + 1), 𝐸[𝜂1𝜂2] = 𝜌𝜂𝜎𝜂

2  

First best 
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In this scenario, as calculated above in scenarios A and B, the ex-post first-best outcome will be 

𝑞1 = 𝑞̂ +
𝜂1−𝜃1

𝑏2+𝑐2
 and 𝑞2 = 𝑞̂ +

𝜂2−𝜃2

𝑏2+𝑐2
. (This is the same as in the previous scenarios, except noting 

that the shock values differ across periods.) 

Non-bankable quantity  

The planner's problem here is: 

max
𝑞1,𝑞2

 𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

This becomes 

max
𝑞1,𝑞2

𝑏0 + 𝑏1(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − 𝑐1(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0 + 𝑏1(𝑞2 − 𝑞̂)

−
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − 𝑐1(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2 

Taking the first-order condition with respect to 𝑞1 yields 𝑞1 = 𝑞̂, and likewise for 𝑞2: 𝑞2 = 𝑞̂.  

Given this policy, the expected welfare is expected net benefits evaluated at 𝑞1 = 𝑞2 = 𝑞̂.  

Expected welfare is 

𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

In this expression, all terms with 𝑞1 − 𝑞̂ or 𝑞2 − 𝑞̂ become zero, so 𝐸𝑊𝑁𝐵𝑄
𝐶 = 2(𝑏0 − 𝑐0). 

Non-bankable price  

 Given a set of policies {𝑝1, 𝑝2}, the firm's problem is 
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max
𝑞1,𝑞2

𝑝1𝑞1 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −
𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑝2𝑞2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂)

−
𝑐2

2
(𝑞2 − 𝑞̂)2 

The first-order condition with respect to 𝑞1 is  

𝑝1 − (𝑐1 + 𝜃1) − 𝑐2(𝑞1 − 𝑞̂) = 0 

Solving this for 𝑞1 yields 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃1

𝑐2
.  The first-order condition with respect to 𝑞2 yields 

𝑞2 = 𝑞̂ +
𝑝̃2−𝑐1−𝜃2

𝑐2
.  Given this response, the planner sets the prices to maximize expected net 

benefits: 

max
𝑝̃1,𝑝̃2

   𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

such that 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃1

𝑐2
 and 𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃2

𝑐2
 

 

max
𝑝̃1,𝑝̃2

 𝐸 [𝑏0 + (𝑏1 + 𝜂1) (
𝑝1 − 𝑐1 − 𝜃1

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃1) (
𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

−
𝑐2

2
(

𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

2

+ 𝑏0 + (𝑏1 + 𝜂2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

] 
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max
𝑝̃1,𝑝̃2

 [𝑏0 + 𝑏1 (
𝑝1 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2

𝑐2
2 − 𝑐0 − 𝑐1 (

𝑝1 − 𝑐1

𝑐2
) +

𝜎𝜃
2

𝑐2
−

𝑐2

2
(

𝑝1 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2

𝑐2
2 + 𝑏0 + 𝑏1 (

𝑝2 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2 − 𝑐0

− 𝑐1 (
𝑝2 − 𝑐1

𝑐2
) +

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
−

𝑐2

2
(

𝑝2 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2 ] 

The first-order condition for choice of 𝑝1 is  

𝑏1

𝑐2
−

𝑏2

𝑐2
2

(𝑝1 − 𝑐1) −
𝑐1

𝑐2
−

1

𝑐2

(𝑝̃1 − 𝑐1) 

 

Solving this, as in scenario A, yields 𝑝1 = 𝑐1.  Similarly, the first-order condition with respect to 

𝑝2 yields 𝑝2 = 𝑐1.  Given these policies, the firm will choose to produce 𝑞1 = 𝑞̂ −
𝜃1

𝑐2
 and 𝑞2 =

 𝑞̂ −
𝜃2

𝑐2
.  Substitute these values for 𝑞1 and 𝑞2 into the expression for expected net benefits 

𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

= 𝐸 [𝑏0 + (𝑏1 + 𝜂1) (−
𝜃1

𝑐2
) −

𝑏2

2
(−

𝜃1

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃1) (−
𝜃1

𝑐2
) −

𝑐2

2
(−

𝜃1

𝑐2
)

2

+ 𝑏0

+ (𝑏1 + 𝜂2) (−
𝜃2

𝑐2
) −

𝑏2

2
(−

𝜃2

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃2) (−
𝜃2

𝑐2
) −

𝑐2

2
(−

𝜃2

𝑐2
)

2

] 

=  𝑏0 −
𝑏2

2

𝜎𝜃
2

𝑐2
2 − 𝑐0 +

𝜎𝜃
2

𝑐2
−

𝑐2

2

𝜎𝜃
2

𝑐2
2 −

𝑐2

2

𝜎𝜃
2

𝑐2
2 + 𝑏0 −

𝑏2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2 − 𝑐0 +

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2

−
𝑐2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2  

This expression simplifies to: 



54 

 

𝐸𝑊𝑁𝐵𝑃
𝐶 = 2(𝑏0 − 𝑐0) +

𝜎𝜃
2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 

It follows that the advantage of non-bankable prices over non-bankable quantities is 

Δ𝑁𝐵𝑃,𝑁𝐵𝑄
𝐶 =

𝜎𝜃
2

𝑐2
(𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 

Bankable quantity  

The firm's problem is 

max
𝑞1,𝑞2,𝐵

−𝐶(𝑞1, 𝜃1) − 𝐶(𝑞2, 𝜃2) 

𝑠. 𝑡. 𝑞1 = 𝑞̃1 − 𝐵, 𝑞2 = 𝑞̃2 + 𝐵 

max
𝑞1,𝑞2,𝐵

−[𝑐0 + (𝑐1 + 𝜃1)(𝑞̃1 − 𝐵 − 𝑞̂) +
𝑐2

2
(𝑞̃1 − 𝐵 − 𝑞̂)2 + 𝑐0 + (𝑐1 + 𝜃2)(𝑞̃2 + 𝐵 − 𝑞̂) +

𝑐2

2
(𝑞̃2 + 𝐵 − 𝑞̂)2] 

The first-order condition with respect to 𝐵 yields B = 
𝑞̃1−𝑞̃2

2
+  

𝜃1− 𝜃2

2𝑐2
. This implies 𝑞1 =  𝑞̃1 −

𝐵 =
𝑞̃1+𝑞̃2

2
−  

𝜃1− 𝜃2

2𝑐2
 . Similarly, 𝑞2 = 𝑞̃2 + 𝐵 = 

𝑞̃1+𝑞̃2

2
+  

𝜃1− 𝜃2

2𝑐2
.  Let 𝑞̃1 + 𝑞̃2 =  𝑞̃. Given this 

response, the planner sets the quantities {𝑞̃1, 𝑞̃2} to maximize expected net benefits: 

max
𝑞̃

 𝐸 [𝑏0 + (𝑏1 + 𝜂1) (
𝑞̃1 + 𝑞̃2

2
−  

𝜃1 − 𝜃2

2𝑐2
− 𝑞̂) −

𝑏2

2
(

𝑞̃1 + 𝑞̃2

2
−  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂)

2

− 𝑐0

− (𝑐1 + 𝜃1) (
𝑞̃1 + 𝑞̃2

2
−  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂) −

𝑐2

2
(

𝑞̃1 + 𝑞̃2

2
−  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂)

2

+ 𝑏0

+ (𝑏1 + 𝜂2) (
𝑞̃1 + 𝑞̃2

2
+  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂) −

𝑏2

2
(

𝑞̃1 + 𝑞̃2

2
+  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂)

2

− 𝑐0

− (𝑐1 + 𝜃2) (
𝑞̃1 + 𝑞̃2

2
+  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂) −

𝑐2

2
(

𝑞̃1 + 𝑞̃2

2
+  

𝜃1 −  𝜃2

2𝑐2
− 𝑞̂)

2

] 
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Using 𝐸[(𝜃1 − 𝜃2)2] =  𝜎𝜃
2(𝜌𝜃

2 − 2𝜌𝜃 + 2); 𝐸[𝜃1(𝜃1 − 𝜃2)] =  𝜎𝜃
2(1 − 𝜌𝜃); 𝐸[𝜃2(𝜃1 −

 𝜃2)] =  𝜎𝜃
2(𝜌𝜃 − 𝜌𝜃

2 − 1) and taking first order condition of the above expression with respect 

to 𝑞̃1 + 𝑞̃2 yields: 

𝑞̃1 + 𝑞̃2 = 2𝑞̂ 

and substituting this back into the net benefit expression above gives: 

𝐸𝑊𝐵𝑄
𝐶 = 2(𝑏0 − 𝑐0) +

𝜎𝜃
2

4𝑐2
2 (𝜌𝜃

2 − 2𝜌𝜃 + 2)(𝑐2 − 𝑏2) 

 

Bankable price  

The firm faces prices in each period 𝑝1 and 𝑝2. The firm's problem is: 

max
𝑞1,𝑞2,𝐵

𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃1) + 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃2) 

𝑠. 𝑡. 𝑞1 − 𝐵 ≥ 0, 𝑞2 + 𝐵 ≥ 0 

Use the Kuhn-Tucker method to solve this optimization problem with inequality constraints. 

ℒ(𝑞1, 𝑞2, 𝐵;  𝜆1,𝜆2 ) = 𝑝1(𝑞1 − 𝐵) − 𝐶(𝑞1, 𝜃1) + 𝑝2(𝑞2 + 𝐵) − 𝐶(𝑞2, 𝜃2) +  𝜆1 (𝑞1 − 𝐵) +

 𝜆2 (𝑞2 + 𝐵)  

𝜕ℒ

𝜕𝑞1
 = 𝑝1 − 𝐶′(𝑞1, 𝜃1)+ 𝜆1  = 0     

𝜕ℒ

𝜕𝑞2
 = 𝑝2 − 𝐶′(𝑞2, 𝜃2)+ 𝜆2  = 0    

𝜕ℒ

𝜕𝐵
 =   − 𝑝1 + 𝑝2  − 𝜆1 +  𝜆2  = 0    

𝜕ℒ

𝜕𝜆1 
 = 𝑞1 − 𝐵  0, 𝜆1  0 and 𝜆1(𝑞1 − 𝐵) = 0  

𝜕ℒ

𝜕𝜆2 
 = 𝑞2 + 𝐵  0, 𝜆2  0 and 𝜆2(𝑞2 + 𝐵) = 0  

Now consider various cases as in Scenario A: 

Case 1:  𝝀𝟏 =  𝝀𝟐 = 𝟎 
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Solving this gives 𝑝1 = 𝑝2 and 

 𝑞1 =  𝑞̂ +  
𝑝1 −  𝑐1 − 𝜃1

𝑐2
 

𝑞2 =  𝑞̂ + 
𝑝̃2 −  𝑐1 − 𝜃2

𝑐2
 

Case 2: 𝝀𝟏 =  𝟎, 𝝀𝟐 > 𝟎 

Solving this gives 𝑝1 >  𝑝2 and 

 𝑞1 =  𝑞̂ +  
𝑝1 −  𝑐1 − 𝜃1

𝑐2
 

𝑞2 =  𝑞̂ + 
𝑝1 −  𝑐1 − 𝜃2

𝑐2
 

         

Case 3: 𝝀𝟏 >  𝟎, 𝝀𝟐 = 𝟎 

Solving this gives 𝑝2 >  𝑝1 and  

 𝑞1 =  𝑞̂ + 
𝑝2 −  𝑐1 − 𝜃1

𝑐2
 

𝑞2 =  𝑞̂ + 
𝑝̃2 −  𝑐1 − 𝜃2

𝑐2
 

 

Case 4: 𝝀𝟏 >  𝟎, 𝝀𝟐 > 𝟎 

This is the trivial case in which both periods' prices are so low as to make the firm never produce 

in either period, so this case is ignored as in Scenario A. 

The planner needs to only choose any one price, say 𝑝, and the other (lower) price 

becomes irrelevant. So, the expected net benefits will be: 



57 

 

max
𝑝̃

 𝐸 [𝑏0 + (𝑏1 + 𝜂1) (
𝑝 − 𝑐1 − 𝜃1

𝑐2
) −

𝑏2

2
(

𝑝 − 𝑐1 − 𝜃1

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃1) (
𝑝 − 𝑐1 − 𝜃1

𝑐2
)

−
𝑐2

2
(

𝑝 − 𝑐1 − 𝜃1

𝑐2
)

2

+ 𝑏0 + (𝑏1 + 𝜂2) (
𝑝 − 𝑐1 − 𝜃2

𝑐2
) −

𝑏2

2
(

𝑝 − 𝑐1 − 𝜃2

𝑐2
)

2

− 𝑐0

− (𝑐1 + 𝜃2) (
𝑝 − 𝑐1 − 𝜃2

𝑐2
) −

𝑐2

2
(

𝑝 − 𝑐1 − 𝜃2

𝑐2
)

2

] 

max
𝑝̃

 [𝑏0 + 𝑏1 (
𝑝 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2

𝑐2
2 − 𝑐0 − 𝑐1 (

𝑝 − 𝑐1

𝑐2
) +

𝜎𝜃
2

𝑐2
−

𝑐2

2
(

𝑝 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2

𝑐2
2 + 𝑏0 + 𝑏1 (

𝑝 − 𝑐1

𝑐2
) −

𝑏2

2
(

𝑝 − 𝑐1

𝑐2
)

2

−
𝑏2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2 − 𝑐0 − 𝑐1 (

𝑝 − 𝑐1

𝑐2
)

+
𝜎𝜃

2(𝜌𝜃
2 + 1)

𝑐2
−

𝑐2

2
(

𝑝 − 𝑐1

𝑐2
)

2

−
𝑐2

2

𝜎𝜃
2(𝜌𝜃

2 + 1)

𝑐2
2 ] 

The first-order condition for choice of 𝑝 is  

𝑏1

𝑐2
−

𝑏2

𝑐2
2

(𝑝 − 𝑐1) −
𝑐1

𝑐2
−

1

𝑐2

(𝑝 − 𝑐1) +
𝑏1

𝑐2
−

𝑏2

𝑐2
2

(𝑝 − 𝑐1) −
𝑐1

𝑐2
−

1

𝑐2

(𝑝 − 𝑐1) = 0 

This gives: 

𝑝 = 𝑐1 

Therefore, the maximized expected welfare expression becomes: 

𝐸𝑊𝐵𝑃
𝐶 = 2(𝑏0 − 𝑐0) +

𝜎𝜃
2

2𝑐2
2 (𝜌𝜃

2 + 2)(𝑐2 − 𝑏2) 

A.1.D Scenario D 

First best 

 Since the shock values are the same as in scenario C, the first-best solution is identical 

also: 𝑞1 = 𝑞̂ +
𝜂1−𝜃1

𝑏2+𝑐2
 and 𝑞2 = 𝑞̂ +

𝜂2−𝜃2

𝑏2+𝑐2
. 

Non-bankable quantity  
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The firm has no choice but to produce {𝑞̃1, 𝑞̃2}.  The planner's problem is now a two-

period problem, since it can update its quantity policy after the first period. The second-period 

problem is: 

max
𝑞̃2

 𝐸[𝑏0 + (𝑏1 + 𝜂2)(𝑞̃2 − 𝑞̂) −
𝑏2

2
(𝑞̃2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞̃2 − 𝑞̂) −

𝑐2

2
(𝑞̃2 − 𝑞̂)2] 

Using 𝐸[𝜃2|𝜃1] = 𝜌𝜃𝜃1 and 𝐸[𝜂2|𝜂1] = 𝜌𝜂𝜂1, the first-order condition yields: 

𝑞̃2 = 𝑞̂ +
𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
 

The first period problem is: 

max
𝑞̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞̃1 − 𝑞̂) −
𝑏2

2
(𝑞̃1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞̃1 − 𝑞̂) −

𝑐2

2
(𝑞̃1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞̃2 − 𝑞̂) −
𝑏2

2
(𝑞̃2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞̃2 − 𝑞̂) −

𝑐2

2
(𝑞̃2 − 𝑞̂)2] 

max
𝑞̃1

 𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞̃1 − 𝑞̂) −
𝑏2

2
(𝑞̃1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞̃1 − 𝑞̂) −

𝑐2

2
(𝑞̃1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2) (
𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
) −

𝑏2

2
(

𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
)

2

− 𝑐0

− (𝑐1 + 𝜃2) (
𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
) −

𝑐2

2
(

𝜌𝜂𝜂1 − 𝜌𝜃𝜃1

𝑏2 + 𝑐2
)

2

] 

The first-order condition with respect to 𝑞̃1 is 

𝑏1 −  𝑏2 (𝑞̃1 − 𝑞̂) −  𝑐1 − 𝑐2(𝑞̃1 − 𝑞̂) = 0 

Therefore,  

𝑞̃1 = 𝑞̂ 

Substituting these two solutions for 𝑞̃1and 𝑞̃2 into the expresstion for expected welfare (note that 

all of the first-period terms with 𝑞̃1 − 𝑞̂ become zero) yields 
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𝐸𝑊𝑁𝐵𝑄
𝐵 =  𝑏0 − 𝑐0 + 𝑏0 +  

𝜌𝜂
2𝜎𝜂

2

𝑏2 + 𝑐2
−

𝑏2

2(𝑏2 + 𝑐2)2
 [𝜌𝜂

2𝜎𝜂
2 + 𝜌𝜃

2𝜎𝜃
2] − 𝑐0 +

𝜌𝜃
2𝜎𝜃

2

(𝑏2 + 𝑐2)

−
𝑐2

2(𝑏2 + 𝑐2)2
[𝜌𝜂

2𝜎𝜂
2 +  𝜌𝜃

2𝜎𝜃
2] 

     =  2(𝑏0 − 𝑐0) +  
1

2(𝑏2+𝑐2)
[𝜌𝜂

2𝜎𝜂
2 + 𝜌𝜃

2𝜎𝜃
2] 

 

 

Non-bankable price  

Given a set of policies {𝑝1, 𝑝2}, the firm chooses 𝑞1 = 𝑞̂ +
𝑝̃1−𝑐1−𝜃1

𝑐2
 and 𝑞2 = 𝑞̂ +

𝑝̃2−𝑐1−𝜃2

𝑐2
.  Given this response, the planner’s second period problem is as follows: 

max
𝑝̃2

 [𝑏0 + (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

= max
𝑝̃2

 [𝑏0 + (𝑏1 + 𝜂2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

−
𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

 

Using 𝐸[𝜂2𝜃2| 𝜂1, 𝜃1] =  𝜌𝜃𝜃1𝜌𝜂𝜂1 and 𝐸[𝜃2
2| 𝜂1, 𝜃1] = 𝜌𝜃𝜃1

2 + 𝜎𝜃
2; and solving for the first-

order condition with respect to 𝑝2 yields: 

𝑝2 = 𝑐1 + 
𝜌𝜃𝜃1𝑏2 + 𝜌𝜂𝜂1𝑐2

𝑏2 + 𝑐2
 

Firm's 𝑞2 is: 

𝑞2 = 𝑞̂ +
1

𝑐2
(

𝜌𝜃𝜃1𝑏2 + 𝜌𝜂𝜂1𝑐2

𝑏2 + 𝑐2
) − 

𝜃2

𝑐2
 

 

Moving to the planner's first-period problem: 
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max
𝑝̃1

 𝐸 [𝑏0 + (𝑏1 +  𝜂1) (
𝑝1 − 𝑐1 − 𝜃1

𝑐2
) −

𝑏2

2
(

𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃1) (
𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

−
𝑐2

2
(

𝑝1 − 𝑐1 − 𝜃1

𝑐2
)

2

+ 𝑏0 + (𝑏1 +  𝜂2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

] 

Taking the above expectation and then solving for first order condition with respect to 𝑝1yields: 

𝑝1 = 𝑐1 

The firm's 𝑞1 is 

𝑞1 = 𝑞̂ −
 𝜃1

𝑐2
 

Substituting the firm's choices for 𝑞1and 𝑞2 into the expected welfare function gives: 

𝐸𝑊𝑁𝐵𝑃
𝐷 = 𝐸[𝑏0 + (𝑏1 +  𝜂1) (−

 𝜃1

𝑐2
) −

𝑏2

2
(−

 𝜃1

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃1) (−
 𝜃1

𝑐2
) −

𝑐2

2
(−

 𝜃1

𝑐2
)

2

+ 𝑏0

+ (𝑏1 +  𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2] 

= 𝑏0 −
𝑏2+𝑐2

2𝑐2
2 𝜎𝜃

2 − 𝑐0 +
𝜎𝜃

2

𝑐2
−

𝑐2

2𝑐2
2 𝜎𝜃

2 + 𝑏0 +  𝐸[ 𝜂2(𝑞2 − 𝑞̂)] −
𝑏2+𝑐2

2
𝐸[(𝑞2 − 𝑞̂)2] − 𝑐0 −

 𝐸[𝜃2(𝑞2 − 𝑞̂)]  

Using the following expressions to simplify 𝐸𝑊𝑁𝐵𝑃
𝐷  :  𝐸[(𝑞2 − 𝑞̂)] = 0; 𝐸[ 𝜂2(𝑞2 − 𝑞̂)] =  

𝜌𝜂
2𝜎𝜂

2

𝑏2+𝑐2
; 

𝐸[𝜃2(𝑞2 − 𝑞̂)] =  −𝜎𝜃
2 (

𝜌𝜃
2

(𝑏2+𝑐2)
+  

1

𝑐2
) ;  𝐸[(𝑞2 − 𝑞̂)2] = [ 

𝜎𝜃
2

𝑐2
2

 (𝜌𝜃
2 (

𝑏2

𝑏2+𝑐2
)

2

+  𝜌𝜃
2 + 1 −

2𝜌𝜃
2 𝑏2

𝑏2+𝑐2
) +  

𝜌𝜂
2

(𝑏2+𝑐2)
𝜎𝜂

2],  we get 
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𝐸𝑊𝑁𝐵𝑃
𝐷 =  𝑏0 −

𝑏2 + 𝑐2

2𝑐2
2

𝜎𝜃
2 − 𝑐0 +

𝜎𝜃
2

𝑐2
−

𝑐2

2𝑐2
2

𝜎𝜃
2 + 𝑏0 +  

𝜌𝜂
2𝜎𝜂

2

𝑏2 + 𝑐2

−
𝑏2 + 𝑐2

2
[

𝜎𝜃
2

𝑐2
2

 (𝜌𝜃
2 (

𝑏2

𝑏2 + 𝑐2
)

2

+  𝜌𝜃
2 + 1 − 2𝜌𝜃

2
𝑏2

𝑏2 + 𝑐2
) +  

𝜌𝜂
2

(𝑏2 + 𝑐2)
𝜎𝜂

2]

− 𝑐0 −  [−𝜎𝜃
2 (

𝜌𝜃
2

(𝑏2 + 𝑐2)
+  

1

𝑐2
)] 

On simplification, this expression becomes: 

𝐸𝑊𝑁𝐵𝑃
𝐵 =  2(𝑏0 − 𝑐0) + 

1

2(𝑏2 + 𝑐2)
[𝜌𝜂

2𝜎𝜂
2 +  𝜌𝜃

2𝜎𝜃
2] +  

𝜎𝜃
2

𝑐2
2

 (𝑐2 – 𝑏2) 

 

Bankable quantity  

The firm's problem here is the same as the bankable quantity policy under scenario C. 

Therefore, 𝑞1 =  
𝑞̃1+𝑞̃2

2
−  

𝜃1− 𝜃2

2𝑐2
  and 𝑞2 = 

𝑞̃1+𝑞̃2

2
+  

𝜃1− 𝜃2

2𝑐2
. Let 

𝑞̃1+𝑞̃2

2
≡  𝑞̃. Given this response, 

the planner’s problem becomes 

max
𝑞̃

 𝐸 [𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂)

−
𝑐2

2
(𝑞2 − 𝑞̂)2 | 𝜃1, 𝜂1]] 

s.t. 𝑞1 =  
𝑞̃1+𝑞̃2

2
− 

𝜃1− 𝜃2

2𝑐2
  and 𝑞2 = 

𝑞̃1+𝑞̃2

2
+  

𝜃1− 𝜃2

2𝑐2
 

Consider the following expectations: 

𝐸(𝑞1 −  𝑞̂) =  𝑞̃  −  
𝜃1 −  𝜌𝜃𝜃1

2𝑐2
−  𝑞̂ 

𝐸(𝑞1 −  𝑞̂)2 = (𝑞̃  −  
𝜃1

2𝑐2
−  𝑞̂)2 +  (𝑞̃  −  

𝜃1

2𝑐2
−  𝑞̂)

𝜌𝜃𝜃1

𝑐2
+ 

𝜌𝜃
2𝜃1

2 +  𝜎𝜃
2

4𝑐2
2
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𝐸(𝑞2 −  𝑞̂) =  𝑞̃ +  
𝜃1 −  𝜌𝜃𝜃1

2𝑐2
−  𝑞̂ 

𝐸[𝜂2(𝑞2 −  𝑞̂)] =  𝜌𝜂𝜂1𝑞̃ −  
 𝜌𝜂𝜂1𝜌𝜃𝜃1

2𝑐2
−  𝜌𝜂𝜂1𝑞̂ 

𝐸[𝜃2(𝑞2 − 𝑞̂)] =  𝜌𝜃𝜃1𝑞̃ −  
 𝜌𝜃𝜃1

2 − (𝜌𝜃

2
𝜃1

2 +  𝜎𝜃
2)

2𝑐2
− 𝜌𝜃𝜃1𝑞̂ 

𝐸(𝑞2 − 𝑞̂)2 = (𝑞̃ +  
𝜃1

2𝑐2
−  𝑞̂)2 +  (𝑞̃ +  

𝜃1

2𝑐2
− 𝑞̂)

𝜌𝜃𝜃1

𝑐2
+  

𝜌𝜃
2𝜃1

2 +  𝜎𝜃
2

4𝑐2
2

 

 

Using these expectation expressions to simplify the planner’s optimization problem and then 

taking the first-order condition yields: 

𝑞̃ − 𝑞̂ =
𝜂1(1 +  𝜌𝜂) −  𝜃1(1 +  𝜌𝜃)

2(𝑏2 + 𝑐2)
  

or, 

𝑞̃ −  𝑞̂ =
𝜂1 − 𝜃1

2(𝑏2 + 𝑐2)
 +  

𝜌𝜂𝜂1 −  𝜌𝜃𝜃1 

2(𝑏2 + 𝑐2)
 

 

This implies: 

𝑞1 = 𝑞̂ +  
𝜂1(1 + 𝜌𝜂) −  𝜃1(1 +  𝜌𝜃)

2(𝑏2 + 𝑐2)
−  

𝜃1 − 𝜃2

2𝑐2
 

𝑞2 = 𝑞̂ +  
𝜂1(1 + 𝜌𝜂) −  𝜃1(1 +  𝜌𝜃)

2(𝑏2 + 𝑐2)
+  

𝜃1 −  𝜃2

2𝑐2
 

 

Substituting these values into expected welfare function:  
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𝐸𝑊𝐵𝑄
𝐷 =  𝐸[𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −

𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2

+ 𝑏0 + (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂)

−
𝑐2

2
(𝑞2 − 𝑞̂)2 | 𝜃1, 𝜂1] 

Solving this by substituting optimal 𝑞1 and 𝑞2, and then simplifying it yields: 

𝐸𝑊𝐵𝑄
𝐷 =  2(𝑏0 − 𝑐0) +

1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2
+

𝜎𝜃
2

4𝑐2
2

(𝑐2 − 𝑏2)(2 + 𝜌𝜃
2 − 2𝜌𝜃) 

Bankable price  

The firm's response to this policy is the same as its response under scenario C: 

𝑞1 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃1

𝑐2
 

𝑞2 = 𝑞̂ +
max{𝑝̃1, 𝑝2} − 𝑐1 − 𝜃2

𝑐2
 

Assuming that 𝑝2is the binding price, the planner's second-period problem is 

max
𝑝̃2

𝐸[𝑏0 + (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂) −

𝑐2

2
(𝑞2 − 𝑞̂)2]  

s.t. 𝑞2 = 𝑞̂ +
max{𝑝̃1,𝑝̃2}−𝑐1−𝜃2

𝑐2
 

= max
𝑝̃2

 [𝑏0 + (𝑏1 + 𝜂2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
) −

𝑏2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

− 𝑐0 − (𝑐1 + 𝜃2) (
𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

−
𝑐2

2
(

𝑝2 − 𝑐1 − 𝜃2

𝑐2
)

2

| 𝜃1, 𝜂1] 

The first-order condition with respect to 𝑝2 yields 

𝑝2 = 𝑐1 + 
𝜌𝜃𝜃1𝑏2 + 𝜌𝜂𝜂1𝑐2

𝑏2 + 𝑐2
 

Firm's 𝑞2 is: 
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𝑞2 = 𝑞̂ +
1

𝑐2
(

𝜌𝜃𝜃1𝑏2 + 𝜌𝜂𝜂1𝑐2

𝑏2 + 𝑐2
) − 

𝜃2

𝑐2
 

Planner will choose 𝑝 to maximize sum of welfare of both periods. This implies: 

max
𝑝̃

𝐸[𝑏0 + (𝑏1 + 𝜂1)(𝑞1 − 𝑞̂) −
𝑏2

2
(𝑞1 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃1)(𝑞1 − 𝑞̂) −

𝑐2

2
(𝑞1 − 𝑞̂)2 + 𝑏0

+ (𝑏1 + 𝜂2)(𝑞2 − 𝑞̂) −
𝑏2

2
(𝑞2 − 𝑞̂)2 − 𝑐0 − (𝑐1 + 𝜃2)(𝑞2 − 𝑞̂)

−
𝑐2

2
(𝑞2 − 𝑞̂)2 | 𝜃1, 𝜂1]]  

s.t. 

𝑞1 = 𝑞̂ +
𝑝 − 𝑐1 − 𝜃1

𝑐2
 

𝑞2 = 𝑞̂ +
𝑝 − 𝑐1 − 𝜃2

𝑐2
 

On solving this, we get: 

𝑝 = 𝑐1 +  
(1 + 𝜌𝜃)𝜃1𝑏2 + (1 + 𝜌𝜂)𝜂1𝑐2

2(𝑏2 + 𝑐2)
 

and subsequently, 

𝑞1 = 𝑞̂ +
1

2𝑐2
(

(1 + 𝜌𝜃)𝜃1𝑏2 +  (1 + 𝜌𝜂)𝜂1𝑐2

𝑏2 + 𝑐2
) −  

𝜃1

𝑐2
 

𝑞2 = 𝑞̂ +
1

2𝑐2
(

(1 + 𝜌𝜃)𝜃1𝑏2 +  (1 + 𝜌𝜂)𝜂1𝑐2

𝑏2 + 𝑐2
) −  

𝜃2

𝑐2
 

 

Consider: 

𝐸[(𝑞1 − 𝑞̂)] = 𝐸[(𝑞2 − 𝑞̂)] = 0; 𝐸[ 𝜂1(𝑞1 − 𝑞̂)] =  
(1+𝜌𝜂)𝜎𝜂

2

2(𝑏2+𝑐2)
; 𝐸[𝜃1(𝑞1 − 𝑞̂)] =

1

𝑐2
[ 

𝑏2(1+𝜌𝜃)

2(𝑏2+𝑐2)
−

1]𝜎𝜃
2;  𝐸[(𝑞1 − 𝑞̂)2] = [ 

𝜎𝜃
2

𝑐2
2

 (
𝑏2(1+𝜌𝜃)

2(𝑏2+𝑐2)
− 1)

2

+ (
1+𝜌𝜂

2(𝑏2+𝑐2)
)

2

𝜎𝜂
2]; 𝐸[ 𝜂2(𝑞2 − 𝑞̂)] =  

(1+𝜌𝜂)𝜌𝜂𝜎𝜂
2

2(𝑏2+𝑐2)
; 
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𝐸[𝜃2(𝑞2 − 𝑞̂)] =  
1

𝑐2
[ 

𝑏2(1+𝜌𝜃)𝜌𝜃

2(𝑏2+𝑐2)
− (𝜌𝜃

2 +  1)]𝜎𝜃
2;  𝐸[(𝑞2 − 𝑞̂)2] = [ 

𝜎𝜃
2

𝑐2
2

 ((1+𝜌𝜃)2 (
𝑏2

2(𝑏2+𝑐2)
)

2

+

(𝜌𝜃
2 + 1) − (1 + 𝜌𝜃)𝜌𝜃

𝑏2

𝑏2+𝑐2
) +  (

(1+𝜌𝜂)

2(𝑏2+𝑐2)
)

2

𝜎𝜂
2]   

Using these above expressions and the optimal quantities, we can solve for planner’s maximized 

expected welfare expression and get: 

𝐸𝑊𝐵𝑃
𝐷 =  2(𝑏0 − 𝑐0) +

1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2

(𝑏2 + 𝑐2)
+ [

2 + 𝜌𝜃
2

2(𝑏2 + 𝑐2)
+ (

𝑏2
2

4𝑐2
2(𝑏2 + 𝑐2)

) (−𝜌𝜃
2 + 2𝜌𝜃 − 3)] 𝜎𝜃

2 

=  2(𝑏0 − 𝑐0) +
(1 + 𝜌𝜂)

2
𝜎𝜂

2

4(𝑏2 + 𝑐2)
+ (1 + 2𝜌𝜃 + 𝜌𝜃

2 + 3 − 2𝜌𝜃 + 𝜌𝜃
2)

𝜎𝜃
2

4(𝑏2 + 𝑐2)

+ (
𝑏2

2

4𝑐2
2(𝑏2 + 𝑐2)

) (−𝜌𝜃
2 + 2𝜌𝜃 − 3)𝜎𝜃

2 

=  2(𝑏0 − 𝑐0) +
(1 + 𝜌𝜂)

2
𝜎𝜂

2 + (1 + 𝜌𝜃)2𝜎𝜃
2

4(𝑏2 + 𝑐2)
+ (3 − 2𝜌𝜃 + 𝜌𝜃

2)
𝜎𝜃

2

4(𝑏2 + 𝑐2)

+ (
𝑏2

2

4𝑐2
2(𝑏2 + 𝑐2)

) (−𝜌𝜃
2 + 2𝜌𝜃 − 3)𝜎𝜃

2 

This simplifies to: 

𝐸𝑊𝐵𝑃
𝐷 = 2(𝑏0 − 𝑐0) +

1

4

(1 + 𝜌𝜂)
2

𝜎𝜂
2 + (1 + 𝜌𝜃)2𝜎𝜃

2

𝑏2 + 𝑐2
+

𝜎𝜃
2

4𝑐2
2

(𝑐2 − 𝑏2)(3 + 𝜌𝜃
2 − 2𝜌𝜃) 

Let us now comment on the sign of Δ𝐵𝑃,𝑁𝐵𝑃
𝐷 =  𝐸𝑊𝐵𝑃

𝐷 −   𝐸𝑊𝑁𝐵𝑃
𝐷   (Equation 25) 

Δ𝐵𝑃,𝑁𝐵𝑃
𝐷 =

𝜎𝜃
2

4𝑐2
2

(𝑐2 − 𝑏2)(−1 + 𝜌𝜃
2 − 2𝜌𝜃) +

1

4

𝜎𝜂
2 ((1 + 𝜌𝜂)

2
− 2𝜌𝜂

2) + 𝜎𝜃
2((1 + 𝜌𝜃)2 − 2𝜌𝜃

2)

𝑏2 + 𝑐2

=
𝜎𝜃

2(𝑐2
2 − 𝑏2

2)(−1 + 𝜌𝜃
2 − 2𝜌𝜃) + 𝑐2

2𝜎𝜂
2 ((1 + 𝜌𝜂)

2
− 2𝜌𝜂

2) + 𝑐2
2𝜎𝜃

2((1 + 𝜌𝜃)2 − 2𝜌𝜃
2)

4𝑐2
2(𝑏2 + 𝑐2)

 

=
𝜎𝜃

2(𝑐2
2 − 𝑏2

2)(−1 + 𝜌𝜃
2 − 2𝜌𝜃) + 𝑐2

2𝜎𝜂
2(1 − 𝜌𝜂

2 + 2𝜌𝜂) + 𝑐2
2𝜎𝜃

2(1 − 𝜌𝜃
2 + 2𝜌𝜃)

4𝑐2
2(𝑏2 + 𝑐2)

 



66 

 

=
𝜎𝜃

2(−1 + 𝜌𝜃
2 − 2𝜌𝜃)(𝑐2

2 − 𝑏2
2 − 𝑐2

2) + 𝑐2
2𝜎𝜂

2(1 − 𝜌𝜂
2 + 2𝜌𝜂)

4𝑐2
2(𝑏2 + 𝑐2)

 

=
𝜎𝜃

2(−1 + 𝜌𝜃
2 − 2𝜌𝜃)(−𝑏2

2) + 𝑐2
2𝜎𝜂

2(1 − 𝜌𝜂
2 + 2𝜌𝜂)

4𝑐2
2(𝑏2 + 𝑐2)

 

For our considered parametric values, we can check that −1 + 𝜌𝜃
2 − 2𝜌𝜃 < 0 𝑎𝑛𝑑 1 − 𝜌𝜂

2 +

2𝜌𝜂 > 0. Therefore, this above expression is positive, i.e.,  

Δ𝐵𝑃,𝑁𝐵𝑃
𝐷 =  𝐸𝑊𝐵𝑃

𝐷 −   𝐸𝑊𝑁𝐵𝑃
𝐷 > 0 

So, BP always dominates NBP irrespective of the parametric values.  

 

 

 

 

 

  

 




