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1 Introduction

Financial markets play an important role by aggregating dispersed information about the

fundamentals of the economy. By pooling different sources of information, asset prices act as a public

signal to any external observer, potentially influencing individual decisions. This view, uncontested

within economics and traced back to Hayek (1945), has faced significant challenges when translating its

theoretical findings to more applied settings because measuring the informational content of prices is

not an easy task.1 In particular, one may be interested in understanding whether different markets

aggregate dispersed information to different degrees. However, without direct measures of the

informational content of prices (price informativeness), how can one know which markets are better at

aggregating information?

In this paper, we develop a methodology that allows us to recover exact stock-specific measures

of price informativeness. Formally, we show that the outcomes (parameters and R-squareds) of

linear regressions of prices on fundamentals are sufficient to identify absolute and relative price

informativeness within a large class of linear asset demand models that feature rich heterogeneity

across investors (regarding signals, private trading needs, or preferences) and minimal distributional

assumptions.2

Throughout the paper, we formally define and study two measures of the informational content

of prices: absolute and relative price informativeness. Absolute price informativeness measures the

amount of information contained in the price for an investor who only learns about an asset’s payoff

from the price. We formally define absolute price informativeness as the precision of the unbiased

signal about the innovation to the fundamental revealed by asset prices. Relative price informativeness

measures the informational content of prices relative to the total amount of uncertainty about the

asset’s payoff. Formally, relative price informativeness corresponds to the ratio between absolute

price informativeness and the precision of the innovation to the fundamental, which measures the

underlying source of uncertainty. This measure captures how much can be learned from the price

relative to the total amount that can be learned.

The main contribution of this paper is methodological. For illustration, let us describe how

price informativeness can be recovered. In a stationary environment, consider running the following

regression relating the ex-dividend price at which an asset is traded in period t, pt, to the asset payoff

to be realized at the end of period t, θt+1, and its contemporary payoff, θt,

pt = β0 + β1θt + β2θt+1 + εt. (R0)

1Hayek (1945) highlights the relevance of price informativeness as follows: “The economic problem of society is (...)

rather a problem of how to secure the best use of resources known to any of the members of society, for ends whose relative

importance only these individuals know. Or, to put it briefly, it is a problem of the utilization of knowledge which is not

given to anyone in its totality.”
2Given that linear asset demands can be interpreted as an approximation to more general models, one should expect our

results to be valid more broadly in an approximate sense.
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The equilibrium relation that supports Regression R0 provides the foundation for our procedure

to identify price informativeness. We show that β2
2

Var[εt]
exactly corresponds to absolute price

informativeness, that is, to the precision of the unbiased signal about the innovation to the fundamental

contained in asset prices. We structurally map the error term εt to the noise component of asset prices,

and we show how it can arise from different primitive assumptions (e.g. random heterogeneous priors,

multiple risky assets, unlearnable component of the fundamental, etc.).

We also show that the difference between the R-squared of Regression R0 and the R-squared

of an identical regression that does not include θt+1 can be directly mapped to relative price

informativeness. Formally, we show that a corrected incremental R-squared between both regressions

exactly determines relative price informativeness. Under Gaussian primitives, we also show that

the same difference directly determines the Kalman gain that an external observer attributes to

the innovation to the fundamental when forming a posterior about the future payoff of the asset.

Importantly, our results are not only qualitative, but they provide exact measures of informativeness.

For instance, finding a Kalman gain of K = 0.2 implies that an external observer weighs the information

contained in the price by 20% relative to his prior.

It is worth highlighting that our identification procedure does not make parametric assumptions

regarding the underlying source of noise and does not require that investors form beliefs using

Bayesian updating. We also discuss in detail how our results relate to alternative measures that relate

to price informativeness, like the posterior variance of the fundamental or forecasting price efficiency

measures.

Although we derive our identification results without the need to fully specify the model

primitives, we explicitly develop a fully microfounded dynamic model of trading in Section 4 of

the paper. In the context of this model, we provide a new identification result that allows us to

recover, using aggregate information, the precision of investors’ private signals and the volatility of

the aggregate component of investors trading needs (noise). To our knowledge, this result provides

the first methodology that transparently recovers the precision of investors’ signals precision in REE

models. It also provides a direct methodology to capture the amount of noise trading in REE models.

We systematically extend our methodology to more general environments. In particular, we show

how to adapt our methodology to allow for unit-roots in the process followed by the fundamental.

When allowing for non-stationary payoffs, we show how to implement our results in difference form.

We also extend our results to include multiple risky assets, and payoffs with learnable and unlearnable

components. In all scenarios, our methodology remains valid to answer the question of how much an

external observer can learn from the price. These extensions highlight that the exact interpretation of

the noise term depends on the exact assumptions of the model. Throughout the paper, we discuss at

length the rationale behind our measures of informativeness, and how the exercise of identifying price

informativeness is distinct from exploring predictability relations.

After describing the methodology, we proceed to implement our results empirically, recovering
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actual measures of price informativeness. Exploiting our theoretical framework, we run regressions

of prices on fundamentals at the stock level to recover exact measures of absolute and relative price

informativeness. Crucially, by exploiting time series variation for a given stock, we are able to recover

exact measures of price informativeness that are asset-specific. Our theoretical results allow us to

provide an exact structural interpretation of our estimates and their magnitudes.

To implement our identification results empirically, we use stock market values and quarterly

earnings as a measure of fundamentals. Using data from 1963 to 2017, compute exact measures of

price informativeness for each individual stock in our sample using our identification results. Our

empirical implementation generates distributions of absolute price informativeness, relative price

informativeness, and Kalman gains across stocks. We find a right skewed distribution of Kalman gains,

with a mean and median Kalman gain of 0.05 and 0.02. These numbers imply that, for half of the stocks

in the sample, the information contained in the price would weight less than 2% in the posterior of a

Bayesian investor. The magnitudes of these estimates suggest that prices contain substantially more

noise than information.

The distribution of stock-specific estimates exhibits substantial cross-sectional dispersion. This

heterogeneity in price informativeness at the stock level is ubiquitous across stock characteristics such

as the exchange in which they are traded, their market capitalization, the volume traded and their

corresponding industry. We find that price informativeness is higher for stocks traded in the NYSE,

with higher market capitalization, and traded more frequently.

Related Literature Our theoretical framework builds on the literature that studies the role played

by financial markets in aggregating dispersed information, following Grossman and Stiglitz (1980),

Hellwig (1980), and Diamond and Verrecchia (1981), De Long et al. (1990), among others. Vives (2008)

and Veldkamp (2009) provide thorough reviews of this well-developed and growing body of work.

While the role of financial markets aggregating information has been the subject of a substantial

theoretical literature, the development of empirical measures of price informativeness is more recent.

The work of Bai, Philippon and Savov (2015) is perhaps the closest. Leaving aside that we consider

a substantially richer framework than theirs, there are three significant differences between their

approach and ours. First, we focus on the ability of financial markets to aggregate information

while their focus is on the allocation of capital. As we show in the paper, the measure they use

to make inferences about price informativeness (forecasting price efficiency, VFPE) does not allow to

separately identify the role of financial markets aggregating dispersed information from the volatility

of the fundamental. While their measure VFPE is relevant to infer whether the allocation of capital

in financial markets has improved or worsened, our results show that it is not the right measure to

understand whether financial markets have become better at aggregating information. Forecasting

price efficiency, VFPE, can be high due to a low volatility of the fundamental or due to a high level

of price informativeness. Second, since their focus is on the forecasting power of prices (about future

fundamentals), they focus on a regressions of fundamentals on asset prices. Instead, we focus on
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the relation between an endogenous variable (price) and exogenous variables (fundamentals), which

avoids potential biases in the estimation. Finally, they estimate VFPE by running cross-sectional

regressions, which implicitly assumes that the fundamental and noise are distributed identically across

all of the stocks in their sample. Instead, we exploit time series variation to recover asset specific

measures of informativeness.

Following the approach in Bai, Philippon and Savov (2015), Farboodi, Matray and Veldkamp (2017)

also use forecasting price efficiency to infer changes in price informativeness. They find that while

average price informativeness increased in the S&P500, it decreased for the whole sample. They argue

that this can be due to a composition effect in the S&P500 as price informativeness increased for large

firms and decreased for small ones. Using this same framework, Kacperczyk, Sundaresan and Wang

(2018) find that forecasting price efficiency increases with ownership by foreign investors.

There exists earlier work that proposes ad-hoc variables to study the informational content of

prices. Influenced by the predictions of the CAPM/APT frameworks and following Roll (1988), Morck,

Yeung and Yu (2000) study regressions of returns on a single or multiple factors and informally argue

that the R2 of such regressions can be used to capture whether asset prices are informative/predictive

about firm-specific fundamentals. This measure, sometimes referred to as price nonsynchronicity, has

been used in several empirical studies that link price informativeness to capital allocation. Wurgler

(2000) finds that countries with higher price nonsynchronicity display a better allocation of capital.

Durnev, Morck and Yeung (2004) document a positive correlation between price nonsynchronicity

and corporate investment. Chen, Goldstein and Jiang (2006) show a positive relation between the

sensitivity of corporate investment to price and two measures of the information contained in prices,

price nonsynchronicity and the probability of informed trading (PIN), and conclude that managers

learn from the price when making corporate investment decisions.3

More recently, Weller (2018) uses a price jump ratio to measure how much information enters prices

relatively to how much is potentially acquirable at the stock level. Using this measure, he finds that

algorithmic trading decreases the amount of information that is incorporated in prices.

While these results uncover interesting empirical relations, the measures used by this body of work

do not have a structural interpretation. Hou, Peng and Xiong (2013) forcefully highlight the importance

of this structural link in the context of the return R2. They question the link between return R2 and

price informativeness theoretically, in rational and behavioral settings, and empirically. Moreover,

even if the existing measures may correlate with price informativeness, it is impossible to translate

the magnitude of the changes in these variables into changes in the informational content of prices

without a structural interpretation. By showing how to recover exact measures of stock specific price

informativeness, we can reach quantitative conclusions about price informativeness.

As in any structural model, the measure of informativeness that we recover is linked to our

3The PIN, developed in Easley, O’Hara and Paperman (1998), seeks to measures the probability of an informed trade in a

model with noise and informed traders.
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assumptions on the behavior of investors and the market structure. While our framework is

general along several dimensions, there is scope to think about how to identify price informativeness

in alternative models of trading that depart from our linearity assumption. In particular, our

analysis purposefully abstracts from feedback between prices and fundamentals, summarized in Bond,

Edmans and Goldstein (2012), and tested in and Chen, Goldstein and Jiang (2006), which introduces

fundamental non-linearities that can only be considered using full-information methods.

Outline Section 2 describes the assumptions of our baseline model, formally introduces the

definitions of absolute and relative price informativeness, and presents our main results regarding how

to recover price informativeness from linear regressions. Section 3 introduces a fully microfounded

model that maps to the assumptions on endogenous objects made in Section 2 and that allows us to

fully recover model primitives. Section 4 extends our methodology to more general environments,

including non-stationary payoffs, multiple risky assets, and payoffs with learnable and unlearnable

components. Section 5 empirically implements the methodology introduced in the paper, while Section

6 concludes. All proofs and derivations are in the Appendix.

2 Identifying Price Informativeness

In this section, we introduce the main identification results in the context of a dynamic model with

a single risky asset whose payoff process is stationary. We extend the results to more general

environments in Section 4.

2.1 Model

Time is discrete, with periods denoted by t = 0, 1, 2, . . . , ∞. There is a continuum of investors, indexed

by i ∈ I, who trade a risky asset in fixed supply each period at a price pt. The payoff of the risky asset

in period t + 1, θt+1, is given by the following stationary AR(1) process

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| < 1, and where the innovations to the payoff, ηt, have mean zero, finite

variance, and are independently distributed. Investors trade in period t with imperfect information

about the innovation to the payoff, ηt, which is realized at the end of the period. When trading in

period t, the contemporaneous payoff θt has already been realized and is common knowledge to all

investors. We often refer to the asset payoff θt+1 as the fundamental.

Each period t, an investor i observes a private signal si
t of the innovation to the payoff ηt.4 Investors

have an additional motive for trading the risky asset that is orthogonal to the asset payoff. We denote

4Assuming that investors observe private signals about the payoff, θt+1, or its innovation, ηt, is formally equivalent, since

θt is known to investors when trading in period t.
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by ni
t investor i’s additional trading motive in period t. These additional trading motives are private

information of each investor and are potentially random in the aggregate.

We derive the main results of the paper under two assumptions. The first assumption imposes an

additive informational structure and guarantees the existence of second moments, while the second

assumption imposes a linear structure for investors’ equilibrium asset demands. In general, linear

demands can be interpreted as a first-order approximation to other forms of asset demands, so one

may expect our results to approximately hold in a larger class of models. Both assumptions facilitate

the aggregation of individual demands in order to yield a linear equilibrium pricing function.

Assumption 1. (Additive noise) Each period t, every investor i receives an unbiased private signal si
t about

the innovation to the payoff, ηt, of the form

si
t = ηt + εi

st, (1)

where εi
st, ∀i ∈ I, ∀t , are random variables with mean zero and finite variances, whose realizations are

independent across investors and over time. Each period t, every investor i has a private trading need ni
t, of

the form

ni
t = nt + εi

nt, (2)

where nt is a random variable with finite mean, denoted by µn, and finite variance, and where εi
nt, ∀i ∈ I, ∀t

, are random variables with mean zero and finite variances, whose realizations are independent across investors

and over time.

Assumption 1 imposes restrictions on the noise structure in the signals about the innovation to the

fundamental ηt and on all other sources of investors’ private trading needs by making them additive

and independent across investors. This assumption does not restrict the distribution of any random

variable beyond the existence of finite first and second moments. Our second assumption describes

the structure of the investors’ net demands for the risky asset ∆qi
t.

Assumption 2. (Linear asset demands) Investors’ net asset demands satisfy

∆qi
t = αi

ss
i
t + αi

θθt + αi
nni

t − αi
p pt + ψi,

where αi
s, αi

θ , αi
n, αi

p, and ψi are individual demand coefficients, determined in equilibrium.

Assumption 2 imposes a linear structure on the individual investors’ net asset demand for the

risky asset. More specifically, that an individual investor’s net demand is linear in his signal about the

fundamental and his private trading needs, as well as in the asset price pt and the current realization

of the fundamental θt. It also allows for an individual specific invariant component ψi. In Section 3, we

provide a fully specified model that is consistent with Assumptions 1 and 2 and briefly describe other

models that are consistent with both assumptions.
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Given our assumptions, market clearing for the risky asset implies that
´

∆qi
tdi = 0, ∀t. Market

clearing, exploiting a Law of Large Numbers, yields an equilibrium pricing equation of the form

pt =
αs

αp
ηt +

αθ

αp
θt +

αn

αp
nt +

ψ

αp
, (3)

where we denote the cross sectional averages of individual demand coefficients by αs =
´

I αi
sdi,

αp =
´

I αi
pdi, αθ =

´
I αi

θdi, αn =
´

I αi
ndi, and ψ =

´
I ψidi. The linearity of net demands implies that

the equilibrium asset price is also linear in the future realization of the fundamental θt+1, the current

fundamental θt, and the common component of investors’ private trading needs nt. An interpretation

of Equation (3) as a linear regression provides the foundation for our procedure to identify price

informativeness.

Although the equilibrium price pt is the main endogenous observable variable generated by the

model, the relevant variable from the perspective of information aggregation is p̂t, defined by

p̂t ≡
αp

αs
pt −

αθ

αs
θt −

αn

αs
µn −

ψ

αs
, (4)

which corresponds to the unbiased signal of the innovation ηt contained in the price pt. Note that p̂t

corresponds to p̂t = ηt +
αn
αs
(nt − µn) , implying that E [ p̂t|θt+1, θt] = ηt. Because the contemporary

realization of the fundamental θt is observed at date t, information about the innovation ηt translates

one-for-one to information about the asset payoff. Using the definition of p̂t, we can formally define

the two measures of price informativeness that we show how to recover in this paper as follows.5

Definition 1. (Absolute price informativeness) We define absolute price informativeness as the precision

of the unbiased signal about the innovation to the fundamental payoff θt+1 contained in the asset price pt. We

denote absolute price informativeness by τp̂, which formally corresponds to

τp̂ ≡ (Var [ p̂t|θt+1, θt])
−1 =

(
αs

αn

)2

τn, (5)

where τn ≡ Var [nt]
−1.

Absolute price informativeness increases when investors trade more aggressively on their private

signals (high αs), when they trade less aggressively on their private trading motives (low αn), and

when the aggregate component of trading motives is less volatile (has a high precision τn). Absolute

price informativeness reveals, for given realizations of the future and current fundamentals θt+1 and

θt, the possible dispersion of observed equilibrium prices. In a statistical sense, it indicates whether the

signal contained in the price is close to the fundamental. Consequently, absolute price informativeness

5The measures of price informativeness that we study in this paper are the relevant measures for an external observer

who learns about the fundamental from the price. See Davila and Parlatore (2018) for a discussion on how to link external

price informativeness to internal price informativeness, which may be the relevant object of interest for investors within the

model in some environments. That paper systematically studies the subtle relation between the volatility of the equilibrium

price pt and the precision of the unbiased signal about the fundamental innovation p̂t.
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captures how much information about the fundamental can be gained by an uninformed external

observer by exclusively observing the price. When absolute price informativeness is high, an external

observer receives a very precise signal about the fundamental by observing the asset price pt. On the

contrary, when price informativeness is low, an external observer learns little about the fundamental

by observing the asset price pt.

Definition 2. (Relative price informativeness) We define relative price informativeness as the ratio between

absolute price informativeness and the precision of the innovation to the fundamental. We denote relative price

informativeness by τR
p̂ , which formally corresponds to

τR
p̂ ≡

τp̂

τη
, (6)

where τη ≡ Var [ηt]
−1.

Relative price informativeness simply corrects absolute price informativeness for the precision of

the innovation to the fundamental. This measure expresses how much can be learned by observing the

price relative to the volatility of the fundamental. As we will show below, there is a tight connection

between relative price informativeness and the Kalman gain of an external observer in Gaussian

models with Bayesian updating.

We would like to conclude the description of the model environment with the following remarks.

Remark 1. Precision of price as signal of fundamentals versus posterior variance. The variance of the signal

about the innovation to the fundamental has the advantage that it can be derived without the need to

make assumptions about how an external observer updates its information about the fundamental. In

our setup, it is possible to calculate Var [ p̂t|θt+1, θt] without making distributional assumptions beyond

the existence of second moments. However, to calculate the posterior variance Var [θt+1| p̂t, θt], it is

necessary to make assumptions regarding the distribution of priors and signals. For this reason, τp̂ as

defined in Eq. (5) is a more appealing measure of informativeness, since it can be derived (and, as we

show in this paper, recovered from observables) without specifying the nature of updating/filtering

used by investors. We further discuss the adequacy of the measures just defined and other measures

of informativeness after introducing our main results in Section 3.

Remark 2. Cross-sectional Heterogeneity. Our framework allows for a rich cross-sectional heterogeneity

among investors. In particular, it accommodates heterogeneity in investors’ risk aversion, in the

precision of their information, and in the distribution of their idiosyncratic trading motives. For

instance, our assumptions can accommodate models with informed and uninformed traders, which

can be mapped to environments in which one set of agents does not observe any private signal, and

those with classic noise traders, which can be mapped to environments in which one set of agents

trades fixed amounts regardless of the price or other features of the environment.

Remark 3. Distributional Assumptions. It’s worth highlighting that Assumption 1 does not require

normality of signals or fundamentals, so our main results in Propositions 1 and 2 do not rely
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on distributional assumptions beyond the existence of well-defined first and second moments.

However, at times, we discuss how our results can be more easily interpreted if we assume that

signals and fundamentals have a Gaussian structure – we explicitly state in the text for which

results/interpretations normality is needed.

Remark 4. Multiple Assets/General Shock Structure. For clarity, we introduce our results in the context

of a single asset model. We show in Section 4.2 how to reinterpret our results when investors can

trade many risky assets with payoff processes that are potentially correlated across assets and with the

aggregate trading needs. The more general framework studied in Section 4.2 shows how to reinterpret

our results when there are multiple risky assets. In Section 4.1, we extend the methodology to non-

stationary processes. We also show in Sections 4.3 how to interpret our results when the payoff features

a learnable and an unlearnable component.

2.2 Identification Results

Exploiting Assumptions 1 and 2, as well as market clearing, we now proceed to derive Propositions 1

and 2, which provide the main identification results of the paper. We can rewrite the equilibrium price

introduced in Equation (3) in terms of the future and contemporary asset payoffs as follows:

pt =

(
αθ

αp
− αs

αp
ρ

)
θt +

αs

αp
θt+1 +

αn

αp
nt +

ψ

αp
. (7)

This reformulation of the equilibrium pricing equation allows us to identify price informativeness

from measures of prices and fundamentals. We sequentially show how to use the outcomes

(coefficients and R-squareds) of a regression of prices on fundamentals to exactly recover measures

of absolute and relative price informativeness.

Proposition 1. (Identifying absolute price informativeness) Assume that the additive noise assumption

and the linear asset demands assumption are satisfied. Let β0, β1, and β2 denote the coefficients of the following

regression of prices on fundamentals,

pt = β0 + β1θt + β2θt+1 + εt, (R1)

where pt denotes the ex-dividend price at the beginning of period t, θt+1 denotes the measure of fundamentals

realized over period t, and where we denote the variance of the error by σ2
ε = Var [εt] . Then, absolute price

informativeness, τp̂, can be recovered by

τp̂ =
β2

2
σ2

ε

. (8)

The proof of Proposition 1 relies on finding the right combination of parameters in our econometric

specification defined in Regression R1, that maps into the definition of absolute price informativeness,

τp̂. By comparing Equation (7) with Regression R1, it is easy to verify that

β2
2

σ2
ε

=

(
αs
αp

)2

(
αn
αp

)2
τ−1

n

=

(
αs

αn

)2

τn = τp̂,
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which proves our statement. Intuitively, a strong co-movement between the price pt and the

fundamental θt+1 (high β2) and a high explanatory power of the regression (low σ2
ε ) indicates that

prices are more informative. Since the error in Regression R1 is orthogonal to the regressors, OLS

provides consistent estimates of β2 and σ2
ε , and consequently of τp̂.6

It may seem that Proposition 1 allows us to recover relative price informativeness by computing

and dividing by the precision of the innovation to the fundamental τη . However, this procedure would

require to directly estimate the process for θt+1, which would require parametric assumptions on the

process. Instead, in Proposition 2, we show how to directly recover relative price informativeness,

exclusively as a function R-squareds of regressions of prices on fundamentals.

Proposition 2. (Identifying relative price informativeness) Assume that the additive noise and the linear

asset demands assumptions are satisfied. Let R2
|θt+1,θt

≡ 1− Var[εt]
Var[pt]

be the R-squared of Regression R1. Let R2
|θt

,

ζ0, and ζ1 respectively denote the R-squared and the coefficients of the following regression of prices on lagged

fundamentals

pt = ζ0 + ζ1θt + ε
ζ
t . (R2)

Then, relative price informativeness τR
p̂ can be recovered by

τR
p̂ =

τp̂

τη
=

R2
|θt+1,θt

− R2
|θt

1− R2
|θt+1,θt

.

Note that the recovered value of relative price informativeness τR
p̂ has to be non-negative, since

R2
|θt+1,θt

≥ R2
|θt

and R2
|θt+1,θt

∈ [0, 1]. Intuitively, τR
p̂ is increasing on R2

|θt+1,θt
for two reasons: a higher

R2
|θt+1,θt

reflects a lower residual uncertainty after observing the price and accounting for the lagged

fundamental (
(

1− R2
|θt+1,θt

)
is lower) and a larger reduction in uncertainty after observing the price

relative to only accounting for the lagged fundamental (
(

R2
|θt+1,θt

− R2
|θt

)
is higher). By directly relying

on Proposition 2 there is no need to directly estimate τη or the AR coefficient ρ.

It may be helpful to relate relative price informativeness to the Kalman gain used by an outside

observer. In particular, if we further assume that all primitive random variables are Gaussian, a non-

linear transformation of relative price informativeness maps to the Kalman gain of an external Bayesian

observer, as expressed in the following corollary to Proposition 2.7

6Formally, when β̃2 and σ̃2
ε denote consistent estimates of β2 and σ2

ε in Regression R1, τp̂ can be consistently estimated as

τ̃p̂ =
β̃2

2
σ̃2

ε
, since

plim
(
τ̃p̂
)
= plim

(
β̃2

2
σ̃2

ε

)
=

β2
2

σ2
ε
=

(
αs
αp

)2

(
αn
αp

)2
τ−1

n

=

(
αs

αn

)2
τn = τp̂.

Throughout the paper we distinguish between economic identification, understood as the ability to recover model

parameters or other endogenous objects of interest from observable variables, and consistent estimation. The focus of

this paper is on identification, although at times with discuss the consistency properties of standard estimators when

implementing the results of our model.
7The Kalman gain corresponds to the relative weight given to the price as a signal about the fundamental. Formally, the
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Figure 1: Kalman gain interpretation

Corollary. (Kalman gain) Under a Gaussian information structure, the Kalman gain for an external Bayesian

observer, denoted by K, can be recovered as follows

K ≡ τp̂

τp̂ + τη
=

τR
p̂

1 + τR
p̂
=

R2
|θt+1,θt

− R2
|θt

1− R2
|θt

.

Note that Kalman gains must take values between 0 and 1. This feature makes them appealing from

the perspective of interpreting the results. When R2
|θt+1,θt

→ 1, the posterior of an external observer fully

disregards the prior information, putting all the weight on the price as a signal of the innovation. On

the contrary, when R2
|θt+1,θt

→ R2
|θt

, an external observer does not update his prior at all after observing

the price. In the special case in which the payoff process is i.i.d., so the lagged fundamental is irrelevant

to predict future fundamentals, R2
|θt
→ 0, and the R-squared of a regression of prices on fundamentals

exactly maps to the Kalman gain of an external observer.

Figure 1 illustrates how to graphically interpret the recovered Kalman gain. Intuitively, the

denominator 1− R2
|θt

can be interpreted as the share of uncertainty to be learned after accounting for

the contemporary fundamental. The numerator can be interpreted as the share of information learned

by conditioning on the price relative to the contemporary fundamental. The Kalman gain corresponds

to the fraction of an external observer’s precision about the fundamental that is conveyed by observing

the price. For instance, a Kalman gain of 0.4 implies that 40% of investors’ ex-post precision about the

innovation to the fundamental comes from conditioning on the price.

Together, Propositions 1 and 2 show that the outcomes of regressions of prices on fundamentals

are sufficient to directly recover exact measure of absolute and relative price informativeness in

environments with rich heterogeneity across investors (regarding signals, private trading needs, or

preferences) and minimal distributional assumptions.

In the remainder of this section, we would like to make two remarks concerning our main results.

Remark 5. (Alternative measures of informativeness) Although we have advocated for the precision of

the unbiased signal about the fundamental as an appropriate measure to assess the role of prices

aggregating information, one can consider other measures. Two alternative measures are i) the posterior

posterior distribution of an external observer who makes use of the price as a signal about the innovation to the fundamental

is given by

ηt|pt ∼ N
(

K · p̂t,
(
τp̂ + τη

)−1
)

, where K =
τp̂

τp̂ + τη
,

and p̂t corresponds to Equation (4).
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variance of the fundamental given the price, that is, VP ≡ Var [θt+1|θt, pt], and ii) forecasting price

efficiency (FPE), which is given by VFPE ≡ Var [E [θt+1|θt, pt]].8 Under Gaussian uncertainty and

Bayesian updating, both measures can be expressed as

VP =
(
τη + τp̂

)−1
=

1
1 + τR

p̂

1
τη

and VFPE =
τR

p̂

1 + τR
p̂

1
τη

. (9)

From Equation (9), it is evident that both measures face the same challenge: They confound the

effect of uncertainty about the fundamental with price informativeness. For instance, VFPE, which is

the measure of informativeness used by Bai, Philippon and Savov (2015) and subsequent work, can be

be high because the fundamental is easy to predict (high τη) or because the price is a very precise signal

of the fundamental (high τR
p̂ ). The same ambiguous inference applies to VP, suggesting that neither of

these measures is adequate to recover price informativeness.

Remark 6. (Predictability versus informativeness/Reverse regression) It’s worth highlighting that our goal

is not to predict future fundamentals from current prices. Instead, our goal is to understand how

good are financial markets at aggregating information. For this reason, it is natural to consider

regressions of prices (endogenous variable) on future fundamentals (exogenous), even though this

entails considering the regression of a variable observable in period t on a explanatory variable realized

in the future. Even if one is not interested in predictability, one may wonder why not run regressions

of fundamentals on prices, since this type of regression can be use for predictive purposes. This would

imply reinterpreting Regression R1 as follows

θt+1 = γ0 + γ1θt + γ2 pt + νt, (R3)

where γ0 = − ψ
αs

, γ1 = αθ
αs
− ρ, γ2 =

αp
αs

, and νt = − αn
αs

nt. The main pitfall of this regression is

that OLS estimates of the coefficients and the residual variance will be biased, since Cov (pt, νt) =
αn
αs

αn
αp

Var (nt) 6= 0.9 For this reason, given the question addressed in this paper and the exclusion

restrictions imposed by our model, it is more natural to consider regressions similar to R1.

Remark 7. (Irrelevance of Bayesian updating) Finally, it’s worth noting that the measures of absolute and

relative price informativeness do not require that investors update their beliefs by Bayesian updating.

8Note that the posterior variance of the fundamental and forecasting price efficiency are two sides of the same coin. While

the former measures the residual uncertainty about the fundamental after observing the price, the latter measures how much

uncertainty about the fundamental is dissipated by observing the realization of the price. Both measures are linked through

the Law of Total Variance, as follows

Var [θt+1|θt] = Var [E [θt+1|θt, pt]]︸ ︷︷ ︸
VFPE

+E

Var [θt+1|θt, pt]︸ ︷︷ ︸
VP

 .

In Bai, Philippon and Savov (2015) ρ = 0 and, hence, forecasting price efficiency is defined as VFPE ≡ Var [E [θt+1|pt]].

9When ρ = 0, the bias of the OLS estimate of γ1 can be easily calculated: γ̃1 = κ
αp
αs

, where κ =

(
αs
αp

)2
Var(θt)(

αs
αp

)2
Var(θt)+

(
αn
αp

)2
Var(nt)

.

13



This is an important consideration, since it allows for rich patterns of belief formation. See Barberis

(2018) and Gennaioli and Shleifer (2018) for recent accounts of the importance of non-fully rational

expectation formation. That said, any results presented in the form of Kalman gains rely on the

assumption that the external observer faces Gaussian uncertainty and uses Bayesian updating.

3 Fully Specified Environment

In our analysis so far, we have remained agnostic about the source of the noise that is impounded in

the price and the way in which investors learn from the price. In this section, we study a particular

dynamic learning model with overlapping generations that endogenously satisfies Assumptions 1 and

2. Our goal in describing this particular model is two-fold. First, it provides a tractable framework that

maps to the main assumptions on equilibrium objects made in Section 2. Second, it allows us to provide

a new identification result. Given the new set of assumptions, we are able to exactly recover, using

aggregate information, the precision of investors’ private signals and the volatility of the aggregate

component of investors trading needs (noise).

3.1 Environment

Time is discrete, with periods denoted by t = 0, 1, 2, . . . , ∞. Each period t, there is a continuum of

investors, indexed by i ∈ I. Each generation lives two periods and has exponential utility over their

last period wealth. An investor born at time t has preferences given by

U (wt+1) = −e−γwt+1 ,

where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.

There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return

R > 1, and a risky asset in fixed supply Q. The payoff of the risky asset each period t is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| < 1, and θ0 = 0. The dividend θt is realized and becomes common knowledge

at the end of period t− 1. The innovation in the dividend, ηt, and, hence, θt+1 are realized and observed

at the end on period t. The innovations in the dividend are independently distributed over time.

We assume that investors’ private trading needs arise from random heterogeneous priors. This

is a particularly tractable formulation that sidesteps many of the issues associated with classic noise

trading and that prevents full revelation of information – see Davila and Parlatore (2017) for a thorough

analysis of this formulation. Formally, each investor i in generation t has a prior over the innovation at

time t given by

ηt ∼i N
(

ηi
t, τ−1

η

)
,
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where

ηi
t = nt + εi

ηt with εi
ηt

iid∼ N
(

0, τ−1
η

)
and nt ∼ N

(
µn, τ−1

n
)

can be interpreted as the aggregate sentiment in the economy, where nt ⊥ εi
ηt for

all t and all i. The aggregate sentiment nt is not observed and acts as a source of aggregate noise in the

economy, preventing the price from being fully revealing.

Each investor i in generation t receives a signal about the innovation in the asset payoff ηt given by

si
t = ηt + εi

st with εi
st ∼ N

(
0, τ−1

s

)
and ε it ⊥ ε jt for all i ⊥ j, and ηt ⊥ ε it for all t and all i.

We focus on stationary equilibria in which demand functions are linear in the price and information

set of the investors.

Definition. (Equilibrium) A stationary rational expectations equilibrium in linear strategies is a set

of linear demand functions qi
t for each investor i in generation t and a price function pt such that: a)

qi
t maximizes investor i’s expected utility given his information set for every possible price and b) the

price function pt is such that the market for the risky asset clears each period t, that is,
´

qi
tdi = 0.

There always exists a unique stationary rational expectations equilibrium in linear strategies. In the

Appendix, we characterize the equilibrium demand coefficients which are the basis to our procedure

to identify the parameters of the model.

3.2 Equilibrium Characterization and Identification Result

As we show in the Appendix, the asset demand submitted by investor i born in period t is given by

the solution to the following problem

max
qi

t

(
E
[
θt+1 + R−1 pt+1|I i

t

]
− pt

)
qi

t −
γ

2
Var

[
θt+1 + R−1 pt+1|I t

t

] (
qi

t

)2
,

where I i
t =

{
θt, si

t, ηi
t, pt

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

qi
t =

E
[
θt+1 + R−1 pt+1|I i

t
]
− pt

γVar
[
θt+1 + R−1 pt+1|I i

t
] .

In a stationary equilibrium in linear strategies, the equilibrium demand of investor i can be expressed

as

∆qi
t = αi

θθt + αi
ssit + αi

ηηi
t − αi

p pt + ψi, (10)

where αi
θ , αi

n, αi
p, and ψi are individual equilibrium demand coefficients, whose expressions are derived

in the Appendix. Market clearing and the Strong Law of Large Numbers allows us to express the

equilibrium price in period t as

pt =
αθ

αp
θt +

αs

αp
ηt +

αη

αp
nt +

ψ

αp
,

15



and the unbiased signal of the innovation to the fundamental contained in the price can be defined as

p̂t =
αp
αs

(
pt − αη

αp
µn − αθ

αp
θt − ψ

αp

)
, so

p̂t = ηt +
αη

αs
(nt − µn) ,

as in Section 2. Note that p̂t|θt+1, θt ∼ N
(

ηt, τ−1
p̂

)
, with absolute price informativeness given by

τp̂ = (Var [ p̂|θt+1, θt])
−1 =

(
αs

αη

)2

τn.

Lemma 1. (Assumptions 1 and 2 satisfied) The set of assumptions considered in Section 2 are such that

Assumptions 1 and 2 are endogenously satisfied. Therefore, the model described in this section is a special case of

the more general framework studied in Section 2.

We are ready to introduce the new identification result that allows to recover several primitives of

the model in this environment in the following Proposition.

Proposition 3. (Identifying signal precision and trading needs precision) Consider the environment described

in Section 3 and assume that τi
s = τs and τi

n = τn, ∀i. Let β0, β1, and β2 denote the coefficients of Regression

R1, and let ζ0 and ζ1 denote the coefficients of Regression R2. The precision of investors’ private signals τs, and

the precision of the aggregate component of investors trading needs (noise), τn, can be recovered as follows:

τs = τp̂

(
β2

1 + R−1ζ1 − β2

1
τR

p̂
− 1

)
(Signal Precision)

τn = τp̂

(
β2

1 + R−1ζ1 − β2
− τR

p̂

)−2

, (Noise)

where τp̂ and τR
p̂ are respectively recovered as in Propositions 1 and 2 and R corresponds to the risk-free rate.

Intuitively, in this model, β2 = αs
αp

can be interpreted as the share of total ex-post information

(measured in precisions) that is acquired by an investor either privately by observing a private signal,

or publicly, by conditioning on the price. When β2 is high, it means that investors priors are relatively

unimportant, and that investors mostly trade on private information or acquired public information,

which suggests that τs is likely to be high and that τn is likely to be low. When τp̂ and τR
p̂ are high too,

this implies that it is likely that investors learn more from the price in relative terms, which suggest

that τs is likely to be low and that τn is likely to be high. A high ζ1 is associated with finding a low τs

and a high τn, given the other estimates, since it increases the amount of common public information.

To our knowledge, we provide the first approach that enables to directly recover measures of noise

trading in Rational Expectations models. However, it’s worth highlighting that the identification result

in Proposition 3 holds for a much more restrictive set of assumptions than the results in Propositions 1

and 2. In this section, we are taking a particular stance regarding the form of noise trading and we are

restricting the information structure to be homogeneous across investors.
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4 Extensions

For expositional purposes, we have developed our approach in the context of the single asset model

with a stationary payoff process. However, it’s worth understanding how to extend our methodology

to more general environments. In this section, we extend our results to the case with non-stationary

payoffs, multiple risky assets, and payoffs with learnable and unlearnable components.

4.1 Non-stationary Payoff

It is well known, see e.g., Campbell (2017) for a recent discussion of the literature, that assuming that

measures of asset payoffs (dividends, earnings, etc) are non-stationary is often perceived as a better

assumption. We show how to adapt our results to an environment in which the asset payoff follows a

non-stationary process. Formally, we assume that the asset payoff follows a random walk with drift

∆θt+1 = µθ + ηt,

which corresponds to our baseline specification setting ρ = 1.10 In this case, Equation (3) remains valid,

but the fact that the asset payoff and prices are non-stationary complicates the estimation.11 However,

taking first differences of the equilibrium pricing equation, we get to the following expression in

differences

∆pt =

(
αθ

αp
− αs

αp

)
∆θt +

αs

αp
∆θt+1 +

αn

αp
∆nt, (11)

in which all variables are stationary. In this case, we can recover absolute price informativeness as

follows.

Proposition 4. (Identifying absolute price informativeness, non-stationary payoff) Assume that the

additive noise and the linear asset demands assumptions are satisfied. Let β0, β1, and β2 denote the coefficients

of the following regression of prices on fundamentals,

∆pt = β0 + β1∆θt + β2∆θt+1 + εt, (R4)

where pt denotes the ex-dividend price at the beginning of period t, θt+1 denotes the measure of fundamentals

realized over period t, and where we denote the variance of the error by σ2
ε = Var [εt] . Then, absolute price

informativeness, τp̂, can be recovered as follows

τp̂ = 2
β2

2
Var [εt]

. (12)

Intuitively, since we can express Var [εt] in the following way,

Var [εt] =

(
αn

αp

)2

Var [∆nt] =

(
αn

αp

)2

2Var [nt] ,

10Our methodology can be extended to allow for more general unit root processes.
11If the process for the payoff is non-stationary, estimating Regression R1 using OLS is a spurious regression, using the

terminology of Granger and Newbold (1974).
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we can combine Var [εt] and β2 to recover τp̂. As in the case in which payoffs are stationary, we can also

recover relative price informativeness without estimating the process for the fundamental by running

our regressions in differences, as follows.

Proposition 5. (Identifying relative price informativeness, non-stationary payoff) Let R2
|∆θt+1,∆θt

≡
1− Var[εt]

Var[∆pt]
be the R-squared of Regression R4. Let R2

|∆θt
, ζ0 and ζ1 respectively denote the R-squared and the

coefficients of the following regression R5 of prices on lagged fundamentals

∆pt = ζ0 + ζ1∆θt + ε
ζ
t . (R5)

Then, relative price informativeness, τR
p̂ , can be recovered as follows

τR
p̂ =

τp̂

τη
= 2

R2
|∆θt+1,∆θt

− R2
|∆θt

1− R2
|∆θt+1,∆θt

. (13)

Remarkably, the formulas that recover absolute and relative price informativeness when the payoff

process corresponds to a random walk are identical to those in the stationary model with two

modifications. First, the relevant underlying regressions ought to be run in differences, not in levels

to obtain unbiased estimates of the coefficients. Second, the formulas for absolute and relative price

informativeness are multiplied by a factor for two. This factor accounts for the fact that the error term

in the representation in differences is twice as noisy as the one in the equation in levels, since it is given

by the difference of the realizations of nt and nt−1, which are independent and identically distributed.

4.2 Multiple Risky Assets

We now consider a multi-asset extension to our baseline model and show that an appropriate

reinterpretation of aggregate noise allows us to use the single market framework for measurement

purposes. The goal of studying this more general framework is two-fold. First, it allows us to

reinterpret the results of the single-asset model when many assets are available. Second, it suggests

how to use our approach more generally to answer different questions about price informativeness.

We assume that there are N risky assets indexed by j ∈ {1, 2, . . . , N}, with payoffs distributed

according to

θt+1 = µθ + Cθt + ηt, (14)

where µθ , θt and ηt are N× 1 vectors and C is an N× N matrix such that the process θt+1 is stationary.

The counterparts of assumptions 1 and 2 for the baseline environment are as follows.

Assumption 3. (Additive noise) Each period t, every investor i receives a vector of unbiased private signals

si
t about the vector of innovations to the payoffs, ηt, of the form

si
t = ηt + εi

st, (15)
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where εi
st, ∀i ∈ I, ∀t , are vectors of random variables with mean zero and finite second moments, whose

realizations are independent across investors and over time. Each period t, every investor i has a vector of private

trading needs ni
t, of the form

ni
t = nt + εi

nt, (16)

where nt is a vector of random variables with mean µn and finite second moments, and where εi
nt, ∀i ∈ I, ∀t ,

are vectors of random variables with mean zero and finite second moments, whose realizations are independent

across investors and over time.

Assumption 4. (Linear asset demands) Investors’ net asset demands satisfy

∆qi
t = Ai

θθt + Ai
ss

i
t + Ai

nni
t − Ai

p pt + Ai
0, (17)

where Ai
s, Ai

n, Ai
p, and Ai

0 are N × N matrices of individual demand coefficients, determined in equilibrium.

Given both Assumptions, market clearing for the risky asset implies that
´

∆qi
tdi = 0, ∀t, which,

exploiting a Law of Large Numbers, yields a pricing equation of the form

pt =
(

Ap
)−1 Asηt +

(
Ap
)−1 Aθθt +

(
Ap
)−1 Annt +

(
Ap
)−1 A0, (18)

where we denote the cross sectional averages of individual demand coefficients by As =
´

I Ai
sdi,

Ap =
´

I Ai
pdi, Aθ =

´
I Ai

θdi, An =
´

I Ai
ndi, and A0 =

´
Ai

0di.

In a multi-asset environment, there are several notions of price informativeness. The vector of

prices p̂t contains information about the vector of fundamentals θt+1. At the same time, each price pj

contains information about the vector of fundamentals. Since we are interested in the precision of the

price pj,t as a signal of the fundamental θj,t+1, our notion of absolute price informativeness along asset

dimension j is given by

τ
j
p̂ = Var

[
p̂j|θj,t+1, θj,t

]−1 ,

where p̂j is the unbiased signal about θj,t+1 contained in the price. τ
j
p̂ is the precision of the unbiased

signal contained about the fundamental of asset j from the perspective of an external observer who

sees the previous realization of the fundamental of asset j only. The price of asset j is given by

pj,t =
[(

Ap
)−1 A0

]
j
+ ∑

h

(
πjh

[(
Ap
)−1 As

]
jh

)
θj,t+1 + ∑

h

(
πjh

[(
Ap
)−1 (Aθ − AsC

)]
jh

)
θj,t + Γjuj,t

where uj,t is the vector of all the trading motives of investors that are orthogonal to the fundamentals

of asset j and Γj is a function of aggregate equilibrium demand sensitivities. More specifically

uj,t =
[
ω

j′
t , ω

j′
t−1, n′t

]′
,

where ω
j
t =

[
ω

j
1t, ...., ω

j
Nt

]
is orthogonal to θj,t+1 and ω

j
h,t is defined as the residual of a regression of

θh,t+1 on θj,t+1, i.e.,

ω
j
h,t = θh,t+1 −

Cov
[
θh,t+1, θj,t+1

]
Var [θh,t+1]

θj,t+1.

19



Hence, ω
j
j,t = 0. Moreover,

Γj =

[[(
Ap
)−1 As

]
j
,
[(

Ap
)−1 (Aθ − AsC

)]
j
,
[[(

Ap
)−1 An

]
j

]]
.

If the realizations of θh,t+1 and θj,t+1 are uncorrelated, then the price will put weight 0 on ω
j
h,t.

From the perspective of an external observer who only observes the current fundamental of asset j,

the unbiased signal about the future fundamental of asset j contained in the price is

p̂j,t =

(
∑
h

(
πjh

[(
Ap
)−1 As

]
jh

))−1(
pj,t −

[(
Ap
)−1 A0

]
j
−∑

h

(
πjh

[(
Ap
)−1 (Aθ − AsC

)]
jh

)
θj,t

)

= θj,t+1 +

(
∑
h

(
πjh

[(
Ap
)−1 As

]
jh

))−1

Γjuj,t.

The precision of this signal is our measure of price informativeness and it is given by

τ
j
p̂ = Var

[
p̂j,t|θj,t+1, θj,t

]−1
=

(
∑
h

(
πjh

[(
Ap
)−1 As

]
jh

))2

Var
[
Γjuj,t

]−1 .

Proposition 6. (Identifying relative price informativeness through univariate regression) Assume

that the additive noise and the linear asset demands assumptions are satisfied. Let β0, β1, and β2 denote the

coefficients of the following regression of prices on fundamentals. This measure of price informativeness can be

recovered from the asset specific regression

pj,t = β0 + β1θj,t + β2θj,t+1 + ε j,t

where pt denotes the ex-dividend price at the beginning of period t, θj,t+1 denotes the measure of fundamentals for

asset j realized over period t, and where we denote the variance of the error by σ2
εj = Var

[
ε j,t
]

. Then, absolute

price informativeness, τp̂, can be recovered as follows

τ̂
j
p̂ =

β2
2

σ2
εj

.

The main difference between the single asset and the multi-asset version of our model is the

interpretation of the noise that prevents the price from being fully revealing. In the single asset case,

the noise is given purely by the aggregate trading motives, which is orthogonal to the innovation to

the fundamental. In the multi-asset case, the noise is a combination of the aggregate trading motives

for all assets in the economy and the components in the realizations of the fundamentals of other

assets that are orthogonal to the fundamental of the asset in which one is interested. These additional

sources of noise enter the pricing equation when the fundamentals are correlated across assets. In

this case, a signal about the innovation to the fundamental of one asset can also be used to learn

about the innovation to the fundamental of another asset. In our general approach in Section 2 we

are not restricting the source of the noise. Hence, the analysis in the previous sections accommodates

correlated asset payoffs in multi-asset environments.
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4.3 Learnable and Unlearnable Payoff

Our results so far imply that if investors could fully aggregate their dispersed information, they would

be able to fully learn the asset payoff. In this subsection, we consider the possibility that part of the

asset payoff is simply unlearnable for investors at the trading stage. Formally, we assume that the

innovation to the asset payoff has learnable and unlearnable components, so the asset payoff can be

written as

θt+1 = ρθt + ηt where ηt = ηL
t + ηU

t ,

where the unlearnable component ηU
t is random, has mean zero and finite variance, and its realization

are independently distributed from other random variables. Investors exclusively receive signals about

the learnable component of the asset payoff, so formally

si
t = ηL

t + εi
st.

Investors’ signals can be reformulated as follows

si
t = ηt − ηU

t + εi
st = ηt + εi′

st,

where εi′
st = −ηU

t + εi
st, which allows to derive the following expression for the equilibrium price

pt =
ψ

αp
+

αθ

αp
θt +

αs

αp
ηt +

αn

αp
nt −

αs

αp
ηU

t︸ ︷︷ ︸
εt

,

where the unbiased signal about the innovation to the fundamental corresponds to p̂t =
αp
αs

pt − αθ
αs

θt −
ψ
αs

= ηt +
αn
αs

nt − ηU
t .

Proposition 7. (Identifying Price Informativeness with Learnable and Unlearnable Payoffs) Assume

that the additive noise and the linear asset demands assumptions are satisfied. Then, absolute and relative price

informativeness can be recovered from Regressions R1 and R2 as follows

τp̂ =
β2

2
σ2

ε

and τR
p̂ =

R2
|θt+1,θt

− R2
|θt

1− R2
|θt+1,θt

.

It should be evident that the identification results from Propositions 1 and 2 apply to this case,

provided that we reinterpret the noise component by including the uncertainty about the unlearnable

component of the asset payoff. Conceptually, the fact that the information received by investors as a

whole is not enough to recover the asset payoff means that prices have to be less informative.

5 Empirical Implementation

In this section, we empirically implement our identification strategy and recover stock-specific

measures of price informativeness. In the text, we provide a brief description of the data and the
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Table 1: Summary Statistics (All Observations)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Market Cap. 88,356 3,336.34 17,681.97 0.72 81.45 352.77 1,532.62 682,084.00

Earnings 88,356 93.14 595.14 −15,181.20 0.71 7.78 39.43 33,304.45

Note: Table 1 presents summary statistics for the full sample of 88, 256 stock-year observations. It provides information on

the sample mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th percentiles

of the distribution of market capitalization and total earnings. All variables are expressed in millions of dollars in 2008.

sample selection procedure, leaving a more detailed description to the companion R notebooks.

Our theoretical results show that running cross-sectional regressions to recover measures of price

informativeness imposes strong assumptions about primitives across stocks. In particular, it imposes

that the fundamental has the same volatility for all stocks in the sample at any point in time.

Consistent with the identification results presented in our theoretical analysis, we instead run time-

series regressions at the stock level to recover estimates of absolute price informativeness, relative

price informativeness, and Kalman gains.

5.1 Data Description

We now describe the data sources and variables used to implement the methodology we develop in

the previous sections to obtain measures of price informativeness. We conduct our analysis using data

from 1963 to 2017. We obtain stock price data from the Center for Research in Security Prices (CRSP) to

calculate stocks market values, data on reported earnings, to use as a measure of fundamentals, from

CRSP/Compustat Merged (CCM), and a personal consumption deflator index from FRED.

In this section, we use a sample with all CRSP common stocks at a quarterly frequency. In the

Appendix, we report the results of our analysis at an annual frequency. Without loss of generality, to

avoid dealing with float issues, we use market value, which we denote by M, as the relevant measure

for the value/price of a firm. We use firms’ total earnings, as measured by EBIT, which we denote by

E, as the relevant measure of firms’ payoffs.12 To match the timing of our model and ensure that the

realized earnings are observed at the time at which the price is determined, we match the date t EBIT,

Et, with the price one quarter forward.13 For example, EBIT on March 1986 corresponds to θt in our

model and the stock price on June 1986 corresponds to pt. Similarly, the realization of the fundamental

at the end of period t is given by the reported EBIT a quarter later. The realized payoff on March 1986

12The choice of payoff measures may be objectionable. Dividend measures at the stock level are noisy. As it is customary in

the literature that studies individual stocks, e.g. Vuolteenaho (2002), we map payoffs in the model to measures of earnings.
13For our analysis at a quarterly frequency, we use the price one month forward. Using contemporary variables yields

similar results, which are available in the R code provided online.
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Table 2: Summary Statistics (Mean and Standard Deviation of Earnings)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Mean Earnings 839 77.04 344.25 −104.39 1.21 11.76 43.69 5,731.18

St. Dev. Earnings 839 81.06 371.29 0.18 3.41 12.23 39.49 5,693.84

Note: Table 2 presents summary statistics for the full sample of 839 stocks. It provides information on the sample mean,

median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th percentiles of the distribution

of the variance of earnings. All variables are expressed in millions of dollars in 2008.

is given by EBIT on June 1986, which corresponds to θt+1 in our model. Finally, we run our regressions

at the stock level and include only firms for which we have at least 80 observations available.

Table 1 shows summary statistics for our full sample of 88, 356 stock-quarter observations. Our

sample exhibits considerable variation in terms of market capitalization and total earnings. The

distribution of market capitalization across firms and periods has a mean of $3, 336 million, a median

of $352 million and a standard deviation of $17, 681 million. The minimum market capitalization in a

given quarter is $0.72 million and the maximum is $682, 962 million. The distribution of total earnings

across firms and periods has a mean of $93 million, a median of $7.8 million, and a standard deviation

of $595 million.

Table 2 shows summary statistics at the stock level for the 839 stocks with more than 80

observations. In particular, this table summarizes the differences in the distribution of earnings across

stocks. The mean earnings across stocks have a mean of $77 million, a median of $11.8 million and a

standard deviation of $344 million. The median standard deviation in earnings is $81 million and it

exhibits a standard deviation of $371 million. These summary statistics show that there is significant

heterogeneity in the earnings process in the cross-section of firms as the mean and, more importantly,

the volatility of the fundamental vary considerable across stocks. This finding questions the validity of

using cross-sectional regressions. Figure 2 shows the distribution of standard deviations for earnings

across stocks.

5.2 Empirical Specification

We implement Proposition 1 by running time-series regression for each individual stock. On the right-

hand side, we have measures of market value, Mj
t. On the left-hand side, we use current earnings,

Ej,t and earnings one period ahead, Ej,t+1. Formally, for each stock, which we index by j, we run a
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Figure 2: Distribution of standard deviation of total earnings
Note: Figure 2 depicts the distribution of the standard distribution of earnings across the 839 stocks in our sample.

time-series regression of the form

Mj
t = β

j
0 + β

j
1Ej,t + β

j
2Ej,t+1 + ε

j
t ⇒ R2j

|θt+1,θt
(19)

Mj
t = ζ

j
0 + ζ

j
1Ej,t + ε̂

j
t ⇒ R2j

|θt
, (20)

where t corresponds to the time index. Variables β
j
0, β

j
1, and β

j
2 are the coefficients for each of the

regressions, whereas ε j,t are the error terms. We respectively denote the R-squareds of the regressions

(19) and (20) by R2j
|θt+1,θt

and the R2j
|θt

. Hence, Regression R1 in the paper maps to Equation (19), while

Regression R2 maps to Equation (20). Using the results in Propositions (1) and (2) we recover absolute

and relative price informativeness as follows

τ
j
p̂ =

(
β

j
2

)2

Var
[
ε

j
t

] and τ
Rj
p̂ =

R2j
|θt+1,θt

− R2j
|θt

1− R2j
|θt+1,θt

. (21)

One of the main assumptions behind the validity of our methodology running our linear

regressions in levels, is the stationarity of the process for earnings. To evaluate the plausibility of

this assumption in our data, we run Dickey-Fuller (DF) tests for each stock. For 309 out of 839

stocks in our sample, there is not enough evidence to reject the null hypothesis that a unit root is

present in the autoregressive process for earnings.14 For these stocks, we estimate our measures of

price informativeness using the results derived in Section 4.1. We run the following specification in

differences

∆Mj
t = β

j
0 + β

j
1∆Ej,t + β

j
2∆Ej,t+1 + ε

j
∆t ⇒ R2j

|∆θt+1,∆θt
(22)

∆Mj
t = ζ

j
0 + ζ

j
1∆Ej,t + ε̂

j
∆t ⇒ R2j

|θt
, (23)

14The 839 stocks in our sample are the remaining stocks after removing the stocks with unit roots in the process for ∆Et.
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where, analogous to Equation (19) and (20), t and j correspond to the time and stock index,

respectively. Equations (22) and (23) respectively map to the regressions in Equations (R4) and (R5),

and R2j
|∆θt+1,∆θt

and R2j
|∆θt

are their corresponding R-squareds. Hence, using the results in Equations (12)

and (13) we recover absolute and relative price informativeness for each stock j as follows

τ
j
p̂ = 2

(
β

j
2

)2

Var
[
ε

j
∆t

] and τ
Rj
p̂ = 2

R2j
|∆θt+1,∆θt

− R2j
|∆θt

1− R2j
|∆θt+1,∆θt

. (24)

Finally, we exclude outliers from our sample. We remove all stocks for which the maximum

leverage score of any observation is above 0.4 when estimating either Equation (19) or Equation (20),

or for their counterparts in differences for those stocks that fail our stationarity tests.

5.3 Empirical Findings

After removing outliers, we have 666 individual stocks with more than 80 quarterly observations. For

all stocks that pass our stationarity tests, we recover stock specific measures of absolute and relative

price informativeness from Equation (21). For those stocks that fail our stationarity tests, we estimate

our measures of price informativeness from Equation (24), after running the difference specifications in

Equations (22) and (23). Table 3 shows summary statistics for the distribution of our estimates of stock-

specific measures of price informativeness. In the Appendix, we report estimates of our measures of

price informativeness assuming the earnings process is non-stationary for all stocks.

We find that, in our sample, the mean absolute price informativeness is 0.04 and the median is 0.001.

More importantly, there is significant variation in our estimates of absolute price informativeness in the

data. The standard deviation of absolute price informativeness is 0.11, which reinforces our prior about

the importance of providing stock-specific measures of informativeness. However, looking at absolute

price informativeness may not be the most adequate measure to understand the informational content

of prices in the cross section since there are differences in the uncertainty about the fundamental across

stocks.

Relative price informativeness normalizes the precision of the signal contained in the price by the

volatility of the fundamental for each stock. This normalization makes the comparison across stocks

meaningful and more natural to interpret. In our sample, the mean relative price informativeness is

around 0.07 which implies that, on average, the precision of the price as a signal of the fundamental

is 7% of the precision of the prior. In terms of variances, this translates to the signal contained in

the price being 14 times more uncertain than the fundamental. As one would expect, there is a

significant variation in relative price informativeness across stocks. The distribution of relative price

informativeness is right skewed, with 75% of stocks featuring relative prices informativeness to be less

than 8% of the precision of the innovation to earnings.

Though relative price informativeness provides a better context than absolute price informativeness

to interpret the magnitudes of the informational content of prices, it is still somewhat difficult to
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give these numbers an economic interpretation. The best measure of price informativeness to do so

is the Kalman gain.15 There is a one-to-one mapping between the Kalman gain and relative price

informativeness given by

Kj =
τ

Rj
p̂

1 + τ
Rj
p̂

. (25)

This expression is bounded between 0 and 1, and it measures the weight that a Bayesian investor puts

on the new information revealed by the price when updating his beliefs about the fundamental. For

example, a Kalman gain of 0.4 implies that a Bayesian investor will put 40% weight on the information

contained in the price and 60% on his prior in forming his beliefs. In the limit, when prices are fully

revealing, the Kalman gain is equal to 1, and it is 0 when prices contain no information. We focus the

rest of our analysis using the Kalman gain as a measure of informativeness.

Table 3: Summary Statistics (Recovered Informativeness Measures)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 666 0.04 0.19 0.00 0.0001 0.001 0.01 2.26

Relative Price Informativeness 666 0.07 0.11 0.00 0.01 0.02 0.08 1.00

Kalman Gain 666 0.05 0.08 0.00 0.01 0.02 0.08 0.50

Note: Table 3 presents summary statistics on the informative measures recovered. It provides information on the sample

mean, median, and standard deviation, as well as the 25th and 75th percentiles of the distribution.

The mean Kalman gain in our sample is 0.05 and the median is 0.08. As with our measures of

absolute and relative price informativeness, Table 3 shows there is a substantial dispersion in the

distribution of Kalman gains across stocks. Prices contain little to no information for 75% of our stocks,

which is reflected by a Kalman gain of less than 0.08. Figure 3 shows the distribution of Kalman gains

for all stocks in our sample.

Our approach does not allow us to identify the source of noise impounded in the price. However,

our estimates shed light on the amount of noise in financial markets. Given the small magnitude of

our estimates of price informativeness, our empirical results suggest that although prices contain some

information about the fundamental, they also reflect a considerable amount of noise.

To better understand of the distribution of Kalman gains across stocks, we look at different

stock characteristics and their correlation with relative price informativeness. We compare price

informativeness in different exchanges, across market capitalization, across the level of volume traded.

An important takeaway from our empirical analysis is the ubiquitous heterogeneity in price

informativeness across stocks. This heterogeneity in our estimates across stock characteristics
15The economic interpretation of the expression of the Kalman gain in Equation assumes Bayesian updating and Gaussian

uncertainty.
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Figure 3: Distribution of Kalman gains
Note: Figure 3 shows the histogram of Kalman gains for the final sample of 666 stocks. The estimates are computed using

quarterly data.

challenges the interpretation of results from cross-sectional regressions as measures of price

informativeness, even when controlling for firm-specific characteristics.

Note that our empirical approach uses time series regressions to identify asset-specific measures

of price informativeness. This approach contrasts with some of the recent literature that seeks to

measure price informativeness from the cross-section of securities, which implicitly imposes that all

primitives are constant across asset classes. An advantage of running time-series regressions is that

they sidestep potential composition issues, although they introduce potential concerns regarding time

variation in the model parameters, for instance, associated with time-varying risk premia or time-

varying characteristics.

5.3.1 Informativeness across exchanges

Prices aggregate the information dispersed in the market. The quality of this aggregation depends

on how much information is held by investors and on how much noise is present in individual

demands. Markets in which investors have very precise private information about the fundamental

and trade mostly on this information will have prices with high price informativeness. Markets in

which investors trade primarily on trading motives that are orthogonal to the fundamental will have

low price informativeness. Therefore, an important determinant of how much information is contained

in asset prices is the set of market participants.

In our sample, stocks are traded in three different exchanges: NYSE, AMEX, and NASDAQ. Figure

4 shows the distribution of Kalman gains for stocks traded in each of these exchanges. We find that, on

average, stocks traded in the NYSE have the highest price informativeness, followed by those traded
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Figure 4: Distribution of Kalman gains across exchanges in which the asset is traded
Note: Figure 4 shows the histogram of Kalman gains for the final sample of 666 stocks sorted by the exchange in which they

trade. The estimates are computed using quarterly data.

in the NASDAQ. Stocks traded in the AMEX have the lowest level of price informativeness and the

lowest dispersion of Kalman gains across the three exchanges.

5.3.2 Informativeness and market capitalization

We look at the relation between price informativeness and market capitalization. A priori, it is not

clear what the sign of this correlation should be. For example, on the one hand, one could argue that

investors acquire more information about stocks with higher market capitalization because it increases

the scale of the trades through which the investor can benefit from his private information. This would

imply a positive correlation between price informativeness and market capitalization. On the other

hand, bigger firms can also attract more speculative trades and, hence, its stocks can trade at prices

that incorporate a lot of noise and have little informational content. Not surprisingly, whether price

informativeness is positively or negatively correlated with market capitalization depends on how the

ratio of information to noise impounded in the price varies with this variable. In our sample, we

find that the relative price informativeness increases with market capitalization. Figure 5 shows the

distribution of Kalman gains across stocks with different average market capitalization. This figure

presents a positive relation between our estimated Kalman gains and the average market capitalization

of a stock. At the same time, this figure exhibits considerable variation in Kalman gains for a given level

of market capitalization.

5.3.3 Informativeness and traded volume

Next, we explore how price informativeness correlates with a stock’s traded volume. As in the

case of market capitalization, it is not clear what the correlation between traded volume and price
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Figure 5: Distribution of Kalman gains across market capitalization
Note: Figure 5 shows the histogram of Kalman gains for the final sample of 666 stocks sorted by their average market

capitalization in our sample. The estimates are computed using quarterly data. The blue solid line represents the linear

regression line.

informativeness should be. One could argue that high traded volume reflects a large amount

of speculative trades and, hence, expect price informativeness and the Kalman gain to be low.

Alternatively, high traded volume can reflect large trades by investors with precise information, which

would lead to high price informativeness and a high Kalman gain.

Figure 6 shows our estimates of Kalman gains as a function of the stock’s average traded volume

computed in US dollars. The figure shows a positive correlation between price informativeness and

average traded volume. This figure also shows that there is substantial dispersion in Kalman gains

after conditioning for the average traded volume.

5.3.4 Informativeness across industries

Figure 7 shows the distribution of Kalman gains in different industries. Our results show heterogeneity

in price informativeness across industries and within industry. We find that on average, price

informativeness is highest in the manufacturing and agriculture, mining and construction sectors, and

lowest in the finance and insurance and services sectors. As Figure 7 illustrates, there is considerable

dispersion in price informativeness within each sector. Without a specific conjecture of why one sector

would have higher informativeness than other, the main conclusion of this analysis is that there is not

a strong relation between industry and price informativeness.
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Figure 6: Distribution of Kalman gains across average traded volume in dollars
Note: Figure 6 shows the histogram of Kalman gains for the final sample of 666 stocks sorted by their average traded volume

in dollars. The estimates are computed using quarterly data. The blue solid line represents the linear regression line.
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Figure 7: Distribution of Kalman gains by industry
Note: Figure 7 shows the distributions of Kalman gains for the final sample of 666 stocks sorted by industry using one-digit

standard industry codes. The estimates are computed using quarterly data.
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6 Conclusion

We have shown that the outcomes of linear regressions of prices on fundamentals are sufficient to

recover exact measures of the ability of asset prices to aggregate dispersed information under minimal

assumptions about the environment and exclusively using aggregate market information. In our

empirical exercise, we find that the amount of information that can be found by an external observer

by conditioning on the price is on average small, although there is a substantial cross sectional

dispersion. We find that price informativeness is higher for stocks traded in the NYSE, with higher

market capitalization, and traded more frequently. Given that our empirical implementation delivers

stock-specific measures of informativeness, there is scope to further explore the relation between

informativeness and other outcomes in the cross-section of stocks.

Looking forward, identifying model primitives when there is feedback between financial markets

and investment is a challenging but fascinating area for future research, since the nature of production

introduces unavoidable non-linearities when there is two-way feedback between financial and real

markets.
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APPENDIX

A Proofs: Section 2

Assumptions 2 (linear demands) and market clearing imply that
ˆ

∆qi
tdi = θt

ˆ
αi

θdi +
ˆ

αi
ss

i
tdi +

ˆ
αi

nni
tdi− pt

ˆ
αi

pdi +
ˆ

ψidi = 0,

so the equilibrium price must satisfy

pt =

´
αi

ssi
tdi

αp
+

αθ

αp
θt +

´
αi

nni
tdi

αp
+

ψ

αp
,

where we define cross sectional averages αθ =
´

αi
θdi, αp =

´
αi

pdi, and ψ =
´

ψidi. Under Assumption

1, which implies the additive structure of signals in Equations. (1) and (2), we can further write

pt =
αs

αp
ηt +

αθ

αp
θt +

αn

αp
nt +

´
αi

sε
i
stdi

αp
+

´
αi

nεi
ntdi

αp
+

ψ

αp
,

where we define cross sectional averages αs =
´

αi
sdi and αn =

´
αi

ndi. Under a Strong Law of Large

Numbers, see, e.g. Vives (2008), the terms
´

αi
sεi

stdi
αp

and
´

αi
nεi

ntdi
αp

vanish when there is a continuum of

investors, which allows us to derive Equation (3) in the text.

Proof of Proposition 1. (Identifying absolute price informativeness)

Comparing Equations (7) and (R1) allows us to structurally interpret the coefficients β0 and β2 and the

residual term as β0 = ψ
αp

, β2 = αs
αp

, and εt =
αn
αp

nt. Consequently, Var [εt] =
(

αn
αp

)2
τ−1

n . It then follows

that

τp̂ =
β2

2
σ2

ε

=

(
αs
αp

)2

(
αn
αp

)2
τ−1

n

=

(
αs

αn

)2

τn.

Proof of Proposition 2. (Identifying relative price informativeness)

We reproduce here Regressions R1 and R2:

pt = β0 + β1θt + β2θt+1 + εt (R1)

pt = ζ0 + ζ1θt + ε
ζ
t . (R2)

Note that Regression R1 can also be written as

pt = β0 + (β1 + ρβ2) θt + β2ηt + εt,

which allows us to interpret the coefficient ζ1 in Regression R2 as follows

ζ1 = β1 + ρβ2,
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since θt is orthogonal to ε
ζ
t = β2ηt + εt.

Consequently, we can find the following variance decomposition

Var (pt) = (β1 + ρβ2)
2︸ ︷︷ ︸

ζ2
1

Var (θt) + β2
2Var (ηt) + Var (εt) ,

which implies that

1 =
ζ2

1Var (θt)

Var (pt)
+

β2
2Var (ηt)

Var (pt)
+

Var (εt)

Var (pt)
⇐⇒ 1 =

ζ2
1Var (θt)

Var (pt)︸ ︷︷ ︸
R2
|θt

+
Var (εt)

Var (pt)︸ ︷︷ ︸
1−R2

|θt+1,θt

1 +
β2

1Var (ηt)

Var (εt)︸ ︷︷ ︸
τR

p̂

 .

Therefore,

1− R2
|θt

=
(

1− R2
|θt+1,θt

) (
1 + τR

p̂

)
⇒

1− R2
|θt

1− R2
|θt+1,θt

= 1 + τR
p̂ ,

which implies that

τR
p̂ =

R2
|θt+1,θt

− R2
|θt

1− R2
|θt+1,θt

.

Moreover, the Kalman gain can be recovered by

K ≡ τp̂

τp̂ + τη
=

τR
p̂

1 + τR
p̂
=

R2
|θt+1,θt

− R2
|θt

1− R2
|θt

.

B Proofs: Section 3

Equilibrium Characterization

An investor i born in period t chooses a quantity of the risky asset to solve

max
qi

t

(
E
[
θt+1 + R−1 pt+1|I i

t

]
− pt

)
qi

t −
γ

2
Var

[
θt+1 + R−1 pt+1|I t

t

] (
qi

t

)2
,

where I i
t =

{
θt, si

t, ηi
t, pt

}
is the information set of investor i at time t.

The first order condition for an investor at time t is

qi
t =

E
[
θt+1 + R−1 pt+1|I i

t
]
− pt

γVar
[
θt+1 + R−1 pt+1|I i

t
] .

In an equilibrium in linear strategies, we conjecture and verify that the demand of an investor i can be

written as

∆qi
t = αi

θθt + αi
ssit + αi

ηηi
t − αi

p pt + ψi.

Market clearing and the Strong Law of Large Numbers imply

pt =
αθ

αp
θt +

αs

αp
ηt +

αη

αp
nt +

ψ

αp
.
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The unbiased signal of the innovation in the dividend contained in the price is

p̂t =
αp

αs

(
pt −

αη

αs
µn −

αθ

αp
θt −

ψ

αp

)
= ηt +

αη

αs
(nt − µn) ,

where

p̂t|θt+1, θt ∼ N
(

ηt, τ−1
p̂

)
,

with price informativeness given by

τp̂ = (Var [ p̂t|θt+1, θt])
−1 =

(
αs

αη

)2

τη .

Given our guesses for the demand functions and the linear structure of prices we have

θt+1 + R−1 pt+1 = θt+1 + R−1 αθ

αp
θt+1 + R−1 αs

αp
ηt+1 + R−1 αη

αp
nt+1 + R−1 ψ

αp
,

E
[
θt+1 + R−1 pt+1|I i

t

]
=

(
1 + R−1 αθ

αp

)
E
[
θt+1|I i

t

]
+ R−1 αs

αp
E [ηt+1] + R−1 αη

αp
E [nt+1] + R−1 ψ

αp

=

(
1 + R−1 αθ

αp

)(
ρθt + E

[
ηt|I i

t

])
+ R−1 αs

αp
E [ηt+1] + R−1 αη

αp
nt + R−1 ψ

αp
,

and

Var
[
θt+1 + R−1 pt+1|I i

t

]
=

(
1 + R−1 αθ

αp

)2
Var

[
θt+1|I i

t

]
+

(
R−1 αs

αp

)2
Var [ηt+1] +

(
R−1 αη

αp

)2
Var [nt+1]

=

(
1 + R−1 αθ

αp

)2
Var

[
ηt|I i

t

]
+

(
R−1 αs

αp

)2
Var [ηt+1] +

(
R−1 αη

αp

)2
τ−1

nt+1.

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ηt|sti , ηi

t, pt

]
=

τssi
t + τηηi

t + τp̂ p̂t

τs + τη + τp̂
=

τssi
t + τηηi

t ++τp̂
αp
αs

(
pt − αη

αs
µn − αθ

αp
θt − ψ

αp

)
τs + τη + τp̂

,

and
Var

[
ηt|I i

t

]
= Var

[
ηt|si

t, ηi
t, pt

]
=
(
τs + τη + τp̂

)−1 .

Then, the first order condition is the given by is

qi
t =

1
γ

(
1 + R−1 αθ

αp

) (
ρθt + Var

[
ηt|I i

t

] (
τssi

t + τηηi
t + τp̂

αp
αs

(
pt − αη

αs
µn − αθ

αp
θt − ψ

αp

)))
+ R−1 αs

αp
E [ηt+1] + R−1 αη

αp
µn + R−1 ψ

αp
− pt(

1 + R−1 αθ
αp

)2
Var [ηt|Iit] +

(
R−1 αs

αp

)2
Var [ηt+1] +

(
R−1 αη

αp

)2
τ−1

n

.

Matching coefficients we have

αi
s =

(
1 + R−1 αθ

αp

)
κ

Var
[
ηt|I i

t

]
τs (26)

αi
η =

(
1 + R−1 αθ

αp

)
κ

Var
[
ηt|I i

t

]
τη

αi
θ =

(
1 + R−1 αθ

αp

)
κ

(
ρ−Var

[
ηt|I i

t

]
τp̂

αθ

αs

)
αi

p =
1
κ

(
1−

(
1 + R−1 αθ

αp

)
Var

[
ηt|I i

t

]
τp̂

αp

αs

)
ψi = −1

κ

((
1 + R−1 αθ

αp

)
Var

[
ηt|I i

t

]
τp̂

(
αη

αs
µn +

ψ

αs

)
− R−1

(
αη

αp
µn +

ψ

αp

))
,
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where

κ ≡ γ

((
1 + R−1 αθ

αp

)2

Var
[
ηt|I i

t

]
+

(
R−1 αs

αp

)2

Var [ηt+1] +

(
R−1 αη

αp

)2

τ−1
n

)
,

since Var
[
ηt|I i

t
]
=
(
τs + τη + τp̂

)−1 for all i.
Then, an equilibrium in linear strategies always exists if the system above has a solution. Note that

the demand sensitivities are the same for all i. Then, there exists a unique solution to the system in
Equations (26), that is given by

αi
s =

1
κ

1
1− R−1ρ

τs

τη + τs + τp̂
, αi

η =
1
κ

1
1− R−1ρ

τη

τη + τs + τp̂

αi
θ =

1
κ

ρ

1− R−1ρ

τs

τs + τp̂
, αi

p =
1
κ

τs

τs + τp̂
, and

ψi = −
1
κ

1
1−R−1ρ

((
1− R−1) τp̂ − R−1τs

) τη

τη+τs+τp̂
µn(

1 + (1− R−1) τp̂ − R−1τs
) ,

where

τp̂ =

(
τs

τη

)2

τη

and

κ = γ

( 1
1− R−1ρ

)2 1
τη + τs + τp̂

+

(
R−1 1

1− R−1ρ

τs + τp̂

τη + τs + τp̂

)2

τ−1
η +

(
R−1

1− R−1ρ

τs + τp̂

τη + τs + τp̂

τη

τs

)2

τ−1
η

 .

Proof of Proposition 3. (Identifying signal and trading needs precisions)

We reproduce here Regressions R1 and R2:

pt = β0 + β1θt + β2θt+1 + εt (R1)

pt = ζ0 + ζ1θt + ε
ζ
t . (R2)

Note that Regression R1 can be written as

pt = β0 + (β1 + ρβ2) θt + β2ηt + εt,

and that the following equilibrium equation is valid in this model

pt =
αθ

αp
θt +

αs

αp
ηt +

αη

αp
nt +

ψ

αp
.

From the characterization of the equilibrium described above, we can express αs
αp

and αs
αη

as follows:

αs

αp
=

(
1 + R−1 αθ

αp

)
τs + τp̂

τη + τs + τp̂
=

(
1 + R−1 αθ

αp

) τs
τη
+ τR

p̂

1 + τs
τη
+ τR

p̂
(27)

αs

αη
=

τs

τη
.

Under the stated assumptions, we can therefore interpret the coefficients β1 and ζ1as follows

β2 =
αs

αp
and ζ1 =

αθ

αp
. (28)
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Therefore, Equations (27) and Equation (28) imply that τs
τη
+ τR

p̂ can be recovered as follows

β2 =
(

1 + R−1ζ1

) τs
τη
+ τR

p̂

1 + τs
τη
+ τR

p̂
⇒ τs

τη
+ τR

p̂ =
β2

1 + ζ1 − β2
,

which allows to express τs:

τs =
β2

1 + R−1ζ1 − β2
τη − τp̂ = τp̂

(
β2

1 + R−1ζ1 − β2

1
τR

p̂
− 1

)
,

using the fact that τη can be recovered from τη =
τp̂

τR
p̂

. Finally, exploiting the relation τp̂ =
(

τs
τη

)2
τn, τn

can be recovered as follows

τp̂ =

(
τs

τη

)2

τn =

(
β2

1 + R−1ζ1 − β2
− τR

p̂

)2

τn ⇒ τn =

(
β2

1 + R−1ζ1 − β2
− τR

p̂

)−2

τp̂,

where R can be mapped to the risk-free rate.

C Proofs: Section 4

Proof of Proposition 4. (Identifying absolute price informativeness: random walk)

We reproduce here Regression R4 and the equilibrium condition in Equation (11):

∆pt = β1∆θt + β2∆θt+1 + εt, (R4)

∆pt =

(
αθ

αp
− αs

αp

)
∆θt +

αs

αp
∆θt+1 +

αn

αp
∆nt. (11)

Consequently, we can express Var [εt] as follows

Var [εt] =

(
αn

αp

)2

Var [∆nt] =

(
αn

αp

)2

2τ−1
n ,

where the last equality follows from the i.i.d. assumption of nt shocks. We can therefore find τp̂ as

τp̂ = 2
β2

2
σ2

ε

=
2
(

αs
αp

)2

(
αn
αp

)2
2τ−1

n

=

(
αs

αn

)2

τn.

Proof of Proposition 5. (Identifying relative price informativeness: random walk)

In this model, the equilibrium pricing equation can be written as

pt =
αθ

αp
θt +

αs

αp
ηt +

αn

αp
nt +

ψ

αp

=

(
αθ

αp
− αs

αp

)
θt +

αs

αp
θt+1 +

αn

αp
nt +

ψ

αp
+ µθ .

38



Taking first differences, this Equation yields Equation (11) in the text, which yields consistent estimates
when estimated by OLS, since ∆θt = ηt−1 and ∆θt+1 = ηt are orthogonal to the error term. We exploit
Regressions R4 and R5, reproduced here.

∆pt = β1∆θt + β2∆θt+1 + εt, (R4)

∆pt = ζ0 + ζ1∆θt + ε
ζ
t . (R5)

Note that ζ1 = β1, given that ηt−1 is orthogonal to ε
ζ
t .

Exploiting Regression R4, we can write the following variance decomposition

Var [∆pt] = β2
1Var [∆θt] + β2

2Var [∆θt+1] + Var [εt] ,

which when divided by Var [∆pt] yields

1 =
β2

1Var [∆θt]

Var [∆pt]︸ ︷︷ ︸
R2
|∆θt

+
Var [εt]

Var [∆pt]︸ ︷︷ ︸
1−R2

|∆θt+1,∆θt

β2
2Var [∆θt+1]

Var [εt]︸ ︷︷ ︸
1
2 τR

p̂

+1

 .

This expression can be rearranged to solve for τR
p̂ as follows:

1− R2
|∆θt

1− R2
|∆θt+1,∆θt

= 1 +
1
2

τR
p̂ ⇒ τR

p̂ = 2
R2
|∆θt+1,∆θt

− R2
|∆θt

1− R2
|∆θt+1,∆θt

,

which corresponds to Equation (13) in the text. The Kalman Gain for an external observer can be

calculated as K =
τR

p̂

1+τR
p̂

.

Multiple Risky Assets

The price of asset j is given by

pj,t =
[(

Ap
)−1 (Aθ − AsC

)]
j
θt +

[(
Ap
)−1 As

]
j
θt+1 +

[(
Ap
)−1 An

]
j
nt +

[(
Ap
)−1 A0

]
j

=
N

∑
h=1

([(
Ap
)−1 (Aθ − AsC

)]
jh

θh,t +
[(

Ap
)−1 As

]
jh

θh,t+1 +
[(

Ap
)−1 An

]
jh

nh,t

)
+
[(

Ap
)−1 A0

]
j

=∑
h

πjh

([(
Ap
)−1 (Aθ − AsC

)]
jh

θj,t +
[(

Ap
)−1 As

]
jh

θj,t+1

)
+ ∑

h 6=j

([(
Ap
)−1 (Aθ − AsC

)]
jh

ω
j
h,t−1 +

[(
Ap
)−1 As

]
jh

ωh,t

)
+ ∑

h

[(
Ap
)−1 An

]
jh

nh,t +
[(

Ap
)−1 A0

]
j
,

where θh,t+1 = πjhθj,t+1 + ω
j
h,t with πjj = 1 and ω

j
j,t = 0. Hence, the estimates in the regression

pj,t = β0 + β1θj,t + β2θj,t+1 + ε j,t

imply

ε jt = ∑
h 6=j

([(
Ap
)−1 (Aθ − AsC

)]
jh

ω
j
h,t−1 +

[(
Ap
)−1 As

]
jh

ωh,t

)
+

N

∑
h=1

[(
Ap
)−1 An

]
jh

nh,t

β2 =
N

∑
h=1

[(
Ap
)−1 As

]
jh

πjh.

Therefore, price informativeness can be recovered as

τ̂
j
p̂ =

β2
2

Var
[
ε j,t
] .
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D Additional Results

In this Section, we report additional results mentioned in the text. Table A1 reports the distribution
of our estimates for absolute price informativeness, relative price informativeness and Kalman gains
assuming all stocks have non-stationary earning processes using quarterly data. Table A2 provides
summary statistics of our data at an annual frequency. Finally, Table and the corresponding estimates
of our measures of price informativeness.

Table A1: Results assuming non-stationary earnings

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 666 0.04 0.25 0.00 0.0001 0.001 0.01 4.51
Relative Price Informativeness 666 0.08 0.12 0.00 0.01 0.03 0.10 1.00
Kalman Gain 666 0.06 0.08 0.00 0.01 0.03 0.09 0.50

Note: Table A1 presents summary statistics on the informative measures recovered assuming the earnings process for all
stocks is non stationary using quarterly data. It provides information on the sample mean, median, and standard deviation,
as well as the 25th and 75th percentiles of the A3 for the sample without outliers.

Table A2: Summary statistics for annual data

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Mean Earnings 466 778.08 2,038.33 −7.04 41.41 170.12 567.11 21,649.80
St. Dev. Earnings 466 662.11 1,771.28 1.73 32.05 136.22 531.08 15,434.57

Table A2 presents summary statistics for the full sample of 466 stocks at an annual frequency. It provides information on the
sample mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th percentiles of
the distribution of the variance of earnings. All variables are expressed in millions of dollars in 2008.

Table A3: Estimates of Price Informativeness at an Annual Frequency

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 272 0.004 0.02 0.00 0.0000 0.0001 0.001 0.29
Relative Price Informativeness 272 0.44 0.49 0.0000 0.10 0.28 0.62 3.07
Kalman Gain 272 0.25 0.19 0.0000 0.09 0.22 0.38 0.75

Note: Table A3 presents summary statistics on the informative measures recovered assuming the earnings process for all
stocks is non stationary using annual data. It provides information on the sample mean, median, and standard deviation, as
well as the 25th and 75th percentiles of the distribution for the sample without outliers.
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ONLINE APPENDIX

A Relation to Bai, Philippon, Savov (2015)

In this section, we explicitly re-derive the model in Bai, Philippon and Savov (2015) (BPS) as a special
case of our general framework. Consistent with our approach, we abstract from investment decisions,
and exclusively focus on the role of financial markets aggregating information. Identical remarks apply
to the subsequent literature that builds on BPS.16

There are two major differences between our approach and the one developed in BPS. The first and
most important difference concerns how price informativeness is measured. The second difference lies
in the assumptions behind the empirical implementation.

As we describe in the text, BPS use forecasting price efficiency (FPE), i.e., the unconditional variance
of the expected value of the fundamental conditional on the price, as a proxy for price informativeness.
While higher price informativeness will lead to higher FPE, higher FPE may not reflect an increase in
price informativeness. More specifically, we show that FPE confounds changes in the volatility of
the fundamental with changes in the ability of markets to aggregate dispersed information. Hence,
FPE can increase because price informativeness increases or because the fundamental becomes more
volatile and harder to predict. Alternatively, absolute price informativeness is the precision of the
unbiased signal about the fundamental contained in the price. This precision is a direct measure of the
ability of financial markets to aggregate dispersed information and it is independent of the volatility
of the fundamental.

Regarding the empirical implementation, the regressions run in BPS and the regressions that we
run in this paper to recover price informativeness are different. BPS run cross-sectional regressions of
fundamentals on prices and report the time-series evolution of their cross-sectional estimates of FPE.
BPS provide estimates of FPE at the market level (or for a subset of the market) over time. In contrast,
we use time series regressions to provide firm-specific measures of price informativeness. Moreover,
we run regressions of prices on fundamentals, which we show to be more adequate to obtain consistent
estimates of price informativeness. The main difference between these two approaches concerns the
underlying assumptions regarding the nature of firm-specific primitives and investors’ characteristics
(e.g., volatility of the fundamental, precision of private signals, or volatility of private trading needs)
across time and firms. By running cross-sectional regressions, BPS assume that all firms’ fundamentals
(among others, the volatility of the fundamental and noise, as well as the precision of investors’ private
signals) are identical in a given period. This assumption is unlikely to hold in practice and clearly
rejected by the data (see Table 2). Our approach assumes instead that firm-specific parameters are
time-invariant, but allows for firm specific parameters to vary freely in the cross-section of firms.

Measures of price informativeness

In the remained of this section, our approach to the approach in BPS in more detail. To compare
FPE to absolute and relative price informativeness we first describe the environment in BPS using our
notation to show how it is nested in our general specification. Then, we show that while FPE is relevant

16The same conceptual framework is used in Farboodi, Matray and Veldkamp (2017) and Kacperczyk, Sundaresan and
Wang (2018).
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for welfare, it does not disentangle the ability of markets to aggregate information from how easy it is
to forecast the fundamental.

Environment There are two periods, t = 0, 1. There is one asset with a payoff θ ∼ N
(

θ, τ−1
θ

)
. There

are i = 1, ..., I informed traders who choose their demand q1i to maximize mean variance preferences
with imperfect information about θ. The asset payoff θ is not observable. However, investors observe
a private signal

s = θ + εs

and a public signal
π = θ + επ,

where εs ∼ N
(
0, τ−1

s
)
, επ ∼ N

(
0, τ−1

π

)
, and εs ⊥ επ. Note that all informed investors observe the same

set of signals. There are N noise traders whose total demand is random and given by n ∼ N
(
0, τ−1

n
)
.

The informed traders’ problem is

max
q1i

(E [θ|s, π]− p) q1i −
γ

2
Var [θ|s, π] q2

1i + pq0i

which leads to the following demand curve

q1i =
E [θ|s, π]− p
γVar [θ|s, π]

,

where

E [θ|s, η] =
τθθ + τss + τππ

τθ + τs + τπ
and Var [θ|s, η] =

1
τθ + τs + τπ

.

Since all informed investors share the same information set, there is no learning from the price.
In an equilibrium in linear strategies net demands for informed traders are given by

∆qI
1i = αI

ss + αI
ππ + αI

nn− αI
p p + ψI ,

and for uninformed traders

∆qU
1i = αU

s s + αU
π π + αU

n n− αU
p p + ψU .

Matching coefficients we have that

αI
s =

τs

γ
, αI

π =
τπ

γ
, αI

n = 0,

αI
p =

1
γ
(τθ + τs + τπ)

ψI =
τθ

γ
θ − q0i,

and αU
s = αU

π = αU
p = ψU = 0, and αU

n = 1
N .

Market clearing implies
I

∑
i=1

∆qI
si + n = 0,

which is the same as

p =
αs

αp
s +

απ

αp
π +

ψ

αp
+

αn

αp
n,

where αs = IαI
s + NαN

s . απ = IαI
π + NαN

π , αp = IαI
p + NαN

p , αn = IαI
n + NαN

n , and ψ = IψI + NψN .
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Price informativeness and forecasting price efficiency Observing the price is equivalent to
observing

p̂ =
αp

αs + απ

(
p− ψ

αp

)
= θ +

αs

αs + απ
εs +

απ

αs + απ
επ +

αn

αs + απ
n,

where
p̂|θ ∼ N

(
θ, τ−1

p̂

)
with

τp̂ =

(
αs

αs + απ

)2

τ−1
s +

(
απ

αs + απ

)2

τ−1
π +

(
αn

αs + απ

)2

τ−1
n . (29)

τp̂ in Equation (29) corresponds to our measure of absolute price informativeness when there is a finite
number of investors. There are two differences with respect to the baseline model presented in the
main text. First, there are multiple sources of aggregate noise: the error of the private signal, εs; the
error of he public signal, επ; and the demand of noise traders, n. Second, price informativeness is
modulated by αs + απ instead of by αs because there are two sources of external information about the
fundamental θ.

A Bayesian external observer who only observes the price, learns from the price in the following
way

E [θ| p̂] = τθθ + τp̂ p̂
τθ + τp̂

.

Forecasting price efficiency (FPE) is then given by

VFPE = Var (E [θ| p̂]) =
(

τp̂

τθ + τp̂

)2 (
τ−1

θ + τ−1
p̂

)
=

(
τp̂

τθ + τp̂

)2 (τθ + τp̂

τθτp̂

)
=

τp̂

τθ + τp̂
τ−1

θ . (30)

The expression for FPE in Equation (30) is the predicted variance of cash flows θ from prices. From
this equation, it is easy to see that FPE confounds two effects. FPE can increase due to changes in
the ability of prices to aggregate information,τp̂, or due to changes in the ease of forecastability of
the fundamental, τθ . Hence, conditional on the variance of the fundamental remaining constant, FPE
and price informativeness will co-move. However, without controlling for changes in fundamental
volatility, one cannot make any inferences about price informativeness by looking at FPE.
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