
NBER WORKING PAPER SERIES

MACHINE LEARNING FOR REGULARIZED SURVEY FORECAST COMBINATION: 
PARTIALLY-EGALITARIAN LASSO AND ITS DERIVATIVES

Francis X. Diebold
Minchul Shin

Working Paper 24967
http://www.nber.org/papers/w24967

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2018

This is a revised and extended version of our earlier-circulated manuscript, "Beating the Simple 
Average: Egalitarian LASSO for Combining Economic Forecasts". For comments we are grateful 
to the editors (Domenico Giannone, George Kapetanios, and Mike McCracken), two anonymous 
referees, and Umut Akovali, Xu Cheng, Denis Chetverikov, Edgar Dobriban, Ed George, Mike 
Kearns, Laura Liu, Ken McAlinn, Rob McCulloch, Hashem Pesaran, Veronika Rockova, Zhentao 
Shi, Tara Sinclair, Stephen Stigler, Dongho Song, Allan Timmermann, Weijie Su, Jonathan 
Wright, and Boyuan Zhang. The paper also benefitted from presentations at FRB St. Louis, 
Brown, Chicago, TU Vienna, York, the ECB, and the NBER. The usual disclaimer applies. The 
views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Francis X. Diebold and Minchul Shin. All rights reserved. Short sections of text, not 
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso
and its Derivatives
Francis X. Diebold and Minchul Shin
NBER Working Paper No. 24967
August 2018
JEL No. C53

ABSTRACT

Despite the clear success of forecast combination in many economic environments, several 
important issues remain incompletely resolved. The issues relate to selection of the set of 
forecasts to combine, and whether some form of additional regularization (e.g., shrinkage) is 
desirable. Against this background, and also considering the frequently-found good performance 
of simple-average combinations, we propose a LASSO-based procedure that sets some 
combining weights to zero and shrinks the survivors toward equality ("partially-egalitarian 
LASSO"). Ex-post analysis reveals that the optimal solution has a very simple form: The vast 
majority of forecasters should be discarded, and the remainder should be averaged. We therefore 
propose and explore direct subset-averaging procedures motivated by the structure of partially-
egalitarian LASSO and the lessons learned, which, unlike LASSO, do not require choice of a 
tuning parameter. Intriguingly, in an application to the European Central Bank Survey of 
Professional Forecasters, our procedures outperform simple average and median forecasts – 
indeed they perform approximately as well as the ex-post best forecaster.

Francis X. Diebold
Department of Economics
University of Pennsylvania
133 South 36th Street
Philadelphia, PA  19104-6297
and NBER
fdiebold@sas.upenn.edu

Minchul Shin
Department of Economics
University of Illinois
214 David Kinley Hall
1407 W. Gregory
Urbana, IL 61801
mincshin@illinois.edu



1 Introduction

Forecast combination has a long and successful history in economics.1 Important issues

remain incompletely resolved, however, related to determining the best set of forecasts to

combine (“selection”, e.g., via an information criterion), how to combine those selected (e.g.,

via a linear weighted average), and whether some form of regularization (e.g., via shrinkage)

is desirable given that the historical forecast record is often small relative to the number

of candidate forecasters. Against this background, and also considering the frequently-

found good performance of simple-average combinations, we propose various LASSO-inspired

procedures that address all considerations.

We proceed as follows. In section 2, we highlight aspects of the “equal-weights puz-

zle”, that is, the frequently-found good performance of simple-average combinations, which

motivates our concerns and proposals, and we describe our “partially-egalitarian LASSO”

procedures, which shrink and select in desirable ways. In section 3 we provide ex post empir-

ical assessment of our procedure’s performance. In section 4 we propose and explore direct

ex ante combination procedures motivated by the structure of partially-egalitarian LASSO

and the lessons learned. In section 5 we place our methods in the context of the broader lit-

erature, which notably includes Capistrán and Timmermann (2009), Elliott (2011), Conflitti

et al. (2015), and Samuels and Sekkel (2017), among many others. We conclude in section

6.

2 Partially-Egalitarian LASSO

for Forecast Combination

In this section we consider methods for selection and shrinkage in regression-based forecast

combination. The key new method is “partially-egalitarian LASSO” (peLASSO). We build

to it gradually, arriving at peLASSO in section 2.6.

2.1 Aspects of Optimal Forecast Combination

Although it seems natural to average forecasts (i.e., to use equal-weight combinations), simple

averages are generally suboptimal. To see the theoretical sub-optimality of equal combining

weights, consider K competing unbiased forecasts f 1
t , ..., f

K
t of yt. We form a combined

1For overviews see Diebold and Lopez (1996), Timmermann (2006), and Elliott and Timmermann (2016).



forecast as

Ct = β1f
1
t + β2f

2
t + ...+

(
1−

K−1∑
k=1

βi

)
fKt .

The corresponding forecast errors, eCt and e1t, ..., eKt, have variances σ2
C and σ2

1, ..., σ
2
K ,

and they satisfy the same equality, from which it follows that the variance of the combined

forecast error is minimized using the weight vector

β∗ =
(
Σ−1i

) / (
i′Σ−1i

)
, (1)

where Σ is the variance-covariance matrix of the forecast errors and i is a conformable column

vector of ones (Bates and Granger (1969)). In particular, equal weights – that is, simple

averages – are generally suboptimal.2

It is well known (Granger and Ramanathan (1984)) that the population Bates-Granger

optimal combining weights (1) introduced above may be trivially obtained from the pop-

ulation regression (linear projection) yt → f 1
t , ..., f

K
t , subject to the constraint that the

coefficients add to one.3 So the theoretical optimal linear forecast combination problem is

just a population linear regression (projection) problem, and finite-sample combining weight

estimation involves just a simple linear regression.

Despite the theoretical sub-optimality of equal weights, a large literature finds frequent

good performance of simple averages under quadratic loss. Indeed the forecast combination

“equal weights puzzle”, emphasized long ago by Clemen (1989) and Diebold (1989), refers

to the frequently-found good performance of simple averages.4 The equal weights puzzle has

by now been well-studied and is better understood. Aruoba et al. (2012), for example, work

in population (i.e., without estimation error) and show that: (1) even if simple averages are

not fully optimal, they are likely to be much better than any individual forecast, and (2)

even if simple averages are not fully optimal, they are likely to be close to the optimum. In

2As an example, consider two forecasts with uncorrelated errors. Then (1) reduces to

β∗ =
σ2
2

σ2
1 + σ2

2

=
1

1 + φ2
,

where β∗ is the weight placed on forecast 1 and φ = σ1/σ2. Hence the simple average obtains if and only if
φ = 1. This is entirely natural – we want to give more weight to the forecast with lower-variance errors, so
we take a simple average only in the equal-variance case.

3Moreover, one can allow for biased forecasts by including an intercept, and there is no real need to
impose the “sum-to-one” constraint.

4Note well that the theoretical suboptimality of simple averages, and hence the equal weights puzzle,
refers to combination under quadratic loss. Under other loss functions, equal weights may in fact be optimal.
Aruoba et al. (2012), for example, show that equal weights are optimal under minimax loss.
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addition, Smith and Wallis (2009) show that finite-sample combining-weight estimation error

can seriously degrade empirical attempts at optimal combination, which further increases

the relative attractiveness of simple averages, since they do not involve estimation.

The discussion thus far strongly suggests that simple averages (equal weights) are a

natural shrinkage direction for such combining regressions. With shrinkage, we don’t force

simple averages; rather, we coax things in that direction, blending data (likelihood) informa-

tion with prior information. This amounts to a Bayesian approach with the prior centered

on simple averages.

An important issue remains, however. Particularly when combining large numbers of

forecasts, some forecasts may be largely redundant, or not worth including in the combination

for a variety of other reasons. So we potentially want to set some combining weights to

zero (“select to zero”) and shrink the remaining weights toward equality (“shrink toward

equality”). As we will see, LASSO-based methods almost do the trick – they both select and

shrink – but unfortunately they select to zero and shrink to zero. In the remainder of this

section we begin by expositing standard LASSO, which we then modify until we arrive at our

“partially-egalitarian LASSO”, which selects to zero and shrinks to equality. Interestingly,

each of the estimators introduced en route will prove useful in its implementation.5

2.2 Penalized Estimation for Selection and Shrinkage

Consider a penalized forecast combining regression, with “parameter budget” c,

β̂Penalized = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

s.t.
K∑
i=1

|βi|q ≤ c. (2)

Equivalently, in Lagrange-multiplier form we can write

β̂Penalized = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

|βi|q
 ,

where λ depends on c. Taking λ = 0 produces Bates-Granger OLS combining:

β̂BG = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

.

5For a broad introduction to LASSO and related procedures, see Hastie et al. (2009).
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Many estimators that select and/or shrink, both of which are important for our purposes,

fit in the penalized estimation framework.6

2.3 Shrinkage Toward Equality:

Egalitarian Ridge

Smooth convex penalties in (2) produce pure shrinkage. In particular, q=2 produces Ridge

regression, which shrinks coefficients toward 0:

β̂Ridge = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

βi
2

 .

Taking q=2 and centering the constraint around 1/K produces a modified Ridge regression

that shrinks coefficients toward equality (“egalitarian ridge”, or “eRidge”):

β̂eRidge = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

(
βi −

1

K

)2
 .

eRidge is closely related to the Bayesian shrinkage combining weight estimation of Diebold

and Pauly (1990), who take an empirical Bayes approach using the g-prior of Zellner (1986),

but it is simpler to implement.

Note that, although eRidge will feature later in this paper (which is why we introduced

it), it is inadequate for our ultimate purpose – it shrinks in the right direction but does not

select.

2.4 Selection to and Shrinkage Toward Zero:

LASSO

As we have noted, q=2 produces pure shrinkage (Ridge). Conversely, q → 0 produces pure

selection. The intermediate case q=1 produces shrinkage and selection and is known as a

LASSO estimator:

6One could also add additional constraints. For example, with unbiased forecasts it may be natural to
impose βi≥0,∀i and

∑K
i=1 βi=1, as in Conflitti et al. (2015), but we will not pursue that here.
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β̂LASSO = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

|βi|

 .

The seminal reference is Tibshirani (1996).

There are several variants of LASSO. The most important for our purposes is “adaptive

LASSO” (Zou (2006)), which weights the terms in the penalty to encourage setting small

first-round coefficient estimates to zero,

β̂aLASSO = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

wi|βi|

 ,

where wi = 1/|β̂i|ν , β̂i is OLS or ridge, and ν>0. Others include “elastic net” (Zou and

Hastie (2005)), which uses a convex combination of the LASSO (q=1) and ridge penalties

(q=2), namely
∑K

i=1(α|βi|+(1−α)β2
i ), and “adaptive elastic net”, which blends the adaptive

LASSO and elastic net penalties as
∑K

i=1(αwi|βi|+ (1− α)β2
i ).

Under some assumptions, the adaptive versions (adaptive LASSO and adaptive elastic

net) have the so-called “oracle property”.7 The elastic net variants have good properties

in handling highly-correlated predictors. Adaptive elastic net has both. Unfortunately,

however, all LASSO variants, although improving on ridge insofar as they shrink and select,

remain inadequate for our purposes – they select in the right direction (to zero) but shrink

in the wrong direction (toward zero).

2.5 Selection to and Shrinkage Toward Equality:

Egalitarian LASSO

All of the standard LASSO variants in section 2.4 select and shrink combining weights

toward zero, but that is not what we want. Instead, as discussed in section 2.1, both theory

and experience point clearly to shrinkage toward simple averages. We therefore change the

LASSO penalized estimation problem to

β̂eLASSO = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

∣∣∣βi − 1

K

∣∣∣
 .

7That is, roughly put, they asymptotically select the data-generating process (DGP) almost surely if it
is among the models considered, and they otherwise select the best predictive approximation to the DGP.
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That is, instead of shrinking the weights toward zero, we shrink the deviations from equal

weights toward zero. In Appendix A we show that eLASSO implementation is straightfor-

ward using standard software.

Note that although eLASSO shrinks in the right direction, it is still unappealing, for

reasons opposite those of standard LASSO. Like standard LASSO, eLASSO shrinks and

selects, but whereas LASSO shrinks in the wrong direction, eLASSO selects in the wrong

direction! We nevertheless introduced Ridge, eRidge, LASSO, and eLASSO because the

procedure to which we now turn – which shrinks and selects in the right direction – is

closely related, and because each will feature importantly in our subsequent empirical work.

2.6 Selection to Zero and Shrinkage Toward Equality:

Partially-Egalitarian LASSO

eLASSO does not tend to discard forecasters, because it selects and shrinks toward equal

weights, not toward zero weights. In particular, eLASSO implicitly presumes that all fore-

casters “belong” in the set to be combined. One can easily modify the eLASSO, however,

such that some forecasters are potentially discarded, and then the survivors are selected and

shrunken toward equality. We call this “partially-egalitarian LASSO”.

2.6.1 1-Step Conceptualization

Partially-egalitarian LASSO (peLASSO) solves a penalized estimation problem with two

penalties,

β̂peLASSO = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ1

K∑
i=1

∣∣∣βi∣∣∣+ λ2

K∑
i=1

∣∣∣βi − 1

p(β)

∣∣∣
 , (3)

where p(β) is the number of non-zero elements in β. The first is the standard LASSO

penalty, selecting and shrinking to zero, whereas the second selects and shrinks to equality.

Optimization of this 1-step objective proves difficult, due to discontinuity of the objective

function at βi = 0. We therefore reserve it to future work, proceeding instead with a 2-step

approach.

2.6.2 2-Step Implementation

The obvious 2-step analog of equation (3) above is:

6



Step 1 (Select to Zero): Using standard methods, select k forecasts from among the

full set of K forecasts.

Step 2 (Shrink Toward Equality): Using standard methods, shrink the combining

weights on the k forecasts that survive step 1 toward 1/k.

The obvious method for step 1 is standard LASSO, which requires only one estimation and

moreover can handle situations with K>T , which are not uncommon in forecast combination.

In our subsequent empirical work, for example, such situations are omnipresent, as our

combining regressions involve more forecasters than observations.

One obvious method for step 2 is eRidge, which can be trivially implemented via a stan-

dard Ridge regression with a transformed left-hand-side variable, as discussed in Appendix

A. One can go even farther and use eLASSO for step 2, in which case the complete procedure

would first select some weights to 0, and then select some of the surviving weights to 1/k

and shrink the rest toward 1/k.

In the empirical work of sections 3 and 4 below, we emphasize combining procedures

motivated by 2-step peLASSO.

3 Ex Post Optimal peLASSO Tuning

In this section we begin our empirical work, providing a comparative assessment of vari-

ous forecast combination methods using the European Central Bank’s well-known quarterly

Survey of Professional Forecasters.8 Of course the comparative performance of our meth-

ods, using a particular dataset and a particular implementation (choice of sample period,

choice of tuning parameters, etc.), cannot establish anything conclusively, but it illustrates

our methods in a realistic and important environment, and it provides suggestive evidence

regarding their performance.

We emphasize that in this section, for those procedures that require selection of a tuning

parameter λ, we examine out-of-sample RMSE based on the ex-post optimal λ, i.e., the

λ that optimizes out-of-sample RMSE had we been using it in real time, which we can

determine ex post.9 Hence we endow the forecaster with valuable information not available

ex ante. Subsequently in section 4 we will show how to address the tuning issue ex ante, the

key to which is first understanding the nature of the ex-post solution, to which we now turn.

8See http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html.
9λ could of course be a vector, as with peLASSO.
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3.1 Background

Again, we focus on the European Central Bank’s well-known quarterly Survey of Professional

Forecasters. We consider quarterly 1-year-ahead forecasts of Euro-area real GDP growth

(year-on-year percentage change). However, as noted by Genre et al. (2013), forecasts are

solicited for one year ahead of the latest available outcome. For example, in the 2007Q1

survey, respondents were asked to forecast GDP growth over 2006Q3-2007Q3. Hence our

“one-year-ahead” growth forecasts are actually six to eight months ahead.

We have an unbalanced panel, because forecasters enter and exit in real time, and more-

over, those in the panel at any time do not necessarily respond to the survey. Hence for

ease of analysis we select the 23 forecasters who responded most frequently to the surveys

(1999Q1-2016Q2), and we impute missing observations using a linear filter as in Genre et al.

(2013). We start with the 1999Q1 survey because the survey began then, and we end with

the 2016Q2 survey to ensure that all our growth realizations data are of final revised form,

as we now explain.

Throughout we calculate forecast errors using “realizations” from the 2018Q1 data vin-

tage (pulled 2018M5, when the latest revision of this paper was begun, containing what

we will consider to be final-revised data for quarters through 2016Q4). The first release of

2016Q4 GDP was in 2017M2, and then it went through several revisions. The statistical

agency, Eurostat, makes all “standard” revisions by 100 days after the end of the quarter

(“preliminary” 30 days after, “flash” 45 days after, “regular” 60 days after, and “updated”

100 days after), but additional non-standard revisions sometimes occur after more than 100

days, so we wait approximately a year, using “realizations” from the 2018Q1 vintage, to

ensure that all realizations are approximately “final-revised” values, which is desirable be-

cause forecasters should be forecasting true GDP growth, the best estimate of which is the

final-revised value, not a preliminary release.

We do the forecast evaluation as follows. Our surveys run 1999Q1-2016Q2, corresponding

to growth rate forecasts running 1999Q3-2016Q4. We burn in our estimation using the first

five forecasts 1999Q3-2000Q3, so our actual evaluation period is 2000Q4-2016Q4. We roll

through the evaluation sample, estimating combining weights using a 5-year (20-quarter)

window and producing a 1-year-ahead out-of-sample forecast. For periods 6-20 we simply

estimate using all available data from time 1, despite that fact that there are fewer than 20

observations.10 For periods t > 20 we use a full 20-period estimation window.

We focus on combining methods that involve regularization estimators, which is essential

10We do this so as not to have to discard the first 20 observations, as degrees of freedom are scarce.
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in our context as K > T . Our main comparison involves combined forecasts based on Ridge,

LASSO, eRidge, eLASSO, and three versions of peLASSO (the first step is always LASSO,

and the second step is either simple average, eRidge, or eLASSO).11 Throughout, we compare

the formally-combined forecasts to simple averages.

Each combining method except simple averages requires choosing a tuning parameter, λ,

which governs regularization strength. We examine combined forecast accuracy for many λ’s,

ranging from very light penalization (small λ; all forecasters included in the combination) to

very heavy penalization (large λ; no forecasters included in the combination). Specifically,

we compute forecasts on a grid of 200 λ’s. We start with an equally-spaced grid on [-15,

15], which we then exponentiate, producing a grid on (0, 3269017], with grid coarseness

increasing with λ. This grid turns out to be adequate for all LASSO-based combinations

that we consider.

3.2 Ex Post Results

We present out-of-sample combined forecast RMSE’s in Table 1. There are many relevant

observations. In no particular order:

1. Granger-Ramanathan OLS combination is infeasible, because K>T , so we cannot in-

clude it in the table.

2. No method performs better than the best individual forecaster. (It can happen that a

combined forecast is better than any individual forecast, but it doesn’t happen here.)

3. All methods perform better than the worst individual forecaster.

4. The simple average improves significantly over the worst individual, but it is still

noticeably worse than the best individual.

5. All procedures involving selection to zero select a very small number of forecasters on

average (approximately three).

6. Ridge and LASSO perform about as well as the simple average, despite their shrinking

toward zero weights rather than equal weights.

11Unlike much of the LASSO literature, we do not standardize our data. Standardization is desirable when
the regressors are measured in different units, but that is not the case in forecast combination, so there is
no need.
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Table 1: Forecast RMSE’s Based on Ex-Post Optimal λ’s

Regularization Group RMSE λ∗ # DM p-val

Ridge 1.51 2.66 23.00 -0.14 0.56
LASSO 1.52 0.38 2.71 -0.10 0.54

eRidge 1.50 max 23.00 -1.14 0.87
eLASSO 1.50 3.60 23.00 0.95 0.17

peLASSO (LASSO, Average) 1.40 0.21 2.95 1.06 0.15
peLASSO (LASSO, eRidge) 1.40 (0.21, max) 2.95 1.06 0.15
peLASSO (LASSO, eLASSO) 1.40 (0.21, 3.10) 2.95 1.07 0.15

Comparisons RMSE λ∗ # DM p-val

Best 1.40 N/A 1 0.61 0.27
90% 1.44 N/A 1 0.63 0.27
Median 1.53 N/A 1 -0.57 0.72
10% 1.68 N/A 1 -1.61 0.94
Worst 1.74 N/A 1 -1.55 0.94

Average 1.50 N/A 23 N/A N/A

Notes: λ∗ is the ex-post optimal penalty parameter(s), # is the average number of forecasters
selected, and DM is the one-sided Diebold and Mariano (1995) statistic against a simple
average, with p-value denoted p-val. We compute DM as in Harvey et al. (1999).
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7. eRidge and eLASSO perform exactly as well as the simple average. This is because

the optimal regularization (toward the average) turns out to be very strong, in which

case both eRidge and eLASSO produce a simple average.

8. All peLASSO methods perform identically. The reason is as follows. They regularize

identically in the first step, by construction (all use standard LASSO in step 1). Then,

in the second step, the “LASSO, Average” method averages by construction, and the

remaining methods effectively average as well in the second step, because heavy step-2

regularization turns out to be optimal.

9. The peLASSO methods reduce out-of-sample RMSE relative to the simple average by

almost ten percent.

10. The peLASSO methods have out-of-sample RMSE as good as that of the best fore-

caster. This property is reminiscent of procedures that achieve external regret mini-

mization in the “combining expert advice” problem, as discussed for example in Arora

et al. (2012).

The nature of the ex post optimal solution is contained in results 5 and 8: First discard most

forecasters (result 5) and then simply average the survivors (result 8). The importance of

this “trim and average” solution cannot be over-emphasized, and we will indeed emphasize

and explore it extensively in Section 4.

In Appendix B we show that the results are robust to doing the evaluation only over

periods t > 20, so that we always have an exact 20-period estimation window. In Ap-

pendix C we show that the results are robust (in fact even better) when using aLASSO

rather than LASSO in the 2-step peLASSO. The trim-and-average nature of the ex post

optimal peLASSO solution remains intact throughout: First discard most forecasters, and

then average the survivors.

3.3 On the Importance of λ

The results in Table 1 depend on knowledge of the ex post optimal λ. To get a feel for

the sensitivity to λ, we show RMSE as function of λ in Figure 1. In each sub-figure, the

lighter gray line is the RMSE for simple averaging. Consider first the top row of Figure 1,

in which we show standard Ridge and standard LASSO. They perform similarly in terms of

the optimized value based on the ex post best λ; at that point they are basically indistin-

guishable from each other and from a simple average. In the limit as penalization increases,

11



Figure 1: RMSE as a Function of λ,
Various Forecast Combination Methods

Standard Ridge Standard LASSO

eRidge eLASSO

peLASSO peLASSO
(LASSO in Step 1) (Optimized LASSO in Step 1)

(Simple Average in Step 2) (eLASSO in Step 2)

Notes: In the lower-right panel we implement step 2 by egalitarian LASSO regression on the step-1 selected

forecasters, so there is an additional penalty parameter. We show RMSE as a function of the step-2 penalty,

with the step-1 penalty fixed at its optimal value.
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however, their performance deteriorates as all forecasters are eventually excluded and the

“combined forecasts” therefore approach 0. Finally note that the simple average is never

beaten, including at the ex post optimum λ’s.

Next consider the second row of Figure 1, in which we show eRidge and eLASSO. They

too perform similarly in terms of the optimized value based on the ex post best λ; at that

point they are basically indistinguishable from each other and from a simple average. But

their penalization limit is very different. In the limit as penalization increases, eRidge,

eLASSO, and simple averaging must be (and are) identical. As in the first row of Figure 1,

however, the simple average is never beaten.

Now consider the third row of Figure 1, in which we show peLASSO, in each case with

step 1 done by standard LASSO. In the left panel we implement step 2 by simply averaging

the step-1 selected forecasters, so there is only one penalty parameter to choose. At the ex

post optimum penalty, this 2-step egalitarian LASSO outperforms other methods, including

simple averaging of all forecasters.

In the right panel of the third row of Figure 1 we implement step 2 by eLASSO regression

on the forecasters selected in step 1, so there is a second penalty parameter to choose. Denote

the ex post optimal pair by (λ∗1, λ
∗
2). We show RMSE as a function of λ2, with λ1 fixed at

λ∗1. It turns out that once we select forecasters, it is ex post optimal to shrink those selected

strongly toward a simple average; that is, heavy step-2 penalization (large λ2) is optimal.

The key result is that unlike other methods (rows 1 and 2 of Figure 1), peLASSO methods

(row 3 of Figure 1) offer at least the possibility of beating the simple average. In the remainder

of this paper we explore various strategies for attaining the ex post theoretical peLASSO

gains in ex ante peLASSO practice.

3.4 On the Set of Selected Forecasters

One might wonder about the nature and evolution of the set of forecasters selected by our

peLASSO procedures. The selected forecasters are identical across the procedures, period-

by-period, because the first step is always the same (LASSO). We show them in Figure 2,

as we roll through the sample. The x-axis denotes time, and the y-axis denotes forecaster

ranking, where a smaller y-axis location refers to a forecaster with smaller overall RMSE. A

“+” symbol at location (x, y) indicates that forecaster y was selected at time x.

A number of results emerge. First, The selected set is usually small, with three or

four forecasters (as also mentioned earlier in conjunction with Table 1), yet also usually

“democratic” in the sense that it is composed of some ex-post top performers, some ex-post

13



Figure 2: Selected Forecasters

Notes: The x-axis denotes time, and the y-axis denotes forecaster ranking, where a smaller y-axis location
refers to a forecaster with smaller overall RMSE. A “+” symbol at location (x, y) indicates that forecaster
y was selected at time x.

average performers, and some ex post poor performers. Related, the ex-post best forecaster

(ID 1) is not always selected, and conversely, the ex-post worst forecasters (ID’s 22 and 23)

are sometimes selected, mostly toward the end of the sample following the Great Recession.

Second, the selected set is not dominated by any one forecaster, or a small set of fore-

casters. Different forecasters move in and out of the selected set as we roll through the

sample.12 This may be due to different forecasters having different skills, which are relevant

at different times. Some may be better in recessions and some in recoveries, some may have

more insights into macro-finance interactions, etc.13

Finally, the selected set, although evolving, is not at all independent over time; that is,

the forecasters are not exchangeable. If a forecaster is in the selected set at time t, it is

highly likely that she will be in the selected set at time t+ 1. This is evident from the many

“horizontal streaks” in Figure 2.

12The most frequently selected forecasters are ID 6 (32 of 65 quarters), ID 1 (27 of 65 quarters), and ID
22 (25 of 65 quarters). Five forecasters are never selected: ID’s 2, 4, 7, 14, and 19.

13Note, for example, the long streaks of ID’s 1, 6, and 22 immediately following the Great Recession.
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4 Sophisticated Averaging Inspired by the

Ex Post Optimal peLASSO Tuning

Here, motivated by the structure of the ex post (infeasible) peLASSO solution, we propose

and explore procedures that implement that structure directly (discard most forecasts, and

then average the survivors), while eliminating the need for penalty parameter selection.

Our procedures implicitly perform sophisticated forward-looking cross validation tailored

precisely to the forecasting problem at hand, but again, with no need for penalty parameter

selection.

4.1 “Average Best” Combination

Directly motivated by the ex post peLASSO solution, we select a small number N of “best”

forecasts and average them. There are two ways to do the selection – from an individual

perspective and a portfolio perspective. We consider them in turn.

4.1.1 Individual-Based Average-Best Combination

At each time, rolling forward, we determine the best N individual forecasters over the past 20

quarters, and then we average their 1-year-ahead forecasts. We refer to this as “individual-

based average-best N” forecast combination.

Average-best combination requires choosing N , and the results of course depend on N .

As shown in Table 2, and as expected, for individual-based average-best there is an internal

optimum (minimum) RMSE for small N (3 or 4). The optimized RMSE, moreover, is highly

competitive, much better than the ex post worst forecaster, noticeably better than the simple

average, and indeed about as good as the ex post best forecaster. The DM statistics, however,

are at best only borderline significant, presumably due to the very small forecast evaluation

sample size, as was also the case for infeasible peLASSO.

There is a slight ex post aspect of the good performance of average-best N forecasts,

because the optimal N is not known in ex ante. Instead of fixing N arbitrarily, we can

proceed as follows: At each time examine the historical performance of average-best N for

N=1, ..., Nmax, pick the best, and use that N and those forecasters to produce the forecast.

We refer to this as “ individual-based average-best ≤Nmax” forecast combination, and it also

appears in Table 2. The RMSE’s tend to drop with N , quickly asymptoting around N=3.
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Table 2: Individual-Based Average-Best Forecast Combination

Average-Best N RMSE # DM p-val

N=1 1.46 1 0.33 0.37
N=2 1.42 2 0.77 0.22
N=3 1.41 3 0.84 0.20
N=4 1.41 4 0.95 0.17
N=5 1.42 5 1.09 0.14
N=6 1.43 6 1.11 0.14

Average-Best ≤Nmax RMSE # DM p-val

Nmax=1 1.46 1.00 0.33 0.37
Nmax=2 1.44 1.45 0.55 0.29
Nmax=3 1.44 1.63 0.54 0.30
Nmax=4 1.44 1.74 0.57 0.29
Nmax=5 1.44 1.83 0.57 0.29
Nmax=6 1.44 1.86 0.57 0.29

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 -0.57 0.72
10% 1.68 1 -1.61 0.94
Worst 1.74 1 -1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-sided Diebold and
Mariano (1995) statistic against a simple average, and p-val is the associated p-value. We
compute DM as in Harvey et al. (1999).
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4.1.2 Portfolio(LASSO)-Based Average-Best Combination

We have already noted the “trim and average” form of the ex post optimal peLASSO solution.

It is important to note, however, that its trimming is sophisticated, insofar as peLASSO does

not trim the worst forecasters from an individual perspective. Rather, peLASSO trims the

worst forcasters from a portfolio perspective, that is, those forecasters with the least to

contribute to the combined forecast. The two concepts are very different, and so far we

have considered only the individual perspective. The portfolio perspective suggests a related

but different portfolio-based average-best N strategy: At each time, rolling forward, use the

LASSO to determine the best N forecasters over the relevant window, and then average

their forecasts. We refer to this as “LASSO-based average-best N” forecast combination.

Results appear in Table 3, which also includes results for LASSO-based average-best ≤Nmax

combinations. Surprisingly, the LASSO-based average-best forecasts perform no better – in

fact they are slightly worse – than the individual-based average-best forecasts.

4.2 “Best Average” Combination

In the “average best” approach above, at each time, rolling forward, we select some best

forecasters and average their forecasts. Here we move to a “best average” approach, instead

selecting directly over averages. At each time, rolling forward, we simply find the historically

best-performing average, and use it. Best-average is the more direct approach.

A first strategy is “best N -Average”. At each time we use a 20-quarter window and deter-

mine the best-performing N -forecast average and use it. A second strategy is “best ≤Nmax-

Average”. At each time we use a 20-quarter window and determine the best-performing

≤Nmax-forecast average and use it.

Best-average combining can involve significant computation depending on K and N or

Nmax. For example, with 23 forecasters finding the best 6-average requires computing 23C6

(=100, 947) simple averages and then sorting them to determine the minimum, each period

as we roll through time. The per-period computational burden of ≤Nmax-forecast averaging

is still larger, because we now consider all subsets. For example, finding the best ≤ 6-average

with 23 forecasters requires computing 23C6 +23 C5 + ... +23 C1 (=145, 498) simple averages

and then sorting them to determine the minimum. Fortunately, the relevant K and Nmax

are quite small in typical economic forecast combinations. In our case, for example, K=23,

and Nmax≤6 appears more than adequate.

In Table 4 we show results for both best N -average combinations (N=1, ..., 6) and best
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Table 3: LASSO-Based Average-Best Forecast Combination

Average-Best N RMSE # DM p-val

N=1 1.56 1 -1.59 0.94
N=2 1.53 2 -0.55 0.71
N=3 1.45 3 0.87 0.19
N=4 1.45 4 0.92 0.18
N=5 1.46 5 0.86 0.20
N=6 1.47 6 0.89 0.19

Average-Best ≤Nmax RMSE # DM p-val

Nmax=1 1.56 1 -1.59 0.94
Nmax=2 1.50 1.82 0.14 0.45
Nmax=3 1.47 2.35 0.55 0.29
Nmax=4 1.47 2.51 0.54 0.29
Nmax=5 1.47 2.57 0.57 0.29
Nmax=6 1.47 2.57 0.57 0.29

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 -0.57 0.72
10% 1.68 1 -1.61 0.94
Worst 1.74 1 -1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-sided Diebold and
Mariano (1995) statistic against a simple average, and p-val is the associated p-value. We
compute DM as in Harvey et al. (1999).
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Table 4: Best-Average Forecast Combination

Best N -Average RMSE # DM p-val

N=1 1.46 1 0.33 0.37
N=2 1.41 2 0.80 0.21
N=3 1.42 3 0.78 0.22
N=4 1.41 4 0.92 0.18
N=5 1.42 5 1.11 0.13
N=6 1.42 6 1.28 0.10

Best ≤Nmax-Average RMSE # DM p-val

Nmax=1 1.46 1 0.33 0.37
Nmax=2 1.44 1.52 0.61 0.27
Nmax=3 1.44 1.72 0.60 0.27
Nmax=4 1.44 1.80 0.60 0.28
Nmax=5 1.44 1.83 0.61 0.27
Nmax=6 1.44 1.83 0.61 0.27

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 -0.57 0.72
10% 1.68 1 -1.61 0.94
Worst 1.74 1 -1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-sided Diebold and
Mariano (1995) statistic against a simple average, and p-val is the associated p-value. We
compute DM as in Harvey et al. (1999).
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≤Nmax-average combinations (Nmax=1, ..., 6). For both variations, the optima are achieved

for small N or Nmax. One might expect best-average methods to outperform average-best,

because best-average directly targets the object of interest. Although best-average does not

outperform, it also does not underperform: It is at least as good as anything else. Best

average ≤6 RMSE is almost as good as that of the best individual, much better than that

of the median individual, and importantly, better than that of the simple average.

4.3 On Estimation Window Width

The essence of the rolling best-average approach is simply to use the particular average

that has performed best in the “recent” past. But there is of course no reason why the

appropriate notion of “recent” (that is, the appropriate choice W of the most-recent W

quarters for evaluation) should be W=20. Using a more complete notation, let us denote

our earlier best N -average as best (N, 20)-average, to indicate both an N -forecast average

and a 20-period evaluation window. Generically, then, we can speak of best (N,W )-average

or best (≤Nmax,W )-average combinations.

In the first panel of Table 5 we show results for best (≤Nmax,W )-average combinations

with Nmax=6 and W ranging from 1 through 40. The RMSE performance of the best

(≤6,W )-average approach is relatively insensitive to W , but it is clearly optimized for very

small W , around 2 or 3. Interestingly, the average number of forecasters selected around the

optimal W is also very small (N≈2). So the optimal procedure (best (≤6, 2)-average) is very

“localized” – each period it basically averages the two forecasts of the two forecasters who

have performed best during the past two quarters. It has RMSE better than the ex post

best forecaster, and much better than the average forecaster, with a DM p-value of 0.07.

We can also allow for time-varying window width W ; that is, we can work with best

(≤Nmax,≤Wmax)-averages, which are completely ex ante. They turn out to work very well:

The best (≤6,≤40)-average (in the one-line middle panel of Table 5) has RMSE better

than the best forecaster, and much better than the average forecaster – with a DM p-value

of 0.11. All told, allowing for time-varying window width appears highly valuable.

5 Related Literature

Now that we have introduced our approach, we can relate it to certain aspects of the broader

literature.
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Table 5: Forecast Combination

Best (≤6,W )
-Average RMSE #N #W DM p-val

W=1 1.42 1.14 1 1.14 0.13
W=2 1.36 1.54 2 1.50 0.07
W=3 1.37 1.45 3 1.41 0.08
W=4 1.40 1.29 4 1.10 0.14
W=5 1.42 1.41 5 0.93 0.18
W=6 1.42 1.43 6 0.81 0.21
W=7 1.44 1.43 7 0.65 0.26
W=8 1.46 1.54 8 0.41 0.34
W=9 1.47 1.70 9 0.37 0.36
W=10 1.46 1.70 10 0.43 0.33
W=15 1.44 1.77 15 0.66 0.26
W=20 1.44 1.78 20 0.61 0.27
W=25 1.46 1.57 25 0.40 0.34
W=30 1.48 1.62 30 0.19 0.42
W=35 1.48 1.67 35 0.29 0.39
W=40 1.48 1.74 40 0.22 0.41

Best (≤6,≤40)
-Average 1.38 1.38 2.02 1.24 0.11

Comparisons RMSE #N #W DM p-val

Best 1.40 1 N/A 0.61 0.27
90% 1.44 1 N/A 0.63 0.27
Median 1.53 1 N/A -0.57 0.72
10% 1.68 1 N/A -1.61 0.94
Worst 1.74 1 N/A -1.55 0.94

Average 1.50 23 N/A N/A N/A

Notes: #N is the average number of forecasters selected, #W is the average window width
selected, DM is the one-sided Diebold and Mariano (1995) statistic against a simple average,
and p-val is the associated p-value. We compute DM as in Harvey et al. (1999).
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5.1 On Selection

The structure of the peLASSO solution, which motivates our direct average-best and best-

average procedures, clearly involves harsh “trimming” – resulting in the elimination of most

forecasters. Trimming has been used in forecast combination by many authors, such as Stock

and Watson (1999), Aiolfi and Favero (2005), Aiolfi and Timmermann (2006), Bjørnland

et al. (2012), and Genre et al. (2013). But as noted by Granger and Jeon (2004), the

attractiveness of trimming may be “more of a pragmatic folk-view than anything based on

a clear theory”.

One can view our results as showing the clear emergence of the “folk view” in a frame-

work rigorously based on a “clear theory”. In particular, although the peLASSO solution

in principle need not involve trimming (i.e., it is possible for the peLASSO solution to fea-

ture shrinkage but not selection), we have shown that in practice it does, and indeed that

it involves heavy trimming. Interestingly, Samuels and Sekkel (2017) obtain the same re-

sult using a very different approach based on the “model confidence sets” of Hansen et al.

(2011). Note, moreover, that both our trimming procedure (in peLASSO, LASSO-based

average-best, and best-average) and that of Samuels and Sekkel (2017) are generally quite

sophisticated insofar as they trim from a portfolio perspective rather than a stand-alone

perspective. Most impressively, Conflitti et al. (2015) impose sum-to-one and non-negativity

constraints, which lead to a sparse solution (that is, some of combination weights are exactly

zero) with combining weights shrunken – indeed forced – to be in [0, 1], all of which is in

close touch with the concerns of forecast combination.14

5.2 On Shrinkage

Several authors have considered Bayesian shrinkage of combining weights. As is well known,

under standard conditions the Bayes rule under quadratic loss is

β1 = β0 + δ
(
β̂OLS − β0

)
,

where β1 is the posterior mean combining weight vector, β0 is the prior mean vector, and

δ∈[0, 1] is inversely related to prior precision. Other things equal, a small value of δ implies

high prior precision and hence substantial shrinkage toward β0. The larger is δ, the less

shrinkage occurs. Different authors invoke different shrinkage directions (prior means) and

different ways of choosing δ. Relevant literature includes Diebold and Pauly (1990), Chan

14Their estimator can be shown to be a special case of LASSO.
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et al. (1999), Stock and Watson (2004), Aiolfi and Timmermann (2006), and Genre et al.

(2013).

In an interesting development, Capistrán and Timmermann (2009) take a reverse ap-

proach. Whereas Bayesian shrinkage adjusts least-squares combining weights toward a sim-

ple average, Capistrán and Timmermann (2009) start with a simple average and adjust away

from it via a Mincer-Zarnowitz regression, yt → c, f̄t.

5.3 Relatives of peLASSO

The reverse approach of Capistrán and Timmermann (2009) has an interesting connection to

the so-called “OSCAR LASSO” proposed by Bondell and Reich (2008), which is also closely

related to our methods.

First let us introduce OSCAR. It is defined by the penalized regression:

β̂OSCAR = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βixit

)2

s.t. (1− γ)
K∑
i=1

|βi|+ γ
∑
j<k

max {|βj|, |βk|} ≤ c. (4)

The first part of the constraint involves the L1 norm; it is just the standard LASSO con-

straint, producing selection and shrinkage toward zero. The second part of the constraint

involves the pairwise L∞ norm, which selects and shrinks toward equal coefficients. Overall,

then, OSCAR regression encourages parsimony not only in standard LASSO fashion, but

also by encouraging a small number of unique nonzero coefficients on surviving covariates.15

Now let us link to Capistrán and Timmermann (2009). Suppose that the OSCAR solution

is “all coefficients are the same”. This can occur because of the second part of the OSCAR

constraint. Then the combined forecast is

Ĉt = β̂
K∑
i

fi,t

= α̂

(
1

K

K∑
i=1

fi,t

)
,

15Note, however, that although OSCAR shrinks toward “equal weights”, the equal weights need not cor-
respond to simple averages (e.g., each of three selected forecasters might get weight 1/2). This is potentially
very important in our context.
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which is the forecast we get by projecting the realized outcome on equal-weight forecasts, as

in Capistrán and Timmermann (2009). The OSCAR solution may also have more than one

unique coefficient. In particular, it may have multiple groups, as for example with

Ĉt = β̂1
∑
i∈G1

fi,t + β̂2
∑
i∈G2

fi,t

= α̂1

(
1

N1

∑
i∈G1

fi,t

)
+ α̂2

(
1

N2

∑
i∈G2

fi,t

)
,

where Gk={i: β̂i=β̂k} and Nk is the size of group Gk. The approaches of Aiolfi and Timmer-

mann (2006) and Genre et al. (2013), which allow for grouping, are in the same spirit, as

are the “homogeneity pursuit” procedure of Ke et al. (2015) and the “HORSES” procedure

of Jang et al. (2015).

5.4 Relatives of Average-Best and Best-Average

Burgi and Sinclair (2017) is related to our average-best approach, essentially amounting to a

refinement of our “individual” average-best. They proceed as follows: (1) For each forecaster,

calculate a variable that takes a value of 1 in a given period if that forecaster has a lower

squared error in that period than the simple average and 0 otherwise16; (2) If a forecaster

beats the simple average more often than a percentage threshold p, include that forecaster in

the selected subset for the next forecasting period; (3) Average over the selected forecasters.

The work most closely related to ours, however, is the seminal and to our knowledge

relatively-unknown work of Elliott (2011), who examines gains from optimal combination

relative to simple averaging, provides conditions under which the two are equivalent, and

explores aspects of what he calls “best subset averaging”. Effectively we provide a foundation

for Elliott’s subset-averaging procedures, which initially appears ad hoc in theory, even if

highly effective in practice. That is, we show that Elliott’s procedures are not ad hoc in

theory.

16The time-average of this variable is the historical percentage share of times that the forecaster has beaten
the average.
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6 Concluding Remarks

Against a background of frequently-found superiority of simple-average forecast combina-

tions, we have proposed “partially egalitarian LASSO” (peLASSO) procedures that discard

some forecasts and then select and shrink – without forcing – those remaining toward equal

weights. We found that the peLASSO solution involves discarding most forecasters and

simply averaging the survivors. We therefore proposed alternative direct combination pro-

cedures, most notably “best average” combinations, and we showed that they appear highly

competitive for out-of-sample forecasting. In particular, they often dominate simple averages

in forecasting Eurozone GDP growth.

A key insight is that the structure and success of our averaging procedures are entirely

motivated by and consistent with the lessons learned from peLASSO. Among other things,

we learn from peLASSO that (1) The selection penalty should be quite harsh – only a few

forecasts need be combined, (2) The forecasts selected for combination should be regularized

via shrinkage, (3) The shrinkage direction should be toward a simple average, not toward zero,

or anything else, and (4) The shrinkage should be extreme, so that the selected forecasts

should simply be averaged. All of this is embedded in our best ≤(Nmax,Wmax)-average

procedure, for small Nmax and Wmax.

Appendices

A Egalitarian LASSO and Egalitarian Ridge Imple-

mentation

Egalitarian LASSO can be implemented via a straightforward adaptation of standard LASSO

software, such as the R package glmnet, written by J. Friedman, T. Hastie, N. Simon, and R.

Tibshirani, at https://cran.r-project.org/web/packages/glmnet/index.html. Simply

note that

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣ =
T∑
t=1

(
yt − f̄t + f̄t −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣
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=
T∑
t=1

(
(yt − f̄t) +

K∑
i=1

(
1

K
− βi

)
fit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣
=

T∑
t=1

(
(yt − f̄t)−

K∑
i=1

δifit

)2

+ λ

K∑
i=1

|δi|,

where

δi = βi −
1

K
and f̄t =

1

K

K∑
i=1

fit.

Hence we obtain the egalitarian LASSO regression,

yt →EgalLASSO f1t, ..., fKt,

by simply running the standard LASSO regression,

(yt − f̄t) →LASSO f1t, ..., fKt. (A.1)

Similarly, egalitarian ridge can be trivially implemented by (yt − f̄t) →Ridge f1t, ..., fkt,

in precise parallel with egalitarian LASSO implementation.
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B Equal-Length, 20-Quarter, Evaluation Windows

Here we start from t=21 rather than t=6 when evaluating forecasts; hence the estimation

sample sizes are always of length 20. The results, reported in Table 6, are qualitatively

identical to those reported in the main text, for which the estimation sample sizes grow until

t=21, after which they are always of length 20.

Table 6: Forecast RMSE’s Based on Ex-Post Optimal λ’s,
Evaluation Starts at t=21

Regularization Group RMSE λ∗ # DM p-val

Ridge 1.60 2.29 23.00 0.65 0.26
LASSO 1.61 0.38 2.78 0.22 0.42

eRidge 1.58 1.97 23.00 0.96 0.17
eLASSO 1.60 0.51 23.00 0.82 0.21

peLASSO (LASSO, Average) 1.51 0.21 3.12 1.14 0.13
peLASSO (LASSO, eRidge) 1.50 (0.21, 3.10) 3.12 1.06 0.15
peLASSO (LASSO, eLASSO) 1.50 (0.21, 0.51) 3.12 1.03 0.16

Comparisons RMSE λ∗ # DM p-val

Best 1.49 N/A 1 0.76 0.23
90% 1.54 N/A 1 0.93 0.18
Median 1.65 N/A 1 -0.38 0.65
10% 1.82 N/A 1 -1.37 0.91
Worst 1.90 N/A 1 -1.46 0.92

Average 1.64 N/A 23 N/A N/A

Notes: λ∗ is the ex-post optimal penalty parameter(s), # is the average number of forecasters
selected, and DM is the one-sided Diebold and Mariano (1995) statistic against a simple
average, with p-value denoted p-val. We compute DM as in Harvey et al. (1999).
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C Adaptive Partially-Egalitarian LASSO

We change the LASSO penalty from λ
∑K

k=1 |βk| to λ
∑K

k=1
1

|β̂|1/3 |βk|, where β̂ is a preliminary

consistent estimator, which we set to the Ridge regression estimate. Use of aLASSO improves

the ex post performance of 2-step LASSO procedures, as can be seen in Table 7.

Table 7: RMSE’s Based on Ex-Post Optimal λ’s,
Using Adaptive Lasso

Regularization Group RMSE λ∗ # DM p-val

Ridge 1.51 2.66 23.00 -0.02 0.51
LASSO 1.46 0.80 2.09 0.22 0.41

eRidge 1.49 1.97 23.00 0.15 0.44
eLASSO 1.50 max 23.00 0.55 0.29

peLASSO(aLASSO, Average) 1.33 1.08 1.69 0.95 0.17
peLASSO (aLASSO, eRidge) 1.33 (1.08, max) 1.69 0.95 0.17
peLASSO (aLASSO, eLASSO) 1.33 (1.08, max) 1.69 0.95 0.17

Comparisons RMSE λ∗ # DM p-val

Best 1.40 N/A 1 0.61 0.27
90% 1.44 N/A 1 0.63 0.27
Median 1.53 N/A 1 -0.57 0.72
10% 1.68 N/A 1 -1.61 0.94
Worst 1.74 N/A 1 -1.55 0.94

Average 1.50 N/A 23 N/A N/A

Notes: λ∗ is the ex-post optimal penalty parameter(s), # is the average number of forecasters
selected, and DM is the one-sided Diebold and Mariano (1995) statistic against a simple
average, with p-value denoted p-val. We compute DM as in Harvey et al. (1999).
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