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1 Introduction

Educational achievement is among the most important determinants of welfare, both individ-
ually and nationally, and as a result there exists a vast literature examining educational choices
and production. Yet to date, lasting effects of ordinal academic ranks (conditional on achievement)
have not been considered. Why might rank matter? It is human nature to make social comparisons
in terms of characteristics, traits and abilities (Festinger, 1954). When doing so, individuals often
use cognitive shortcuts (Tversky and Kahneman, 1974). One such heuristic is to use simple ordinal
rank information instead of more detailed cardinal information. Indeed, recent papers have shown
that individuals use ordinal rank position, in addition to relative position, to make comparisons
with others and that these positions affect happiness and job satisfaction (Brown et al., 2008; Card
et al., 2012). The intuition for such effects is the following: David is smarter than Thomas, who is
in turn smarter than Jack. These comparisons focus not on the magnitude of the differences but
the ranking of individuals. These comparisons can affect individuals’ beliefs about themselves and
their abilities. Following this intuition, the way we think of ourselves would partly determined by
our immediate environment, and this could affect later outcomes by influencing the actions and
investment decisions of ourselves or others.

This paper applies this idea to education and presents the first empirical evidence that a stu-
dent’s academic rank during primary school has impacts throughout secondary school. In our
main specifications, we regress outcomes during secondary school on externally marked end-of-
primary test scores and on the corresponding ranks within their classroom. We find that primary
rank has important independent effects on later test scores, subject-choice and subject-specific con-
fidence, in a new setting with peers and teachers that are unaware of a student’s ranking in primary
school. Therefore we show that ordinal information in addition to cardinal information has the po-
tential to affect investment decisions. Our analysis proposes novel approaches for isolating rank
effects by exploiting idiosyncratic variation in the test score distributions across primary schools
combined with the nature of ordinal and cardinal information.

First, idiosyncratic variation in the distribution of primary school peer quality arises naturally
because primary school classes are small and students vary in ability. Figure 1 provides a stylized
illustration of this. The figure shows two classes of eleven students, with each mark representing
a student’s test score, increasing from left to right, which can be used to rank students. The classes
are very similar having the same mean, minimum, and maximum student test scores. However,
two students with the same absolute and relative-to-the-mean test score, can still have different
ranks. For example, a student with a test score of Y in Class A would have a lower rank (R=5)
than the same test score in Class B (R=2). Similarly, a test score of X would be ranked differently in
Classes A and B. Notably, this variation will occur across any classrooms, both within and across
cohorts, schools and subjects. For example, in one cohort a student with a test score of 80 would be
the second of their class, while in the next cohort the same score would place them fifth. Similarly,
Class A and Class B of Figure 1 could represent the same set of students in two different subjects
or two classes in the same cohort and subject but in different schools.

Second, in addition to the across class variation in test score distributions we can rely on within
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class differences between ordinal and cardinal measures of achievement to estimate rank effects.
To do this, note that the ordinal ranking of each individual will be coarser than the cardinal test
scores in small groups, meaning that a change in test scores would not necessarily cause a change in
rank. This differential coarseness allows isolating the rank effect under the assumption that there
exists an otherwise smooth relationship between primary and secondary school performance. One
can consider this to be analogous to a regression discontinuity approach with primary school test
scores as the running variable and rank as treatment status, where rank jumps up by one unit
whenever the test score exceeds that of the next student in that group.

These two approaches rely on different assumptions regarding the relation between primary
and secondary school test scores. The first approach assumes that test scores can be compared
across classrooms. However, the same baseline score of X might represent different underlying
abilities in different situations (Figure 1). A student with this score in a class with better resources
(e.g. teachers), would have a lower ability than an equivalent student who attended a class with
worse resources. This is problematic because such environmental factors would impact cardinal
measures of achievement but not ordinal measures. Therefore, the rank parameter may pick up
information about unobserved ability. To account for any such mean shifting factors, we always
include fixed effects at the primary school-subject-cohort (SSC) level. These fixed effects remove
the between SSC-group differences in long run attainment growth due to any group-level factor
that enters additively and affects all students in the same way. As the median primary school has
only 27 students per cohort and the maxium primary class size is 30, we think of these SSC fixed
effects as subject-specific class fixed effects. Therefore, when we refer to ‘classes,’ we are referring
to school-subject-cohorts (SSC),note that students will have the same peers and teachers in these
classes within a school-cohort. This takes us back to the original thought experiment, Figure 1,
where two students (or the same student in different subjects) with the same test score can have
different ranks. As a result, we can control for effects of primary achievement non-parametrically
by including a dummy variable for each test score.

The second approach further relaxes the assumption that the same test score represents the
same underlying ability in different classes. This comes at the cost of assuming a smooth function
for the effect of primary on secondary test scores. Now, in addition to the mean-shifting effects
(captured by the SSC effects), we allow the transformation of primary to secondary test scores to
vary by cohort, subject or school. This is implemented by interacting smooth polynomials of prior
achievement with cohort- subject- or school fixed effects.

In our preferred specifications, we allow for a third-order polynomial in primary test scores,
SSC fixed effects and a linear rank effect, the estimates of which are robust to more flexible spec-
ifications. In our most demanding specifications, we exploit the fact we measure achievement of
each student in three subjects. Specifically, we use the variation in ranks within a student across
the three subjects by additionally including student fixed effects. This absorbs the average growth
rate of the individual across subjects from primary school to secondary school, absorbing any un-
observed individual level characteristics or shocks.

To address the common identification challenges of sorting and reflection and unobserved
shocks, we exploit unique features of the English educational system also used by Lavy et al.
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(2012) and Gibbons and Telhaj (2016). In England, students moving from primary to secondary
school have on average 87 percent new peers. As a result, the primary school test scores can be
regarded as predetermined measure of achievement and therefore as unaffected by reflection and
common unobserved shocks. In addition, schools are not allowed to choose students based on
ability or rank. In our robustness section, we test the validity of both of these claims.

In our main analysis, we use administrative data on five cohorts of the entire English state
school sector covering over 2.25 million students from the end of primary school to the end of
secondary school. In England, all students are tested in English, Math, and Science at the end
of primary school (age 11) and twice during secondary school (ages 14 and 16). We use these
scores to construct a dataset tracking student performance over time, with an observation for each
student in each subject. These national assessments are marked externally from the school and are
intended to be absolute measures of individual achievement; hence, scores are not set to a curve
at class, school, district, or country level. We use the age-11 baseline score to rank every student
among their primary school cohort peers in the three subjects. Our outcome variables are national
assessments in secondary school at age 14, age 16 and final year subject choices at age 18. The
census data includes gender, Free School Meals Eligibility (FSME) and student ethnicity, for which
we control.

Our first main finding is that conditional on highly flexible measures of cardinal performance in
primary school, a student’s ordinal rank in primary school is predictive of their academic achieve-
ment during secondary school. Students achieve higher test scores in a subject throughout sec-
ondary school if they had a high rank in that subject during primary school, conditional on a
flexible baseline performance measure and SSC effects. The effects of rank that we present are
sizable in the context of the education literature, with a one standard deviation increase in rank
improving age-14 and age-16 test scores by about 0.08 standard deviations. Estimates that account
for individual unobservables, including average ability and any rank effects constant across sub-
jects, are smaller. Here, a one standard deviation increase in rank improves subsequent test scores
in that subject by 0.055 within student standard deviations. These effects vary by pupil character-
istics, with boys being more affected by their rank than girls throughout the rank distribution, and
with students who are FSME not being negatively impacted by being below the median rank, but
gaining relatively more from being ranked highly.

Our second finding is the that primary school rank impacts the choice of subjects taken at the
end of secondary school. England has an unconventional system where students typically choose
to study only three subjects in the last two years of secondary school. These subject choices have
long lasting repercussions, as not choosing any STEM subjects at this point removes the option
of studying them at university. Here, we find that conditional on achievement, being at the top
of the class in a subject during primary school rather than at the median increases the probability
of an individual choosing that subject by almost 20 percent. Moreover, being highly ranked in
Maths in primary school means that students will be less likely to choose English. We argue that
this highlights an undiscovered channel that contributes to the well-documented gender gaps in
the STEM subjects and the consequential labor market outcomes (Guiso et al., 2008; Joensen and
Nielsen, 2009; Bertrand et al., 2010).
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We perform a number of robustness checks to address remaining concerns that would chal-
lenge the interpretation of the rank parameter. First, we test the assumption that parents are not
sorting to primary schools on the basis of rank. Second, we show our results are robust to func-
tional form assumptions. Third, we check for balancing of class rank on observable characteristics,
conditional on test scores. Finally, we address the broader issue of systematic and non-systematic
measurement error in the baseline test scores, which are used to generate the rank measures.

We go on to consider several explanations for what could be causing these estimated rank
effects. By combining the administrative data with survey data of 12 thousand students, we test the
relevance of competitiveness, parental investment (through time or money), school environment
favoring certain ranks (i.e., tracking), and confidence. Using our main specification, our third
empirical finding is that primary school rank in a subject has an impact on self-reported confidence
in that subject during secondary school. In parallel to what we find with regards to academic
achievement, we also find that boys’ confidence is more affected by their school rank than girls’.

This higher confidence could be indicative of two mechanisms. First, confidence could be re-
flective of students learning about their own strengths and weaknesses in subjects, similar to Az-
mat and Iriberri (2010) or Ertac (2006) where students use their test scores and cardinal relative
positions to update beliefs. Alternatively, consistent with the Big Fish Little Pond effect, which
has been found in many countries and institutional settings (Marsh et al., 2008), confidence due to
rank improves non-cognitive skills and lowers the cost of effort in that subject. The idea is that,
when surrounded by people who perform a task worse than oneself, one develops confidence in
that area. So, if a student is confident in her maths skills, she will be more resilient and have more
grit in solving maths exercises compared to another student of the same ability but different con-
fidence. Using a stylized model of students trying to maximise test scores for a given total effort
and ability level across subjects, we derive a test to distinguish the Big Fish Little Pond from the
leaning mechanism and find evidence in favor of the former. We find these effects exist in the
education setting, but there is no reason to believe that the principal of ordinal rank effects do not
occur in other setting such as firms, families and academic departments.

It is important to point out that this paper is complementary to–but distinct from–a number of
existing literatures. First, any rank effects are a form of peer effect. The classic peer effects papers
consider the mean characteristics of others in the group (Sacerdote, 2001; Whitmore, 2005; Kremer
and Levy, 2008; Carrell et al., 2009; Lavy et al., 2012), but other relationships have also been con-
sidered. For example, (Lavy et al., 2012) use the same data and find no effects of contemporaneous
linear-in-mean peer effects in secondary school but find that a one standard deviation increase in
the proportion of “bad peers” in a subject lowers student test scores in that subject by 3.3 percent
of a standard deviation. The common theme in all of these papers is that individuals benefit from
being surrounded by higher performing individuals. In contrast, we find that having had a one
standard deviation higher rank, and therefore worse-performing peers, in a subject in primary
school increases secondary school test scores by 0.05 standard deviations.1 The other core differ-
ence from the many of the peer papers is that they focus on estimating contemporaneous effects of

1 Hoxby and Weingarth (2005) introduce the invidious comparison peer effect, where being surrounded by better peers
also has negative effects.
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peers. This paper instead estimates the impacts of previous peers on individuals’ outcomes when
surrounded by new peers, conditional on outcomes from the previous peer environment. In doing
so, it averts issues relating to reflection and establishes that these effects are long-lasting in stu-
dents. This is similar to Carrell et al. (2016), who use cohort-variation during elementary school to
estimates the causal effect of disruptive peers on long-run outcomes.

This study is also related to the literature on status concerns and relative feedback. Tincani
(2015) and Bursztyn and Jensen (2015) find evidence that students have status concerns and will
invest more effort if gains in ranks are easier to achieve and Kuziemko et al. (2014) find evi-
dence for last-place aversion in laboratory experiments.These results are similar to findings from
non-education settings where individuals may have rank concerns such as in sports tournaments
(Genakos and Pagliero, 2012), and in firms with relative performance accountability systems (i Vi-
dal and Nossol, 2011). We differ from this literature because we estimate the effects of rank in a new
environment, where status concerns or information about prior ranks do not matter.2 With regard
to the feedback literature, Bandiera et al. (2015) find that the provision of feedback improves sub-
sequent test scores for college students. Specifically relating to relative feedback measures, Azmat
and Iriberri (2010) and Azmat et al. (2015) find that their introduction during high school increases
productivity in the short run. In contrast, this paper does not examine the contemporaneous re-
action to a new piece of information but rather examines student reactions to previous ranking.
Finally, the most closely related literature is that on rank itself. These papers account for relative
achievement measures and estimate the additional impact of ordinal rank on contemporaneous
measures of well-being (Brown et al., 2008) and job satisfaction (Card et al., 2012). We contribute
to this literature by establishing long-run effects on objective outcomes.3

Besides policy implications (which we discuss in the conclusion), our findings help to reconcile
a number of topics in education. Persistent rank effects could partly speak towards why some
achievement gaps increase over the education cycle (Fryer and Levitt, 2006; Hanushek and Rivkin,
2006, 2009). Potentially, rank effects amplify small early differences in attainment. A similar ar-
gument could be made for the persistence of relative age effects, which show that older children
continue doing better than their younger counterparts (Black et al., 2011). Similarly, research on
selective schools and school integration has shown mixed results from students attending selec-
tive or predominantly non-minority schools (Angrist and Lang, 2004; Clark, 2010; Cullen et al.,
2006; Kling et al., 2007; Abdulkadiroglu et al., 2014). Many of these papers use a regression dis-
continuity design to compare the outcomes of the students that just passed the entrance exam to
those that just failed. The common puzzle is that many of these marginal students do not benefit
from attending these selective schools.4 The findings of this paper suggest that potential benefits
of prestigious schools may be attenuated through the development of a drop in confidence among

2 We show in section 2.1 that contemporaneous rank effects at primary school are controlled for in our setting, and if
these were transitory would lead to a downward bias in the long-run estimate. Cicala et al. (2017) show that status
concerns in peer groups can affect students contemporaneous behavioural and academic outcomes.

3 Since the publication of the first working paper version of this manuscript, a new literature has emerged that estimates
contemporaneous rank effects using the empirical approach put forward by this paper with survey data, giving us
full credit e.g., Elsner and Isphording (2017, 2018)

4 Similar effects are found in the Higher Education literature with respect to affirmative action policies (Arcidiacono
et al., 2012; Robles and Krishna, 2012).
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these marginal/bussed students, who are also necessarily the low-ranked students in their new
school.

Section 2 discusses the empirical strategy and identification. Section 3 describes the English ed-
ucational system, the data and the definition of rank. Section 4 presents the main results. Sections
5 and 6 show robustness and heterogeneity. Section 7 lays out potential mechanisms and provides
additional survey evidence. In section 8, we conclude by discussing other topics in education that
corroborate with these findings and possible policy implications.

2 A Rank-Augmented Education Production Function

This sections builds upon a basic education production function set out how to estimate the
long run impact of prior rank on outcomes. The focus here is on the empirical estimation and
the assumptions required for the identification of the reduced form rank effect, without any direct
interpretations of the mechanism that we discuss in section 7.

2.1 Specification

To begin, we consider a basic contemporaneous education production function using the frame-
work as set out in Todd and Wolpin (2003). For student i in primary school j, studying subject s in
cohort c and in time period t = [0, 1]:

Yt
ijsc = x

′
iβ + vt

ijsc

vt
ijsc = µjsc + τi + εt

ijsc

where Y denotes academic achievement determined by xi a vector of observable non-time vary-
ing characteristics of the student and vt

ijsc representing the unobservable factors. Here β represents
the permanent impact of these non-time-varying observable characteristics on academic achieve-
ment. Applied to our setting, students attend primary school in t = 0 and then secondary school
in t = 1. The error term vt

ijsc has three components. µjsc represents the permanent unobserved
effects of being taught subject j in primary school s in cohort c. This could reflect that the effect
of a teacher being particularly good at teaching maths in one year but not English, or that a stu-
dent’s peers were good in English but not in science; τi represents permanent unobserved student
characteristics, which includes any stable parental inputs or natural ability of the child; εt

ijsc is the
idiosyncratic time-specific error, which includes secondary school effects. Under this restrictive
specification only εt

ijsc could cause relative change in student performance between primary and
secondary periods, as all other factors are permanent and have the same impact over time.

This is a restrictive assumption, as the impacts of observable and unobservable characteristics
are likely to change as the student ages. For example, neighborhood effects may grow in impor-
tance as the child grows older. Therefore, we relax the model by allowing for time-varying effects
of these characteristics:
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Yt
ijsc = x

′
iβ + x

′
iβ

t + βRankRijsc + βt
RankRijsc + vt

ijsc

vt
ijsc = µjsc + µt

jsc + τi + τt
i + εt

ijsc

where βt allows for the effect of student characteristics to vary over time. We have also distin-
guished the characteristic of interest from other student characteristics, that being the achievement
rank of student i in subject s in cohort c and in primary school j, denoted by Rijsc. Like the other
characteristics, primary rank can have a permanent impact on outcomes, βRank, and a period de-
pendent impact, βt

Rank. This specification also allows for the unobservables to have time-varying
effects by additionally including τt

i and µt
jsc in the error term.

Given this structure we now state explicitly the conditional independence assumption that
needs to be satisfied for estimating an unbiased impact of primary school rank β1

Rank on secondary
outcomes Y1

ijsc.

Y1
ijsc⊥Rijsc|xi, µjsc, µt

jsc, τi, τt
i ∈R

To achieve this, we require measures of all factors that may be correlated with rank and final
outcomes. Conditioning on baseline test scores, Y0

ijsc, absorbs all non-time-varying effects that
affect primary period outcomes to the same extent as secondary period outcomes: x

′
iβ, βRankRijsc,

µjsc, τi. Moreover, Y0
ijsc captures any factors from the first period that impact academic attainment in

the primary period only: x
′
iβ

0, β0
RankRijsc, µ0

jsc, τ0
i . Critically, the lagged test scores absorb any type

of contemporaneous peer effect during primary school, including that of rank. In this sense, we
are not estimating a traditional peer effect with a focus on the contemporaneous impact of peers on
academic achievement. Instead, we are estimating the effects of peers in a previous environment
on outcomes in a subsequent time period. Therefore, we can express second period outcomes as a
function of prior test scores, primary rank, student characteristics and unobservable effects. Using
lagged test scores means the estimated parameters are those from the secondary period.

Y1
ijsc = f (Y0

ijsc(x
′
iβ, x

′
iβ

0, τi, β0
RankRijsc, βRankRijsc, µjsc, τ0

i , µ0
jsc)) (1)

+ β1
RankRijsc + x

′
iβ

1 + µ1
jsc + τ1

i + ε1
ijksc

This leads to our first estimation equation:

Y1
ijsc = f (Y0

ijsc) + β1
RankRijsc + x

′
iβ

1 + SSC′
jscγ1 + ε1

ijsc (2)

ε1
ijsc = τ1

i + υ1
ijsc

Here, we allow the functional form of the lagged dependent variable to be flexible and examine
how changes to the functional form of f (Y0

ijsc) change our results. The inclusion of primary School-
Subject-Cohort (SSC) dummies, SSCjsc, accounts for the lasting impacts of being taught a specific
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subject in a particular primary school and cohort on secondary period outcomes.5

In addition, including SSC fixed effects ensures that we estimate ordinal rank effects rather than
cardinal effects. The cardinal effect is the effect on secondary outcomes of being a certain distance
from the primary class mean in terms of achievement. This is accounted for by the combination of
baseline achievement and SSC effects, leaving β1

Rankto pick up the impact of ordinal rank only.
The SSC effects remove µ1

jsc from the error term. As a result, the remaining unobservable factor
ε1

ijsc is comprised of two components: unobserved individual-specific shocks that occur between
t = 0 and t = 1, τ1

i , and an idiosyncratic error term υijsc. Since we have repeated observations over
three subjects for all students, we stack the data over subjects in our main analysis, so that there are
three observations per student. To allow for unobserved correlations, in all of our estimations, we
cluster the error term at the level of the secondary school.6 Having multiple observations over time
for each student also allows us to to recover τ1

i , the average growth of individual i in secondary
period. However it is worth spending some time interpreting what the rank coefficient represents
without its inclusion. Being ranked highly in primary school may have positive spillover effect in
other subjects. Allowing for individual growth rates during secondary school period absorbs such
spillover effects. Therefore, leaving τt

i in the residual means that the rank parameter is the effect
of rank on the subject in question and the correlation in rankings from the two other subjects.

Our second estimation specification includes an individual dummy θi for each student, which
removes τ1

i from the error term and captures the average student growth rate across subjects. Note
that, despite using panel data, this estimates the individual effect across subjects and not over
time. When allowing for student effects, we effectively compare rankings within a student across
subjects conditional on prior subject specific attainment. This accounts for unobserved individual
effects that are constant across subjects such as competitiveness or general confidence.

Y1
ijsc = f (Y0

ijsc) + β1
RankRijsc + x

′
iβ

1 + SSC′
jscγ1 + θ′iτ

1
i + υ1

ijsc (3)

In this specification the rank parameter represents only the increase in test scores due to subject-
specific rank, as general gains across all subjects are absorbed by the student effect. This can be
interpreted as the extent of specialisation in subject s due to primary school rank. For this reason,
and because of the removal of other co-varying factors, we expect the coefficient of the rank effect
in specification 3 to be smaller than those found in 2.

Finally, to also investigate potential non-linearity in the effect of ordinal rank on later outcomes
(i.e., effects driven by students who are top or bottom of the class), we replace the linear ranking

5 In section 7.2 we discuss results that additionally account for secondary-subject-class-level effects as a potential chan-
nel.

6 The treatment occurs at the primary SSC level and therefore a strong argument can be made for this being the correct
level at which to cluster the standard errors. However, we chose to cluster the standard errors at the secondary school
level for two reasons. The first is that all of the outcomes occur during the secondary school phase, where students
from different primary schools will be mixing and will be attending the same secondary school for all subjects. There-
fore, we thought it appropriate to partially account for this in the error term. Secondly, clustering at the secondary
school level rather than the primary SCC is considerably more conservative, generating standard errors that are 50
percent larger. Standard errors for other levels of clustering including primary, primary SSC, secondary SSC, and
two-way clustering at the student and school-subject-cohort, for both primary and secondary schools, are available
upon request.
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parameter with indicator variables according to vingtiles in rank, ∑20
λ=1 I{λijsc}, plus additional

indicator variables for those at the top and bottom of each school-subject-cohort (the rank measure
is defined in section 3). This can be applied to all the specifications presented. In the case of
specification 3, this results in the following estimation equation:7

Y1
ijsc = β1

R=0Bottomijsc +
20

∑
λ=1

(
β1

λ I{λijsc}
)
+ β1

R=1Topijsc + f (Y0
ijsc) + x

′
iβ

1 + SSC′
jscγ1 + ε1

ijsc (4)

In summary, if students react to ordinal information in addition to cardinal information, then
we expect the rank parameter βRank to have a significant effect. Given this structure, the conditional
independence assumption that needs to be satisfied for estimating an unbiased rank parameter is
the following: conditional on prior test scores (accounting for all non-time varying effects and
inputs to age 11), student characteristics, and primary SSC level effects, we assume there would
be no expected differences in the students’ secondary school outcomes except those driven by
rank. The remaining concern is that unobserved shocks at t = 0 that correlate with rank at the
individual-subject level and do not affect Y0 then do affect Y1. Examples for such transitory shocks
are primary school teachers teaching to specific parts of the distribution whose impact is only
revealed in secondary school, non-linear transitory peer, or any other transitory effects potentially
generated through measurement error in the age-11 tests. We address these issues in section 5.

2.2 Identification

Specification 2 conditions on baseline achievement, achievement rank within a primary subject
school and cohort (SSC) and primary SSC fixed effects. The key question to address is, how can
variation in rank conditional on test scores within a group exist? The answer requires functional
form assumptions, that rank measures are discrete, and that performance measures are continu-
ous. Naturally occurring variation in the spacing of achievement in primary school classes gives
rise to variation in rank within and across classes. Within class, marginal increases in baseline per-
formance will generate discrete increases in rankings within a group, and this non-linearity can
be exploited to identify effects of rank. Across classes, we can compare students with identical
baseline achievement but different local ranks. To be specific, in order to identify the ordinal rank
effect from the cardinal performance measure, we require one of two functional form assumptions.
First, that the function between baseline performance and the outcome is smooth. The second is
that any non-smooth function is similar across groups, after allowing for mean differences (SSC-
effects). Critically, with our data we can relax one of these assumptions in turn.

For the purposes of exposition, let us first consider the simplest specification with only one
subject and one class. We also assume a smooth and true linear relationship between the baseline
score and the outcome of interest, as well as between rank and the outcome. Let us, for now, also
assume that all variables are measured without noise and that group assignment is random.

7 Estimates are robust to using deciles in rank rather than vingtiles and are available upon request.
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Y1
i = α + β1Y0

i + β1
RankRi + εi (5)

As before, the outcome of individual i in period 1, Y1
i , is determined by their baseline perfor-

mance, Y0
i , and their rank in the group in period t = 0 based on the baseline performance, Ri. In

this situation, the effect of rank is identified due to a functional form assumption and the nature
of the setting. To be precise, specification 5 implies that that a unit increase in Y0

i will increase the
outcome by β. Assuming this group is small, defined by having fewer individuals than possible
performance levels in Y0

i , a unit increase Y0
i will not always lead to increases in rank because there

is not always another member in that group with a baseline score that is just one unit higher. As
long as members of the group are not equally spaced in terms of baseline performance and as long
as there are at least three of them, there will be a non-linear relationship between rank and the
performance in that group. These distributional differences occur naturally and allow us to esti-
mate the impact of ordinal rank independent of cardinal achievement measures. One could think
of this form of identification as being analogous to a regression discontinuity approach where any
changes in the outcome that coincide with the discontinuous change in rank would be attributed
to the rank parameter. Indeed, if there existed no impact of rank with β1

Rank = 0, there would be a
smooth relationship between the baseline and the outcome. Note that because of the smoothness
assumption, if there are multiple groups g, it is possible to estimate the effect of the prior test score
separately for each group, β1

g. Applied to our setting, this allows the effects of prior test scores to
vary by class, subject and cohort.

One concern with this approach to estimating rank effects is the necessary reliance on the func-
tional form assumption regarding prior performance. Imposing the wrong functional form could
cause the rank parameter to pick up the impact of cardinal measures of academic achievement on
later outcomes, even if the true effect of rank is zero. To alleviate such concerns, this assumption
can be readily relaxed by controlling for Y0

i more flexibly by using higher order polynomials. Ide-
ally, one would like to allow the relationship between past and current test scores to be fully flexible
or non-parametric, such that every test score can have a distinct impact. This can be achieved by
including a dummy variable for each value Y0

i . However, in a situation with only one class, a
non-parametric measure of Y0

i and Ri are non-separable. This is because two individuals form the
same group g, and with the same score Y0

ig, will always have the exact same rank R0
ig. However, if

information on multiple groups is available, it is possible to estimate the following specification:

Y1
ig = f

(
Y0

ig

)
+ β1

RankRig + D1
g
′
γg + εig (6)

There are two key differences compared to specification 5: the baseline score is now allowed
to affect Y1

ig in a flexible way, where in our case a dummy variable is entered for every possible

percentile f
(

Y0
ig

)
= ∑100

p=1

(
βpI{p = Y0

ig}
)

. This is done at the cost of having to assume the same

functional form across groups so that the functional form f
(

Y0
ig

)
cannot vary between groups.

Note that D1
g allows for means shifts in the outcomes at the group level even if the flexible function
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is the same.8 Specification 6 takes us back to our original thought experiment with two individuals
in different groups with different ranks but the identical baseline scores (Figure 1). Comparing
such individuals across groups thus allows the estimation of the rank effects even conditional on
non-parametric baseline scores. Of course, this is only possible if there are enough groups and
enough individuals with identical baseline scores but different ranks in the data. In the following
section we provide evidence that we have sufficient support for this strategy when comparing
ranks and test scores across SSCs.

In summary, we use the very nature of ordinal rank and cardinal test score measures to gener-
ate discontinuities within classrooms, such that marginal increases in test scores only occasionally
generate changes in rank. Our specification exploits these discontinuities and attributes corre-
sponding changes in outcomes to the rank measure. By including group fixed effects, the baseline
performance measure becomes a measure of relative cardinal achievement, leaving the rank pa-
rameter to reflect the impact of ordinal rank. This strategy is related to and builds on a long series
of work in empirical education economics that exploits naturally ocurring variation conditional
on fixed effects going back to Hoxby (2000). We use the quasi-random variation in the test score
distributions within and across classrooms, which allows us to relax functional form assumptions
of prior to future performance, either requiring smoothness but allowing it to vary by group, or
assuming constant effects over groups but allowing for a non-smooth relationships.

3 Institutional Setting, Data, and Descriptive Statistics

This section explains the administrative data and institutional setting in England that we use
to estimate the rank effect using the specifications of section 2.1.

3.1 The English School System

The compulsory education system of England is made up of four Key Stages. At the end of
each stage, students are evaluated in national exams. Key Stage 2 is taught during primary school
between the ages of seven and eleven. English primary schools are typically small with the median
cohort size of 27 students. The mean primary school class size also is 27 students (Falck et al., 2011),
so referring to cohort-level primary school rank in a subject is almost equivalent to the class rank
in that subject. At the end of the final year of primary school, when the students are age 11, they
take tests in English, maths and science. These tests are externally marked on absolute attainment
on a national scale of zero to 100 and form our measure of baseline achievement.

Students then transfer to secondary school, where they start working towards Key Stage 3.
During this transition, the average primary school sends students to six different secondary schools,
and secondary schools typically receive students from 16 different primary schools. Hence, upon
arrival at secondary school, the average student has 87 percent new peers. This large re-mixing

8 Our main specification 2 assumes the same effect across groups, but in Appendix Table A.4 we show results where we
allow the coefficients to vary by school, subject and cohort. While there are some differences, none would change the
qualitative conclusions we reach in our paper. We regard this as important evidence that the restriction of constant
baseline effects across schools are not creating the rank effect.
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of peers is useful, as it allows us to estimate the impact of rank from a previous peer group on
subsequent outcomes. Importantly, since 1998, it is unlawful for schools to select students on the
basis of ability; therefore, admission into secondary schools does not depend on end-of-primary
test scores or student ranking.9 This means that the age-11 exams are low-stakes with respect to
secondary school choice. Key Stage 3 takes place over three years, at the end of which all students
take again take national examinations in English, maths, and science. Again, these age-14 tests are
externally marked out of 100.10

At the end of Key Stage 3, students can choose to take a number of subjects (GCSEs) for the Key
Stage 4 assessment, which occurs two years later at the age of 16 and marks the end of compulsory
education in England. The final grades consist of nine levels (A*, A, B, C, D, E, F, G, U), to which
we have assigned points according to the Department for Education’s guidelines (Falck et al.,
2011). However, students have some discretion in choosing the number, subject and level of GCSEs
they study. Thus, GCSE grade scores are inferior measures of student achievement compared to
age-14 examinations, which are on a finer scale and where all students are examined in the same
compulsory subjects. As students are tested in the same three compulsory subjects at ages 11 and
14, we focus on age-14 test scores as the main outcome measure, but we also present results for the
high-stakes age 16 examinations.

After Key Stage 4, some students choose to stay in school to study A-Levels, which are a pre-
cursor for university level education. This constitutes a high level of specialisation, as students
typically only enroll in three A-Level subjects out of a set of 40. For example, a student could
choose to study biology, economics, and geography, but not English or maths. Importantly, stu-
dents’ choices of subjects limit their choice-sets of majors at university and so will have longer run
effects on careers and earnings (Kirkeboen et al., 2016). For example, chemistry as an A-Level is
required to apply for medicine degrees and math is a prerequisite for studying engineering.11 To
study the long run impact of primary school ranking on students, we examine the impact of rank
on the likelihood of choosing to stay on at school and of studying that subject/STEM-subjects at
A-Level.

3.2 Student Administrative Data

The Department for Education collects data on all students and all schools in state education
in England in the National Pupil Database (NPD).12 This contains the school’s attended and de-
mographic information (gender, Free School Meals Eligible (FSME) and ethnicity). The NPD also
tracks student attainment data throughout their Key Stage progression.

We extract a dataset that follows the population of five cohorts students, starting at age of 10/11

9 The Schools Standards and Framework Act 1998 made it unlawful for any school to adopt selection by ability as
a means of allocating places. A subset of 164 schools (five percent) were permitted to continue to use selection by
ability. These Grammar schools administer their own admission tests independent of KS2 examinations and are also
not based on student ranking within school.

10 There is no skipping or repeating of grades in the English education system.
11 For the full overview of subjects that can be chosen, see: http://www.cife.org.uk/choosing-the-right-a-level-

subjects.html
12 The state sector constitutes 93% of the student population in England.
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in the final year of primary school when students take their Key Stage 2 examinations through to
age 17/18 when they complete their A-Levels. The age-11 exams were taken in the academic years
2000-01 to 2004-05; hence, it follows that the age-14 examinations took place in 2003-04 to 2007-08
and that the data from completed A-Levels comes from the years 2007-08 to 2010-12.13

First, we imposed a set of restrictions on the data to obtain a balanced panel of students. We use
only students who can be tracked with valid age-11 and age-14 exam information and background
characteristics. This comprises 83 percent of the population. Secondly, we exclude students who
appear to be double counted (1,060) and whose school identifiers do not match within a year across
datasets. This excludes approximately 0.6 percent of the remaining sample (12,900). Finally, we
remove all students who attended a primary school whose cohort size was smaller than 10, as
these small schools are likely to be atypical in a number of dimensions. This represents 2.8 percent
of students.14 This leaves us with approximately 454,000 students per cohort, with a final sample
of just under 2.3 million student observations, or 6.8 million student subject observations (each
student-subject pair is distinct observation).

The Key Stage test scores at each age group are percentalised by subject and cohort, so that
each individual has nine test scores between zero and 100 (ages 11, 14, and 16). This ensures that
students of the same national relative achievement have the same national percentile, as a given
test score could represent a different ability in different years or subjects. This does not impinge on
our estimation strategy, which relies only on variation in test score distributions at the SSC level.

Table 1 shows descriptive statistics for the estimation sample. Given that the test scores are
represented in percentiles, all three subject test scores at age 11, 14, and 16 have a mean of around
50, with a standard deviation of about 28.15 Almost sixty percent of students decide to stay and
continue their education until the A-Levels, which are the formal gateway requirement for univer-
sity admission. Of the many subjects to choose from, about 14 percent choose to sit an A-Level
exam in English, while in maths and science the proportions are about 9 percent and 11 percent,
respectively.

Information relating to the background characteristics of the students is shown in the lower
panel of Table 1. Half of the student population is male, over four-fifths are white British, and
about 15 percent are FSME students, a standard measure of low parental income. The within
student standard deviation across the three subjects, English, maths, and science, is 12.68 national
percentile points at age 11, with similar variation in the age-14 tests. This is important, as it shows
that there is variation within student which is used in student fixed effects regressions.

3.3 Measuring Ordinal Rank

As explained in section 3.1, all students take the end-of-primary national exam at age-11. These
are finely and externally graded between zero and 100. We use these scores to rank students in each

13 The analysis was limited to five cohorts as from year 2008-09 the external age-14 examinations were replaced with
teacher assessments.

14 Estimations using the whole sample are very similar, only varying at the second decimal point. Contact authors for
further results.

15 Age-16 average percentile scores have lower averages due to the coarser grading scheme.
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subject within their primary school cohort. Note that these ranks are computed only for students
in our estimation sample.

As previously noted, primary schools are small. However, since there exists some differences
in school cohort sizes, in order to have a comparable local rank measure across schools, we cannot
use the ordinal rank directly. Instead, we transform the rank position into a local percentile rank
in the following way:

Rijsc =
nijsc − 1
Njsc − 1

, Rijsc∈{0, 1} (7)

where Njsc is the cohort size of school j in cohort c of subject s. An individual i’s ordinal
rank position within this set is nijsc, which increases in test score to a maximum of Njsc. Rijsc is
the cohort-size adjusted ordinal rank of students that we use in the estimations. For example, a
student who is the best in a cohort of 21 students (nijsc = 21, Njsc = 21) has Rijsc = 1 and so does a
student who is the best in a cohort of 30. Note that this rank measure will be uniformly distributed
and bounded between zero and 1, with the lowest ranked student in each school cohort having
R = 0.16 Similar to the non-transformed ordinal rank position, this transformed ordinal rank score
does not carry cardinal information (i.e. information about relative ability distances). For the ease
of exposition, for the reminder of this paper, we will refer to Rijsc as the ordinal rank, rather than
as the local percentile rank or as the cohort-size adjusted ordinal rank. Panel A of Table 1 shows
descriptive statistics of the rank variable.

Given this measurement of rank, it is relevant to consider how students will know about their
academic rank too. In fact, while we as researchers have full access to the test score data, rather
than receiving these finely graded scores, students are instead given only one of five broad attain-
ment levels. The lowest performing students are awarded level 1. The top performing students
are awarded level 5. These levels are broad and coarse measures of achievement, with 85% of
students achieving levels 4 or 5.17 Therefore neither the students nor teachers are informed of
this ranking based on these age-11 test scores. Rather, we take this rank measure as a proxy for
perceived ranking based on interactions with peers over the previous six years of primary school,
along with repeated teacher feedback. We assume test performance to be highly correlated with
everyday classroom performance, and representative of previous performance on any informal
class examinations.18

While we cannot know if students’ academic rank based on these age-11 test scores are good
proxy for student perceptions, we have three facts that support this claim. First, there is a long-
standing physiological literature that has established that individuals have accurate perceptions
of their rank within a group but not of their absolute ability(e.g. Anderson et al., 2006). Second,

16 In the case of ties in test scores both students are given the lower rank.
17 The students also appear not to gain academically just from achieving a higher level. Using a regression discontinuity

design across these achievement levels, where the underlying national score is the running variable, shows no gains
for those students who just achieved a higher level.

18 In English Primary schools it is common for students to be seated at tables of four and for tables to be set by pupil
ability. Students can be sat at the ‘top table’ or the ‘bottom/naughty table’. This would make class ranking more
salient and could assist students in establishing where they rank amongst all class members through a form of batch
algorithm (e.g. ‘I’m on top table, but I’m the worst, therefore I’m fourth best’).
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we find using merged survey data that, conditional on test scores, students with higher ranks in
a subject have higher confidence in that subject (section 7.4.1). And third, if individuals (students,
teachers or parents) had no perception of the rankings, then we would not expect to find an im-
pact of our rank measurement at all. To this extent, the rank coefficient βRank from section 2 would
be attenuated and we are estimating a reduced form of perceived rank using actual rank. In sec-
tion 5.3 we also simulate increasingly large measurement errors in the age-11 test scores, which
we use to calculate rank, to document what would occur if these tests were less representative of
students abilities and social interactions. We show that increased measurement error in baseline
achievement slightly attenuates the rank estimate.

3.4 Survey Data: The Longitudinal Study of Young People in England

Additional information about a sub-sample of students is obtained through a representative
survey of 16,122 students from the first cohort. The Longitudinal Survey of Young People in Eng-
land (LSYPE) is managed by the Department for Education and follows a cohort of young people,
collecting detailed information on their parental background, academic achievements and atti-
tudes.

We merge survey responses with our administrative data using a unique student identifier.
However, the LSYPE also surveys students attending private schools that are not included in the
national datasets. In addition, students that are not accurately tracked over time have been re-
moved. In total 3,731 survey responses could not be matched. Finally, 823 state school students
did not fully answer these questions and could not be used for the confidence analysis. Our fi-
nal dataset of confidence and achievement measures contains 11,558 student observations. Even
though the survey does not contain the attitude measures of every student in a school cohort, by
matching the main data, we will know where each LSYPE-student was ranked during primary
school.19 This means we are able to determine the effect of rank on confidence, conditional on test
scores and SSC fixed effects.

In the LSYPE, at age-14, students are asked how good they consider themselves in the subjects
English, maths, and science. We code five possible responses in the following way: 2 “Very Good”;
1 “Fairly Good”; 0 “Don’t Know”; -1 “Not Very Good”; -2 “Not Good At All”. We use this simple
scale as a measure of subject specific confidence. While this is more basic than surveys that focus on
confidence, it does capture the essence of the concept with a mean of 0.92 and standard deviation of
0.95 (Table 2 panel A). The LSYPE respondents are very similar to students in the the main sample,
with the mean age 11 scores always being within one national percentile point. The LSYPE sample
is also has a significantly higher proportion of FSME (18 versus 14.6 percent) and minority (33.7
versus 16.3 percent) students. Although this is to be expected as the LSYPE over sampled students
from disadvantaged groups.20

The LSYPE also contains a lot of detailed information relating to the parent(s) of the student,
which we present in panel B of Table 2. We use information on parent characteristics to test for

19 This is the first research to merge LSYPE responses to the NPD for primary school information.
20 Appendix Table A.1 presents the raw differences and their accociated standard errors.
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sorting to primary schools on the basis of rank conditional on performance in section 5.1. These
characteristics are represented a set of indicator variables, parental qualifications as defined by
if any parent has a post secondary qualification (32 percent), and gross household income above
£33,000 (21.9 percent). These characteristics are constant within a student. Therefore, to test if there
is sorting to primary schools by subject, we have classified parental occupation of each parent to
each subject. Then, an indicator variable is created for each student-subject pair to capture if they
have a parent who works in that field. For example, a student who has parents working as a
librarian and a Science Technician would have parental occupation coded as English and Science.21

Finally, information regarding parental time and financial investments in schooling is used to
explore possible mechanisms in section 7.2. It is possible that parents may adjust their investments
into their child according to student rank during primary school. Therefore we have codified four
forms of parent self reported time investment: (1) the number of parents attending most recent
parent evening; (2) whether any parent arranged a meeting with the teacher; (3) how often a parent
talks to the teacher; and (4) how personally involved does the parent feel in young persons school
life. The frequency of meetings with teacher is coded: 1 “Never”, 2 “Less than once a term”, 3
“At least once a term”, 4 “Every 2-3 weeks”, 5 “At least once a week” and parental involvement is
coded: 1 “Not Involved At All”, 2 “Not Very Involved” 3 “Fairly Involved”, 4 “Very Involved”. In
our sample on average, 1.2 parents attended the last parents evening, 23.5 percent had organised
a meeting with the teacher, they have meetings less than once a term (2.12) and felt fairly involved
in the child’s school life (2.97).

.

4 Estimation

Before turning to the estimation results, we illustrate the variation in rank we use for a given
test score relative to the mean demonstrated in Figure 1. Figure 2 replicates the stylised example
from Figure 1 using six primary school classes in English from our data. Each class has a student
scoring the same minimum, maximum, and have a mean test score of 55 (as indicated by the
dashed grey line) in the age-11 English exam. Each class also has a student at the 92nd percentile.
Given the different test score distributions, each student scoring 92 has a different rank. This rank
is increasing from school one to six with ranks R of 0.83, 0.84, 0.89, 0.90, 0.93 and 0.94 respectively,
despite all students having the same absolute and relative to the class mean test scores. Figure 3
extends this example of the distributional variation by using the data from all primary schools and
subjects in our sample. Here, we plot age-11 test scores, de-meaned by primary SSC, against the
age-11 ranks in each subject. The vertical thickness of the points indicates the support throughout
the rank distribution. For the median student in a class, we have wide support for in-sample
inference from R = 0.2 to R = 0.8. This means that we have sufficient naturally occurring variation

21 We use the “Parental Standard Occupational Classification 2000” to group occupations into Science, Math, English
and Other in the following way. Science (3.6%): 2.1 Science and technology, 2.2 Health Professionals, 2.3.2 Scientific
researchers, 3.1 Science and Engineering Technicians. Math (3.2%): 2.4.2 Business And Statistical Professionals, 3.5.3
Business And Finance Associate Professionals. English (1.4%): 2.4.5.1 Librarians, 3.4.1 Artistic and Literary Occupa-
tions, 3.4.3 Media Associate Professionals. Other: Remaining responses.
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in our data to include even non-parametric controls for the primary school baseline achievement
measure.

4.1 Effect of Rank on Age-14 Test Scores

To begin the discussion of the results, we present estimates of the impact of primary school
rank on age-14 test scores. The estimates are reported in the first three columns of Table 3. Col-
umn 1 only includes controls for prior test scores and primary SSC effects, column 2 adds student
characteristics (ethnicity, gender, ever FSME), and column 3 adds individual fixed effects. All spec-
ifications allow for up to a cubic relationship with age-11 test scores.

Column 1 shows that the effect of being ranked top compared to bottom ceteris paribus is asso-
ciated with a gain of 7.946 national percentile ranks (0.29 standard deviations). When accounting
for pupil characteristics, there is an insignificant change to 7.894, implying minimal rank-based
sorting of students on observables, which we go on to test formally in the section 5. This is a large
effect in comparison with other student characteristics typically included in growth specifications.
For example, females’ growth rate is 1.398 national percentile points higher than males’, and FSME
students on average have 3.107 national percentile points lower growth rate than non-FSME stu-
dents. However, given the distribution of test scores across schools, very few students would be
bottom ranked at one school and top at another. A more useful metric is to describe the effect
size in terms of standard deviations. A one standard deviation increase in rank is associated with
increases in later test scores by 0.084 standard deviations or 2.35 national percentile points. Finally,
another way to gauge the relative importance of rank compared to traditionally important factors
is to examine changes in the mean squared error. In a specification with only prior test scores and
SSC effects, including a gender term reduces the mean square error by 0.25, for ethnicity it reduces
by 0.28, and the introduction of the rank parameter reduces the mean squared error by 0.31.

Column 3 shows the estimates that also include student fixed effects (specification 3). Recalling
from section 2, conditioning on student effects allows for individual growth rates, which absorb
all student level characteristics constant across subjects. As a result, male, FSME and minority are
dropped from this specification. Since students attend the same primary and secondary school for
all subjects, any general school quality or school sorting is also accounted for.

As expected, the within student estimate is considerably smaller as the student effect also ab-
sorbs spillover effects gained through high ranks in other subjects, and so is identifying the relative
gains in that subject. The effect from moving to the bottom to top of class ceteris paribus increases
the national percentile rank by 4.562 percentiles, as we see in column 3. Scaling this using the
within student standard deviation of the national percentile rank (11.32), this is equivalent to an
effect size of 0.40 standard deviations. In terms of effect size, given that a standard deviation of the
rank within student is 0.138, for any one standard deviation increase in rank test scores increase
by about 0.056 standard deviations.22 The difference between columns 2 (7.894) and 3 (4.562) can
be interpreted as an upper bound of the gains from spillovers between subjects. We examine

22 For students with similar ranks across subjects the choice of specialisation could be less clear. Indeed, in a sample of
the bottom quartile of students in terms of rank differences, the estimated rank effect is 25% smaller than those from
the top quartile. Detailed results available on request.
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spillovers directly when discussing subject-specific results in section 6.1.

4.2 Effect of Rank on Key Stage 4 Outcomes (Age 16)

Columns 4 to 6 of Table 3 show an equivalent set of results for the same students two years
later, taking the national exams at the end of compulsory education. The three core subjects (En-
glish, math, and science) are again tested at age 16. The impact of primary school rank on test
performance has only marginally dropped in all specifications between ages 14 and 16. Compar-
ing columns 2 and 5, being at the top of class compared to the bottom during primary school
increases age 16 test scores by 6.389 percentile points compared with 7.894 at age-14. At age 16,
a one standard deviation increase in primary rank improves later test scores by 1.89 national per-
centiles. Similarly, the impact on test scores using the within student variation has decreased, but
remains significant.

4.3 Effect of Rank on A-Level Choices (Age 18)

After the examinations at age 16, students can chose to stay in school and study for A-Levels
which are the key qualifications required to study any associated subjects at university. To this end,
we estimate the impact of primary school rank in a specific subject on the likelihood of choosing
to study that same subject for A-Levels.23 These results are presented in columns 7 to 9 of Table
3, with a binary outcome variable being whether or not the student completed an A-Level related
to that subject. In this linear probability model, conditional on prior test scores, student charac-
teristics and SSC effects, students at the top of the class in a subject compared to being ranked at
the bottom are 2.5 percentage points more likely to choose that subject as an A-Level. On average,
roughly one in ten students complete these subjects at A-Level. Assuming an linear relationship,
a student who was at the 75th rather than 25th rank position at primary in a subject would, there-
fore, be 11.9 percent more likely to complete a course related to that subject for an A-Level seven
years later on.

For A-Level completion, introducing the student fixed effects increases the estimated effect size
to 3.5 percentage points in column 9. This may reflect the capacity constraints for this outcome as
students are limited to taking three subjects only. Being more likely to take one subject, despite
increasing general confidence, could result in being less likely to take another subject, resulting
in negative subject-spillover effects. This, as well as the linearity assumption, are investigated in
section 6.2. Before proceeding in this direction, we examine the robustness of our main estimate.

5 Robustness

This section examines the robustness of our main results in four dimensions. First, we test for
balancing on student level observable characteristics, and go further by testing if parents who will
generate high growth in a particular subject systematically sort their children to primary schools,
such that their child will have a particularly high/low rank in that subject. Second, we examine

23 Students that did not take on any of the core subjects or have left school are included in the estimations.
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if systematic or non-systematic measurement error in the age-11 achievement test scores would
result in spurious rank effects. Third, we check functional form assumptions. Finally, we address
miscellaneous concerns such as school sizes, classroom variance and the proportion of new peers
at secondary school.

5.1 Rank-Based Primary School Sorting

A core tenet of this paper is that a students rank in a subject is effectively random conditional
on achievement. This would not be the case if parents were selecting primary schools based on
the rank that their child would have. To do this parents would need to know the ability of their
child and of all their potential peers by subject, which is unlikely to be the case when parents are
making this choice when their child is only four years old.24 Moreover, typically parents want to
get their child into the best school possible in terms of average grades (Rothstein, 2006; Gibbons
et al., 2013), which would work against any positive sorting by rank. We provide two pieces of
evidence to test for sorting: by parental characteristics and by student characteristics.

We are most concerned with parental investments that would vary across subjects, because
such investments would not be fully accounted for with the student fixed effects specification.
One such parental characteristic that could impact investments by subject is the occupation of the
parent. Children of scientists may both have a higher initial achievement and a higher growth
in science throughout their academic career, due to parental investment or inherited ability. The
same could be said about children of journalists for English and children of accountants in maths.
This does not bias our results, as long as conditional on age-11 test scores parental occupation is
orthogonal to primary school rank. However, if these parents sort their children to schools such
that they will be the top of class and also generate higher than average growth, then this would be
problematic.

We test for this by using the LSYPE sample, which has information on parental occupation,
which we have categorised into subjects (for details see section 3.4). Panel A of Table 4 establishes
that this is an informative measure of parental influence by subject, by regressing age-11 test scores
on parental occupation and school subject effects. Students have higher test scores in a subject if
their parents work in a related field. This is taken one step further in column 2, which shows that
even after accounting for additional student fixed effects this measure of parental occupation is
a significant predictor of student subject achievement. In the first row of panel B we test for the
balancing of parental occupation for violation of the orthogonality condition, by determining if
primary school rank predicts predetermined parental occupation, conditional on achievement. We
find that there is no correlation between rank and parental occupations, for specifications which
do or do not account for student effects. This implies that parents are not selecting primary schools
on the basis of rank for their child.

The next two rows of Table 4 test to see if student rank is predictive of other predetermined
parental characteristics. These are parental education, as defined by either parent having a post

24 Parents could infer the likely distributions of peer ability if there is auto-correlation in student achievement within a
primary school. This means that if parents know the ability of their children by subject, as well as the achievement
distributions of primary schools, they could potentially select a school on this basis.
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secondary school qualification (32 percent), and if annual gross household income exceeds £33,000
(21 percent). Neither of these characteristics vary by subject and therefore the balancing tests
cannot include student fixed effects. We find that neither parental characteristic is correlated with
rank conditional on test scores.

The remaining rows of panel B of Table 4 perform balancing tests of primary school rank on
observable student characteristics. Again like parental education and household income , these
characteristics do not vary across subjects. Conditional on test scores and SSC effects, rank is a
significant predictor of observable student characteristics, although the coefficients are small in
size and have little economic meaning. For example, conditional on relative attainment a student
at the top of class compared to being at the bottom of class is 0.8 percent more likely to be female
(50 percent) and 0.8 percent more likely to be a minority student (16 percent). In addition to these
effects being small there is no consistent pattern in terms of traditionally high or low attaining
students, with non-FSME, minority and female students being more likely to be higher ranked than
other students conditional on test scores. To assess the cumulative effect of these small imbalances
the final row tests if predicted age-14 test scores based on student demographic characteristics,
age-11 test scores and SSC effects are correlated with primary rank. We find that primary rank
does have a small positive relationship with predicted test scores, albeit being about 1/70th of the
magnitude of our main coefficient (7.946 and 0.113), implying a one standard deviation increase
in rank is associated with a 0.001 standard deviation increase in predicted test scores. This is also
reflected by the fact that our main estimates in Table 3 change insignificantly when we include
student characteristics as controls.25

It appears that parents are not choosing schools on the basis of rank, but there are small im-
balances of predetermined student characteristics. These imbalances could instead be caused by
different types of students having different rank concerns during primary school as in Tincani
(2015) for example. This is because we measure age-11 test scores, and therefore rank, at the end of
primary school so rank concerns could impact student effort. We return to resulting measurement
issues in section 5.3 and when discussing mechanism of competitiveness in section 7. Regardless
of the precise sources of these imbalances, they do not significantly affect our results as they are
estimated to be precisely small. As noted above, student demographics are absorbed by specifi-
cations that include student fixed effects, therefore these specifications are immune to imbalances
related to factors that are constant across subjects.

5.2 Specification Checks

The main specification has a cubic polynomial in prior achievement, but one may be concerned
that this functional form is not sufficiently flexible. Appendix Table A.3 shows the main specifica-
tion with a linear control for baseline achievement in the first column and then each subsequent
column progressively includes a higher order polynomial up until we have a sixth-order polyno-

25 Using the methods proposed by Oster (2017) and conservative assumptions (namely it is possible to achieve an R2

equal to one and unobservables are one-to-one proportional in their effect to observables, we cannot generate coef-
ficient bounds that include zero for our main effect. This includes scenarios where unobservables explain over 125
times more of our remaining unexplained variation compared to student demographics.
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mial in prior test scores in column 6. We find that once there is a cubic relationship, the introduction
of additional polynomials makes no significant difference to the parameter estimate of interest.

As described in section 2.2 we can further relax the functional form assumptions by replacing
the set of cubic controls for prior achievement with a non-parametric specification using a separate
indicator for each age-11 test percentile. Here we would be effectively comparing students with the
same test scores to students with different ranks in other classes, albeit still having mean shifts with
the inclusion of SSC effects. These results are shown in row 2 of Table 5, where we can see that this
does not have a large impact on the rank parameter, changing it from 7.894 (0.147) to 7.543 (0.146).
The second column provides the equivalent estimates with additional student effects, these results
are also similar to the benchmark specification, changing it from 4.562 (0.107) to 4.402 (0.107). This
is comparing students with the same test score across subjects, but having a different rank due to
the different test score distributions of peers across subjects.

Specification 2 also imposes that the test score parameters are constant across schools, subjects
and cohorts. In Appendix Table A.4, we relax this by allowing for the impact of the baseline test
scores to be different by school, subject or cohort, by interacting the polynomials with the different
sets of fixed effects. The first two columns use linear and cubic controls for baseline test scores,
we find that allowing the slope of prior test scores to vary by these groups does not significantly
impact our estimates of the rank effect. In column 3 we use the non-parametric set of controls for
the baseline and so allow the impact of any test score to be different by school, subject or cohort.
This is effectively relaxing the assumption that a test score value of X in the external exam actually
represents the same underlying abilities across different schools, where group-level differences are
already captured by the SSC effects. Again, all specifications provide similar results.

5.3 Test-Scores as a Measure of Ability

Throughout we have assumed that we can use the age-11 achievement scores as a baseline
measure of student ability. In principle, the Key Stage 2 scores should be a particularly good
measures of ability, as they are finely graded, and their only purpose is to gauge the achievement
of the student on an absolute metric. This means that students are not marked on a curve at the
school or national level; hence, test scores are not a function of rank. However, there may be factors
that cause these test scores to be a poor measure of ability. As we simultaneously use these test
scores to determine rank and as a measure of prior achievement, these factors are of concern to our
paper. We consider two cases where test scores do not reflect the underlying student ability due to
systematic measurement errors (peer effects, teacher effects) and the general case of non-systematic
measurement error (noise).

5.3.1 Peer Effects

This paper differs to the existing peer effect literature because we estimate negative effects of
better peers, as well as effects of previous peers in a different peer setting. But how do contempo-
raneous peer effects interact with our estimation? To the extent that peer effects are sizable, they
could in principle have meaningful impacts on our results because they would simultaneously
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impact on a student’s rank and age-11 test scores. However, this is not an issue if primary peers
have a constant permanent impact on student attainment (e.g., through the accumulation of more
human capital, as conditioning on the end of primary test scores fully accounts for this, regardless
of the nature of the contemporaneous peer effect).

Instead, consider the situation where an individual has poorly performing peers that affects
achievement negatively during primary school and that peer effects fade out over time. Due to
this type of transitory peer effect in primary school, students would achieve a lower score than
otherwise and would have a higher rank. In secondary school, where in expectation they will have
average peers, they will achieve test scores appropriate to their ability. This means that a student
with bad primary peers would have a high primary rank and also high gains in test scores. In our
value-added specification, this would generate a positive rank effect, even if rank had no impact
on test scores.

To alleviate this concern, we include SSC effects in our main specifications, effectively removing
any primary class-level long-run impacts on achievement growth and thus taking into account
transitory linear-in-means peer effects. This is not exactly a pure linear-in-means peer effect, as
the student’s own outcome contributes to the fixed effect, but differences between including and
excluding oneself for the estimation of linear-in-means effects are negligible.

To assess the remaining possibility that the SSC effects are not sufficient to account for transi-
tory peer effects we implement a data generating process with linear and non-linear peer effects
with magnitudes set to be 20 times larger than those found by Lavy et al. (2012) using the same En-
glish census data and school setting. Taking mean estimates from 1,000 simulations, we show that
when controlling for SSC effects our estimates are indeed unbiased with transitory linear-in-mean
peer effects. Moreover, even non-linear transitory peer effects only result in negligible downward
bias. The simulations and further discussion can be found in Appendix A.1 and Appendix Table
A.2.

5.3.2 Teacher Effects

Alternatively, instead of peers influencing the transformation of ability to test scores in a tran-
sitory way, it is possible that teachers teach in such a way as to generate false positive rank results.
For this to occur, it would require teachers to have different transformation functions of student
ability into test scores (e.g., some teachers create more spread in test scores than others). This
would be potentially problematic because such transformations could affect the measured test
scores but not the rank, therefore leaving rank to pick up information related to ability. Let us con-
sider a simple case, where test scores in school j and subject s, yijs, are determined by mean teacher
effects µjs, and linear teacher transformations bjs of student ability ais, yijs = µjs + bjsais + eijs. Here,
variation in the teachers’ production functions will generate differences in the observed test scores
for a given ability. If teachers varied only in level effects µjs then these differences would be cap-
tured by the SSC effects. However, if teachers also vary in their transformative approach, bjs, that
would not be captured with these fixed effects, as different students within a class will be affected
differently. If there is variation in bjs, then the same test score will not represent the same ability,
ais, in different schools, and critically rank will preserve some information on ability, which test
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scores will not. To test if this kind of spreading of test scores is driving the results, we run a set of
placebo tests and simulations.

In the first, we use the assumption that this transformative teacher effect (bjs) is time invariant
across cohorts, e.g. a set of students with a given initial ability distribution would have the same
spread in test scores no matter which cohort they were enrolled in at that school, as long as they
are taught by the same teacher. This is appropriate in England as teachers generally teach certain
year groups rather than following a single cohort through primary school. If it is the teacher
specific transformations that are generating the results, then remixing students across cohorts (but
to the same teacher) will have no impact on the rank parameter, as rank will contain the same
residual information on ability in each cohort. To test for this, we randomly reassign students to
cohorts within their own school, such that students will appear in the same schools they attended.
Row 3 of Table 5 shows the mean coefficients and standard errors from 1,000 randomization of
students within schools across cohorts. Note that the rank parameters are significantly smaller
and approximately one fifth of the previous size. As we use five cohorts of data, students will,
on average, randomly have a fifth of their true peers in each cohort, and so we would expect this
proportion of the rank effect to remain.

Next, if primary teachers varied in their transformations (bjs) of students ability into test scores,
this would be reflected in the variance of test scores within each classroom that we observe at the
end of primary school. For example, teachers with a high value of (bjs) would generate a high
spread in test scores and therefore a higher variance of test scores within class. To gauge the
importance of unobserved teacher transformation affecting the spread, we examine the following
question: how much of the rank effects are driven by the variance in achievement within a primary
school class? To test if this is driving the effects we include an interaction of the standard deviation
of class test scores with each individual’s rank. Note that the effect of the standard deviation
itself, but not its interaction with rank, is captured by the SSC effect. Row 4 of Table 5 presents
estimates of the rank effects that allow for interactions with classroom variance, evaluated at the
mean of class standard deviations in test scores. As may be expected, the class fixed effects estimate
falls to 5.718 (0.156), as some of this variation is generating the rank effects. The inclusion of the
class standard deviation interactions, has a smaller impact on the within student estimates that
fall to 4.337 (0.118) from 4.562 (0.107). The rank effects at the 25th and 75th percentiles of the
classroom standard deviation of test scores are 6.29 and 5.34 for the SSC fixed effects specification
and 4.27 and 4.39 when additionally accounting for individual fixed effects. The key take-away
from these two exercises is that the rank effects are not primarily generated through differences
in variances across classrooms as they remain relatively constant along this dimension. It follows
that unobserved factors during primary school potentially affecting classroom variances in test
scores, but leaving ranks unaffected, are not driving our main results. Next, we consider the case
of measurement error affecting both, test scores and rank.

5.3.3 Non-systematic Measurement Error

When students take a test, the scores will not be a perfect representation of how well they
perform academically on a day to day basis, resulting in a noisy measure of ability. This type
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of non-systematic measurement error is potentially problematic for our paper, as it could gen-
erate a mechanical relationship between student rank and gains in test scores. This is because
they are both subject to the same measurement error but to different extents. Consider the sim-
plest of situations where there is only one group and two explanatory variables, individuals i’s
ability X∗i , and class ability ranking R∗i . Assume X∗i cannot be measured directly, so we use a
test score Xi as a baseline which is a noisy measure of true ability and has measurement error
Xi = li(Xi

∗, ei). We also use this observed test score Xi in combination with the test scores of
all others in that groupX−ito generate the rank of an individual, Ri = k(Xi, X−i). We know
this rank measure is going to be measured with error ei2, Ri = hi(R∗i , ei2). The problem is that
this error, ei2, is a function on their ability X∗i and their own measurement errorei, and also de-
pend on the ability and measurement errors of all other individuals in their group (X∗−i and e−i.)
Ri = k(li(X∗i , ei), l−i(X∗−i, e−i)) = f (X∗i , ei, X∗−i, e−i). Therefore, any particular realisation of ei not
only causes noise in measuring X∗i but also in R∗i . This means we have correlated and non-linear
non-additive measurement error, where COV(ei, ei2) 6= 0. This specific type of non-classical mea-
surement error is not a standard situation, and it is unclear how this would impact the estimated
rank parameter.

The standard solution to non-classical measurement error is to obtain repeated measurements
or instrumental variables (Schennach, 2016). In our case we do not have another measure of exactly
the same test. An alternative would be to use the test scores from another subject as an instrument
for Xi. However, as we go on to show in section 6.1, other-subject ranks do not necessarily meet
the exclusion restriction as they have spillover effects across subjects.26

Therefore, we perform a data-driven bounding exercise to gauge the importance of any mea-
surement error. This involves adding additional measurement error from a known distributiuon
to the test score measure of each student, then re-calculating student ranks and then re-estimating
the specification at ever increasing variances of measurement error. In doing so we are informed
of the direction and the approximate magnitude of the measurement-error induced bias by adding
noise to our existing measure. To do this, we again run a Monte Carlo simulation on the entire
dataset, now adding artificial measurement error to each student score, which is drawn from a
normal distribution with mean zero. The variance of this distribution increases from one percent
of the standard deviation in test scores up to thirty percent, in terms of test scores this is an increase
from 0.28 up to 11.2. For each measurement error distribution we simulate the data 1000 times and
estimate the rank parameter.

Figure 4 shows the simulated estimates of the mean and the 2.5th and the 97.5th percentiles
from the sampling distribution of beta for each measurement error level. We see that as measure-
ment error increases, the downward bias in the rank estimate also increases, albeit non-linearly.
Small additional measurement error has little impact on the results. The amount of downward bias
from increasing the additional error from 1 percent to 20 percent of a standard deviation amounts
to the same level of bias as increasing the error from 20 to 25 percent. The intuition for this result
is the following: When measurement errors are relatively large, they will impact both test scores
and rank measures. Individuals with a mistakenly high (low) test score also have a falsely high

26 See section 6.1 for a discussion of subject spillovers and IV estimation.
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(low) rank. Then, as we are estimating the the growth in test scores, these students would have
lower (higher) observed growth which would downward bias the rank parameter. At low levels of
measurement error, rankings would not change and it would be possible for the rank measure to
pick up some information about ability lost in the test score measure. Appendix Figure A.1 repeats
this process with alternative types of measurement errors. Panel A presents mean estimates from
a heterogeneous measurement error process, where the impact of the normally distributed error is
increasing as the test score is farther away from the national mean. This is reflective of the exam-
inations potentially being less precise at extreme values. This slightly exacerbates the downward
bias and the non-linearity of the bias. Next, panel B draws the additional measurement error from
the uniform distribution, which results in smaller downward bias. Given that these national tests
have been designed to measure ability in a subject and the small downward -but never upward-
biases at small levels of different types of measurement error, we conclude that our main estimates
are attenuated at most very little.

5.4 Further Robustness Checks: class size, re-mixing of students, and prior peers

To address potential remaining concerns, we present three further robustness checks. First, we
have been describing our estimates as the impact of academic standing within ones primary school
class. This is because we rank students within their school-subject-cohort and the median cohort
size of primary schools is 27. Given that the legal maximum class size for 11-year old students is
30 we argue that cohorts are effectively equivalent to classes. However some schools have larger
cohorts and so the ranking would represent their position within their school cohort rather than
classroom. Row 5 of Table 5 presents estimates that restrict the sample to only those students who
attended a primary school of less than 31 students per cohort. Here, the estimate falls slightly to
6.469 and the standard errors increase due to a smaller sample but the rank effect remains.

Second, row 6 of Table 5 shows an equivalent pair of estimates, which randomly allocates stu-
dents to primary schools within a cohort. Here, students are very unlikely to be assigned to a class
with their actual peers. As expected, this generates precise zero effects, reflecting the ranking of
students in different schools has no impact. This implies that there are no mechanical relationships
between rank and later achievement driving these results.

The third and final robustness check that we perform relates to the re-mixing of peers when
students leave primary school and enter into secondary school. Unlike many other countries,
primary schools in England tend to send students to many secondary schools, rather than many
being a feeder school to one particular secondary school. This means that the average student has
87% new peers when starting secondary school. We argue that this largely addresses the reflection
problem because we are using the peer characteristics from a prior setting and conditioning on
test scores from that setting. To fully address reflection concerns we estimate the impact of rank
only on the sub-sample of students who attend a secondary school with no prior peers from their
primary school. Row 7 of Table 5 shows these results. Both the SSC and student effects estimates
are larger in size than the benchmark, implying that any reflection issues would be downward
biasing our estimates. However, students such as these may be non-typical and so we limit our
interpretation of the parameter to its continued significance.
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6 Heterogeneity of the Impact of Rank

Now that we have established the robustness of the estimates, we turn to the variability of the
rank effects by considering impacts by subject, spillover effects across subjects, non-linearities and
the impact by student demographics.

6.1 Impact by Subject

So far, we have assumed that there is a constant impact across subjects. Panel A of Table 6
shows the estimates of the rank parameter separately for English, Science and Maths (e.g., the
impact of a student’s rank in English at age 11 on their test scores at age 14). We can see that the
impact is similar across subjects, ranging from 7.400 for English up to 8.820 for Maths. That the
effects are comparable is important for the student fixed effects specifications which require they
be equal.

The main specification also does not allow for any direct spillovers from being highly ranked
in another subject. The lower half of Table 6 allows for these effects. Each column in panel B
represents a single estimation, where we condition on the rank and prior test scores in each subject
separately and present the corresponding rank estimates. The impact of rank on the same subject
outcomes are on the main diagonal, and the impact of other subjects are off the diagonal. For each
subject, once we allow for the impact of rank from another subject, the main coefficient reduces in
size. An explanation is that rank is positively correlated across subjects and that there are positive
spillovers across subjects. We also see that the nature of the spillover effects depends on the subject
pairing. Science and Maths ranks have small, if any, impacts on English test scores (0.597 and
0.788 respectively), however the impact of Maths rank on Science and Science rank on Maths is
considerably larger (3.612 and 3.233 respectively).27

6.2 Non-linearities and Heterogeneity

6.2.1 Age-14 Outcomes

The specifications thus far assumed that the effect of rank is linear. Here we allow the effect of
rank to change throughout the rank distribution by replacing the rank parameter with a series of
20 indicator variables in the vingtiles in rank, plus top and bottom of class dummies (Specification
4). The equivalent estimates from specification 2 and 3, without and with student fixed effects,
are presented in the first panel of Figure 5. For the impact on age-14 test scores, the effect of rank
appears to be linear throughout the rank distribution, with small flicks in the tails. This indicates
that the effect of rank exists throughout. Students ranked just above the median perform better
three years later than those at the median. The within student estimates are smaller in magnitude
throughout and have less of a gain for being top of the class.

27 The only subject-pairing where we do not estimate a statistically significant spillover effect is for effects of ranks
in English on outcomes in maths. This suggests that the exclusion restriction is valid for one subject-pairing. If we
instrument maths rank and test scores with English rank and test scores, we obtain an IV estimate of the instrumented
maths-rank on maths outcomes of 8.07. This is not different to the OLS estimate at conventional levels of statistical
significance, which has the value of 7.753.
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Continuing to use this non-linear specification with student fixed effects, we now turn to how
the effects of rank vary by gender and free school meal eligibility. We estimate these effects by
interacting the rank variables, which vary within students, with the dichotomous characteristic of
interest.28 The second panel in Figure 5 shows how rank relates to the gains in later test scores by
gender. Males are more affected by rank throughout 95 percent of the rank distribution. Males
gain four times more from being at the top of the class, but also lose out marginally more from
being in the bottom half. This is within student variation in later test scores, and therefore the
coefficient could be interpreted as a specialising term, implying that prior rank is associated with
a stronger specialising effect on males than females. Relating these finding to the idea of student
self concept, this could be reflecting that males place more importance on their relative ranking
in determining their self concept than females. Continuing with this interpretation, the finding
that males gain significantly more from being higher ranked than females could be reflecting that
males are perceiving themselves to be higher ranked than they actually are. In this reduced form
specification, we cannot separate the impact of being highly ranked from the perception of rank.
We are assuming that individuals accurately place themselves within a class, and that this ability
does not differ by student characteristics.

The final panel in Figure 5 shows the impact by FSME status. This has a very different pattern
to the previous panel. Both types of students have a positive relationship with rank and later test
scores, however FSME students are less negatively affected by a low rank and more positively
affected by a high rank compared to Non-FSME students. The relationship is approximately flat
for FSME students in the bottom half of the rank distribution, but they have a very steep gradi-
ent in the top half of the distribution with those ranked top in class who gain almost twice as
much as Non-FSME students. One interpretation of this is that FSME students already have low
confidence in their abilities and thus do not suffer from being lowly ranked. Or, they may already
perceive themselves to be lowly ranked. Moreover, the shallower gradient for Non-FSME students
could lead to an interpretation that they are less affected by class rank, as these students may have
their academic confidence being more affected by factors outside of school. We will return to the
interpretation of these effects at the end of the mechanisms section.

6.2.2 A-Level Subject Choices

Figure 6 presents the nonlinear impacts of primary school rank on A-Level specialisation. The
three panels in this figure sequentially present the impact of rank in each subject on the likelihood
of choosing an English, maths or science A-Level. In each panel we see a positive relationship for
the rank of the subject in question on taking that A-Level at the end of secondary school. Unlike
the impact on test scores these impacts are highly non-linear with the majority of the impacts
occurring in the top decile. There are differences across subjects. For maths, students are just as
likely to choose the subject if they were at the bottom of their primary class or at the the middle,
it is only students at the very top, for whom rank has an effect. In contrast, for both English and
science students are continuously more likely to choose those subjects as primary rank increases.

28 The figure for the remaining characteristic of minority status is available up request. However, it shows little hetero-
geneity along this characteristic.
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Figure 6 also plots spillover effects across subject. Being lowly ranked in English reduces the
chances of students choosing any A-level subject. With regards to choosing English we also see
that students are in fact less likely to take English A-level exams if they are highly ranked in either
science of maths. This type of negative spillover across subjects does not occur with test scores.
An explanation for this is that students are limited to taking only three A-Levels in total, therefore
having a high rank in one subject might crowd out the likelihood of taking another subject.

7 Mechanisms

A number of different mechanisms relating to the rank of the student may produce these re-
sults. These include competitiveness, environmental favors to certain ranks, parental investment,
students learning about their ability, and development of non-cognitive skills. In the following sec-
tion, we discuss how each of these channels might explain the findings presented in the previous
sections.

7.1 Mechanism 1: Competitiveness

Recent research indicates that students may have rank concerns during primary school and
that they adjust their efforts accordingly (see Tincani (2015), Hopkins and Kornienko (2004) and
Kuziemko et al. (2014) for studies of effects of rank concerns). In our setting, if students work
harder during primary school because of these concerns, it will be reflected in higher end-of-
primary school achievement scores, which we control for. However, if students want to maximise
rank at minimal cost of effort, this potentially could produce the slight imbalances found in section
5.1 but not negative effects of low ranks. One could consider this as a form of measurement error
in ability, but one that is caused by the rank of the student.

To illustrate this point, consider students attending primary schools where they face little com-
petition for being at the top of the class. These students would have to spend less effort and thereby
obtain a lower test score while still remaining at the top of the class. Then, when facing a more
competitive secondary school environment, these previously “lazy” students may exert more ef-
fort and will appear to have high growth in test scores. This would generate a positive rank effect
as those at the top of class have high gains in test scores. However, if rank concerns during primary
school are driving the results, we would see these effects only near the top of the rank distribution.
All students in the remainder of the distribution would be applying effort during primary school
to gain a higher rank. Consequently, if this competitiveness were driving the results we would not
expect to see the effects throughout the rank distribution found in Figure 5.

Alternatively, if there were unobserved heterogeneity in competitiveness, this could cause pri-
mary school subject rank to be positively correlated with later test scores. However, in the spec-
ification that includes student fixed effects, any general competitiveness of an individual will be
accounted for. This competitiveness would need to vary by subject. As previously mentioned,
factors that vary by student across subjects conditional on prior test scores could confound, or in
this case, explain the results.
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7.2 Mechanism 2: Parental investment

Parents may react to the academic rank of their child by altering their investment decisions.
Parents can assist the child at home with homework or with other extra-curricular activities, or
choose a school specialising in a certain subject. If the parents know that their child is ranked
highly in one subject, they may have a tendency to encourage the child to do more activities and
be more specialised in that subject. Note that, as we are controlling for student effects, this will
need to be subject-specific encouragement, rather than general encouragement pertaining to school
work. This mechanism assumes that parents react to achieved primary school rank rather than to
prior preferences. For this to be the case, it would require parents to want to specialise their child at
the age of 11, rather than to improve their child’s weakest subject. If parental investment is focused
on the weaker subject (Kinsler et al., 2014), this will reverse the rank effect for these students. To
test for this, in this section we use information from the LSYPE survey about parental investments
during secondary school in terms of time and money. We also test if, instead of reacting to rank
through increased investments, parents respond by sending their child to a school that specialises
in that subject area.

Each row of Table 7 shows the estimated impact of rank on a different type of parental invest-
ment. All estimates in the second column are from our main specification, the first column omits
the flexible student achievement covariates. Panel A relates to parental time investments during
secondary school. We see that rank in primary school is positively correlated with the number
of parents who attended the most recent parents’ evening, but, once we condition on primary
school achievement, there is no longer a significant relationship. A similar pattern occurs with
parents having special meetings with the teacher about the child and the frequency of talking with
the child’s teacher: both of these are significantly negatively correlated with the students rank
in primary school, but after conditioning on test scores there appears to be no relation to rank.
The fourth investment measure about self-reported feelings about parental involvement with the
child’s school life is not correlated with rank in either specification. We construct an index of these
parental time investments using principal components analysis, which we standardise, and again
find that once conditioning on prior attainment parental investment is uncorrelated with prior
rank.

Panel B of Table 7 presents how parental financial investments during secondary school are
related to primary rank. The outcome of the first row of panel B is an indicator variable for parents
investing in any form of out of school tuition for the student (23.4 percent). When not controlling
for prior attainment, this is positively correlated with student rank, which could be reflective of
coming from wealthier families. However, once prior attainment is accounted for, in the second
column, this significant correlation ceases. The second row of panel B examines weather student
rank induces parents to pay for out of school tuition in the associated subject, allowing the in-
vestment to vary within the student across subjects. We see that students ranked low in a subject
during primary school indeed have more subject-specific tuition in secondary school. But again,
conditional on attainment, this correlation is removed.

In the final panel of Table 7, we test for sorting to secondary schools by subject according to
primary rank by calculating each secondary school’s subject-specific value added measure in terms
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of age 11 to 14 growth in test score percentiles. The first row uses a raw value added measure and
the second uses one that conditions on student demographics, and each have been standardised to
mean zero and standard deviation one. Both measures provide similar results: students ranking
high in a subject tend to enroll in school with a high value added in that subject, but, like the
previous panels, when we account for age 11 achievement, there is no significant relationship 29

Instead of testing for sorting directly, the final two rows of Table 5 explore how the main rank
coefficient changes when we condition on different secondary school characteristics in order to de-
termine the overall importance of the secondary school attended. Because these school character-
istics can be interpreted as possible outcomes of primary rank in their own right, these parameters
should be interpreted with caution. We proceed by first removing all students who attend sec-
ondary schools labeled specialist in English, math, or science from the sample and re-estimating
the effects. This consists of eight percent of all secondary schools at the age of entry, or 575,000
observations in our sample. The removal of these schools has a negligible impact on the rank ef-
fects (Row 8, Table 5). Second, parents may not be reacting to the labels, but choosing schools with
high actual gains in certain subjects. If the rank effect is due to this type of parental sorting, then
additional conditioning on secondary SSC effects would reduce the size of the rank parameter. In
the final row of Table 5, we see that these additional controls only have a small impact on the rank
effect, as would be expected given the results from panel C of Table 7.

This section has shown that while parental investments during secondary school are correlated
with a student’s rank during primary school only when not conditioning on achievement. We
take this as direct evidence against rank-based parental investments causing the positive long-
run effects of primary rank during secondary school. More generally, parents are unlikely to be
accurately informed of their child’s specific class rank in the English context. Teacher feedback to
parents will convey some information, such as the student being the best or worst in class, but
it is doubtful that they would be able to discern a difference from being near the middle of the
cohort rankings. Our results, however, show significantly different effects from the median for all
vingtiles with school-subject-cohort effects. Taken together, parental investments are an unlikely
mechanism.

7.3 Mechanism 3: The environment favors certain ranks

Another possible explanation for the positive impact of rank is that there are rank-based in-
vestments. For example, one can imagine primary school teachers focusing their attention on low
ranked students or schools providing extra resources to these students. This does not impact our
results if these investments have a permanent impact on student achievement, as they are realised
in primary school test scores, on which we condition. This mechanism requires that any improve-
ment in test scores is temporary, either being realised only in primary school or secondary school.
Like the competitive mechanisum, one can consider this as a form of rank generated measurement
error.

29 Appendix Table A.5 additionally tests for school level value added, with and without student controls. None of the
eight specifications find a significant relationship with rank conditional on prior attainment.
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For example, if teachers targeted low ranked students, these students would achieve higher
age-11 test scores than otherwise, but retain their low ranking. These students would also have
low achievement growth between ages 11 and 14 and therefore this would generate a positive
rank correlation at the bottom of the distribution.30 For a positive rank correlation to occur at
the top of the distribution, we would require the opposite situation, where increased investment
in top students during primary school was not reflected in primary school test scores but only in
later achievement. This would be captured by our rank effect, β1

Rank, and would be considered a
potential mechanism.

Both of these channels require the targeting of teacher effort, however in our setting teachers
are in a performance related pay system, where they are rewarded for generating better than aver-
age improvements in performance (Atkinson et al., 2009). Principals and teachers agree on a target
achievement levels for each individual student and teachers are then rewarded for exceeding them.
As a result, there are no financial incentives for teachers to target low performing or low ranked
students, similar to a pay-for-percentile system as discussed in Barlevy and Neal (2012). Moreover,
it has been found that teachers fail to target specific groups of students, even when faced with ex-
plicit incentive schemes (Chakrabarti, 2014; Reback et al., 2014). Ultimately, as awards are based
on student growth, teachers would have incentives to generate contemporaneous, rather than un-
realised gains in test scores. Given these inconsistencies and the required assumptions that any
beneficial effects are transitory, we have doubts that this is the dominant reason for the effect, but
we cannot exclude this mechanism. Of course, if there was no measurement error in the age-11
test scores, and no fade out of teacher investments, this mechanism could be ruled out.

7.4 Mechanism 4: Student Confidence

A simple mechanism for the rank effect is that being highly ranked among peers makes an in-
dividual more confident in school generally or in a specific subject. We will first provide evidence
that rank, conditional on test scores, increases confidence and follows similar patterns of hetero-
geneity found with the main effects. To explain the positive effects of primary rank on confidence
and attainment, we then propose two models of student effort allocation based on learning and
non-cognitive skills, which we test against each other.

7.4.1 Impact on Confidence

We link our administrative data to the LSYPE data which contains questions regarding stu-
dent confidence in each of the subjects of interest at the age of 14. This allows us to test directly
if rank position within primary school has a lasting effect on subject confidence, conditional on
attainment. The specification is equivalent to specification 2 with the dependent variable now be-
ing subject-specific confidence. Since this survey was run for only one cohort, the SSC effects are
replaced by school-by-subject effects. Also, the LSYPE data was not sampled to be representative

30 Note if primary teachers taught to the median student in such a transitory way, those at both extremes would lose
out. So instead of a linear effect, we would find a U-shaped curve with both students at the bottom and the top of the
distribution gaining relatively more during secondary school.
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of the student population, so we first replicate our main result using students for the LSYPE sam-
ple only in the first column of Table 8. In this sample of students we obtain a rank-effect of 8.977,
which is slightly, but not statistically significantly, higher than our baseline estimates.

The second column of Table 8 shows that students with a higher primary school rank posi-
tion are significantly more likely to say that they are good in that subject at the 5-percent level
of statistical significance. Moving from the bottom of the class to the top increases confidence by
0.196 points on a five-point scale, which corresponds to 20 percent of a standard deviation of this
confidence measure. This suggests that students develop a lasting sense of strengths and weak-
nesses depending on their local rank position, conditional on relative test scores. This is despite
there being very few LSYPE respondents per primary school (4.5 students conditional on at least
one student being in the survey), which severely limits the degrees of freedom in each primary
school subject group. Columns 3 and 4 present results separately for boys and girls. In line with
our results from the administrative data, we find that boys are more strongly affected by primary
rank.

Overall, given the effects of rank on the direct measures of student confidence and the hetero-
geneity of effects found in the main results, it seems likely that confidence matters. This is in line
with the psychological literature which finds that academic confidence is thought to be especially
malleable at the primary school age (Tidemann, 2000; Rubie-Davies, 2012; Leflot et al., 2010).

7.4.2 Learning or Non-Cognitive Skills?

We conclude the analysis by testing how this increased confidence improves test scores by
comparing two channels, learning about ability and non-cognitive skills. The first is that students
use their ordinal class ranking in addition to their absolute achievement to learn about their own
subject-specific abilities, similar to a model proposed by Ertac (2006). Students then use this in-
formation when making effort investment decisions in secondary school across subjects. Are they
relatively more productive in math or English? Critically, this mechanism does not change an in-
dividual’s education production function, only their perception of it. We will argue below that this
feature allows us to test the learning model.

The second is that a student’s ordinal ranking during primary school has an impact on their
academic confidence and hence non-cognitive skills. In the educational literature, this effect is
known as the Big Fish Little Pond Effect, and it has been found to occur in many different countries
and institutional settings (see Marsh et al. (2008) for a review).31 This confidence can differ over
tasks, so a student can consider herself good in English, but bad in maths (Marsh et al., 1988; Yeung
and Lee, 1999). Confidence generates non-cognitive skills in a subject such as grit, resilience, and
perseverance Valentine et al. (2004). The importance of such non-cognitive skills for both academic
attainment and non-academic attainment is now well established (Borghans et al., 2008; Lindqvist
and Vestman, 2011; Heckman and Rubinstein, 2001). We propose to model these increased non-

31 The psychological-education literature uses the term self-concept, which is formed through our interactions with the
environment and peers O’Mara et al. (2006). Individuals can have positive or negative self-concept about different
aspects of themselves and students with a high self-concept would also develop positive non-cognitive skills..
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cognitive skills as a decrease in the costs of effort for that task.32

In order to test the learning and non-cognitive skills models, we propose a simple conceptual
framework which can accommodate both of them. We again have two periods, an experience
phase and an action phase, representing primary school and secondary school respectively. In the
first period, students carry out tasks (subjects) in a small group and compare their performance
to others, which determines their confidence when entering the second period.33 In the second
period, we model students as total grade maximising agents for a given total cost of effort and
subject ability level . The total grade Y, of student i is the sum of their grades across subjects s.
For simplicity of notation, assume that there are only two subjects, s = {e, m}. The production of
grades in each subject is a function of subject specific ability Ais and effort Eκ

is, where we assume
decreasing returns to effort, 0 < κ < 1. The productivity of these factors is additionally affected
by subject specific school factors µs. Accordingly, the total grade of individual i is a separable
production function and can be represented as:

Yi = f (Aie, Eie) + f (Aim, Eim) = µie AieEκ
ie + µim AimEκ

im

The students maximises total grades subject to a cost function. This cost function is determined by
their cost of effort in each subject Cis and a general cost of academic effort Cig. This general cost
reflects a student’s attitude towards education in general and is linear in the sum of effort applied
across all subjects, Eim + Eie. The total cost of effort T that a student can apply is fixed; however, the
inclusion of a general cost of academic effort term means that the total effort applied by a student
is very flexible.

Ti ≥ CimEim + CieEie + Cig(Eim + Eie)

These factors determine how students choose how to allocate effort across the two subjects. In both
models their optimal choice will be affected by their previous experience, either through perceived
ability or the cost of effort so that a grade-maximising student chooses optimal effort E∗:

E∗is =
[

λ(Cis + Cig)

(κµs Ais)

](1/(κ−1)

(8)

where λ > 0 is the marginal grade per effort. As 0 < κ < 1 , any increase in subject ability Ais

will increase the optimal effort allocated to that subject, and higher costs would decrease effort.
This case is represented in Figure 7 panel A, where the relative costs of effort Cs, Cg determine
the gradient of the iso-cost line and abilities determine the shape of the iso-quant Q. A student
chooses optimally to invest Ee in English effort and Em in maths effort. We can now use this simple
framework to distinguish between the two models.

In the learning-about-ability model, students know their costs of effort but do not know their
abilities. Therefore, in the experience phase, students use their test scores and relative ranking to

32 The alternative is to have non-cognitive skills impact the ability (returns to effort), by subject, which leads to the same
predictions and testable hypothesis.

33 These comparisons can be in terms of cardinal and ordinal performance.
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form beliefs about their abilities and the shape of their isoquant. Students experiencing a high rank
in English in the first period believe that they have a high abilityA∼e in that subject and therefore
optimise according to the new isoquant Q∼ and devote more effort to English in the following
period,E∼e believing that it generates high marginal returns to effort (Figure 7 panel B).

In the non-cognitive skills model, students know about their costs of efforts and abilities in
each subject. Here, in the experience phase, students develop confidence in the subjects in which
they are ranked highly and develop positive non-cognitive skills in that subject, which we model
as reducing the cost of effort Ce > C

′
e. This shifts the students’ iso-cost line out along the English

effort axis to point T/(C
′
e + Cg). Consequently, they are able to reach higher isoquant Q

′
, and

optimally invest more effort in English, E
′
e > Ee(Figure 7, panel C). Rank can also impact students’

general cost of effort Cg, which we assume to be a decreasing function of ranks in all subjects. If
there are any general gains in confidence due to having a high rank in English this reduces the cost
of any academic effort Cg > C

′
g and causes a parallel shift out of the iso-cost line, with intercepts

T/(Cm + C
′
g) and T/(C

′
e + C

′
g). This results in the students providing more effort to all subjects

E
′′
e > E

′
e > Ee. Note that with this channel, it will be impossible for students to misallocate effort

across subjects, as they are perfectly informed about their costs and abilities.
Given these two ways of interpreting confidence, we now consider the case where students

have a high rank locally in their class but have a low global rank nationally. Under the learning
hypothesis, students with large differences between local and national ranks (in absolute terms)
would have more distorted information about their true abilities, assuming national test scores are
a good measure of ability. These students would then be more likely to misallocate effort across
subjects, thereby achieving lower average grades compared to students whose local ranks happen
to closely align with national ranks. Turning back to panel B of Figure 7, this is represented by
the student believing that she is on iso-quant Q∼with resulting effort choices E∼e and E∼m , which
are not optimal because her perceptions are incorrect. Such a student would therefore over-invest
in English. The local ranking provides a distortion that shifts effort allocation from the optimal
allocation (Eeand Em) to an non-optimal allocation E∼e and E∼m . This means that due to the misin-
formation about relative abilities students ultimately end up on a lower iso-quant than they could
achieve Q

′
< Q.

This gives rise to a testable hypothesis to distinguish between the confidence and learning
channel. In situation where local ranks are very different from national ranks, and thus less in-
formative about actual abilities, the misinformation can result in students obtaining lower total
grades. Conversely, if the rank effects are caused by actual changes in the costs associated with
the education production function, even if local rank is different from national rank, this would
not lead to a misallocation of effort in terms of maximising grades, and so total grades would not
decrease. To summarise, if a student experiences a local rank in English higher than their national
rank, under both models they allocate more effort into English in the second period, but under the
non-cognitive skills case this would not lead to a misallocation of effort and lower average grades.

We do not have direct data on perceptions versus reality of costs. However, we can test for
misallocation of effort indirectly by examining how average grades achieved are correlated with
the degree of misinformation. More precisely, we compute a measure of the degree of misinforma-
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tion for students in each subject using their local rank Rijsc∈{0, 1} and national percentile rank
Y0

ijsc∈{0, 100} at age-11. Both are uniformly distributed in the aggregate and, therefore, we sim-
ply define the degree of misinformation Misijsc as the absolute difference between the two after
re-scaling percentile rank:

Misijsc = |Rijsc −
Y0

ijsc

100
| where Mis∈{0, 1} (9)

This measure takes the value zero for students where their local rank happens to correspond
exactly to the national rank. Here, there are no differences between the predictions of the learning
and confidence models. A large value for Misijsc, on the other hand, indicates large differences
between local and national rank. Here, total grades obtained should be lower if students use
this information to form beliefs. Averaging this metric across subjects within student provides a
mean indicator of the degree of misinformation for each student. To test directly whether or not
a student with a large amount of misinformation does significantly worse, we use a specification
similar to specification 2 but with the by-subject variation removed, as we are examining the effect
on average test scores. We estimate the following specification:

Ȳ1
ijc = β1

RankR̄ijc + f (Y0
ijc) + β1

Mis M̄isijc + x′i β + j′jcϕ+ ηijc (10)

where
ηijc = τi + υijc

Here, Ȳ1
ijc denotes the average test scores across subjects in period 1, R̄ijcis average rank in primary

school,M̄is the additional misinformation variable, xia vector of individual characteristics and jjc

primary school-cohort fixed effects. To clearly re-state our hypothesis: if the amount of misinfor-
mation causes students to misallocate effort across subjects we expect βMis < 0. Alternatively, the
null hypothesis that local rank causes changes to the actual production function means βMis = 0.

H1 : Learning βMis < 0
H0 : Null βMis = 0

We obtain the following estimates using our full sample of 2,271,999 students. For benchmark-
ing purposes, we first estimate a version of specification 10 without the additional misinformation
variable in Table 9. The effect of average rank on average test score is estimated at 10.765, and
is highly statistically significant. Column 2 adds the coefficient for the effect of misinformation,
which is estimated to be small, positive and statistically insignificant at conventional levels while
the rank parameter remains almost unchanged. We repeat this in columns 3 and 4 additionally
controlling for student characteristics and find no meaningful differences. Given these results, we
fail to reject the null hypothesis that the degree of misinformation does not cause students to mis-
allocate effort. Therefore, we conclude that the learning mechanism alone is unlikely to generate
our results.

Given this finding, we turn back to re-interpret the main results. The non-cognitive skills model
is consistent with the empirical results found in section 4. Moreover, under this model the smaller
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estimates from the pupil fixed effects specification 3 have general confidence effects absorbed (I
′′

to I
′

in Figure 7). Therefore, these estimates pick up only the effect of within student reallocation
of effort across subjects.

8 Conclusion

This paper established that an individual’s ordinal position within a group impacts later ob-
jective outcomes, controlling for cardinal achievement. In doing so, we have introduced a new
factor in the education production function, showing that rank position within primary school
has significant effects on secondary school achievement and the likelihood of completing STEM
subjects. There is significant heterogeneity in the effect of rank, with males being influenced con-
siderably more. Moreover, a higher rank seems also linked to important non-cognitive skills, such
as confidence.

What are the policy implications of these findings? With specific regard to education, these
findings leads to a natural question for a parent deciding where to send their child (in partial
equilibrium). Should my child attend a “prestigious school” or a “worse school” where she will
have a higher rank? Rank is just one of the many factors in the education production function.
Therefore, choosing solely on the basis of rank is unlikely to be a correct decision.

To gauge the relative importance of rank for choosing a primary school, we follow an approach
similar to Chetty et al. (2011) to estimate the overall effect of class quality (which includes class
size, teacher quality, peer quality, etc.) on long-run outcomes by using the size of our SSC effects
from specification 2 as a benchmark. Attending a primary school with a one standard deviation
higher quality, net of the effect of rank, is associated with 0.269 standard deviation higher growth
rate at the age-14 exam. This means that increasing primary rank by one standard deviation has
effects equivalent to increasing general primary school quality by about 0.3 standard deviations.

We now make some comparisons with effect sizes found by the literature. We first compare the
rank effect to the impact of teachers for one year. Being taught by a teacher who is one standard
deviation better than average for one year improves student test scores by 0.1 to 0.2 standard
deviations (Rivkin et al., 2005; Aaronson et al., 2007). Comparatively, we find that a student with
one standard deviation higher rank throughout six years of primary school increases the age-14
achievement by 0.08 standard deviations. Note however, that these teacher effects on test scores
are contemporaneous and fade out over time (Chetty et al., 2014), whereas the rank effect is long-
lasting. There are few papers that look directly at the long run impact of elementary school peers
on later outcomes, with the exception of Carrell et al. (2016). They estimate the causal effect of a
single disruptive peer in a class of 25 throughout elementary school to reduce test scores in grades
9 and 10 by 0.02 standard deviations. In comparison, we estimate the long-run effect of a one
standard deviation increase in rank throughout primary schools to be equivalent to adding four
disruptive peers.

Next, how do our lasting peer effects compare in size to estimates of contemporaneous peer
effects? Lavy et al. (2012) estimate peer effects on test score growth using the same administrative
data and conditional on student effects. They find that each additional new peer at secondary
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school of the bottom 5 percent of the national age-11 achievement distribution decreases age-14 test
scores by 0.008 standard deviations of the within-pupil achievement distribution. Equivalently, a
one standard deviation increase in contemporaneous ‘bad’ peers decreases age-14 value added
by 0.033 within student standard deviations. In comparison, a one standard deviation higher rank
during primary school increases age-14 value added by 0.055 within student standard deviations.34

Our results also show that primary school rankings affect A-Level subject choices and thus
have long run implications, as A-Level choices are linked directly to university admissions. Hast-
ings et al. (2013) uses data from Chile to estimate thate choosing STEM subjects at univerity over
humanities increases later earnings by 12 percent. Of course, if males and females, on average, had
the same primary rankings across all subjects, these findings would not contribute to the gender
STEM-gap. However, females outrank males in English subjects during primary school, so females
have on average higher ranks in non-STEM subjects.35 Taking absolute differences in combined
math and science versus English ranks, males have a 0.166 higher rank in STEM subjects than fe-
males. Based on our estimates, this difference would mean that males are about 0.66 percentage
points more likely choose a STEM A-Levels, conditional on achievement. Given the low share
of students taking STEM subjects, if we were to equalize the primary rankings in subjects across
genders, this would reduce the total STEM gender gap by about 7 percent. One direct way to
achieve this would be to separate primary schools by gender, ensuring there will be same amount
of females and males being on top of their class in STEM and English.

Building upon the results of section 7.4.1, where your rank impacts confidence and non-cognitive
skills, there would be general implications for productivity and informational transparency. To im-
prove productivity, it would be optimal for managers or teachers to highlight an individual’s local
rank position if that individual has a high local rank. If an individual is in a high-performing peer
group and therefore may have a low local rank but high global rank, a manager should make the
global rank more salient. For individuals who have low global and local ranks, managers should
focus on absolute attainment, or focus on other tasks where the individual has higher ranks.

Besides policy implications, our findings also help to reconcile a number of topics in educa-
tion.These persistent rank effects could partly speak towards why some achievement gaps increase
over the education cycle. Widening education gaps have been documented by race (Fryer and
Levitt, 2006; Hanushek and Rivkin, 2006, 2009). With rank effects, small differences in early over-
all attainment could negatively affect general academic confidence, which would lead to decreased
investment in education and exacerbate any initial differences. A similar argument could be made
for the persistence of relative age-effects, which show that older children continue better compared
to their younger counterparts (Black et al., 2011).

Finally, research on selective schools and school integration has shown mixed results from stu-
dents attending selective or predominantly non-minority schools (Angrist and Lang, 2004; Clark,
2010; Cullen et al., 2006; Kling et al., 2007; Dobbie and Fryer, 2014). Many of these papers use
a regression discontinuity design to compare the outcomes of the students that just passed the

34 The Lavy et al. (2012) calculations are based on within student estimates from Table 3 column 4 row 4, and the within-
student standard deviation in treatment status found in Table 2.

35 The average primary male’s (female’s) rank in English is 0.440 (0.535), in math 0.515 (0.468), and in science 0.477
(0.474).
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entrance exam to those that just failed. The common puzzle is that many papers find no benefit
from attending these selective schools.36 However, our findings would speak to why the potential
benefits of prestigious schools may be attenuated through the development of a fall in confidence
among these marginal/bussed students, who are also necessarily the low-ranked students. This
is consistent with Cullen et al. (2006, p. 1194), who find that those whose peers improve the most
gain the least: “Lottery winners have substantially lower class ranks throughout high school as a
result of attending schools with higher achieving peers, and are more likely to drop out”.
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Figures

Figure 1: Rank Dependent on Distribution of Test Scores

Notes: The figure shows two classes of eleven students, with each mark representing a student’s test score, which are
increasing from left to right. The classes have the same mean, minimum, and maximum student test scores. However,
two students with the same absolute and relative-to-the-mean test scores can still have different ranks. For example, a
student with a test score of Y in class A would have a lower rank (ranked fifth out of eleven) than a student with the
same test score in class B (ranked second out of eleven). Similarly, a test score of X would be ranked differently in classes
A and B.

Figure 2: Test Score Distributions Across Similar Classes

Notes: This graph presents data from six primary school English classes which all have a student scoring the minimum
and maximum and have a mean test score of 55 (as indicated by the dashed grey line). Each diamond represents a
student score, and gray squares indicate all students who scored 92. Given the different test score distributions, each
student scoring 92 has a different rank. This rank is increasing from school 1 through to school 6 with ranks of 0.83,
0.84, 0.89, 0.90, 0.925 and 0.94 respectively, despite all students having the same absolute and relative-to-the-class-mean
test score. Note that individual test scores have been randomly altered enough to ensure anonymity of individuals and
schools, which is for illustrative purposes only and in no way affects the interpretation of these figures.
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Figure 3: Rank Distributions Across School-Subject-Cohorts Subjects

Notes: The Y-axis is the primary rank of students and the X-axis shows the de-meaned test scores by primary school-
subject-cohort (SSC). Note that individual test scores have been randomly altered enough to ensure anonymity of indi-
viduals and schools, which is for illustrative purposes only and in no way affects the interpretation of these figures.

Figure 4: Estimates from Monte Carlo Simulations with Additional Measurement Error in Baseline
Test Scores

Notes: This figure plots the mean rank estimate from a 1000 simulations of Specification 2 with increasing additional
measurement error added to student baseline test scores before computing ranks. The measurement error is drawn
from a normal distribution with mean zero and a standard deviation that is proportional to the standard deviation in
baseline test scores (28.08). The measurement error of each subject within a student is independently drawn. The error
bars represent the 2.5th and the 97.5th percentiles from the sampling distribution of beta for each measurement error
level.
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Figure 5: Impact of Primary Rank on age-14 Test Scores

Figure 5.1: Non-Parametric Estimation
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5.2: Non-Linear Effects by Gender
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5.3 Non-Linear Effects by Free School Meal Eligibility
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Notes: The panels show the impact of rank in primary school using versions of Specification 4 allowing the effect of
rank to vary by ventile and a dummy for being top or bottom of class (SSC). The reference ventile are those from the
45-50th percentiles. FSME stands for Free School Meal Eligible student. Effects obtained from estimating the effect of
rank on Non-FSME (Female) students and the interaction term with FSME (Male) students. All estimates have cubic
controls for baseline test scores and condition on SSC effects and student effects. Shaded area represents 95% confidence
intervals. Standard errors are clustered at the secondary school level.
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Figure 6: Impact of Primary Subject-Rank on A-Level Choices

Figure 6.1: English
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6.2: Maths

-.0
4

-.0
2

0
.0

2
.0

4
Fi

na
l H

ig
h 

Sc
ho

ol
 E

xa
m

 C
ho

si
ng

 M
at

hs

0 .2 .4 .6 .8 1
Rank in Primary School

English Rank
Maths Rank
Science Rank

6.3 Science
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Notes: The panels show the impact of rank in primary school for each of the three subjects on the likelihood of com-
pleting each of the subjects at the A-Level. The estimates come from a version of Specification 4 allowing the effects of
rank to vary by ventile. The reference ventile are those from the 45-50th percentiles. Each panel represents the results
from three separate regressions for each subject rank (and baseline test scores) in primary school. The take up rate for
the A-Level subjects are English 12.3%, Maths 8.4% and Science 10.8%.
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Figure 7: Optimal Allocation of Effort Across Subjects, Confidence Model
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Notes: These figures show students’ optimal effort allocation between maths Emand English Ee. Students have costs of
effort for each subject Cm, Ce and a general cost of effort Cg. Students are willing to provide a total cost of effort T, have
perceived iso-quants Q and iso-costs I. In panel B, under the learning about abilities model Q∼represents perceived
iso-quant, and E∼e E∼m the resulting chosen effort levels in English and maths respectively. In panel C, under the non-
cognitive skills model Q′ and I′ represent the iso-quant and iso-cost lines with lower costs of English effort, where E

′
e

and E
′
m are the resultant chosen effort levels. Finally, Q′′ and I′′ represent the iso-quant and iso-costs with lower costs

of English effort and lower costs of general academic effort, where E′′e and E′′m are the resultant chosen effort levels. For
more details, see section 7.4.2.
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Tables

Table 1: Descriptive Statistics of the Main Estimation Sample

 Mean S.D. Min Max 
Panel A: Student Test Scores   
Age 11 National Test Scores Percentile    
English 50.285 28.027 1 100 
Maths 50.515 28.189 1 100 
Science 50.005 28.026 1 100 

Age 11 Rank    
English 0.488 0.296 0 1 
Maths 0.491 0.296 0 1 
Science 0.485 0.295 0 1 
Within Student Rank SD 0.138 0.087 0 0.577 

Age 14 National Test Scores Percentile    
English 51.233 28.175 1 100 
Maths 52.888 27.545 1 100 
Science 52.908 27.525 1 100 

Age 16 National Test Scores Percentile    
English 41.783 26.724 1 94 
Maths 43.074 27.014 1 96 
Science 41.807 26.855 1 94 

Age 18 Subjects Completed   
English 0.123 0.328 0 1 
Maths 0.084 0.277 0 1 
Science 0.108 0.31 0 1 

Panel B: Student Background Characteristics 
FSME 0.146 0.353 0 1 
Male 0.499 0.5 0 1 
Minority 0.163 0.37 0 1 

Panel C: Observations   
Students 2,271,999    
Primary Schools 14,500    
Secondary Schools 3,800    

 
Notes: 6,815,997 student-subject observations over 5 cohorts. Cohort 1 takes age 11 examinations in 2001, age 14 exam-

inations in 2004, age-16 examinations in 2006 and A-Levels at age-18 in 2008. Test scores are percentalised by cohort-
subject and come from national exams which are externally marked. Age-16 test scores mark the end of compulsory
education. Age-18 information could be merged for a sub-sample of 5,147,193 observations from cohorts 2 to 5. For a
detailed description of the data, see section 3.
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Table 2: LSYPE Sample: Descriptive Statistics

Mean S.D. Min Max 
Panel A: Student Descriptive Statistics  
How good do you think you are at...  
English 0.928 0.928 -2 2 
Maths 0.944 0.917 -2 2 
Science 0.904 1.008 -2 2 

Age 11 National Test Scores Percentile    
English 50.114 27.725 1 100 
Maths 50.783 28.378 1 100 
Science 49.453 28.287 1 100 

Age 11 Rank      
English 0.496 0.295 0 1 
Maths 0.501 0.297 0 1 
Science 0.489 0.294 0 1 
Within Student Rank SD 0.137 0.089 0 0.575 

Student Characteristics   
FSME 0.180 0.384 0 1 
Male 0.498 0.500 0 1 
Minority 0.337 0.473 0 1 

Panel B: Parental Descriptive Statistics     
Any Post-Secondary Qualification  0.323 0.468 0 1 
Gross Household Income>£33,000 0.219 0.413 0 1 
Occupation     
English 0.014 0.119 0 1 
Maths 0.031 0.175 0 1 
Science 0.036 0.185 0 1 

Parental Time Investment in Schooling     
Number Attending Parents Evening 1.213 0.713 0 2 
Special Meeting with Teacher About Child 0.235 0.424 0 1 
Frequency of Talking with Child’s Teacher 2.124 0.957 1 5 
Involved in Child’s School Life 2.969 0.782 1 4 

Parental Financial Investment in Schooling     
Paying for Any Out of School Tuition 0.234 0.423 0 1 
English Tuition  0.057 0.232 0 1 
Maths Tuition 0.027 0.163 0 1 
Science Tuition 0.019 0.137 0 1 

Panel C: Observations     
Students 10,318    
Primary Schools 4,137    
Secondary Schools 780    

 
Notes: The LSYPE sample consists of 34,674 observations from the cohort 1 who took age-11 exams in 2001 and age-14

exams in 2004. For a detailed description of the data see section 3.
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Table 4: Balancing Table

 (1)  (2) 
Panel A: Parental occupation  

Age-11 test scores  
8.943*** 1.534* 
1.207 0.846 

Panel B: Balancing by rank  
Parental Occupation 0.004 0.001 

0.004 0.004 
Parental Education -0.004 - 
 0.063  
Household Income>£33k -0.014 - 
 0.052  
Male  -0.008** - 

0.004  
FSME -0.008*** - 

0.003  
Minority  0.008*** - 

0.002  
Predicted Age 14 Test Scores 0.113*** - 
 0.031  
Cubic in Age 11 Test Scores (excluding Panel A)   
Primary SSC  Effects   
Student Effects   

 

 

 

Notes: Rows 1 and 2 are based on 31,050 subject-student observations for which parental occupations could be identified
from the LSYPE (for details see section 3.4). Panel A establishes the relevance of the parental occupation variable by
estimating effects on age-11 test scores. Panels B shows balancing of rank with the listed student characteristics as
dependent variables. Predicted age-14 test scores are generated from a linear projection of student observables and SSC
effects. Primary SSC effects are fixed effects for each school-by-subject-by-cohort combination. As parental occupation
varies across subjects within a student, regressions in column 2 include additional student fixed effects. Standard errors
in italics and clustered at the secondary school level (3,800). *** 1%,** 5%, * 10% significance.
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Table 5: Alternative Specifications

    Age 14 Test Scores 

  (1) (2) 
    

(1) Main Specifications - Benchmark 
7.894*** 4.562** 

0.147 0.107 
    

(2) Fully Flexible Age 11 Test Scores 
7.543*** 4.402*** 

0.146 0.107 
    

(3) Randomised Cohort Within School 
2.132*** 0.869** 

0.154 0.140 
    

(4) Accounting for Primary Class Variance 
5.718*** 4.337*** 

0.156 0.118 
    

(5) Small Primary Schools (Single Class) Only 
6.469*** 3.646*** 

0.176 0.146 
    

(6) Randomised School Within Cohort 
-0.099 -0.227 

0.130 0.150 
    

(7) No Prior Peers in Secondary School  
10.461** 5.011*** 

0.449 0.415 

(8) Excluding Specialist Secondary Schools 
7.875*** 4.586*** 

0.155 0.112 
    

(9) Accounting for Secondary-Cohort Subject FX 
7.942*** 4.471*** 

0.146 0.106 
    

    

Student Characteristics  Abs 

Cubic in Age 11 Test Scores   

Primary SSC Effects   

Student Effects   

 
Notes: This table is discussed in section 5 (row 1-7) and in section 7.2 (row 8 and 9). Results obtained from 18 separate

regressions. Rows 1, 2, 3, 4, 6 and 9 use the main sample of 6,815,997 student-subject observations. Row 5 uses a
reduced sample of 2,041,902 student-subject observations who attended primary schools with cohort sizes of less than
31. Row 7 is estimated using a sample of 452,088 observations, which have no primary peers in secondary school. Row
8 uses a reduced sample of 6,235,806 student-subject observations who did not attend a secondary school classified
as specialist. The dependent variable is by cohort by subject percentalised KS3 test scores. Student characteristics
are ethnicity, gender, and Free School Meal Eligiblity (FSME). SSC effects are fixed effects for each school-by-subject-
by-cohort combination. Standard errors in italics and clustered at the secondary school level. *** 1%,** 5%, * 10%
significance
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Table 6: Subject-specific Educational Production

 Age 14 Test Scores 

 
English  

(1) 

 Science  

(2) 

 Maths  

(3) 

Panel A:Same Subject Effects   

Rank   

 

7.400*** 8.373*** 8.820*** 

0.202 0.192 0.188 

Panel B: Cross Subject Effects   

English Rank  5.423*** 1.417*** -0.140 

0.189 0.163 0.138 

Science Rank 0.597*** 5.566*** 3.233*** 

0.171 0.167 0.137 

Maths Rank 0.788*** 3.612*** 7.753*** 

0.178 0.174 0.173 

Student Characteristics    

Cubic in Age 11 Test Scores    

Primary SSC Effects    

 
Notes: Each column of panel A estimates specification 2 separately by subject. Each column of panel B additionally

allows for cross-subject effects of ranks and test scores. Standard errors in italics and clustered at the secondary school
level (3,800 schools). *** 1%,** 5%, * 10% significance.
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Table 7: Parental Investments and Secondary Schools

 (1)  (2) 
Panel A: Parental Time Investments  
Number of Parents Attending Parents Evening 0.248*** -0.167 

0.033 0.102 
Special Meeting with Teacher About Child -0.119*** 0.053 

0.018 0.062 
Frequency of Talking with Child’s Teacher  -0.215*** 0.170 
 0.041 0.129 
Involved in Child’s School Life 0.028 -0.114 
 0.034 0.110 
Index of Parental School Involvement   -0.224*** 0.042 

0.086 0.146 
Panel B: Parental Financial Investments   
Paying for Any Out of School Tuition 0.148*** -0.066 

0.018 0.062 
Paying for Out of School Tuition by Subject  -0.029*** -0.007 

0.006 0.026 
Panel C: Sorting to Secondary by Subject Value Added   
Unconditional Value Added 0.365*** -0.002 
 0.016 0.009 
Conditional Value Added 0.367*** -0.002 
 0.016 0.010 
Cubic in Age 11 Test Scores (excluding Panel A)   
Primary SSC Effects   
 
Notes: Results obtained from 18 separate regressions. Regressions in panel A and B are based on 11,558 student ob-

servations and 34,674 student-subject observations from the LSYPE sample. For descriptives, see Table 2. Regressions
from panel C use the main sample. Secondary school subject specific value added is calculated in terms of age 11 to 14
growth in test score percentiles recovered from a secondary school subject fiexed effect. These fixed effects have been
standardised to mean zero and standard deviation one. Cohort effects are not included because the LSYPE data is only
available for one cohort. Standard errors in parenthesis and clustered at the secondary school level (796/3800). *** 1%,**
5%, * 10% significance.
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Table 8: Student Confidence On Rank

  
Age 14 Test 

Scores 
Subject 

Confidence 

Male –  
Subject 

Confidence 

Female – 
 Subject 

Confidence 
 (1) (2) (3) (4) 

Primary Rank 8.977*** 0.196** 0.285* -0.009 
 1.602 0.093 0.168 0.210 
     
Male -1.939*** 0.124***   
 0.259 0.014   
     
FSME -2.588*** 0.046** 0.032 0.026 
 0.383 0.019 0.037 0.038 
     
Minority 2.107*** 0.159*** 0.113*** 0.219*** 

 0.414 0.022 0.038 0.045 
Cubic in Age 11 Test Scores     
Primary SSC Effects     

    
 Notes: Results obtained from four separate regressions based on 11,558 student observations and 34,674 student-subject
observations from the LSYPE sample (17,415 female, 17,259 male). For descriptives, see Table 2. The dependent variable
is a coarse measure of confidence by subject. Cohort effects are not included because the LSYPE data is only available
for one cohort. Standard errors in parenthesis and clustered at the secondary school level (796). *** 1%,** 5%, * 10%
significance.

Table 9: Is the Degree of Misinformation Harmful?

 Age 14 Test Scores 

  (1) (2)  (3) (4) 

Primary Rank   

 

10.765*** 10.768*** 10.678*** 10.672*** 

0.226 0.225 0.225 0.224 
     

Misinformation  

 

 0.103  -0.172 

 0.266  0.264 

Student Characteristics     

Cubic in Age 11 Test Scores     

Primary-cohort Effects     

 

Notes: Results obtained from four separate regressions based on 2,271,999 student observations averaged over subjects
where columns 2 and 4 include an additional explanatory variable of the degree of misinformation. The dependent
variable is age-14 test scores. Rank is the average rank across English, maths and science in primary school. The
misinformation measurement is the average absolute difference between local rank and national percentile rank for
each student in the end-of-primary school test score as explained in section 7.4.2. Student characteristics are ethnicity,
gender, and Free School Meal Eligibility (FSME). Standard errors in italics and clustered at 3,800 secondary schools. ***
1%,** 5%, * 10% significance.
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Appendix (for online publication)

A.1 Peer Effects

There are concerns that, with the existence of peer effects, peer quality jointly determines both
a student’s rank position and their age-11 test scores. This mechanical relationship could bias
our estimation because, in the presence of peer effects, a student with lower quality peers would
attain lower age-11 test scores and gain a higher rank than otherwise. Thus, when controlling
for prior test scores in the age-14 estimations, when students have a new peer group, those who
previously had low quality peers in primary school would appear to gain more. Since rank is
negatively correlated with peer quality in primary school, it would appear that those with high
rank experience the largest gains. Therefore, having a measure of ability confounded by peer
effects would lead to an upward-biased rank coefficient.

We propose a solution through the inclusion of subject-by-cohort-by-primary school controls.
These effects will absorb any average peer effects within a classroom. However, they will not ab-
sorb any peer effects that are individual-specific. This is because all students will have a different
set of peers (because they cannot be a peer to themselves). Therefore, including class level effects
will remove only the average class peer effect. The remaining bias will be dependent on the differ-
ence between the average peer effect and the individual peer effect and its correlation with rank.
We are confident that the remaining effect of peers on the rank parameter will be negligible, given
that the difference between average and individual peer effect decreases as class size increases.
The bias will be further attenuated because the correlation between the difference and rank will be
less than one, and both effects are small.

We test this by running simulations of a data generating process, where test scores are not
affected by rank and are only a function of ability and school/peer effects. We then estimate the
rank parameter given this data. We allow for the data-generating process to have linear mean-peer
effects, as well as non-linear peer effects Lavy et al. (2012). The non-linear peer effect is determined
by the total number of peers in the class in the bottom 5 percent of students in the population.
We are conservative and assume extremely large peer effects, allowing both types of peer effects
to account for 10 percent of the variance of a student’s subject-specific outcome. Given that the
square root of the explained variance is the correlation coefficient, this assumption implies that a
one standard deviation increase in peer quality improves test scores by 0.31 standard deviations.
In reality, Lavy et al. (2012) find a one standard deviation increase in peers increases test scores by
only 0.015 standard deviations, which is one 20th the size.

The data generating process is as follows:

• We create 2,900 students attending 101 primary schools and 18 secondary schools of varying
sizes.

• A range of factors are used to determine achievement. Each of these factors are assigned
a weight, such that the sum of the weights equals one. This means that weights can be
interpreted as the proportion of the explained variance.

• Students have a general ability αi and a subject specific ability δis taken from normal distri-
butions with mean zero and standard deviation one. Taken together, they are given a weight
of 0.7, as the within school variance of student achievement in the raw data is 0.85. They are
given a weight of 0.6 where rank effects exist.

• All schools are heterogeneous in their impact on student outcomes. These are taken from
normal distributions with mean zero and standard deviation one. School effects are given a
weight of 0.1, as the across school variance in student achievement in the raw data is 0.15.
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• Linear mean peer effects are the mean subject and general ability of peers not including
themselves. Non-linear peer effect is the negative of the total number of peers in the bottom
5 percent of students in the population in that subject. Peer effects are given a weight of 0.1,
which is much larger than reality.

• We allow for measurement error in test scores to account for 10 percent of the variance.

• We generate individual i’s test scores as a function of general ability αi, subject specific ability
δis, primary peer subject effects ρijs or secondary peer subject effects σiks, primary school
effects µj or secondary school effects πk, age-11 and 14 measurement error ε ijs or ε ijks , and
primary school Rank ωijs.

– age-11 test scores
Y0

ijs = 0.7(αi + δis) + 0.1µj + 0.1ρijs + 0.1ε ijs

– age-14 test scores where rank has no effect (panel A):

Y1
ijks = 0.7(αi + δis) + 0.1πk + 0.1σiks + 0.1ε ijks

– age-14 test scores where rank has an effect (panel B):

Y1
ijks = 0.6(αi + δis) + 0.1πk + 0.1σiks + 0.1ωijs + 0.1ε ijks

We simulate the data 1,000 times and each time estimate the rank parameter using the follow-
ing specifications with and without school-subject effects, with and without school-subject
effects.

Y1
ijks = β1

RankRijs + β1
yY0

ijs + ε ijks

The results from these estimations can be found in Appendix Table A.2. Panel A assumes that
there is no rank effect, and we would expect βRank = 0. Panel B has a rank effect in the data
generating process of 0.1, so we would expect βRank = 0.1. Columns 1 & 2 show estimates with
linear-in-means peers effects, and columns 3 & 4 show estimates with non-linear peer effects. With
these inflated peer effects, we see upward bias in the rank effect, showing a rank effect where
none exists (panel A columns 1 and 3). When including SSC effects, this positive bias is removed
(columns 2 & 4). With large linear-in-mean peer effects, there is no remaining bias. With non-linear
peer effects twenty times greater than those found in reality, the inclusion of SSC effects introduces
a slight negative bias; therefore, our results can be considered upper bounds.
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Appendix Figures and Tables

Figure A.1: Rank estimate with different types of additional noise in the baseline score

Panel A: Noise by ability

Panel B: Uniform Noise

Notes: These figures plot the mean rank estimate from a 1,000 simulations of specification 2 with increasing additional
measurement error added to student baseline test scores. The measurement error for each student within a student is
independently drawn. The error bars represent the 2.5th and the 97.5th percentiles from the sampling distribution of
beta for each measurement error level. The extent of measurement error in panel A is increasing linearly in distance
from the 50th percentile in the national test score distribution, such that students at the 50th percentile experience no
measurement error and that students at the 1st and 100th percentile experience additional measurement error drawn
from a normal distribution with a mean zero and standard deviation equal to the proportion of the standard deviation
in baseline test scores represented on the X-axis. The measurement error in panel B is drawn from a uniform distribution
with mean zero and a standard deviation that is proportional to the standard deviation in baseline test scores.
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Table A.1: Differences in Characteristics Between Main and LSYPE Samples

 
Main            

Sample 
    LSYPE 

Sample Difference 
Standard 

Error 
Panel A: Student Test Scores   
Age 11 National Test Scores Percentile    
English 50.285 50.114 -0.171 0.277 
Maths 50.515 50.783 0.268 0.278 
Science 50.005 49.453 -0.552 0.277 
Age 11 Rank    
English 0.488 0.496 0.008 0.003 
Maths 0.491 0.501 0.010 0.003 
Science 0.485 0.489 0.004 0.003 
Age 14 National Test Scores Percentile    
English 51.233 51.376 0.143 0.278 
Maths 52.888 53.779 0.891 0.272 
Science 52.908 53.051 0.143 0.272 
Panel B: Student Background Characteristics 
FSME 0.146 0.180 0.034 0.002 
Male 0.499 0.498 -0.001 0.003 
Minority 0.163 0.337 0.174 0.002 
Panel C: Observations   
Students 2,271,999    
Primary Schools 14,500    
Secondary Schools 3,800    

 

Notes: The table presents means characteristics from the main and the LSYPE samples, and their raw differences. The
standard errors are unclustered.
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Table A.2: Simulation of Rank Estimation with Peer Effects

 Mean peer effects  Non-linear Peer Effects 

 (1) (2)  (3) (4) 

Panel A: Rank has no effect 𝛽𝑟𝑎𝑛𝑘=0.0 

Mean �̂�𝑟𝑎𝑛𝑘 0.046 0.000  0.302 -0.041 

Mean SE of �̂�𝑟𝑎𝑛𝑘 0.014 0.018  0.015 0.019 

SE of �̂�𝑟𝑎𝑛𝑘 0.015 0.019  0.031 0.020 

95% Lower Bound 0.015 -0.037  0.243 -0.079 

95% Upper Bound 0.077 0.035  0.364 -0.003 

Panel B: Rank has an effect 𝛽𝑟𝑎𝑛𝑘=0.1 

Mean �̂�𝑟𝑎𝑛𝑘 0.099 0.100  0.304 0.068 

Mean SE of �̂�𝑟𝑎𝑛𝑘 0.014 0.017  0.014 0.018 

SE of �̂�𝑟𝑎𝑛𝑘 0.015 0.018  0.027 0.018 

95% Lower Bound 0.069 0.066  0.252 0.033 

95% Upper Bound 0.129 0.133  0.358 0.104 

KS2 and Rank      

School-Subject-Effects      

 
Notes: 1,000 iterations, 95% confidence bounds are obtained from 2.5th and 97.5th estimate of ordered rank parameters.

For details see Appendix section A.1.

Table A.3: Specification Check 1/2: Functional form of baseline test scores

 Age 14 Test Scores 

Degree of 

Polynomial   

Linear +Quadratic +Cubic +Quartic +Quintic +Sextic 

(1) (2) (3) (4) (5) (6) 

              

Primary Rank 10.704*** 10.724*** 7.894*** 7.859*** 7.622*** 7.619*** 

 0.178 0.151 0.147 0.147 0.146 0.146 

       

Minority 1.847*** 1.969*** 1.978*** 1.979*** 1.980*** 1.980*** 

 0.054 0.054 0.054 0.054 0.054 0.054 

Male -1.401*** -1.394*** -1.398*** -1.398*** -1.398*** -1.398*** 

 0.045 0.046 0.045 0.045 0.045 0.045 

FSME -3.238*** -3.167*** -3.107*** -3.104*** -3.104*** -3.104*** 

 0.031 0.031 0.030 0.031 0.031 0.031 

       
Primary SSC Effects       

 
Notes: The specification in the first row of column 3 corresponds to column 2 of the main results Table 3. The specifica-

tions differ in the degree of polynomials that are allowed for the baseline.
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Table A.4: Specification Check 2/2: Interacting past performance with school, subject of cohort
effects

 Linear  Cubic Fully Flexible 

 (1)  (2) (3) 

       

Age 14 Test Scores 10.802*** 7.946*** 7.589*** 

0.179 0.147 0.147 

    
Age 14 Test Scores interacted with 

primary school FX 
11.393*** 11.482*** 12.095*** 

0.180 0.126 0.153 

    

Age 14 Test Scores interacted with 

subject FX 
11.219*** 8.299*** 7.890*** 

0.179 0.147 0.146 

    

Age 14 Test Scores interacted with 

cohort FX 
10.809*** 7.939*** 7.575*** 

0.179 0.147 0.147 

 
Notes: The specification in the first row of column 2 corresponds to column 1 of the main results Table 3. The column

headings refer to how we control for prior performance at age-11, moving from linear to cubic to fully flexible. In
rows 2 to 4, these age-11 test score controls are additionally interacted with different sets of fixed effects, relaxing the
assumption that the baseline test score has identical effects across all primary schools, subjects or cohorts.

Table A.5: Sorting to Secondary Schools

 Unconditional Value Added Conditional Value Added 

   (1) (2) (3) (4) 

Panel A: Secondary School 

Primary Rank -0.016 -0.018* -0.017 -0.019 

 0.011 0.011 0.011 0.011 

Panel B: Panel A: Secondary School Subject 

Primary Rank  -0.002 -0.004 -0.002 -0.004 

 0.009 0.009 0.010 0.009 

Cubic in Age 11 Test Scores     

Primary SSC Effects     

Student Characteristics     

 

 Note: This table shows the results from eight estimations of primary school rank on secondary school value added
measures. In columns 1 and 2 of panel A the secondary school value added measures are the school fixed effects in a
raw estimation of age-14 test scores on age-11 test scores. In columns 3 and 4 these are again the school fixed effects in
an estimation of age-14 test scores on age-11 test scores, but additionally controlling for student demographics. Panel
B uses a parallel set of value added measures, but are at the secondary school-subject area, and so use the secondary
school by subject fixed effects.
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