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ABSTRACT

An oil lease auction is the classic example motivating a common values model. However, formal 
testing for common values has been hindered by unobserved auction-level heterogeneity, which is 
likely to affect both participation in an auction and bidders’ willingness to pay. We develop and 
apply an empirical approach for first-price sealed bid auctions with affiliated values, unobserved 
heterogeneity, and endogenous bidder entry. The approach also accommodates spatial 
dependence and sample selection. Following Haile, Hong and Shum (2003), we specify a reduced 
form for bidder entry outcomes and rely on an instrument for entry. However, we relax their 
control function requirements and demonstrate that our specification is generated by a fully 
specified game motivated by our application. We show that important features of the model are 
nonparametrically identified and propose a semiparametric estimation approach designed to scale 
well to the moderate sample sizes typically encountered in practice. Our empirical results show 
that common values, affiliated private information, and unobserved heterogeneity—three distinct 
phenomena with different implications for policy and empirical work—are all present and 
important in U.S. offshore oil and gas lease auctions. We find that ignoring unobserved 
heterogeneity in the empirical model obscures the presence of common values. We also examine 
the interaction between affiliation, the winner’s curse, and the number of bidders in determining 
the aggressiveness of bidding and seller revenue
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1 Introduction

In many auction settings it is natural to presume that important information com-

monly known among bidders is unobserved by the econometrician. Ignoring such

unobserved heterogeneity can lead to a variety of errors. One may infer too much

within-auction correlation in bidders’ private information, as well as too much cross-

auction variation in this information, leading to incorrect conclusions about such

issues as bidder market power, the division of surplus, and optimal auction design.1

In a first-price auction, unobserved heterogeneity presents a particular challenge be-

cause standard identification approaches exploit the insight that bidders’ equilibrium

beliefs about the competition can be inferred from observed distributions of rivals’

bids.2 With unobserved auction-level heterogeneity, bidders’ beliefs condition on in-

formation unavailable to the econometrician. A further problem is that auction-level

unobservables are likely to affect not only bids but also bidder participation. Such en-

dogenous bidder entry threatens several identification and testing approaches relying

on exogenous variation in the level of competition.3

We propose an empirical model of entry and bidding in first-price auctions with

affiliated values and unobserved heterogeneity. We show nonparametric identifica-

tion of key features and propose a semiparametric estimation approach. We apply

the approach to auctions of offshore oil and gas leases in the United States Outer

Continental Shelf (“OCS”) to evaluate the importance of unobserved heterogeneity,

test the hypothesis of equilibrium bidding, assess the effect of competition on bidding

and revenues, and test for common values. The last of these is of particular interest.

1See, e.g., Krasnokutskaya (2011), Krasnokutskaya and Seim (2011), Athey, Levin, and Seira
(2011), and Roberts (2013).

2See, e.g., Laffont and Vuong (1993), Guerre, Perrigne, and Vuong (2000), Li, Perrigne, and
Vuong (2002), Hendricks, Pinkse, and Porter (2003), and Athey and Haile (2006, 2007).

3See, e.g., Gilley and Karels (1981), Athey and Haile (2002), Haile, Hong, and Shum (2003),
Guerre, Perrigne, and Vuong (2009), Campo, Guerre, Perrigne, and Vuong (2011), and Gillen (2010).
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Common values can have important implications in the auction context and beyond

(e.g., Akerlof (1970)), and an auction’s clear rules offer hope of confronting our intu-

ition about latent information structures with formal hypothesis testing in a setting

where the model can be tightly linked to the actual market institution. Although

an auction of drilling rights is often cited as an example of a common values setting,

formal testing for common values has been hindered by the confounding effects of

unobserved heterogeneity. Indeed, we reject private values in favor of common val-

ues only when accounting for unobserved heterogeneity and endogenous entry. More

broadly, we find that affiliated private information, common values, and common

knowledge unobservables—three distinct phenomena with different implications for

policy and empirical work4—are all present and important in OCS auctions.

Our empirical study is perhaps most closely related to that of Hendricks, Pinkse,

and Porter (2003) (“HPP”), who focused on testable implications of a pure common

values model.5 Our work is complementary to that of HPP. We allow the pure com-

mon values model but do not assume it, and we neither exploit nor rely on estimates

of realized tract values. HPP point out that tests for common values would be difficult

to apply due to likely correlation between bidder entry and auction-level unobserv-

ables.6 Our study also complements the simultaneous work of Aradillas-Lopez, Haile,

Hendricks, and Porter (2017), which evaluates implications of competitive bidding in

OCS auctions following the introduction of “area-wide leasing” in 1983. Here we con-

sider only the period 1954–1983, when the evidence in Haile, Hendricks, and Porter

4For example, affiliation leads to the “linkage principle” (Milgrom and Weber (1982), Milgrom
(1987)) whereas common values leads to the “winner’s curse,” each with important implications
for auction design. Unobserved heterogeneity, which is held fixed in auction theory, implies neither
affiliation nor common values but creates challenges for identification.

5Earlier work on OCS auctions includes Gilley and Karels (1981), Hendricks, Porter, and
Boudreau (1987), Hendricks and Porter (1988), and Hendricks, Porter, and Spady (1989).

6HPP partially control for unobserved heterogeneity by conditioning on two categories of tracts–
those with high or low numbers of potential bidders, measured as the number of large firms ever to
bid on a tract within a certain distance of the tract offered.
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(2010) and Aradillas-Lopez et al. supports the assumption of competitive bidding.

Prior work on testing for common values in auctions includes Paarsch (1992),

Athey and Haile (2002), Bajari and Hortaçsu (2003), HHS, Hill and Schneyerov

(2014), and Hortaçsu and Kastl (2012). Most of this work, like ours, exploits the

fact that in a common values auction the winner’s curse becomes more severe as the

number of competitors grows (all else equal). Our approach to identification and

testing is most similar to that in HHS, who studied timber auctions. We drop their

assumptions of discrete unobserved heterogeneity and entry outcomes that are strictly

increasing in the unobservable. This makes the identification problem substantially

more challenging and requires a different estimation strategy.

We are not the first to consider first-price auctions with unobserved heterogeneity.

Haile and Kitamura (2018) review existing econometric approaches. All require com-

promises. Several (e.g., Krasnokutskaya (2011), Hu, McAdams, and Shum (2013))

require that bidders have independent types, so that all correlation among bids can

be attributed to unobserved heterogeneity.7 Other approaches use a control function

strategy requiring strict monotonicity between an observed outcome and the unob-

served heterogeneity (e.g., Campo, Perrigne, and Vuong (2003), Haile, Hong, and

Shum (2003) (“HHS”), Guerre, Perrigne, and Vuong (2009), Roberts (2013)). Simul-

taneous work by Kitamura and Laage (2017) proposes an approach allowing affiliated

types but requiring that the unobservable be discrete (cf. HHS and Hu, McAdams,

and Shum (2013)) and enter through a separable structure similar to that in Kras-

nokutskaya (2011). Finally, while control function approaches can provide a strategy

for isolating exogenous variation in bidder entry, others generally do not.

Our approach requires compromises as well. We rely on an index assumption

similar to that in Krasnokutskaya (2011) and Kitamura and Laage (2017) and spec-

7See also the partial identification results in Armstrong (2013). An exception among approaches
building on the measurement error literature is Balat (2011). His extension of Hu, McAdams, and
Shum (2013) exploits observation of potential bidders’ entry decisions at two sequential stages.
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ify only a reduced form for bidder entry. The latter rules out selective entry8 and

cannot be used to evaluate interventions that would alter the map between auction

characteristics and entry outcomes.9 And like HHS, we require an instrument for

entry. But our approach also offers advantages that are attractive for our applica-

tion. It avoids the requirement of independent bidder types and provides a strategy

for exploiting exogenous sources of variation in bidder entry. This combination of

features is particularly important in our application. Common values settings gener-

ally demand that we allow correlated types (signals), and our test for common values

exploits exogenous variation in entry arising through an instrumental variable. We

also avoid the strict monotonicity requirement of the control function approach and

show that our empirical model can be derived from a two-stage game motivated by

our application—an entry stage à la Berry (1992) in which bidders choose whether

to acquire a signal of the good’s value, followed by competitive bidding à la Milgrom

and Weber (1982). In this example, unobserved heterogeneity may have arbitrary

dimension; may exhibit spatial dependence and correlation with observables; and

may affect sample selection. Finally, although we require an instrument satisfying

certain conditions for point identification, our formal analysis also isolates the extent

to which one would rely on parametric structure for identification if in practice one

has instruments generating only limited (even no) variation in entry.

The following section describes our model. In Section 3 we address nonparametric

identification. Section 4 describes our proposed estimation method. We then narrow

our focus to the OCS oil lease auctions, with baseline estimates presented in section

5. We present the tests for common values in section 6, with several alternative

specifications examined in section 7. We conclude in section 8.

8cf. Marmer, Schneyerov, and Xu (2013), Gentry and Li (2014), Bhattacharya, Roberts, and
Sweeting (2014), or Kong (2017a).

9However, once the bidding model is identified it may become possible to identify a given struc-
tural model of entry consistent with the reduced form, allowing evaluation of such counterfactuals.
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2 Model

We consider a standard model of first-price sealed bid auctions with symmetric affili-

ated values, extended to allow for auction-level heterogeneity and endogenous bidder

entry. Each auction t is associated with observed characteristics Xt ∈ X and a scalar

unobservable Ut. Without further loss, we let Ut be uniformly distributed on [0, 1].

We also assume independence between Xt and Ut.

Assumption 1. Xt |= Ut.

The restriction to a scalar unobservable independent of Xt is less restrictive than

it appears. We show below that this representation can be derived—without loss

of generality for most purposes motivating estimation of an auction model—from a

model in which auction-level unobservables have arbitrary dimension and arbitrary

dependence with Xt. In that model, the weak monotonicity conditions required below

are also obtained as results rather than assumptions.

For each auction t we postulate a two-stage process in which entry is followed by

bidding. We do not specify a particular model of entry; rather, we posit a reduced

form for the entry outcome and assume Bayes Nash equilibrium in the auction stage.

The number of bidders entering auction t is denoted by Nt. Bidders are assumed

risk neutral. Bidder i’s valuation for the good offered is denoted by Vit. Upon

entering, i observes a private signal Sit ∈ [s, s] of Vit. Let Vt = (V1t, . . . , VNtt),

St = (S1t, . . . , SNtt), and S−it = St\Sit.

The bidding stage follows Milgrom and Weber (1982). The realizations of (Nt, Xt, Ut)

are common knowledge among bidders, as is the distribution of (St, Vt) | (Nt, Xt, Ut).
10

10Although standard, the assumption that bidders observe Nt may be inappropriate in some
applications. In our model of entry outcomes below, Nt is completely determined by factors common
knowledge among bidders. HPP point out that in OCS auctions, rivals’ joint bidding agreements
and participation in follow-up seismic surveys are typically known, and that bidders performing a
follow-up survey submit bids on roughly 80% of the tracts analyzed. Nonetheless, this leaves some
room for uncertainty about the level of competition faced. One challenge in relaxing our assumption
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In addition, each bidder i knows the signal Sit. Let FSV (St, Vt|Nt, Xt, Ut) denote the

joint distribution of signals and valuations conditional on (Nt, Xt, Ut). We make the

following standard assumptions on this conditional distribution.

Assumption 2. (i) For all n ∈suppNt| (Xt, Ut), FSV (St, Vt|n,Xt, Ut) has a con-

tinuously differentiable joint density that is affiliated, exchangeable in the indices

i = 1, . . . , n, and positive on (s, s)n × (v, v)n; (ii) E[Vit|Sit, S−it, Nt, Xt, Ut] exists and

is strictly increasing in Sit.

Because the bidding stage involves a standard affiliated values model, it nests

a variety of special cases. With private values, E[Vit|Sit, S−it, Nt, Xt, Ut] does not

depend on S−it. In our setting this is equivalent to bidders’ knowing their valuations,

i.e., Sit = Vit = w(Sit;Nt, Xt, Ut). When E[Vit|Sit, S−it, Nt, Xt, Ut] depends on S−it,

we have common values (or interdependent values). A special case of the common

values model is that of pure common values, where Vit = V̄t for all i.

A conditional expectation of particular relevance for what follows is

w(sit;nt, xt, ut) ≡ E

[
Vit

∣∣∣∣Sit = max
j 6=i

Sjt = sit, Nt = nt, Xt = xt, Ut = ut

]
.

This is a bidder’s expected value of winning the auction conditional on all common

knowledge information, the observed private signal, and the event (typically counter-

factual) that this signal ties for the highest among all bidders at the auction. This

expectation plays an important role in the theory because, when equilibrium bidding

strategies turn out to be strictly increasing in signals, tying for the highest signal

means that even arbitrarily small deviations from one’s equilibrium bid will change

the identity of the winner. We therefore refer to w(sit;nt, xt, ut) as bidder i’s “pivotal

expected value” at auction t. Pivotal expected values also play a central role in our

is the need to specify precisely the information available to bidders when forming expectations of
the competition. This is an important topic that we leave to future work.
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strategy for discriminating between private values and common values.

We impose the following restriction on how the auction characteristics (Xt, Ut)

affect bidder valuations.

Assumption 3. (i) Vit = Γ (Xt, Ut)V
0
it ; (ii) conditional onNt, (V 0

1t, . . . , V
0
Ntt
, S1t, . . . , SNtt)

is independent of (Xt, Ut); (iii) Γ is bounded and weakly increasing in Ut.

Assumption 3 is an index restriction requiring multiplicative separability in (Xt, Ut)

and weak monotonicity in Ut.
11 An assumption of multiplicative (or additive) separa-

bility has often been relied upon in the auctions literature, including for identification

in other settings with unobserved heterogeneity. Our identification result will rely on

this assumption as well.12 Without further loss, we normalize the scale of Γ relative

to that of V 0
it by taking an arbitrary point x0 ∈ X and setting

Γ
(
x0, 0

)
= 1. (1)

We assume initially that the auction is conducted without a binding reserve

price, although below we consider an extension allowing a random reserve price.

Under Assumption 2, the auction stage of our model admits a unique Bayesian Nash

equilibrium in weakly increasing strategies; these strategies, which we denote by

β(·;Xt, Ut, Nt) : [s, s] → R, are symmetric and strictly increasing.13 Let the random

variable Bit = β (Sit;Xt, Ut, Nt) denote the equilibrium bid of bidder i in auction t,

with Bt denoting (B1t, . . . , BNtt).

11Without a distributional restriction like that in part (ii) of the assumption, part (i) would have
no content. And because more “desirable” realizations of the unobservable state can be labeled with
larger values, the monotonicity restriction in (iii) only rules out variation with Xt in the partial
order on the unobservable implied by desirability (see also Example 1 and Appendix A).

12For for what follows it is sufficient that the conditional expectations E[Vit|St, Xt, Ut, Nt] take
the multiplicatively separable form. This weaker condition will be more natural when these ex ante
conditional expectations are positive even though Vit may take negative values.

13See Theorem 2.1 in Athey and Haile (2007) and the associated references. Milgrom and Weber
(1982) characterize the equilibrium strategies.
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A useful fact is that the separability required by Assumption 3 is is inherited by

the equilibrium bidding strategies.14 Thus, under Assumptions 2 and 3 we may write

β (Sit;Xt, Ut, Nt) = Γ (Xt, Ut) β
0 (Sit;Nt) , (2)

where β0 denotes the symmetric Bayesian Nash equilibrium bidding strategy for a

(possibly hypothetical) auction t at which Γ (Xt, Ut) = Γ (x0, 0) = 1. Following HHS,

we refer to B0
it = β0 (Sit;Nt) and V 0

it as “homogenized” bids and valuations.

We link the model of a single auction to the observed sample through Assumption

4. Given Assumption 3, this is the standard assumption that auctions are i.i.d.

conditional on auction characteristics, (Nt, Xt, Ut). However, we do not require Ut to

be independent across auctions.

Assumption 4. (V 0
t , St) |= (V 0

t′ , St′) for t′ 6= t.

Finally, we specify the outcome of the entry stage by supposing that the number

of bidders at auction t satisfies

Nt = η (Xt, Zt, Ut) (3)

for some function η that is weakly increasing in Ut. Formally, (3) is an assumed

reduced form for the entry outcome. The weak monotonicity requirement links the

interpretation of the unobservable in the entry and bidding stages: unobservables that

make the good for sale more valuable also encourage more entry. The new variable

Zt in (3) is an exogenous auction-specific observable that affects bidder entry but is

otherwise excludable from the auction model, as formalized in Assumption 5.

Assumption 5. (i) Zt |= Ut|Xt; (ii) Zt |= (St, V
0
t )|Nt.

14See, e.g., HHS, Athey and Haile (2007), or Krasnokutskaya (2011).
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The following example, discussed more fully in Appendix A, describes one fully

specified two-stage game leading to the structure assumed above.

Example 1. Consider a model of entry and bidding for an OCS oil and gas lease,

where a standard simultaneous move entry stage à la Berry (1992) precedes a compet-

itive bidding stage à la Milgrom and Weber (1982). Players in the game are firms in

the industry. The tract offered for lease is associated with observables Xt, which in-

cludes (among other relevant covariates) the number of active leases on neighbor tracts

and the sets of bidders for those leases.15 The active neighbor leases are owned by Zt

distinct neighbor firms. Tract-level unobservables are denoted by Et. Et may have

arbitrary dimension, may be correlated with Xt, and may be spatially correlated. The

characteristics Xt and Et are assumed to scale valuations (multiplicatively) through a

bounded index λ (Xt, Et). Firms play a two-stage game. They first choose simultane-

ously whether to enter, with each entering firm i incurring a signal acquisition cost

ci(Xt). Signal acquisition costs are common knowledge and lower for neighbor firms

than other (non-neighbor) firms.16 Entrants learn their private signals and the number

of entrants, then participate in a first-price sealed bid auction with symmetric affili-

ated values. Appendix A shows that all pure strategy perfect Bayesian equilibria (with

weakly increasing strategies in the bidding stage) can be represented by the model and

assumptions above. This representation is obtained by defining Ut = Fλ (λ(xt, Et)|xt),

where Fλ(·|x) is the CDF of the random variable λ(x,Et). Observe that in this case

the distribution of Ut does not vary with Xt, although its interpretation does.17

15Tracts s and t are defined to be neighbors if their boundaries coincide at some point.

16This structure generalizes that in Hendricks and Porter (1988), where neighbors obtain a private
signal for free but non-neighbors face an infinite cost of signal acquisition.

17In that case, knowledge of the function Γ will not be sufficient to characterize the effects of a
ceteris paribus change in Xt on bidder valuations. See the additional discussion in Appendix A.
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3 Nonparametric Identification

In this section we develop sufficient conditions for identification of the entry model,

the index function Γ, and key features of the bidding model. We address each of

these in turn. Throughout we assume that the observables include Xt, Zt, Nt and

Bt.
18 Let Y denote the support of (Xt, Zt), and let Y (n) denote the support of

(Xt, Zt) conditional on Nt = n. Let n ≥ 0 denote the minimum value in the support

of Nt; let n denote the maximum. Recalling (1), for convenience we take x0 such

that for some z we have (x0, z) ∈ Y (n).

3.1 Identification of the Entry Model

We show identification of the entry model under the following regularity condition on

the support of Nt|(Xt, Zt).

Assumption 6. For all (x, z) ∈ Y, there exist n (x, z) and n (x, z) such that η (x, z, Ut)

has support (n (x, z) , n (x, z) + 1, . . . , n (x, z)) .

Given Assumption 6, for any (x, z) ∈ Y, the function η (x, z, ·) is characterized by

the thresholds

τn(x,z)−1 (x, z) ≤ τn(x,z) (x, z) ≤ ... ≤ τn(x,z),

where

τn(x,z)−1 (x, z) = 0, τn(x,z) (x, z) = 1, (4)

and for n = {n (x, z) , . . . , n (x, z)},

τn−1 (x, z) = inf {u ∈ [0, 1] : η (x, z, u) ≥ n} .

18In some applications, data may available only for auctions attracting at least one bidder. In
Appendix A we show that, within the fully specified model of Example 1, our maintained assumptions
and analysis remain valid in the presence of such sample selection. Our examination of the OCS
auction data will exploit this result.
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With this observation, identification of η follows easily.

Theorem 1. Under Assumptions 1–6, η is identified.

Proof. Take arbitrary (x, z) ∈ Y. For each n ∈ {n (x, z) , . . . , n (x, z)},

Pr (Nt = n|Xt = x, Zt = z) = Pr (τn−1 (x, z) ≤ Ut ≤ τn (x, z) |Xt = x, Zt = z)

= τn (x, z)− τn−1 (x, z) . (5)

The probabilities on the left are observed. Thus, using (4), equation (5) can be solved

iteratively for the unknown thresholds τn (x, z) starting from n = n (x, z). �

Identification of η determines the effects of Zt on bidder entry and provides bounds

τnt−1(xt, zt) and τnt(xt, zt) on the realization of each unobservable Ut. As shown in

the following corollary (proved in Appendix B), it also determines the distribution of

Ut conditional on (Xt, Nt).

Corollary 1. Under Assumptions 1–6, the distribution of Ut|(Xt, Nt) is identified.

3.2 Identification of the Index Function

Define

γ (x, u) = ln Γ (x, u) .

We first provide conditions sufficient to identify γ (x, u) at each x ∈ X and u ∈ Ux,

where

Ux =
⋃

z:(x,z)∈Y
n∈supp η(x,z,Ut)

{τn−1(x, z), τn(x, z)} .

We then give additional conditions guaranteeing that Ux = [0, 1] for each x. We begin

with the following result, whose proof illustrates a key argument.
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Lemma 1. Under Assumptions 1–6, for all n ≥ n, all (x, z) ∈ Y (n), and all (x′, z′) ∈

Y (n), the differences γ (x′, τn (x′, z′))−γ (x, τn (x, z)) and γ (x′, τn−1 (x′, z′))−γ (x, τn−1 (x, z))

are identified.

Proof. By (2) and monotonicity of the equilibrium bid function,

inf { lnBit|Nt = n,Xt = x, Zt = z} = γ (x, τn−1 (x, z)) + ln β0 (s;n) .

So under Assumptions 1–6, for any n and all (x, z) and (x′, z′) in Y (n), the differences

γ (x′, τn−1 (x′, z′))− γ (x, τn−1 (x, z)) (6)

are identified.19 Similarly, since

sup { lnBit|Nt = n,Xt = x, Zt = z} = γ (x, τn (x, z)) + ln β0 (s;n) ,

we obtain identification of the differences

γ (x′, τn (x′, z′))− γ (x, τn (x, z)) (7)

for all n and all (x, z) and (x′, z′) in Y (n). �

Thus far we have not imposed any requirement on the support of Zt or its effect

on entry outcomes. Below we will do so in order to obtain point identification of γ.

However, even in the case that no instrument is available, Theorem 1, Corollary 1, and

Lemma 1 still hold. And once γ is known, Zt plays no further role in the identification

results. Thus, while we rely on an instrument to obtain point identification, this

reliance is formally limited to ensuring that we can move from the partial identification

19Because β0(s;n) = E[V 0
it |Sjt = s, j = 1, . . . , n] and β0(s;n) ≤ E[V 0

it |Sjt = s, j = 1, . . . , n] for all
s (see, e.g., Milgrom and Weber (1982)), both β0(s;n) and β0(s;n) are finite under Assumption 2.
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of γ provided by Lemma 1 to point identification of γ.

As a step toward point identification, we introduce two additional assumptions.

These allow us to show that the first differences obtained above can be differenced

again, cancelling common terms, to obtain a set of first differences sufficient to pin

down the value of the index γ(x, u) at all x and u ∈ Ux.

Assumption 7. For all n ∈ {n+ 1, n+ 2, . . . , n}, Y (n− 1) ∩ Y (n) is nonempty.

Assumption 8. There exists n∗ such that

(i) ∀n ∈ {n, . . . , n∗}, Y contains points (x (n) , z (n)) and (x (n) , ẑ (n)) such that

n (x (n) , z (n)) = n and n (x (n) , ẑ (n)) = n+ 1; and

(ii) ∀n ∈ {n∗, . . . , n}, Y contains points (x′ (n) , z′ (n)) and (x′ (n) , ẑ′ (n)) such that

n (x′ (n) , z′ (n)) = n and n (x′ (n) , ẑ′ (n)) = n− 1.

Assumption 7 requires variation in Ut that produces local variation in entry. For

example, this rules out trivial cases in which Ut has no effect on Nt. Assumption 8

requires variation in the instrument Zt that can induce local variation in the support

of the entry outcomes, at least at some values of Xt.

We prove the following results in Appendix B.

Lemma 2. Under Assumptions 1–8, for all n ≥ n, all (x, z) ∈ Y (n), and all (x′, z′) ∈

Y (n), γ (x, τn (x, z))− γ (x′, τn−1 (x′, z′)) is identified.

Lemma 3. Under Assumptions 1–8, for all n ≥ n and all (x, z) ∈ Y (n), the values

of γ (x, τn−1 (x, z)) and γ (x, τn (x, z)) are identified.

By Theorem 1, the values of τn−1 (x, z) and τn (x, z) are known for all n and

(x, z) ∈ Y (n). Thus, Lemma 3 demonstrates identification of γ (x, u) at each x ∈ X

and u ∈ Ux. In general, this may still deliver only partial identification of the index

function γ, so that in practice one may rely on parametric structure to interpolate

between the points {x ∈ X, u ∈ Ux} at which γ (x, u) is nonparametrically point

13



identified. However, the following conditions are sufficient to ensure that no such

interpolation is necessary.

Assumption 9. (a) For all x ∈ X, suppZt|Xt = x is connected.

(b) For all (x, z, u) ∈ Y× (0, 1) and all δ > 0 such that (u− δ, u+ δ) ⊂ (0, 1),

there exists ε > 0 such that if ‖z′ − z‖ < ε then η (x, z′, u′) = η (x, z, u) for some

u′ ∈ (u− δ, u+ δ).

Assumption 10. For every x ∈ X there exists a finite partition 0 = τ 0(x) < τ 1(x) <

· · · < τK(x)(x) = 1 of the unit interval such that for each k = 1, . . . , K(x) and some

z(k), z′(k) ∈suppZt|Xt = x, η
(
x, z(k), τ k−1(x)

)
> η

(
x, z′(k), τ k(x)

)
.

Assumption 9 rules out discrete instruments and requires a type of continuous

substitution between Zt and Ut in the “production” of bidder entry: it must be

possible to offset the effect (on entry) of a small change in Zt with a small change in

Ut. Assumption 10 requires that variation in Zt have sufficient effect on participation

to offset some discrete variation in the unobservable Ut. A sufficient condition is that

for each x there exist z and z′ such that η (x, z, τn−1 (x, z)) > η (x, z′, τn (x, z)) for all

n ∈ {n (x, z) , . . . , n (x, z)}; in this case, the set
{
τn(x,z)−1, . . . , τn(x,z)

}
could define the

partition τ 0(x) < τ 1(x) < · · · < τK(x).

The following lemma, whose proof is provided in Appendix B, leads us to the

point identification of γ (and therefore Γ) demonstrated in Theorem 2.

Lemma 4. Under Assumptions 1–9, τn−1 (Xt, Zt) is continuous in Zt on the pre-

image of (0, 1) .

Theorem 2. Under Assumptions 1–10, Γ is identified on X× [0, 1] .

Proof. We need only show that Ux = [0, 1] for each x ∈ X. For arbitrary x ∈

X, let 0 = τ 0(x) < τ 1(x) < · · · < τK(x)(x) = 1 be as in Assumption 10. Take

any k ∈ {1, 2, . . . , K(x)} and let z = z(k) and z′ = z′(k) be as in Assumption
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10. Let n = η
(
x, z, τ k−1(x)

)
. Because η

(
x, z, τ k−1(x)

)
> η

(
x, z′, τ k(x)

)
, we have

η
(
x, z′, τ k(x)

)
< n and, therefore,

τn−1 (x, z) ≤ τ k−1(x) < τ k(x) ≤ τn−1(x, z′).

Because the continuous image of a connected set is connected, Lemma 4 and Assump-

tion 9 (part (a)) imply that for every τ̃ ∈
[
τ k−1(x), τ k(x)

]
there exists zτ̃ such that

τn−1

(
x, zτ̃

)
= τ̃ . �

3.3 Identification of the Bidding Model

We now demonstrate identification of the joint distribution of the pivotal expected

values (w(S1t;n, x, u), . . . , w(Snt;n, x, u)) for all x ∈ X, u ∈ [0, 1], and n in the sup-

port of Nt|{Xt = x, Ut = u}. For a private values model, where Vit = Sit, this is

equivalent to identification of the joint distribution of bidder valuations conditional

on (Xt, Nt, Ut). Thus, Theorem 3 below demonstrates identification of the affiliated

private values model. Without the restriction to private values, our result here pro-

vides an important form of partial identification.20 For our empirical application, for

example, this is sufficient to allow us to test the hypotheses of equilibrium bidding

in the affiliated values model and to test the hypothesis of private values against the

alternative of common values.

Let

GM |B (m|b, x, u, n) = Pr

(
max
j 6=i

Bjt ≤ m

∣∣∣∣Bit = b,Xt = x, Ut = u,Nt = n

)
,

and let gM |B (m|b, x, u, n) denote the associated conditional density (guaranteed to

20Without additional information or structure, common values models are not identified from
bidding data. See, e.g., Laffont and Vuong (1993) and Athey and Haile (2002).
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exist by Assumption 2 and strict monotonicity of the equilibrium bid function). Fol-

lowing Laffont and Vuong (1993), Guerre, Perrigne, and Vuong (2000), and Li, Per-

rigne, and Vuong (2000, 2002), one can characterize the relationship between each

realized w(sit;nt, xt, ut) and the associated equilibrium bid bit = β (sit;xt, ut, nt) in

terms of the joint distribution of equilibrium bids. In particular, each bit must satisfy

the first-order condition21

w(sit;nt, xt, ut) = bit +
GM |B (bit|bit, xt, ut, nt)
gM |B (bit|bit, xt, ut, nt)

. (8)

Although this equation expresses the pivotal expected value w(sit;nt, xt, ut) as a

functional of a conditional distribution of bids, the presence of ut on the right-hand

side creates challenges. Because realizations of Ut are not observable or identified,

one cannot directly condition on them to identify the functions GM |B and gM |B.

This precludes obtaining identification directly from (8). With the preceding results,

however, we can overcome this problem.

Observe that, like valuations and bids, the pivotal expected values w(sit;nt, xt, ut)

will have the separable structure

w(sit;nt, xt, ut) = w0(sit;nt)Γ(xt, ut), (9)

where

w0(sit;nt) ≡ E

[
V 0
it

∣∣∣∣Sit = max
j 6=i

Sjt = sit, Nt = nt

]
.

We will refer to w0(sit;nt) as bidder i’s “homogenized pivotal expected value” at

auction t. The first-order condition (8) can then be written as

w0(sit;nt) = b0
it +

GM0|B0(b0
it|b0

it, nt)

gM0|B0(b0
it|b0

it, nt)
(10)

21See, e.g., Athey and Haile (2007) for a derivation in the affiliated values model.
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where

GM0|B0(m|b, nt) = Pr

(
max
j 6=i

B0
jt ≤ m

∣∣∣∣B0
it = b,Nt = n

)
and gM0|B0(m|b, nt) is the associated conditional density.

With the following regularity condition, Theorem 2 and a standard deconvolution

argument will yield identification of the joint distribution of (B0
1t, . . . , B

0
nt) for all n.

Assumption 11. For some x ∈ X the random variable γ (x, Ut) has nonzero charac-

teristic function almost everywhere.

Lemma 5. Under Assumptions 1–11, conditional on any Nt = n, the joint density

of (B0
1t, . . . , B

0
nt) is identified.

Proof. Fix Nt = n and Xt = x, where x is as in Assumption 11. Let B̃it = ln (Bit)

and B̃0
it = ln (B0

it). By Assumption 3,

B̃it = B̃0
it + γ (x, Ut) ,

and, furthermore, B̃0
it and γ (x, Ut) are independent conditional on Nt. Let ψB̃ denote

the characteristic function of the log bids (B̃1t, . . . , B̃nt) conditional on Xt = x and

Nt = n. Let ψγ denote the characteristic function of γ (x, Ut) conditional on Nt = n.

For (r1, . . . , rn) ∈ Rn we then have

ψB̃ (r1, . . . , rn) = ψB̃0 (r1, . . . , rn)ψγ (r1 + · · ·+ rn) ,

where ψB̃0 is the characteristic function of the log homogenized bids
(
B̃0

1t, . . . , B̃
0
nt

)
conditional on Nt = n. Since the distribution of Ut|(Xt, Nt) is known (Corollary 1)

and γ is a known function (Theorem 2), ψγ is known. So under Assumption 11 the

equation

ψB̃0 (r1, . . . , rn) =
ψB̃ (r1, . . . , rn)

ψγ (r1 + · · ·+ rn)
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uniquely determines ψB̃0 (r1, . . . , rn) for almost all (r1, . . . , rn). By continuity of char-

acteristic functions this yields identification of ψB̃0 , implying identification of the joint

density of
(
B̃0

1t, . . . , B̃
0
nt

)
.22 The result then follows. �

This leads directly to our main identification result.

Theorem 3. Let Assumptions 1–11 hold. Then for all x ∈ X, u ∈ [0, 1], and n ≥ 2 in

the support of Nt|{Xt = x}, the joint distribution of (w(S1t;n, x, u), . . . , w(Snt;n, x, u))

is identified.

Proof. Fix n. From (10), we have

w0(Sit;n) = ξ(B0
it;n) ≡ B0

it +
GM0|B0(B0

it|B0
it, n)

gM0|B0(B0
it|B0

it, n)
. (11)

By Lemma 5, the joint distribution (ξ(B0
1t;n), . . . , ξ(B0

nt;n)) is known. This implies

identification of the joint distribution of (w0(S1t;n), . . . , w0(Snt;n)). The result then

follows immediately from (9) and Theorem 2. �

4 Estimation

We propose a two-stage semiparametric estimation strategy. The first stage in-

volves semiparametric sieve quasi-maximum likelihood estimation (QMLE) of the

entry thresholds τ`(x, z), the index function γ, and the joint distributions of homoge-

nized equilibrium bids. In the second stage, for each level of bidder entry, we estimate

the joint distribution of homogenized pivotal expected values by plugging draws from

the estimated distribution of homogenized bids into the auction first-order condition

and constructing the empirical distribution of the resulting pseudo-sample.

22Because the same argument holds at all x ∈ X such that the characteristic function of γ (x, Ut)
is nonvanishing a.s., the argument demonstrating Lemma 5 may often yield overidentification.
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4.1 Stage 1: Sieve-QMLE

Let θτ denote the parameters of the entry model, θγ the parameters of the index

function γ, and θB the parameters of the joint distributions of log homogenized bids.

Let

L1t(nt; θτ ) = Pr(Nt = nt|Xt = xt, Zt = zt; θτ )

denote the (conditional on (xt, zt)) likelihood for the entry outcome in auction t. Let

L2t(bt|nt; θγ, θB, θτ )

denote the likelihood of the observed bids at auction t, conditional on the entry out-

come nt (and on (xt, zt)). Defining θ = (θτ , θγ, θB), the conditional quasi-likelihood23

function for the observed outcomes {(nt, bt)}Tt=1 can be written

L(θ) =
∏
t

L1t(nt; θτ )L2t(bt|nt; θγ, θB, θτ ).

We give details of our empirical specification and the two components of the quasi-

likelihood in sections 4.1.1 and 4.1.2 below. Estimates of the parameter vector θ can

be obtained by maximizing L(θ). Because θτ is identified from the entry outcomes

alone, it is also possible to split the QMLE stage, first maximizing
∏

t L1t(θτ ) to

estimate θτ , then maximizing
∏

t L2t(θγ, θB, θ̂τ ) conditional on θ̂τ . In our data, the

two approaches yield very similar estimates. However, because we found the two-step

QMLE procedure to be more stable numerically, below we will report results using

the two-step version of the QMLE.24

Consistency can be confirmed by adapting the results of White and Wooldridge

23Recall that we permit spatial dependence.

24With one-step QMLE, standard optimizers failed to find a maximum in many of the bootstrap
replications. Monte Carlo simulations suggest that the two-step procedure performs well at moderate
sample sizes.
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(1991) for sieve-extremum estimators with weakly dependent time series data to the

case of weak spatial dependence.25 To conduct inference, we use a nonparamet-

ric block bootstrap procedure that captures both dependence among bids within

an auction and spatial dependence between the unobservables Ut across auctions.

Specifically, we resample auctions with replacement, taking all bids from the selected

auction, and including in the bootstrap sample all auctions on neighbor tracts as well.

Following HPP, we resample weighting auctions by factors inversely proportional to

the number of auctions in the neighborhood of the tract.26

4.1.1 Entry Thresholds

Our entry model above reduces to an ordered response model where, given Xt = x

and Zt = z, we have Nt = n if and only if Ut ∈ (τn−1 (x, z) , τn (x, z)). Given any

strictly increasing univariate CDF H we can rewrite this as

{Nt = n|Xt = x, Zt = z} ⇐⇒ {At ∈ (αn−1 (x, z) , αn (x, z))} ,

where At ∼ H and αn(x, z) = H−1 (τn (x, z)).

We specify a linear threshold function

αn(x, z) = αn − xαx − zαz

25In particular, we represent tract locations by points in Z2. Then, under a standard “expanding
domain” asymptotics, White and Wooldridge’s uniform consistency result for stationary α-mixing
time series data (Corollary 2.6) can be extended using a Bernstein-type inequality for α-mixing
random fields on Z2 (e.g., Yao (2003)).

26Similar results are obtained without weighting. Applying the results of van der Vaart and Wellner
(1996) and Lahiri (2003), one can verify validity of this procedure when we interpret our finite-sample
estimator as that for a parametric model. General conditions for consistency of bootstrap inference
procedures for sieve M-estimators in the i.i.d. setting can be found, e.g., in Ma and Kosorok (2005)
and Chen and Pouzo (2009). See also Chen and Liao (2014), and Chen, Liao, and Sun (2014) in the
case of time series data.
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and specify H as the standard normal CDF, yielding an ordered probit model.27

In section 7 we consider a variation in which H is specified using a Hermite poly-

nomial series approximation, following Gallant and Nychka (1987). Letting θτ =

({αn}n−1
n=n, αx, αz), we then have

L1t(n; θτ ) = H (αn (xt, zt; θτ ) ; θτ )−H (αn−1 (xt, zt; θτ ) ; θτ ) .

4.1.2 Index Function and Homogenized Bid Distribution

Given our focus on testing for common values, we prioritize flexibility in how the joint

distribution and density of bids can vary with n when specifying the second part of

the quasi-likelihood. We specify the index function γ parametrically as γ(·, ·; θγ); we

will use a linear specification below. The joint density of log homogenized bids is

specified semiparametrically, using a parametric copula and a nonparametric (Bern-

stein polynomial sieve) specification of the common marginal distribution.28 Below

we specify a Gaussian copula, with separate covariance parameter ρn for each n.29

We specify the marginal density of a generic bidder’s log homogenized bid in an

n-bidder auction as

g̃B0
i
(b̃0; θb, n) =

m∑
j=0

θ
(j)
b,n qj,m

(
Φ
(
b̃0
))

φ
(
b̃0
)
, (12)

27Thus, although the theoretical model of entry in Example 1 follows Berry (1992), the induced
empirical model of the entry stage is similar to that of Bresnahan and Reiss (1991).

28See, e.g., Chen, Fan, and Tsyrennikov (2006). Prior work using Bernstein polynomials in esti-
mation of auction models includes Komarova (2017) and Kong (2017a,b). Hubbard, Paarsch, and
Li (2012) have previously combined a parametric copula and nonparametric (kernel) specification of
marginal densities to estimate auction models.

29Our use of a parametric copula reflects in part our choice to let the distribution of bids be fully
flexible (i.e., even in finite sample) with respect to the number of bidders nt. In other applications
one might specify a Bernstein copula and account for the effects of nt within the sieve approximation.
As we discuss in Appendix E, the Gaussian copula provides a substantial computational advantage
when we transform our estimated joint distributions and densities to the conditional distributions
and densities that are plugged into bidders’ first-order conditions.
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where qj,m(ν) =
(
m
j

)
νj (1− ν)m−j and Φ(·) and φ(·) denote the standard normal

distribution and density functions, respectively. Here m is a parameter, growing with

the sample size, that determines the order of the Bernstein polynomial approximation.

Let θb,n = {θ(j)
b,n}mj=0. Thus, the parameter vector θb in (12) represents {θb,n}nn=n.

Because Bernstein polynomials approximate functions with domain [0, 1], in (12)

we use Bernstein polynomials to approximate the marginal density of the transformed

variable Φ(b̃0).30 This transformation is useful not only for standardizing the domain

but also for ensuring that the nonparametric estimator will offer sensible approxima-

tions even in modest sample sizes. When m = 0, for example, the distribution of

log-bids will be normal. Thus, the nonparametric component of our specification is

based on a sequence of approximating models that starts with a natural (lognormal)

parametric specification and adds flexibility as permitted by the sample size.

Let G̃B0
i
(b̃0; θb, n) denote the CDF associated with g̃B0

i
(b̃0; θb, n). Let χ(·; ρn) de-

note the symmetric Gaussian copula density with covariance parameter ρn.31 We

specify the joint density of the log homogenized bids in n-bidder auctions as

g̃B0

(
b̃0

1, . . . , b̃
0
n; θb,n, ρn, n

)
=

χ
(
G̃B0

i
(b̃0

1; θb,n, n), . . . , G̃B0
i
(b̃0
n; θb,n, n); ρn

)
g̃B0

i
(b̃0

1; θb,n, n) . . . g̃B0
i
(b̃0
n; θb,n, n). (13)

30For estimation purposes, we add intercepts γ0
nt

for each value of nt in the index function
γ(xt, ut; θγ), implying that in this step we actually estimate joint densities of centered log homoge-

nized bids b̃0t − γ0
nt

. We then adjust each estimated density with the appropriate intercept estimate
to obtain the density of (uncentered) log homogenized bids that is relevant to bidders’ first-order
conditions. When homogenization is performed via OLS, this type of centering procedure is required
for consistency (see HHS and Athey and Haile (2007)). In our case this is not essential but offers
several practical advantages by ensuring that the log homogenized bids are centered at zero prior
to transformation by the normal CDF, ensuring that the location of the estimated bid distribution
can move freely with nt (again, prioritizing flexibility with respect to nt), and freeing the Bernstein
coefficients to capture features of the marginal density other than its location.

31The symmetric Gaussian copula density χ (h1, . . . , hn; ρn) is given by
1

|Υ|1/2 exp
(
− 1

2ϕ(h)′
(
Υ−1 − I

)
ϕ(h)

)
, where ϕ(h) =

{
Φ−1 (h1) , . . . ,Φ−1 (hn)

}
and the matrix

Υ has ones on the diagonal and covariance ρn in all off-diagonal entries.
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We discuss computational details in Appendix E.

Letting ρ = {ρn}nn=n and θB = (θb, ρ), we have

L2t(bt|nt; θ) =

∫ τnt (xt,zt;θτ )

τnt−1(xt,zt;θτ )

g̃b0
(
b̃1t − γ(xt, u; θγ), . . . , b̃ntt − γ(xt, u; θγ); θb,nt , ρnt , nt

)
τnt(xt, zt; θτ )− τnt−1(xt, zt; θτ )

du,

(14)

where τnt−1(xt, zt; θτ ) and τnt(xt, zt; θτ ) denote the bounds on ut implied by the entry

model and its parameters θτ .
32 We approximate the integral above by Monte Carlo

simulation.

4.2 Stage 2: Invert Equilibrium First-Order Conditions

Given the first-stage estimates of the index function γ and joint distribution of ho-

mogenized bids, estimation of the relevant auction primitives is straightforward and

does not involve further use of the data. Here we use the equilibrium first-order con-

dition (10), which can be written in terms of the distribution of log homogenized bids

as

w0(sit;nt) = exp
(
b̃0
it

)(
1 +

G̃M |B(b̃0
it|b̃0

it, nt)

g̃M |B(b̃0
it|b̃0

it, nt)

)
, (15)

where G̃M |B(b̃0
it|b̃0

it, nt) and g̃M |B(b̃0
it|b̃0

it, nt) are, respectively, the CDF and pdf of

maxj 6=i B̃
0
jt conditional on B̃0

it = b̃0
it.

For each value of Nt = n, we transform the estimated joint distributions and den-

sities obtained from stage 1 to construct the conditional distributions and densities

appearing (15) (see Appendix E). Then we draw log homogenized bids from their

estimated marginal distributions and plug these into (15), yielding pseudo-samples

32When nt = 1 one may set L2t(bt|nt; θ) = 1 by convention, since our baseline model of compet-
itive bidding does not allow us to interpret the quantity b̃it − γ(xt, ut) in that case. Alternatively,
because we specify different parameters θb,n for each value of n, (14) gives a correct expression for
L2t(bt|nt; θ) in a 1-bidder auction whenever bids in 1-bidder auctions are assumed to inherit the
separable structure required of valuations. Below we propose an extension incorporating a random
reserve price, where this separability is an implication of equilibrium behavior.
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of the vectors (w0(s1t;n), . . . , w0(snt;n)) for many simulated auctions t. The em-

pirical distribution of these pseudo-draws provides a consistent estimate of the joint

distribution of homogenized pivotal expected values for n-bidder auction. Although

these joint distributions will suffice for our application, the pseudo-draws can also

be scaled by the estimated value of the index Γ(x, u) in order to estimated the joint

distributions of (non-homogenized) pivotal expected values given Xt = x and Ut = u.

In a private values setting, for example, this would yield an estimate of the joint

distribution of bidder valuations.

5 OCS Auctions

We apply our method to study auctions of oil and gas leases in the U.S. Outer

Continental Shelf (OCS). Our data cover the period 1954 to 1983. The seller in these

auctions was the Mineral Management Service (“MMS”), at that time an agency of

the U.S. Department of the Interior. Our goal is to examine these auctions through

the lens of our model to assess several fundamental features of the market such as

the market power of bidders, whether the data support the hypothesis of equilibrium

bidding, the effects of competition on bids and revenues, the significance of unobserved

heterogeneity and of correlation among bidders’ private information, and whether

there is empirical support for the presence of common values.

Features of the OCS auction setting arguably suggest common values (perhaps

even pure common values), and these auctions are often cited as examples of a com-

mon values setting. While prior empirical work on these auctions has provided sugges-

tive evidence in support of a common values model, Li, Perrigne, and Vuong (2000)

have argued for formal testing, while HPP have pointed out that such testing has

been precluded by the likely presence of unobserved heterogeneity that affects both

expected lease value and the level of bidder participation.
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5.1 Background and Data

Extensive discussion of the OCS auctions can be found in, e.g., Gilley and Karels

(1981), Hendricks and Porter (1988), Hendricks, Porter, and Spady (1989), and HPP.

For a more complete institutional background, we refer readers to that prior work,

upon which we rely heavily ourselves. Briefly, however, auctions were held for the

right to lease a specified tract for exploration and production of oil, gas, and other

minerals. Tracts in the sample typically comprise a rectangular area (a “block”)

covering 5,000–5,760 acres in the Gulf of Mexico.33 Production on a tract was subject

to royalty payments from the leaseholder at a pre-specified rate, usually 1/6. Bids

at an auction were offers of an additional up-front “bonus” payment for the right to

become the leaseholder.

At a given “sale,” many tracts were offered for lease simultaneously through sepa-

rate first-price sealed bid auctions. No exploratory drilling was permitted prior to the

auction, although in some cases exploration and production would already have oc-

curred on adjacent (“neighbor”) tracts and would be publicly observable. Bids would

also reflect information obtained through evaluation of data from magnetic, gravity,

and seismic surveys.34 Although initial collection of survey data was often funded

jointly, firms relied on their own experts for modeling and analysis of the data, and

firms often performed follow-up surveys of the tracts on which they intended to bid.

Differences in expert assessments of the survey data are likely an important source of

heterogeneity in bidder beliefs about the value of a given tract (HPP). These features

lead us to treat bidder entry as a decision to acquire a costly signal about the value

33We limit attention to tracts of at least 4,000 acres. Smaller tracts are typically half-blocks or
quarter blocks, where several of our measures of neighborhood characteristics would have interpre-
tations different from those on standard tracts. We also drop auctions with missing values for our
covariates.

34See, e.g., “G&G Data Acquisition and Analysis” at https://www.boem.gov/Oil-and-Gas-
Energy-Program/Resource-Evaluation/Geological-and-Geophysical-Data-Acquisition/GGData-
Geophysical-Surveys.aspx, March 24, 2018.
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of the tract (recall Example 1).

We have data on all auctions attracting at least one bidder.35 Table 1 shows

the number of auctions in our sample by number of bidders. We do not separate

wildcat, development, and drainage tracts; instead, we account directly for the pres-

ence of active neighbor leases and neighbor production, and allow for asymmetry

between neighbor vs. non-neighbor costs of signal acquisition in a way that general-

izes the structure considered in Hendricks and Porter (1988) (see Example 1).36 Like

Aradillas-Lopez, Haile, Hendricks, and Porter (2017), we model bidders as symmetric

conditional on acquisition of a signal. Thus, while bidders may decide not to acquire

a signal through analysis of the seismic data and may reach different conclusions from

such analysis, the technology producing signals is modeled as symmetric across firms.

Table 1: Sample Sizes

n 1 2 3 4 5 6 7 8 9 10 11–17

Tn 814 498 293 229 172 127 100 73 56 56 128

Tn denotes the number of auctions in our sample with n bidders.

The MMS sometimes announced a small minimum acceptable bid of $10–$25 per

acre; the MMS also retained the option to reject all bids when it deemed the auction

to be noncompetitive. Such rejections were rare in our sample except at auctions

attracting only one bid (see section 7.1). We initially treat both the announced

minimum bid and the MMS bid rejection policy as nonbinding, as in Li, Perrigne,

and Vuong (2000). However, we also consider a variation of the model in which the

35Appendix A demonstrates that with the model of entry and bidding given in Example 1, our
maintained assumptions remain valid in the presence of this sample selection.

36As a robustness check, we will also examine the subset of auctions that exclude drainage tracts.
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MMS bid rejection policy is modeled with a random secret reserve price, fit to the

data, that responds to tract characteristics and the number of bids received.

Typically a given tract will have eight neighbors, only some (or none) of which

will be “active” (under lease). Limited forms of joint bidding were permitted in

these auctions. Following the prior literature, we model each bid as coming from a

generic “bidder,” which might be solo firm or a bidding consortium.37 Our measure of

the number of neighbor firms (distinct owners of leases on neighbor tracts) accounts

for the presence of joint bidding by linking together firms that have bid together

previously in the same neighborhood, following the criteria developed by Aradillas-

Lopez, Haile, Hendricks, and Porter (2017).

Our tract characteristics Xt, all measured as of the time of the auction, include the

number of active neighbor leases, whether the tract is isolated (no active neighbors),

the number of firms that bid for neighbor leases, whether the tract was offered previ-

ously (attracting no bidders or being relinquished by a prior leaseholder), whether a

lease has expired on a neighbor tract, the number of neighbor tracts previously drilled,

the number of “hits” on neighbor tracts, average water depth (and its square), and

the royalty rate associated with the lease. We present a summary of these auction

characteristics in Table 2. Below we will also incorporate year fixed effects.

Following Example 1, we consider one instrument for participation: the number

of neighbor firms.38 This variable is likely to affect bidder entry because ownership of

a neighbor tract is likely to reduce the cost of assessing the value of the current tract.

As discussed in Appendix A, when we condition on the number of neighbor tracts

and the set of firms that previously bid for those tracts, variation in the number of

neighbor firms is determined entirely by the realizations of bidder signals at prior

37Hendricks and Porter (1992) and Hendricks, Porter, and Tan (2008) examine empirical and
theoretical aspects of joint bidding in these auctions.

38Note that when the number of neighbor firms is zero, the lease is defined as “isolated.” The
impact of isolation is captured directly through the dummy variable for isolation.
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Table 2: Summary Statistics

Variable Mean Median Std Dev

# active neighbor leases 1.48 0.00 1.96
isolated tract 0.59 1.00 0.49
# firms that bid for neighbors 2.37 0.00 3.56
re-offered tract 0.20 0.00 0.40
neighbor expired 0.31 0.00 0.46
# neighbors drilled 1.69 1.00 2.25
# neighbor hits 0.65 0.00 1.30
water depth 0.20 0.14 0.28
royalty rate 16.10 16.00 1.35
# neighbor firms 0.89 0.00 1.27
estimated ex-post value (millions 1982 dollars) -6.50 -6.69 46.38

auctions, and therefore independent of Ut under our maintained assumptions. Table

2 includes summary statistics for this instrument as well as for an estimate of the

realized value of each tract (see, e.g., HPP for details). We do not use these estimated

“ex post values” in our analysis, but the table demonstrates the substantial variation

in ultimate value of a lease, even among those attracting at least one bid.

5.2 Baseline Model Estimates

Here we report estimates of the entry model, index function, and joint distribution

of equilibrium bids, using our baseline empirical specification. We specify the entry

model as an ordered probit and use a linear index function γ. We estimate the joint

distributions of log homogenized bids using a Bernstein polynomial approximation

of order m = 4 and Gaussian copula.39 In general we estimate separate joint dis-

tributions for each value of nt. However, for large values of nt we observe relatively

few auctions (recall Table 1), leading us to use a specification in which all auctions

with nt ≥ 11 share the same marginal distribution of homogenized bids and the same

39Our choice of m reflects our experience with the tradeoff between flexibility an precision using
similar sample sizes in our Monte Carlo simulations.
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copula correlation parameter. Altogether, this leads to a baseline specification with

151 parameters to be estimated.

5.2.1 Entry Model

Table 3 shows our estimates of the entry model parameters. We also report both the

standard parametric standard error estimates (“SE”), which ignore spatial depen-

dence, and standard errors obtained from the spatial block bootstrap (“SE (BB)”).40

As discussed in section 2 (see also Appendix A), the function η characterizes the effect

of Zt on entry but generally will not reveal the (causal) effects of Xt. Thus one must

interpret the estimated coefficients here with caution. Nonetheless, these parameter

estimates, particularly those that are statistically distinguishable from zero, generally

have intuitive signs.41 The coefficient on Zt is positive (consistent with the predic-

tion of our motivating example) and statistically significant, supporting its value in

providing a source of variation in bidder entry.

5.2.2 Index Function and Bid Distribution

Table 4 displays estimates of the index parameters γx and γu, along with their es-

timated standard errors. The estimates indicate a strong effect of the unobserved

heterogeneity on bids. Because Ut is normalized to have a uniform distribution, the

coefficient implies that a one standard deviation increase in Ut drives up bids (and

valuations) by roughly 33%. We again caution that the estimated coefficients on Xt

do not have the usual causal interpretations. Nonetheless, the statistically significant

coefficients on Xt generally have intuitive signs.

We will not report estimates of the Bernstein polynomial parameters. However,

40We report results based on 800 bootstrap replications throughout.

41Note that, holding the number of neighbor firms fixed, a larger number of active neighbor leases
is associated with lower participation in auctions of neighboring tracts and may therefore indicate a
less desirable neighborhood.
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Table 3: Entry Model Estimates

Est. SE SE (BB)

# active leases X -0.089 0.028 0.033
isolated lease 0.518 0.089 0.100
# firms that bid for neighbors 0.016 0.011 0.012
reoffered tract -0.201 0.065 0.075
neighbor expired -0.044 0.070 0.079
# neighbors drilled -0.046 0.028 0.030
# neighbor hits 0.076 0.028 0.027
depth -0.558 0.179 0.283
depth squared 0.120 0.068 0.132
royalty rate -0.002 0.017 0.022
time controls Sale year dummies

# neighbor firms Z 0.1743 0.0414 0.0446

Table 5 shows our estimates of the Gaussian copula correlation parameters ρn. The

point estimates are positive, consistent with our assumption of positive dependence

between bidders’ private information. Although the point estimates generally suggest

greater correlation at higher levels of competition, a Wald test fails to reject the

hypothesis of equal copula correlation for all values of n,42 A Wald test strongly rejects

(p-value < 0.001) the null that all ρn are zero. Because homogenized bids are strictly

increasing functions of signals, this implies rejection of the hypothesis of independent

bidder types. This finding is of some importance on its own. Common knowledge

unobservables and correlated private information are two distinct phenomena with

different implications for behavior and policy. Often only one of these two sources of

correlation between bids has been permitted in applications.

42While not statistically distinguishable from the others, the estimated correlation parameter for
the nine-bidder auctions stands out. A close examination of the data revealed no clear explanation
for this. We do not use auctions with more than seven bidders in our tests for common values below,
and results are similar when we omit auctions with nt > 7 from the estimation altogether.
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Table 4: Index Function Estimates

Est. SE SE (BB)

# active leases X 0.016 0.018 0.021
isolated lease 0.042 0.059 0.087
# firms that bid for neighbors 0.029 0.008 0.011
reoffered tract -0.167 0.047 0.067
neighbor expired -0.280 0.047 0.067
# neighbors drilled 0.049 0.019 0.024
# neighbor hits -0.022 0.020 0.025
depth -0.224 0.135 0.269
depth squared 0.092 0.064 0.118
royalty rate -0.006 0.010 0.017
time controls Sale year dummies

unobserved heterogeneity U 1.136 0.273 0.351

Table 5: Copula Correlation Estimates

n Est. SE SE (BB)

2 0.044 0.041 0.050
3 0.031 0.029 0.040
4 0.089 0.031 0.032
5 0.136 0.030 0.041
6 0.112 0.035 0.037
7 0.111 0.044 0.043
8 0.133 0.039 0.040
9 0.295 0.071 0.067
10 0.161 0.052 0.068

11- 18 0.109 0.025 0.020
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5.3 Decomposition of Correlation and Variance

Correlation in private information is just one reason bids are correlated within an

auction; auction observables and unobservables also play a role. These auction char-

acteristics also contribute to the overall variance of the equilibrium bids. We can use

the results above to describe the contributions of each factor.

Table 6 shows a decomposition of within-auction pairwise correlation and overall

variance of the log bids.43 The figures presented here reflect calculations using simu-

lated draws from the estimated model. Figures in the first column, labeled “logB0
it,”

are for the homogenized log bids. Here the pairwise correlation reflects the correla-

tion among signals, the nonlinearity of the bidding strategy (and log transformation),

and the fact that, all else equal, bid levels vary with the number of competitors in

the auction. Similarly, the variance in this column reflects the variability in bidders’

assessments of tract values, as well as variation in bidding strategies across auctions

with different numbers of entrants.

A natural way to characterize the contributions of unobservables is to examine the

correlation and variance arising from variation in γ(x, Ut) at a representative value

of x. With our linear specification of γ(Xt, Ut), this variation is identical for all x.

Thus, in the second column, labeled “logB0
it + γuUt,” we add the contribution of

auction-level unobservables.

Quantifying the contribution of the observables Xt can be more problematic, at

least when we allow our model to represent an environment in which the underlying

unobservables may be correlated with Xt (see Appendix A). In that case, variation

with Xt in the conditional mean EUt [γ(Xt, Ut)|Xt] or in the uth quantile γ(Xt, u)

would correctly describe variation in bids associated with variation in Xt, but need

not represent the variation caused by variation in Xt alone—i.e., that arising when

43By “within-auction pairwise correlation” we refer to the Pearson correlation coefficient for pairs
of bids within the same auction.
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Table 6: Decomposition of Log Bid Correlation and Variance

logB0
it logB0

it + γuUt logB0
it + γuUt +X ′tγx logBit

Within-Auction Pairwise Correlation

0.133 0.210 0.222 0.425

Variance

1.520 1.669 1.693 2.292

the actual unobservables (Et in Example 1) are held fixed. However, once we know

the contributions of the log homogenized bids and the unobservables, we know that

all remaining correlation/variance in the log bids arises from the auction observables.

Again exploiting our linear specification of the index function, we split the contribu-

tions of observables into those of the year fixed effects and those of the auction-level

covariates. The third column of the table, labeled “logB0
it + γuUt + X ′tγx,” adds the

variation due to auction-level covariates, while the final column, labeled “logBit,”

adds the contribution of the year fixed effects to yield the total correlation and vari-

ance of the equilibrium bids.44

Given the wide time span of our data set and the substantial variation across

time in underlying market conditions, it is not surprising that the fixed effects ac-

count for a substantial portion of the correlation and variance. More interesting is a

comparison of the contributions of the auction-level covariates and the auction-level

unobservables. The the estimated contribution of the unobservables is roughly six

times as large as that of the observed covariates. This is particularly noteworthy

44Unlike the rest of the decomposition, the order of these last two steps could matter, due to
correlation between the covariates and fixed effects. Here, reversing the order has virtually no effect
on the implied contributions to the within-auction correlation; however it increases the contribution
of the covariates to the bid variance: the impact of unobservables is then only three (rather than
six) times as large as that of the observed covariates.
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because we selected covariates Xt from an unusually rich set of observables based in

part on explanatory power in descriptive analysis of bids. Unobserved heterogeneity

could be even more important in applications where only a limited set of covariates

is available.

6 Test For Common Values

6.1 Testing Approach

Using the estimates above, we test the null hypothesis of private values against the

alternative of common values, relying on the following additional assumption.

Assumption 12. For all n = 2, . . . , n− 1,

FS,V 0(S1t, . . . , Snt, V
0

1t, . . . , V
0
nt|Nt = n) = FS,V 0(S1t, . . . , Snt, V

0
1t, . . . , V

0
nt|Nt = n+ 1).

This is an assumption that Ut is the only source of dependence between the num-

ber of bidders at auction t and their valuations/signals. Thus, for example, holding

(Xt, Ut) fixed, variation in Nt is not associated with variation in the valuations or

in the precision of signals. Given this condition, HHS showed that the homogenized

pivotal expected values w0(Sit;n) are unaffected by n in a private values auction but

decreasing in n in a common values auction.45 This distinction reflects the winner’s

curse, which is present in (and only in) common values auctions, and which becomes

more severe as the number of competitors increases (all else equal).46 HHS also

pointed out that under the maintained assumptions of the affiliated values auction

model, w0(Sit;n) must be weakly decreasing in n. Because violations of this require-

ment indicate a rejection of at least one of our maintained hypotheses, this allows a

45See also Athey and Haile (2002).

46We use the term “winner’s curse” to describe the adverse selection faced by a bidder competing
against others with informative signals, not to errors or regret on the part of a bidder.
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test of the maintained assumptions, including that of equilibrium bidding.47

To perform the tests, we first construct estimates of the marginal distributions

Fw(·;n) of homogenized pivotal expected values conditional on Nt = n, following the

procedure discussed in section 4. We then subject the estimated distributions to tests

of the null hypothesis of equality (private values),

Fw(w;n) = Fw(w;n+ 1) ∀w, n = 2, . . . , 6,

against the one-sided alterative of first-order stochastic dominance (common values),

Fw(w;n) ≤ Fw(w;n+ 1) ∀w, n = 2, . . . , 6,

with the inequality strict for at least some n and w. We limit attention to auctions

with at most seven bidders in part to ensure that we have a sample of at least 100

auctions for each value of n considered.48 An additional reason, however, is that

growth in the severity of the winner’s curse with the level of competition tends to

diminish quickly as n grows. Intuitively, once a bidder assumes that n − 1 others

have low signals, learning that one additional signal is low conveys little “bad news”

unless n is small. Thus, with common values, pivotal expected values are decreasing

and, typically, convex in n.49 This intuitive feature leads us to expect any evidence

for common values to be clearest when comparing distributions at the lowest values

n to those at higher levels of n.

47Another testable implication of the maintained hypotheses is that the inverse homogenized
bid functions—i.e., the right-hand-side of the first order conditions (15)—be strictly increasing as
functions of the log homogenized bid (see Guerre, Perrigne, and Vuong (2000)). We find no violation
of this requirement, even before allowing for sampling error (see Figure 2 below.)

48Abusing notation slightly, we let n (without an index) represent the number of bidders in a
non-specific auction rather than referring repeatedly to “the number of bidders.”

49This convexity holds in all examples of symmetric common values auctions we are aware of. An
interesting open question is whether additional assumptions are needed to prove this as a general
property.
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We compare pairs of distributions using the one-sided Cramér-Von Mises type

statistic

CVM =

∫ ∞
−∞

[
F̂w(w;N1)− F̂w(w;N2)

]2

+
dw, (16)

where [y]+ = y × 1{y > 0} and F̂w(w;N) is the estimated distribution of w0(Sit;Nt)

conditional on Nt lying in a range of values defined by a set N. We focus primarily on

sets N containing two adjacent values of n (“coarse binning”). This pooling is done to

reduce the impact of sampling error. However, by combining n = 2 and n = 3, where

we expect the largest change in the severity of the winner’s curse, this pooling may

hide the strongest evidence of common values. Thus, we will also consider singleton

sets (“fine binning”). In addition to pairwise tests, we will construct a single test

statistic for the full range n = 2, . . . , 7, based on the maximum statistic (or smoothed

maximum) over the pairwise statistics:

CVMmax = max
j

∫ ∞
−∞

[
F̂w(w;Nj)− F̂w(w;Nj+1)

]2

+
dw (17)

Below we report results for the pairwise and “max” tests for coarse binning, as well

as the for the max test for fine binning.50 We construct p-values for the test statistics

using the distribution of (re-centered) test statistics from the spatial block bootstrap

procedure described above.

6.2 Testing Results

In Figure 1a we show the estimated CDFs under coarse binning, where we compare

“low”(n ∈ {2, 3}), “medium” ((n ∈ {4, 5}), and “high” (n ∈ {6, 7}) levels of compe-

50Appendix D provides the complete test results for the fine binning, including those for the
alternative specifications below. In general, these results confirm that, while the fine binning tests
are noisier, the strongest evidence for common values comes from comparisons of n = 2 to n = 3,
where we have relatively large numbers of bidders and where we consistently obtain p-values smaller
than those for the max test reported in the text.
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tition. Under the null, these distributions should differ only due to sampling error,

whereas the alternative of common values implies that the CDFs will shift “north-

west” as n increases. The estimated distributions shown here exhibit the stochastic

ordering implied by the common values model. Further, as expected, the gap between

the distributions for low and medium n is substantially larger than that between the

distributions for medium and high n. We contrast this with Figure 1b, which shows

the estimated distributions obtained when we estimate the model without allowing for

unobserved heterogeneity. Here the results suggest stochastic ordering in the direction

opposite that predicted by common values. This suggests a misspecified model.

Table 7 shows the p-values obtained from the formal tests. These results confirm

what was suggested by the figures above. First consider the comparison between low

n and medium n when we allow unobserved heterogeneity (“With UH”). The test for

common values implies rejection of private values in favor of common values, with

a p-value of 0.021. The smaller gap between the estimated CDFs for medium and

high n observed in Figure 1 cannot be statistically distinguished. However, the max

tests—for both coarse and fine binning—also imply rejection at significance levels

around 2 percent. Consistent with Figure 1, the specification test yields no evidence

suggesting misspecification in the model with unobserved heterogeneity.

Contrast these results with those obtained in the model without unobserved het-

erogeneity (“No UH”). Here, the conclusions are essentially reversed. Not only is there

no evidence of common values, but the specification tests suggest misspecification,

with all three coarse binning tests yielding p-values below 0.10. Thus, at least in our

data, failing to account for unobserved heterogeneity prevents detection of common

values and can erroneously suggest non-equilibrium bidding. This is intuitive, but not

a necessary implication of ignoring unobserved heterogeneity. On one hand, when we

ignore unobserved heterogeneity and endogenous entry, an “endogenous treatment”

bias works against the winner’s curse effect we are seeking to detect: auctions with
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Figure 1: Test for Common Values, Baseline Specification

(a) With Unobserved Heterogeneity

(b) Without Unobserved Heterogeneity
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Table 7: Test p-values
Baseline Specification

Test for Common Values

With UH No UH

{2,3} vs. {4,5} 0.021 0.299
{4,5} vs. {6,7} 0.274 0.754
Max (coarse binning) 0.022 0.590
Max (fine binning) 0.019 0.541

Specification Test

With UH No UH

{2,3} vs. {4,5} 0.906 0.066
{4,5} vs. {6,7} 0.901 0.076
Max (coarse binning) 0.985 0.081
Max (fine binning) 0.922 0.239

more bidders may have a larger winner’s curse, but they also have more favorable

unobservables. So the true effects of n on pivotal expected values could be masked

or even reversed. But this intuition is incomplete. The model is misspecified when

unobserved heterogeneity is present but ignored in the first-order conditions used to

interpret the data. The cumulative distributions recovered in that case are not those

of bidders’ pivotal expected values. Moreover, the direction of the misspecification

bias is unclear, and this bias may vary with n. Nonetheless, the results indicate that

ignoring unobserved heterogeneity obscures the presence of common values in our

sample.

6.3 Competition, Market Power, and Revenue

The presence of affiliation and common values can have important implications for

auction design (see, e.g., Milgrom and Weber (1982)). For example, this supports

the use of royalty payments but suggests that, absent concerns about susceptibil-
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ity to collusion (e.g., Athey, Levin, and Seira (2011)), an ascending auction could

produce more revenue. Affiliation and common values also interact with the usual

effects of competition. A well known feature of common value auctions is that added

bidder competition can lead, counterintuively, to less aggressive bidding, and even

to reduced seller revenue.51 The winner’s curse is a key force behind this possibility,

although Pinkse and Tan (2005) demonstrated that bids can decline in the level of

competition due to affiliation of signals alone. Here we use our estimates to examine

the equilibrium effects of bidder competition on bid shading, the level of bids, and

seller revenue.

In Figure 2 we plot, for different values of n, bidders’ homogenized pivotal expected

values against the associated homogenized bids implied by the first-order condition

(10). Recall that pivotal expected values are strictly increasing in bidder types (sig-

nals). We know from theory that all types above the lowest possible type shade their

bids below their pivotal expected values, and that the degree of bid shading is in-

creasing in type. Here we see that the estimated magnitude of this bid shading is

substantial—all curves lie well below the 45 degree line. However, the gap shrinks as

the level of competition rises from n = 2 to n = 7.

In Figure 3 we plot the estimated homogenized equilibrium bidding strategies

β0(·;n), where we normalize bidder signals to lie on [0, 1] without loss. These es-

timated bid functions are strictly increasing as implied by the model (but not im-

posed). They are also generally increasing with n, although this monotonicity reverses

at n = 7. Such a reversal is consistent with the folk wisdom that equilibrium bids

“eventually” decrease in the number of competitors in a common values auction (see,

e.g., Laffont (1997)). However, to assess whether this reflects more than sampling er-

ror, we subject these bid functions to the same type of tests we applied to the pivotal

51Laffont (1997) reviews the theoretical and empirical literature on this point. See also Hong and
Shum (2002).
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Figure 2: Competition and Bid Shading

Estimated pivotal expected values on horizontal axis with the associated
equilibrium bids on the vertical axis, both in 1982 dollars.

Figure 3: Competition and Equilibrium Bidding Strategies

Bidder signals (normalized to [0, 1] on the horizontal axis with the associ-
ated equilibrium bids (in 1982 dollars) on the vertical axis.
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expected values to test for common values above. Here we test the null hypothesis

that the bidding strategies β0(·;n) are increasing in n. The test comparing n = 6 to

n = 7 yields the smallest p-value, which is 0.162. Thus, we are unable to reject the

null at standard significance levels.

Finally, Table 8 shows, at each value of n, the implications of our estimates for

a seller’s expected revenue and median revenue at a homogenized auction (where Xt

and Ut are set to zero). Both measures of revenue increase monotonically with the

number of bidders. Notably, even though our point estimates (Figure 3) suggested

non-monotonicity with respect to n, this effect is overcome by the fact that the

winning bid is the maximum among n bids. Thus, even our point estimates give no

indication that a seller would profit from restricting entry to reduce the severity of

the winner’s curse faced by bidders.

Table 8: Competition and Revenues

Number of Expected Median
Bidders Revenue Revenue

2 1.487 0.912
3 1.952 1.332
4 2.431 1.679
5 3.170 2.202
6 3.581 2.563
7 3.591 2.565

Revenue in millions of 1982 dollars, for a

hypothetical auction with γ(xt, ut) = 0.
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7 Alternative Specifications

Here we consider several alternative specifications, focusing on the tests for common

values and specification tests.

7.1 Random Reserve Price

Our baseline model ignores the fact that the MMS retained (and sometimes exer-

cised) a right to reject all bids. A bidder who anticipates this rejection possibility

would have an incentive for more aggressive bidding than is implied by the standard

equilibrium first-order condition. In our sample this effect is likely to be small in

auctions attracting at least three bidders, where well over 99 percent of all winning

bids were accepted.52 However, the threat of rejection could be an important factor

in auctions attracting only one or two bidders.53

To incorporate this feature, we follow Hendricks, Porter, and Spady (1989) and

Hendricks, Porter, and Wilson (1994)) by modeling bid rejection with a random

reserve price whose value is unknown to bidders. From a bidder’s perspective, the

random reserve price is effectively an additional bid (submitted by the auctioneer),

leading to a first-order condition similar to that in the baseline case. We follow Bajari

and Hortaçsu (2003) by modeling the reserve price as drawn from the same marginal

distribution as a bid, although we rescale the seller’s “bid” to fit the observed MMS

rejection decisions. We give additional detail and discussion in Appendix C.

Figures 4a and 4b show the estimated marginal distributions of pivotal expected

values obtained with this alternative model. These are very similar to the estimates

52Rejection of the high bid occurred more often at auctions dropped from our sample due either
to missing values or to their being auctions of leases on partial-block tracts.

53Accounting for this threat enables us to rationalize observed bids in one-bidder auctions as
interior solutions obeying a first-order condition and inheriting the index structure of the valuations.
Therefore, given the large number of one-bidder auctions in our sample, we include one-bidder
auctions in the quasi-maximum likelihood estimation of the model parameters for all specifications.
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obtained in the baseline model. In Figure 4a, where we allow unobserved hetero-

geneity, we see the pattern of first-order stochastic dominance predicted by common

values, with the magnitude of the estimated shifts in the distributions declining with

n. Figure 4b again shows that, if unobserved heterogeneity is ignored, we obtain

estimated distributions ordered in the direction opposite that implied by common

values. As shown in Table 9, the formal tests are also very similar to those in the

baseline case.54 In particular, when we account for unobserved heterogeneity, the

test for common values leads us to reject private values, with p-values between 0.02

and 0.03. However, we se no evidence of common values when we ignore unobserved

heterogeneity.

Table 9: Test p-values
Random Reserve Specification

Test for Common Values

With UH No UH

{2,3} vs. {4,5} 0.023 0.306
{4,5} vs. {6,7} 0.278 0.759
Max (coarse binning) 0.027 0.605
Max (fine binning) 0.028 0.664

Specification Test∗

With UH No UH

{2,3} vs. {4,5} 0.847 0.036
{4,5} vs. {6,7} 0.839 0.071
Max (coarse binning) 0.960 0.075
Max (fine binning) 0.910 0.245

∗ See footnote 54 and Appendix C.

54As discussed in Appendix C, with the random reserve price, violations of weak stochastic ordering
need not imply rejection of the model. Thus, although the table shows the results of the specification
tests, these do not have the usual interpretation.
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Figure 4: Random Reserve

(a) With UH

(b) No UH
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7.2 Semi-nonparametric Entry Model

In the results presented so far, the entry model was estimated as an ordered probit:

in the notation of section 4.1.1, the distribution H(·) was specified as the standard

normal. Although H could be chosen arbitrarily if we specified each αn(x, z) nonpara-

metrically, with our parametric specification of the thresholds αn(x, z) the choice of H

could matter. Thus, we consider here an alternative semi-nonparametric specification

in which H(·) is approximated flexibly with Hermite polynomials.

Following Gallant and Nychka (1987), H is specified as the continuous distribution

function with density

h(ε) =
1

θh

 K̃∑
k=0

σkε
k

2

φ(ε),

where K̃ is the order of the Hermite polynomial approximation, σk are parameters,

φ is the standard normal density, and θh =
∫∞
−∞

(∑K̃
k=0 σkε

k
)2

φ(ε)dε. We set K̃ = 3.

Because the entry model affects only the way that we control for unobserved

heterogeneity, we examine here only the results obtained from the model allowing

unobserved heterogeneity. In Figure 5 we plot the estimated distributions of homog-

enized pivotal expected values obtained when we use this alternative specification of

the entry model. These distributions exhibit patterns very similar to those from the

baseline model. Table 10 confirms that the formal test results are also very simi-

lar. Indeed, the statistical evidence of common values is slightly stronger (smaller

p-values) with this more flexible specification.
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Figure 5: SNP Entry Model
With UH
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Table 10: Test p-values
With SNP Entry Model

Test for Common Values

With UH

{2,3} vs. {4,5} 0.014
{4,5} vs. {6,7} 0.198
Max (coarse binning) 0.015
Max (fine binning) 0.004

Specification Test

With UH

{2,3} vs. {4,5} 0.923
{4,5} vs. {6,7} 0.948
Max (coarse binning) 0.995
Max (fine binning) 0.933

7.3 No Year Fixed Effects

Our previous specifications included year fixed effects. These provide flexible control

for a number of common-knowledge time-varying factors such as macro shocks, vari-

ation in oil and gas prices, changes in industry structure, regulatory changes, etc.,

which vary substantially over the three decades of our sample. We saw the impor-

tance of this temporal variation in Table 6. However, in some applications one might

not have sufficient sample size to allow such flexibility. Without the fixed effects,

time varying factors would be an additional source of unmeasured heterogeneity, and

it is interesting to explore what happens in such cases. We therefore consider a

specification that drops the year fixed effects.

The estimated distributions of pivotal expected values are shown in Figures 6a and

6b. When we account for unobserved heterogeneity and endogenous entry we obtain

estimated distributions of pivotal expected values that are again ordered as we would
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expect under common values. The specification ignoring unobserved heterogeneity

yields estimated distributions that are ordered—now more sharply than in the baseline

specification—in the direction indicating misspecification of the model.

When we examine the formal test results in Table 11, the statistical evidence

aligns with the impression given by the figures. For the model allowing unobserved

heterogeneity, the rejections of private values in favor of common values are at slightly

larger significance levels than in the baseline specification, particularly in the case of

fine binning. However, the more striking difference is the stronger rejection of the

model that assumes no unobserved heterogeneity. This is as we would expect: as more

auction-level factors are forced into the unobservable, the misspecification implied by

ignoring unobserved heterogeneity is likely to be more severe.

Table 11: Test p-values
No Year Fixed Effects

Test for Common Values

With UH No UH

{2,3} vs. {4,5} 0.024 0.406
{4,5} vs. {6,7} 0.319 0.841
Max (coarse binning) 0.028 0.748
Max (fine binning) 0.095 0.985

Specification Test

With UH No UH

{2,3} vs. {4,5} 0.976 0.069
{4,5} vs. {6,7} 0.744 0.009
Max (coarse binning) 0.937 0.009
Max (fine binning) 0.942 0.625
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Figure 6: No Year Fixed Effects

(a) With UH

(b) No UH
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7.4 No Drainage Tracts

“Drainage” tracts are those adjacent to productive leases. It is natural to imagine

that owners of neighbor leases have an advantage in assessing the value of adjacent

tracts. The path-breaking paper of Hendricks and Porter (1988) focused on drainage

tracts and assumed that only the neighbor firm had access to a private signal of the

tract value, whereas non-neighbors relied solely on common knowledge information.

Our model of entry in OCS auctions (see Example 1) can be viewed as relaxing this

structure by allowing less extreme forms of asymmetries in signal acquisition costs

and permitting competition between multiple neighbors.55 However, our model is

one in which bidders choosing to acquire signals have private information of (ex ante)

equal precision: bidders are symmetric in the auction stage. This is consistent with

the fact that the frequency of winning conditional on bidding and on the number of

bidders is virtually identical for neighbors and non-neighbors in our sample. However,

if there is significant private information that can be obtained only by drilling, this

is something not permitted by our model. We therefore repeat the analysis dropping

all drainage tracts.

Unsurprisingly, restricting the sample in this way eliminates much of the variation

in our instrument. This is an important limitation. Recalling the discussion in section

3, it means that the results in this case will be more heavily reliant on the functional

form of the index function γ, and are likely to be less precisely estimated. The esti-

mated distributions in this case, shown in Figures 7a and 7b, are in fact very similar

to those obtained from the full sample. However, the formal test results show that

there is indeed a loss of precision. When we allow for unobserved heterogeneity, the

coarse binning test for common values comparing “low” and “medium” competition

55Hendricks and Porter (1988) assume that if there are multiple neighbors, only one submits
a serious bid. This leads to the result that non-neighbors bid in equilibrium despite having no
information, using mixed strategies. Such behavior is possible in equilibrium when there is no cost
of bidder entry.
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yields a p-value of 0.162, with a p-value of 0.168 for the max test. With fine binning,

the max test yields a p-value of 0.075. The fine binning comparison between n = 2

and n = 3, where we expect the largest effect of the winner’s curse, yields a p-value

of 0.030. Specification tests applied to the model ignoring unobserved heterogeneity

fail to reject at conventional significance levels, with p-values between 0.13 and 0.19

from the coarse binning tests.

Thus, while we can still reject private values in favor of common values (at the

10% level or 5% level using one of the fine binning tests), the statistical evidence is

less definitive. These results indicate that, while the patterns in the estimated distri-

butions obtained from the full sample are robust to exclusion of the drainage tracts,

the variation in the instrument these tracts provide is important for the precision of

the results.

Table 12: Test p-values
No-drainage Specification

Test for Common Values

With UH No UH

{2,3} vs. {4,5} 0.162 0.344
{4,5} vs. {6,7} 0.485 0.651
Max (coarse binning) 0.168 0.463
Max (fine binning) 0.075 0.508

Specification Test

With UH No UH

{2,3} vs. {4,5} 0.856 0.188
{4,5} vs. {6,7} 0.742 0.134
Max (coarse binning) 0.863 0.149
Max (fine binning) 0.724 0.246
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Figure 7: No Drainage Tracts

(a) With UH

(b) No UH
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8 Conclusion

We have proposed an empirical approach to first-price sealed bid auctions with af-

filiated values, unobserved auction-level heterogeneity, and endogenous bidder entry.

Although our approach offers several conceptual and practical advantages for our em-

pirical study of OCS auctions, it relies on several important assumptions that will

be more suitable in some applications than others. Further work may identify ways

to relax some of our assumptions or trade them for others. All econometric methods

allowing unobserved heterogeneity in first-price auctions require compromises, and in

practice the best approach will vary with the application and questions at hand.

Our analysis of the OCS auction data leads us to reject the private values model in

favor common values, a conclusion that is robust across a variety of specifications. We

found that ignoring unobserved heterogeneity can hide the presence of common values,

due in part to the fact that positive dependence between bidder entry and unobserved

tract value works against the effects that exogenous changes in the number of bidders

have on the severity of the winner’s curse. However, in practice our specification tests

allow us to reject specifications that ignore unobserved heterogeneity.

While our empirical results confirm the conventional wisdom that oil lease auctions

should be viewed as common values auctions, they also raise challenges. We obtained

a useful form of partial identification for a common values model, but common values

models—even without unobserved heterogeneity—generally are not point identified

without assumptions and data beyond what we required. Thus it will be important to

continue pursuit of approaches to identification that exploit the features of particular

settings (see, e.g., HPP or Somaini (2015)) and to explore extensions permitting

unobserved heterogeneity. It may also prove productive to pursue other forms of

partial identification that can be used to address positive and normative questions.

The recent work of Syrgkanis, Tamer, and Ziani (2018) provides one such approach.
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Appendices

A Equilibrium Entry in a Model of OCS Auctions

Here we consider a particular extensive form game of entry and bidding that is mo-

tivated by our application and yields the reduced form (3) for the entry outcome

presented in the text, including the assumed weak monotonicity conditions.56 This

example also demonstrates how our model can accommodate auction-specific unob-

servables that are of arbitrary dimension and correlated with auction-specific observ-

ables, despite the apparent contradiction to our assumption that Ut is a scalar and

independent of Xt. Accommodation of such correlation requires that we allow the in-

terpretation of Ut to vary with the vector Xt. This precludes identification of (causal)

effects of covariates on the auction; but in typical auction applications auction-level

observables are primarily confounding factors to be controlled for rather than factors

whose effects are of direct interest themselves. This section also motivates the instru-

ment used in our application. Finally, we discuss here the selection on unobservables

that could be implied by considering only auctions attracting at least one bid, as

necessitated by our data. We demonstrate that such selection introduces only an

additional way in which the interpretation of Ut varies with Xt.

A.1 Model

Consider a game of entry and bidding for the lease of a tract t. Let I denote the

set of all potential bidders (“firms”), and let I = |I|. The set I can be partitioned

into the set Zt of “neighbor firms”—holders of active leases on adjacent (“neighbor”)

tracts—and all other firms, I\Zt. Denote the number of neighbor firms by Zt = |Zt|.

56Example 1 in the text provided a sketch.
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Let Vit denote the value of the lease to firm i (i’s “valuation”). Let Xt and Et denote,

respectively, observed and unobserved (to us) characteristics of lease t that affect

bidders’ valuations. Let Xt include (among other relevant characteristics) the number

of active leases on neighboring tracts and the set of bidders for each of those leases.57

We make no restriction on the dimension of Et and do not require independence

between Xt and Et.

The game consists of two stages. In the second stage, lease t is offered by first-

price auction to the Nt bidders who enter in the first stage. We assume there is

no binding reserve price in the auction.58 In the first stage, bidders simultaneously

choose whether to incur an entry cost in order to acquire a signal and participate in

the auction.59 Let ci (xt) denote the entry cost for firm i. Neighbors have lower entry

costs. In particular, ci (xt) = c (xt) for a neighbor firm, whereas non-neighbor firms

have entry costs ci (xt) = c (xt) + δ (xt), with δ (xt) > 0.

Firms acquiring signals become “bidders” and learn the number of competitors

they face. Let Nt denote the number of bidders. Let Sit denote the signal received by

bidder i. Given Nt = n, let St = (S1t, . . . , Snt) and Vt = (V1t, . . . , Vnt, ) , where without

loss we re-label bidders as firms i = 1, . . . n. For any conditioning set Ω ⊆ (Xt, Zt, Et),

let FSV (St, Vt|Nt,Ω) denote the conditional distribution of bidders’ signals and valua-

tions. We assume FSV (St, Vt|Nt, Xt, Zt, Et) satisfies standard smoothness, symmetry,

affiliation, and nondegeneracy conditions (see Assumption 2 in the text). We assume

that Zt alters the joint distribution of signals and valuations only through its effect

57In practice we represent the set of bidders for neighboring tracts more parsimoniously with the
number of such bidders.

58In our application we consider an extension allowing a random reserve price.

59As is standard in the literature, we assume that only bidders incurring the entry cost can submit
a bid (see, e.g., Levin and Smith (1994), Li and Zheng (2009), Athey, Levin, and Seira (2011),
Krasnokutskaya and Seim (2011), Gentry and Li (2014), or Bhattacharya, Roberts, and Sweeting
(2014)). This assumption can be relaxed, allowing bidding with no signal, under an equilibrium
selection rule specifying that firms indifferent to entry do not enter.
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on Nt, i.e.,

FSV (St, Vt|Nt, Zt, Xt, Et) = FSV (St, Vt|Nt, Xt, Et) ,

and that Zt is independent of Et conditional on Xt. We discuss the justification

for this conditional independence assumption below. We assume the multiplicatively

separable structure

Vit = V 0
it λ (Xt, Et) , (A.1)

where the function λ is bounded and the random variables
(
V 0

1t, . . . , V
0
ntt, S1t, . . . , Sntt

)
are independent of (Xt, Et, Zt) conditional on Nt. We assume that λ(x,Et) is contin-

uously distributed for all x ∈ X.60

Note that we have not restricted the dimension of Et, imposed any monotonicity

condition on λ, or required independence between Xt and Et.
61 Nonetheless, we can

obtain the model of unobserved heterogeneity in the text by representing the random

variable λ(Xt, Et) in terms of its quantiles conditional on Xt. In particular, given

Xt = x, let Fλ (·|x) denote the CDF of the random variable λ (x,Et), and let

Ut = Fλ (λ(x,Et)|x) . (A.2)

For u ∈ [0, 1] define F−1
λ (u|x) = inf {λ : Fλ (λ|x) ≥ u} and let

Γ (x, u) = F−1
λ (u|x) . (A.3)

Combining (A.2) and (A.3), for each x we have Fλ(Γ(x, Ut)|x) = Ut = Fλ(λ(x,Et)|x),

60This assumption can be dropped, for example, by assuming instead that any indifferences in the
entry stage are broken the same way conditional on observables.

61This may be important, as the nomination process by which tracts were offered for lease in our
sample period suggests that a tract with “undesirable” value of Xt may have been unlikely to be
offered unless the value of Et made the tract desirable. See, e.g., Hendricks, Porter, and Boudreau
(1987) for a discussion of the nomination process.
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i.e.,

Γ(x, Ut) = λ(x,Et).

By construction, Γ is weakly increasing in its second argument, and Ut is uniform on

[0, 1] conditional on Xt. And because Ut is a measurable function of Et conditional

on Xt, Ut is independent of Zt conditional on Xt.

Note that in this new representation of the model, the distribution of Ut does not

vary with Xt, but its interpretation generally will. Observe that because Γ(xt, ut) =

λ(xt, et) for all t by construction, Γ(Xt, Ut) fully characterizes the variation and de-

pendence in valuations and bids that arises from the observables and unobservables.

Likewise, controlling for the value of Γ(Xt, Ut) fully controls for the effects of auction

observables and unobservables (Xt, Et) on valuations, bids, and equilibrium first-order

conditions. However, we will not be able to quantify the effect of a change in Xt (or

one of its components) holding unobservables fixed, since our Ut is redefined at every

value of Xt.

A.2 Equilibrium

We henceforth use the representation of the model just derived. The set of firms I, the

rules of the game, the values of (Xt, Ut, Zt), and the distribution FSV (St, Vt|Nt, Xt, Ut)

are common knowledge among firms. We consider perfect Bayesian equilibrium in

pure strategies, with weakly increasing strategies in the auction stage.

The second stage of the game is identical to the first-price sealed bid auction with

symmetric affiliated values studied by Milgrom and Weber (1982), who characterize

the unique Bayes-Nash equilibrium in increasing bidding strategies. Bidder i’s payoff

in the auction stage can be written as a function of the commonly known (Nt, Xt, Ut)

and the realized bidder signals St. As noted in the text, multiplicative separability

of valuations is inherited by equilibrium bids. This implies that a bidder’s ex post
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profit, denoted by π (Sit, S−it, Nt, Xt, Ut), is strictly increasing in the index Γ(Xt, Ut)

and, therefore, weakly increasing in Ut. Further, we assume the usual case in which

the ex ante expected equilibrium payoff

π̄ (Nt, Xt, Ut) = E [π (Sit, S−it, Nt, Xt, Ut) |Nt, Xt, Ut]

is strictly decreasing in Nt.
62

In the entry stage, firms make decisions based on the cost of entry and expected

profit from participating in the auction. Let Cit = ci (Xt). For firm i, entering when

n− 1 other firms will also enter implies expected profit

π̄ (n,Xt, Ut)− Cit.

Conditional on (Xt, Zt, Ut), and given equilibrium beliefs about payoffs in the auction

stage, the entry stage is then equivalent to the entry game in Berry (1992). Berry

showed that a pure strategy equilibrium exists and that with probability one all

equilibria exhibit the same number of entrants, given by

nE (Xt, Zt, Ut) = max
0≤n≤I

{n : π̄ (n,Xt, Ut)− Cit ≥ 0} .

Recall that (Xt, Zt) determine the values of {Cit}i∈I .

Thus, in any pure strategy perfect Bayesian equilibrium (with weakly increasing

bidding) we have

Nt = nE (Xt, Zt, Ut) .

Further, because π̄ (Nt, Xt, Ut) is weakly increasing in Ut, so is the function nE.

62We know of no counterexample to strict monotonicity in Nt under the assumption that Ut is
the only latent source of dependence between the entry and auction stages—i.e., that Assumption
12 holds. Nonmonotonicity (within the relevant range of Nt) could lead to existence of multiple
equilibria with different numbers of bidders.
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A.3 The Instrument

Our instrument for bidder entry Zt is the number of neighbor firms. First consider

the “exclusion” requirement (Assumption 5). We have assumed directly that Zt is in-

dependent of (St, V
0
t ) conditional on Nt, i.e., that Xt are the only observables directly

affecting bidder valuations.63 However we must verify that Zt is also independent

of Ut conditional on Xt. A tract with three neighbor leases, for example, may have

one, two, or three neighbor firms, depending on which bidders for the neighboring

leases won those auctions. Given the number of neighbor leases and the bidders for

each neighbor tract (i.e., conditional on Xt), the number of distinct winners reflects

only random variation in bidders’ signals at prior auctions. Recall that signals are as-

sumed independent of tract-specific unobserved heterogeneity and independent across

tracts. Thus, even in the case of spatially correlated tract-level unobservables Et, the

conditional independence requirement Zt |= Ut|Xt will hold.

Regarding the “relevance” requirement for the instrument Zt,
64 observe that

changes in the number of neighbor firms affects entry because for some combina-

tions of (Xt, Zt, Ut) the market will accommodate the n+1st entrant only if there is a

potential bidder with low signal acquisition cost. For example, we will sometimes have

two entrants because the market would support entry by a third (low cost) neighbor,

but not by a third firm that is a (high cost) non-neighbor. Thus, larger values of Zt

will lead, all else equal, to weakly larger numbers of entrants. If the cost asymmetry

is substantial, the effects of the instrument on entry will be substantial as well.

63This could fail here if the number of neighbor firms had a direct effect on tract value (given Xt),
e.g., by driving up costs of negotiating production from common pools.

64This discussion is informal. We have specific “relevance” requirements in the identification
results. Our instrument falls short of these by being discrete rather than continuous. As discussed in
the identification analysis, discrete instruments may lead to reliance on functional form to interpolate
between the points at which the index function γ (x, ·) is identified at each x.
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A.4 Truncation

In the OCS data we observe no information about (even existence of) leases offered

for sale but attracting no bids. Given the tract nomination process in place during

the sample period, this may not have been a frequent phenomenon. But existence

of such leases could imply a form of selection on unobservables: leases attracting no

bids would be those with relatively undesirable unobservables. Here we demonstrate

that such selection is accommodated by interpreting the unobservable in our model

as that conditioned on the event that the auction attracts at least one bid.

In our model, offered leases attracting no bids are those for which

π (1, xt, ut) ≤ cit ∀i ∈ I. (A.4)

Letting π−1 (c; 1, x) = sup {u : π (1, x, u) < c}, we can rewrite (A.4) as65

ut ≤ π−1

(
min
i∈I

ci (xt) ; 1, xt

)
,

or, more simply given our definition of ci(xt),

ut ≤ u (xt) .

Recalling that the definition of Ut already changes with each value of Xt, we obtain

the original model by redefining Ut to denote the value of the unobservable conditional

on truncation at u(Xt).
66

65Note that the threshold for attracting a single bidder varies depending on the presence of at
least one neighbor tract (firm), but not with the number of neighbor firms Zt.

66More formally, going back to the original formulation of the unobserved heterogeneity in terms of
Et, let π̃ (Nt, Xt, Et) denote the expected second-stage payoff for a bidder facing Nt − 1 opponents
given (Xt, Et). Under the separable structure (A.1), we have π̃ (Nt, Xt.Et) = π̃0 (Nt)λ (Xt, Et).

Given Xt = x, we have a zero-bidder auction when λ (x,Et) ≤ mini ci(xt)
π̃0(1) . Thus, we modify the con-

struction of Ut by letting Fλ (·|x) denote the CDF of λ (x,Et) conditional on λ (x,Et) >
mini ci(xt)
π̃0(1) .

61



B Proofs Omitted from the Text

Here we provide proofs omitted from the text. For convenience we restate the results

being proved.

Corollary 1. Under Assumptions 1–6, the distribution of Ut|(Xt, Nt) is identified.

Proof.

We can express Pr (Ut ≤ u|Xt = x,Nt = n) as

FU |XN (u|x, n) =

∫
FU |XZN (u|x, z, n) dζ (z|x, n) (B.1)

where FU |XZN is the distribution of Ut|(Xt, Zt, Nt) and ζ is the distribution of Zt|(Xt, Nt).

Conditional on Nt = n, Zt = z, and Xt = x, Ut is uniform on [τn−1 (x, z) , τn (x, z)],

and by Theorem 1 the endpoints τn−1 (x, z) and τn (x, z) are identified. So FU |XZN

is known. Since ζ is directly observed, the result follows from (B.1). �

Lemma 2. Under Assumptions 1–8, for all n ≥ n, all (x, z) ∈ Y (n), and all (x′, z′) ∈

Y (n), γ (x, τn (x, z))− γ (x′, τn−1 (x′, z′)) is identified.

Proof. For n∗ as defined in Assumption 8, take n ≤ n∗ and let x (n), z (n), and ẑ (n)

be as in part (i) of Assumption 8 so that

n (x (n) , z (n)) = n

n (x (n) , ẑ (n)) = n+ 1.
(B.2)

Since (x (n) , z (n)) ∈ Y (n) and (x (n) , ẑ (n)) ∈ Y (n+ 1), Lemma 1 implies identifi-

cation of

γ (x′, τn−1 (x′, z′))− γ (x (n) , τn−1 (x (n) , z (n))) (B.3)

and

γ (x′′, τn (x′′, z′′))− γ (x (n) , τn (x (n) , ẑ (n))) (B.4)
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for all (x′, z′) ∈ Y (n) and (x′′, z′′) ∈ Y (n+ 1). By (4) and (B.2),

τn−1 (x (n) , z (n)) = 0 = τn (x (n) , ẑ (n)) ,

so subtracting (B.3) from (B.4) yields identification of

γ (x′′, τn (x′′, z′′))− γ (x′, τn−1 (x′, z′)) (B.5)

for all (x′′, z′′) ∈ Y (n+ 1) and (x′, z′) ∈ Y (n). By Assumption 7, there exists some

(x′′, z′′) that is in both Y (n+ 1) and Y (n). The claim then follows from Lemma 1.

A symmetric argument applies for n > n∗.67 �

Lemma 3. Let Assumptions 1–8 hold. Then for all n ≥ n and all (x, z) ∈ Y (n), the

values of γ (x, τn−1 (x, z)) and γ (x, τn (x, z)) are identified.

Proof. We proceed by induction, starting with n = n. By the normalization (1),

γ (x0, 0) = 0, where for some z we have (x0, z) ∈ Y (n). Lemma 1 then implies

identification of γ (x, τn−1 (x, z)) for all (x, z) ∈ Y (n). Lemma 2 then implies identi-

fication of γ (x, τn (x, z)) for all (x, z) ∈ Y (n). Now take any n > n and suppose that

γ (x, τn−1 (x, z)) is known for all (x, z) ∈ Y (n− 1). By Assumption 7 there exists a

point (x̃, z̃) in Y (n− 1)∩Y (n). Since we have already identified γ (x̃, τn−1 (x̃, z̃)), by

Lemma 1 we also know the value of γ (x, τn−1 (x, z)) for all (x, z) in Y (n). By Lemma

2, this implies identification of γ (x, τn (x, z)) for all (x, z) in Y (n) . �

Lemma 4. Under Assumptions 1–9, τn−1 (Xt, Zt) is continuous in Zt on the pre-image

67Note that the arguments used to show Lemmas 1 and 2 will often imply several forms of overiden-
tification. For example, Lemma 1 implies overidentification of γ (x′, τm (x′, z′))− γ (x, τm (x, z)) for
any m which is both smaller than min {n (x′, z′) , n (x, z)} and larger than max {n (x′, z′) , n (x, z)}.
And while Assumption 7 ensures only that there exist one (x̃, z̃) ∈ Y (n) that is also in Y (n− 1),
when there is more than one such pair the proof of Lemma 2 will provide multiple ways of construct-
ing the same value of a given difference γ (x′′, τn (x′′, z′′))− γ (x′, τn−1 (x′, z′)). Finally, in practice
there may often be more than one value of n∗ satisfying Assumption 8, resulting in some duplication
in the differences identified in the two halves of the proof of Lemma 2.
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of (0, 1) .

Proof. Fix n, x, and z such that τn−1(x, z) ∈ (0, 1). Let τ = τn−1(x, z) and let

ν > 0 be sufficiently small that τ + ν < 1 and τ − ν > 0. We show that for any

such ν there exists ε > 0 such that for every z′ satisfying ‖z′ − z‖ < ε we have

τn−1(x, z′) ∈ (τ − ν, τ + ν). Let δ = ν/2. By the definition of τn−1(x, z) and weak

monotonicity of η in Ut, η(x, z, τ − δ) < n. So by Assumption 9 there exists ε1 > 0

such that for any z′ satisfying ‖z′ − z‖ < ε1, η(x, z′, τ ′) < n for some τ ′ ∈ (τ − 2δ, τ).

Similarly, because η(x, z, τ + δ) ≥ n, Assumption 9 ensures that there exists ε2 > 0

such that for any z′ satisfying ‖z′− z‖ < ε2, η(x, z′, τ ′′) ≥ n for some τ ′′ ∈ (τ, τ + 2δ).

Letting ε = min{ε1, ε2}, we have shown that for any z′ satisfying ‖z′ − z‖ < ε,

η(x, z′, τ ′) < n for some τ ′ ∈ (τ − ν, τ) while η(x, z′, τ ′′) ≥ n for some τ ′′ ∈ (τ, τ + ν).

At such z′, τn−1(x, z′) must lie in [τ ′, τ ′′]. �

C Random Reserve Price

As discussed in section 7.1, the MMS occasionally exercised its right to reject all bids,

typically when the number or level of bids received was low. Following Hendricks,

Porter, and Spady (1989) and Hendricks, Porter, and Wilson (1994), we model this

rejection policy by assuming that at each auction t the MMS used a random reserve

price Rt whose realization was unknown to bidders.

We let the distribution of Rt vary with the number of bidders and with the auction

characteristics (Xt, Ut). The dependence on (Xt, Ut) is assumed to mirror that of tract

valuations. Thus, we assume

Rt = R0
t × Γ(Xt, Ut),

where R0
t is independent of (Xt, Ut, St, Vt) conditional on Nt. In this formulation, a
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homogenized winning bid M0
t is accepted if and only if M0

t ≥ R0
t . Let HR(·|Nt) denote

the distribution of R0
t given Nt.

Following Bajari and Hortaçsu (2003), for each value of n we model the distri-

bution HR(·|n) using the marginal distribution of homogenized bids in an n-bidder

auction. However, to fit the data, we allow the MMS “bid” to be less aggressive than

a real bid by introducing a scaling factor σn.68 In particular, we assume

HR(r|n) = min

{
1, GB0

(
r

σn
;n

)}
.

Thus, the random reserve price has the same distribution as a rescaled bid.

Motivated by the observed rejection frequencies (see Table 13 below), we estimate

separate scaling factors for n = 1, n ∈ {2, 3} and n ≥ 4. Taking the estimates

of θ = (θτ , θγ, θb) as given, we fit these scaling parameters σ to the observed bid

acceptance decisions

Yit = 1{Mit ≥ Rt}

using the quasi-likelihood function

L(y;σ, θ̂) =

T∏
t=1

1

τnt(xt, zt; θ̂τ )− τnt−1(xt, zt; θ̂τ )

∫ τnt (xt,zt;θ̂τ )

τnt−1(xt,zt;θ̂τ )

HR

(
mt − γ(xt, u; θ̂γ)|nt; θ̂b, σ

)yt
×(

1−HR

(
mt − γ(xt, u; θ̂γ)|nt; θ̂b, σ

))1−yt
du. (C.1)

Table 13 shows the actual and fitted bid acceptance rates for each value of n.

Introducing the random reserve price requires only a minor change in the inversion

of bidder first-order conditions. Under the null hypothesis of private values, bidders’

68Very similar results are obtained fitting a lognormal distribution for R0
t or allowing the homog-

enized reserve price to be correlated with the homogenized bids.
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Table 13: Random Reserve Model Fit

acceptance rate
n actual fitted

1 0.921 0.917
2 0.978 0.981
3 0.997 0.991
4 0.991 0.997
5 1.000 0.995
6 1.000 0.998
7 1.000 0.998
8 1.000 0.998
9 1.000 0.997
10 1.000 0.999

11–18 1.000 0.999

homogenized pivotal expected values are identified using a revised first-order condition

w0(sit;nt) = b0
it +

GM0|B0(b0
it; b

0
it, nt)HR(b0

it;nt)

GM0|B0(b0
it; b

0
it, nt)hR(b0

it;nt) + gM0|B0(b0
it; b

0
it, nt)HR(b0

it;nt)
. (C.2)

This allows testing of the private values null as in the baseline model.

An nuance here is that under the alternative of common values, the right-hand

side of (C.2) is not equal to w0(sit, sit;nt) but to a weighted average69

ϕ(sit, nt)w
0(sit;nt) + [1− ϕ(sit, nt)]w

0(sit;nt), (C.3)

where

w0(sit;nt) = E

[
V 0
it

∣∣∣∣Sit = sit,max
j 6=i

Sjt ≤ sit, Nt = nt

]
(C.4)

denotes a bidder’s expected (homogenized) valuation conditional on his signal and

69The weight ϕ(sit, nt) is equal to

h(b0it, nt)GM |B(b0it; b
0
it, nt)/

[
h(b0it, nt)GM |B(b0it; b

0
it, nt) +H(b0it, nt)gM |B(b0it; b

0
it, nt)

]
.

Observe that all weight is placed on the pivotal expected value when the rejection probability
1−H(b0it, nt) is zero.
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on winning the auction. This expectation is slightly different from the homogenized

pivotal expected value. And although both w0(sit;nt) and w0(sit;nt) are decreasing

in nt in a common values model, the weights ϕ(sit, nt) also vary with nt, leaving an

ambiguous prediction regarding how the distribution of the weighted average varies

with nt. This implies that violations of the private values null might fail to reveal

themselves, and further that there may be no relationship between the estimated

distributions obtained from the first-order condition that can be explained only by

violation of the model’s maintained hypotheses.

Given the stochastic ordering we do find, this caveat implies that the evidence we

obtain in favor of common values from this specification is conditioned on a main-

tained assumption that our model is correctly specified. Such conditioning is typical

in hypothesis testing but unlike the baseline specification, where we could partition

the set of all possible outcomes to those consistent with private values, those consis-

tent with common values, and those inconsistent with the model.
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D Additional Results and Tables

D.1 Baseline Specification Fine Binning Test Results

Table 14: Test p-values
Baseline Specification, Fine Binning

Test for Common Values

With UH No UH

2 vs. 3 0.001 0.046
3 vs. 4 0.212 0.703
4 vs. 5 0.662 0.869
5 vs. 6 0.625 0.733
6 vs. 7 0.073 0.270
Max 0.019 0.541

Specification Test

With UH No UH

2 vs. 3 1.000 1.000
3 vs. 4 0.730 0.229
4 vs. 5 0.567 0.086
5 vs. 6 0.627 0.249
6 vs. 7 0.562 0.440
Max 0.922 0.239

D.2 Parameter Estimates: Alternative Specifications
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Table 15: Entry Model Estimates
Alternative Specifications

No Year FE No Drainage SNP
Est. SE SE (BB) Est. SE SE (BB) Est. SE SE (BB)

# active leases X -0.102 0.026 0.031 -0.036 0.037 0.044 -0.094 0.042
isolated lease 0.402 0.086 0.096 0.434 0.129 0.141 0.557 0.141
# firms that bid for neighbors 0.014 0.011 0.011 0.052 0.020 0.021 0.022 0.015
reoffered tract -0.293 0.062 0.069 -0.108 0.093 0.106 -0.242 0.093
neighbor expired -0.053 0.068 0.074 0.017 0.092 0.108 -0.022 0.104
# neighbors drilled -0.011 0.027 0.029 -0.090 0.041 0.042 -0.053 0.040
# neighbor hits 0.055 0.028 0.027 -0.353 0.253 0.254 0.077 0.038
depth -0.111 0.162 0.360 -0.704 0.198 0.309 -0.612 0.336
depth squared -0.060 0.065 0.234 0.174 0.073 0.133 0.121 0.153
royalty rate 0.024 0.015 0.020 -0.012 0.023 0.031 -0.004 0.026
time controls Sale year dummies Sale year dummies Sale year dummies

# neighbor firms Z 0.151 0.040 0.041 0.046 0.070 0.073 0.182 0.059
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Table 16: Index Function Estimates
Alternative Specifications

SNP No time FE No Drainage
Est. SE SE (BB) Est. SE SE (BB) Est. SE SE (BB)

# active leases X 0.013 0.018 0.022 -0.006 0.027 0.027 0.006 0.023 0.030
isolated lease 0.060 0.060 0.091 0.027 0.079 0.111 0.048 0.085 0.123
# firms that bid for neighbors 0.032 0.008 0.011 0.052 0.010 0.013 0.036 0.013 0.019
reoffered tract -0.182 0.048 0.070 -0.245 0.078 0.091 -0.102 0.064 0.093
neighbor expired -0.277 0.047 0.068 -0.119 0.062 0.083 -0.203 0.060 0.087
# neighbors drilled 0.047 0.020 0.025 0.122 0.027 0.028 0.058 0.029 0.042
# neighbor hits -0.021 0.020 0.026 -0.047 0.028 0.031 -0.096 0.177 0.219
depth -0.248 0.137 0.274 1.203 0.146 0.365 -0.442 0.160 0.297
depth squared 0.094 0.065 0.120 -0.307 0.064 0.186 0.161 0.071 0.124
royalty rate -0.007 0.010 0.017 0.029 0.015 0.015 0.015 0.013 0.023
time controls Sale year dummies Sale year dummies Sale year dummies

unobserved heterogeneity U 1.319 0.291 0.405 1.989 0.584 0.646 0.941 0.358 0.513
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Table 17: Copula Correlation Estimates
Alternative Specifications

SNP No time FE No Drainage
n Est. SE SE (BB) Est. SE SE (BB) Est. SE SE (BB)

2 0.043 0.041 0.050 0.197 0.049 0.051 0.024 0.056 0.060
3 0.031 0.030 0.040 0.212 0.040 0.042 0.007 0.033 0.047
4 0.090 0.031 0.032 0.275 0.038 0.038 0.053 0.034 0.036
5 0.136 0.030 0.041 0.301 0.031 0.042 0.111 0.035 0.042
6 0.112 0.035 0.037 0.259 0.032 0.042 0.083 0.034 0.036
7 0.111 0.044 0.043 0.342 0.061 0.041 0.090 0.043 0.040
8 0.133 0.039 0.040 0.261 0.039 0.052 0.160 0.052 0.046
9 0.295 0.071 0.067 0.400 0.076 0.073 0.290 0.071 0.082

10 0.158 0.051 0.068 0.307 0.055 0.055 0.155 0.053 0.063
11- 18 0.108 0.025 0.020 0.246 0.029 0.031 0.098 0.026 0.026
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E Additional Computational Detail

Here we discuss additional computational aspects of our estimation procedure. A use-

ful feature of the Bernstein polynomial specification is the ease of imposing otherwise

complex functional restrictions through linear restrictions on the vector of Bernstein

coefficients. For instance, a necessary and sufficient condition for the function to inte-

grate to one is that
∑m

j=0 θ
(j)
b,n = m+ 1. Additionally, the Bernstein polynomials allow

easy transformation between the density and associated cumulative distribution. In

particular,

G̃B0
i
(b̃0; θ̃b, n) =

m+1∑
j=0

θ̃
(j)
b,nqj,m+1

(
Φ
(
b̃0
))

, (E.1)

where θ̃b,n = (θ̃
(0)
b,n, . . . , θ̃

(m+1)
b,n )′ = Mθb,n for a known matrix M , and θ̃b = {θ̃b,n}nn=n.

This is useful because we require the CDF of the bid marginal when applying the

copula χ(·; ρn) to compute the joint density in (13). In contrast to numerical integra-

tion, the transformation from density to CDF with Bernstein polynomials involves

only a linear transformation of parameters and is exact.

One key computational issue is how one can derive tractable expressions for

the conditional distributions that appear in the bid first-order condition (15). Be-

low we show how the Gaussian copula can be leveraged to write G̃M |B(b̃0
it|b̃0

it, n)

and g̃M |B(b̃0
it|b̃0

it, n) using integrals of known normal distributions, which are eas-

ily computed using readily available methods. We first derive an expression for

G̃M |B(b̃0
it|b̃0

it, n). An expression for g̃M |B(b̃0
it|b̃0

it, n) follows naturally.

First, note that

G̃M |B(b|b, n) = Pr
(
B̃0

2t ≤ b, . . . , B̃0
nt ≤ b|B̃0

1t = b
)

(E.2)

= Pr
(

Φ−1
(
G̃B0

i

(
B̃0

2t

))
≤ b?, . . . ,Φ−1

(
G̃B0

i

(
B̃0
nt

))
≤ b?

∣∣ Φ−1
(
G̃B0

i

(
B̃0

1t

))
= b?

)
,
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where b? = Φ−1
(
G̃B0

i
(b)
)

and we drop the dependence of G̃B0
i

on θ̃b and n for

notational convenience. The second equality holds for every b ∈ R, since the estimated

G̃B0
i

has always full support.

Second, note that the Gaussian copula parametrization of the joint distribution

of homogenized bids implies

(
Φ−1

(
G̃B0

i

(
B̃0

1t

))
, . . . ,Φ−1

(
G̃B0

i

(
B̃0
nt

)))
∼ N(0,Σρn),

where Σρn is the covariance matrix with constant pairwise correlation ρn.

Finally, the conditional normal distribution is also normal, so we can re-write the

conditional probability (E.2) as

G̃M |B(b|b, n) = Φ̃
(

Φ−1
(
G̃B0

i
(b)
)
, . . . ,Φ−1

(
G̃B0

i
(b)
))

,

where Φ̃(·) is the multivariate Normal CDF with mean 1(n−1)×1 ρn Φ−1
(
G̃B0

i
(b)
)

and

variance Σρn−ρn2. Therefore computation of G̃M |B(b|b, n) requires only the evaluation

of a known normal CDF.

This procedure naturally suggests one way of computing g̃M |B(b|b, n) as a multi-

variate integral. By definition,

g̃M |B(b|b, n) =
dΦ̃
(

Φ−1
(
G̃B0

i
(b)
)
, . . . ,Φ−1

(
G̃B0

i
(b)
))

db
,

By symmetry and using the Leibniz integral rule,

g̃M |B(b|b, n) =

(n−1)
g̃B0

i
(b)

φ(G̃B0
i

(b))

∫ Φ−1

(
G̃
B0
i

(b)

)
−∞

∫ Φ−1

(
G̃
B0
i

(b)

)
−∞

φ̃
(

Φ−1
(
G̃B0

i
(b)
)
, b3, . . . , bn

)
db3 . . . bn.
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where we drop the dependence of g̃B0
i

on θb and n. The integral above is over a

known multivariate normal density. It can be computed quickly and reliably using

the algorithm suggested by Genz (1992).
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