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Abstract

We establish that creditor beliefs regarding future borrowing can be self-ful�lling, leading
to multiple equilibria with markedly di�erent debt accumulation pa�erns. We characterize
such indeterminacy in the Eaton-Gersovitz sovereign debt model augmented with long ma-
turity bonds. Two necessary conditions for the multiplicity are: (i) the government is more
impatient than foreign creditors, and (ii) there are deadweight losses from default; both are
realistic and standard assumptions in the quantitative literature. �e multiplicity is dynamic
and stems from the self-ful�lling beliefs of how future creditors will price bonds; long matu-
rity bonds are therefore a crucial component of the multiplicity. We introduce a third party
with deep pockets to discuss the policy implications of this source of multiplicity and identify
the potentially perverse consequences of traditional “lender of last resort” policies.

1 Introduction

�e recent sovereign debt crisis in Europe, along with the associated policy responses, under-
scores the importance of self-ful�lling debt crises. We introduce and analytically solve a tractable
version of the canonical Eaton and Gersovitz (1981) sovereign debt model with long duration

∗We thank seminar participants at multiple places. We also bene�ted from discussions with Fabrice Tourre.
†Manuel Amador thanks the National Science Foundation for support (award number 0952816). �e views ex-

pressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the
Federal Reserve System.
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bonds and study the vulnerability to self-ful�lling debt crises. �e Eaton-Gersovitz model, en-
hanced to incorporate long-term bonds, has become the workhorse paradigm for a large quan-
titative literature that has successfully explained key empirical features of sovereign default.1

However, due to the intractability of the model, it is not known whether and under what cir-
cumstances this environment generates self-ful�lling debt crises.2 �is is a major shortcoming,
as long-term bonds are the primary source of government �nancing around the world. More-
over, they play a key role in bringing the quantitative sovereign debt models closer to the data, in
large part due to the inherent incentive to dilute bondholders. We establish that the same force
generates multiplicity.

Our analysis introduces a tractable version of the Eaton-Gersovitz model for which we solve
for equilibrium objects explicitly. We show that as long as the government is relatively impatient
and there are deadweight costs to default, there is a parameter con�guration and a maturity of
debt that supports multiple equilibria.

�e multiplicity is dynamic. Creditor expectations of future borrowing and default behavior
determine bond prices today. In turn, current and anticipated bond prices a�ect the government’s
incentives to borrow. To shed light on this feedback mechanism, we characterize two types of
equilibria with markedly di�erent debt dynamics. In a “borrowing” equilibrium, the government
issues bonds until it reaches an endogenous debt limit. In a “saving” equilibrium, the government
reduces its stock of debt until default no longer occurs with positive probability. �e tension at
work in both equilibria is the relative impatience of the government and the deadweight costs of
default.

�e government saves in order to enjoy high prices when it rolls over the remaining debt in the
future. However, this incentive is only operable if there is a deadweight loss in default; as prices
are actuarially fair in any equilibrium, they do not provide an incentive to save when default is
zero sum.3 Hence, the combination of deadweight costs and the need to roll over maturing debt
provides the foundation for the saving equilibrium.

�e government’s relative impatience provides a countervailing force that supports the bor-
rowing equilibrium. In the borrowing equilibrium, creditors anticipate future borrowing going
forward (that is, “debt dilution”), and prices are low regardless of the current level of indebted-

1Examples, among many others, are Aguiar and Gopinath (2006), Arellano (2008), Yue (2010), Hatchondo and
Martinez (2009), Mendoza and Yue (2012), Cha�erjee and Eyigungor (2012), Arellano and Ramanarayanan (2012),
and Bianchi, Hatchondo and Martinez (forthcoming). See Aguiar and Amador (2014) for a survey.

2In a recent contribution, Auclert and Rognlie (2016) show that the Eaton-Gersovitz model with one-period bonds
features a unique equilibrium, but their arguments do not extend to long-term bonds.

3While lenders receive zero in the default state, a deadweight cost implies the government’s value is strictly less
than that associated with zero debt. Competitive bond markets imply that creditors are compensated in expectation
for the full loss, while the government does not reap the same expected gain. �is provides the government with an
incentive to reduce the probability of default.
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ness. In this equilibrium, there is no reward for keeping debt low due to creditor beliefs about
future debt dynamics. Hence, whether relative impatience or deadweight costs of default are the
dominant force in determining debt dynamics depends on creditor beliefs.

Maturity plays a key role in this indeterminacy, which arises only when debt is of intermediate
maturity. When maturity is su�ciently long, the saving equilibrium cannot be supported, as the
amount of debt to be rolled over at high prices is too small to warrant saving. In particular,
as the probability of default is reduced, the gain from the reduction in the deadweight costs of
default is split between the government, which is issuing new debt at high prices, and holders
of non-maturing bonds, who enjoy a capital gain. As the la�er component is irrelevant for the
government’s decision to save, longer maturity bonds eliminate the government’s incentive to
save.

Conversely, at very short maturities, the government internalizes the gains from reducing the
probability of default. In fact, we show that as maturity becomes arbitrarily short, the govern-
ment’s �scal policy approaches what would be chosen in a constrained e�cient contract between
the lenders and the government, as in Aguiar, Amador, Hopenhayn and Werning (2018). In this
case, the borrowing equilibrium becomes impossible to sustain without a high degree of rela-
tive impatience or zero deadweight costs. For intermediate values of maturity, impatience, and
deadweight costs, either equilibrium can be sustained.

We show that this multiplicity has novel implications for the design of third-party programs
to eliminate ine�cient equilibria. Common prescriptions motivated by rollover crisis intuition,
such as price �oors or emergency lending when spreads are high, may have the perverse outcome
of eliminating the preferred equilibrium in the Eaton-Gersovitz model. In our framework, a �oor
on prices does not eliminate the borrowing equilibrium; in fact, it may eliminate the saving equi-
librium and select the borrowing equilibrium. �e saving equilibrium requires a steep gradient
in prices across the domain of debt to incentivize saving (or prevent dilution). A price �oor that
extends across a wide range of debt levels eliminates this important feature of the saving equi-
librium. A more e�ective policy to prevent borrowing would be to either limit debt explicitly or
promise a price �oor conditional on remaining within an exogenous bound on debt that is strictly
tighter than the equilibrium debt limit. Such a policy would select the saving equilibrium and not
require on-equilibrium resources. However, as with the lender of last resort, o�-equilibrium cred-
ibility is key. �e failure of such explicit debt limits in Europe (and traditional conditionality of
the IMF) suggests that such credibility is di�cult to establish in practice.4

�e recent literature exploring multiplicity has built on two canonical frameworks, namely,
the works of Calvo (1988) and Cole and Kehoe (2000). �e Calvo multiplicity arises due to the

4Bocola and Dovis (2016) explore the e�cacy of a price �oor in a quantitative model of the European debt crisis.
�e policy they consider to rule out rollover crises similarly imposes a price �oor combined with a debt limit.
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feedback of prices to the budget set. �is is easiest to see in a framework in which the government
is forced to raise a certain amount of revenue from a bond auction. A low price (or high spread) for
bonds forces the government to issue a greater quantity of debt in terms of face value. �is raises
the debt payments going forward, increasing the incentive to default and therefore supporting
the low price at auction. Conversely, a high price requires lower debt payments and thus may
also be an equilibrium. Calvo-style multiplicity is studied in dynamic se�ings by Lorenzoni and
Werning (2013) and Ayres, Navarro, Nicolini and Teles (2015). Lorenzoni and Werning provide
an antecedent to our paper by analyzing the role of long-term bonds in Calvo-style multiplicity.

�e multiplicity we study di�ers from the Calvo literature in that the crucial element is what
price will prevail if the government were to save versus borrow. �at is, what incentives are
present in the slope of the price schedule as a function of debt. If the government saves, does it
anticipate rolling over its debt at low or high prices, shi�ing the emphasis from current prices as
in Calvo to how prices vary across the entire state space of debt.

�e Cole-Kehoe multiplicity is a “static” multiplicity. Speci�cally, holding future equilibrium
behavior constant, the market clearing price for bonds is not determined. A high price for bonds
allows the government to roll over its maturing debt. However, a zero price forces the gov-
ernment to repay all maturing bonds out of current endowment, making default optimal.5 �is
type of multiplicity has been extended recently by Aguiar, Cha�erjee, Cole and Stangebye (2017)
and explored quantitatively by Bocola and Dovis (2016). In our framework, the multiplicity is
inherently dynamic in that future expectations over future equilibrium behavior are crucial in
supporting the alternative equilibria. �e Cole-Kehoe multiplicity emphasizes the vulnerability
of short-maturity bonds to crises and favors lengthening maturity to avoid self-ful�lling crises.
Our analysis shows that such lengthening opens up the economy to both ine�ciencies and a new
form of multiplicity.

A recent pair of papers, Stangebye (2015) and Stangebye (2018), shares our interest in mul-
tiplicity in a Eaton-Gersovitz framework. Stangebye computationally constructs a version in
which there is a unique Markov equilibrium. However, he shows that introducing a sunspot may
lead to self-ful�lling “panics.” Our discussion is restricted to Markovian equilibria. Moreover,
our analysis highlights how beliefs determine the dominant factor among the competing forces
of incentives to dilute versus the potential e�ciency properties of rolling over maturing bonds.
Nevertheless, given the common structure, there are many points of overlap in the nature of the
multiplicity studied in the two independent papers, and we view our analysis as complementary

5A related point on the possibility of a liquidity crisis in sovereign debt markets had been made by Sachs (1984)
in a model with bank lending. Defaulting because of the inability to roll-over maturing debt generates coordination
failures on the lenders side. Detragiache (1996) presents a related analysis of how investment can also generate
multiple equilibria. In both of these papers, the multiplicity arises even with �nite horizons.
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to Stangebye’s.
�e rest of the paper is as follows: Section 2 lays out our benchmark analytical model; Section

3 discusses e�cient allocations from a benchmark planning problem; Section 4 contains the main
analysis of the alternative equilibria; Section 5 discusses the role of maturity in generating mul-
tiplicity; Section 6 explores how commonly proposed third-party policies may or may not select
a particular equilibrium; and Section 7 concludes.

2 Environment

We study an in�nite-horizon small open economy. Time is continuous and indexed by t . �e
economy receives a constant �ow endowment y. Consumption and savings decisions for the
economy are made by a government. �e government has access to a non-contingent bond that
it trades with atomistic, risk-neutral lenders. �e lenders discount at the world risk-free interest
rate R = (1 + r ). �e small open economy assumption implies that R is invariant to the govern-
ment’s borrowing or default decisions. Lenders are risk-neutral, atomistic, and have su�cient
wealth as a group to hold an arbitrary quantity of bonds.

�e asset space is restricted to a single type of bond. To incorporate maturity in a tractable
manner, we follow Leland (1994), Hatchondo and Martinez (2009), and Cha�erjee and Eyigungor
(2012) by considering random maturity bonds. A bond matures with a constant hazard rate δ ,
at which point a payment of 1 is required. More precisely, consider an interval of time ∆t . �e
probability that an individual bond has not matured by the end of the interval is e−δ∆t . We as-
sume that bonds mature independently. Appealing to a law of large numbers, this implies that
a deterministic fraction δ of any non-degenerate portfolio of bonds matures each instant. �e
expected life span of a bond is 1/δ ; hence, δ is a measure of (inverse) expected maturity. �e
advantage of this formulation is that all bonds that have yet to mature are identical; in particular,
they all have the same expected maturity going forward regardless of when they were issued.

We normalize the coupon of a bond to be the risk-free rate r . �at is, a bond pays a �ow coupon
r each instant through maturity. �is implies that a risk-free bond has price 1 in equilibrium,
which serves as the upper bound on the price of the sovereign’s bond.

If the government misses a coupon or principal payment, it is in default. As in Aguiar et al.
(2018), the value of default is a random variable and captures any punishment that can be imposed
by creditors, including lost endowment, as well as any utility costs (or bene�ts) to the government
from defaulting. Changes in the value of default represent the source of risk to creditors in our
analysis.

Speci�cally, let N (t) denote a Poisson counting process with intensity λ.6 For a given path
6�at is, N (t) has independent increments, and in any interval [t , t +s), the random increment N (t +s)−N (t) ≥ 0
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N (t), letV D(t) be the associated time-path of the value of default. In particular,V D(t) = V for all
t except where N (t) is discontinuous; and, at points of discontinuity, V D(t) = V > V .

In words, the government almost always has the option to default and receive a payo� of
V D(t) = V . With constant arrival probability λ, this default value temporarily increases toV D(t) =
V > V . �e higher value represents an opportunity to default with lower consequences for
punishment. If the government does not exercise this high default value option when it arrives,
the default value returns to V until the next arrival of V .

To de�ne preferences, let c = {c(t)}t≥0 denote a deterministic consumption stream that char-
acterizes the government’s consumption until default.7 We assume linear �ow utility, u(c) = c .
�is allows an explicit characterization of the equilibrium objects while incorporating key eco-
nomic forces that are robust to curvature in utility. Consumption at each point in time is restricted
to lie in the interval [C,C]. Let C denote the space of consumption sequences with c(t) ∈ [C,C]
for all t .8

Given a consumption sequence c, we de�ne the government’s expected value. Let T denote
the time at which the government defaults, if ever, at the low outside default value. �e value to
the government of a consumption sequence c, V (t , c), is recursively de�ned by:

V (t , c) = sup
T≥t

{[ ∫ T

t
e−ρ(s−t)c(s)ds + e−ρ(T−t)V

]
e−λ(T−t)+∫ T

t

[ ∫ s

t
e−ρ(τ−t)c(τ )dτ + e−ρ(s−t)max〈V (s, c),V 〉

]
λe−λ(s−t)ds

}
= sup

T≥t

{ ∫ T

t
e−(ρ+λ)(s−t)c(s)ds + e−(ρ+λ)(T−t)V+ (1)

λ

∫ T

t
e−(ρ+λ)(s−t)max〈V (s, c),V 〉ds

}
.

�e �rst line is the value absent the arrival of the high default outside option, where the prob-
ability that T is reached before the �rst arrival of the high outside option is e−λ(T−t). �e inner
integral in the second term is the value conditional on the high outside option arriving at time
s < T , which is then integrated over all possible s ∈ [t ,T ). �e second equality follows from
straightforward integration. Standard methods verify that there is a unique bounded �xed point
V that satis�es (1) given c. From (1), we have immediately that V (t , c) ≥ V for all t and c, as
T = t is always an option.

is a Poisson random variable with parameter λs .
7�e fact that c(t) is not indexed to N (t), that is, the realization ofV D , anticipates the fact that without contingent

bonds, consumption will be deterministic conditional on no default.
8Given our restriction that c ∈ [C,C], it would be equivalent to de�ne u for the entire real line but set u(c) = C

for c ≥ C and u(c) = −∞ for c ≤ C .
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We make the following assumptions on the primitives of the environment:

Assumption 1. (i) ρ ≥ r ; (ii) y ≥ ρV ; (iii) C > y; (iv) C < (ρ + λ)V − λV .

�e �rst item ensures that the government is relatively impatient (as compared to the market
interest rate) and does not accumulate in�nite assets. �e second states that consuming the en-
dowment forever is weakly greater than the high default value. If V were strictly greater than
this value, the government may prefer default to holding a small amount of assets. Wheny > ρV ,
there is a deadweight loss in default; in particular, from the lenders’ perspective, all debt is zeroed
out once default occurs, but the government receives a value that is strictly less than full debt
forgiveness. In the original Eaton and Gersovitz (1981), this di�erence re�ected the loss of insur-
ance. In the recent quantitative literature starting with Aguiar and Gopinath (2006) and Arellano
(2008), an additional endowment cost is imposed during default. In the current environment, the
gap y − ρV makes default ine�cient (in terms of joint borrower-lender surplus) and will play
an important role in equilibrium debt dynamics. �e third condition ensures that consuming the
endowment is always feasible. �e �nal condition guarantees that it is feasible to deliver the low
default value to the government without imposing an immediate default.

Some of the assumptions above were made to obtain tractability. However, the underlying
economics are robust to the inclusion of endowment risk, concave utility, and discrete time. We
have constructed numerical examples of the multiplicity studied below in these extended envi-
ronments.

3 Constrained E�cient Allocations

We �rst study an e�cient allocation that maximizes the joint surplus between a risk-neutral
lender and the government subject to the government’s lack of commitment to repay. �e e�cient
allocations provide a useful benchmark to understand the competitive equilibria studied in the
next section.

Consider a Pareto planning problem that maximizes the expected payments to a risk-neutral
lender conditional on delivering a value weakly greater thanv to the government. As in Aguiar et
al. (2018), the planning problem chooses a consumption stream c, but the planner cannot prevent
the government from defaulting when the government �nds it optimal to do so. In particular,
for consumption sequence c, the government’s value is de�ned by (1). When the government is
indi�erent to default or continuing, the planner can break the tie.

Given an allocation c and time T that maximizes (1) at time t = 0, the expected payments to
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the lender can be de�ned as:

P(c,T ) =
∫ T

0
e−

∫ t
0 r+1[V (s,c)<V ]λds[y − c(t)]dt , (2)

where 1[x] is an indicator function that takes value one if x is true and zero otherwise. �e inte-
grand represents the �ow payments to the lender, which are discounted by r and the probability
of default prior to period T . Here we have incorporated that the government does not default
when indi�erent upon the arrival of the high default value, which is without loss given that we
will focus on Pareto e�cient allocations.

De�nition 1. An allocation {c,T } is e�cient ifT maximizes (1) at t = 0 given c, and if there is no
alternative allocation (c̃, T̃ ) such that V (0, c̃) ≥ V (0, c) and P(c̃, T̃ ) ≥ P(c,T ), with one inequality
strict.

Toward characterizing e�cient allocations, we de�ne the following planning problem:

P?(v) = sup
c∈C,T≥0

P(c,T ) (3)

subject to

V (0, c) = v

T maximizes (1) at t = 0.

We de�ne P? on the domain v ∈ [V ,Vmax ] ≡ V. It is infeasible to deliver v < V . It is also
infeasible to deliver higher value thanC/ρ, and we assumeVmax < C/ρ.9 Note that if P? is strictly
decreasing, it characterizes the Pareto frontier. In what follows, we assume C is su�ciently low
to guarantee that P? is strictly decreasing.10

�e �rst result states that we can restrict a�ention to allocations in which default occurs only
if V D(t) = V :

Lemma 1. It is weakly optimal in problem (3) to default only ifV D(t) = V . �at is, in any e�cient
allocation, T = ∞.

�is lemma allows us to substitute T = ∞ in (3). �e value function P?(v) has the following
standard properties:

9�e fact that Vmax is strictly less than C/ρ ensures that the planner can set Ûv < 0 at the upper bound of the
domain, a controllability requirement used in some of our proofs.

10�e reason why P?(v) may not be decreasing is that the threat of default is so severe that the planner would
rather “forgive debt” by raising v to v ′ > v(0) instantaneously at t = 0 without compensating lenders. If C is
su�ciently low, forgiveness is dominated by se�ing c = C until v(t) = v ′. As C → −∞, this approximates a lump-
sum payment at t = 0, which allows the planner to movev arbitrarily fast relative to the �rst arrival ofV . Speci�cally,
limC→−∞(P?(v) − P?(v ′)) ≥ v ′ −v .
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Lemma 2. �e solution to the planner’s problem, P?(v), is bounded and Lipschitz continuous.

To solve problem (3), we appeal to standard recursive techniques and study the following
Hamilton-Jacobi-Bellman (HJB) equation:

(r + 1[v<V ]λ)P
?(v) = sup

c∈[C,C]

{
y − c + P?′(v) Ûv

}
, (P)

subject to

Ûv = −c + ρv − 1[v<V ]λ
[
V −v

]
(4)

and the state-space constraint v ∈ V.
Lemma 2 states that P? is bounded and Lipschitz continuous, and hence di�erentiable almost

everywhere. However, there may be isolated points of non-di�erentiability. At such points, P?

satis�es (P) in the viscosity sense. In particular:

Proposition 1. Suppose a bounded, Lipschitz continuous function p(v) with domain V has the
following properties:

(i) p satis�es (P) at all points of di�erentiability;

(ii) If limv↑V p
′(v) > limv↓V p

′(v) and limv↑V p
′(v) ≥ −1, then p(V ) = (y − ρV )/r ;

(iii) At a point of non-di�erentiability ṽ , V , we have limv↑ṽ p
′(v) < limv↓ṽ p

′(v);

(iv) If p′(V ) < −1, then p(V ) = (y − ρV + λ(V −V ))/(r + λ);11 and

(v) p′(Vmax ) ≤ −1;

then p(v) = P?(v).

�e �rst condition of the proposition ensures that the candidate value function satis�es the
HJB wherever it is smooth. �e second condition concerns the case when V is a locally stable
stationary point; this will be relevant when we consider an e�cient “saving allocation” de�ned
below. �e third condition states that any other point of non-di�erentiability has a “convex” kink.
�e �nal two conditions are su�cient to ensure that v remains in V.

Problem (P) implies that we can divide the state space into two regions. Forv ∈ [V ,V ), default
occurs with probability λ. Following Cole and Kehoe (2000), we refer to this subset of the domain
as the Crisis Zone. For v ∈ [V ,Vmax ], default does not occur even if the high outside default value
is available. We refer to this subset as the Safe Zone.

11For the endpoints of V, we interpret p ′(V ) ≡ limv↓V p ′(v) and p ′(Vmax ) ≡ limv↑Vmax p
′(v).
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Let C?(v) denote an optimal policy associated with the recursive formulation. From (P), the
�rst-order condition for an interior consumption is

P?′(v) = −1. (5)

If this condition holds, the planner is indi�erent over c ∈ [C,C]. If P?′(v) < −1, then C?(v) = C

is strictly optimal, and C?(v) = C is optimal for P?′(v) > −1.12

To characterize Pareto e�cient allocations, we proceed in steps: we conjecture a candidate
e�cient allocation; we solve (P) under this conjecture; and then we verify if and when the can-
didate allocation satis�es the optimality conditions set out in Proposition 1. Our conjectures are
guided by the two competing forces driving debt dynamics; namely, relative impatience favors
debt accumulation, while the costs of default favor debt reduction. �e next two subsections de-
rive solutions assuming that the borrowing and saving forces dominate, respectively. With the
solutions in hand, we verify under what parameter con�gurations they solve the Pareto problem.
We also verify that there are no parameter con�gurations for which neither the borrowing nor
the saving solution is valid.

3.1 E�cient Borrowing Allocations

We �rst conjecture that the borrowing incentive dominates. Given the linearity of utility, a rea-
sonable conjecture is that consumption is at the upper bound until v reachesV . In particular, we
de�ne

C?B (v) ≡

C for v ∈ (V ,V ]

(ρ + λ)V − λV for v = V .

�is sets consumption at its maximum possible level, C , for the entire state space except at
the lowest possible value V . �is implies Ûv < 0 for v > V . At v = V , the value cannot be further
reduced given the government’s option to default. Hence, consumption is set to deliver Ûv = 0.
From equation (4), Ûv = 0 at V implies that c = (ρ + λ)V − λV .

With the conjectured consumption policy function in hand, we solve (P), using consumption
at V to pin down the boundary condition P?(V ). In particular, we de�ne

12 Note that a necessary condition for optimality in Problem (P) is that the value function is weakly higher than
the value generated by a stationary policy:

P?(v) ≥
y − ρv + 1[v<V ]λ(V −v)

r + 1[v<V ]λ
.

�is is implied by the �rst-order condition.
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(i) For v ∈ [V ,V ]:

P?B (v) ≡
1

r + λ

[
y −C + (C + λV − (ρ + λ)v)

r+λ
ρ+λ

(C + λV − (ρ + λ)V )
r−ρ
ρ+λ

]
.

(ii) For v ∈ (V ,Vmax ]:

P?B (v) ≡
1
r

[
y −C + (C − y + rP?B (V ))

(C − ρv)
r
ρ

(C − ρV )
r
ρ

]
.

Remark 1. To gain some insight into these expressions, let us take the limit asC becomes arbitrarily
large. In this case, for any v ,

lim
C→∞

P?B (v) = P?B (V ) − (v −V ), (6)

where P?B (V ) = (y − (ρ + λ)V + λV )/(r + λ) for all C . Expression (6) states that the payment
to the lenders is the maximal incentive-compatible payment minus a lump sum consumed by the
government in the initial period. �is limiting result holds over the entire domain of v , as C → ∞,
the implied dynamics become in�nitely fast, and whether the initial state is in the Safe Zone or the
Crisis Zone becomes irrelevant.

For P?B to be a solution to the planning problem requires P?′B (v) ≤ −1 for v > V at points of
di�erentiability. For v ∈ [V ,V ), we immediately have P?′B (v) ≤ −1. For v ∈ (V ,Vmax ], note that
P?B is strictly concave. �erefore, it su�ces to check the �rst-order condition at v ↓ V . �is turns
out to be the same condition as P?B (V ) ≥ (y − ρV )/r . Summarizing:

Proposition 2. P?B is a solution to the planning problem if and only if

rP?B (V ) ≥ y − ρV . (7)

�is condition has the following interpretation: it is e�cient to borrow into the Crisis Zone
rather than remain in the Safe Zone inde�nitely. �e le�-hand side is the annuitized value of
the objective from borrowing into the Crisis Zone. �e right-hand side is the net payments to
the lender from se�ing Ûv = 0 at the boundary of the Safe Zone. �e decision of whether to
exit the Safe Zone is the crucial question given the ine�ciencies associated with default, and the
proposition states that this is the only restriction on parameter values that needs to be checked
to verify that the borrowing allocation is e�cient.
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To interpret this condition, consider the two forces identi�ed above: relative impatience and
the deadweight costs of default. �e right-hand side of (7) represents the deadweight costs of
default. �e larger this is, the more costly it is to enter the Crisis Zone and the more stringent
this condition.

To see the role of impatience, the le�-hand side captures the value of delivering utility to
the government by front-loading consumption. Moreover, when ρ = r , we have P?B (V ) = (y −
ρV )/(r + λ). Hence, condition (7) cannot be satis�ed if both r = ρ and y > ρV , that is, if there is
a deadweight cost to default and the government is not impatient.

Finally, note that P?B (v) is strictly decreasing for v ∈ [V ,Vmax ]. As a result, P?B traces out
the Pareto frontier when the borrowing allocation is e�cient. It will be useful when studying
the competitive equilibria to consider the inverse of P?B , which we denote V?B . �e function V?B
maps the present value of promised payments to the lender into the government’s value under
the borrowing allocation. For reference:

V?B (p) =


1
ρ

(
C − (C − ρV )

(
C−y+rp
C−y+rPB

) ρ
r
)

for p ∈ (−a, PB]

1
ρ+λ

(
C + λV − (C−y+(r+λ)p)

ρ+λ
r+λ

(C−y+(r+λ)PB)
ρ−r
r+λ

)
for p ∈ (PB, PB],

(8)

where a ≡ (C − y)/r is the maximal net in�ows that can be consumed by the government; PB ≡
P?B (V ) is the threshold of the Safe Zone; and PB ≡ P?B (V ) is the maximal value that can be extracted
from the government in a borrowing allocation.

For reference, we repeat Proposition 2 using the inverse notation:

Corollary 1. P?B is a solution to the planning problem if and only if

V ≤ V?B

(
y − ρV

r

)
. (9)

�e le�-hand side is the government’s value at the Safe Zone threshold. �e right-hand side
is the value of the government when it promises to pay lenders (y − ρV )/r in expected value.
One way to deliver this is to pay y − ρV each period inde�nitely. �is implies the government’s
consumption is ρV , which delivers value V , making this allocation compatible with no default.
�e corollary states that the planner can do weakly be�er than this by borrowing into the Crisis
Zone.
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3.2 E�cient Saving Allocations

An alternative to borrowing into the Crisis Zone is to save into the Safe Zone. �is allocation
favors reducing the probability of default over the relative impatience of the government.

We start then by conjecturing that the Safe Zone is an absorbing state. In particular, for the
Safe Zone, we let consumption be

C?S (v) ≡

C if v ∈ (V ,C/ρ)

ρV if v = V .
(10)

�is implies that in the interior of the Safe Zone, the government receives the maximal consump-
tion. However, at the boundary, the government receives the consumption that sets Ûv = 0, and
hence v never transits from the Safe Zone into the Crisis Zone.

Substituting this consumption policy into (P), and using the boundary condition P?S (V ) =
(y − ρV )/r , we obtain that P?S is

P?S (v) ≡
1
r

[
y −C +

(
C − ρV

) ρ−r
ρ

(
C − ρv

) r
ρ
]

for v ∈ [V ,Vmax ]. (11)

For the Crisis Zone, the planner decides between saving toward the Safe Zone or remaining
in the Crisis Zone. We denote the former scenario with a “hat.” In particular, the linearity of the
problem leads us to conjecture that if saving is e�cient, consumption will be at its lower bound.
�us, we de�ne

Ĉ(v) ≡ C for v ∈ [V ,V ). (12)

�e associated value from this policy is obtained by solving (P) using P?S (V ) as a boundary con-
dition:

P̂(v) ≡ 1
r + λ

y −C + (C − y + (r + λ)P?S (V ))
(
C + λV − (ρ + λ)v

C − ρV

) r+λ
ρ+λ  . (13)

Remark 2. To gain some insight into the above expression, we take the limit as C → −∞. In this
case, the dynamics in the saving allocation become arbitrarily fast and

lim
C→−∞

P̂(v) = P?S (V ) +V −v . (14)

�at is, the conjectured allocation calls for an initial lump sum payment by the government that is
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su�cient to reach the boundary of the Safe Zone immediately.

�e value from saving into the Safe Zone is one building block of the e�cient saving alloca-
tion. However, the planner may �nd it optimal to abandon the savings strategy in the Crisis Zone
and instead pursue the borrowing one. As a result, our conjectured value function in the Crisis
Zone is the upper envelope of the savings and the borrowing conjectures:13

P?S (v) ≡ max〈P̂(v), P?B (v)〉 for v ∈ [V ,V ). (15)

Using the expressions above, it is possible to show that P̂ and P?B cross at most once for v ∈
[V ,V ]. We denote by vI ∈ [V ,V ] such a crossing point and set vI = V if they do not cross. �e
pointvI has a particular interpretation: the planner is indi�erent between saving out of the Crisis
Zone versus remaining in the Crisis Zone inde�nitely at that point. For values of v above vI , the
planner �nds it optimal to save, while for values belowvI , the planner �nds it optimal to borrow.
With this result in hand, we can complete the characterization of the policy function by se�ing

C?S (v) ≡

C if v ∈ [vI ,V )

C?B (v) if v ∈ [V ,vI ).
(16)

We now verify under what conditions P?S solves the planning problem. Condition (ii) of Propo-
sition 1 is relevant in this case, as V is a locally stable stationary point. �e crucial condition is
whether at the boundary of the Safe Zone, the objective is maximized by staying put versus bor-
rowing to the upper bound. �e following is proved in Appendix B:

Proposition 3. P?S is a solution to the planning problem if and only if

rP?S (V ) = y − ρV ≥ rP?B (V ). (17)

Note that this condition is the mirror image of Proposition 2, which established the e�ciency of
the borrowing allocation. Summarizing the results of the previous two subsections, we have that
e�ciency is characterized by a simple condition:

Corollary 2. �e borrowing allocation is e�cient if and only if P?B (V ) ≥ (y−ρV )/r , and the saving
allocation is e�cient if and only if P?B (V ) ≤ (y − ρV )/r .

13�e Cole-Kehoe model also features a savings and a borrowing region within the Crisis Zone (for certain pa-
rameter values) when the government is impatient. See, for example, Cole and Kehoe (1996), Figure 2.
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For reference, we provide the expression for the inverse of P?S :

V?S (p) =



ρ−1

(
C − (C − ρV )

(
C−y+rp
C−y+rPS

) ρ
r
)

for p ∈ (−a, PS ]

(ρ + λ)−1 ©«C + λV + (ρV −C)
(
y−(r+λ)p−C
ρV−λPS−C

) ρ+λ
r+λ ª®¬ for p ∈ (PS ,pI ]

V?B (p) for p ∈ (pI , PS ],

(18)

where PS ≡ (y − ρV )/r = P?S (V ); PS ≡ P?S (V ); and pI ≡ P?S (vI ).

4 Competitive Equilibria

We now discuss competitive equilibria, and, as we will see, the e�cient allocations provide a
useful benchmark in the characterization. Recall that we de�ne V?B and V?S in equations (8) and
(18) to be the inverses of P?B and P?S , respectively. Keep in mind that the domain of V? is the
expected promised value to the lender, without a notion of maturity or face value.

For the competitive equilibrium, recall that we restrict a�ention to non-contingent bonds with
random maturity. Speci�cally, a bond is a promise to pay a coupon normalized to the risk-free
rate r until the bond matures, which occurs with probability δdt over a vanishingly small interval
of time dt .

We consider Markov equilibria. �e payo� relevant states are the face value of debt b and
default payo� V D . Recall that the high default payo� state is only relevant if the government
exercises the option to default; otherwise, the low default payo� state resumes. �erefore, we
subsume the notation for the default payo� state V D = V when de�ning prices and values con-
ditional on repayment.

4.1 �e Government’s Problem

LetV (b) denote the government’s equilibrium value of repayment given the face value of debt b.
Strategic default implies repayment if V (b) ≥ V D , and default otherwise.

Parallel to the analysis of Section 3, it is useful to split the state space into two regions. Given
an equilibrium value V , we de�ne the following: the Safe Zone is b ∈ [−a,b] where b satis�es
V (b) = V and recall that a ≡ (C − y)/r is the upper bound on assets that can be consumed; and
the Crisis Zone is b ∈ (b,b], where b satis�es V (b) = V . In each of the equilibria we study, we
will establish the existence of the thresholds. As in the preceding analysis, the Safe Zone is the
space of debt (and assets) such that the government will not default if the high default payo�
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state arrives. However, the government may default at some point in the future. �e Crisis Zone
is the space of debt such that the government will default upon the arrival of V D = V . For
b > b, the debt level is so high that, if the initial state is in this region, the government defaults
immediately regardless of the payo� state. �is region is beyond the endogenous borrowing limit
and will never be reached from below in equilibrium. We denote the relevant debt state space in
a competitive equilibrium byB ≡ [−a,b].

To characterize the government’s problem, assume that the government faces an equilibrium
price schedule q : B → [q, 1], where q > 0 is de�ned below. At each point in time, the govern-
ment chooses consumption as well as decides whether to pay its debt obligations or default a�er
observing the realized V D . Given consumption c , the government’s debt evolves according to

q(b)[ Ûb + δb] = c + (r + δ )b − y, (19)

where Ûb denotes the derivative of debt with respect to time. �e le�-hand side represents revenue
from bond auctions, where the term in brackets is the change in the face value of debt plus the
fraction of debt that matured, which is net new issuances. �e terms on the right represent
consumption plus payments of interest and principal minus income.

It may be the case that q(b) is discontinuous at some debt level b0. �is will occur when
the government is indi�erent between borrowing or saving. When indi�erent, we break the tie
by having the government save, which implies that the equilibrium price at b0 is the highest of
the prices consistent with the two possible strategies. For technical reasons, we place one more
constraint on debt issuance policies around points of price discontinuity. We impose that for an
arbitrarily small neighborhood around b0, debt buybacks occur at price approaching q(b0). �e
speci�cs are spelled out in Appendix B.5. Debt buybacks occur when Ûb < −δb, that is, when
debt decreases faster than existing debt matures. Imposing that buybacks occur at the higher of
the two prices around the discontinuity allows us to apply recent results in optimal control with
discontinuous dynamics. Note that this condition is imposed only around points of discontinuity
in the price schedule and for an arbitrarily small interval around them. We �ag when we use this
restriction in footnotes 17 and 21. In what follows, we suppress this constraint in the notation
for the government’s HJB equation.

We prove in Appendix Lemma A.1 that the government’s value function, V , is strictly de-
creasing and Lipschitz continuous. In addition, it is the unique, bounded, continuous solution to
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the following HJB equation onB, given a price schedule q:

(ρ + Λ(b))V (b) = max
c∈[C,C]

c +V ′(b)
(
c + (r + δ )b − y

q(b) − δb
)

︸                        ︷︷                        ︸
Ûb

+Λ(b)V , (20)

where

Λ(b) = λ1[V (b)<V ]. (21)

More precisely, as in the planning problem, V (b) satis�es (20) in the viscosity sense. �e coun-
terpart to Proposition 1 for the government’s problem is:

Proposition 4. Consider the government’s problem given a compact debt domain B and a price
schedule q : B → [q, 1] that has a (bounded) derivative at almost all points in B. If a strictly
decreasing, Lipschitz continuous function v : B → [V ,C/ρ] has the following properties:

(i) v satis�es (20) at all points of di�erentiability;

(ii) If limb↑b v
′(b) > limb↓b v

′(b), then ρv(b) = ρV = y − [r + δ (1 − q(b))]b;

(iii) At a point of non-di�erentiability b̃ , b, we have limb↑b̃ v
′(b) < limb↓b̃ v

′(b);

(iv) ρv(−a) = C ; and

(v) (ρ + λ)v(b) = y − [r + δ (1 − q(b))]b + λV ;

then v(b) = V (b) is the government’s value function.

�e conditions listed in the proposition are similar to those from Proposition 1. Namely, that
the value function satis�es the HJB equation with equality wherever smooth; there may be a local
a�ractor that corresponds to b if the government saves; other points of non-di�erentiability have
convex kinks; and the endpoints of the domain deliver the value of holding debt constant.14

4.2 �e Lenders’ Problem

�e equilibrium condition from the lenders’ problem is that lenders must be indi�erent to pur-
chasing the government’s bonds versus holding risk-free assets that return R. We consider b ≤ 0
to represent risk-free assets held abroad that have a price of one. For b > 0, b represents the lia-
bilities of the government. To price debt in equilibrium, consider starting from a debt level b > 0,

14Condition (v), at b, is stronger than necessary, as the key requirement is that Ûb ≤ 0 at the upper bound on debt;
however, in the equilibria described below, the stronger condition is always satis�ed.
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and using the government’s policy C(b) and the budget constraint (19) to derive the equilibrium
path of debt going forward, b(t). �e present value “break-even” bond pricing equation for the
lender is

q(b) =
∫ ∞

0
e−(r+δ )t−

∫ t
0 Λ(b(s))ds(r + δ )dt . (22)

�e integrand is the coupon payment r plus principal δ . �e discount factor is the interest rate
r plus the rate at which bonds mature δ plus a further discount to re�ect the default survival
probability.

4.3 De�nition of Equilibrium

We are ready to de�ne an equilibrium:

De�nition 2. An equilibrium consists of a compact domain B and functions of debt, {q,V ,C},
such that: (i) given the government’s consumption policy C and strategic default, lenders break even
in expectation at prices q; (ii) given a price schedule q, the government’s maximal value conditional
on repayment is V (b), which is achieved by consuming C(b) ∈ [C,C]; and (iii) for b ∈ B = [−a,b],
V (b) ≥ V , with V (b) = V .

In the de�nition of equilibria, we require that V (b) = V . �at is, b represents the maximal
endogenous borrowing limit. We do this to eliminate the possibility of generating equilibria that
depend on ad hoc borrowing limits.

Note that b is the face value of debt, which de�nes the government’s promised payments
absent default. �e expected present value of payments in equilibrium is the market value of
debt: q(b)b. �is distinction is useful to bear in mind when comparing competitive equilibria to
the Pareto problem studied in Section 3.

Mirroring the analysis of e�cient allocations, we focus on two types of equilibria. In a bor-
rowing equilibrium, the government borrows up to its borrowing limit b regardless of initial con-
ditions. In particular, if the government starts in the Safe Zone (or with assets), it borrows into
the Crisis Zone and eventually defaults. In a saving equilibrium, the Safe Zone is an absorbing
state.15

15In Appendix A, we discuss a third type of Markov equilibrium, which we denote a hybrid equilibrium because it
combines features of both the saving and borrowing equilibria. Given the multiplicity we discuss below, one could
also construct sunspot equilibria.
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4.4 �e Borrowing Equilibrium

We denote equilibrium objects in the borrowing equilibrium with the subscriptB; that is,CB,VB,qB

are the consumption, value, and price functions, respectively. Similarly, let bB denote the thresh-
old between the Safe and Crisis Zones, and bB the endogenous upper bound on debt.

We �rst state the conjectured borrowing equilibrium and then discuss when it satis�es the
equilibrium conditions. In the borrowing equilibrium, we conjecture that the government bor-
rows to its endogenous debt limit. Given the linearity of preferences and weak impatience, a
reasonable conjecture is that the government consumes at its upper bound until b = bB . At the
debt limit, the government pays coupons and rolls over maturing bonds until the �rst arrival of
V , at which point it defaults.

Although the borrowing limit is yet to be solved for, we can exploit the analysis of the e�cient
borrowing allocation to pin down consumption at the limit. Speci�cally, recall that C?B (V ) is the
consumption level that delivers value V conditional on default when V �rst arrives. Hence, we
de�ne

CB(b) ≡

C if b ∈ [−a,bB)

C?B (V ) if b = bB .
(23)

To complete the de�nition of CB , we need to derive bB . We �rst de�ne

q ≡ r + δ

r + δ + λ
. (24)

�is is the break-even price assuming that the government always defaults on the �rst arrival of
V D = V .

At bB , our conjecture is that debt remains constant. From equation (19), the consumption that
sets Ûb = 0 at bB is

CB(bB) = y − (r + δ )bB + δqbB . (25)

Se�ing this equal to C?B (V ) and rearranging, we have

bB ≡ P?B (V )/q. (26)

�e right-hand side is the expected promised payments to the lenders at the e�cient borrow-
ing limit divided by the equilibrium price. �at is, the market value of debt in the borrowing
equilibrium at bB , qbB , equals the lender’s value in the e�cient borrowing equilibrium, P?B (V ).

�e parallelism between the equilibrium and e�cient allocation is intuitive in the borrowing
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scenario. In both allocations, the government consumes the maximal amount until it reaches the
indi�erence point between repaying and defaulting at value V .

In particular, given an equilibrium price schedule qB , we de�ne

VB(b) ≡ V?B (qB(b)b). (27)

�at is, the government’s value at b is the same as in the borrowing planning problem for the
associated market value of debt. �is equivalence follows from the fact that in both allocations,
the government consumesC until reaching the limit and thenC?B (V ) therea�er (until default). In
both cases, payments to lenders and default decisions are the same.

�is similarity may not be surprising: if the e�cient allocation has the government consum-
ing the maximum, this can be implemented in a Markovian equilibrium. However, the close
connection between the borrowing equilibrium and the e�cient borrowing allocation should not
be viewed as suggesting that there is no time consistency problem in the competitive equilib-
rium. It turns out that there is a major caveat: we show below that the borrowing equilibrium is
a competitive equilibrium even in cases when the borrowing allocation is not e�cient.

Given (23), we can solve for qB(b) using (22). As the Crisis Zone is an absorbing state in a
borrowing equilibrium, we immediately have the equilibrium price

qB(b) ≡ q for b ∈ [bB,bB], (28)

where we de�ne

bB ≡ P?B (V )/q. (29)

Given the price schedule in the Crisis Zone, we use (22) to extend qB into the Safe Zone. In
particular, se�ing Λ(b) = 0 in the safe zone, we di�erentiate (22) with respect to time to obtain16

ÛqB(b) = q′B(b) Ûb = (r + δ )qB(b) − (r + δ ). (30)

With the boundary condition qB(bB) = q, the solution to this �rst-order ordinary di�erential
equation (ODE) is de�ned implicitly by(

1 − qB(b)
1 − q

) r
r+δ

=
C − y + rqB(b)b
C − y + rqbB

. (31)

16Note that (22) evaluated at an arbitrary time t is q(b(t)) =
∫ ∞
t e−(r+δ )(s−t )−

∫ s
t Λ(b(τ)dτ [r + δ ]ds .
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For each b ∈ [0,bB), there is a unique solution for qB(b) ∈ [q, 1]. Recall that for b < 0, we have
qB(b) = 1 regardless of the government’s policies.17

Let BB ≡ [−a,bB]. �is completes our conjecture of the borrowing equilibrium, as we have
constructed conjectures for the domain, as well as for VB,CB , and qB .

Figure 1 depicts the equilibrium objects for a parameterized borrowing equilibrium. Panel
(a) depicts the value function. �e do�ed horizontal lines represent the two default values, V
and V . �e Safe Zone is demarcated by the vertical line at bB . By de�nition, VB(bB) = V at
this point. Similarly, the endogenous upper bound of debt, bB , occurs when VB(bB) intersects
V . For reference, the dashed line depicts the value of se�ing Ûb = 0, given the equilibrium price
schedule and the equilibrium default policy. �e stationary value has a discontinuity atbB because
defaulting when V arrives is strictly be�er than the stationary value. �e stationary value is the
same as the equilibrium value at the upper bound bB .

Panel (b) of Figure 1 depicts the price schedule. �e price is monotonically decreasing in the
Safe Zone and then is �at at q for b ∈ [bB,bB].

�e consumption policy function is depicted in Panel (c). For reference, the dashed line depicts
the stationary consumption level, given the equilibrium price schedule. Consumption is strictly
above the dashed benchmark until b = bB , at which point consumption drops to the stationary
level.

To verify when the conjectured borrowing equilibrium satis�es the equilibrium conditions,
we need to check that VB is a (viscosity) solution of (20). In this case, the important condition
is that starting from the Safe Zone, the government prefers to borrow into the Crisis Zone and
eventually default rather than remain in the Safe Zone. We have:

Proposition 5. �e conjectured borrowing equilibrium {CB,VB,qB,BB} is a competitive equilib-
rium if and only if

VB(b) ≥
y − [r + δ (1 − qB(b))]b

ρ
, for all b ∈ [0,bB]. (32)

�e right-hand side of (32) is the value of inde�nitely consuming the stationary level of con-
sumption at equilibrium prices. �us, borrowing into the Crisis Zone is an equilibrium outcome
if doing so dominates remaining in the Safe Zone.

Crucially, condition (32) is a weaker condition than for borrowing to be e�cient, condition
17 Note that there may be a discontinuity in qB at b = 0. Recall that at points of discontinuity, we impose that debt

buybacks occur at a price of one in the neighborhood around a discontinuity. �is restriction eliminates the technical
complication of the government a�empting to issue debt at one price and near-simultaneously repurchasing at a
lower price in an a�empt to exploit this discontinuity. �e restriction we impose ensures that the choice set is convex
despite the discontinuity in price, and hence the government has no motive to “mix” by moving consumption back
and forth while keeping debt at the point of discontinuity.
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Figure 1: Borrowing Equilibrium

(a) VB (b) qB

(c) CB
�e �gure depicts the value, price, and consumption functions in a borrowing equilibrium, respectively. �e equilib-
rium functions are represented by the bold solid blue lines. �e horizontal lines in the value function plots represent
the two default values. �e dashed line in the value function plots represents the stationary value function at the
corresponding equilibrium prices. �e dashed line in the consumption plots represents the level of consumption
associated with the stationary value. �e equilibrium is constructed with parameters r = 1, ρ = 2, y = 1, λ = 2,
δ = 10, C = 1.2, V = .8y/ρ, and V = .95y/ρ.
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Figure 2: Joint Surplus: Borrowing Equilibrium

�e �gure depicts the joint surplus in the borrowing equilibrium. �e solid line is a parametric
plot of (VB (b),qB (b)b) for b ∈ [0,bB ]. �e dashed reference line is P?(v) for v ∈ [V ,VB (0)].
�e parameters are the same as in Figure 1.

(9). As stated in footnote 12, and using that P = qB(b)b, a necessary condition for optimality in
the planning problem in the Safe Zone is that

VB(b) = V?B (qB(b)b) ≥
y − rqB(b)b

ρ
, for all b ∈ [0,bB]. (33)

Both equations (32) and (33) compare the value function to the value that would be generated
by keeping the level of debt constant. �e di�erence between equations is the price used to
compute this stationary value. In equation (32), the comparison uses the equilibrium prices. In
equation (33), the comparison uses the planner’s cost of rolling over the lender’s value, qB(b)b,
at risk-free prices (that is, at an implied interest rate of r ). Given that rqB(b)b ≤ rb ≤ [r +
δ (1−qB(b))]b, the competitive equilibrium thus imposes a weaker condition. Hence, e�ciency of
borrowing is a su�cient but not necessary condition for the borrowing equilibrium.

In Figure 2, we plot the market value of debt, qB(b)b, against the corresponding value for
the government, VB(b), using the same parameters as in Figure 1. Speci�cally, the solid line
in the �gure depicts the joint surplus between the lenders and the government in a competitive
equilibrium. �e dashed line is the e�cient frontier, which in this parameterization is the e�cient
saving value, P?S (v). �e e�cient borrowing value, P?B , is identical to the equilibrium frontier. �e
ine�ciency of the borrowing equilibrium re�ects that the government borrows in the competitive
equilibrium, while the planner would like to implement the saving allocation.

�e key di�erence between the e�ciency and equilibrium conditions is that in the la�er, the
government must pay a default premium re�ected in qB(b) < 1. �is di�erence stems from a
time consistency problem. In the planning problem, remaining in the Safe Zone is contemplated
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under the assumption of paying the lender a �ow r times the value of debt inde�nitely, which
corresponds to rolling over debt at the risk-free interest rate. As we are in the Safe Zone, this
is consistent with the government not defaulting. �is may not be a feasible option for the gov-
ernment in a competitive equilibrium. In the borrowing equilibrium, lenders expect that the
government in the future will borrow into the Crisis Zone and eventually default. If the govern-
ment were to remain in the Safe Zone today, because of these expectations with regard to its future
behavior, the price of the bonds would remain lower than one. Hence, it would nevertheless pay
a default premium, rolling debt over at a yield greater than r . �us, the crucial time consistency
problem in the borrowing equilibrium is the inability to credibly commit not to exit the Safe Zone
at some point in the future. �e link between creditor beliefs about future �scal policy and the
government’s best response to the resulting equilibrium price schedule will provide the source
of multiplicity discussed in the next section.

Maturity is at the heart of this time consistency problem. To see this, let us consider what
happens when δ →∞, that is, as the bonds mature instantaneously (the appropriate continuous
time analog of one-period debt). In the proof of the next proposition, we show that qB(b) → 1
and δ (1−qB(b)) → 0 for b ∈ [0,bB), as δ →∞. Hence, the equilibrium condition (32) and the ef-
�ciency condition (33) become identical.18 More generally, the proof of the following proposition
establishes that condition (32) becomes stronger as δ increases. Summarizing the above,

Proposition 6. �e following holds:

(i) If the borrowing allocation is e�cient, then the conjectured borrowing equilibrium is a compet-
itive equilibrium for any δ ;

(ii) If the borrowing equilibrium exists for δ0, then it exists for any δ ∈ [0,δ0]; and

(iii) If the borrowing allocation is not e�cient, then there exists a δ1 < ∞ such that the conjectured
borrowing equilibrium is not a competitive equilibrium for δ > δ1.

4.5 �e Saving Equilibrium

We now consider an alternative equilibrium that features saving out of the Crisis Zone. As in
the e�cient saving allocation, we conjecture that the Safe Zone is an absorbing state and the
Crisis Zone can potentially be divided into a saving region and a borrowing region. Let V?S de-
note the inverse of the e�cient saving solution, P?S . Let (−a,bS ] denote the Safe Zone, (bS ,bI ]
the saving region in the Crisis Zone, and (bI ,bS ] the borrowing region in the Crisis Zone. Let

18Note that δ has no e�ect on V?
B because the planning problem is independent of maturity. Even though bB is

a�ected by changes in δ , qB (bB )bB remains constant.
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{V̂ , Ĉ, q̂} denote the conjectured equilibrium objects in the saving region. We de�ne these ob-
jects below. �e functions {VB,qB,CB} correspond to the borrowing equilibrium de�ned in the
previous subsection.

�e conjecture for the saving equilibrium is

VS (b) ≡


V?S (b) for b ∈ [−a,bS ]

V̂ (b) for b ∈ (bS ,bI ]

VB(b) for b ∈ (bI ,bS ];

(34)

and

qS (b) ≡


1 for b ∈ [−a,bS ]

q̂(b) for b ∈ [bS ,bI ]

q for b ∈ (bI ,bS ];

(35)

and

CS (b) ≡


C?S (V?S (b)) for b ∈ [−a,bS ]

Ĉ(b) for b ∈ (bS ,bI ]

CB(b) for b ∈ (bI ,bS ].

(36)

�e equilibrium objects are depicted in Figure 3, which follows the layout of Figure 1.
�e Safe Zone is straightforward: because it is an absorbing region, there is no risk of default

starting from b ≤ bS . Hence, the price is one and the values and consumption are equivalent to
their e�cient counterparts. Similarly, the boundary of the Safe Zone parallels that of the planning
problem; that is, bS is the level of debt that delivers value V when debt is constant and the price
is one:

bS ≡ P?S (V ) =
y − ρV

r
. (37)

At the boundary of the Safe Zone, VS and CS equal the stationary values and consumption, re-
spectively.

�e borrowing region of the Crisis Zone is also an absorbing state and corresponds to the
equilibrium discussed in the previous subsection. Note that in this region, the price is q.

�e �nal step is to characterize the saving region of the Crisis Zone as well as the boundaries
{bI ,bS }. In the saving region, we have to deviate from the prescription of the e�cient allocation.
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Figure 3: Saving Equilibrium

(a) VS (b) qS

(c) CS
�e �gure depicts the value, price and consumption functions in a saving equilibrium, respectively. �e equilibrium
functions are represented by the bold solid blue lines. �e horizontal lines in Panel (a) represent the two default
values. �e dashed line in Panel (a) represents the stationary value function at the corresponding equilibrium prices.
�e dashed line in Panel (b) represents the level of consumption associated with the stationary value. �e equilibrium
is constructed with the same parameters as Figure 1: r = 1, ρ = 2, y = 1, λ = 2, δ = 10, C = 1.2, V = .8y/ρ, and
V = .95y/ρ. �e value of C is set low enough so that it never binds in equilibrium.
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�e reason is that the e�cient savings policy, which sets consumption at its lower bound C ,
cannot be sustained in a competitive equilibrium. �at is, the e�cient savings rate is not privately
optimal in an equilibrium with long-term bonds. We provide intuition for this result below.

We conjecture instead that the government saves by consuming at an interior optimum.19

When consumption is interior, the linearity of the government’s objective function in (20) implies
that it is indi�erent across alternative consumption choices, including the consumption level that
sets Ûb = 0. Hence, the government must be indi�erent between the equilibrium consumption
strategy and its associated stationary value:20

V̂ (b) ≡ y − [r + δ (1 − q̂(b))]b + λV
ρ + λ

. (38)

Interior consumption requires V̂ ′(b) = −q̂(b). Using this, di�erentiating (38), and solving the
resulting ODE with q̂(bS ) = 1 as a boundary condition yields

q̂(b) ≡
r + δ +

(
b
bS

)− ρ+λ+δδ (λ + ρ − r )

ρ + λ + δ
. (39)

�e lenders’ break-even condition (22) requires q̂′(b) Ûb = (r + δ + λ)q̂(b) − (r + δ ). Hence, we can
solve for the conjectured debt dynamics:

Ûb = −δb ©«
q̂(b) − q

q̂(b) − q + (ρ−r )q̂(b)r+δ+λ

ª®¬ ≡ f (b). (40)

Using (19), we obtain

Ĉ(b) ≡ y − [r + δ (1 − q̂(b))]b + q̂(b)f (b). (41)

In the Crisis Zone, VS (b) = max〈V̂ (b),VB(b)〉. As before, bI is the intersection point of these
two alternatives. If no such bI ∈ [bS ,bB] exists, we set it to bS . �e value of bS is such that
VS (bS ) = V , and we de�neBS ≡ (−a,bS ].21

19�roughout the following analysis, we assume C is su�ciently low that an interior consumption choice is fea-
sible.

20�e fact that the government’s value is equal to the stationary value while consumption is interior is discussed
in Tourre (2017) and DeMarzo, He and Tourre (2018). �e authors give an interpretation of a durable monopolist in
the spirit of the Coase conjecture.

21 If b I < bB , then qS is discontinuous at b I , which is the case depicted in Figure 3. As previously discussed when
stating the government’s problem, and echoed in footnote 17, we rule out the government issuing at qS (b I ) and then
immediately repurchasing at limb′↓b I qS (b ′) < qS (b I ) in an a�empt to set Ûb = 0 by alternating between issuing and
repurchasing. Let us also note that the multiplicity result we obtain later on does not hinge on this particular issue:
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Figure 4: Joint Surplus: Saving Equilibrium

�e �gure depicts the joint surplus in the saving equilibrium. �e solid line is a parametric
plot of (VS (b),qS (b)b) for b ∈ [0,bB ]. �e upper and lower dashed reference lines are P?

S (v)
and P?

B (v), respectively, for v ∈ [V ,VB (0)]. �e parameters are the same as in Figure 1.

As in our discussion of e�cient allocations, the question is whether it is optimal to remain
in the Safe Zone or borrow to the upper bound. Crucially, for the equilibrium, the question is
now whether the government �nds it privately optimal. �e condition for saving to be a valid
equilibrium outcome is stated in the following proposition:

Proposition 7. �e conjectured saving equilibrium {CS ,VS ,qS ,BS } is a competitive equilibrium if
and only if

VS (bS ) ≥ VB(bS ); (42)

or, equivalently,

bS ≡
y − ρV

r
≥ bB . (43)

To see why saving can be an equilibrium outcome, �rst note that the government always has
the option to remain in the Crisis Zone and wait for the high default option. AsV > VS (b) in the
Crisis Zone, this is a plausible alternative. �e cost of this strategy is that the government must
roll over its debt at a discounted price while waiting for V . If instead the government saves to
the Safe Zone, it can roll over its debt at the risk-free price. �is increase in price ensures that
the government internalizes the gain from reducing the probability of default and provides the
government with the incentive to save.

However, the government’s private incentive to save in equilibrium is weaker than that of

it is possible to obtain parameter values such that b I = bS and for which multiple equilibria coexist.
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the planner. We see this in two ways. First, recall from Proposition 3 that saving is a solution
to the planning problem if (y − ρV )/r ≥ P?B (V ) = qbB .22 As q < 1, condition (43) is stronger
than the e�ciency condition. �us, e�ciency of saving does not imply that it can be sustained in
equilibrium. �at is, a necessary but not su�cient condition for a saving equilibrium to exist is
that the saving allocation is e�cient.

Second, even when the government saves, it does not do so at the same rate as the planner.
In the debt dynamics equation (40), the term in parentheses is less than one in magnitude, and
thus Ûb ≥ −δb. �at is, while saving, the government never repurchases non-matured bonds; it
deleverages by le�ing bonds mature and not fully replacing them with new bonds. �is re�ects
the ine�ciency of long-term debt discussed by Aguiar et al. (2018). �e government does not
capture the full return to eliminating the probability of default and thus does not have an incentive
to save as quickly as possible. �is leads to a divergence between the saving equilibrium allocation
and the e�cient saving allocation.

Figure 4’s solid line plots the market value of debt, qS (b)b, against the government’s value,
VS (b). �e upper and lower dashed lines are the e�cient frontier for the saving and borrowing
allocation, respectively. �e saving allocation dominates the borrowing allocation and hence
represents the Pareto frontier. Forv ∈ [V ,VS (bI )], that is, forb ∈ (bI ,bB], the government borrows
when it is e�cient to save. For v ∈ [VS (bI ),V ], or b ∈ [bS ,bI ], the government saves, but at a rate
that is ine�ciently slow. Hence the equilibrium surplus remains within the Pareto frontier. Note
that the discontinuity in the equilibrium price schedule at bI is re�ected in the sharp change in
the lender’s value around this threshold. For v ≥ V , or b ≤ bS , the government is in the Safe
Zone, and the e�cient and equilibrium allocations coincide.

�e gap between the e�cient allocation and the equilibrium outcome highlights the weak
incentives provided by prices when bonds have longer maturity. Recall that in the saving region,
b ∈ (bS ,bI ), the government is indi�erent across consumption choices given equilibrium prices.
�e purchasers of new bonds break even and are also indi�erent. However, the legacy bondhold-
ers strictly prefer c = C , as this minimizes the risk of default going forward (and maximizes the
secondary market value). However, there is no market mechanism that ensures the government
internalizes the interests of legacy bondholders, leading to the ine�ciency depicted in Figure 4
on the domain v ∈ [VS (bI ),V ).23

Relatedly, the di�erence between e�ciency and equilibrium, and the private incentives to
save, depends on maturity. In particular, the greater the fraction of debt rolled over each period,
the stronger the government’s private incentive to save, while maturity is irrelevant for the e�-

22�e la�er equality uses the fact that VB (bB ) = V?
B (qbB ) = V and V? is the inverse of P?.

23As shown in Aguiar et al. (2018), the ine�ciency of the competitive equilibrium with longer-term debt survives
when the government has the ability to replace long-term bonds with short-term debt through competitive market
transactions.
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cient allocation. At one extreme, if δ = 0 and bonds are perpetuities, the government never saves
in equilibrium regardless of e�ciency; at the other extreme, as δ →∞, the conditions for saving
to be e�cient and to be an equilibrium outcome converge. Collecting results:

Proposition 8. A necessary condition for {CS ,VS ,qS ,BS } to be a competitive equilibrium is that
saving is e�cient. If saving is strictly e�cient, that is, P?S (V ) > P?B (V ), there exists a δS ∈ [0,∞),
de�ned by

δS ≡
λP?B (V )

P?S (V ) − P?B (V )
− r , (44)

such that {CS ,VS ,qS ,BS } is a competitive equilibrium if δ ≥ δS , and is not an equilibrium otherwise.
If ρ > r , then δS > 0.

�e fact that maturity drives a wedge between e�ciency and equilibria anticipates the next
section. Even when saving is e�cient and can be supported as an equilibrium, it is still possible
that the borrowing allocation remains a valid competitive equilibrium. In the next section, we
discuss the role of maturity in this multiplicity.

5 Maturity and Multiplicity

�e preceding section provided necessary and su�cient conditions for both the borrowing and
saving equilibria. �is allows us to explore under what parameterizations the model has multi-
plicity as well as the economics behind the multiplicity.

�e key condition to sustain either equilibrium is whether the government prefers to remain
in the Safe Zone or borrow into the Crisis Zone. Importantly, the government makes this deci-
sion taking the equilibrium price schedule as given. �is is the crucial distinction between the
equilibrium problem and the planning problem and is at the heart of the potential multiplicity.

First, consider the borrowing equilibrium depicted in Figure 1. While in the Safe Zone (b <
bB), there is no threat of immediate default asVB(b) ≥ V . Nevertheless, the bond price lies strictly
below one. �e creditors require a default premium because they anticipate that the government
will borrow into the Crisis Zone (b > bB), and then potentially default, before the debt matures.
Hence, the government does not have the option to remain in the Safe Zone at risk-free prices.
Rather, the question is whether to maintain its debt position in the Safe Zone at a price below
one, or borrow into the Crisis Zone. As can be seen, the stationary value in the Safe Zone lies
strictly below the equilibrium value function. Given that the price schedule o�ers no reward for
remaining in the Safe Zone, the creditors’ pessimistic expectations become self-ful�lling.
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Now consider the saving equilibrium depicted in Figure 3, constructed with the same param-
eter values. Note that the equilibrium price is one throughout the Safe Zone and then declines
in the Crisis Zone. �is nonlinearity in the price schedule is re�ected in the government’s value
function. �e payo� to saving out of the Crisis Zone is the high price at the boundary of the Safe
Zone.

Interestingly, across the two equilibria, the government borrows when prices are low (spreads
are high), while it saves when prices are high (spreads are low). �e important element of the
price schedule is not the level, but the incentives or disincentives to borrow. In the saving equi-
librium, the price schedule declines steeply once the government enters the Crisis Zone. In the
borrowing equilibrium, the price schedule is �at at the boundary of the Safe Zone. In this way, the
self-ful�lling dynamics we uncover in this paper provide an alternative view of the “gambling for
redemption” hypothesis that explains the debt accumulation of debt-distressed European coun-
tries during the debt crises (see Conesa and Kehoe, 2017). In our model, low debt prices and debt
accumulation both arise endogenously.

Note that the multiplicity in the model is dynamic in that it depends on expectations of future
equilibrium behavior. In particular, the equilibria are supported by di�erent expectations about
whether the government will borrow or save, and whether bond prices will be the risk-free price
or something lower. �e underlying tension is between the incentive to dilute long-term bond-
holders versus the incentive to economize on rollover costs. Which e�ect dominates in equilib-
rium depends on beliefs in a non-trivial part of the parameter space. Moreover, these competing
forces highlight why maturity plays a central role in the existence of multiple equilibria.

For the limiting case of arbitrarily large C , we can state a simple condition that determines
when it is possible for both equilibria to be supported:

Proposition 9. If the parameters satisfy the following condition:

1 + ρ

(
V −V
y − ρV

)
>

λ

ρ − r > r

(
V −V
y − ρV

)
, (45)

there exists anM and a non-empty interval ∆ ⊂ [0,∞), such that for all C > M and all δ ∈ ∆, both
the borrowing and saving equilibria exist.

�e second inequality in (45) guarantees that the saving allocation is e�cient for arbitrarily
large C . We know from Proposition 8 that this is a necessary condition and su�cient for high
enough δ for the saving equilibrium to exist.

�e �rst inequality in (45) guarantees the existence of the borrowing equilibrium, for any
�nite δ , when C becomes arbitrarily large. When C becomes arbitrarily large, the price of the
bond converges to q throughout the Safe Zone, as the rate at which the government exits the
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Safe Zone becomes arbitrarily fast. �e �rst inequality veri�es that the government prefers to
borrow into the Crisis Zone when facing a price close to q for all debt levels in the Safe Zone.

�is proposition shows that multiplicity is an endemic feature of this model when the gov-
ernment is impatient and there are deadweight losses from default. �at is,

Corollary 3. If ρ > r and y > ρV , there always exists a triplet {δ , λ,C} such that both savings and
borrowing equilibria exist.

6 �ird-Party Policies

�e existence of multiple equilibria raises the question of whether a deep-pocketed third party,
such as the IMF or ECB, could induce market participants to play the preferred equilibrium. In the
rollover crisis model of Cole and Kehoe (2000), a price �oor would eliminate the crisis equilibrium.
Similarly, in a Calvo-style crisis, a price �oor (or a cap on spreads) would also eliminate the bad
equilibrium. More importantly, such a policy would require no resources along the equilibrium
path, as long as they were credible o� equilibrium.

A natural policy question in our framework is how to prevent coordination on the borrowing
equilibrium when saving is e�cient. Debt forgiveness does not select a particular equilibrium
because both equilibria co-exist at low debt levels. Hence, in the borrowing equilibrium, debt
forgiveness provides only a temporary reduction in debt levels, as in the debt-overhang model of
Aguiar and Amador (2011). Similarly, a price �oor does not eliminate the ine�cient equilibrium.
In particular, with a lower bound on prices greater than q, the borrowing equilibrium remains an
equilibrium and the government would borrow up to its borrowing limit at the be�er price. �e
policy not only would fail, but also would cost resources along the equilibrium path.

More formally, consider a parameterization such that both saving and borrowing equilibria
exist, with subscripts B and S denoting the respective equilibrium objects, as before. �is param-
eterization is the natural launching point for policy intervention.

�e intervention we study involves a third party that is willing to purchase government bonds
at a priceq? as long asb ≤ b?. �is combines a price �oor with a quantity restriction. To highlight
the role of the price �oor versus the quantity restriction, we consider two polar cases. In our
�rst scenario, let b? = bB . �at is, the quantity restriction is not tighter than the endogenous
borrowing limit in the borrowing equilibrium. �e second scenario sets b? = bS . �is is a tight
quantity restriction, designed such that interventions potentially involve only risk-free debt.

Let the superscript P indicate equilibrium objects in the presence of the third-party policy.
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�e break-even condition for foreigners is

qP (b) = sup
T≥0

{∫ T

0
e−(r+δ )t−

∫ t
0 ΛP (bP (s))ds(r + δ )dt + e−(r+δ )T1[bP (T )≤b?]q?

}
, (46)

where bP (s) denotes the equilibrium evolution of bonds, starting from b, under the third-party
policy. �e equation captures that an investor considers the best among all possible hold-and-
sell strategies: a�er purchasing the bonds, the investor can hold them up to any timeT , at which
point, if the total debt remains below b?, the investor has the option to sell them to the third party
for a price of q?. Note that the assumption that all the investors are identical means we do not
need to consider the strategies where one investor sells to another.

Given the price schedule, the problem of the government continues to be characterized by the
HJB (20). As a result, in any equilibrium, there will be a Safe Zone and a Crisis Zone, demarcated
by {bP ,bP }, with V P (bP ) = V and V P (bP ) = V .

As in the analysis without the third party, we will consider two equilibrium conjectures: a
borrowing one and a saving one. Similarly to our benchmark analysis, in a conjectured borrowing
equilibrium, starting from a debt level in the Safe Zone, the debt eventually reaches the Crisis
Zone. In a conjectured saving equilibrium, the Safe Zone is an absorbing state.

Consider �rst the case whereb? = bB . In this case, the policy does not eliminate the borrowing
equilibrium. But if it is generous enough (that is, if q? is high enough), then it eliminates the
saving equilibrium:

Proposition 10 (Loose quantity restriction). Assume the inequalities in Proposition 9 are satis�ed
and bB > bS . Suppose q

? ∈ (q, 1] and b? = bB , and let C be su�ciently large. �en,

(i) �ere always exists a borrowing equilibrium. �at is, there is an equilibrium where CP (b) = C
for all b < b?. In this equilibrium, the third party incurs losses.

(ii) �ere is a q̃ < 1 such that for all q? > q̃, the saving equilibrium does not exist.

A be�er policy is to impose a tighter quantity restriction, that is, b? = bS . In this case, the
policy selects the saving equilibrium for high enough q?:

Proposition 11 (Tight quantity restriction). Assume the inequalities in Proposition 9 are satis�ed.
Suppose q? ∈ [q, 1] and b? = bS . �en,

(i) �e saving equilibrium is always an equilibrium. �e third party incurs zero losses.

(ii) �ere is a q̂ < 1 such that for all q? > q̂, the borrowing equilibrium does not exist.
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�e propositions above show that a price �oor policy has very di�erent implications, depend-
ing on the quantity restriction that accompanies it. If the quantity restriction is loose, a generous
price �oor ends up incentivizing borrowing and generates losses for the third party. However,
if the quantity restriction is tight enough, a generous price �oor eliminates the sub-optimal bor-
rowing equilibria, and no resources are lost by the third party on equilibrium. In fact, in the la�er
case, the third party never needs to purchase debt in equilibrium.

Recall that the multiplicity re�ects the trade-o� between saving for a be�er price versus the
desire to borrow due to impatience. With a price �oor absent a tight quantity restriction, the
third party reduces the incentive to save. �e saving equilibrium is supported by the gap between
prices in the Safe Zone and princes in the Crisis Zone as well as the need to roll over bonds. A
generous price �oor in the Crisis Zone eliminates the price di�erential that incentivizes saving
in equilibrium.

Rewarding the government for saving, or punishing them for borrowing, is a policy that can
induce the saving equilibrium. A borrowing limit at the boundary of the Safe Zone, which is
tighter than the endogenous limit, would be e�ective. However, such a policy raises the question
of how to enforce the limit if the initial debt is beyond it. �ird-party purchases conditional on
�scal austerity are reminiscent of policies pursued in the European debt crisis as well as many
IMF programs. However, the events in Europe and elsewhere re�ect the di�culties of enforcing
explicit debt limits. Unfortunately, in the Eaton-Gersovitz framework studied in this paper, there
is no e�ective policy that does not involve a similar type of o�-equilibrium commitment to punish
overborrowing.

Finally, note that a tight quantity restriction policy may not be e�ective if delayed too long. In
particular, once b > bI , the saving equilibrium is no longer distinguishable from the borrowing
equilibrium, and thus policy interventions will fail to be e�ective once debt has reached su�-
ciently high levels. �is highlights that interventions during debt crises may need to be quick to
be successful, and policies that “kick the can down the road” may eventually fail. �is same point
about delay, although in a di�erent environment, was emphasized by Lorenzoni and Werning
(2013).

7 Conclusion

�is paper shows that debt dilution generates multiplicity in a standard sovereign debt frame-
work. In particular, the extent of dilution in equilibrium depends on self-ful�lling expectations
of future prices and future �scal policy. A relatively impatient government, an intermediate debt
maturity, and deadweight losses from default provide the conditions for multiplicity of equilibria.
Importantly, these are common features of observed debt markets as well as the recent quantita-
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tive models proposed in the literature.
�e framework presented above is designed for analytical clarity and thus involves some

special assumptions. However, the mechanism at work is robust to including endowment �uctu-
ations and risk aversion, which, while bringing the model closer to empirical debt markets, does
not eliminate the self-ful�lling debt dilution identi�ed in the tractable model. One can easily
construct simple numerical examples of multiplicity with these elements. �e quantitative model
analyzed by Stangebye (2015) also appears to be driven by a mechanism similar to that studied
in this paper. Indeed, the fact that the Eaton-Gersovitz model is vulnerable to dilution is at the
heart of the recent quantitative literature that a�empts to match empirical sovereign debt crises.
We show that the same force leads to indeterminacy. �e fact that multiplicity stems from the
incentives to dilute places novel restrictions on e�ective third-party interventions.
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Appendix A: �e Hybrid Equilibrium
In this appendix, we present a third type of competitive equilibrium, which we label the “hybrid” equilib-
rium because it combines features of both borrowing and saving equilibria. In particular, the government
never saves, as in the borrowing equilibrium, but part of the Safe Zone is absorbing, as in the saving equi-
librium. �e main purpose of introducing the hybrid equilibrium is to show existence of a competitive
equilibrium; in particular, we prove that if neither the borrowing nor the saving equilibrium exists, then
a hybrid equilibrium exists. �e equilibrium objects are depicted in Figure A.1 using the same parameters
as in Figures 1 and 3.

More formally, given VB in (27), de�ne the threshold

VB(bH ) =
y − rbH

ρ
, (47)

if such a threshold exists on the domain [0,bB] ∩ [0,bS ]. �e equilibrium conjecture is that for b ≤ bH ,
the government borrows up to bH and then remains there inde�nitely. �is behavior is similar to the
Safe Zone policy in the saving equilibrium, but the threshold bH may be strictly below bS . At bH , given
that VB(bH ) = (y − rbH )/ρ, the government is indi�erent to remaining at bH at risk-free prices versus
borrowing to the debt limit at the borrowing equilibrium price schedule. �e conjecture is that for b > bH ,
the government borrows. In a hybrid equilibrium, therefore, bH is a stationary point that is stable from
the le� but not the right.

For b < bH , we solve the government’s HJB assuming c = C to obtain a candidate VH on this domain,
using the boundary condition ρVH (bH )y − rbH . For b > bH , the hybrid equilibrium coincides with the
borrowing equilibrium. Se�ing bH ≡ bB , the hybrid equilibrium value function is therefore

VH (b) =


C−(C+rbH−y)

(
C+rb−y
C+rbH −y

) ρ
r

ρ for b ≤ bH

VB(b) for b ∈ (bH ,bH ].
(48)

�e associated price schedule is

qH (b) =
{

1 for b ≤ bH

qB(b) for b ∈ (bH ,bH ].
(49)

Finally, the policy function for consumption is

CH (b) =


C for b < bH

y − rbH for b = bH
CB for b ∈ (bH ,bH ].

(50)

We state the following:

Proposition A.1. Suppose neither the borrowing equilibrium nor the saving equilibrium exists. Speci�cally,
suppose that bS < bB and that there exists a b̂ ∈ [0,bB] such that ρVB(b̂) < y − [r + δ (1 − qB(b̂))]b̂. �en a
hybrid equilibrium exists.

Proof. �e conjectured price schedule qH is consistent with the lenders’ break-even condition given the
assumed government policy. �us, to establish the conditions of an equilibrium, it is su�cient to prove
that VH is a solution to the government’s HJB.
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(i) For b ∈ [bS ,bB]: By premise, bB > bS . �is implies that ρVB(bS ) > V = y − rbS ≥ y − [r + δ (1 −
qB(bS ))]bS . For b > bS , we have ρV > y − rb. As VB ≥ V for b ≤ bB , we have VB(b) ≥ y − rb for b ∈
[bS ,bB]. From the proof of Proposition 5, this implies that VH (b) = VB(b) satis�es the government’s
HJB on this domain. �e proof of Proposition 5 extends this to b ∈ [bB ,bB] as well.

(ii) For b ≤ bS : Note that the premise implies there exists a b̂ ∈ [0,bB] such that ρVB(b̂) < y − [r + δ (1 −
qB(b̂))]b̂ ≤ y − rb̂. �e above established that ρVB(b) > y − rb for b ∈ [bS ,bB]. Hence, b̂ < bS . By
continuity, there exists a bH ∈ (b̂,bS ) such that ρVB(bH ) = y − rbH . Note as well that this implies
V ′B(bH ) = limb↓bH V ′H (b) ≥ −r/ρ. From the expression forVH , we have limb↑bH VH (bH ) = −1 ≤ −r/ρ.
Hence, VH is either di�erentiable or has a convex kink at bH , satisfying the conditions for a solution
to the government’s HJB at bH . For b < bH , V ′H (b) ≥ −1, implying that the HJB is satis�ed on this
domain as well. Finally, VH (b) > V for b ≤ bH , rationalizing the government’s non-default on this
domain.

�

�is establishes that at least one of the three types of equilibria always exists. We note that the hybrid
may coexist with the other equilibria as well. In fact, as C → ∞, the condition for multiplicity presented
in Proposition 9 also implies the existence of a hybrid equilibrium.
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Figure A.1: Hybrid Equilibrium

(a) VH (b) qH

(c) CH
�e �gure depicts the value, price, and consumption functions in a hybrid equilibrium, respectively. �e equilibrium
functions are represented by the bold solid blue lines. �e horizontal lines in Panel (a) represent the two default
values. �e dashed line in Panel (a) represents the stationary value function at the corresponding equilibrium prices.
�e dashed line in Panel (c) represents the level of consumption associated with the stationary value. �e equilibrium
is constructed with the same parameters as in Figure 1: r = 1, ρ = 2, y = 1, λ = 2, δ = 10, C = 1.2, V = .8y/ρ, and
V = .95y/ρ. �e value of C is set low enough so that it never binds in equilibrium.
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Appendix B: Proofs
�is appendix contains all proofs except those for Propositions 1 and 4, which are presented in Appendix
C, along with a discussion of viscosity solutions more generally.

B.1 Proof of Lemma 1
Proof. To generate a contradiction, suppose there is an e�cient allocation {c,T }, with T < ∞. Note from
(1) we have V (T , c) = V . To see this, suppose instead that V (T , c) > V ; that is,

V (T , c) = sup
T ′≥t

∫ T ′

T
e−(ρ+λ)(s−T )c(s)ds + e−(ρ+λ)(T ′−T )V + λ

∫ T ′

T
e−(ρ+λ)(s−T )max〈V (s, c),V 〉ds

> V .

Hence, there exists a T ′ > T such that∫ T ′

T
e−(ρ+λ)(s−T )c(s)ds + e−(ρ+λ)(T ′−T )V + λ

∫ T ′

T
e−(ρ+λ)(s−T )max〈V (s, c),V 〉ds > V .

�is implies at time t < T ,∫ T

t
e−(ρ+λ)(s−t )c(s)ds + e−(ρ+λ)(T−t )V + λ

∫ T

t
e−(ρ+λ)(s−t )max〈V (s, c),V 〉ds <∫ T ′

t
e−(ρ+λ)(s−t )c(s)ds + e−(ρ+λ)(T ′−t )V + λ

∫ T ′

t
e−(ρ+λ)(s−t )max〈V (s, c),V 〉ds .

Hence, T was never a sup of the original problem. �is establishes that V (T , c) = V .
Now consider an alternative allocation (c̃,∞). �e alternative consumption allocation equals c for

t < T , but di�ers for t ≥ T . We choose c̃(t) = (ρ + λ)V − λV < y for t ≥ T so that for all t ≥ T :

V (t , c̃) = c̃(t) + λV
ρ + λ

=
(ρ + λ)V − λV + λV

ρ + λ

= V .

�us, V (0; c) = V (0; c̃). Moreover, the alternative allocation delivers strictly more than zero to the lender
in expectation for t ≥ T as c̃(t) < y. As the government is indi�erent and the lender receives strictly more
in expected present value, the original allocation is not e�cient. �
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B.2 Proof of Lemma 2
Proof. Lemma 1 allows us to set T = ∞ in the planning problem (3) to obtain

P?(v) = sup
c∈C,

∫ ∞

0
e−

∫ t
0 r+1[v (s )<V ]λds [y − c(t)]dt (51)

subject to

{
v(0) = v
Ûv(t) = −c(t) + ρv(t) − 1[v(t )<V ]λ

[
V −v(t)

]
,

de�ned on the domain v ∈ V. P? is bounded above by (y −C)/r and below by (y −C)/r . To see that P?

is Lipschitz continuous in v , consider v1,v2 ∈ V, with v2 > v1. A feasible strategy starting from v(0) = v2
is to set consumption to C until v(t) = v1. Let ∆ denote the time v(t) reaches v1. Suppose v(t) > V for
t ∈ [0,∆1) and v(t) < V for t ∈ (∆1,∆]. Let ∆2 = ∆ − ∆1. If v2 < V , then ∆1 = 0 and if v1 > V , then ∆2 = 0.
�e dynamics of v(t) imply

e−ρ∆1 =
C − ρ max{v2,V }
C − ρ max{v1,V }

e−(ρ+λ)∆2 =
C + λV − (ρ + λ)min{v2,V }
C + λV − (ρ + λ)min{v1,V }

.

Using this, one can show that

1 − e−ρ∆1−(ρ+λ)∆2 ≤ L|v2 −v1 |, (52)

with L ≡ (ρ + λ)/(C − ρVmax ) ∈ (0,∞).
As this is a feasible strategy for v2, integrating the objective function, we obtain

P?(v2) ≥ (y −C)
©«

1 − e−r∆1

r
+
e−r∆1

(
1 − e−(r+λ)∆2

)
r + λ

ª®®¬ + e−r∆1−(r+λ)∆2P?(v1).

As y < C , we have

P?(v2) ≥ (y −C)
(
1 − e−r∆1−(r+λ)∆2

r

)
+ e−r∆1−(r+λ)∆2P?(v1),

which implies

P?(v1) − P?(v2) ≤
(
C − y
r
+ P?(v1)

) (
1 − e−r∆1−(r+λ)∆2

)
.

As P?(v1) ≤ (y −C)/r , we have

P?(v1) − P?(v2) ≤
(
C −C
r

) (
1 − e−r∆1−(r+λ)∆2

)
.
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As C > C and ρ ≥ r , this implies

P?(v1) − P?(v2) ≤
(
C −C
r

) (
1 − e−ρ∆1−(ρ+λ)∆2

)
≤

(
C −C
r

)
L|v2 −v1 |,

where the second line uses (52). As v1 < v2, and hence P?(v1) ≥ P?(v2) as P? is the e�cient frontier, we
have

|P?(v1) − P?(v2)| ≤ K |v2 −v1 |,

where

K ≡
(
C −C
r

)
L =

(
C −C

C − ρVmax

) (
ρ + λ

r

)
.

Hence, P? is Lipschitz continuous with coe�cient K ∈ (0,∞). �

B.3 Proof of Proposition 2
Proof. We need to check the conditions of Proposition 1. Note that P?

B is bounded, Lipschitz continuous,
and di�erentiable everywhere exceptV , where limv↑V P?′(v) < limv↓V P?′(v). �is inequality implies that
condition (ii) in the proposition is irrelevant. Condition (iii) of Proposition 1 is satis�ed trivially. Condition
(iv) is satis�ed by construction.

At points of di�erentiability, the �rst-order condition for consumption requires P?′
B (v) ≤ −1 for c = C

to be optimal. Starting withv ∈ [V ,V ), di�erentiating the candidate function yields P?′
B (v) ≤ −1. HenceC

is optimal, and P?
B satis�es the HJB on this domain. Turning to v > V , note that P?

B (v) is concave on this
domain. �us, if limv↓V P?′

B (v) ≤ −1, then P?′
B (v) ≤ −1 for v ∈ (V ,Vmax ]. We have

lim
v↓V

P?′
B (v) = −

C − y + rP?
B (V )

C − ρV
.

�is quantity is less than −1 when rP?
B (V ) ≥ y − ρV . �is is the condition stated in the proposition. �is

condition is necessary and su�cient for P?
B to satisfy the HJB on (V ,Vmax ). Moreover, it is su�cient to

ensure that condition (v) of Proposition 1 is satis�ed. �

B.4 Proof of Proposition 3
Proof. �e proposed solution P?

S is di�erentiable everywhere saveV andv I . AtV we have limv↑V P?′
S (v) ≥

−1 ≥ limv↓V P?′
S . Hence, condition (ii) of Proposition 1 is relevant and is satis�ed by the candidate value

function. P?
S satis�es condition (iii) at v I as it features a convex kink by construction. Condition (iv) is

also satis�ed by construction.
On the domainv ∈ (V ,Vmax ], we have P?′

S (v) ≤ −1, and hence P?
S satis�es the HJB as well as condition

(v) of Proposition 1.
Turning to v < V , we now show that P?

S (V ) ≥ P?
B (V ) is necessary and su�cient for P?

S to satisfy the
conditions of Proposition 1.
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For su�ciency, suppose that P?
S (V ) ≥ P?

B (V ). Let X ≡ {v ∈ [V ,V )|P?
S (v) ≥ P?

B (v)} = [max{v I ,V },V ).
On the domain X , P?

S (v) = P̂(v). One can show that P̂ ′(v) ≥ −1 if and only if P̂(v) ≥ (y − (ρ + λ)v +
λV )/(r + λ). As the la�er term is the value associated with se�ing Ûv = 0, the inequality is satis�ed as
P̂(v) ≥ P?

B (v) ≥ (y − (ρ + λ)v + λV )/(r + λ). Hence c = C is optimal on X , and the HJB is satis�ed. If
P̂(V ) ≥ P?

B (V ), then X = [V ,V ), and hence the HJB is satis�ed on the whole domain V. If instead there
exists v I > V , then the HJB is satis�ed for v < v I from Proposition 2.

For necessity, suppose instead that P?
S (V ) < P?

B (V ). Comparison of the slopes implies that as long
as P?

S (v) < P?
B (v) for v ∈ [V ,V ), then P?′

S (v) < P?′
B (v), and the two lines will never cross. Moreover,

P?′
B (v) ≤ −1, and hence P?′

S (v) < −1. �is implies that c = C is strictly sub-optimal and the HJB is
violated. �

B.5 Proof of Lemma A.1
Lemma A.1. In any competitive equilibrium such that q(b) ∈ [q, 1] for b ∈ B = [−a,b], V is bounded,
strictly decreasing, and Lipschitz continuous onB.

Proof. �e boundedness of V follows directly from C/ρ ≥ V (b) ≥ V for any b ∈ B.
To see that V is strictly decreasing, suppose b1 > b2 for b1,b2 ∈ B. If b2 = −a ≡ (y − C)/ρ, then

V (b2) = C/ρ > V (b1), where the la�er inequality follows from the budget set at b1 > b2. Now consider the
following policy starting from b2 ∈ (−a,b1): Set c = C until b(t) = b1. As

Ûb(t) = c + (r + δ )b(t) − y
q(b(t)) − δb,

and C > y − rb ≥ y − [r + δ (1 − q(b))]b for b ≥ b2, we have Ûb(t) > 0. Let t̃ ∈ (0,∞) denote when b(t) = b1.
As it is feasible for the government to follow this policy and not default while doing so, we have

V (b2) ≥
∫ t̃

0
Cdt + e−ρ t̃V (b1)

=
(
1 − eρ t̃

) C
ρ
+ e−ρ t̃V (b1).

Subtracting V (b1) from both sides yields:

V (b2) −V (b1) ≥
(
1 − eρ t̃

) (
C

ρ
−V (b1)

)
> 0.

For continuity, we proceed in a similar fashion. Starting from b1, consider the policy of se�ing c = C

until b(t) = b2. Let t∗ denote the time where b(t) = b2. Given that C < y − (r + δ )b ≤ y − (r + δ )b(t) and
q(b(t)) ∈ [q, 1], t∗ < ∞. Moreover, the same statements imply that

b2 − b1 ≥
∫ t ∗

0

(
C + rb(t) − y

)
dt

≥
∫ t ∗

0

(
C + rb − y

)
dt

=
(
C + rb − y

)
t∗,
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where the �rst inequality follows from q(b) ≤ 1.

�e above implies that t∗ ≥ L|b1 − b2 |, with L ≡
(
y − rb −C

)−1
∈ (0,∞).

As this is a feasible strategy, we have

V (b1) ≥
∫ t ∗

0
e−ρtCdt + e−ρt

∗
V (b2)

= (1 − e−ρt ∗)
C

ρ
+ e−ρt

∗
V (b2),

where the inequality in the �rst line also re�ects that the right-hand side is the value assuming the gov-
ernment never defaults, which is weakly below the optimal default policy. Subtracting V (b2) from both
sides and rearranging, we have

V (b2) −V (b1) ≤ (1 − e−ρt
∗)

(
V (b2) −

C

ρ

)
.

Using the fact that C/ρ > V (b) ≥ V > C/ρ and 1 − e−ρt ∗ ≤ t∗, we have

0 < V (b2) −V (b1) ≤ t∗
(
V (b2) −

C

ρ

)
≤ L

(
C −C
ρ

)
|b1 − b2 |.

Hence, |V (b2) −V (b1)| ≤ K |b2 − b1 | with K ≡ L
(
C −C

)
/ρ ∈ (0,∞). �

B.6 Proof of Proposition 5
Proof. By construction, the price schedule qB is consistent with the lenders’ break-even condition, given
the conjectured government policy. �e remaining step is to verify if and when the government’s policy
is optimal given the conjectured qB . Hence, to prove the proposition, we need to establish thatVB satis�es
the conditions of Proposition 4 if and only if (32) holds.

For C to be optimal for all b < bB , the �rst-order condition for the HJB requires 1 +V ′B(b)/qB(b) ≥ 0
wherever V ′B(b) exists. �us, if V ′B(b) ≥ −qB(b), then c = C is optimal. Recalling that VB was constructed
by assuming that the Hamiltonian is maximized at c = C , then V ′B(b) ≥ −qB(b) is both necessary and
su�cient to verify that the HJB is satis�ed at points of di�erentiability.

We proceed to show that (32) is equivalent to V ′B(b) ≥ −qB(b) at points of di�erentiability.
For b < 0, we have

ρVB(b) = C − (C − ρVB(0))
(
C + rb − y
C − y

) ρ
r

.

Note thatVB is concave on this domain. ForC to be optimal, it is therefore su�cient that limb↑0V
′
B(b) ≥ −1.

�is will be true if and only if ρVB(0) ≥ y. Hence, the condition in equation (32) evaluated at b = 0 is
necessary and su�cient for the HJB to hold for b ∈ (−a, 0). For b = −a = (y−C)/ρ, we haveVB(−a) = C/ρ,
which is condition (iv) in Proposition 4.

For b ∈ (0,bB], we use the fact that VB(b) = V?
B (qB(b)b), where V?

B is the inverse of P?
B . Hence,

V ′B(b) = V?′
B (qB(b)b)

(
qB(b) + q′B(b)b

)
. From the lenders’ break-even condition, in the Safe Zone, we have
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(r + δ )qB(b) = q′B(b) Ûb = q′B(b)
(
C + [r + δ (1 − qB(b))]b − y

)
. Substituting in and rearranging, we have for

b ∈ (0,bB]

V ′B(b) = −qB(b)
(

C − ρVB(b)
C − [r + δ (1 − qB(b))]b − y

)
.

Hence, for b ∈ (0,bB], the HJB is satis�ed if and only if ρVB(b) ≥ y − [r + δ (1 − qB(b))]b, which is the
condition in equation (32).

For b ∈ (bB ,bB], we have qB(b) = q and

(ρ + λ)VB(b) = C + λV −
(
C + λV − (ρ + λ)V

) ©«
C − y + (r + λ)qb

C − y + (r + λ)qbB
ª®¬
ρ+λ
r+λ

.

Note thatVB(b) is concave in b, hence we need to check the condition at b → bB . We have for b ∈ (bB ,bB]

V ′B(b) ≥ −
C + λV − (ρ + λ)V
C − y + (r + λ)qbB

= −1,

where the �nal equality uses the de�nition of bB ; hence, for this region the optimality condition always
holds.

By construction, for b = bB , condition (v) of Proposition 1 is satis�ed.
Note that asVB(bB) = V , the derivative ofVB is continuous atbB . �e only point of non-di�erentiability

isb = 0. In particular, note that limb↓0V
′
B(b) = − limb↓0 qB(b)(C−ρVB(0))(C−y). Hence, if limb↓0 qB(b) < 1,

then there is a convex kink at b = 0. �is is consistent with condition (iii) in Proposition 4.
Hence, the conditions of Proposition 4 hold if and only if (32) holds. �

B.7 Proof of Proposition 6
Proof. �ere are three claims in the proposition:

Part (i). If a borrowing allocation is e�cient, it must be that

rP?
B (v) ≥ y − ρV

for any V ≥ V (from footnote 12). �is implies that

V?
B (P) ≥

y − rP
ρ
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for P ≤ PB(V ). Using that P = qB(b)b and that VB(b) = V?
B (qB(b)b), we have that

VB(b) = V?
B (qB(b)b) ≥

y − rqB(b)b
ρ

=
y − rqB (b)

r+δ (1−qB (b)) (r + δ (1 − qB(b)))b
ρ

≥ y − (r + δ (1 − qB(b)))b
ρ

for all b ∈ [0,bB],

where the last inequality follows from rqB(b) ≤ r + δ (1 − qB(b)) for all δ ≥ 0, qB(b) ≤ 1 and b ≥ 0. And
thus condition (7) is satis�ed.

Part (ii). Let p = qB(b)b. For b ∈ [0,bB], Condition (7) becomes

ρV?
B (p) − (y − (r + δ )b + δp) ≥ 0

Now, from the price equation (31), we have(
1 − qB(b)

1 − q

) r
r+δ

=
C − y + rp
C − y + rp

, (53)

where p ≡ P?
B (V ) = qbB . From this expression, we can de�ne qB(b) = F (δ ,p), holding the other parameters

constant. Recall that condition (7) is restricted to b ∈ [0,bB]; hence, the domain of interest for p is [0,p],
which is independent of δ . We shall use the fact that

∂F (δ ,p)
∂δ

=
1 − F (δ ,p)

r + δ

(
q + ln

( 1 − q
1 − F (δ ,p)

))
, (54)

keeping in mind that q = (r + δ )/(r + δ + λ) and hence varies with δ .
Condition (7) can be wri�en:

G(δ ,p) ≡ ρV?
B (p) − y + (r + δ )p/F (δ ,p) − δp.

Taking the derivative with respect to δ , we have that:

∂G(δ ,p)
∂δ

=
p

F (δ ,p) − p −
(r + δ )p
F (δ ,p)2

∂F (δ ,p)
∂δ

=
p

F (δ ,p)

(
1 − F (δ ,p) − (r + δ )

F (δ ,p)
∂F (δ ,p)
∂δ

)
=
p(1 − F (δ ,p))

F (δ ,p)2

(
F (δ ,p) − (r + δ )

(1 − F (δ ,p))
∂F (δ ,p)
∂δ

)
=
p(1 − F (δ ,p))

F (δ ,p)2

(
F (δ ,p) − q − ln

( 1 − q
1 − F (δ ,p)

))
.
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Note that ∂G/∂δ ≤ 0 if

F (δ ,p) − q − ln
( 1 − q
1 − F (δ ,p)

)
≤ 0.

For p = p, F (δ ,p) = q, and this term is zero. Moreover, this expression is increasing in p as ∂F/∂p < 0.
Hence, ∂G(δ ,p)/∂δ ≤ 0 for p ∈ [0,p]. �us, if G(δ0,p) ≥ 0, then G(δ ,p) ≥ 0 for δ ∈ [0,δ0].

Part (iii). �e fact that saving is e�cient implies

y − ρV
r

> P?
B (V ) = qbB ,

where the last equality follows from the de�nition of bB . By continuity, there exists a V0 > V such that

y − ρV0

r
> P?

B (V0) ≡ p0 < p,

where the last inequality follows from the fact that P?
B is strictly decreasing. AsV0 = V

?
B (p0) by de�nition,

this is equivalent to

ρV?
B (p0) < y − rp0.

Evaluated at p = p0, condition (7) is

G(δ ,p0) = ρV?
B (p0) − y +

rp0

F (δ ,p0)
+ p0δ

(
1

F (δ ,p0)
− 1

)
. (55)

Note that limδ→∞ q = 1, and hence F (δ ,p) ≥ q also converges to 1. Hence, ρV?
B (p0) − y + rp0/F (δ ,p0) →

ρV?
B (p0)−y+rp0 < 0. We now show that the last term in (55) converges to zero; that is, δ (1−F (δ ,p0)) → 0.

From the de�nition of F in (53), we have

δ (1 − F (δ ,p0)) =
λδ

r + δ + λ

©«
C − y + rp0

C − y + rp︸        ︷︷        ︸
<1

ª®®®®®®¬

r+δ
r

.

As the ratio raised to the power (r + δ )/r is strictly less than one as p0 < p, the right-hand side goes to
zero as δ → ∞. Hence, there exists a δ1 such that for all δ > δ1, G(δ ,p0) < 0, violating the condition for
the borrowing equilibrium.

�

B.8 Proof of Proposition 7
Proof. We proceed to show the necessity and su�ciency parts of the proposition independently.

�e “only if” part. Toward a contradiction, suppose that VS (bS ) < VB(bS ) (or equivalently bB > bS ),
and the conjectured saving equilibrium is indeed an equilibrium. First, note that qS (b) ∈ [q, 1], as the
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government defaults only with the arrival of V D = V .
By construction, V̂ (bS ) = VS (bS ) = V . As VS is strictly decreasing, we have VS (bB) < V = VB(bB).

Hence, VS and VB do not intersect in [bS ,bB], and b I > bS , and VS (bB) = V̂ (bB).
We also have for b ≥ bB : V̂ ′(b) = −qS (b) ≤ −q ≤ V ′B(b), where the la�er inequality uses a property

of the borrowing allocation value function (shown in the proof of Proposition 5). �is implies that V̂ (b) <
VB(b) for all b ≥ bB , and there is no point of intersection to generate b I andVS = V̂ for all b ∈ [bS ,bS ]. Now
at bS , we must have (as an equilibrium requirement) that V̂ (bS ) = V < VB(bS ), where the la�er inequality
follows from the fact that V̂ < VB on this domain. �us, bS < bB . However, we have

(ρ + λ)V = y − [r + δ (1 − q)]bB + λV

< y − [r + δ (1 − q)]bS + λV

≤ y − [r + δ (1 − qS (bS )]bS + λV
= (ρ + λ)V̂ (bS ) = (ρ + λ)V ,

where the �rst line uses the de�nition of bB ; the second line uses bB > bS ; the third uses qS (b) ≥ q; and
the �nal two equalities use the fact that V̂ (b) is the stationary value at price qS and the de�nition of bS ,
respectively. Hence, we have generated a contradiction.

�e “if” part. We �rst verify thatVS satis�es the conditions of Proposition 4 and establish that qS is a
valid equilibrium price schedule.

First, consider the government’s problem.
Condition (iv) and (v) of Proposition 4 are satis�ed by construction. For b = bS , condition (ii) of

Proposition 4 applies and is satis�ed by construction.
For b < bS , the conjectured value function is di�erentiable. For the HJB to hold with c = C given that

qS (b) = 1 in this region, we requireV ′S (b) ≥ −qS (b) = −1. On this domain,VS (b) = V?
S (b), where the la�er

is the inverse of the e�cient solution P?
S . As P?′

S (v) ≤ −1, we have V ′S (b) ≥ −1 = −qS (b). Hence, c = C is
indeed optimal, and the HJB holds with equality.

For b ∈ (bS ,b I ), VS (b) = V̂ (b), and thus VS is di�erentiable and satis�es the HJB with equality by
construction. Note that if qS (b) ≥ q (something we check below), then Ûb ≤ 0 in (bS ,b I ) by equation (19)
(consistent with the equilibrium conjecture that the government is saving in this region). �is implies that
CS (b) = Ĉ(b) ≤ C , and thus the conjectured policy function is a valid one (recall that we are assuming that
C is su�ciently low and can thus be ignored as a constraint).

For b ∈ (b I ,bS ), VS (b) = VB(b) and di�erentiability of VB implies that VS is di�erentiable. �e proof of
Proposition 5 establishes that the HJB holds with equality in this domain, given that qS (b) = q.

�is con�rms that condition (i) of Proposition 4 holds.
Ifb I ∈ (bS ,bS ),VS (b I ) = VB(b I ), and there is a potential point of non-di�erentiability atb I . IfqS (b I ) ≥ q

(something that we check below), we have that this kink is convex. �us, condition (iii) of Proposition 4
holds.

Hence, given the conjectured qS , the value function is a viscosity solution to the government’s HJB
equation.

Next, let us consider the price function. �e only thing le� to check is thatqS (b) ∈ [q, 1] forb ∈ (bS ,b I ),
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where b I ∈ (bB ,bB). In this region, qS (b) ≤ 1 by equation (39). In addition,

(ρ + λ)VS (b) = y −
[
r + δ (1 − qS (b))

]
b + λV

≥ (ρ + λ)VB(b)
≥ y −

[
r + δ (1 − q)

]
b + λV ,

where the �rst equality and second inequality follow from the equilibrium construction on b ∈ (bS ,b I ).
�e last inequality follows from the construction ofVB(b) for b ∈ (bB ,bB). Comparison of the �rst and last
lines establishes that qS (b) ≥ q. �

B.9 Proof of Proposition 8
Proof. �e fact that the e�ciency of saving is a necessary condition for a saving equilibrium is established
in the text. Turning to equation (44), multiply both sides of equation (43) by q to obtain the following
necessary and su�cient condition:

qP?
S (V ) ≥ qbB = P?

B (V ).

Using q = (r + δ )/(r + δ + λ) and the fact that P?
S (V ) > P?

B (V ), we solve for δ to obtain

δ ≥
λP?

B (V )
P?
S (V ) − P?

B (V )
− r =

(r + λ)P?
B (V ) − rP?

S (V )
P?
S (V ) − P?

B (V )
≥ 0,

where the last inequality is strict when ρ > r , as seen in the de�nition of P?
B . �us, this is a necessary and

su�cient condition for the saving equilibrium, proving the proposition. �

B.10 Proof of Proposition 9
Proof. Note that P?

B (v) is increasing in C . Hence,

P?
B (V ) ≤ lim

C→∞
P?
B (V )

=
y − ρV + (ρ − r )(V −V )

r + λ

=
rP?

S (V ) + (ρ − r )(V −V )
r + λ

.

�en a su�cient condition for saving to be strictly e�cient is

P?
S (V ) >

rP?
S (V ) + (ρ − r )(V −V )

r + λ
,

or

λ

ρ − r >
r (V −V )
y − ρV

,

which is the last inequality in the proposition.
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Similarly,

P?
S (V ) − P?

B (V ) ≥
λP?

S (V ) − (ρ − r )(V −V )
r + λ

,

and

λP?
B (V )

P?
S (V ) − P?

B (V )
− r ≤

λ
(
rP?

S (V ) + (ρ − r )(V −V )
)

λP?
S (V ) − (ρ − r )(V −V )

− r

=
(r + λ)(ρ − r )(V −V )

λP?
S (V ) − (ρ − r )(V −V )

≡ δ .

From Proposition 8, a su�cient condition for a saving equilibrium, given that saving is e�cient, is that δ
is greater than δ . Note that δ is strictly positive and independent of C .

For the borrowing equilibrium, we need to show that the condition in equation (7) is satis�ed as C
becomes arbitrarily large. Speci�cally, �x any δ = δ > δ . De�ne

A(b) ≡ ρVB(b) − (y − [r + δ (1 − qB(b))]b),

where A implicitly depends on C and δ . Note by condition (7) in Proposition (5) that if A(b) > 0 on
[0,bB] ⊇ [0,bB], then a borrowing equilibrium exists.

To establish the properties of A(b) as C →∞, �rst note that bB is independent of C . In addition,

lim
C→∞

VB(b) = V + q(bB − b),

where we use the fact that qB(b) → q for b ∈ [0,bB] as C → ∞. As the point-wise limit is continuous in
b, and by Lemma A.1 VB(b) is monotonic given C , the convergence is uniform on the compact set [0,bB]
(see �eorem A of Buchanan and Hildebrandt (1908)).

Similarly, for b ∈ [0,bB],

lim
C→∞
{y − [r + δ (1 − qB(b))]b} = y − [r + δ (1 − q)]b = y − (r + λ)qb .

Again, the convergence is uniform by the same logic.
Hence, A(b) converges uniformly on [0,bB] to

A(b) ≡ lim
C→∞

A(b) = ρV + ρq(bB − b) − (y − (r + λ)qb).

We now establish that A(b) > 0 for b ∈ [0,bB]. �e linearity of A(b) in b implies that if the inequality
holds for b = 0 and b = bB , it is satis�ed for all intermediate points. For b = 0, we have

A(0) = ρV + ρqbB − y

=
(ρ − r − λ)(y − ρV ) + ρλ(V −V )

r + λ

=
(ρ − r − λ)(y − ρV ) + (ρ − r )ρ(V −V )

r + λ
> 0,

51



where the second line uses the de�nition of qbB and the �nal inequality uses the condition in the propo-
sition. Similarly,

A(bB) = ρV − (y − (r + λ)qb)

= λ(V −V ) > 0.

Hence, minb ∈[0,bB ]A(b) = min{A(0),A(b)} > 0.
As A → A uniformly on [0,bB], for every ϵ > 0, there exists an M such that for all C > M , we have

A(b) > A(b) − ϵ for b ∈ [0,bB]. Se�ing ϵ < minb ∈[0,bB ]A(b), we have A(b) > 0 for all b ∈ [0,bB] and
C > M . By Proposition 5, this is su�cient to establish the existence of a borrowing equilibrium for δ = δ
when C > M . By part (ii) of Proposition 6, we have a borrowing equilibrium for all δ ∈ [0,δ ].

Combining results, there exists a non-empty interval ∆ ≡ [δ ,δ ] and M such that for all C > M and
δ ∈ ∆, both saving and borrowing equilibria coexist. �

B.11 Proof of Proposition 10
Proof. We �rst sketch out the borrowing equilibrium under the assumed policy. Let {V P

B ,q
P
B} denote the

equilibrium policy and price functions. �e conjectured policy is for the government to borrow to bB ,
which is the endogenous limit in the borrowing equilibrium absent the policy. From (46), it is optimal
for the bondholders to sell their bonds at price q∗ > q as soon as b = bPB , where the la�er is de�ned by
V P (bPB) = V . �at is, bondholders sell their bonds to the third party as soon as debt enters the Crisis Zone.
We have

V P
B (bB) =

y − [r + δ (1 − q∗)]bB + λV
ρ + λ

= V +
δ (q∗ − q)bB

ρ + λ
.

�e last term re�ects that the government rolls over debt at q∗ rather than q once it reaches the borrowing
limit. �e expression assumes that the government defaults upon the arrival of V . To see that this is
optimal, note that the alternative of never defaulting yields the value

y − [r + δ (1 − q∗)]bB
ρ

≤ y − rbB
ρ

<
y − rbS

ρ
= V .

Facing qPB(b) = q∗ in the Crisis Zone, the government’s value can be obtained from the HJB, and it is
straightforward to verify that the �rst-order condition for c = C holds on this domain. As q∗ > q, bPB > bB ,
where the la�er is the benchmark borrowing equilibrium’s threshold for the Safe Zone. Note as well that
q∗ > q implies that the third party takes a loss in expectation in the Crisis Zone.

For b ∈ [0,bP ], bondholders purchase debt at price qPB(b) and collect r plus maturing principal until
b = bPB , at which point they sell at q∗. �e equilibrium is recovered by solving the system of di�erential
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equations:

ρV P
B (b) = C +V P ′

B (b) Ûb
(r + δ )qPB(b) = r + δ + qP ′B (b) Ûb

Ûb = C + (r + δ )b − y
qPB(b)

− δb,

with the boundary conditions V P
B (b

P
B) = V and qPB(b

P
B) = q∗. Note that these equations are identical to

those in the benchmark borrowing equilibrium except that the boundary condition bPB > bB and q∗ > q.
As is the case in the benchmark equilibrium, a necessary and su�cient condition forV P

B to be a solution
to the government’s problem when facing qPB is

V P
B (b) ≥

y − [r + δ (1 − qPB(b))]b
ρ

,

for all b ∈ [0,bB]. Following the same approach as in the proof of Proposition 9, we show that this
inequality holds as C →∞ uniformly over the full debt domain [0,bB].

As C →∞, we have for b ∈ [0,bB],

lim
C→∞

V P
B (b) = V P

B (bB) + q∗(bB − b)

lim
C→∞

y − [r + δ (1 − qPB(b))]b
ρ

=
y − [r + δ (1 − q∗)]b

ρ
.

Recall from the proof of Proposition 9, that

A(b) = V + q(bB − b) −
y − [r + δ (1 − q)]b

ρ
≥ 0

under the conditions of the proposition. Note that this implies

lim
C→∞

(
V P
B (b) −

y − [r + δ (1 − qPB(b))]b
ρ

)
= A(b) +

δ (q∗ − q)bB
ρ + λ

+ (q∗ − q)(bB − b) −
δ (q∗ − q)

ρ
b .

�is expression is linear in b, and hence it is su�cient to verify the inequality at the endpoints b = 0 and
b = bB . �e fact that A(0) > 0 and q∗ > q implies that the limit is strictly positive at b = 0. For b = bB , we
have

A(bB) −
δ (q∗ − q)bB

ρ + λ
−
δ (q∗ − q)

ρ
bB

=
y − [r + δ (1 − q)]bB + λV

ρ + λ
−
y − [r + δ (1 − q)]bB

ρ
+
δ (q∗ − q)bB

ρ + λ
−
δ (q∗ − q)

ρ
bB

=
−λ

ρ(ρ + λ)

(
y − [r + δ (1 − q∗)]bB − ρV

)
=

−λ
ρ(ρ + λ)

(
r (bS − bB) − δ (1 − q

∗)bB
)
> 0,

where the last inequality uses bB > bS . �is completes the proof of part (i).
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For part (ii), the saving equilibrium requires V P
B (bS ) ≤ V . As C →∞,

V P
B (bS ) = V

P
B (bB) + q∗(bB − bS )

=
y − rbB + λV

ρ + λ
+ bB − bS − (1 − q

∗)(bB − bS ) −
δ (1 − q∗)bB

ρ + λ

= V +
(ρ + λ − r )(bB − bS )

ρ + λ
− (1 − q∗)

(
bB − bS +

δbB
ρ + λ

)
.

As the second term is strictly positive, there exists a q̃ < 1 such that this expression exceeds V for q∗ > q̃,
hence violating the necessary condition for a saving equilibrium.

�

B.12 Proof of Proposition 11
Proof. For part (i), note that in the saving equilibrium undistorted by policy, qS (b) = 1 for b ≤ bS . Hence,
imposing a price �oor restricted to the Safe Zone does not alter the saving equilibrium, which exists by
Proposition 9. Hence, the price �oor is irrelevant under the saving equilibrium.

Using the notation introduced in the proof of Proposition 10, a necessary condition for the borrowing
equilibrium under the policy is for b ∈ [0,bPB]

V P
B (b) ≥

y − [r + δ (1 − qPB(b))]b
ρ

≥ y − [r + δ (1 − q∗)]b
ρ

.

Recall that in the construction of the borrowing equilibrium, bB is de�ned by solving the HJB assuming
qB(b) = q. Hence, V P

B (b) = VB(b) for b > bS , as the policy is restricted to b ∈ [0,bS ]. As VB(bS ) < V by the
inequality of Proposition 9, we have bPB < bS . For b = bPB , we have

V P
B (bPB) = V =

y − rbS
ρ

<
y − rbPB

ρ
,

where the �rst two equalities use the de�nitions of bPB and bS , respectively. Hence, there exists a q̂ < 1
such that

V P
B (bPB) <

y − [r + δ (1 − q∗)]bPB
ρ

,

for q∗ > q̂, violating the necessary condition for a borrowing equilibrium. �is proves part (ii).
�
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Appendix C: Viscosity Solutions on Strati�ed Domains and
the Proofs of Propositions 1 and 4

In this appendix, we establish the equivalence between the sequence problems and the viscosity solutions
of the Hamilton-Jacobi-Bellman (HJB) equations. �e two complications are that the objective and/or
the dynamics are not necessarily continuous in the state variables. We rely on the results of Bressan
and Hong (2007) (henceforth, BH) to establish the validity of the recursive formulation. �is appendix
introduces their environment and summarizes their core results. Relative to BH, we make minor changes
in notation and consider a maximization problem while the original BH studies minimization. We then
prove Propositions 1 and 4.

C.1 �e Environment of Bressan and Hong (2007)
LetX ⊂ RN denote the state space. In the benchmark BH environment, X = RN ; however, they show how
to restrict a�ention to an arbitrary subset by extending the dynamics and payo� functions to RN such
that the subset is an absorbing region. Let α(t) ∈ A denote the control function, where A is the set of
admissible controls. Dynamics of the state vector x are given by Ûx(t) = f (x(t),α(t)).

Given a discount factor β and a �ow payo� `(x ,α), the sequence problem is

W (x̄) = sup
α ∈A

∫ ∞

0
`(x(t),α(t))dt (56)

subject to

{
x(0) = x̄ ∈ X
Ûx(t) = f (x(t),α(t)).

�e complication BH address is that f may not be continuous in x . In particular, assume there is a
decomposition X =M1∪ ...∪MM with the following properties. If j , k , thenMj ∩Mi = ∅. In addition,
ifMj ∩Mk , ∅, thenMj ⊂ Mk , whereMk is the closure ofMk .

BH’s assumptionH1 ensures that dynamics are well behaved withinMi :

Assumption. H1: For each i = 1, ...,M , there exists a compact set of controls Ai ⊂ Rm , a continuous map
fi :Mi ×Ai → RN , and a payo� function `i , with the following properties:

(a) At each x ∈ Mi , all vectors fi (x ,a), a ∈ Ai are tangent toMi ;

(b) | fi (x ,a) − fi (z,a)| ≤ Ki |x − z |, for some Ki ∈ [0,∞), for all x , z ∈ Mi , a ∈ Ai ;

(c) Each payo� function `i is non-positive and |`i (x ,a) − `i (z,a)| ≤ Li |x − z |, for some Li ∈ [0,∞), for all
x , z ∈ Mi , a ∈ Ai ;24

(d) We have f (x ,a) = fi (x ,a) and `(x ,a) = `i (x ,a) whenever x ∈ Mi , i = 1, ...,M .

�e key assumption is (b); namely, that dynamics are Lipschitz continuous when con�ned to tangent
trajectories. �is does not restrict how the dynamics change when crossing the boundaries ofMi .

Let TMi (x) denote the cone of trajectories tangent toMi at x ∈ Mi :

TMi (x) ≡
{
y ∈ RN

���� limh→0

infz∈Mi |x + hy − z |
h

= 0
}
.

24We strengthen part (c) to incorporate the Lipschitz continuity condition stated in BH equation (46).
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Part (a) ofH1 is equivalent to fi (x ,a) ∈ TMi for all x ∈ Mi ,a ∈ Ai .
For x ∈ Mi , let F̂ (x) ⊂ RN+1 denote the set of achievable dynamics and payo�s for the set of controls

Ai :

F̂ (x) ≡ {( Ûx ,u)| Ûx = fi (x ,a),u ≤ `i (x ,a),a ∈ Ai } , (57)

where i is such that x ∈ Mi . To handle discontinuous dynamics, BH use results from di�erential inclusions.
In particular, let G(x) denote an extended set of feasible trajectories and payo�s:

G(x) ≡ ∩ϵ>0co
{
( Ûx ,u) ∈ F̂ (x ′)

��|x − x ′ | < ϵ} , (58)

where coS denotes the closed convex hull of a set S .
�e next key assumption is that G(x) does not contain additional trajectory-payo� pairs when re-

stricted to tangent trajectories:

Assumption. H2: For every x ∈ RN , we have

F̂ (x) =
{
( Ûx ,u) ∈ G(x)| Ûx ∈ TMi

}
. (59)

BH de�ne the Hamiltonian using G(x) as the relevant choice set:

H (x ,p) ≡ sup
( Ûx,u)∈G(x )

{u + p Ûx}. (60)

�e corresponding HJB is

βw(x) = H (x ,Dw(x)), (61)

where D is the di�erential operator. BH de�ne the following concepts:

De�nition 3. A continuous functionw is a lower solution of (61) if the following holds: Ifw −φ has a local
maximum at x for some continuously di�erential φ, then

βw(x) − H (x ,Dφ(x)) ≤ 0. (62)

De�nition 4. A continuous function w is an upper solution of (61) if the following holds: If x ∈ Mi , and
the restriction ofw − φ toMi has a local minimum at x for some continuously di�erential φ, then

βw(x) − sup
( Ûx,u)∈G(x ), Ûx ∈TMi

{u + Dφ Ûx} ≥ 0. (63)

De�nition 5. A continuous function w , which is both an upper and a lower solution of (61), is a viscosity
solution.

Note that the second de�nition di�ers from the �rst by restricting a�ention toMi when describing
the properties of w − φ, which relaxes the set of φ that satis�es the condition. However, the trajectories
in the Hamiltonian are restricted to lie in the tangent set.25 �e added properties are the core distinction
between the de�nition of viscosity solution used here versus the standard de�nition.26

25�e fact that trajectories are restricted toTMi in the de�nition of an upper solution was unintentionally omi�ed
in Bressan and Hong (2007) but is corrected in Bressan (2013).

26Note that we place the restriction on the upper solution while the original BH place it on the lower solution as
we consider a maximization problem.
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With these de�nitions in hand, we summarize the core results of BH:

(i) (BH �eorem 1) If H1 and H2 hold, and there exists at least one trajectory with �nite value, then
the maximization problem admits an optimal solution.

(ii) (BH Proposition 1) Let assumptionsH1 andH2 hold. If the value functionW is continuous, then it
is a viscosity solution of (61).

(iii) (BH Corollary 1) Let assumptionsH1 andH2 hold. If the value functionW is bounded and Lipschitz
continuous, thenW is the unique non-positive viscosity solution to (61).27

C.2 �e Planner’s Problem
To map problem (3) into BH, we make a few modi�cations and consider a generalized problem. First, we
let the planner randomize when the government is indi�erent to default or not. �is helps to convexify
the choice set. In particular, let π (t) ∈ [0, 1] be an additional choice, where π (t) is the probability the
government defaults when V arises and the current value is V . It will always be e�cient to set π (t) = 0
when v(t) = V , and so this does not alter the solution to the planner’s problem. We denote the set of
possible paths, π = {π (t) ∈ [0, 1]}t ≥0, by Π. �e controls are α = (c,π) ∈ A ≡ C × Π.

Recall that in (3) the objective is discounted by the probability of repayment, e−λ
∫ t

0 1[v (s )<V ]ds . Let us
de�ne Γ(t) as follows:

Γ(t) ≡ Γ(0)e−λ
∫ t

0 (π (s)1[v (s )=V ]+1[v (s )<V ]ds

for some Γ(0) ∈ (0, 1]. Note that Γ(t)/Γ(0) is the discount factor in the original problem with π = 0. By
adding Γ(t) as an additional state variable, we will be able to keep track of the probability of survival in
our recursive formulation.

LetX = V×(0, 1] denote the state space for x = (v, Γ). Let f (x ,α) = ( Ûv, ÛΓ) given the control α = (c,π ):

f (x ,α) =

Ûv = −c + ρv − 1[v<V ]λ

[
V −v

]
ÛΓ = −λ

[
π1[v=V ] + 1[v<V ]

]
Γ.

(64)

�e �ow value must be non-positive. We therefore subtract the constant (y −C)/r from the value. To
convert this into a �ow payo�, let

`(x ,a) ≡ Γ(y − c) − (y −C) ≤ 0,

where the inequality uses y > C and Γ ≤ 1. Note that ` is Lipschitz continuous in x .
Hence, we consider the following problem, where x(t) ≡ (v(t), Γ(t)):

P̃(v, Γ) = sup
α∈A

∫ ∞

0
e−r t `(x(t),α(t))dt (65)

subject to

{
(v(0), Γ(0)) = (v, Γ)
( Ûv(t), ÛΓ(t)) = f (x(t),α(t)).

27BH state a weaker continuity condition than Lipschitz continuity (BH H3) that is not necessary given our
environment.
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We then have a one-to-one mapping between P̃ and P?:

P̃(v, Γ) = ΓP?(v) − (y −C)/r . (66)

As P? is bounded and Γ ∈ (0, 1], P̃ is bounded. Similarly, P̃ is Lipschitz continuous in the state vector (v, Γ).
We now verify the conditions of BH. De�ne �ve regions of the state space:

M1 ≡ {V } × (0, 1]
M2 ≡ (V ,V ) × (0, 1]
M3 ≡ {V } × (0, 1]
M4 ≡ (V ,Vmax ) × (0, 1]
M5 ≡ {Vmax } × (0, 1].

Let Ai denote the controls that produce trajectories that are tangent toMi :28

Ai ≡ {(c,π )|c ∈ [C,C],π ∈ [0, 1], Ûx ∈ TMi }

=


{ρV − λ(V −V )} × [0, 1] if i = 1
{ρV } × [0, 1] if i = 3
{ρVmax } × [0, 1] if i = 5
[C,C] × [0, 1] otherwise.

(67)

Within eachMi , the dynamics f are Lipschitz continuous in x for all a ∈ Ai . It is straightforward to verify
that we satisfy AssumptionH1.

Let us now verify AssumptionH2. �ere two cases:

Case 1: i ∈ {2,4}. In this case, G(x) = F̂ (x), and BH AssumptionH2 is straightforward to verify.

Case 2: i ∈ {1,3,5}. We show the i = 3 case (as the others are similar). We have29

F̂ (x) =
{
( Ûx ,u)| Ûv = 0, ÛΓ = −πλΓ,u ≤ `(x , (ρV ,π )),π ∈ [0, 1]

}
(68)

=
{
( Ûx ,u)| Ûv = 0, ÛΓ ∈ [−λΓ, 0],u ≤ Γ(y − ρV ) − (y −C)

}
= {0} × [−λΓ, 0] × (−∞, Γ(y − ρV ) − (y −C)]. (69)

Let x ′ = (v ′, Γ′) be in the neighborhood of x = (V , Γ). We have

F̂ (x ′) =
{
( Ûx ,u)

��
Ûv = −c + ρv ′ − λ1{v ′<V }(V −v

′),
ÛΓ ∈ [−λ1{v ′<V }Γ, 0],

u ≤ Γ(y − c) − (y −C), c ∈ [C,C]
}
.

28For i = 1, 3, 5, the tangent trajectories set Ûv = 0. Otherwise, they are the full set of trajectories.
29Note this is the only case where the choice of π is relevant.
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We have that

∪ |x ′−x | ≤ϵ F̂ (x ′) ⊆ R(x , ϵ) ≡
{
Ûv = −c + θ ,
ÛΓ = [−λ(Γ + ϵ), 0],
u ≤ (Γ + ϵ − 1)y − (Γ − ϵ)c + c,
θ ∈ [ρ(V − ϵ) − λϵ, ρ(V + ϵ)]

c ∈ [C,C]
}
.

Note that R(x , ϵ) is convex and G(x) = ∩ϵ>0R(x , ϵ). Also note that

F̂ (x) = {( Ûx ,u) ∈ G(x)| Ûx ∈ TM3},

where the equivalence uses the de�nitions of G, F̂ , and the tangent trajectories TM3 . �is veri�es BHH2
forM3.

Similar steps hold for i = 1 and 5, verifying AssumptionH2 for all domains.30

As noted above, P̃ is bounded and Lipschitz continuous. Hence, by BH Corollary 1, it is the unique
viscosity solution with such properties for the HJB:

r P̃(v, Γ) = H ((v, Γ), (P̃V , P̃Γ)) ≡ sup
(c,π )∈[C,C]×[0,1]

{
Γ(y − c) − (y −C) + P̃v Ûv + P̃Γ ÛΓ

}
, (70)

where Ûv and ÛΓ obey equation (64). Here, we have used the fact thatG(x) contains the full set of trajectories
generated by c ∈ [C,C] and π ∈ [0, 1]. Note that it is optimal to set π to 0, and thus we can ignore this
choice in the Hamiltonian in what follows. We shall use the fact that H is convex in P̃v .

C.3 Proof of Proposition 1
Proof. Suppose that p(v) satis�es the conditions in the proposition. We shall show that p̃(v, Γ) ≡ Γp(v) −
(y −C)/r is a viscosity solution of (70). p̃ is di�erentiable in Γ at all points, and in v at points where p(v)
is di�erentiable. We now check the conditions for a viscosity solution. We proceed by checking on each
domainMi .

(i) (v, Γ) ∈ M2 ∪M4

As p is di�erentiable on this part of the domain, by condition (i) of the proposition, we have

rp(v) = sup
c ∈[C,C]

{
y − c + p ′(v) Ûv + 1[v<V ]p(v)

}
= sup

c ∈[C,C]

{
y − c + Γ−1p̃v Ûv + Γ−1p̃Γ ÛΓ

}
,

where the second line uses p̃v = Γp ′(v) and p̃Γ ÛΓ/Γ = −λ1[v<V ]p. Multiplying through by Γ ∈ (0, 1]

30Forv = V , we extend the dynamics to both sides ofV by se�ing Ûv = −c+ρv−λ(V −v) in the neighborhoodv < V
and ` arbitrarily low. �us, the dynamics are continuous at x = (V , Γ). Similarly for v = Vmax , we set Ûv = −c + ρv .
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and subtracting (y −C)/r from both sides yields

rp̃(v) = r (Γp(v) − (y −C)) = sup
c ∈[C,C]

{
Γ(y − c) − (y −C)/r + p̃v Ûv + p̃Γ ÛΓ

}
= H ((v, Γ), (p̃v , p̃Γ)).

Hence, p̃ satis�es (70).

Now consider a point of non-di�erentiability ṽ . As (v, Γ) < M3, ṽ , V , and hence condition (iii)
of the proposition is applicable. Condition (iii) states that p−ṽ ≡ limv↑ṽ p

′(v) < limv↓ṽ p
′(v) ≡ p+ṽ ).

Hence, there is a convex kink. In this case, the lower solution does not impose additional conditions,
leaving the conditions for an upper solution to be veri�ed. Suppose φ is di�erentiable and p̃ − φ has
a local minimum at (ṽ, Γ). �en φv ∈ [p−ṽ ,p

+
ṽ ]. As p̃ is di�erentiable in Γ, we have φΓ = p̃Γ . Note that

rp̃(ṽ) = H ((ṽ, Γ), (p−ṽ , p̃Γ)) = H ((ṽ, Γ), (p+ṽ , p̃Γ)), (71)

as the HJB holds with equality at points of di�erentiability in the neighborhood of ṽ , and using the
continuity of H .

Note that there exists α ∈ [0, 1] such that φv = αp+ṽ + (1 − α)p
−
ṽ . �e convexity of H with respect to

φv implies that

H ((ṽ, Γ), (φv ,φΓ)) = H ((ṽ, Γ), (αp+ṽ + (1 − α)p
−
ṽ ,φΓ))

≤ αH ((ṽ, Γ), (p+ṽ ,φΓ)) + (1 − α)H ((ṽ, Γ), (p−ṽ ,φΓ))
= rp̃(ṽ),

where the last equality uses (71) andφΓ = p̃Γ . Hence, p̃(ṽ) satis�es the conditions of an upper solution.

(ii) (v, Γ) ∈ M3 = {V } × (0, 1]
Turning to v = V , we rede�ne p+v ≡ limv↓V p ′(v) and p−v ≡ limv↑V p ′(v). Given the continuity of p
and the fact that it satis�es the HJB in the neighborhood of V with equality, we have

rp(V ) = sup
c ∈[C,C]

{y − c + p+v Ûv} (72)

= sup
c ∈[C,C]

{y − c + p−v Ûv − λp(V )},

where Ûv = −c + ρV . As se�ing c = ρV is always feasible, this implies rp(V ) ≥ (y − ρV ) ≥ 0.

To verify that p̃ is a viscosity solution to (60), note that if p̃ is di�erentiable, then it satis�es the HJB
with equality by condition (i) of the proposition.

If it is not di�erentiable, we consider convex and concave kinks in turn.

Suppose that p−v < p+v . �en the conditions for a lower solution do not impose any restrictions. For
an upper solution, consider a φ such that p̃ −φ has a local minimum at (V , Γ). Again, φΓ = p̃Γ = p(V ).
Recall that for an upper solution, we need only consider trajectories that are in TM3 , that is, Ûv = 0
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and thus c = ρV . Hence:

rp̃(V ) = rΓp(V ) − (y −C)
≥ Γ(y − ρV ) − (y −C)

= sup
c=ρV

Γ(y − c) − (y −C) + φv
(
−c + ρV

)
︸      ︷︷      ︸

Ûv


= sup

c=ρV ,π ∈[0,1]

Γ(y − c) − (y −C) + φv
(
−c + ρV

)
︸      ︷︷      ︸

Ûv

−p(V ) × πλΓ︸        ︷︷        ︸
φΓ×ÛΓ

 ,
where the last equality uses p(V ) ≥ 0. Note that �nal term is the Hamiltonian maximized along
tangent trajectories in TM3 . �us, the conditions of an upper solution are satis�ed.

For the lower solution, we must consider the case in which p̃ − φ has a local maximum at (V , Γ).
�is requires p−v ≥ p+v and φv ∈ [p+v ,p−v ]. Again, as p̃ is di�erentiable with respect to Γ, we have
φΓ = p̃Γ = p(V ).
If p+v ≤ −1, then condition (ii) in the proposition implies that

rp̃(V ) = Γ(y − ρV ) − (y −C)

≤ sup
c ∈[C,C],π ∈[0,1]

Γ(y − c) − (y −C) + φv (−c + ρV )︸      ︷︷      ︸
Ûv

+φΓ (−πλΓ)︸  ︷︷  ︸
ÛΓ


= H ((V , Γ), (φv ,φΓ)),

where the second to the last line follows from φΓ = p(V ) ≥ 0. Hence, p̃(V ) = Γp(V ) − (y − C)/r
satis�es the condition for a lower solution when p+v ≤ −1.

Alternatively, if p+v > −1, then

rp(V ) = sup
c ∈[C,C]

{y − c + p+v (−c + ρV )}

= y −C + p+v (ρV −C)
≤ y −C + φv (ρV −C),

for φv ≥ p+v as ρV > C . Hence,

rp̃(V ) ≤ sup
c ∈[C,C],π ∈[0,1]

Γ(y − c) − (y −C) + φv (−c + ρV )︸      ︷︷      ︸
Ûv

+φΓ (−πλΓ)︸  ︷︷  ︸
ÛΓ


for φv ∈ [p+v ,p−v ] and φΓ = p(V ), satisfying the condition for a lower solution.

(iii) (v, Γ) ∈ M1 = {V } × (0, 1]
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For v = V , the condition for p̃ to be an upper solution is

rp̃(V , Γ) ≥ Γ
(
y − ρV + λ(V −V )

)
− (y −C) − λp(V )Γ,

where the right-hand side is the Hamiltonian evaluated at Ûv = 0. As p̃ satis�es the HJB with equality
in the neighborhood of V , we have

p(V , Γ) = lim
v↓V

rp̃(v, Γ) = lim
v↓V

H ((v, Γ), (Γp ′(v),p(v)))

≥ lim
v↓V

{
Γ

(
y − ρv + λ(V −v)

)
− (y −C) − λp(v)Γ,

}
= Γ

(
y − ρV + λ(V −V )

)
− (y −C) − λp(V )Γ.

Hence, p̃ is an upper solution.

Turning to the lower solution, suppose p̃ − φ has a local maximum at (V , Γ). AsV is at the boundary
of the state space, this implies φv ≥ p̃v (V , Γ) and φΓ = p(V ). A lower solution requires

rp̃(V , Γ) ≤ H ((V , Γ), (φv ,φΓ)).

Suppose p ′(V ) < −1. �en, condition (iv) of the proposition implies

rp̃(V , Γ) = rΓp(V ) − (y −C)

= rΓ

(
y − ρV + λ(V −V )

r + λ

)
− (y −C)

=

(
1 − λ

r + λ

)
Γ

(
y − ρV + λ(V −V )

)
− (y −C)

≤ sup
c ∈[C,C]

Γ(y − c) − (y −C) + φv (−c + ρV − λ(V −V ))︸                      ︷︷                      ︸
Ûv

+φΓ (−λΓ)︸︷︷︸
ÛΓ


= H ((V , Γ), (φv ,φΓ)),

where the inequality uses

−φΓλΓ = −p(V )λΓ

= −
(
y − ρV + λ(V −V )

) λ

r + λ
Γ.

�is veri�es that p̃ is a lower solution if p ′(V ) < −1.
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Turning to p ′(V ) ≥ −1,

H ((V , Γ),(φv ,φΓ)) =

= sup
c ∈[C,C]

Γ(y − c) − (y −C) + φv (−c + ρV − λ(V −V ))︸                      ︷︷                      ︸
Ûv

+φΓ (−λΓ)︸︷︷︸
ÛΓ


= Γ(y −C) − (y −C) + φv (−C + ρV − λ(V −V ))︸                       ︷︷                       ︸

>0

+φΓ(−λΓ)

≥ Γ(y −C) − (y −C) + p̃v (V , Γ)(−C + ρV − λ(V −V )) + φΓ(−λΓ)
= H ((V , Γ), (p̃v , p̃Γ)) = rp̃(V , Γ),

where the second equality uses the fact thatC is optimal when φv ≥ Γp ′(v) ≥ −Γ; the inequality uses
the fact that φv ≥ p̃v and the term multiplying φv is positive; and the last line uses the continuity of
the Hamiltonian and the value function, and that C is optimal given p ′(V ) ≥ −1. �is veri�es that p̃
is a lower solution if p ′(V ) ≥ −1.

(iv) (v, Γ) ∈ M5 = {Vmax } × (0, 1]
For v = Vmax , the condition for p̃ to be an upper solution is

rp̃(Vmax , Γ) ≥ Γ (y − ρVmax ) − (y −C),

where the right-hand side is the Hamiltonian evaluated at Ûv = 0. As p̃ satis�es the HJB with equality
in the neighborhood of Vmax , we have

rp̃(Vmax , Γ) = lim
v↑Vmax

rp̃(v, Γ) = lim
v↑Vmax

H ((v, Γ), (Γp ′(v),p(v)))

≥ lim
v↑Vmax

{
Γ (y − ρv) − (y −C)

}
= Γ (y − ρVmax ) − (y −C).

Hence, p̃ is an upper solution.

For the lower solution, suppose p̃ − φ has a local maximum at (Vmax , Γ). �is implies φv ≤ p̃v =
Γp ′(Vmax ) and φΓ = p(Vmax ). �e condition for a lower solution is

rp̃(Vmax , Γ) ≤ sup
c ∈[C,C]

Γ(y − c) − (y −C) + φv (−c + ρVmax )︸          ︷︷          ︸
Ûv


= H ((V , Γ), (φv ,φΓ)).

By condition (v) of the proposition, we have p ′(Vmax ) ≤ −1, implying that φv ≤ −Γ. Hence, c = C
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achieves the optimum in H ((V , Γ), (φv ,φΓ)). �at is,

H ((V , Γ), (φv ,φΓ)) = Γ(y −C) − (y −C) + φv (−C + ρVmax )︸           ︷︷           ︸
Ûv

≥ Γ(y −C) − (y −C) + p̃v (−C + ρVmax )
= rp̃(Vmax , Γ),

where the inequality uses φv ≥ p̃v and C ≥ ρVmax ; and the �nal line uses continuity of H and p̃.
Hence, p̃ is a lower solution at (Vmax , Γ).

We have shown that p̃ implied by a p satisfying the conditions of the proposition is a viscosity solution
of the planner’s problem. �

C.4 �e Competitive Equilibrium
�is section maps the government’s problem into the BH framework.

Let us �rst de�ne the following operator T that takes as an input a candidate value function, Ṽ (b),
assumed to be bounded and Lipschitz continuous, and a debt dynamics function f (b, c) that embeds the
price function, q(b):

TṼ (b) =
∫ ∞

0
e−(r+λ)t

(
c(t) + λD(b(t)|Ṽ )

)
(73)

subject to:
Ûb(t) = f (b(t), c(t))
b(0) = b,

where

D(b |Ṽ ) ≡ 1[Ṽ (b)<V ](V − Ṽ (b)).

�e government’s equilibrium value function is a �xed point of this operator. We shall map the right-hand
side problem into the BH framework and use recursive techniques to solve the optimization. Toward this
goal, let

`(b, c) ≡ c + λD(b |Ṽ ).

Note that `(b, c) so de�ned is Lipschitz continuous and bounded. To be consistent with BH, we also need
a non-positive `. �is can be achieved by subtracting the maximum value of `. Rather than carrying this
notation through, we proceed with the objects de�ned above, recognizing that all �ow utilities and values
can be appropriately translated (as we did explicitly in the planning problem).

Turning to the dynamics, f (b, c), suppose the government faces a closed, convex domain B and an
equilibrium price schedule q : B → [q, 1] that is di�erentiable almost everywhere with |q′(b)| < M < ∞.

Letb0 ≡ −a; b1, ...,bN denote the N points of non-continuity inq; andbN+1 ≡ b. We consider equilibria
in which lim supb→bn q(b) = q(bn), as our tie-breaking rule is that the government chooses the action that
maximizes the price when indi�erent.

To de�ne the domains, letMn ≡ (bn−1,bn), n = 1, ...,N+1, be the open sets on whichq is di�erentiable.
Let MN+1+n ≡ {bn}, n = 1, ...,N be the isolated points of non-di�erentiability. Finally, we have the
endpoints of the domain: {−a} and {b}.
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In the neighborhood of a discontinuity, we rule out repurchases at the “low price” (see footnotes 17
and 21). We do this while ensuring the continuity of dynamics. Speci�cally, let ∆ > 0 be arbitrarily small;
and in particular, ∆ < infn |bn −bn−1 |/2. De�ne α(b) ≡ min{|b −bn |/∆, 1}, where bn is the closest point of
non-di�erentiability to b. Note that α(b) ∈ [0, 1], and equals one if |b − bn | ≥ ∆. Debt dynamics are given
by

f (b, c) =
{ c−y+(r+δ )b

q(b) − δb if c ≥ y − (r + δ )b
c−y+(r+δ )b

α (b)q(b)+(1−α (b))q(bn ) − δb if c < y − (r + δ )b .
(74)

Note that f (b, c) is Lipschitz continuous in b and c within the domainsMn .
On the open setsMn , n = 1, ...,N +1, any c ∈ An ≡ [C,C] results in a tangent trajectory. For n > N +1,

c ∈ An ≡ y − [r + δ (1 − q(bn))]bn is the singleton set that generates a tangent trajectory to the isolated
pointMn . Hence, BH assumptionH1 is satis�ed.

Following BH, de�ne

F̂ (b) ≡
{
( Ûb,u)

�� Ûb = f (b, c),u ≤ `(b, c), c ∈ An
}
. (75)

If b = bn for some n, we have

F̂ (bn) = {0} × {u ≤ `(b,y − [r + δ (1 − q(bn))]bn)}. (76)

Otherwise,

F̂ (b) =
{
( Ûb,u)

�� Ûb ∈ [f (b,C), f (b,C)],u ≤ `(b,q(b)( Ûb + δb) + y − (r + δ )b)} . (77)

Finally, de�ne

G(b) ≡ ∩ε>0co
{
( Ûb,u) ∈ F̂ (b ′) such that |b ′ − b | < ε

}
. (78)

To characterize this set, if b , bn , then G(b) = F̂ (b) as f is continuous within the open set Mn , n =
1, ...,N + 1, and the tangent trajectories are generated by c ∈ [C,C]. For b = bn for some n, we have

G(bn) =
{
( Ûb,u)| Ûb = f (b, c),u ≤ `(b, c), c ∈ [C,C]

}
.

For this case, restricting a�ention to c = y − [r + δ (1 − q(bn))]bn yields F̂ (bn). Hence BH assumption H2
is satis�ed.

We use the assumption regarding repurchases around a point of discontinuity in q to rule out the
following. Suppose that the following trajectory was feasible: Ûb < −δb and c = lim infb→bn q(bn)( Ûb −δb)−
(r + δ )b + y > q(bn)( Ûb − δb) − (r + δ )b + y. �en, in the convexi�cation generating G(bn), a trajectory
featuring Ûb = 0 and c > y − [r + δ (1 − q(bn))]b would appear. �is new trajectory would be generated
by locating two trajectories featuring Ûb < −δb and Ûb > −δb, such that their convex combination leads to
Ûb = 0. Because for the trajectory with Ûb > −δb we have that c = C , the associated convex combination of
the consumptions of these two trajectories would then be strictly greater than the stationary consumption
in F̂ (bn), violatingH2.

BH Proposition 1 and Corollary 1 then imply that the solution toTṼ is the unique bounded, Lipschitz
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continuous viscosity solution to

ρ(TṼ )(b) = sup
c ∈[C,C]

{
c + λD(b |Ṽ ) + (TṼ )′(b)f (b, c)

}
.

As V is a �xed point of the operator, the government’s value V is a viscosity solution to

ρV (b) = H (b,V ′(b)) ≡ sup
c ∈[C,C]

{
c + λ1[V (b)<V ](V −V (b)) +V

′(b)f (b, c)
}
, (79)

where the term λ1[V (b)<V ](V −V (b)) is taken as a given function of b in verifying the viscosity conditions.

C.5 Proof of Proposition 4
Proof. We need to verify that if v satis�es the conditions of the proposition, it also satis�es the conditions
for a viscosity solution. �e proof and details parallel that of the proof for Proposition 1, and we omit some
of the identical steps.

Lower solution conditions. In regard to the conditions for a lower solution, condition (i) in the
proposition ensures these are met wherever v is di�erentiable on the interior ofB. At the boundaries, −a
and b, conditions (iv) and (v) of the proposition state that v equals the stationary value. Hence, ρv(b) ≤
H (b,φ ′(b)), b ∈ {−a,b}, for any φ ′(b), as Ûb = 0 is always feasible.

For a non-di�erentiability at b, the same argument as for P(V ) in the proof of Proposition 1 applies.
�at is, if v has a concave kink, then condition (ii) imposes that value must be the stationary value, which
is (weakly) less than H (b,φ ′(b)) for any φ ′(b). For a convex kink, the lower solution does not impose any
restrictions.

At all other points of non-di�erentiability, condition (iii) states thatv has a convex kink, and therefore
v − φ cannot have a local maximum for a smooth function φ. �us, the lower solution does not impose
any restrictions.

Upper solution conditions. For the upper solution, condition (i) of the proposition states that v
satis�es the de�nition of an upper solution wherever it is di�erentiable. For points of non-di�erentiability
at b̃ , b, �rst suppose that q is continuous at b̃. Condition (iii) guarantees that v has a convex kink at b̃,
and as in the proof of Proposition 1, then the convexity of H (b,φ ′(b)) in φ ′(b) ensures the upper solution
inequality is satis�ed. If q is not continuous at b̃, then the “tangent trajectories” are restricted to Ûb = 0.
Hence, we need to check thatv is weakly greater than the stationary value. �is is satis�ed by a continuity
argument that parallels that in the proof of Proposition 1.

�
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