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Abstract

Using an aggregative games approach, we analyze horizontal mergers in a model

of multiproduct-firm price competition with nested CES or nested logit demands. We

show that the Herfindahl index provides an adequate measure of the welfare distortions

introduced by market power, and that the induced change in the naively-computed

Herfindahl index is a good approximation for the market power effect of a merger. We

also provide conditions under which a merger raises consumer surplus, and conditions

under which a myopic, consumer-surplus-based merger approval policy is dynamically

optimal. Finally, we study the aggregate surplus and external effects of a merger.

Keywords: Multiproduct firms, aggregative game, oligopoly pricing, market power,

horizontal merger, Herfindahl index.

1 Introduction

Using an aggregative games approach, we provide an analysis of horizontal mergers in a mo-

del of multiproduct-firm price competition with nested CES (NCES) or nested multinomial

logit (NMNL) demand systems. The paper makes three contributions. First, we show that

the Herfindahl index, which plays an important role in antitrust practice, provides an ade-

quate measure of the welfare distortions introduced by market power, and that the induced

change in the (naively-computed) Herfindahl index is a good approximation for the market

power effect of a merger. Second, we provide conditions under which a merger raises consu-

mer surplus, and conditions under which a myopic, consumer-surplus-based merger approval

∗Some of the results presented in this paper were previously part of the working-paper version of Nocke and
Schutz (2018). That paper was later split and the published version does not contain those results. We thank
seminar participants at the London School of Economics for helpful comments. We gratefully acknowledge
financial support from the Deutsche Forschungsgemeinschaft (DFG) through CRC TR 224. The first author
also thanks the European Research Council (ERC) for generous financial support through grant no. 313623.
†University of California, Los Angeles; NBER; and CEPR. Email: volker.nocke@gmail.com.
‡University of Mannheim. Email: schutz@uni-mannheim.de.
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policy is dynamically optimal. Third, we study the aggregate surplus and external effects of

a merger.

Almost all mergers involve multiproduct firms. This is reflected in the literature on

merger simulation (e.g., Hausman, Leonard, and Zona, 1994; Werden and Froeb, 1994; Nevo,

2000a; Peters, 2006; Miller and Weinberg, 2017) and in the literature on the upward-pricing

pressure of mergers (e.g., Werden, 1996; Goppelsroeder, Schinkel, and Tuinstra, 2008; Farrell

and Shapiro, 2010; Jaffe and Weyl, 2013), both of which have heavily influenced antitrust

practice. Despite this, much of the theoretical literature on horizontal mergers and antitrust,

including Farrell and Shapiro (1990), McAfee and Williams (1992), and Nocke and Whinston

(2010, 2013), has focused on single-product firms in the homogeneous-goods Cournot setting.

An open question is to what extent the insights derived in that earlier literature carry over

to more realistic models of price competition with multiproduct firms.1

There are several desiderata for a flexible model of horizontal mergers and merger control:

First, the underlying demand system should have sound micro-foundations and allow for

flexible substitution patterns. Second, the model should allow for arbitrary firm and product

heterogeneity (e.g., in terms of marginal costs, qualities, size of product portfolios). Third,

the underlying oligopoly game should be tractable and give rise to a unique equilibrium.

Fourth, the model should permit rich forms of merger-specific synergies (e.g., marginal cost

reductions, quality improvements, new products). Finally, for the model to be useful for

antitrust practitioners, its predictions should ideally relate to easily observable sufficient

statistics such as firm-level market shares and concentration ratios.

In this paper, we develop a model that, despite its limitations, goes a long way to-

wards satisfying these desiderata. The competitive setting underlying our merger analysis

is a game of price competition with multiproduct firms and NCES/NMNL demands. This

class of demand systems has discrete/continuous choice micro-foundations and, through its

nest structure, allows for substitution patterns that go beyond those of the independence-

of-irrelevant-alternatives (IIA) property. Indeed, variants of this class are ubiquitous in the

empirical industrial organization literature (e.g., Berry, 1994; Berry, Levinsohn, and Pakes,

1995; Goldberg, 1995; Verboven, 1996; Goldberg and Verboven, 2001; Nevo, 2001; Björner-

stedt and Verboven, 2016). We allow quality and marginal costs to differ arbitrarily across

products, and firms to own the property rights over arbitrary collections of nests of pro-

ducts. The assumption that each nest is entirely owned by one firm implies that competition

between firms takes place across nests, and not within nests.

The NCES/NMNL demand specification, in conjunction with our restriction on the ow-

nership structure of nests, gives rise to an aggregative game: Each firm’s profit depends on

rival firms’ prices only through a single-dimensional aggregator. In equilibrium, each firm

1For instance, Whinston (2007) notes: ‘[...] the Farrell and Shapiro analysis is based on the strong
assumption that market competition takes a form that is described well by the Cournot model, both before
and after the merger. [...] There has been no work that I am aware of extending the Farrell and Shapiro
approach to other forms of market interaction. The papers that formally study the effect of horizontal mergers
on price and welfare in other competitive settings [...] all assume that there are no efficiencies generated by
the merger.”

2



charges the same markup—the relative markup under NCES demand and the absolute mar-

kup under NMNL demand—for each of its products. Moreover, type aggregation obtains: All

relevant information about a firm’s product portfolio (the number of nests, the numbers of

products within the various nests, as well as the qualities and marginal costs of the products)

can be summarized in a single-dimensional sufficient statistic—the firm’s “type.” Building

on the aggregative games approach taken in Nocke and Schutz (2018), we show that there

exists a unique pricing equilibrium, with intuitive comparative statics. The resulting levels of

consumer surplus and aggregate surplus can be expressed as functions of firms’ equilibrium

market shares.

At the heart of the review of a horizontal merger by an antitrust authority is the Wil-

liamson (1968) trade-off between the merger’s market power effect (which is due to the

internalization of pricing externalities post merger) and its efficiency effect (which is due to

potential merger-specific synergies). In our model, merger-induced synergies can take many

forms: Some of the marginal costs of the merged firms’ products may go down (while those of

other may go up); some of the products’ qualities may improve (while others may degrade);

and the merged entity may offer new products (while possibly withdrawing others). The type

aggregation property allows us to refrain from imposing any restrictions on the nature of the

synergies as all relevant information can be summarized in the merged firm’s post-merger

type.

The Herfindahl index (HHI) is often used to quantify market power. Using the out-

come under monopolistic competition as the appropriate competitive benchmark in our

differentiated-products setting, we show that the Herfindahl index provides an adequate

measure of the welfare distortions introduced by market power. Specifically, using a Tay-

lor approximation, we show that the difference in the outcomes of our welfare measures

(consumer surplus and aggregate surplus) under oligopoly and monopolistic competition is

proportional to the Herfindahl index.

The Herfindahl index also plays important role in merger control.2 Defining the market

power effect of a merger as its effect in the absence of synergies, we use a Taylor approx-

imation to show that the market power effect on consumer surplus and aggregate surplus

is proportional to the naively-computed, merger-induced variation in the Herfindahl index.

Our results thus provide some justification for the use of the Herfindahl index in antitrust

practice.

We also provide an analysis of the consumer surplus effects of mergers that does not rely

on approximations. We show that, for any merger, there exists a unique cutoff such that the

merger increases consumer surplus if the post-merger type is above that cutoff, and decreases

consumer surplus if it is below. As in the homogeneous-goods Cournot model (Farrell and

Shapiro, 1990), for a merger to increase consumer surplus it must involve synergies. Moreover,

the required synergies are larger the less competitive is the market pre-merger and the larger

2For instance, in the U.S. Horizontal Merger Guidelines, the pre-merger Herfindahl index and the “naively-
computed” merger-induced change in the Herfindahl index are proposed as indicators of the “likely compe-
titive effects of a merger.”
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are the merging parties. This suggests that mergers inducing a larger increase in the naively-

computed Herfindahl index should indeed receive additional scrutiny.

Embedding the static pricing game in a dynamic model in which merger opportunities

arise stochastically over time and, in every period, firms involved in feasible but not-yet-

approved mergers have to decide whether to propose their merger, and the antitrust authority

has to decide which (if any) of the proposed mergers to approve, we show that a completely

myopic merger approval policy is dynamically optimal. This extends the main insight of

Nocke and Whinston (2010), derived in a homogeneous-goods Cournot setting, to the case

of differentiated-products price competition with NCES or NMNL demands.

Turning to the aggregate surplus effects of mergers, we show that there also exists a post-

merger cutoff type above which a merger increases aggregate surplus, and below which it

decreases aggregate surplus.3 That cutoff type is lower than the one for a consumer surplus

standard: For a merger to increase aggregate surplus requires fewer synergies than for it to

increase consumer surplus, and may not require any synergies at all.

Building on Farrell and Shapiro (1990)’s analysis of the homogeneous-goods Cournot

setting, we also study the external effect of a merger, defined as the sum of the effect on con-

sumer surplus and the non-merging firms’ profits. The aggregative properties of our oligopoly

model allow us to decompose a merger into a sequence of infinitesimal mergers, where, along

the sequence, the value of the aggregator increases continuously from its pre-merger to its

post-merger equilibrium value. Building on this insight, we show that a consumer-surplus-

decreasing merger is more likely to have a positive external effect if the non-merging firms

command larger pre-merger market shares and if these pre-merger market shares are more

concentrated.4 We also provide a simple and easily-implementable test to check whether a

consumer-surplus-decreasing merger has a positive external effect. That test only requires

knowledge of the pre-merger market shares and of a demand elasticity parameter.

Our paper is related to several strands of literature. In a diagrammatic analysis of a

merger from perfect competition to monopoly, Williamson (1968) was the first to identify

the welfare trade-off between the market power effect of a merger and its efficiency effect.

Farrell and Shapiro (1990) provide a thorough analysis of this trade-off in a homogeneous-

goods Cournot model. They provide a necessary and sufficient condition for a merger to

increase consumer surplus, and sufficient conditions for the external effect of a merger to be

positive. In a dynamic setting with endogenous merger proposals (and approvals), Nocke

and Whinston (2010) study the dynamic optimality of a myopic, consumer-surplus-based

merger approval policy in a homogeneous-goods Cournot model. In Sections 4 and 5.2, we

extend Farrell and Shapiro (1990) and Nocke and Whinston (2010)’s analysis to the case of

3An analogous result is unavailable in the homogeneous-goods Cournot model.
4The converse holds if the merger under consideration is consumer-surplus-increasing.
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differentiated-goods price competition with multiproduct firms.5,6,7

The literature on upward pricing pressure, pioneered by Werden (1996), attempts to

operationalize the Williamson (1968) trade-off using information local to the pre-merger

equilibrium. Werden (1996) considers a merger between two single-product firms competing

in prices and, using pre-merger markups, diversion ratios and prices as primitives, computes

the critical level of synergies that makes the merger price-reducing. Goppelsroeder, Schinkel,

and Tuinstra (2008) extend this approach to mergers among multiproduct firms under price

or quantity competition. Farrell and Shapiro (2010) provide guidance on how to implement

upward pricing pressure tests in practice. Using a Taylor approximation around zero upward

pricing pressure in a multiproduct-firm setting, Jaffe and Weyl (2013) formalize Farrell and

Shapiro (2010)’s intuition that local information on pass-through rates can be combined with

upward pricing pressure indices to obtain the likely price effect of a merger. The approxi-

mation results we provide in Section 3.3 are of a different nature; those results are obtained

around small market shares or around monopolistic competition conduct and relate explicitly

the market power effect of a merger to easily-observable concentration ratios. We also derive

exact conditions on the consumer surplus and aggregate surplus effects of mergers. Finally,

in contrast to the literature on upward pricing pressure, we allow synergies to materialize

not only through marginal cost reductions, but also through quality improvements and new

products.

The Herfindahl index is a key sufficient statistic in our approximation results in Section 3.

In previous work on the homogeneous-goods Cournot model, the Herfindahl index has been

shown to provide a measure of an industry’s average markup and profitability; see, for in-

stance, Cowling and Waterson (1976), and Belleflamme and Peitz (2010) for a textbook

treatment.8 We are, however, aware of only few results linking the Herfindahl index to indu-

stry performance measures in models of differentiated-products industries. In a model with

CES preferences and price or quantity competition, Grassi (2017) relates the industry average

markup to the Herfindahl index. In Feenstra and Weinstein (2017)’s model with translog

preferences, the representative consumer’s indirect utility depends on the Herfindahl index

both directly, due to translog preferences, and indirectly, due to endogenous markups. To

the best of our knowledge, our paper is the first to link explicitly the market power distor-

5A separate, less-related strand of literature studies the profitability of mergers in the absence of merger-
specific synergies (Salant, Switzer, and Reynolds, 1983; Perry and Porter, 1985; Deneckere and Davidson,
1985). Another literature, pioneered by Kamien and Zang (1990), studies the limits of monopolization
through mergers in the absence of antitrust policy.

6A recent literature focuses on the effects of mergers and merger policy on investment and innovation
(e.g., Gowrisankaran, 1999; Mermelstein, Nocke, Satterthwaite, and Whinston, 2014; Motta and Tarantino,
2017; Federico, Langus, and Valletti, 2018; Bourreau, Jullien, and Lefouili, 2018).

7Anderson, Erkal, and Piccinin (2013) use an aggregative games approach to study an oligopoly model
with single-product firms under price or quantity competition. They show that a merger without synergies
lowers consumer surplus in the short run. In the long-run free-entry equilibrium, ignoring integer constraints,
such a merger does not affect consumer surplus.

8Dansby and Willig (1979) show that, in the homogeneous-goods Cournot model, the industry performance
gradient index, which measures the rate of potential improvement in aggregate surplus from a small variation
in the output vector, is proportional to the square root of the Herfindahl index.
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tion to consumer surplus and aggregate surplus to the Herfindahl index, and to show that

the market power effect of a merger is approximately proportional to the naively-computed,

merger-induced variation in that index.

The remainder of the paper is organized as follows. In Section 2, we introduce the

oligopoly model and solve it using aggregative games techniques. There, we also show that

the type aggregation property permits a tractable analysis of mergers in multiproduct-firm

oligopoly. Section 3 shows that the Herfindahl index provides an adequate approximation

of the welfare distortion from oligopolistic behavior, and that the merger-induced, naively

computed variation in the Herfindahl index approximates the market power effect of a merger.

Our results on the consumer surplus effects of mergers, in both static and dynamic settings,

are derived in Section 4. Section 5 presents our results on the aggregate surplus and external

effects of mergers. Section 6 concludes.

2 Mergers in Multiproduct-Firm Oligopoly

In this section, we present the oligopoly model that will serve as a workhorse throughout

the paper. We describe the model in Section 2.1. Section 2.2 introduces the important

benchmark of monopolistic competition. We solve the oligopoly model using aggregative-

games techniques in Section 2.3. Section 2.4 uses the type aggregation property to simplify

the treatment of mergers among multiproduct firms.

2.1 The Oligopoly Model

Consider an industry with a set N of imperfectly substitutable products. Each product

belongs to a nest of products; the set of nests is denoted L, a partition of N . Products

within the same nest are viewed by consumers as closer substitutes with each other than

products in different nests. Specifically, the representative consumer’s indirect subutility

function is given by

V (p) = V0 log

H0 +
∑
l∈L

(∑
j∈l

hj(pj)

)β
 ,

where V0 > 0 is a market size parameter, 0 < β ≤ 1 is a parameter measuring the substitu-

tability of products within nests relative to that across nests,9 H0 ≥ 0 is a baseline-utility

parameter, and

hj(pj) =

{
exp

(aj−pj
λ

)
in the case of NMNL,

ajp
1−σ
j in the case of NCES.

The parameter aj > 0, j ∈ N , summarizes vertical product characteristics, and will be

referred to as the quality of product j; σ > 1 and λ > 0 measure the substitutability of

products within nests.

9If β = 1, the nest structure is irrelevant.
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Defining the nest- and industry-level aggregators

Hl(pl) =
∑
j∈l

hj(pj), where pl ≡ (pj)j∈l ∀l ∈ L,

and H(p) = H0 +
∑
l∈L

(Hl(pl))
β

allows us to rewrite the consumer’s indirect utility as V (p) = V 0 logH(p).

Applying Roy’s identity, we obtain the demand for product i in nest l:

Di(p) = V0β
−h′i(pi)
hi(pi)

hi(pi)

Hl(pl)

Hl(pl)
β

H(p)

= V0β
−h′i(pi)

Hl(pl)1−βH(p)
. (1)

As shown in Nocke and Schutz (2018), demand system (1) can alternatively be derived

from discrete/continuous choice.10 With such a micro-foundation, V0β is the total number

of consumers, Hβ
l /H is the probability that a given consumer chooses nest l, hi/Hl is the

probability that a consumer picks product i conditional on having chosen nest l, and −h′i/hi is

the number of units of product i a consumer purchases conditional on having chosen product

i.11 Moreover, (logH0)/β is the value of the outside option. In the remainder of the paper,

we normalize V0 to 1.

Each product i ∈ N has constant marginal cost of production ci > 0. There is a set F
of firms, which we assume to be a partition of L. That is, each firm has property rights over

the production of all products within one or more nests. This assumption is for tractability:

If we allowed different products within the same nest to be offered by different firms, and

firms to own products in more than one nest, we would be unable to use the aggregative

games approach explored in this paper. This assumption has the following implications for

substitution patterns: For every triple of (distinct) products (i, j, k), ∂(Di/Dj)/∂pk = 0

whenever product k is owned neither by the firm that produces good i, nor by the firm that

produces good j. One way to interpret this restriction is that each firm owns one or several

brands (nests), with products being closer substitutes within a brand than across brands.12

The economic environment can thus be summarized by the tuple (N ,L,F , (aj)j∈N , (cj)j∈N )

along with nest parameter β, and elasticity parameters σ under NCES and λ under NMNL.

10Anderson, de Palma, and Thisse (1987) are the first to provide a micro-foundation for the non-nested
CES demand system.

11Under NMNL demand, −h′i/hi, the conditional demand for product i, is constant and equal to 1/λ;
under NCES demand, it is equal to (σ − 1)/pi.

12In recent work, Hottman, Redding, and Weinstein (2016) structurally estimate a model of price compe-
tition with multiproduct firms, where each firm owns one nest of products.
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The profit of firm f ∈ F is given by

Πf =
∑
l∈f

∑
i∈l

(pi − ci)Di(p).

Firms compete by simultaneously setting the prices of all of their products. We seek the

Nash equilibrium of this multiproduct-firm pricing game. Aggregate surplus is the sum of

consumer surplus, logH, and industry-level profits,
∑

f∈F Πf .

Firms’ market shares will play an important role in our analysis. We define the market

share of firm f as

sf =
∑
l∈f

(Hl)
β

H
.

In the discrete/continuous choice micro-foundation mentioned above, sf corresponds to the

probability that any given consumer chooses one of firm f ’s products. Moreover, sf is equal

to firm f ’s market share in volume under NMNL, and to firm f ’s market share in value under

NCES.13 In both cases, the firms’ market shares add up to 1 − H0/H, where H0/H is the

market share of the outside option, as is standard in the literature on demand estimation

(see, e.g., Berry, Levinsohn, and Pakes, 1995; Nevo, 2001).14

2.2 The Monopolistic Competition Benchmark

Before analyzing the oligopoly model, it is instructive to consider first the monopolistic

competition benchmark. Under monopolistic competition, firms do not internalize the impact

of their behavior on the industry aggregator H, i.e., they behave as if ∂H/∂pi = 0 for every

i ∈ N .

Under this behavioral assumption, the first-order condition of profit maximization for

product i ∈ n ∈ f is given by

Hβ−1
n

H

(
−h′i − (pi − ci)h′′i + (1− β)

∂Hn

∂pi

∑
j∈n(pj − cj)h′j

Hn

)
= 0,

13Under NMNL, firm f ’s market share in volume is given by

λ

β

∑
l∈f

∑
j∈l

Dj(p) = λ

∑
l∈f H

β−1
l

(∑
j∈l(−h′j)

)
H

=

∑
l∈f H

β−1
l

(∑
j∈l hj

)
H

= sf ,

whereas, under NCES, its market share in value is

1

β(σ − 1)

∑
l∈f

∑
j∈l

pjDj(p) =
1

σ − 1

∑
l∈f H

β−1
l

(∑
j∈l pj(−h′j)

)
H

=

∑
l∈f H

β−1
l

(∑
j∈l hj

)
H

= sf .

14If
∑
f∈F s

f < 1, then our definition of market shares does not coincide with that used by antitrust
practitioners. See Nevo (2000b) for guidance on how to compute the market share of the outside option, and
therefore how to implement our definition in practice.
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which can be rewritten as

pi − ci
pi

pih
′′
i

−h′i
= 1 + (1− β)

∑
j∈n(pj − cj)(−h′j)

Hn

. (2)

If β = 1 (i.e., in the absence of nests), we immediately obtain that firm f sets the Lerner

index of product i equal to the reciprocal of the perceived price elasticity of demand. Under

CES demand, that elasticity is equal to σ; under MNL demand, it is equal to pi/λ.

If β < 1, firm f internalizes self-cannibalization effects within its own nests, and it

optimally sets a Lerner index that exceeds that in the absence of nests. Note that, if β < 1,

pih
′′
i /(−h′i) is no longer the perceived price elasticity of demand; instead, it is equal to the

perceived price elasticity of product i when firm f ignores the impact of pi on the nest-level

aggregator Hn (i.e., when ignoring self-cannibalization effects).

Following Nocke and Schutz (2018), we call the left-hand side of equation (2) the ι-markup

on product i. As the right-hand side is the same for every i ∈ n, firm f charges the same

ι-markup, µ̃n > 1, for each product i in nest n. Under NCES demand, this implies that

the Lerner index of product i is equal to µ̃n/σ, whereas under NMNL demand, the absolute

markup pi − ci is equal to µ̃nλ.

Using the common ι-markup property within nest n, the sum on the right-hand side of

equation (2) can be written as:

∑
j∈n

(pj − cj)(−h′j) =
∑
j∈n

pj − cj
pj

h′′j
−h′j

(h′j)
2

h′′j
= µ̃n

∑
j∈n

(h′j)
2

h′′j
= α̃µ̃n

∑
j∈n

hj = α̃µ̃nHn, (3)

where α̃ = (σ − 1)/σ < 1 under NCES demand and α̃ = 1 under NMNL demand. Equation

(2) therefore boils down to

µ̃n =
1

1− α̃(1− β)
≡ µmc. (4)

As µmc does not depend on the identity of nest n nor on the identity of firm f , the monopo-

listically competitive ι-markup µmc is the same for each product i ∈ N .15

2.3 Equilibrium Analysis

We now turn to the equilibrium analysis of our multiproduct-firm pricing game. This requires

adapting the aggregative-games approach taken in Nocke and Schutz (2018, Section 5), where

each firm is restricted to own only a single nest.

15The resulting markups are:

pi − ci
pi

=
1

σ − (σ − 1)(1− β)
(under NCES demand),

pi − ci =
λ

β
(under NMNL demand).
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The first-order condition of profit maximization for product i in nest n owned by firm f

is given by

Hβ−1
n

H

(
−h′i − (pi − ci)h′′i + (1− β)

∂Hn

∂pi

∑
j∈n(pj − cj)h′j

Hn

+
H1−β
n

H

∂H

∂pi

∑
l∈f

Hβ−1
l

∑
j∈l

(pj − cj)h′j

)
= 0.

The last term on the left-hand side of the equation, which is absent under monopolistic

competition, captures the impact of the price change through the aggregator H. Simplifying

and rearranging terms, we obtain

pi − ci
pi

pih
′′
i

−h′i
= 1 + (1− β)

∑
j∈n(pj − cj)(−h′j)

Hn

+ β
1

H

∑
l∈f

Hβ−1
l

∑
j∈l

(pj − cj)(−h′j). (5)

Hence, despite the additional term on the right-hand side of the equation, firm f continues

to charge the same ι-markup on every product i in nest n. That is, there exists µ̃n > 1 such

that
pi − ci
pi

pih
′′
i

−h′i
= µ̃n

for every i ∈ n.

Using the common ι-markup property within each nest l as well as equation (3), equa-

tion (5) can be rewritten as

µ̃n (1− α̃(1− β)) = 1 + α̃β
1

H

∑
l∈f

µ̃lHβ
l , (6)

which immediately implies that µ̃n = µ̃n′ ≡ µ̃f for every n, n′ ∈ f . Firm f therefore applies

the same ι-markup µ̃f to all the products in its portfolio. Using this common ι-markup

property, both within and across nests, equation (6) simplifies to

µ̃f (1− α̃(1− β)) = 1 + α̃βµ̃f
∑

l∈f H
β
l

H
= 1 + α̃βµ̃fsf . (7)

Define the elasticity measure α ≡ α̃β/(1− α̃(1− β)), and note that α < 1 under NCES and

α = 1 under NMNL. Using equation (7), we can decompose firm f ’s ι-markup as follows:

µ̃f =
1

1− α̃(1− β)︸ ︷︷ ︸
=µmc

1

1− αsf︸ ︷︷ ︸
≡µf

.

That is, under oligopoly, firm f ’s ι-markup µ̃f is the product of the monopolistically com-

petitive ι-markup µmc and a market power factor, the normalized markup µf > 1. As µf is

10



increasing in sf , this decomposition reveals that firms with larger market shares have more

market power, and therefore set higher ι-markups.

Equations (3) and (7) yield a simple formula for firm f ’s equilibrium profit:

Πf = α̃βµ̃fsf = µf − 1. (8)

Next, we express firm f ’s market share as a function of the industry-level aggregator H

and firm f ’s normalized markup µf . Under NCES,

sf =
1

H

∑
l∈f

(∑
j∈l

aj

(
σ

σ − µ̃f
cj

)1−σ
)β

,

=
1

H

∑
l∈f

(∑
j∈l

ajc
1−σ
j

)β

︸ ︷︷ ︸
≡T f

(
1− (1− α̃)µ̃f

) α̃β
1−α̃ ,

=
T f

H

(
1− (1− α)µf

) α
1−α .

Under NMNL,

sf =
1

H

∑
l∈f

(∑
j∈l

exp

(
aj − cj
λ

− µ̃f
))β

=
1

H

∑
l∈f

(∑
j∈l

exp

(
aj − cj
λ

))β

︸ ︷︷ ︸
≡T f

exp(−µf ).

We call T f firm f ’s type. As we shall see below, that uni-dimensional sufficient statistic

aggregates all the relevant information about firm f ’s product portfolio—the type aggregation

property.

The above analysis implies that, if H is an equilibrium aggregator level, then firm f ’s

markup and market share µf and sf jointly solve the following system of equations:

µf =
1

1− αsf
, (9)

sf =

{
T f

H

(
1− (1− α)µf

) α
1−α in the case of NCES,

T f

H
e−µ

f
in the case of NMNL.

(10)

It is straightforward to show that this system has a unique solution (m(T f/H), S(T f/H)). We

call m(T f/H) and S(T f/H) the firm’s markup fitting-in function and market-share fitting-in

function, respectively. Both fitting-in functions are increasing, m′ > 0 and S ′ > 0, i.e., a firm

that has a higher type and operates in a less competitive environment (lower H) sets a higher

markup and commands a higher market share; moreover, the range of S is the entire interval

(0, 1). Using equation (8), we obtain the profit fitting-in function π(T f/H) = m(T f/H)− 1.

11



The equilibrium aggregator level is pinned down by the equilibrium condition

H0

H
+
∑
f∈F

S

(
T f

H

)
= 1, (11)

which says that market shares add up to unity. The continuity and monotonicity properties

of S along with the fact that S has full range imply that equation (11) has a unique solution,

establishing equilibrium existence and uniqueness.

We summarize these insights in the following proposition:

Proposition 1. The multiproduct-firm pricing game has a unique equilibrium. The equili-

brium aggregator level H∗ is the unique solution of equation (11). In equilibrium, firm f ∈ F
sets a markup of m(T f/H∗), commands a market share of S(T f/H∗), and earns a profit of

π(T f/H∗).

Proof. The only thing left to prove is that first-order conditions are necessary and sufficient

for global optimality. This is done in Appendix A.

The following proposition, which follows immediately from Nocke and Schutz (2018),

provides intuitive comparative statics:

Proposition 2 (Nocke and Schutz, 2018, Proposition 6). An increase in T f raises firm f ’s

equilibrium markup m(T f/H∗), market share S(T f/H∗), and profit π(T f/H∗), reduces firm

g 6= f ’s equilibrium markup m(T g/H∗), market share S(T g/H∗), and profit π(T g/H∗), and

raises consumer surplus and aggregate surplus.

The Monopolistic Competition Limit. In the monopolistic competition outcome stu-

died in Section 2.2, each firm f sets a normalized markup µf of one. In the oligopoly model

studied here, this outcome arises in the limit as firms’ market shares tend to zero, that is,

when firms become atomless. Such a limiting outcome can be obtained by infinitely repli-

cating the population of firms, or by making the value of the outside option, H0, go to

infinity.

Firm Conduct. Some of the approximation results derived in Section 3 will require brid-

ging the gap between monopolistic competition conduct and fully-fledged “Bertrand-Nash”

conduct. Specifically, let θ ∈ [0, 1] be a conduct parameter, and assume that each firm belie-

ves that the impact of pi, i ∈ N , on the aggregator is θ∂H/∂pi instead of ∂H/∂pi, i.e., firms

internalize their impact on the aggregator only to a certain extent.16

The analysis proceeds along the same lines as Section 2.3 (see Appendix D.1 for details).

There exists a unique equilibrium aggregator level H∗(θ). It is easy to see that H∗(θ), m(·, θ),
16Our treatment of firm conduct is closely related to the classical approach under quantity competition

with homogeneous products surveyed by Bresnahan (1989). In Bresnahan (1989), a firm conjectures that the
price sensitivity of the inverse demand function P (·) is θP ′(·) instead of P ′(·). The special cases of perfect
competition and Cournot-Nash conducts arise respectively when θ = 0 and θ = 1.
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S(·, θ), and π(·, θ) all tend to their value under monopolistic competition as θ tends to 0, and

to their value under fully-fledged oligopoly as θ tends to 1.17

2.4 Modeling Mergers

Consider a merger between the firms M ( F , and let O ≡ F \ M be the set of non-

merging firms—the outsiders. The post-merger economic environment can be summarized

by the tuple (N ,L,F , (aj)j∈N , (cj)j∈N ) along with the pre-merger nest parameter β, and the

pre-merger elasticity parameters σ under NCES and λ under NMNL.

We assume that the merger does not directly affect the outsiders. Formally, this means

that: For every f ∈ O and l ∈ f , the nest l is contained in N ; for every f ∈ O and l ∈ f , the

nest l belongs to L; for every i ∈ l ∈ f ∈ O, we have ai = ai and ci = ci. These assumptions

imply that the post-merger type of each outsider f ∈ O is equal to its pre-merger type, T f .

The merged firm M is defined as M = L \
(⋃

f∈O
⋃
l∈f{l}

)
. The post-merger set of

firms is therefore F = {M} ∪ O. We allow for the possibility that the merger affects the

merging firms’ set of products by adding or dropping products (including entire nests) as well

as the marginal costs and qualities of their pre-existing products. Formally, this means that

we do not impose any condition on the relationship between the merging firms’ pre-merger

products,
(⋃

f∈M
⋃
l∈f{l}

)
, and the merged firm’s post-merger products, M , implying no

restriction on the relationship between the merged firm’s type, TM , and the merger partners’

pre-merger types, (T f )f∈M.

Our aggregative-games tools and the type aggregation property deliver important benefits

in terms of tractability, as they allow us to view a merger as an event that turns the pre-

merger type vector (T f )f∈F into (TM , (T f )f∈O) (rather than an event that turns the pre-

merger economic environment (N ,L,F , (aj)j∈N , (cj)j∈N ) into (N ,L,F , (aj)j∈N , (cj)j∈N )).

A special case of interest arises when the merger does not involve any synergies, so that

M =
(⋃

f∈M
⋃
l∈f{l}

)
, aj = aj and cj = cj for all j ∈ l ∈M , implying that TM =

∑
f∈M T f .

We say that the merger involves synergies if TM >
∑

f∈M T f .

3 The Herfindahl Index and Market Power

In antitrust practice, the Herfindahl index (HHI), defined as

HHI
(
(sf )f∈F

)
≡
∑
f∈F

(sf )2,

is often used to gauge the extent of market power in an industry as well as the potential

market power effect of a merger (see, e.g., the 2010 U.S. Horizontal Merger Guidelines). The

17Our results on mergers in Section 4 and 5 are all stated and proved in the case of Bertrand-Nash conduct
(θ = 1). Our aggregative-games techniques can easily be applied to generalize those results to the case where
θ ∈ (0, 1].
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presumption is that there is more market power in industries where the Herfindahl index is

larger, and the market power effect tends to be larger when (i) the pre-merger Herfindahl

index is larger and (ii) the merger-induced increase in the Herfindahl index is larger.

In this section, we provide theoretical support for this presumption. Specifically, we

derive approximation results that show that this index is an adequate measure of the welfare

distortions introduced by market power. Using similar approximation techniques, we also

show that the naively-computed change in the Herfindahl index induced by a merger is an

appropriate measure of the market power effect of the merger. To prove these results, we

first relate measures of industry performance to the equilibrium market share vector. Such

an analysis is useful for antitrust practice as market shares are often readily available while

firms’ types are not.

3.1 Market Shares and Welfare

Let (sf )f∈F be the profile of equilibrium market shares. Assume that consumers have access to

an outside option (H0 > 0), so that
∑

f∈F s
f < 1. Equation (11) implies that the equilibrium

aggregator level H∗ is equal to H0/(1−
∑

f∈F s
f ). As shown in Anderson and Nocke (2014),

this implies that consumer surplus can be written as a function of market shares:18

CS
(
(sf )f∈F

)
= logH0 − log

(
1−

∑
f∈F

sf

)
. (12)

As firm f ’s equilibrium profit is µf−1 and µf = 1/(1−αsf ), the same holds for aggregate

surplus:

AS
(
(sf )f∈F

)
= logH0 − log

(
1−

∑
f∈F

sf

)
+
∑
f∈F

αsf

1− αsf
.

Note that both consumer surplus and aggregate surplus are increasing in the vector of

market shares. Moreover, by convexity of s 7→ s/(1 − αs), a mean-preserving spread of

market shares would leave consumer surplus unchanged but raise industry profit and therefore

aggregate surplus.19

3.2 The Herfindahl Index as a Measure of Market Power

We now argue that the Herfindahl index provides an adequate measure of the consumer sur-

plus and aggregate surplus distortions stemming from oligopolistic behavior. As a benchmark

for the hypothetical situation without market power, we use the equilibrium outcome under

18See Armstrong and Vickers (forthcoming) for a treatment of the related concept of consumer surplus as
a function of quantities.

19This is akin to the homogeneous-goods Cournot model, where consumer surplus depends only on ag-
gregate output, and aggregate surplus is proportional to the Herfindahl index, holding aggregate output
fixed.
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monopolistic competition. In the context of differentiated goods, monopolistic competition is

arguably a more appealing benchmark than perfect competition: If goods are homogeneous

and firms compete either in prices or quantities, then the equilibrium outcome converges

to perfect competition as the population of firms is infinitely replicated, so that each firm’s

limiting size is negligible relative to the size of the market. By contrast, in our framework,

such an infinite replication results in the monopolistic competition outcome, as shown in

Section 2.3.

We provide two sets of approximation results: When firms have small market shares, and

when industry conduct is close to monopolistic competition.

Approximation Results for Small Firms. For this set of approximations, we assume

that consumers have access to an outside option. We proceed as follows. We first fix a

vector of market shares s = (sf )f∈F , and compute the welfare measures CS(s) and AS(s).

Using s, we then back out the type vector T (s) = (T f (s))f∈F that gives rise to this profile

of market shares under oligopoly. Next, using T (s), we compute our welfare measure under

monopolistic competition as a function of firms’ market shares under oligopoly, CSm(s) and

ASm(s). Finally, we apply Taylor’s Theorem to derive a second-order approximation of the

welfare distortions for small market shares:20

Proposition 3. In the neighborhood of s = 0,

CS(s)− CSm(s) = −αHHI(s) + o
(
‖s‖2

)
,

and AS(s)− ASm(s) = −αHHI(s) + o
(
‖s‖2

)
.

Proof. See Appendix C.1.

The market power distortion to both consumer surplus and aggregate surplus is thus

approximately proportional to the Herfindahl index, where the proportionality factor is the

elasticity measure α.

To see why the distortion to consumer surplus increases with the Herfindahl index, con-

sider a mean-preserving spread of the market share vector s under oligopoly. This raises the

Herfindahl index but leaves consumer surplus unchanged, as CS(s) depends only on the sum

of market shares (see equation (12)). The concavity of the market-share fitting-in function

S(·), which comes from the fact that a firm with a higher type tends to charge a higher

markup, implies that the mean-preserving spread of the market share vector must have been

caused by a sum-increasing change in the vector of firm types.21 As consumer surplus under

monopolistic competition depends only the sum of those types (see equations (22) and (23)

in Appendix C.1), this change increases CSm(s).

20o(·) is Landau’s little-o notation: f(x) = o(g(x)) in the neighborhood of x = x0 if f(x)/g(x) −→
x→x0

0.

21The concavity of S is stated and proved in Lemma 1 in Appendix B.
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It may seem surprising that the distortion to consumer surplus is equal to that to aggregate

surplus at the second order. In Appendix C.1, we show that those two distortions no longer

coincide at the third order.22

Approximation Results around Monopolistic Competition Conduct. We now pro-

vide an alternative approximation of the market power distortion from oligopolistic behavior,

namely one involving only small departures from monopolistic competition conduct, but wit-

hout restricting the size of firms or imposing that H0 > 0.

Given the conduct parameter θ ∈ [0, 1] and the type vector (T f )f∈F , the equilibrium

aggregator level is H∗((T f )f∈F , θ), equilibrium consumer surplus is

CS((T f )f∈F , θ) = logH∗((T f )f∈F , θ),

and aggregate surplus is

AS((T f )f∈F , θ) = logH∗((T f )f∈F , θ) +
∑
g∈F

αS
(

T g

H∗((T f )f∈F ,θ)
, θ
)

1− αθS
(

T g

H∗((T f )f∈F ,θ)
, θ
) .

The industry-level Herfindahl index is given by

HHI((T f )f∈F , θ) =
∑
g∈F

S

(
T g

H∗((T f )f∈F , θ)
, θ

)2

.

We can now provide a first-order Taylor approximation of the market power distortions

to consumer surplus and aggregate surplus in the neighborhood of θ = 0, i.e., close to

monopolistic competition conduct. Below, we drop the argument (T f )f∈F from the functions

H∗, CS, AS, and HHI to ease notation.

Proposition 4. In the neighborhood of θ = 0,

CS(θ)− CS(0) = −αHHI(θ)θ + o (θ) ,

and AS(θ)− AS(0) = −αHHI(θ)

(
1− α

∑
f∈F

S

(
T f

H∗(θ)
, θ

))
θ + o (θ) .

Proof. See Appendix D.2.

22Specifically, at the third order in the neighborhood of s = 0,

CS(s)− CSm(s) = −α
(

HHI(s) +
1

2
(1 + 2α)Γ(s)

)
+ o

(
‖s‖3

)
,

and AS(s)−ASm(s) = −α
(

HHI(s)(1− αs̄) +
1

2
(1 + 3α)Γ(s)

)
+ o

(
‖s‖3

)
,

where s̄ =
∑
f∈F s

f and Γ(s) =
∑
f∈F (sf )3.
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As in the approximation with small market shares, the market power distortion to consu-

mer surplus is proportional to the Herfindahl index. In contrast, the market power distortion

to aggregate surplus now contains a new term that depends on α and the aggregate market

share. Holding fixed the aggregate market share, the distortion continues to be proporti-

onal to the Herfindahl index. Holding fixed the Herfindahl index, the distortion decreases

with the aggregate market share. If the aggregate market share is small, the distortion is

approximately the same as in Proposition 3.23

3.3 The Herfindahl Index as a Measure of the Market Power Effect

of a Merger

The market power effect of a merger is the impact that merger would have on consumer

surplus or aggregate surplus if it involved no synergies. We now show that the naively-

computed change in the Herfindahl index induced by the merger is an adequate measure of

that merger’s market power effect. As in Section 3.2, we support this claim by providing

approximation results around s = 0 and θ = 0.

Approximation Results for Small Firms. As in Section 3.2, we assume that consumers

have access to an outside option. We proceed as follows. We fix the pre-merger vector

of market shares s = (sf )f∈F , and use this vector to recover the pre-merger type vector

(T f (s))f∈F and compute the pre-merger market performance measures CS(s) and AS(s).

Assuming no synergies, the merged firm’s type is TM(s) =
∑

f∈M T f (s). We then use

the post-merger type vector (T f (s))f∈F to obtain the post-merger vector of market shares

s̄(s) = (s̄(s))f∈F . The post-merger welfare measures are CS(s̄(s)) and AS(s̄(s)). Hence, the

market power effect of the merger is CS(s̄(s))− CS(s) or AS(s̄(s))− AS(s).

The merged-induced, naively-computed variation in the Herfindahl index is:

∆M HHI(s) =

(∑
f∈M

sf

)2

+
∑
f∈O

(sf )2

−∑
f∈F

(sf )2 =

(∑
f∈M

sf

)2

−
∑
f∈M

(sf )2.

Applying Taylor’s theorem, we obtain the following second-order approximation results:

Proposition 5. In the neighborhood of s = 0, the market power effect of the merger on

consumer surplus is:

CS(s̄(s))− CS(s) = −α∆M HHI(s) + o(‖s‖2).

The market power effect of the merger on aggregate surplus is:

AS(s̄(s))− AS(s) = −α∆M HHI(s) + o(‖s‖2).

23More precisely, the term HHI(s)
∑
f∈F s

f is third order in the neighborhood of s = 0. Note that that
term does appear in the third-order Taylor approximation shown in footnote 22.
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Proof. See Appendix C.1.

Hence, the market power effect of a merger is proportional to the naively-computed vari-

ation in the Herfindahl index, where the proportionality coefficient is the elasticity measure

α. As was the case in Proposition 3, this holds regardless of whether the market power effect

is measured in terms of consumer surplus or aggregate surplus.

Approximation Results around Monopolistic Competition Conduct. Let θ be a

conduct parameter and (T f )f∈F be the pre-merger type vector. The merged firm’s type is

TM =
∑

f∈M T f , assuming no synergies. The merger-induced, naively-computed change in

the Herfindahl index is:

∆M HHI((T f )f∈F , θ) =

(∑
g∈M

S

(
T g

H∗((T f )f∈F , θ)
, θ

))2

−
∑
g∈M

S

(
T g

H∗((T f )f∈F , θ)
, θ

)2

.

We provide a linear approximation of the market power effect of the merger around

monopolistic competition conduct:

Proposition 6. In the neighborhood of θ = 0, the market power effect of the merger on

consumer surplus is:

CS((T f )f∈F , θ)− CS((T f )f∈F , θ) = −α∆M HHI((T f )f∈F , θ)θ + o(θ).

The market power effect of the merger on aggregate surplus is:

AS((T f )f∈F , θ)− AS((T f )f∈F , θ) =

− α∆M HHI((T f )f∈F , θ)

(
1− α

∑
g∈F

S

(
T g

H∗((T f )f∈F , θ)
, θ

))
θ + o(θ).

Proof. See Appendix D.3.

As in the approximation of the aggregate surplus distortion from market power, the

merger’s market power on aggregate surplus when approximated around monopolistic com-

petition conduct differs slightly from that when approximated around small market shares.

That difference vanishes as market shares become small.

4 Consumer Surplus Effects of Mergers

We now turn to the consumer surplus effects of mergers—a question we already touched on

in Section 3 by providing two sets of Taylor approximations. In this section, we revisit this

question without approximations. We study a static setting in Section 4.1 and a dynamic

one with endogenous mergers in Section 4.2.
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4.1 Static Analysis

Consider a merger M between the firms in M. Let H∗ (resp., H
∗
) denote the equilibrium

value of the aggregator before (resp., after) the merger. As consumer surplus is increasing in

the value of that aggregator, we say that the merger is CS-increasing (resp., CS-decreasing)

if H
∗
> H∗ (resp., H

∗
< H∗); it is CS-neutral if H

∗
= H∗.

Suppose the merger is CS-neutral. This implies that the market share of each outsider

g ∈ O, S(T g/H∗), and the market share of the outside option, H0/H∗, is unaffected by the

merger. Since the market shares of the firms and the outside option have to add up to one

(equation (11)), this means that the post-merger market share of the merged firm is equal to

the sum of the pre-merger market shares of the merger partners:

S

(
TM

H∗

)
=
∑
f∈M

S

(
T f

H∗

)
,

where we have used the fact that H
∗

= H∗.

As S is strictly increasing and has full range, it follows that there exists a unique cutoff

type T̂M such that the merger is CS-neutral if and only if TM = T̂M :

T̂M = H∗S−1

(∑
f∈M

S

(
T f

H∗

))
.

By Proposition 2, H
∗

is strictly increasing in TM , implying that the merger is CS-

increasing if and only if TM > T̂M , and CS-decreasing if and only if the reverse inequality

holds.

As the market-share fitting-in function S is strictly concave (see Lemma 1 in Appendix B)

and satisfies S(0) = 0, that function is sub-additive. This implies that the cutoff type satisfies

T̂M >
∑

f∈M T f . That is, for the merger to be CS-nondecreasing it has to involve synergies.24

We summarize these insights in the following proposition:

Proposition 7. For a merger among the firms in M, there exists a unique T̂M >
∑

f∈M T f

such that the merger is CS-neutral if the post-merger type satisfies TM = T̂M , CS-decreasing

if TM < T̂M , and CS-increasing if TM > T̂M .

We now turn to the comparative statics of the post-merger cutoff-type T̂M . First, we

consider the thought experiment of changing the pre-merger aggregator level H∗ while holding

the characteristics of the merger fixed. Second, we compare two alternative mergers in a given

industry, thus holding fixed the pre-merger aggregator level H∗.

The first comparative statics result shows that the synergies required for a merger to be

CS-nondecreasing are smaller the more competitive is the market before the merger:

24Farrell and Shapiro (1990) obtain the same conclusion in the case of the homogeneous-goods Cournot
model.
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Proposition 8. For a merger among the firms in M, the post-merger cutoff type T̂M is

strictly decreasing in the pre-merger level of the aggregator, H∗.

Proof. See Appendix E.1.

To see the intuition, consider a merger between two symmetric single-product firms,

producing products i and j at pre-merger marginal cost c, and charging the pre-merger price

p∗. Suppose the merger-induced synergies materialize only through a symmetric marginal

cost reduction. As shown by Werden (1996), for the merger to be CS-neutral, the common

post-merger marginal cost ĉ must be such that

c− ĉ
c

=
d(H∗)

1− d(H∗)

(p∗ − c)
c

, (13)

where

d(H∗) ≡ −∂Dj/∂pi
∂Di/∂pi

is the diversion ratio from good i to good j, which by symmetry is also equal to the diversion

ratio from j to i.

The left-hand side of equation (13) gives the required percentage change in marginal cost

whereas the right-hand side represents the increase in market power due to the post-merger

internalization of competitive externalities. An increase in the pre-merger aggregator level

H∗ does not affect the left-hand side but reduces the right-hand side through two channels: It

reduces both the pre-merger equilibrium price p∗ and the diversion ratio d(h∗).25 Proposition

8 shows that this intuition generalizes to mergers between arbitrary sets of firms, involving

arbitrary forms of synergies.

We now turn to our second comparative statics result. It shows that the synergies required

for a merger to be CS-nondecreasing are larger for mergers involving larger firms, holding

fixed the pre-merger aggregator level H∗.

Proposition 9. Consider a merger between the firms in M = {f, g}, resp., M′ = {f ′, g′},
where T f ≥ T f

′
and T g > T g

′
. Then, the “larger” merger M requires larger synergies than

M′, in the sense of a larger fractional increase in type:

T̂M

T f + T g
>

T̂M
′

T f ′ + T g′
.

This in turn implies that the larger merger requires a larger absolute increase in type:

T̂M − (T f + T g) > T̂M
′ − (T f

′
+ T g

′
).

Proof. See Appendix E.2.

25In our model, the diversion ratio between two symmetric single-product firms can be shown to be equal
to αs∗/(1− αs∗), which is increasing in the equilibrium market share s∗, and thus decreasing in H∗.
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To see the intuition, suppose each of the two mergers involves symmetric single-product

firms, and that merger-induced synergies materialize only through a symmetric reduction in

the common marginal cost. The right-hand side of equation (13) is larger for merger M
than M′ as each merger partner in M has a higher pre-merger market share, implying that

both its pre-merger diversion ratio d(H∗) and its markup (p∗ − c)/c are larger. Hence, the

percentage cost reduction necessary for the merger to be CS-neutral is larger for the larger

merger.26

Propositions 8 and 9 provide theoretical support for the use of the merger-induced,

naively-computed variation in the Herfindahl index to screen mergers. For merger M =

{f, g}, the naively-computed increase in the Herfindahl index is equal to

∆M HHI =
(
sf + sg

)2 − ((sf )2 + (sg)2) = 2sfsg.

A merger involving larger firms will induce a larger ∆M HHI.

Proposition 8 shows that, holding fixed the types of the merger partners, a decrease in

the pre-merger equilibrium aggregator level H∗, which results in a higher ∆M HHI, raises

the required level of synergies for the merger to be CS-increasing. Proposition 9 shows

that, holding fixed the pre-merger equilibrium aggregator level, a merger involving firms

with higher types, and thus resulting in a higher ∆M HHI, also raises that required level of

synergies. Both propositions in conjunction suggest that the additional scrutiny received by

mergers resulting in a higher naively-computed increase in the Herfindahl index is indeed

warranted.

4.2 Dynamic Analysis

In the previous subsection, we studied the static consumer surplus effect of a given merger.

In industries in which merger opportunities are not isolated events, such a static analysis

may be inappropriate: The approval decision on a currently proposed merger may affect

both the consumer surplus effects of future mergers, and therefore the set of mergers that

will be approved in the future, as well as the profitability of future mergers, and therefore

the set of mergers that will be proposed in the future.

In the following, we show that a completely myopic merger approval policy, according

to which, in every period, the antitrust authority approves only those mergers that raise

consumer surplus given current market conditions, is dynamically optimal. This extends the

main insight of Nocke and Whinston (2010), derived in the context of a homogeneous-goods

26In the case of NCES demand, there is a monotonic relationship between the percentage reduction in
marginal cost and the percentage increase in type (dT/T = (1 − σ)βdc/c). In the case of NMNL demand,
there is instead a monotonic relationship between the absolute reduction in marginal cost and the percentage
increase in type (dT/T = −(β/λ)dc). As a larger firm charges a larger absolute markup under NMNL
demand, equation (13) implies that the larger merger also requires a larger absolute reduction in marginal
cost, and thus a larger percentage increase in type.
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Cournot model, to the case of differentiated-goods price competition with NMNL or NCES

demands.

Framework. Following Nocke and Whinston (2010), we assume that there is a collection

of potential mergers, M1, . . . , MK , corresponding to sets of merger partners M1, . . . , MK ,

and that all of these mergers are disjoint, i.e., Mk ∩Ml = ∅ for k 6= l. Disjointness means

that each firm has a distinct set of natural merger partners that have the potential to create

sizable synergies by merging. (Recall from the previous subsection that any merger not

involving synergies is CS-decreasing.)

There are τ <∞ periods in which mergers may become feasible, and be proposed to the

antitrust authority for approval. Any merger Mk may become feasible at the beginning of

period 1 ≤ t ≤ τ with probability pMk
t , where

∑
t p

Mk
t ≤ 1. Once merger Mk has become

feasible, the merger partners learn the realization of their post-merger type TMk , which is

drawn from some set T Mk
t according to some continuous probability distribution.

If merger Mk has become feasible in period t, or became feasible earlier but has not yet

been approved, the merger partners decide whether to propose it for approval to the antitrust

authority. We assume that bargaining is efficient so that the merger is proposed if and only

if it is in the merger partners’ joint interest to do so.27 When doing so, they observe the type

not only of their own merger but also that of any other feasible but not yet approved merger

(as well as the type of every firm).

If a feasible merger is proposed, the antitrust authority observes its efficiency (i.e., the

post-merger type); the authority also observes the types of all firms. Market structure (as

summarized by the vector of firm types) changes according to the authority’s approval de-

cisions. Importantly, while a blocked merger cannot be consummated, it can be proposed

again in the future.

At the end of period t, firms compete in prices under complete information, as described

in Section 2.1. Payoffs in each period therefore depend only on the market structure at the

end of that period. Firms as well as the authority discount future payoffs with factor δ ≤ 1.

Results. The main result of this subsection is that a myopically CS-maximizing merger

policy is dynamically optimal in that it maximizes the discounted sum of consumer surplus.

A myopically CS-maximizing merger policy is a merger approval rule that, in each period

t, maximizes consumer surplus in that period, given current market structure and the set of

proposed mergers. As shown in Nocke and Whinston (2010), there may be more than one set

of merger approvals that maximizes consumer surplus in a given period but, if so, these sets

differ only by mergers that are CS-neutral given the other mergers in those sets. However,

Proposition 2, in conjunction with the assumption that post-merger types are drawn from

continuous distributions, implies that any merger is generically either CS-decreasing or CS-

27One of the firms in Mk can be thought of as acting in the role of the proposer, with the gains or losses
from the merger being split in fixed proportions among its partners.
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increasing, no matter what the market structure. For simplicity of exposition, we will thus

henceforth assume that the myopically CS-maximizing set of merger approvals is unique.

Our result on the dynamic optimality of a CS-maximizing merger policy comes in two

parts. First, we ignore the incentive constraints for proposing mergers and show that the

myopically CS-maximizing merger policy maximizes discounted consumer surplus if all fea-

sible but not yet approved mergers are proposed in each period. Second, we show that there

exists a subgame-perfect equilibrium in which all feasible but not yet approved mergers are

indeed proposed in each period. Moreover, any subgame-perfect equilibrium induces the

same optimal sequence of period-by-period consumer surpluses.

To show the first part, we begin by establishing a sign-preserving complementarity in

the consumer surplus effects of mergers. Consider two disjoint mergers Mk and Ml, and

suppose first that each is CS-nondecreasing given current market structure, i.e., TMk ≥
T̂Mk and TMl ≥ T̂Ml . If merger Mk is implemented first, then H∗ weakly increases as the

merger is CS-nondecreasing. By Proposition 8, this implies that T̂Ml weakly decreases so

that the condition for merger Ml to be nondecreasing, TMl ≥ T̂Ml , continues to hold. By

the same argument, if both mergers are CS-decreasing given current market structure, then

implementing merger Mk increases the cutoff type for the other merger Ml, implying that

Ml remains CS-decreasing. This insight is summarized in the following proposition:

Proposition 10. If merger Ml is CS-nondecreasing in isolation, it remains CS-nondecreasing

if another merger Mk, k 6= l, that is CS-nondecreasing in isolation takes place. If merger Ml

is CS-decreasing in isolation, it remains CS-decreasing if another merger Mk, k 6= l, that is

CS-decreasing in isolation takes place.

Proposition 8 implies that a CS-increasing merger Mk can induce an otherwise CS-

decreasing merger Ml to become CS-nondecreasing. In this case, we have:

Proposition 11. Suppose that merger Mk is CS-nondecreasing in isolation whereas merger

Ml is CS-decreasing in isolation but CS-nondecreasing once merger Mk has taken place. Then,

merger Mk is CS-increasing conditional on merger Ml taking place.

Proof. As in the proof of Proposition 2 in Nocke and Whinston (2010), consider the thought

experiment of reversing the order of the two mergers: Consider first implementing merger Ml

(step 1) and then merger Mk (step 2). As consumer surplus must, by assumption, be weakly

higher when both mergers are implemented compared to when none is, and because consumer

surplus strictly falls at step 1 (again, by assumption), consumer surplus must strictly increase

at step 2.

Propositions 10 and 11 imply that if the antitrust authority approves only mergers that

are CS-nondecreasing at the time of approval, then it will not have ex post regret about

previously approved mergers (as these remain CS-nondecreasing) nor about previously re-

jected mergers (as these remain feasible and therefore can be implemented once they become

CS-nondecreasing). This intuitively explains the following result:
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Corollary 1. Suppose that all feasible but not yet approved mergers are proposed in each

period. Then, the myopically CS-maximizing merger policy maximizes discounted consumer

surplus, no matter what the realization of feasible mergers is.

Proof. See Appendix F.1.

We now turn to the second part by showing that there always exists a subgame-perfect

equilibrium in which, in each period, every feasible but not yet approved merger is proposed

for approval.

The first step in showing this is that a CS-nondecreasing merger is privately profitable

in the sense that it raises the joint profit of the merger partners, holding fixed the market

structure in the rest of the industry. We first argue that a merger that does not involve

synergies is profitable, as is usually the case in models of price competition with differen-

tiated products.28 Intuitively, such a merger lowers the equilibrium aggregator level, and

therefore reduces the outsiders’ contribution to the aggregator. It follows that the merging

parties face less competition, and therefore make strictly higher profits after the merger. By

Proposition 7, a CS-nondecreasing merger must involve synergies. Hence, by Proposition 2,

a merger involving synergies must be more profitable than one that does not. This explains

the following result:

Proposition 12. A CS-nondecreasing merger Mk is privately profitable in that it strictly

raises the joint profit of the merger partners, holding fixed the market structure among out-

siders.

Proof. See Appendix F.2.

The second step consists in showing that a CS-nondecreasing merger is still privately pro-

fitable even if it induces (directly or indirectly) other mergers to become CS-nondecreasing,

resulting in their approval:

Proposition 13. Suppose that merger Mk is CS-nondecreasing given current market struc-

ture whereas merger Ml is CS-decreasing but becomes CS-nondecreasing once Mk has been

implemented. Then, the joint profit of the firms in Mk is strictly higher if both mergers take

place than if none does.

Proof. As in the proof of Proposition 11, think of implementing merger Ml at step one. As

that merger is CS-decreasing by assumption, the equilibrium level of the aggregator, H∗,

must decrease, which strictly raises the profit of each firm in Mk. Next, implement merger

Mk at step two: As that merger remains, by Proposition 11, CS-nondecreasing after Ml has

taken place, it is profitable by Proposition 12. We have thus shown that the joint profit of

the firms in Mk strictly increases at each step.

28See Deneckere and Davidson (1985).
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Propositions 12 and 13 imply that if the antitrust authority adopts a myopically CS-

maximizing merger policy, then—in the last period, τ—there exists an equilibrium in which

all feasible but not yet approved mergers are proposed. Consider now period τ−1. As the set

of mergers that the antitrust authority would want to approve can only increase over time,

the set of approved mergers in period τ is independent of firms’ proposal decisions in period

τ − 1. By the same argument as for the last period, there therefore exists an equilibrium

in which all feasible but not yet approved mergers are proposed in period τ − 1. Folding

backward, the same holds for each of the previous periods.

The following proposition states the main result of this subsection:

Proposition 14. Suppose that the antitrust authority adopts the myopically CS-maximizing

merger policy. Then, all feasible mergers being proposed in each period after any history is a

subgame-perfect equilibrium. The resulting outcome maximizes discounted consumer surplus,

no matter what the realized sequence of feasible mergers. Moreover, every subgame-perfect

equilibrium results in the same optimal level of consumer surplus in each period.

Proof. See Appendix F.3.

As in Nocke and Whinston (2010)’s homogeneous-goods Cournot model, a myopically CS-

maximizing merger policy is dynamically optimal in a strong sense: The antitrust authority

could not improve upon the resulting outcome even if it had perfect foresight about future

realizations of feasible mergers (which it does not) nor if it had the power to undo previously

approved mergers (which we assume it does not).

5 Aggregate Surplus and External Effects of Mergers

Although most antitrust authorities have adopted a consumer surplus standard, it is also

important to understand the impact of mergers on aggregate surplus. We prove the analogue

of Proposition 7 for aggregate surplus effects in Section 5.1. That is, we establish the existence

of a cutoff type above which the merger under consideration raises aggregate surplus. We

then study the external effect of a merger, defined as the impact of the merger on the sum

of consumer surplus and the outsiders’ aggregate profit, in Section 5.2.

5.1 Aggregate Surplus Effects

Consider a merger M among the firms in M, and let TM be the the merged firm’s type.

Let AS∗ (resp., AS
∗
) denote equilibrium aggregate surplus before the merger (resp., after the

merger). We say that the merger is AS-increasing if AS
∗
> AS∗, AS-decreasing if AS

∗
< AS∗,

and AS-neutral if AS
∗

= AS∗. We now prove the counterpart of Proposition 7 for aggregate

surplus.

If TM = T̂M , where T̂M is the cutoff type defined in Proposition 7, then the merger is

CS-neutral. Moreover, as the merger does not affect the equilibrium value of the aggregator,
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it has no impact on the outsiders’ equilibrium profits. Since the merger is profitable by

Proposition 12, it is therefore AS-increasing.

Next, we argue that the merger is AS-decreasing if TM is small. It is easy to show that,

as TM tends to zero, the post-merger value of aggregate surplus converges to the value that

would prevail if firm M did not exist. Note that this limiting value is equal to the equilibrium

value aggregate surplus would have before the merger if the firms in M did not exist (or,

equivalently, if all their types were equal to zero). As aggregate surplus is strictly increasing

in types (Proposition 2), that value is strictly lower than actual pre-merger aggregate surplus.

Hence, the merger is AS-decreasing for TM sufficiently small.

To sum up, post-merger aggregate surplus exceeds its pre-merger value when TM is high,

and falls short of it when TM is low. The continuity of aggregate surplus in types implies

the existence of a cutoff type T̃M that makes the merger AS-neutral. By monotonicity of

aggregate surplus, that cutoff type is unique, and the merger is AS-increasing if TM > T̃M ,

and AS-decreasing if TM < T̃M . We summarize these insights in the following proposition:

Proposition 15. For a merger among the firms in M, there exists a unique T̃M < T̂M such

that the merger is AS-neutral if the post-merger type satisfies TM = T̃M , AS-decreasing if

TM < T̃M , and AS-increasing if TM > T̃M .

Note that there is no counterpart to Proposition 15 in Farrell and Shapiro (1990)’s clas-

sical analysis. The reason is that, in the homogeneous-goods Cournot model, equilibrium

aggregate surplus is not a monotonic function of firms’ marginal costs (Lahiri and Ono, 1988;

Zhao, 2001). By contrast, we are able to leverage the monotonicity of aggregate surplus in

firms’ types to obtain Proposition 15.

The proposition states that T̃M < T̂M , which follows immediately from the fact that a

CS-neutral merger is AS-increasing. Whether or not T̃M >
∑

f∈I T
f , i.e., whether or not

an AS-neutral merger must involve synergies, is unclear. On the one hand, a merger that

does not involve synergies lowers the equilibrium aggregator level. On the other hand, it

reallocates market shares toward the outsiders, which can raise social welfare if those firms

are initially producing too little.

An example where a merger involving no synergies is AS-increasing can easily be con-

structed in the case of NMNL demand without an outside option (H0 = 0). Let there be

three firms, 1, 2, and 3, with pre-merger types T 1 = 1 and T 2 = T 3 = 1/2. In the aggregate-

surplus-maximizing pre-merger allocation, which can be obtained by setting all markups

equal to zero, firm 1 commands a market share of 1/2, whereas firms 2 and 3 each receive

a market share of 1/4. The equilibrium allocation is efficient if and only if it replicates that

allocation, which arises if and only if all firms charge the same markup. As firm 1’s type is

higher than its rivals’, that firm sets an equilibrium markup that strictly exceeds that of its

rivals, resulting in an inefficient equilibrium allocation. Consider now a merger M between

firms 2 and 3, and, assuming no synergies, let TM = 1. As firm 1 and the merged firm have

the same type, they charge the same equilibrium markups, implying that the post-merger

26



equilibrium allocation is efficient. The merger is therefore AS-increasing.29

5.2 External Effects

We now extend Farrell and Shapiro (1990)’s analysis of the external effects of a merger,

defined as the sum of its impact on consumer surplus and outsiders’ profits. To the extent

that a merger is proposed by the merger partners only if it is in their joint interest to do so, a

positive external effect is a sufficient (“safe harbor”) condition for the merger to raise social

welfare. The idea behind focusing on the external effect is that the profitability of a merger

depends on the magnitude of internal cost savings, and that these are hard to assess for an

antitrust authority. As we shall see below, the external-effects approach also delivers benefits

in terms of tractability, by allowing us to decompose a merger into infinitesimal components.

Consider a merger M among the firms in M, and let O be the set of outsiders. Let H∗

and H
∗

denote the pre- and post-merger equilibrium values of the aggregator, respectively.

The external effect of the merger is defined as

EM = logH
∗ − logH∗ +

∑
f∈O

(
m

(
T f

H
∗

)
−m

(
T f

H∗

))
= −

∫ H
∗

H∗

η(H)

H
dH,

where

η(H) ≡ −1 +
∑
f∈O

T f

H
m′
(
T f

H

)
.

Hence, as in Farrell and Shapiro (1990), the merger can be thought of as a sequence

of infinitesimal mergers dH, where, along the sequence, the value of the aggregator changes

progressively from H∗ to H
∗
. The sign of the external effect of an infinitesimal CS-decreasing

(resp. CS-increasing) merger is thus given by η(H) (resp. −η(H)).

In the following, we focus on CS-decreasing mergers to fix ideas. Such a merger necessarily

has a positive impact on outsiders’ profits. We now derive conditions under which this positive

effect on outsiders outweighs the negative effect on consumers.

An infinitesimal CS-decreasing merger dH < 0 reduces consumer surplus by d logH =

dH/H, which corresponds to the first term in the definition of η. It also raises the profit of

every outsider f ∈ O by dH/H times (T f/H)m′(T f/H). In Appendix G.1, we show that

η(H) can be rewritten as

η(H) = −1 +
∑
f∈O

αsf (1− sf )
(1− αsf )(1− sf + α(sf )2)

, (14)

where, for every f in O, sf = S(T f/H) is firm f ’s market share when the value of the

aggregator is H. The results stated in this section are derived by exploiting the properties

29By the same token, with NMNL demand, no outside option, and three firms 1, 2, and 3 such that
T 1 = T 2 = T 3, a merger between firms 2 and 3 is AS-decreasing, if it does not give rise to synergies.
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of the right-hand side of equation (14).

We first show that a CS-decreasing merger has a negative external effect when products

are poor substitutes:

Proposition 16. Let ᾱ = 3
2

(√
57− 7

)
' 0.82. If α ≤ ᾱ, then any CS-decreasing merger has

a negative external effect. If instead α > ᾱ, then there exist CS-decreasing mergers that have

a positive external effect, and CS-decreasing mergers that have a negative external effect.

Proof. See Appendix G.2.

In the non-nested CES case, the condition α ≤ ᾱ translates into σ ≤ σ̄ ' 5.7. More

generally, in the case of NCES demand, it translates into a low value of β and/or σ. The

intuition for the result is the following. After a CS-decreasing merger, the aggregate market

share of the insiders falls, meaning that consumers substitute away from the insiders’ products

into the outsiders’ products. If the insiders’ and outsiders’ products are poor substitutes,

which is the case if σ is small and/or β is small, then such substitution gives rise to a large

fall in consumer surplus, which the increase in the outsiders’ profits cannot offset, implying

a negative external effect.

In the following, we assume that α > ᾱ, and derive conditions under which a CS-

decreasing merger is more likely to have a positive external effect. Note that the positive

impact on outsiders’ profits can be decomposed into two effects. First, holding fixed outsiders’

markups, the infinitesimal merger increases the profit of each outsider f by Πf × |dH/H|.30

Hence, the “direct” effect on outsiders’ joint profit is proportional to their joint profit. Se-

cond, outsiders respond by increasing their markups. As the outsiders’ aggregate profit is

increasing and convex in outsiders’ market shares (see Section 3.1), the first, direct effect

is larger when those market shares are higher and/or more concentrated. We would there-

fore expect the external effect of a merger to be more likely to be positive in such cases.

The following propositions show that this intuition is indeed correct under the appropriate

formalization of the notions of high and concentrated market shares, respectively.

We formalize both notions by defining partial order relations over the set of pre-merger

industry structures among outsiders. A pre-merger industry structure among outsiders is a

vector (sf )f∈O of arbitrary length, where O is a finite set, sf ∈ (0, 1) for every f ∈ O, and∑
f∈O s

f < 1. Let s = (sf )f∈O and s′ = (s′f )f∈O′ be two pre-merger industry structures.

We say that the outsiders have higher market shares under s than under s′, and write

s ≥1 s
′, if there exists an injection ι : O′ −→ O such that sι(f) ≥ s′f for every f ∈ O′.31

30This holds, as

Πf = αµfsf =

{
αT

f

H µf
(
1− (1− α)µf

) α
1−α under NCES,

T f

H µf e−µ
f

under NMNL.

31≥1 is clearly reflexive and transitive. It is antisymmetric under the equivalence relation

s = (sf )f∈O ∼ s′ = (s′f )f∈O ⇐⇒ sb(f) = s′f ∀f ∈ O′, for some bijection b : O′ −→ O.
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To every outsider industry structure s, we associate a discrete probability measure Ps(·),
defined as follows:

Ps(x) =
1

|O|
∣∣{f ∈ O : sf = x

}∣∣ , ∀x ∈ R.

We say that outsiders’ market shares are more concentrated under outsider industry structure

s than under s′, and write s ≥2 s
′, if s and s′ have the same length and the same mean, and

Ps′ second-order stochastically dominates Ps. Note that s and s′ having the same length and

the same mean implies that the aggregate market share of the outsiders is the same under s

and s′.

Using these partial order relations, we obtain the following propositions:

Proposition 17. Let α > ᾱ, and consider two infinitesimal CS-decreasing mergers, M and

M ′, with pre-merger outsider industry structures s = (sf )f∈O and s′ = (s′f )f∈O′. Suppose

s ≥1 s
′ and sf ≤ s∗ ' 0.68 for every f ∈ O. If merger M ′ has a positive external effect, then

so does merger M .

Proof. See Appendix G.3.

Proposition 18. Let α > ᾱ, and consider two infinitesimal CS-decreasing mergers, M and

M ′, with pre-merger outsider industry structures s = (sf )f∈O and s′ = (s′f )f∈O′. Suppose

s ≥2 s
′, sf ≤ ŝ ' 0.29 for every f ∈ O, and s′f ≤ s̃ for every f ∈ O′. If merger M ′ has a

positive external effect, then so does merger M .

Proof. See Appendix G.4.

Thus, as long as outsiders’ market shares are not too high, the external effect of an

infinitesimal CS-decreasing merger is more likely to be positive when the outsiders have

higher and/or more concentrated market shares, in line with the intuition outlined above.

The reason why this intuition may fail if some of the outsiders are too large (i.e., if sf > s∗

or sf > ŝ for some firm f) is the result of the second, indirect effect, namely, the fact that

outsiders respond to the reduction in H by increasing their markups. Holding H fixed,

the merger-induced increase in an outsider’s markup decreases its profit. This holds since

oligopolistic markups are always above those of monopolistically competitive firms (that

perceive H as fixed), so any further increase must reduce profit for a fixed H. This second

effect becomes quantitatively important when outsiders become too large.

Proposition 18 suggests that relying on the level of the pre-merger Herfindahl index to

evaluate the social desirability of a merger can be misguided. To see this, consider two indus-

tries, and suppose that the vector of insiders’ market shares is the same in both industries.

Suppose also that outsiders’ market shares are more concentrated in the first industry than in

the second. Then, the first industry’s Herfindahl index is higher than the second’s. However,

the merger in the first industry is more likely to have a positive external effect than the one

in the second industry.

Hence, ≥1 is a partial order relation over the set of equivalence classes of the equivalence relation defined
above.
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We close this section by discussing the external effect of a non-infinitesimal CS-decreasing

merger. We already know from Proposition 16 that such a merger always has a negative exter-

nal effect if α ≤ ᾱ. Suppose now that α > ᾱ. By continuity, the comparative statics derived

in Propositions 17 and 18 continue to obtain as long as the mergers under consideration do

not have too much of an impact on the equilibrium aggregator level.

We also note that, regardless of the magnitude of the merger-induced decrease in H,

a sufficient condition for the merger to have a positive external effect is that η(H∗) > 0

(i.e., at the pre-merger aggregator level, an infinitesimal CS-decreasing merger has a positive

external effect). The reason is the following. The external effect of the merger is the integral

of the external effects of the infinitesimal mergers along the path from H∗ to H
∗
< H∗.

As the merger is CS-decreasing by assumption, outsiders’ market shares increase along that

sequence. Hence, if η(H∗) > 0, then, by Proposition 17, η(H) remains positive along the

sequence (provided no outsider reaches a market share larger than ŝ), and so the external

effect of the merger is positive. Note that checking whether η(H∗) > 0 involves using only

the outsiders’ pre-merger market shares (see equation (14)).

6 Conclusion

We provide a merger analysis in a multiproduct-firm oligopoly model with NCES or NMNL

demands, where each firm owns property rights over an arbitrary portfolio of nests of pro-

ducts. That model goes a long way towards satisfying a number of desiderata: The underlying

demand system has discrete/continuous choice micro-foundations and allows for substitution

patterns that go beyond those implied by the IIA property (notwithstanding the assumption

that each nest is entirely owned by one firm). The model allows for arbitrary product hete-

rogeneity in terms of marginal costs and qualities, and allows firms to differ in their product

portfolios. The demand system gives rise to an aggregative pricing game; the equilibrium

is unique and has intuitive comparative statics. Moreover, the type aggregation property

permits rich forms of merger-specific synergies through marginal cost reductions, quality

improvements, or new products. Finally, consumer surplus and aggregate surplus can be

expressed as functions of firm-level equilibrium market shares.

We derive three sets of results. First, we relate the Herfindahl index to market perfor-

mance measures using approximation techniques. The Herfindahl index provides an adequate

measure of the welfare distortions introduced by market power, relative to the monopolistic

competition benchmark. Moreover, the naively-computed, merger-induced variation in the

Herfindahl index approximates the market power effect of that merger.

Second, we study the consumer surplus effects of mergers, in both static and dynamic

settings. For a merger to be CS-increasing requires that the merger generates efficiencies.

These efficiencies need to be larger when the industry is less competitive before the merger,

or when the merger partners are larger—thus providing additional justification for the use of

the naively-computed change in the Herfindahl index. In a dynamic context, in which merger
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opportunities arise stochastically over time and merger proposals (and approvals) are endo-

genous, a completely myopic consumer-surplus-based merger approval policy is dynamically

optimal.

Third, we study the aggregate surplus and external effects of mergers. For a merger to

be AS-increasing requires fewer efficiencies than for it to be CS-increasing and may, in fact,

not require any efficiencies at all. The external effect of a CS-decreasing merger is always

negative when products are poor substitutes. When instead products are good substitutes,

the external effect is positive if the outsiders’ pre-merger market shares are sufficiently large

or sufficiently concentrated.

One question that naturally arises is whether another, perhaps more general, underlying

multiproduct-firm price-competition model satisfying our desiderata could have been used to

derive the results summarized above. We can think of only three (realistic) candidates for

such an alternative oligopoly model. A first possibility would be to maintain the assumption

that demand is of the NCES or NMNL type, but relax the restriction that each nest is entirely

owned by one firm. Unfortunately, the resulting multiproduct-firm pricing game would no

longer satisfy two properties that play an essential role in our analysis: The game would no

longer be aggregative, and the type aggregation property would no longer hold. A second

possibility would be to use the general class of discrete/continuous choice demand systems

studied by Nocke and Schutz (2018). Although that class of demand systems gives rise to an

aggregative multiproduct-firm pricing game, it usually does not deliver the type aggregation

property.32 A final possibility would be to use the linear demand system, which is well known

to deliver a tractable pricing game, under the assumption of symmetric single-product firms.

In recent work, Cumbul and Virag (2017) show that much of this tractability is lost when

firms are allowed to be heterogeneous: Even when applying standard selection arguments,

the pricing game often has a continuum of equilibria.

We believe that our analysis has implications well beyond industrial organization and

antitrust. The model of monopolistic competition with CES preferences is a major building

block in the macroeconomics and international trade literatures. Yet, many industries are

highly concentrated, with firms wielding market power. Such market power within an indu-

stry introduces several forms of misallocation, as it shifts output towards the outside good

(representing other industries), the within-industry outside option, and smaller, less efficient

firms that charge lower markups.33 We show that the welfare loss associated with those

misallocations is well approximated by the industry-level Herfindahl index—a measure that

is often readily available in industry-level data.

32Moreover, comparative statics are much less well-behaved than under NCES or NMNL demand (see
Nocke and Schutz, 2018, Section 3.3). For instance, a reduction in the marginal cost of a product does
not necessarily increase the equilibrium profit of the firm offering that product, nor does it necessarily raise
equilibrium consumer surplus. Another issue is that firms’ market shares in volume or in value are not
necessarily sufficient statistics for consumer surplus and aggregate surplus.

33There is a large recent literature that attempts to measure empirically the extent of misallocation arising
from market imperfections. See Restuccia and Rogerson (2017) for a survey.
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Appendix

A Proof of Proposition 1: Necessity and Sufficiency of

First-Order Conditions

Proof. Fix a profile of prices p−f for firm f ’s rivals, and let N f =
⋃
l∈f l . Define

H0′ = H0 +
∑

g∈F\{f}

∑
l∈g

(∑
j∈l

hj(p
−f
j )

)β

> 0,

and

G(p) = β

∑
l∈f
(∑

i∈l hi(pi)
)β−1∑

j∈l(pj − cj)(−h′j(pj))

H0′ +
∑

l∈f
(∑

i∈l hi(pi)
)β ,

for every profile of prices p = (pj)j∈N f . Note that G(p) is the profit firm f receives when it

sets the price vector p and its rivals rivals set the price vector p−f . Our goal is to show that

the maximization problem

max
p∈RNf++

G(p)

has a unique solution, and that the price vector p solves that maximization problem if and

only if it satisfies the first-order conditions.

The proof follows a similar development as the proof of Lemmas B–H in the Appendix

of Nocke and Schutz (2018). It proceeds as follows. We first show that pricing some (or all)

of the products below cost is strictly suboptimal (Step 1). We then extend the domain of G

to price vectors that have infinite components (Step 2). Combining Steps 1 and 2 allows us

to show that the profit maximization problem has a solution (Step 3). We then show that

there exists a unique price vector satisfying the first-order conditions of profit maximization

(Step 4). Combining Steps 1–4, we can conclude that the profit maximization problem has

a unique solution, and that first-order conditions are necessary and sufficient for optimality.

Step 1: No product is priced below cost. We first argue that firm f ’s products are

substitutes. Let n, n′ ∈ f and (i, i′) ∈ n× n′ such that i 6= i′. If n 6= n′, then

∂Di

∂pi′
= β2h

′
iH

β−1
n h′i′H

β−1
n′

H2
> 0.

If instead n = n′, then

∂Di

∂pi′
=
βh′ih

′
i′

H

(
(1− β)Hβ−2

n + β
H

2(β−1)
n

H

)
> 0.
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Let p be a price vector for firm f such that pj < cj for some product j ∈ N f . Define a new

price vector p̃ for firm f such that for every i ∈ N f , p̃i = max(ci, pi). When firm f deviates

from p to p̃, it stops making losses on those products that were originally priced below cost,

and, by substitutability, it makes more profits on those products that were priced above

cost. Therefore, price vector p is not optimal for firm f . When looking for a solution to firm

f ’s profit maximization problem, we can therefore confine our attention to price vectors in∏
j∈N f [cj,∞).

Step 2: Defining G at infinite prices. Let p̂ ∈
∏

j∈N f [cj,∞]. Suppose p̂ has at least

one infinite component, and let (pk)k≥0 be a sequence over
∏

j∈N f [cj,∞) such that pk −→
k→∞

p̂.

Let

f ′ = {l ∈ f : ∃i ∈ l s.t. p̂i <∞}

and

N f ′ = {j ∈ N f : p̂j <∞}.

Clearly, as k tends to infinity, the denominator of G(pk) tends to34

H0′ +
∑
l∈f ′

 ∑
j∈l∩N f ′

hj(p̂j)

β

.

Next, let i ∈ N f \ N f ′. Let l ∈ f be the nest that contains product i. Note that, for

every k ≥ 0,

(pki − ci)(−h′i(pki ))

(∑
j∈l

hj(p
k
j )

)β−1

≤ (pki − ci)(−h′i(pki ))
(
hi(p

k
i )
)β−1

.

Under NCES demand,

(pki − ci)(−h′i(pki ))
(
hi(p

k
i )
)β−1 ≤ (σ − 1)ai(p

k
i )
β(1−σ) −→

k→∞
0.

Under NMNL demand,

(pki − ci)(−h′i(pki ))
(
hi(p

k
i )
)β−1 ≤ 1

λ
pki exp

(
β

λ

(
ai − pki

))
−→
k→∞

0.

It follows that

G(pk) −→
k→∞

β

∑
l∈f ′
(∑

i∈l∩N f ′ hi(p̂i)
)β−1∑

j∈l∩N f ′(p̂j − cj)(−h′j(p̂j))

H0′ +
∑

l∈f ′
(∑

i∈l∩N f ′ hi(p̂i)
)β ≡ G(p̂).

34By convention, the sum of an empty collection of reals is zero.
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We have thus extended the domain of G to
∏

j∈N f [cj,∞]. Note that, at p̂, G has smooth

partial derivatives with respect to (pi)i∈N f ′ .

Step 3: The profit maximization problem has a solution. By continuity of G (as

established in the previous step) and compactness of
∏

j∈N f [cj,∞], the maximization problem

max
p∈

∏
j∈Nf [cj ,∞]

G(p)

has a solution p̂. Clearly, p̂ has at least one finite component, for otherwise G(p̂) would be

equal to zero, as shown above.

Assume for a contradiction that p̂ has some infinite components, and define f ′ and N f ′

as in the previous step. Since p̂ maximizes G, it must be the case that ∂G
∂pi

∣∣∣
p̂

= 0 for every

i ∈ N f ′. Manipulating the first order conditions as we did in Section 2.3, we obtain the

existence of a µ̃f such that, for every i ∈ N f ′,

p̂i − ci
p̂i

p̂ih
′′
i (p̂i)

−h′i(p̂i)
= µ̃f .

Under NCES, (p̂ih
′′
i (p̂i))/(−h′i(p̂i)) = σ, so that µ̃f < σ. Moreover, under both NCES and

NMNL demand, µ̃f satisfies

µ̃f (1− α̃(1− β)) = 1 + α̃βµ̃f

∑
l∈f ′

(∑
j∈l∩N f ′ hj(p̂j)

)β
H0′ +

∑
l∈f ′

(∑
j∈l∩N f ′ hj(p̂j)

)β , (15)

so that µ̃f > 1.

Fix a product i ∈ N f \N f ′, and let n ∈ f be the nest that contains product i. For every

x ≥ ci, let G̃(x) be the value of G when product i is priced at x and all the other products

are priced according to p̂. We showed in the previous step that G̃(x) −→
x→∞

G(p̂). Note that,

for every x ∈ (ci,∞),

G̃′(x) = Di ×

(
1− (x− ci)

h′′i (x)

−h′i(x)
+ (1− β)

(x− ci)(−h′i(x)) + α̃µ̃f
∑

j∈(n∩N f ′)\{i} hj(p̂j)

hi(x) +
∑

j∈(n∩N f ′)\{i} hj(p̂j)

+β

(
hi(x) +

∑
j∈(n∩N f ′)\{i} hj(p̂j)

)β−1 (
(x− ci)(−h′i(x)) + α̃µ̃f

∑
j∈(n∩N f ′)\{i} hj(p̂j)

)
H0′ +

(
hi(x) +

∑
j∈(n∩N f ′)\{i} hj(p̂j)

)β
+
∑

l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
+βα̃µ̃f

∑
l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
H0′ +

(
hi(x) +

∑
j∈(n∩N f ′)\{i} hj(p̂j)

)β
+
∑

l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
 , (16)
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where we have used the simplification derived in equation (3).

We argue that G̃′(x) < 0 for x sufficiently high. We distinguish two cases. Assume first

that n /∈ f ′, i.e., p̂j =∞ for every j ∈ n. Then, G̃′(x) simplifies to

G̃′(x) = Di

(
1− (x− ci)

h′′i (x)

−h′i(x)
+ (1− β)(x− ci)

−h′i(x)

hi(x)

+β
hi(x)β−1(x− ci)(−h′i(x)) + α̃µ̃f

∑
l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
H0′ + hi(x)β +

∑
l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
 . (17)

Under NCES demand, (x− ci) h′′i (x)

−h′i(x)
and (x− ci)−h

′
i(x)

hi(x)
tend to σ and σ − 1, respectively, as

x goes to infinity, whereas

hi(x)β−1(x− ci)(−h′i(x)) = (σ − 1)aix
β(1−σ)x− ci

x

tends to zero. It follows that the term in parenthesis in equation (17) tends to

1− σ + (1− β)(σ − 1) + βα̃µ̃f

∑
l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β
H0′ +

∑
l∈f ′\{n}

(∑
j∈l∩N f ′ hj(p̂j)

)β ,
which, using equation (15), simplifies to

−β(σ − 1) + µ̃f (1− α̃(1− β))− 1 < −β(σ − 1) + σ(1− α̃(1− β))− 1,

=
1

1− α̃

(
− βα̃ + (1− α̃(1− β))− (1− α̃)

)
,

= 0.

Hence, G̃′(x) < 0 for high enough x.

Under NMNL demand,

hi(x)β−1(x− ci)(−h′i(x)) =
x− ci
λ

exp

(
β

λ
(ai − x)

)
−→
x→∞

0,

and

1− (x− ci)
h′′i (x)

−h′i(x)
+ (1− β)(x− ci)

−h′i(x)

hi(x)
= 1− β

λ
(x− ci) −→

x→∞
−∞.

Hence, we also have that G̃′(x) < 0 for high enough x.

Next, assume instead that n ∈ f ′. Under NCES demand, the term in parenthesis in
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equation (16) tends to

1− σ + (1− β)α̃µ̃f + βα̃µ̃f

∑
l∈f ′

(∑
j∈l∩N f ′ hj(p̂j)

)β
H0′ +

∑
l∈f ′

(∑
j∈l∩N f ′ hj(p̂j)

)β ,
which, using equation (15), simplifies to

1− σ + (1− β)α̃µ̃f + µ̃f (1− α̃(1− β))− 1 = −σ + µ̃f < 0,

implying that G̃′(x) < 0 for x high enough.

Under NMNL demand, the term in parenthesis in equation (16) tends again to −∞, so

that G̃′(x) < 0 for x high enough.

It follows that G̃ is strictly decreasing over some interval (x0,∞). Therefore, G̃(x0) >

limx→∞ G̃(x) = G(p̂), and p̂ does not maximize G, a contradiction. Hence, p̂ ∈
∏

j∈N f [cj,∞)

maximizes G, which concludes Step 3.

Step 4: There exists a unique price vector satisfying the first-order optimality

conditions. The analysis in Section 2.3 implies that the price vector p̂ ∈
∏

j∈N f [cj,∞)

satisfies the first-order conditions if and only if there exists a µ̃f that is such that for every

i ∈ N f , p̂i = ri(µ̃
f ), where

ri(x) ≡

{
σ

σ−xci in the case of NCES,

λx+ ci in the case of NMNL,

and that satisfies

µ̃f (1− α̃(1− β)) = 1 + α̃βµ̃f

∑
l∈f

(∑
j∈f hj(rj(µ̃

f ))
)β

H0′ +
∑

l∈f

(∑
j∈f hj(rj(µ̃

f ))
)β ,

or, equivalently,

µ̃f (1− α̃) = 1− α̃βµ̃f H0′

H0′ +
∑

l∈f

(∑
j∈f hj(rj(µ̃

f ))
)β . (18)

As the left-hand side of equation (18) is strictly increasing, whereas the right-hand side is

strictly decreasing, that equation has at most one solution. By Step 3, that equation has a

solution. Hence, there exists a unique price vector satisfying the first-order conditions.
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B Technical Results on Fitting-In Functions

The following results are proved in Nocke and Schutz (2018):

Lemma 1. The following holds for every α ∈ (0, 1]:

(a) For every x > 0,

S ′(x) =
1

x

S(x)(1− S(x))(1− αS(x))

1− S(x) + αS(x)2
. (19)

(b) The elasticity of S, ε(x) = xS ′(x)/S(x), is strictly decreasing in x.

(c) S is strictly concave.

Proof. See Section XIII.3 in the Online Appendix to Nocke and Schutz (2018).

We also require the following lemma:

Lemma 2. The continuous extension of S to R+ is C3. Moreover, S(0) = 0,

S ′(0) =

{
α

α
1−α under NCES demand,

e−1 under NMNL demand,

S ′′(0) = −2αS ′(0)2, and S ′′′(0) = −3α(1− 2α)S ′(0)3.

The inverse function Θ ≡ S−1 is C3 on [0, 1). Moreover, Θ(0) = 0, Θ′(0) = 1/S ′(0),

Θ′′(0) = 2α/S ′(0), and Θ′′′(0) = 3α(1 + 2α)/S ′(0).

Proof. We start by computing limx↓0
S(x)
x

. In the NMNL case,

S(x)

x
= e−m(x) = exp

(
−1

1− S(x)

)
−→
x↓0

e−1 .

In the NCES case,

S(x)

x
= (1− (1− α)m(x))

α
1−α =

(
1− 1− α

1− αS(x)

) α
1−α

−→
x↓0

α
α

1−α .

Differentiating equation (19), we obtain

S ′′(x) = −
(
S(x)

x

)2
α(2− S(x))(1− S(x))(1− αS(x))

(1− S(x) + αS(x)2)3 . (20)

Differentiating once more gives

S ′′′(x) = −
(
S(x)

x

)3
α(1− S(x))(1− αS(x))

(1− S(x) + αS(x)2)5

(
3(1− 2α)− 4(1 + α)S(x)
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+ (1 + 13α + 6α2)S(x)2 − 2α(2 + 5α)S(x)3 + 3α2S(x)4
)
. (21)

Taking limits in equations (20) and (21) gives us the values of S ′′(0) and S ′′′(0).

Since S is C3 with strictly positive derivative on R+, that function establishes a C3-

diffeomorphism from R+ to [
S(0), lim

x→∞
S(x)

)
= [0, 1).

It follows that Θ is C3. Moreover,

Θ′(s) =
1

S ′ ◦ S−1(s)
,

Θ′′(s) = − S ′′ ◦ S−1(s)

(S ′ ◦ S−1(s))3 ,

Θ′′′(s) = −
S′′′◦S−1(s)
S′◦S−1(s)

(S ′ ◦ S−1(s))
3 − S ′′ ◦ S−1(s)× 3 (S ′ ◦ S−1(s))

2 S′′◦S−1(s)
S′◦S−1(s)

(S ′ ◦ S−1(s))6 ,

=
1

S ′ ◦ S−1(s)

(
− S ′′′ ◦ S−1(s)

(S ′ ◦ S−1(s))3 + 3

(
S ′′ ◦ S−1(s)

(S ′ ◦ S−1(s))2

)2
)
.

Hence,

Θ′(0) =
1

S ′(0)
,

Θ′′(0) = − 1

S ′(0)

S ′′(0)

S ′(0)2
=

2α

S ′(0)
,

Θ′′′(0) =
1

S ′(0)

(
−S

′′′(0)

S ′(0)3
+ 3

(
S ′′(0)

S ′(0)2

)2
)
,

=
1

S ′(0)

(
3α(1− 2α) + 3(2α)2

)
,

=
3α(1 + 2α)

S ′(0)
.

C Approximation Results Around Small Market Shares

C.1 Proof of Proposition 3

We prove a series of lemmas that jointly imply Proposition 3 as well as the third-order

approximation stated in footnote 22.

We first approximate consumer surplus under oligopoly:
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Lemma 3. H∗(s) = H0

1−
∑
g∈F s

g . Moreover, in the neighborhood of s = 0,

CS(s) = logH0 +
∑
f∈F

sf +
1

2

(∑
f∈F

sf

)2

+
1

3

(∑
f∈F

sf

)3

+ o
(
‖s‖3

)
.

Proof. The first part of the lemma follows immediately from the equilibrium condition

H0

H∗
+
∑
g∈F

sg = 1.

The second part of the lemma follows from the fact that, in the neighborhood of x = 0,

− log(1− x) = x+
1

2
x2 +

1

3
x3 + o(x3).

Next, we compute the first, second, and third (cross-)partial derivatives of the type vector

T (s):

Lemma 4. For every (f, f ′) ∈ F2,

∂T f

∂sf ′

∣∣∣∣
s=0

=

{
H0

S′(0)
if f = f ′,

0 otherwise.

For every (f, f ′, f ′′) ∈ F3,

∂2T f

∂sf ′∂sf ′′

∣∣∣∣
s=0

=


H0

S′(0)
2(1 + α) if f = f ′ = f ′′,

0 if f ′ 6= f and f ′′ 6= f,
H0

S′(0)
otherwise.

Finally, for every (f, f ′, f ′′, f ′′′) ∈ F4,

∂3T f

∂sf ′∂sf ′′∂sf ′′′

∣∣∣∣
s=0

=
H0

S ′(0)


6 + 9α + 6α2 if f = f ′ = f ′′ = f ′′′,

2α + 4 if (f ′, f ′′, f ′′′) ∈ P2(f),

2 if (f ′, f ′′, f ′′′) ∈ P1(f),

0 otherwise,

where

P1(f) =
{

(f 1, f 2, f 3) ∈ F3 : f = f i 6= f j, fk, for some permutation (i, j, k) of (1, 2, 3)
}
,

and

P2(f) =
{

(f 1, f 2, f 3) ∈ F3 : f = f i = f j 6= fk, for some permutation (i, j, k) of (1, 2, 3)
}
.
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Proof. Let f ∈ F . Since sf = S
(

T f

H∗(s)

)
, we have that

T f = H∗S−1(sf ) = H0 Θ(sf )

1−
∑

g∈F s
g
≡ H0Θ(sf )Ψ(s),

where we have used the inverse function Θ that was defined in Lemma 2.

Note that, for every (f, f ′, f ′′) ∈ F3,

Ψ(0) =
∂Ψ

∂sf

∣∣∣∣
s=0

= 1,

∂2Ψ

∂sf∂sf ′

∣∣∣∣
s=0

= 2,

∂3Ψ

∂sf∂sf ′∂sf ′′

∣∣∣∣
s=0

= 6.

Therefore, for every (f, f ′) ∈ F2,

∂T f

∂sf ′

∣∣∣∣
s=0

= H0

(
∂Θ(sf )

∂sf ′
Ψ(s) + Θ(sf )

∂Ψ

∂sf ′

)∣∣∣∣
s=0

=

{
H0

S′(0)
if f = f ′,

0 if f 6= f ′.

For every (f, f ′, f ′′) ∈ F3,

∂2T f

∂sf ′∂sf ′′

∣∣∣∣
s=0

= H0

(
∂2Θ(sf )

∂sf ′∂sf ′′
Ψ(s) + Θ(sf )

∂2Ψ

∂sf ′∂sf ′′
+
∂Θ(sf )

∂sf ′
∂Ψ

∂sf ′′
+
∂Θ(sf )

∂sf ′′
∂Ψ

∂sf ′

)∣∣∣∣
s=0

,

= H0

(
∂2Θ(sf )

∂sf ′∂sf ′′
+
∂Θ(sf )

∂sf ′
+
∂Θ(sf )

∂sf ′′

)∣∣∣∣
s=0

,

= H0 ×


Θ′′(0) + 2Θ′(0) if f = f ′ = f ′′,

0 if f ′, f ′′ 6= f,

Θ′(0) otherwise,

=
H0

S ′(0)
×


2(α + 1) if f = f ′ = f ′′,

0 if f ′, f ′′ 6= f,

1 otherwise.

Finally, for every (f, f ′, f ′′, f ′′′) ∈ F3,

∂3T f

∂sf ′∂sf ′′∂sf ′′′

∣∣∣∣
s=0

= H0

(
∂3Θ(sf )

∂sf ′∂sf ′′∂sf ′′′
Ψ(s) + Θ(sf )

∂3Ψ

∂sf ′∂sf ′′∂sf ′′′
+
∂2Θ(sf )

∂sf ′∂sf ′′
∂Ψ

∂sf ′′′

+
∂Θ(sf )

∂sf ′′′
∂2Ψ

∂sf ′∂sf ′′
+

∂2Θ(sf )

∂sf ′∂sf ′′′
∂Ψ

∂sf ′′
+
∂Θ(sf )

∂sf ′
∂2Ψ

∂sf ′′∂sf ′′′
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+
∂2Θ(sf )

∂sf ′′∂sf ′′′
∂Ψ

∂sf ′
+
∂Θ(sf )

∂sf ′′
∂2Ψ

∂sf ′∂sf ′′′

)∣∣∣∣
s=0

,

= H0

(
∂3Θ(sf )

∂sf ′∂sf ′′∂sf ′′′
+
∂2Θ(sf )

∂sf ′∂sf ′′
+ 2

∂Θ(sf )

∂sf ′′′
+

∂2Θ(sf )

∂sf ′∂sf ′′′

+ 2
∂Θ(sf )

∂sf ′
+

∂2Θ(sf )

∂sf ′′∂sf ′′′
+ 2

∂Θ(sf )

∂sf ′′

)∣∣∣∣
s=0

,

=
H0

S ′(0)


3α(1 + 2α) + 3(2α + 2) if f = f ′ = f ′′ = f ′′′,

2α + 2 + 2 if (f ′, f ′′, f ′′′) ∈ P2(f),

2 if (f ′, f ′′, f ′′′) ∈ P1(f),

0 otherwise,

=
H0

S ′(0)


6 + 9α + 6α2 if f = f ′ = f ′′ = f ′′′,

2α + 4 if (f ′, f ′′, f ′′′) ∈ P2(f),

2 if (f ′, f ′′, f ′′′) ∈ P1(f),

0 otherwise.

To ease notation, let s̄ =
∑

g∈F s
g. We now use Lemma 4 to obtain a third-order Taylor

approximation of T f (s) in the neighborhood of s = 0:

Lemma 5. In the neighborhood of s = 0,

T f (s) =
H0

S ′(0)

(
sf +

(
α(sf )2 + sf s̄

)
+

(
α(1 + 2α)

2
(sf )3 + α(sf )2s̄+ sf s̄2

))
+ o(‖s‖3).

Proof. By Lemma 4, first-order terms are simply given by H0

S′(0)
sf . Second-order terms are

given by

H0

S ′(0)

1

2

(
2(1 + α)(sf )2 + 2sf

∑
g 6=f

sg

)
=

H0

S ′(0)

(
α(sf )2 + sf s̄

)
.

Finally, third-order terms are:

H0

S ′(0)

1

6

(6 + 9α + 6α2)(sf )3 + (2α + 4)
∑

(f ′,f ′′,f ′′′)∈P2(f)

sf
′
sf
′′
sf
′′′

+ 2
∑

(f ′,f ′′,f ′′′)∈P1(f)

sf
′
sf
′′
sf
′′′

 ,

=
H0

S ′(0)

1

6

(
(6 + 9α + 6α2)(sf )3 + 3(2α + 4)(sf )2

∑
g 6=f

sg + 6sf
∑
g,g′ 6=f

sgsg
′

)
,

=
H0

S ′(0)

1

6

(
(6 + 9α + 6α2)(sf )3 + 3(2α + 4)(sf )2(s̄− sf ) + 6sf (s̄− sf )2

)
,

=
H0

S ′(0)

1

6

(
(−6 + 3α + 6α2)(sf )3 + 3(2α + 4)(sf )2s̄+ 6sf (s̄2 − 2s̄sf + (sf )2)

)
,
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=
H0

S ′(0)

1

6

(
(3α + 6α2)(sf )3 + 6α(sf )2s̄+ 6sf s̄2

)
,

The lemma follows by Taylor’s theorem.

We recall the definition of the dispersion measure Γ(s):

Γ(s) =
∑
f∈F

(sf )3.

The following lemma gives a third-order Taylor approximation of the sum of the types:

Lemma 6. In the neighborhood of s = 0,

∑
f∈F

S ′(0)

H0
T f (s) = s̄+

(
αHHI(s) + s̄2

)
+

(
α(1 + 2α)

2
Γ(s) + αHHI(s)s̄+ s̄3

)
+ o(‖s‖3).

Proof. Immediate.

Let CSm(s) be consumer surplus under monopolistic competition. Recall that all the

firms set their normalized markups equal to 1 under monopolistic competition. Hence, in the

case of NMNL demand,

CSm(s) = log

(
H0 +

∑
f∈F

T f (s) e−1

)
= logH0 + log

(
1 +

∑
f∈F

T f (s)
S ′(0)

H0

)
. (22)

Similarly, in the case of NCES demand,

CSm(s) = log

(
H0 +

∑
f∈F

T f (s)α
α

1−α

)
= logH0 + log

(
1 +

∑
f∈F

T f (s)
S ′(0)

H0

)
. (23)

We now provide a third-order Taylor expansion of CSm(s):

Lemma 7. In the neighborhood of s = 0,

CSm(s) = logH0 + s̄+
1

2
s̄2 +

1

3
s̄3 + αHHI(s) +

α(1 + 2α)

2
Γ(s) + o(‖s‖3).

Proof. Recall that, at the third order in the neighborhood of x = 0,

log(1 + x) = x− 1

2
x2 +

1

3
x3 + o(x3).

Combining this with Lemma 6, and eliminating higher-order terms, we obtain

CSm(s) = logH0 + s̄+ αHHI(s) + s̄2 +
α(1 + 2α)

2
Γ(s) + αHHI(s)s̄+ s̄3
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− 1

2

(
s̄+ αHHI(s) + s̄2

)2
+

1

3
s̄3 + o(‖s‖3),

= logH0 + s̄+ αHHI(s) + s̄2 +
α(1 + 2α)

2
Γ(s) + αHHI(s)s̄+ s̄3

− 1

2

(
s̄2 + 2αHHI(s)s̄+ 2s̄3

)
+

1

3
s̄3 + o(‖s‖3),

= logH0 + s̄+
1

2
s̄2 +

1

3
s̄3 + αHHI(s) +

α(1 + 2α)

2
Γ(s) + o(‖s‖3).

Combining Lemmas 3 and 7, we obtain the approximation results for the distortion to

consumer surplus that were announced in Proposition 3 and footnote 22:

Lemma 8. In the neighborhood of s = 0,

CS(s)− CSm(s) = −αHHI(s)− α(1 + 2α)

2
Γ(s) + o

(
‖s‖3

)
.

Next, we turn our attention to profits. Let

Π(s) =
∑
f∈F

(
1

1− αsf
− 1

)

be aggregate profit.

Lemma 9. In the neighborhood of s = 0,

Π(s) = αs̄+ α2 HHI(s) + α3Γ(s) + o
(
‖s‖3

)
.

Proof. This follows immediately from the fact that, in the neighborhood of x = 0,

1

1− αx
= 1 + αx+ α2x2 + α3x3 + o(x3).

Let Πm(s) be aggregate profit under monopolistic competition. Under NMNL demand,

Πm(s) =
∑
f∈F

T f (s) e−1

H0 +
∑

g∈F T
g(s) e−1

= 1− 1

1 +
∑

g∈F T
g(s)S

′(0)
H0

.

Under NCES demand,

Πm(s) =
∑
f∈F

α
T f (s)α

α
1−α

H0 +
∑

g∈F T
g(s)α

α
1−α

= α

(
1− 1

1 +
∑

g∈F T
g(s)S

′(0)
H0

)
.

Lemma 10. In the neighborhood of s = 0,

Πm(s) = α

(
s̄+ αHHI(s) +

α(1 + 2α)

2
Γ(s)− αHHI(s)s̄

)
+ o(‖s‖3).

43



Proof. Note that, at the third order in the neighborhood of x = 0,

1− 1

1 + x
= x− x2 + x3 + o(x3).

Combining this with the definition of Πm and Lemma 6, and eliminating higher-order terms,

we obtain:

Πm(s) = α

(
s̄+ αHHI(s) + s̄2 +

α(1 + 2α)

2
Γ(s) + αHHI(s)s̄+ s̄3

−
(
s̄+ αHHI(s) + s̄2

)2
+ s̄3

)
+ o(‖s‖3),

= α

(
s̄+ αHHI(s) + s̄2 +

α(1 + 2α)

2
Γ(s) + αHHI(s)s̄+ s̄3

−
(
s̄2 + 2αHHI(s)s̄+ 2s̄3

)
+ s̄3

)
+ o(‖s‖3),

= α

(
s̄+ αHHI(s) +

α(1 + 2α)

2
Γ(s)− αHHI(s)s̄

)
+ o(‖s‖3).

Combining Lemmas 8, 9, and 10 delivers the approximation of the aggregate surplus

distortion announced in Proposition 3 and footnote 22:

Lemma 11. In the neighborhood of s = 0,

AS(s)− ASm(s) = −α
(

HHI(s)(1− αs̄) +
1

2
(1 + 3α)Γ(s)

)
+ o

(
‖s‖3

)
.

C.2 Proof of Proposition 5

We prove a series of lemmas that jointly imply Proposition 5.

Recall from Appendix C.1 that H∗(s) is the equilibrium value of the aggregator given

the vector of market shares s. To ease notation, let H(s) ≡ H∗(s̄(s)) be the post-merger

equilibrium value of the aggregator. We first provide an approximation of the market power

effect of the merger, measured in terms of consumer surplus—the first part of Proposition 5:

Lemma 12. In the neighborhood of s = 0,

CS(s̄(s))− CS(s) = −α∆M HHI(s) + o(‖s‖2).

Proof. By definition of H, we have that

H0

H
+
∑
g∈F

S

(
T g

H

)
= 1.
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Totally differentiating this expression, we obtain:

−dH
H

H0

H
+
∑
g∈F

T g

H
S ′
(
T g

H

)+
1

H

∑
g∈F

S ′
(
T g

H

)∑
f∈F

∂T g

∂sf
dsf = 0.

Hence,

∂H

∂sf
= H

∑
g∈F S

′ (T g
H

)
∂T g

∂sf

H0 +
∑

g∈F T
gS ′
(
T g

H

) .
Hence, by Lemma 5 and since TM =

∑
g∈M T g,

∂H

∂sf

∣∣∣∣
s=0

= H0.

Next, we compute the Hessian of H. Note that, for every f, f ′ ∈ F

∂2H

∂sf∂sf ′

∣∣∣∣
s=0

=
∂H

∂sf ′
× 1 +H0 × 1

(H0)2

∑
g∈F

(
∂2T g

∂sf∂sf ′
S ′(0) +

1

H0

∂T g

∂sf
∂T g

∂sf ′
S ′′(0)

)H0

−H0

∑
g∈F

∂T g

∂sf
S ′(0)

 ,

= H0 +
∑
g∈F

(
∂2T g

∂sf∂sf ′
S ′(0) +

1

H0

∂T g

∂sf
∂T g

∂sf ′
S ′′(0)

)
−
∑
g∈F

∂T g

∂sf
S ′(0),

=
∑
g∈F

(
∂2T g

∂sf∂sf ′
S ′(0) +

1

H0

∂T g

∂sf
∂T g

∂sf ′
S ′′(0)

)
,

=

(
∂2TM

∂sf∂sf ′
S ′(0) +

1

H0

∂TM

∂sf
∂TM

∂sf ′
S ′′(0)

)
+
∑
g∈O

(
∂2T g

∂sf∂sf ′
S ′(0) +

1

H0

∂T g

∂sf
∂T g

∂sf ′
S ′′(0)

)
.

Assume first that f ∈ O and/or f ′ ∈ O. Then, by Lemma 5 and since TM =
∑

g∈M T g,

∂2H

∂sf∂sf ′

∣∣∣∣
s=0

=

2H0 if f 6= f ′,

H0

S′(0)
2(1 + α)S ′(0) + 1

H0

(
H0

S′(0)

)2

S ′′(0) if f = f ′,

= 2H0.
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Next, assume instead that f, f ′ ∈M. Then,

∂2H

∂sf∂sf ′

∣∣∣∣
s=0

=

2H0 + 1
H0

(
H0

S′(0)

)2

S ′′(0) if f 6= f ′,

H0

S′(0)
2(1 + α)S ′(0) + 1

H0

(
H0

S′(0)

)2

S ′′(0) if f = f ′,

=

{
2H0(1− α) if f 6= f ′,

2H0 if f = f ′.

By Taylor’s theorem,

H(s) = H0 +H0
∑
f∈F

sf +
H0

2

2
∑
f,g∈F

sfsg − 2α
∑
f,g∈M
f 6=g

sfsg

+ o(‖s‖2),

= H0

1 +
∑
f∈F

sf +

(∑
f∈F

sf

)2

− α
∑
f,g∈M
f 6=g

sfsg

+ o(‖s‖2).

Using the fact that log(1 + x) = x− 1
2
x2 + o(x2) in the neighborhood of x = 0, this implies

that

logH(s) = logH0 +
∑
f∈F

sf +

(∑
f∈F

sf

)2

− α
∑
f,g∈M
f 6=g

sfsg − 1

2

(∑
f∈F

sf

)2

+ o(‖s‖2),

= logH∗(s)− α
∑
f,g∈M
f 6=g

sfsg + o(‖s‖2), by Lemma 3,

= logH∗(s)− α∆M HHI(s) + o(‖s‖2).

Next, we approximate post-merger market shares:

Lemma 13. In the neighborhood of s = 0, for every f ∈ O

s̄f = sf + o(‖s‖2),

and

s̄M =
∑
f∈M

sf − α∆M HHI(s) + o(‖s‖2).

Proof. By definition, for every f ∈ F ,

s̄f = S

(
T f

H

)
.
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For every f ∈ F and f ′ ∈ F ,

∂s̄f

∂sf ′
=

1

H

(
∂T f

∂sf ′
− T f

H

∂H

∂sf ′

)
S ′
(
T f

H

)
.

It follows that

∂s̄f

∂sf ′

∣∣∣∣
s=0

=

{
0 if f 6= f ′ and (f 6= M or f ′ /∈M),

1 otherwise.

For every f ∈ F and f ′, f ′′ ∈ F ,

∂2s̄f

∂sf ′∂sf ′′

∣∣∣∣
s=0

= − ∂H

∂sf ′′
1

H
2

∂T f

∂sf ′
S ′(0) +

1

H

(
∂2T f

∂sf ′∂sf ′′
− 1

H

∂T f

∂sf ′′
∂H

∂sf ′

)
S ′(0)

+
1

H
2

∂T f

∂sf ′
∂T f

∂sf ′′
S ′′(0),

= − 1

H0

∂T f

∂sf ′
S ′(0) +

1

H0

(
∂2T f

∂sf ′∂sf ′′
− ∂T f

∂sf ′′

)
S ′(0) +

1

(H0)2

∂T f

∂sf ′
∂T f

∂sf ′′
S ′′(0),

=
S ′(0)

H0

(
∂2T f

∂sf ′∂sf ′′
− ∂T f

∂sf ′
− ∂T f

∂sf ′′

)
+
S ′′(0)

(H0)2

∂T f

∂sf ′
∂T f

∂sf ′′
.

Suppose first that f 6= M , so that f ∈ F . Clearly, if f ′ 6= f and f ′′ 6= f , then,

∂2s̄f

∂sf ′∂sf ′′

∣∣∣∣
s=0

= 0.

If f ′′ 6= f , then
∂2s̄f

∂sf∂sf ′′

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2T f

∂sf∂sf ′′
− ∂T f

∂sf

)
= 0.

Finally,

∂2s̄f

∂(sf )2

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2T f

∂(sf )2
− 2

∂T f

∂sf

)
+
S ′′(0)

(H0)2

(
∂T f

∂sf

)2

,

=
S ′(0)

H0

(
H0

S ′(0)
2(1 + α)− 2

H0

S ′(0)

)
+
S ′′(0)

(H0)2

(
H0

S ′(0)

)2

,

= 0.

Next, assume that f = M . Clearly, if f ′, f ′′ /∈M, then

∂2s̄M

∂sf ′∂sf ′′

∣∣∣∣
s=0

= 0.
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Next assume that f ′′ /∈M and f ′ ∈M. Then,

∂2s̄M

∂sf ′∂sf ′′

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2TM

∂sf ′∂sf ′′
− ∂TM

∂sf ′

)
,

=
S ′(0)

H0

(
∂2T f

′

∂sf ′∂sf ′′
− ∂T f

′

∂sf ′

)
,

= 0.

Next, assume that f ′, f ′′ ∈M. Then,

∂2s̄M

∂sf ′∂sf ′′

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2TM

∂sf ′∂sf ′′
− ∂T f

′

∂sf ′
− ∂T f

′′

∂sf ′′

)
+
S ′′(0)

(H0)2

∂T f
′

∂sf ′
∂T f

′′

∂sf ′′
,

=
S ′(0)

H0

(
∂2TM

∂sf ′∂sf ′′
− 2

H0

S ′(0)

)
+
S ′′(0)

(H0)2

(
H0

S ′(0)

)2

.

Hence, if f ′ = f ′′, then

∂2s̄M

∂sf ′∂sf ′′

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2T f

′

∂(sf ′)2
− 2

H0

S ′(0)

)
+
S ′′(0)

(H0)2

(
H0

S ′(0)

)2

,

= 0.

If instead f ′ 6= f ′′, then

∂2s̄M

∂sf ′∂sf ′′

∣∣∣∣
s=0

=
S ′(0)

H0

(
∂2T f

′

∂sf ′∂sf ′′
+

∂2T f
′′

∂sf ′∂sf ′′
− 2

H0

S ′(0)

)
+
S ′′(0)

(H0)2

(
H0

S ′(0)

)2

,

= −2α.

The lemma follows by Taylor’s theorem.

Let

Π(s) =
∑
f∈F

(
1

1− αsf
− 1

)
,

and Π(s) =
∑
f∈F

(
1

1− αs̄f
− 1

)
,

be aggregate profits, pre- and post-merger, respectively.

Lemma 14. In the neighborhood of s = 0,

Π(s)− Π(s) = o(‖s‖2).

Proof. By Lemma 13, and since 1
1−αx = 1 + αx + α2x2 + o(‖x‖2) in the neighborhood of
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x = 0, we have that

Π(s) = α
∑
f∈F

sf + α2
∑
f∈F

(sf )2 + o(‖s‖2),

and

Π(s) =
1

1− αs̄M
− 1 +

∑
f∈O

(
1

1− αs̄f
− 1

)
,

= α

∑
f∈M

sf − α
∑
f,g∈M
f 6=g

sfsg

+ α2

(∑
f∈M

sf

)2

+ α
∑
f∈O

sf + α2
∑
f∈O

(sf )2 + o(‖s‖2),

= α
∑
f∈F

sf + α2
∑
f∈F

(sf )2 + o(‖s‖2),

= Π(s) + o(‖s‖2).

Combining Lemmas 12 and 14 proves the second part of Proposition 5:

Lemma 15. In the neighborhood of s = 0,

AS(s̄(s))− AS(s) = −α∆M HHI(s) + o(‖s‖2).

D Approximation Results Around Monopolistic Com-

petition Conduct

This section is organized as follows. We first provide more details on our treatment of firm

conduct in Section D.1. We then prove Proposition 4 in Section D.2, and Proposition 6 in

Section D.3.

D.1 Firm Conduct

Let θ ∈ [0, 1] be a conduct parameter as defined at the end of Section 2.3. The first-order

condition for product i ∈ n ∈ f is given by

Hβ−1
n

H

(
−h′i − (pi − ci)h′′i + (1− β)

∂Hn

∂pi

∑
j∈n(pj − cj)h′j

Hn

+ θ × H1−β
n

H

∂H

∂pi

∑
l∈f

Hβ−1
l

∑
j∈l

(pj − cj)h′j

)
= 0,

49



which can be rewritten as

pi − ci
pi

pih
′′
i

−h′i
= 1 + (1− β)

∑
j∈n(pj − cj)(−h′j)

Hn

+ θβ
1

H

∑
l∈f

Hβ−1
l

∑
j∈l

(pj − cj)(−h′j), (24)

so that the common ι-markup property within nest n continues to hold. Let µ̃n be firm f ’s

ι-markup in nest n. Then, using equation (3), equation (24) simplifies to

µ̃n (1− α̃(1− β)) = 1 + θα̃β
1

H

∑
l∈f

µ̃lHβ
l , (25)

so that µ̃n = µ̃n′ ≡ µ̃f for every n, n′ ∈ f . Using the common ι-markup property both within

nest and across nests allows us to further simplify equation (25):

µ̃f (1− α̃(1− β)) = 1 + θα̃βµ̃fsf .

Defining µf ≡ µ̃f (1− α̃(1− β)) as we did in Section 2.3, this implies that

µf =
1

1− θαsf
. (26)

As the conduct parameter θ does not affect the demand system, it is still the case that

sf =

{
T f

H

(
1− (1− α)µf

) α
1−α in the case of NCES,

T f

H
e−µ

f
in the case of NMNL.

(27)

Thus, firm f ’s markup and market share jointly solve equations (26) and (27). This pins

down the fitting-in functions m(T f/H, θ) and S(T f/H, θ). The profit fitting-in function is

given by

π(T f/H, θ) =
β

H

∑
l∈f

Hβ−1
l

∑
j∈f

(pj − cj)(−h′j),

=
β

H
µ̃f α̃

∑
l∈f

Hβ
l , using equation (3),

= αµfsf , by definition of µf , sf , and α,

= αm

(
T f

H
, θ

)
S

(
T f

H
, θ

)
,

=
αS
(
T f

H
, θ
)

1− αθS
(
T f

H
, θ
) .
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The equilibrium aggregator level H∗(θ) uniquely solves the equation

H0

H
+
∑
f∈F

S

(
T f

H
, θ

)
= 1.

It is easy to see that H∗(θ), m(·, θ), S(·, θ), and π(·, θ) all tend to their value under monopo-

listic competition as θ tends to 0, and to their value under fully-fledged oligopoly as θ tends

to 1, as stated at the end of Section 2.3.

D.2 Proof of Proposition 4

We prove a series of lemmas that jointly imply Proposition 4.

Recall that the markup and market-share fitting-in functions, m(x, θ) and S(x, θ), jointly

solve the system

µf =
1

1− θαsf
,

sf =

{
x
(
1− (1− α)µf

) α
1−α in the case of NCES,

x e−µ
f

in the case of NMNL.

We compute the derivatives of S with respect to x and θ at θ = 0:

Lemma 16. For every α ∈ (0, 1] and x > 0,

∂S

∂x

∣∣∣∣
(x,0)

=
S(x, 0)

x
,

and
∂S

∂θ

∣∣∣∣
(x,0)

= −αS(x, 0)2.

Proof. Under NMNL demand,

S = x e−m = x exp

(
− 1

1− θS

)
.

Hence, at θ = 0,

dS =
S

x
dx− S2dθ,

which proves the lemma for the case α = 1.

Under NCES demand,

S = x (1− (1− α)m)
α

1−α = x

(
1− 1− α

1− θαS

) α
1−α

= x

(
α

1− θS
1− θαS

) α
1−α

.
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Hence, at θ = 0,

dS =
S

x
dx+

α

1− α
S

1− αθS
1− θS

1

(1− αθS)2

(
(−θ(1− αθS) + αθ(1− θS)) dS

+ (−S(1− αθS) + αS(1− θS)) dθ
)
,

=
S

x
dx− αS2,

which proves the lemma for the case α < 1.

Fix a profile of types (T f )f∈F and a value of the outside option H0 ≥ 0, and let H∗(θ)

be the equilibrium value of the aggregator when the conduct parameter is θ. We compute

H∗′(0), and use this derivative to obtain the first part of Proposition 4:

Lemma 17. The following holds:

d logH∗

dθ

∣∣∣∣
θ=0

= −α
∑
f∈F

S

(
T f

H∗
, 0

)2

.

This implies that, in the neighborhood of θ = 0,

CS(θ)− CS(0) = −αHHI(θ)θ + o(θ).

Proof. Recall that H∗(θ) is pinned down by the equilibrium condition

H0

H∗
+
∑
f∈F

S

(
T f

H∗
, θ

)
= 1.

Totally differentiating the equilibrium condition, we obtain:

−dH
∗

H∗

(
H0

H∗
+
∑
f∈F

T f

H∗
∂S

∂(T f/H∗)

(
T f

H∗
, θ

))
+ dθ

∑
f∈F

∂S

∂θ

(
T f

H∗
, θ

)
= 0.

Evaluating the above expression at θ = 0, and using Lemma 16 and the equilibrium condition,

we obtain:

− dH∗

H∗(0)
− dθ

∑
f∈F

αS

(
T f

H∗(0)
, 0

)2

= 0,

which proves the first part of the lemma.

The second part of the lemma follows by Taylor’s theorem:

CS(θ)− CS(0) = −αHHI(0)θ + o(θ),

= −αHHI(θ)θ + o(θ),
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where the second line follows from the fact that HHI(θ)− HHI(0) is at most first order.

Let Π(θ) denote aggregate equilibrium profits when the conduct parameter is θ. We

compute Π′(0):

Lemma 18. Π′(0) = α2 HHI(0)
∑

f∈F S
(

T f

H∗(0)
, 0
)

.

Proof. Let sf (θ) = S(T f/H∗(θ), θ) and

πf (θ) = α
sf (θ)

1− αθsf (θ)

be firm f ’s equilibrium market share and profit, respectively. Then,

sf ′(0) =

(
−T

f

H∗
d logH∗

dθ

∂S

∂(T f/H∗)
+
∂S

∂θ

)∣∣∣∣
θ=0

,

= αHHI(0)sf (0)− α(sf (0))2.

Hence,

πf ′(0) = α
(
sf ′(0)− sf (0)

(
−αsf (0)

))
= α2 HHI(0)sf (0).

Adding up over all firms proves the lemma.

Combining Lemmas 17 and 18, we obtain the second part of Proposition 4:

Lemma 19. In the neighborhood of θ = 0,

AS(θ)− AS(0) = −αHHI(θ)

(
1−

∑
f∈F

S

(
T f

H∗(θ)
, θ

))
θ + o(θ).

Proof. Lemmas 17 and 18 and Taylor’s theorem imply that

AS(θ)− AS(0) = −αHHI(0)

(
1−

∑
f∈F

S

(
T f

H∗(0)
, 0

))
θ + o(θ).

The lemma follows from the fact that

HHI(0)

(
1−

∑
f∈F

S

(
T f

H∗(0)
, 0

))
− HHI(θ)

(
1−

∑
f∈F

S

(
T f

H∗(θ)
, θ

))

is at most first order.

D.3 Proof of Proposition 6

Proof. Let CS(θ) and AS(θ) be pre-merger equilibrium consumer surplus and aggregate sur-

plus, respectively. Let HHI(θ) (resp., H∗(θ)) be the pre-merger equilibrium value of the
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Herfindahl index (resp., aggregator), and

Σ(θ) ≡
∑
f∈F

S

(
T f

H∗(θ)
, θ

)

be the firms’ aggregate market share. The post-merger values of those quantities are CS(θ),

AS(θ), HHI(θ), H
∗
(θ), and Σ(θ), respectively.

Note that CS(0) = CS(0), AS(0) = AS(0), H∗(0) = H
∗
(0), Σ(0) = Σ(0), and

HHI(0)− HHI(0) = ∆M HHI(0),

where ∆M HHI(θ) is the merged-induced, naively computed variation in the Herfindahl index.

Using these facts and Proposition 4, we obtain:

CS(θ)− CS(θ) = −α
(
HHI(θ)− HHI(θ)

)
θ + o(θ),

= −α
(
HHI(0)− HHI(0) + o(1)

)
θ + o(θ),

= −α∆M HHI(0)θ + o(θ),

= −α
(
∆M HHI(θ) + o(1)

)
θ + o(θ),

= −α∆M HHI(θ)θ + o(θ),

which proves the first part of the proposition.

Similarly,

AS(θ)− AS(θ) = −α
(

HHI(θ)
(
1− αΣ(θ)

)
− HHI(θ) (1− αΣ(θ))

)
θ + o(θ),

= −α
(

HHI(0) (1− αΣ(0))− HHI(0) (1− αΣ(0)) + o(1)
)
θ + o(θ),

= −α (1− αΣ(0))
(
HHI(0)− HHI(0)

)
θ + o(θ),

= −α (1− αΣ(θ) + o(1))
(
∆M HHI(θ) + o(1)

)
θ + o(θ),

= −α (1− αΣ(θ)) ∆M HHI(θ)θ + o(θ),

which proves the second part of the proposition.

E Consumer Surplus Effects: Static Analysis

E.1 Proof of Proposition 8

Proof. Recall that ε(·) is the elasticity of S (see Lemma 1) and that the cutoff type solves

the equation:

S

(
T̂M

H∗

)
=
∑
f∈M

S

(
T f

H∗

)
.
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Totally differentiating this equation, we obtain:

S ′

(
T̂M

H∗

)
dT̂M

dH∗
=
T̂M

H∗
S ′

(
T̂M

H∗

)
−
∑
f∈M

T f

H∗
S ′
(
T f

H∗

)
,

= ε

(
T̂M

H∗

)
S

(
T̂M

H∗

)
−
∑
f∈M

ε

(
T f

H∗

)
S

(
T f

H∗

)
,

= ε

(
T̂M

H∗

)∑
f∈M

S

(
T f

H∗

)
−
∑
f∈M

ε

(
T f

H∗

)
S

(
T f

H∗

)
,

=
∑
f∈M

(
ε

(
T̂M

H∗

)
− ε

(
T f

H∗

))
S

(
T f

H∗

)
,

< 0,

where the third line follows by definition of T̂M and the last line follows from Lemma 1 and

from the fact that T̂M > T f for every f ∈M.

E.2 Proof of Proposition 9

Proof. Note that

T̂M

T f + T g
=
S−1

(
S
(
T f

H∗

)
+ S

(
T g

H∗

))
T f

H∗
+ T g

H∗

= ξ

(
T f

H∗
,
T g

H∗

)
,

where

ξ(x, y) ≡ S−1 (S(x) + S(y))

x+ y
, ∀x, y > 0.

Proving the first part of the lemma therefore boils down to showing that ∂ξ/∂x > 0 and

∂ξ/∂y > 0. By symmetry, this is equivalent to proving that ∂ξ/∂x > 0, which we undertake

next.

Differentiating ξ with respect to x, we obtain:

∂ξ

∂x
=
S−1(S(x) + S(y))

(x+ y)2

 (x+ y)× S ′(x)

S−1(S(x) + S(y))× S ′ ◦ S−1(S(x) + S(y))︸ ︷︷ ︸
≡ψ(x,y)

−1

 .
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Let z = S−1(S(x) +S(y)). By definition, S(z) = S(x) +S(y). Moreover, by subadditivity of

S, z > x+ y. Assume first that x ≤ y. Note that

ψ(x, y) =
(x+ y)S ′(x)

zS ′(z)
,

=
(x+ y)S ′(x)/(S(x) + S(y))

zS ′(z)/S(z)
,

=

xS′(x)
S(x)

S(x)
S(x)+S(y)

+ yS′(x)
S(y)

S(y)
S(x)+S(y)

ε(z)
,

≥
xS′(x)
S(x)

S(x)
S(x)+S(y)

+ yS′(y)
S(y)

S(y)
S(x)+S(y)

ε(z)
, by concavity of S (see Lemma 1),

=
ε(x) S(x)

S(x)+S(y)
+ ε(y) S(y)

S(x)+S(y)

ε(z)
,

>
ε(z) S(x)

S(x)+S(y)
+ ε(z) S(y)

S(x)+S(y)

ε(z)
, since ε is decreasing (see Lemma 1),

= 1.

Therefore, ∂ξ/∂x > 0 whenever x ≤ y.

Next, assume for a contradiction that ψ(x, y) ≤ 1 for some x > y. Take the smallest such

x. By continuity, this x exists, and satisfies x > y (as shown in the first step of the proof)

and ψ(x, y) = 1. Note that

∂ψ

∂x
=

1

(zS ′(z))2

(
(S ′(x) + (x+ y)S ′′(x)) zS ′(z)− (x+ y)S ′(x)

(
S ′(x) + S ′(x)

zS ′′(z)

S ′(z)

))
,

=
1

(zS ′(z))2

(
(x+ y)S ′′(x)zS ′(z)− (x+ y)(S ′(x))2 zS

′′(z)

S ′(z)

)
, since ψ(x, y) = 1,

=
(x+ y)z

(zS ′(z))2

(
S ′′(x)S ′(z)− (S ′(x))2S

′′(z)

S ′(z)

)
,

=
(x+ y)z(S ′(x))2S ′(z)

(zS ′(z))2

(
S ′′(x)

(S ′(x))2
− S ′′(z)

(S ′(z))2

)
.

Next, we argue that S ′′(·)/(S ′(·))2 is decreasing. Recall from Lemma 1 that

S ′(x) =
1

x

S(x)(1− S(x))(1− αS(x))

1− S(x) + αS(x)2
.

It follows that

S ′′(x) = −α(2− S(x))(1− S(x))(1− αS(x))S(x)2

x2 (1− S(x)1 + αS(x)2)3 .
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Hence,
S ′′(x)

(S ′(x))2
= − α(2− S(x))

(1− S(x))(1− αS(x)) (1− S(x)1 + αS(x)2)
.

Since S(·) is strictly increasing, the above expression is strictly decreasing in x if and only if

ϕ(s) =
α(2− s)

(1− s)(1− αs) (1− s1 + αs2)

is strictly increasing in s. Routine calculations show that ϕ′(s) > 0 for every s ∈ (0, 1) and

α ∈ (0, 1]. Therefore, ∂ψ(x, y)/∂x > 0. It follows that ψ(x′, y) < 1 in a small neighborhood

to the left of x. This contradicts the definition of x. We can conclude that ξ is increasing in

both of its arguments, which proves the first part of the lemma.

To prove the second part of the lemma, note that

T̂M − (T f + T g)

T f ′ + T g′
>
T̂M − (T f + T g)

T f + T g
>
T̂M

′ − (T f
′
+ T g

′
)

T f ′ + T g′
,

where the first inequality follows from the fact that T f + T g > T f
′

+ T g
′

and the second

inequality follows from the first part of the lemma.

F Consumer Surplus Effects: Dynamic Analysis

F.1 Proof of Corollary 1

Proof. The corollary is the analogue of Lemma 4 in Nocke and Whinston (2010), and its

proof is identical to that of the lemma in the earlier paper. It suffices to make the following

two observations.

First, Lemma 4 in Nocke and Whinston (2010) states the result for the “most lenient”

myopically CS-maximizing merger policy. However, the result and proof also hold for the

“least lenient” such policy. As noted in the text, these two policies are generically identical

in our model as every merger is, generically, either CS-increasing or CS-decreasing, but not

CS-neutral.

Second, the proof of Lemma 4 uses the monotonicity property of Lemma 2 in Nocke and

Whinston (2010). It is straightforward to see that Lemmas 5 and 6 in Nocke and Whinston

(2010) hold in our setup, implying that the monotonicity property of Lemma 2 carries over

as well.

F.2 Proof of Proposition 12

Proof. We first show that merger Mk is profitable if it is CS-neutral. Recall that the profit

of a firm can be written as Π = m− 1, and its market share as S = (m− 1)/(αm). It follows
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that Π = αmS. Note that

m

(
TMk

H∗

)
S

(
TMk

H∗

)
= m

(
TMk

H∗

) ∑
f∈Mk

S

(
T f

H∗

)
>
∑
f∈Mk

m

(
T f

H∗

)
S

(
T f

H∗

)
,

where the equality follows because the merger is CS-neutral, and the inequality follows be-

cause T̂Mk > T f for every f ∈Mk and m′(·) > 0.

Hence, merger Mk is profitable if TMk = T̂Mk . Next, suppose that the merger is CS-

increasing, i.e., TM > T̂M . Then, by Proposition 2, the merged firm makes a strictly higher

equilibrium profit than if its type were T̂Mk , i.e., if it were CS-neutral.

F.3 Proof of Proposition 14

Proof. The proposition is the analogue of Proposition 3, part (i) in Nocke and Whinston

(2010), and its proof is identical to that of the proposition in the earlier paper. (Note that,

in our model, the most and least lenient myopically CS-maximizing merger policies generically

coincide.) The proof in Nocke and Whinston (2010) makes explicit use of the statement about

the private profitability of CS-nondecreasing mergers in Corollary 1 as well as of Lemmas 2,

4 and 5 in that paper. The profitability statement of Corollary 1 in Nocke and Whinston

(2010) corresponds to Proposition 12 in our paper whereas Lemma 4 in Nocke and Whinston

(2010) corresponds to our Corollary 1. As noted in the proof of our Corollary 1, Lemmas 5

and 6 in Nocke and Whinston (2010) hold in our setup, implying that Lemma 2 in Nocke

and Whinston (2010) carries over as well.

G External Effects

G.1 Preliminaries

We first derive the formula for η(H):

Lemma 20. η(H) is given by:

η(H) = −1 +
∑
f∈O

φ(sf , α),

where sf = S(T f/H), and

φ(s, α) =
αs(1− s)

(1− αs)(1− s+ αs2)
, ∀s ∈ (0, 1), ∀α ∈ (0, 1].

Proof. This follows from the definition of η and from the fact that

xm′(x) = xα
S ′(x)

(1− αS(x))2
, since m(x) =

1

1− αS(x)
,
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=
α

(1− αS(x))2

S(x)(1− S(x))(1− αS(x))

1− S(x) + αS(x)2
, by Lemma 1,

=
αS(x)(1− S(x))

(1− αS(x))(1− S(x) + αS(x)2)
,

= φ(S(x), α).

Next, we put on record the following facts about the function φ:

Lemma 21. Let α̂ = 1
2

+
√

33
18
' 0.82. The function φ has the following properties:

(a) For every s ∈ (0, 1), φ(s, ·) is strictly increasing.

(b) If α ≤ α̂, then φ(s, α) ≤ s for every s ∈ (0, 1).

Moreover, if α > α̂, then there exist thresholds s∗(α) ∈ (0, 1] and ŝ(α) ∈ (1/4, 1) such that:

(c) φ(·, α) is strictly increasing on (0, s∗(α)) and strictly decreasing on (s∗(α), 1).

(d) φ(·, α) is strictly convex on (0, ŝ(α)) and strictly concave on (ŝ(α), 1).

Proof. We prove the lemma (analytically) using Mathematica. Mathematica files are availa-

ble upon request.

G.2 Proof of Proposition 16

Proof. If α ≤ α̂, then, by Lemma 21, φ(x, α) ≤ x for every x ∈ (0, 1). As outsiders’ market

shares add up to strictly less than 1, Lemma 20 immediately implies that any infinitesimal

CS-decreasing merger has a negative external effect. Hence, any (not necessarily infinitesimal)

CS-decreasing merger has a negative external effect.

Next, suppose α > α̂, and define

S =
⋃
n≥1

Sn, where Sn = {s ∈ [0, 1]n :
n∑
i=1

si ≤ 1} ∀n ≥ 1,

S̄ =
⋃
n≥1

Sn, where S̄n = {s ∈ [0, 1]n :
n∑
i=1

si = 1} ∀n ≥ 1,

and

Ψ(α) = sup
s∈S

∑
s

φ(·, α), ∀α ∈ (α̂, 1],

where ∑
s

φ(·, α) ≡
n∑
i=1

φ(si, α), ∀s = (si)1≤i≤n ∈ S, ∀α ∈ (0, 1].
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Clearly, since φ(x, α) ≥ 0 for all x, we have that Ψ(α) = sups∈S̄
∑

s φ(·, α). Next, we

claim that Ψ(α) = sups∈S̄4
∑

s φ(·, α). To prove this, we show that, for every s ∈ S̄, there

exists s′ ∈ S̄4 such that ∑
s

φ(·, α) ≤
∑
s′

φ(·, α).

If s belongs to Sn for some n ≤ 4, or, more generally, if s has at most four components

different from zero, then this is obvious. Assume instead that s has five or more components

different from zero. Assume without loss of generality that s ∈ S̄n for some n ≥ 5, that

si > 0 for every i, and that the components of si have been sorted in increasing order. We

construct s′ by induction.

Let us first define a function ξ, which takes as argument a profile of market shares s̃ ∈ S̄n
sorted in increasing order and with strictly positive components, and returns a profile of

market shares ξ(s̃) sorted in increasing order and with strictly positive components, such

that either ξ(s̃) ∈ S̄n, or ξ(s̃) ∈ S̄n−1. ξ(s̃) is defined as follows:

• If s̃2 ≥ ŝ(α) (or if s̃ ∈ S1), then ξ(s̃) = s̃.

• If s̃2 < ŝ(α), then do the following:

– If s̃1 + s̃2 ≤ ŝ(α), then form the (n− 1)-dimensional vector with first component

s̃1 + s̃2 and remaining components (s̃i)3≤i≤n, and sort that vector in increasing

order to obtain ξ(s̃).

– If instead s̃1 + s̃2 > ŝ(α), then form the n-dimensional with first component

s̃1 + s̃2 − ŝ(α), second component ŝ(α), and remaining components (s̃i)3≤i≤n, and

sort that vector in increasing order to obtain ξ(s̃).

Note that, since φα(·) is convex on [0, ŝ(α)], we have that, for every s̃ ∈ S̄∑
s̃

φ(·, α) ≤
∑
ξ(s̃)

φ(·, α).

We can now define the sequence (sk)k≥0 by induction: s0 = s; sk+1 = ξ(sk) for every

k ≥ 0. Let mk denote the number of components of sk greater or equal to ŝ(α), and nk

denote the dimensionality of the vector sk. By definition of ξ and of the sequence (sk)k≥0,

the sequence of integers (mk)k≥0 (resp. (nk)k≥0) is non-decreasing (resp. non-increasing) and

bounded above by n (resp. bounded below by 1). Therefore, those sequences of integers are

eventually stationary: There exists K ≥ 0 such that mk = mk+1 and nk = nk+1 for every

k ≥ K. It follows that (sk)k≥0 is also stationary after K. Let s′ be the stationary value of

the sequence (sk)k≥0. Then, by induction on k,∑
s

φ(·, α) ≤
∑
s′

φα(·, α).

60



Moreover, s′ has at most one component in [0, ŝ(α)) (for otherwise, ξ(s′) would not be equal

to s′). Let n′ be the dimensionality of the vector s′. We claim that n′ ≤ 4. Suppose n′ > 1.

Then,

1 =
n′∑
i=1

s′i ≥ (n′ − 1)ŝ(α) >
1

4
× (n′ − 1),

where the last inequality follows by Lemma 21. Hence, n′ ≤ 4. Having constructed s′, we

can conclude that

Ψ(α) = sup
s∈S̄4

∑
s

φα(·, α). (28)

By continuity of φ(·, α) (or, rather, of φ(·, α)’s continuous extension to [0, 1]) and com-

pactness of S̄4, the maximization problem defined in equation (28) has a solution. Let s be

such a solution. Then, by the convexity argument used in the construction of s′, s has a

most one component in (0, ŝ(α)). Moreover, since φ(·, α) is strictly concave on [ŝ(α), 1], the

components of s that are greater or equal to ŝ(α) must be equal to each other. It follows

that

Ψ(α) = max
x∈[0,1]

max

(
φ(x, α) + φ(1− x, α), φ(x, α) + 2φ

(
1− x

2
, α

)
, φ(x, α) + 3φ

(
1− x

3
, α

))
.

We (analytically) solve the above maximization problem using Mathematica. We obtain:

Ψ(α) =

{
18α

18−3α−α2 if α ≤ 6
7
,

4α
4−α2 otherwise.

It is straightforward to check that Ψ is strictly increasing, and that Ψ(α̂) < 1 < Ψ(1). The

unique solution of equation Ψ(α) = 1 on the interval (α̂, 1] is ᾱ = 3
2
(
√

57− 7).

We can conclude. Assume first that α ∈ (α̂, ᾱ]. Then, for every profile of outsiders’ market

shares (sf )f∈O,

∑
f∈O

φ(sf , α) < φ

(
1−

∑
f∈O

sf , α

)
+
∑
f∈O

φ(sf , α) ≤ Ψ(α) ≤ Ψ(ᾱ) = 1.

Therefore, any CS-decreasing merger must have a negative external effect.

Assume instead that α > ᾱ. We first show that there exists an infinitesimal CS-decreasing

merger that has a negative external effect. Let O = {1} and I = {2, 3}. Since φ(·, α) is

continuous and φ(0, α) = 0, there exists s ∈ (0, 1) such that φ(s, α) < 1. Let T 1 = S−1(s),

T 2 = T 3 = S−1 ((1− s)/2), and H0 = 0. Then, by construction, the pre-merger equilibrium

aggregator level is H = 1, and market shares are as follows: s1 = s, s2 = s3 = (1 − s)/2.

The external effect of an infinitesimal CS-decreasing merger between firms 2 and 3 is given

by φ(s, α)− 1, which is strictly negative by construction.
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Next, we claim that there exists an infinitesimal CS-decreasing merger that has a positive

external effect. Since Ψ(α) > 1, there exists (si)1≤i≤n ∈ (0, 1]n such that
∑n

i=1 si ≤ 1 and∑n
i=1 φ(si, α) > 1. By continuity, for ε > 0 small enough,

∑n
i=1 φ(si − ε, α) > 1. Let

O = {1, . . . , n}, I = {n + 1, n + 2}, s′i = si − ε for every i ∈ O, s′i = 1
2

(
1−

∑n
j=1 s

′j
)

for

i ∈ I, T i = S−1(s′i) for every i ∈ I ∪O, and H0 = 0. Then, by construction, an infinitesimal

CS-decreasing merger between the insiders has a positive external effect.

Since any CS-decreasing merger can be decomposed into the integral of infinitesimal CS-

decreasing mergers, and since a CS-decreasing merger can be made infinitesimal by tweaking

the post-merger type of the merged entity, the above existence results extend immediately

to non-infinitesimal mergers: If α > ᾱ, then there exist CS-decreasing mergers that have a

positive external effect, and CS-decreasing mergers that have a negative external effect.

G.3 Proof of Proposition 17

Proof. It is easy to show that s∗ ≡ infα∈[ᾱ,1] s
∗(α) ' 0.68, where s∗(α) was defined in

Lemma 21. Let s = (sf )f∈O and s′ = (s′f )f∈O′ such that s ≥1 s
′, and sf ≤ s∗ for every

f ∈ O. There exists an injection ι : O′ −→ O such that sι(f) ≥ s′f for every f ∈ O′. Note

that

−1 +
∑
f∈O′

φ(s′f ) ≤ −1 +
∑
f∈O′

φ(sι(f)) ≤ −1 +
∑
f∈F

φ(sf , α),

where the first inequality follows by Lemma 21, and the second inequality follows by injecti-

vity of ι and non-negativity of φ. This proves the proposition.

G.4 Proof of Proposition 18

Proof. It is easy to show that ŝ ≡ infα∈[ᾱ,1] ŝ(α) ' 0.29, where ŝ(α) was defined in Lemma 21.

Let s = (sf )f∈O and s′ = (s′f )f∈O′ such that s ≥2 s
′, sf ≤ ŝ for every f ∈ O, and s′f ≤ ŝ

for every f ∈ O′. Since s ≥2 s
′, those vectors have the same length, and we can assume that

O = O′ = {1, . . . , n} without loss of generality. Note that

−1 +
n∑
f=1

φ(sf , α) = −1 + n

∫ ŝ

0

φ(x, α)dPs(x),

≥ −1 + n

∫ ŝ

0

φ(x, α)dPs′(x),

= −1 +
n∑
f=1

φ(s′f , α),

where the inequality follows from the convexity of φ(·, α) on [0, ŝ] (see Lemma 21), and the

fact that
∫ ŝ

0
xdPs(x) =

∫ ŝ
0
xdPs′(x) and Ps′ second-order stochastically dominates Ps. This

proves the proposition.
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