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1 Introduction

In a seminal paper, Lucas and Stokey (1983) consider a closed economy with no capital

in which the government finances exogenous spending with taxes and debt. They argue

that if the government can issue a sufficiently rich maturity of bonds, then the optimal

policy is time-consistent. That is, if given the opportunity to reevaluate policy ex-post,

the government would choose the ex-ante optimal policy. This result has led to a large

literature that builds on this analysis, such as Alvarez et al. (2004), Persson et al. (2006),

and Debortoli et al. (2017), among others.

In this paper, we overturn this conclusion, showing that it does not generally hold in

the same model and under the same definition of time-consistency as in Lucas-Stokey.

Our argument rests on a simple example in which a commitment problem arises that

cannot be remedied with debt maturity. In this example, the government wants to roll

over some initial short-term debt. If initial debt is small enough, optimal policy under

commitment requires future governments to choose low tax rates on the upward sloping

portion of the Laffer curve, and the policy is time-consistent. In contrast, and more

interestingly, if initial debt is large enough, optimal policy under commitment requires

future governments to choose high tax rates on the downward sloping portion of the Laffer

curve. This is optimal ex-ante since the reduction in future consumption decreases short-

term interest rates today, allowing today’s government to roll over debt at a lower cost.

However, a problem arises since the government tomorrow strictly prefers to repay any

rolled over debt with a lower tax rate on the upward sloping portion of the Laffer curve,

as this maximizes consumption and welfare ex-post. Therefore, the optimal policy under

commitment cannot be sustained under lack of commitment: the government in the future

would never choose the preferred future tax rate of the government today, independently

of the inherited government debt maturity.

Our argument does not rely on the presence of non-concavities in the government’s

program and multiplicity of solutions at any date. Our example uses commonly applied

isoelastic preferences in which the program is concave and the constraint set is convex at

all dates. We show that under these preferences, the Lucas-Stokey procedure for guar-

anteeing time-consistency need not always work. More specifically, the procedure takes

the optimal commitment allocation and then selects a sequence of debt portfolios and

Lagrange multipliers (on future governments’ budget constraints) to satisfy future gov-

ernments’ first order conditions under this allocation. Assuming future debt portfolios are

positive at all maturities, this procedure guarantees time-consistency if the constructed

future Lagrange multipliers are all positive. However, the procedure is invalid if some
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constructed multipliers are negative, since the shadow cost of debt cannot be negative

along the equilibrium path. When the constructed multiplier is negative, today’s govern-

ment and the future government disagree as to which tax rate should be chosen to satisfy

the future budget constraint, and optimal policy is not time-consistent. From a practical

viewpoint, this observation means that implementation of the Lucas-Stokey procedure to

guarantee time-consistency may be valid, but it must be checked quantitatively. In some

economies, the procedure works, whereas in others—like in our example—it does not.1

Given the limitations of the Lucas-Stokey analysis, we propose an alternative approach

to studying fiscal policy under lack of commitment. Rather than analyzing whether the

optimal commitment policy survives a one-time future reoptimization, as in Lucas-Stokey,

we characterize the Markov Perfect Competitive Equilibrium (MPCE). In our setup, the

government without commitment chooses taxes and debt at every date, taking into ac-

count how current policy affects the price of bonds through expectations of future policy.

Moreover, the government may decide not to follow the optimal commitment policy. We

characterize the entire set of MPCE’s in a deterministic economy, including those with

potentially discontinuous policy functions both on and off the equilibrium path.2 Since we

allow for any unconstrained structure of maturity issuance, the payoff relevant state—the

government’s portfolio of inherited maturities—is an infinite-dimensional and potentially

complicated object. We focus our attention on the stationary maturity distribution that

emerges when the inherited portfolio of maturities equals the issued portfolio.

Our main result is that any stationary maturity distribution under lack of commitment

must be flat, with the government owing the same amount at all future dates. The fact

that a flat maturity distribution is stationary is not surprising. Under a flat maturity

distribution, the government lacking commitment can choose a tax rate to repay the debt

immediately due without rebalancing its portfolio. The chosen tax rate coincides with the

optimum under full commitment, and therefore maximizes government’s welfare. What

is less obvious is why no other maturity distribution is stationary. The reason is that a

government that inherits a non-flat maturity distribution would always take advantage

of the situation to front-load or back-load taxes in order to change interest rates. When

the government does this, the issued maturity distribution does not coincide with the

inherited one, implying that the inherited distribution is not stationary.

For example, suppose that the government inherits more long-term liabilities than

1Our example suggests that validation should depend intuitively on the extent to which optimal taxes
are on the downward sloping part of the Laffer curve. See Trabandt and Uhlig (2011) for quantitative
work analyzing the shape of the Laffer curve in advanced economies.

2In this regard, our approach is similar in spirit to that of Cao and Werning (2018) in their analysis
of Markov equilibria in the hyperbolic consumption model.
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short-term ones. Rather than issue the same maturity distribution as the inherited one,

the government can change taxes so as to increase short-term interest rates. This re-

laxes the government budget constraint by decreasing the market value of outstanding

long-term liabilities, making the government strictly better off. The opposite is true if

the government inherits more short-term liabilities than long-term ones. In this case, a

policy that decreases short-term interest rates makes the government strictly better off

by increasing the market value of newly issued liabilities.

We apply this simple logic to analyze the behavior of the government inheriting any

infinite-dimensional maturity distribution. We show that only if the inherited maturity

distribution is flat is the government unable to take advantage of imbalances in debt

positions to relax its budget constraint. As such, any stationary maturity distribution

must be flat.

Our analysis thus provides a theoretical argument for the use of consols in debt man-

agement based on the sequential optimization of fiscal policy by the government. The use

of consols has been pursued historically, most notably by the British government during

the Industrial Revolution, when consols were the largest component of the British govern-

ment’s debt (see Mokyr, 2011). Moreover, the introduction of consols has been discussed

as a potential option in the management of U.S. government debt (e.g. Cochrane, 2015).

Related Literature

The main contribution of this paper is to highlight the limitations of the Lucas-Stokey

analysis, and to offer an alternative approach to the study of optimal fiscal policy under

lack of commitment. Our work also contributes to a literature on optimal government debt

maturity in the absence of government commitment. We depart from this literature in

two ways. First, we consider the optimal maturity without imposing arbitrary constraints

on the bonds available to the government.3 Second, our model is most applicable to

economies where the risk of default and surprise in inflation are not salient, but the

government is still not committed to a path of taxes and debt maturity issuance.4 In this

regard, our paper is related to the quantitative analysis of Debortoli et al. (2017). We

differ from this work in two respects. First, we do not arbitrarily confine the set of bonds

available to the government, as they do. Second, we consider a deterministic economy and

3Krusell et al. (2006) and Debortoli and Nunes (2013) consider a similar environment to ours in the
absence of commitment, but with only one-period bonds, for example.

4Other work considers optimal government debt maturity in the presence of default risk, for example,
Aguiar et al. (2017), Arellano and Ramanarayanan (2012), Dovis (2019), Fernandez and Martin (2015),
and Niepelt (2014), among others. Bocola and Dovis (2016) additionally consider the presence of liquidity
risk. Bigio et al. (2017) consider debt maturity in the presence of transactions costs. Arellano et al. (2013)
consider lack of commitment when surprise inflation is possible.
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ignore the presence of shocks.5 These two departures allow us to achieve exact theoretical

characterization of the stationary maturity distribution. Our finding that the maturity

distribution is exactly flat is consistent with their quantitative result that the maturity

distribution is approximately flat.

Our paper proceeds as follows. In Section 2, we describe the model. In Section

3, we show that the availability of rich debt maturities does not guarantee the time-

consistency of optimal policy, using the same definition of time-consistency as in Lucas-

Stokey. In Section 4, we move beyond Lucas-Stokey and formally define an MPCE. Section

5 establishes that any stationary maturity distribution under lack of commitment is flat.

Section 6 concludes, and the Appendix provides all of the proofs and additional results

not included in the text.

2 Model

2.1 Environment

We consider an economy identical to the deterministic case of Lucas-Stokey. There are

discrete time periods t = {0, 1, ...,∞}. The resource constraint of the economy is

ct + g = nt, (1)

where ct is consumption, nt is labor, and g > 0 is government spending, which is exogenous

and constant over time.

There is a continuum of mass 1 of identical households that derive the following utility:

∞∑
t=0

βtu (ct, nt) , β ∈ (0, 1) . (2)

u (·) is strictly increasing in consumption, strictly decreasing in labor, globally concave,

and continuously differentiable. We also assume that ucc(c, c+g)+ucn(c, c+g) < 0 so that

the marginal utility of consumption is decreasing in consumption in general equilibrium.

As a benchmark, we define the first best consumption and labor
{
cfb, nfb

}
as the values

of consumption and labor that maximize u (ct, nt) subject to the resource constraint (1).

Household wages equal the marginal product of labor (which is 1 unit of consumption),

5Angeletos (2002), Bhandari et al. (2017), Buera and Nicolini (2004), Faraglia et al. (2010), Guibaud
et al. (2013), and Lustig et al. (2008) also consider optimal government debt maturity in the presence of
shocks, but they assume full commitment.
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and are taxed at a linear tax rate τt. bt,k R 0 represents government debt purchased by

a representative household at t, which is a promise to repay 1 unit of consumption at

t+ k > t. qt,k is the bond price at t. At every t, the household’s allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
must satisfy the household’s dynamic budget constraint:

ct +
∞∑
k=1

qt,k (bt,k − bt−1,k+1) = (1− τt)nt + bt−1,1. (3)

Bt,k R 0 represents debt issued by the government at t with a promise to repay 1 unit of

consumption at t+ k > t. At every t, government policies
{
τt, gt, {Bt,k}∞k=1

}
must satisfy

the government’s dynamic budget constraint:

gt +Bt−1,1 = τtnt +
∞∑
k=1

qt,k (Bt,k −Bt−1,k+1) .6 (4)

The economy is closed, which means that the bonds issued by the government equal

the bonds purchased by households:

bt,k = Bt,k ∀t, k. (5)

Initial debt {B−1,k}∞k=1 = {b−1,k}∞k=1 is exogenous. We assume that there exist debt

limits to prevent Ponzi schemes:

bt,k ∈
[
b, b
]
∀t, k. (6)

In our recursive analysis, we will consider economies where these limits are not binding

along the equilibrium path. The government is benevolent and shares the same preferences

as the households in (2).

6We follow the same exposition as in Angeletos (2002) in which the government rebalances its debt
in every period by buying back all outstanding debt and then issuing fresh debt at all maturities. This
is without loss of generality. For example, if the government at t − k issues debt due at date t of size
Bt−k,k which it then holds to maturity without issuing additional debt, then all future governments at
date t− k + l for l = 1, ..., k − 1 will choose Bt−k+l,k−l = Bt−k,k, implying that Bt−1,1 = Bt−k,k.
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2.2 Primal Approach

We follow Lucas-Stokey by taking the primal approach to the characterization of compet-

itive equilibria, since this allows us to abstract away from bond prices and taxes. Let

{ct, nt}∞t=0 (7)

represent a sequence of consumption and labor allocations. We can establish necessary

and sufficient conditions for (7) to constitute a competitive equilibrium. The household’s

optimization problem implies the following intratemporal and intertemporal conditions,

respectively:

1− τt = −un (ct, nt)

uc (ct, nt)
and qt,k =

βkuc (ct+k, nt+k)

uc (ct, nt)
. (8)

Substitution of these conditions into the household’s dynamic budget constraint implies

the following condition:

uc (ct, nt) ct + un (ct, nt)nt +
∞∑
k=1

βkuc (ct+k, nt+k) bt,k =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (9)

Forward substitution into the above equation and taking into account the absence of Ponzi

schemes implies the following implementability condition:

∞∑
k=0

βk (uc (ct+k, nt+k) ct+k + un (ct+k, nt+k)nt+k) =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (10)

By this reasoning, if a sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (1) and (10). We prove in the Appendix that the converse is also

true, which leads to the below proposition that is useful for the rest of our analysis.

Lemma 1 (competitive equilibrium) A sequence (7) is a competitive equilibrium if

and only if it satisfies (1) ∀t and (10) at t = 0 given {b−1,k}∞k=1 .

Note that this result rests on the fact that the satisfaction of (10) at t = 0 guarantees

the satisfaction of (10) for all future dates, since bonds can be freely chosen so as to satisfy

(10) at all future dates for any given sequence (7).
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3 Lucas-Stokey Revisited

In this section, we apply the Lucas-Stokey definition of time-consistency, and we provide

an example that overturns their conclusion that the optimal policy can be made time-

consistent with the appropriate choice of maturities. We first establish that optimal policy

under commitment may require future tax rates to be on the downward sloping side of the

Laffer curve. We then show that this implies that optimal policy is not time-consistent,

despite the availability of rich maturities.

3.1 Policy under Commitment

Consider an economy with isoelastic preferences over consumption c and labor n, where

u (c, n) = log c− ηn
γ

γ
(11)

for η > 0 and γ ≥ 1, which corresponds to a utility function analyzed in Werning (2007).

Under these preferences, (1) and (8) imply that the primary surplus, τn− g, is equal

to c (1− η (c+ g)γ). To facilitate the discussion, define claffer as the level of consumption

that maximizes the primary surplus:

claffer = arg max
c
c (1− η (c+ g)γ) . (12)

claffer is the level of consumption associated with the maximal tax revenue at the peak

of the Laffer curve under tax rate τ laffer. We assume that g <
(

1
η

)1/γ
to guarantee that

claffer > 0. The primary surplus on the right hand side of (12) is strictly concave in c and

equals 0 if c = 0 (100 percent labor income tax) and −g if c = cfb (0 percent labor income

tax). More broadly, if c > claffer, then the tax rate is below the revenue-maximizing

tax rate and the economy is on the upward sloping portion (left hand side) of the Laffer

curve. If c < claffer, then the tax rate is above the revenue-maximizing tax rate and the

economy is on the downward sloping portion (right hand side) of the Laffer curve.

Using Lemma 1, we can consider the date 0 government’s optimal policy under com-
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mitment, where we have substituted in for labor using the resource constraint (1):

max
{ct}∞t=0

∞∑
t=0

βt
(

log ct − η
(ct + g)γ

γ

)
(13)

s.t.
∞∑
t=0

βt
(

1− η (ct + g)γ − b−1,t+1

ct

)
= 0. (14)

Equation (14) represents the date 0 implementability condition, which is the present value

constraint of the government.

Suppose that b−1,1 > 0 and b−1,k = 0 ∀k ≥ 2. To guarantee the existence of a solution

that satisfies (14), let b−1,1 ≤ b for

b = max
c̃

{
c̃

1− β
− ηc̃ (c̃+ g)γ − β

1− β
c̃ηgγ

}
.

Since initial debt is non-negative, the left hand side of (14)—which can be equivalently

written in relaxed form as a weak inequality constraint—is concave, implying that the

constraint set is convex. This leads to the following lemma that characterizes the unique

optimum under commitment.

Lemma 2 (optimal policy) The unique solution to (13) − (14) satisfies the following

conditions:

1. ct = c1 ∀t ≥ 1,

2. c0 and c1 < c0 are the unique solutions to the following system of equations for some

µ0 > 0

1

c0
− η (c0 + g)γ−1 + µ0

(
b−1,1
c20
− ηγ (c0 + g)γ−1

)
= 0, (15)

1

c1
− η (c1 + g)γ−1 + µ0

(
−ηγ (c1 + g)γ−1

)
= 0, and (16)

1− b−1,1
c0
− η (c0 + g)γ +

β

1− β
(1− η (c1 + g)γ) = 0. (17)

3. There exists b∗−1,1 ∈ (0, b) such that the solution admits c1 > claffer if b−1,1 < b∗−1,1

and c1 < claffer if b−1,1 > b∗−1,1.

The first part of the lemma states that consumption—and therefore the tax rate—is

constant from date 1 onward. Since initial debt due from date 1 onward is constant (and
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equal to zero), tax smoothing and interest rate smoothing from date 1 onward is optimal.

The second part of the lemma characterizes the solution in terms of first order conditions

for a positive Lagrange multiplier µ0 on the implementability constraint (14). These

conditions are necessary and sufficient for optimality given the concavity of the problem.

Implicit differentiation of (15) and (16), taking into account second order conditions,

implies that initial consumption c0 exceeds long-run consumption c1, which means that

the initial tax rate is below the future tax rate. Back-loading tax rates is optimal since the

reduction in future consumption relative to present consumption allows the government

to roll over its initial short-term debt at a lower interest rate.

The last part of the lemma states that if initial short-term debt b−1,1 is sufficiently

high, then future consumption c1 is below claffer, implying that the future tax rate τ1 is

above the revenue-maximizing tax rate at the peak of the Laffer curve τ laffer. This result

stems from the fact that the government under commitment accommodates increases in

initial short-term debt b−1,1 with a reduction in future consumption c1 and an increase

in the future tax rate τ1. Mathematically, higher b−1,1 tightens the implementability

constraint (14) which increases the Lagrange multiplier µ0 on this constraint. From (16),

a higher value of µ0 leads to a lower value of c1, and beyond a certain level b∗−1,1, c1 declines

below claffer and τ1 rises above τ laffer. Conceptually, for c1 > claffer and τ1 < τ laffer,

the reduction in future consumption c1 accommodates an increase in initial short-term

debt b−1,1 by increasing future revenues and decreasing short-term interest rates. Once

c1 declines beyond claffer and τ1 rises above τ laffer, the increase in initial short-term

debt b−1,1 is accommodated with lower short-term interest rates only. If c1 < claffer and

τ1 > τ laffer, the government at date 0 could instead choose a value of c1 > claffer and

τ1 < τ laffer yielding the same future revenue to repay its issued debt. However, doing so

is suboptimal and would lead to higher short-term interest rates, significantly reducing

the resources raised at date 0 by issuing this debt.

A natural question regards what factors drive the value of b∗−1,1, since a higher b∗−1,1

implies a higher debt threshold for future taxes to be on the decreasing side of the Laffer

curve. We can establish through computational examples that the value of b∗−1,1 is in-

creasing in β, decreasing in η, and increasing in γ. Intuitively, taxes are more likely to be

on the downward sloping side of the Laffer curve from date 1 onward if either the govern-

ment is impatient and cares little about future tax distortions (β is low) or if instead tax

capacity is limited and low interest rates are required to roll over initial debt (η is high

or γ is low).
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3.2 Time-Consistency of Policy

We now show that the policy under commitment may not be time-consistent. We follow

Lucas-Stokey and consider what happens if at date 1, policy is reevaluated and chosen by

a government with full commitment from date 1 onward. As in Lucas-Stokey, we define an

optimal policy as time-consistent if the government at date 1 chooses the same allocation

as the government at date 0.

Given an inherited portfolio of maturities, the government at date 1 solves the following

problem:

max
{ct,nt}∞t=0

∞∑
t=1

βt−1
(

log ct − η
(ct + g)γ

γ

)
(18)

s.t.
∞∑
t=1

βt−1
(

1− η (ct + g)γ − b0,t
ct

)
= 0. (19)

Letting µ1 represent the Lagrange multiplier on (19), first order conditions with respect

to ct are:
1

ct
− η (ct + g)γ−1 + µ1

(
b0,t
c2t
− ηγ (ct + g)γ−1

)
= 0 ∀t ≥ 1. (20)

An optimal policy is therefore time-consistent if the solution to (18)− (19) coincides with

the solution to (13)− (14).

Proposition 1 (time-consistency of optimal policy) If b−1,1 < b∗−1,1, then the op-

timal date 0 policy is time-consistent. If b−1,1 > b∗−1,1, then the optimal date 0 policy is

not time-consistent.

If b−1,1 < b∗−1,1, then the optimal date 0 policy can be sustained under lack of commit-

ment with the government at date 0 issuing a flat maturity distribution with b0,k = b0,1

∀k ≥ 1. Under such a flat distribution, the government at date 1 optimally chooses to

smooth tax rates into the future. Moreover, given that date 1 tax rates under commit-

ment are on the upward sloping portion of the Laffer curve, the choice of such tax rates

is time-consistent. The date 0 and date 1 government agree about the optimal tax rate

to repay this debt.

If instead b−1,1 > b∗−1,1, then the optimal date 0 policy cannot be sustained under

lack of commitment. If the government at date 0 tried to induce the date 1 government

into a smooth policy from date 1 onward by issuing a flat maturity distribution with

b0,k = b0,1 ∀k ≥ 1, the date 1 government would never choose a value c1 < claffer and
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τ1 > τ laffer and would instead repay the inherited debt with a value c1 > claffer and

τ1 < τ laffer. Choosing a lower tax rate on the upward sloping portion of the Laffer curve

increases consumption and increases welfare ex-post. Thus, while the date 0 government

can commit the date 1 government to a smooth path of revenue and interest rates, it

cannot commit the date 1 government to a particular tax rate. As such, the optimal date

0 policy is not time-consistent.

3.3 Why the Lucas-Stokey Argument Fails

It is instructive to consider why the original arguments of Lucas-Stokey fail in this ex-

ample. In developing their argument, Lucas-Stokey consider the optimal allocation under

commitment from the perspective of date 0, which satisfies the following first order condi-

tion for t ≥ 1 (the analog of (16) starting from any arbitrary initial maturity distribution):

1

ct
− η (ct + g)γ−1 + µ0

(
b−1,t+1

c2t
− ηγ (ct + g)γ−1

)
= 0 ∀t ≥ 1. (21)

Lucas-Stokey claim that the optimal policy under commitment at date 0 that satisfies

(21) could be made time-consistent at date 1. They argue that this is possible with the

appropriate choice of maturities that satisfy the date 1 implementability condition (19)

and the date 1 first order condition (20) for some Lagrange multiplier µ1. Their procedure

thus combines (20) and (21) to yield:

µ1

(
b0,t
c2t
− ηγ (ct + g)γ−1

)
= µ0

(
b−1,t+1

c2t
− ηγ (ct + g)γ−1

)
, (22)

which determines the issued maturity distribution at date 0 as a function of four objects:

the inherited maturity distribution, the optimal allocation, µ0, and µ1.

According to Lucas-Stokey logic, given an optimal allocation and value of µ0 from

the perspective of date 0, a value of µ1 and a portfolio of bonds {b0,k}∞k=1 that satisfy

(19) and (22) exist, and therefore, the policy is time-consistent. To see why their logic

fails, suppose for illustration that the implied values of {b0,k}∞k=1 are all non-negative, so

that the constraint set represented by (19) at date 1 is convex. If the implied value of

µ1 is positive, then Lucas-Stokey logic holds and the optimal policy is time-consistent. If

instead the implied value of µ1 is negative, then Lucas-Stokey logic fails and the optimal

policy is not time-consistent. Intuitively, the solution to (18) − (19) under a positive

debt portfolio {b0,k}∞k=1 would never admit a negative multiplier—since the shadow cost

of inherited debt is positive—which is why the Lucas-Stokey construction fails in this
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case.

Our specific example illustrates a situation in which µ1 < 0 and the Lucas-Stokey

construction fails. (19) and (22) in our example can be written as

b0,1 = c1 (1− η (c1 + g)γ) , and (23)

b0,1 =

(
1− µ0

µ1

)
ηγc21 (c1 + g)γ−1 , (24)

respectively, for µ0 and c1 that satisfy (15)−(17). If b−1,1 < b∗−1,1, the solution to (23)−(24)

admits µ1 > 0, and the optimal policy is time-consistent. If instead b−1,1 > b∗−1,1, the

solution to (23)− (24) admits µ1 < 0, and the optimal policy is not time-consistent.

There are two important points to note regarding this example. First, our example

does not rely on the presence of non-concavities in the government’s program and mul-

tiplicity of solutions at any date. Our isoelastic preferences imply that the government’s

welfare is concave and the constraint set is convex, which guarantees that the solution

to the government’s problem at dates 0 and 1 is unique. We conjecture that considering

cases with multiplicity (for instance examples with negative debt positions, which make

the implementability condition no longer a convex constraint) could make it even more

challenging for today’s government to induce commitment by future governments.

Second, our example does not rely on the presence of an infinite horizon, which we

only choose here to be consistent with Lucas-Stokey. A T -period version of this example

would yield the same conclusion, namely that in some cases, the optimal policy under

commitment does not coincide with that under lack of commitment. In the Appendix,

we evaluate such a finite horizon economy. We show that the same conclusions hold, and

we explicitly characterize policy under lack of commitment using backward induction in

the cases where the optimal policy is not time-consistent.

4 Markov Perfect Competitive Equilibrium

Given the limitations of the Lucas-Stokey analysis, we propose an alternative approach

to studying fiscal policy under lack of commitment. Rather than analyzing whether the

optimal commitment policy survives a one-time future reoptimization, we characterize

the MPCE in which the government without commitment chooses taxes and debt at

every date, taking into account how current policy affects the price of bonds through

expectations of future policy. Such a government without commitment may not choose

the optimal commitment policy. In this section, we formally define our equilibrium, and
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then, using the primal approach, we provide a recursive representation of the equilibrium.

4.1 Equilibrium Definition

Formally, let Bt ≡ {Bt,k}∞k=1 and qt ≡ {qt,k}∞k=1. In every period t, the government

chooses a policy {τt,Bt} given Bt−1. Households then choose an allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
. An MPCE consists of: a government strategy ρ (Bt−1) which is a

function of Bt−1; a household allocation and portfolio strategy ω (Bt−1, ρt,qt) which is a

function of Bt−1, the government policy ρt = ρ (Bt−1), and bond prices qt; and a set of

bond pricing functions
{
ϕk (Bt−1, ρt)

}∞
k=1

with qt,k = ϕk (Bt−1, ρt) ∀k ≥ 1 which depend

on Bt−1 and the government policy ρt = ρ (Bt−1). In an MPCE, these objects must satisfy

the following conditions ∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the

government budget constraint (4);

2. The household allocation and portfolio strategy ω (·) maximizes (2) given ρ (·), ϕk (·)
∀k ≥ 1, and the household budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

4.2 Recursive Representation

Given our definition, an MPCE is characterized by an equilibrium consumption and labor

sequence (7) and an equilibrium debt sequence
{
{bt,k}∞k=1

}∞
t=0

, where each element at

date t depends on history only through Bt−1, the payoff relevant variables. Given this

observation, in an MPCE, one can define a function hk (·)

hk (Bt) = βkuc (ct+k, nt+k) |Bt (25)

for k ≥ 1, which equals the discounted marginal utility of consumption at t+ k given Bt

at t. This function is useful since, in choosing Bt at date t, the government must take

into account how it affects future expectations of policy, which in turn affect current bond

prices through expected future marginal utility of consumption.

Note that choosing {τt,Bt} at date t from the perspective of the government is

equivalent to choosing {ct, nt,Bt} where one can write, with some abuse of notation,

Bt = {bt,k}∞k=1, and this follows from the primal approach delineated in Section 2.2. Re-

moving the time subscript and defining B ≡ Bt−1 = {bk}∞k=1 as the inherited portfolio of
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bonds, we can write the government’s problem recursively as

V (B) = max
c,n,B′

u (c, n) + βV (B′) (26)

s.t.

c+ g = n, and (27)

uc (c, n) c+ un (c, n)n− uc (c, n) b1 +
∞∑
k=1

hk (B′) (b′k − bk+1) = 0, (28)

where (28) is a recursive representation of (9). Let f (B) correspond to the solution to

(26) − (28) given V (·) and hk (·) ∀k ≥ 1. It therefore follows that the function f (·)
necessarily implies functions hk (·) ∀k ≥ 1 which satisfy (25). An MPCE is therefore

composed of functions V (·), f (·), and hk (·) ∀k ≥ 1 that are consistent with one another

and satisfy (25)− (28).

5 Stationary Distribution of Debt Maturity

We focus on characterizing an economy in which the debt maturity distribution is station-

ary with bt+1,k = bt,k, ∀t, k, so that government debt maturity is time-invariant. Given the

Markovian structure of the solution to the MPCE defined by (26)−(28), such a stationary

maturity distribution is associated with tax rates, consumption, and interest rates that

are constant over time. In this section, we show that any stationary maturity distribution

must be flat, with the government owing the same amount of resources to the private

sector at all future dates. To establish this result, we first impose a useful assumption in

Section 5.1. In Section 5.2, we use this assumption show that a flat maturity distribution

is stationary. Finally, in Section 5.3, we show that no other maturity distribution can be

stationary.

5.1 Preliminaries

Before proceeding with our analysis, we impose a useful assumption. Using our recursive

notation introduced in Section 4, define W ({bk}∞k=1) as the welfare of the government

14



under full commitment given an initial starting debt position {bk}∞k=1:

W ({bk}∞k=1) = max
{ck,nk}∞k=0

∞∑
k=0

βku (ck, nk) (29)

s.t.

ck + g = nk, and (30)
∞∑
k=0

βk (uc (ck, nk) ck + un (ck, nk)nk) =
∞∑
k=0

βkuc (ck, nk) bk+1. (31)

Given Lemma 1, the program in (29)−(31) corresponds to that of a government under

full commitment with b−1,k = bk+1.

Assumption 1. Consider the solution to (29)−(31) with bk+1 = b ∀k ≥ 0. ∀b ∈
[
b, b
]
,

if the solution exists, then the solution is unique and admits {ck, nk} = {c∗ (b) , n∗ (b)}
∀k ≥ 0, where

uc (c∗ (b) , n∗ (b)) c∗ (b) + un (c∗ (b) , n∗ (b))n∗ (b) = uc (c∗ (b) , n∗ (b)) b, (32)

and c∗ (b) + g = n∗ (b) . (33)

This assumption states that if a government under full commitment is faced with a flat

maturity distribution, then there is a unique optimum in which the government chooses a

constant allocation of consumption and labor in the future.7 This assumption is intuitive.

Under a flat maturity distribution, every time period in the program in (29) − (31) is

identical in the objective function and in the constraint set, which suggests that the

optimal solution is a time-invariant allocation. A sufficient condition for Assumption 1 is

that the function uc (c, c+ g) (c− b) + un (c, c+ g) (c+ g) is concave in c for all b, which

is the case, for example, if the utility function satisfies (11) as in our example in Section

3 and if b = 0 so that debt is non-negative.

5.2 Flat Maturity Distribution is Stationary

We begin by establishing that if the maturity distribution is flat, then it is stationary.

Lemma 3 Suppose that B satisfies bk = b ∀k for some b ∈
[
b, b
]
. Then,

1. In all solutions to (26)− (28), c = c∗ (b) and n = n∗ (b), and

7Assumption 1 requires that the solution exists. If the upper bound on individual maturities b exceeds
the highest primary surplus that can be raised at the peak of the Laffer curve, then there is no solution
under a flat maturity for some high values of debt.
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2. There exists a solution to (26)− (28) that admits b′k = b ∀k.

The first part of the lemma states that in any MPCE, if the government inherits a flat

maturity distribution with bk = b ∀k, then the unique optimal response of the govern-

ment is to choose consumption and labor that coincide with the commitment optimum.

The second part of the lemma implies that one optimal—but not necessarily uniquely

optimal—strategy for the government is to choose b′k = b ∀k so that debt is not rebal-

anced and the maturity distribution continues to be flat in the future. As such, there

exists a stationary MPCE with a flat maturity distribution. Importantly, this lemma

implies that in any MPCE for which B is a flat maturity distribution, it is necessary that

V (B) = W (B) (34)

so that there is no welfare loss for the present government due to lack of commitment by

future governments.

The logic behind this lemma is that a government inheriting a flat maturity distribu-

tion with bk = b ∀k can always decide to not rebalance its debt portfolio and to choose

the tax rate associated with {c∗ (b) , n∗ (b)}. Forward induction on this observation com-

bined with Assumption 1 means that the government is able to achieve the commitment

optimum with this strategy while inducing allocation {c∗ (b) , n∗ (b)} in all future periods.

Note that the government can induce the commitment allocation in the future in any

MPCE, including those where the government’s continuation strategy off the equilibrium

path given off equilibrium maturities does not coincide with the commitment solution.

5.3 No Other Maturity Distribution is Stationary

We now turn to the possibility that another maturity distribution is stationary. We show

in this section that this is not possible by contradiction using an induction argument. The

first step of the induction argument establishes that if a non-flat maturity distribution

were stationary, then the debt immediately due, b1, would be necessarily equal to the

primary surplus. The second step of the induction argument establishes that if a non-flat

maturity distribution were stationary with bk equal to the primary surplus for all k ≤ m,

then bm+1 would necessarily be equal to the primary surplus. It follows then by induction

that bk equals the primary surplus for all maturities k and that the maturity distribution

is flat, leading to a contradiction.

To pursue this induction argument, we establish a preliminary result that allows us

to construct perturbations as part of the induction argument. To interpret this lemma,
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observe that since consumption is constant over time under a stationary maturity distri-

bution, the price of a bond maturing in k periods is βk.

Lemma 4 Suppose that given B, there exists a solution to (26)− (28) with a stationary

maturity distribution b′k = bk ∀k and b′l 6= b′m for some l,m. Then there exists another

solution to (26)− (28) with b′k = b̂ ∀k where

b̂ =
∞∑
k=1

βk−1 (1− β) bk. (35)

This lemma states that under any MPCE with a stationary maturity distribution

that is not flat, the government can choose the same tax rate but issue a flat maturity

distribution with the same market value and achieve the same welfare. The proof of

this lemma is facilitated by Lemma 3, which characterizes the continuation equilibrium

following this choice of a flat maturity. Since current and future taxes and consumption

remain unchanged from the issuance of a flat maturity, bond prices and welfare are also

unchanged.

Lemma 4 implies that if there exists a stationary maturity distribution that is not flat,

then the corresponding welfare is equal to that achieved under a flat maturity distribution

with the same market value. Moreover, from (34), welfare under this MPCE equals that

under commitment associated with a flat maturity distribution with the same market

value:

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c(̂b), n(̂b))

1− β
. (36)

Lemma 4 is useful since it characterizes welfare under a stationary maturity distribu-

tion that is not flat. Moreover, it allows us to consider off-equilibrium welfare following a

deviation in maturity issuance strategy by the government, which is useful for establishing

the first step of our induction argument in the next lemma.

Lemma 5 Suppose that given B, there exists a solution to (26)− (28) with a stationary

maturity distribution b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. Then, B must satisfy

b1 = b̂ for b̂ defined in (35).

This lemma states that in any stationary maturity distribution in which the tax rate

is not zero (so that consumption and labor do not equal the first best), short-term debt

b1 equals the annuitized value of total debt b̂. Therefore, the primary surplus equals the

short-term debt b1 and net debt issuance is zero.
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The proof rests on showing that if the primary surplus is in excess of, or below,

this short-term debt b1, then the government can pursue a deviation from a smooth

consumption path to boost welfare. For example, if the primary surplus is in excess

of what the government immediately owes, then pursuit of a smooth consumption path

would require the government to buy back some of its long-term debt. Rather than

following a stationary debt issuance strategy, the government can back-load consumption

to increase short-term interest rates and reduce the value of the long-term debt which it

buys back. Since the deviation is beneficial, the maintenance of a stationary debt maturity

distribution is not optimal if the primary surplus exceeds b1.

If instead the primary surplus is below what the government immediately owes, then

pursuit of a smooth consumption path would require the government to issue fresh debt in

order to repay current short-term debt. Rather than following a stationary debt issuance

strategy, the government can front-load consumption to decrease short-term interest rates

and increase the value of newly issued debt. Since the deviation is beneficial, the mainte-

nance of a stationary debt maturity distribution is not optimal if the primary surplus is

below b1.

Note that in constructing these deviations, we utilize Lemmas 3 and 4 which allow

us to characterize the change in welfare if the government issues a flat government debt

maturity today as part of its deviation. As such, we can explicitly show that these

deviations increase welfare by relaxing the government’s budget constraint.

Note that the reason why our argument does not hold under a stationary distribution

of debt maturities with zero taxes is that in this case, it is not possible to relax the

government budget constraint further.

We now use analogous arguments to establish the second step of the induction argu-

ment.

Lemma 6 Suppose that given B, there exists a solution to (26)− (28) with a stationary

maturity distribution b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. If bl = b̂ ∀l ≤ m, then

B must satisfy bm+1 = b̂ for b̂ defined in (35).

This lemma considers the stationary maturity distribution when all bond maturities

below m equal the primary surplus of the government (the annuitized value of government

debt). When this is the case, then the bond of maturity m+1 must also equal the primary

surplus of the government.

The argument, which relies on a proof by contradiction, starts from the fact that

under a stationary maturity distribution, government’s welfare satisfies (36), and thus

equals welfare under commitment with a flat maturity distribution with the same market
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value. Now if the amount owed at date m + 1 does not also equal the primary surplus,

then there exists a feasible deviation from a stationary debt issuance strategy that can

increase welfare above (36), leading to a contradiction.

More specifically, if bl = b̂ ∀l ≤ m but bm+1 6= b̂, a feasible strategy for the gov-

ernment today is to continue to choose the same consumption and labor allocation today

{c(̂b), n(̂b)} but to deviate by not retrading the inherited maturities (i.e., letting the bonds

mature to next period). Such a deviation is feasible whatever the expectations of future

policy and their impact on current bond prices since the government is not rebalancing

its portfolio.

Without needing to specify the exact form of the continuation equilibrium, we can show

that this deviation must necessarily increase welfare. The argument rests on putting a

lower bound on the welfare of future governments following the deviation based on the

feasible policies at their disposal. More specifically, note that after the initial deviation,

future governments also have the opportunity to pursue the same strategy of choosing

consumption and labor equal to {c(̂b), n(̂b)} and not rebalancing the portfolio of maturi-

ties. This is true up until some future date m periods in the future. Based on this logic,

the welfare of the government today from pursuing the deviation must weakly exceed

m−1∑
l=0

βlu(c(̂b), n(̂b)) + βmV (B̂ (m)) (37)

where B̂ (m) satisfies b̂ (m)k = bk+m ∀k ≥ 1. Thus, for the initial deviation to be weakly

dominated, this requires (37) to be weakly exceeded by (36), so that

V (B̂ (m)) ≤ u(c(̂b), n(̂b))

1− β
. (38)

However, since bm+1 6= b̂, the arguments of Lemma 5 imply that (38) cannot hold, leading

to a contradiction. Intuitively, m periods into the future after following a strategy of

no rebalancing, the primary surplus is above or below the debt immediately due. At

this point in the future, pursuing a strategy that back-loads or front-loads consumption

strictly increases welfare relative to a smooth consumption policy with a stationary debt

issuance strategy. Therefore, the immediate deviation prior to reaching this m’th period is

beneficial, and the maintenance of a stationary debt maturity distribution is not optimal.

Proposition 2 (flat maturity) Suppose that conditional on B, there exists a solution

to (26) − (28) with a stationary maturity distribution b′k = bk ∀k and for which {c, n} 6=
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{
cfb, nfb

}
. Then it is necessary that bk = b̂ ∀k so that the maturity distribution is flat.

This proposition represents the main result of the paper. It states that if the maturity

distribution is stationary and if the equilibrium does not entail first best consumption and

labor, then the maturity distribution is flat. The reasoning for the proposition follows

from induction arguments which appeal to Lemmas 5 and 6. Intuitively, if maturity

distribution is not flat, then there are opportunities for the government take advantage

of these imbalances to decrease the market value of its inherited portfolio or increase the

market value of its newly-issued portfolio. Note that this result holds in any MPCE and

does not appeal to any assumptions regarding the behavior of future governments.

Our result relies on the stationary maturity distribution not being associated with

first best consumption and labor. Under such a stationary distribution, taxes would be

zero, the market value of debt would be sufficiently negative to finance the stream of

government spending forever, and the marginal benefit of resources for the government

would be zero. For this reason, the stationary maturity distribution is not determined in

this circumstance. We can trivially rule out this case if there are exogenous bounds on

government debt which prevent such asset accumulation for the government.

Corollary 1 Suppose that b > −g. Then if conditional on B, there exists a solution to

(26)− (28) with a stationary maturity distribution b′k = bk ∀k, it is necessary that bk = b̂

∀k so that the maturity distribution is flat.

Finally, returning to Lemma 3, note that Proposition 2 also implies that starting from

a flat maturity distribution, the unique continuation equilibrium requires the issuance of

a flat maturity distribution. Therefore, in any MPCE, a flat government debt maturity

is an absorbing state, and all flat maturity distributions are stationary.

Corollary 2 Suppose that B satisfies bk = b ∀k for some b and that {c, n} 6=
{
cfb, nfb

}
.

Then, in all solutions to (26)− (28) b′k = b ∀k.

Starting from a flat maturity distribution, the current government would like to guar-

antee a constant level of consumption and labor going forward. Choosing a maturity

distribution that is not flat cannot guarantee such a continuation equilibrium, since fu-

ture governments will deviate from a smooth policy in order to relax the government

budget constraint. For this reason, the government chooses a flat maturity distribution,

and a flat maturity distribution is an absorbing state.

A natural question concerns whether an MPCE can converge to a stationary distri-

bution over time. A complete analysis of MPCE’s in an infinite horizon economy with
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an infinite choice of debt maturities is analytically infeasible in the cases where the com-

mitment and no-commitment solutions do not coincide; this is because Lucas-Stokey

techniques do not apply. In the Appendix, we analyze transitions in a T -period economy

and we present examples where the economy transitions to a flat maturity distribution in

finite time.8

6 Concluding Remarks

An important literature on optimal fiscal policy without commitment has built on the

Lucas-Stokey conclusion that a government can structure its debt maturity to guarantee

commitment by future governments. In this paper, we overturn this result, using the

same model and the same definition of time-consistency as Lucas-Stokey under standard

assumptions on preferences.

Motivated by this finding, we propose an alternative approach to studying fiscal policy

under lack of commitment. Rather than analyzing whether the optimal commitment pol-

icy survives a one-time future reoptimization, as previous work has done, we characterize

the equilibrium when the government reoptimizes sequentially and may deviate from the

optimal commitment policy. We consider an MPCE in which the government chooses pol-

icy as a function of the infinite-dimensional portfolio of government bonds that it inherits

in every period. Our analysis applies to the entire set of MPCE’s, including those with

potentially discontinuous policy functions both on and off the equilibrium path. We find

that any stationary distribution of debt maturity must be flat, with the government owing

the same amount at all future dates. Our analysis thus provides a theoretical argument

for the use of consols in debt management based on the sequential optimization of fiscal

policy by the government.

In our framework, we have considered a situation in which a government’s objective

in its debt issuance strategy is to minimize its financing costs. In practice, government

debt management offices also pursue other objectives, such as supporting financial sta-

bility. For example, this can be achieved either by providing liquidity to segments of the

market that lack it or through the bond auction process, which itself may serve a purpose

of aggregating financial market information. How these factors matter for the optimal

maturity management of government debt is an interesting question for future research.

8These results are consistent with the quantitative analysis of Debortoli et al. (2017) who consider
a stochastic infinite horizon with limited debt maturities, and who find that the maturity distribution
transitions to an approximately flat one.
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Appendix

Appendix A. Proofs of Section 2

Proof of Lemma 1

The necessity of these conditions is proved in the text. To prove sufficiency, let the

government choose the associated level of debt
{
{bt,k}∞k=1

}∞
t=0

which satisfies (9) and a

tax sequence {τt}∞t=0 which satisfies (8). Let bond prices satisfy (8). (9) given (1) implies

that (3) and (4) are satisfied. Therefore household optimality holds and all dynamic

budget constraints are satisfied along with the market clearing, so the equilibrium is

competitive.�

Appendix B. Proofs of Section 3

Proof of Lemma 2

We prove this lemma in four steps.

Step 1. We first establish that the problem is concave and the solution unique.

Consider the relaxed problem in which (14) is replaced with

1− b−1,1
c0
− η (c0 + g)γ +

∞∑
t=1

βt (1− η (ct + g)γ) ≥ 0. (B.1)

We can establish that (B.1) holds as an equality in the relaxed problem, implying that the

relaxed and constrained problems are equivalent. If instead (B.1) held as an inequality in

the relaxed problem, the solution to the relaxed problem would admit ct = cfb ∀t. Given

(11), cfb satisfies ηcfb
(
cfb + g

)γ−1
= 1, and substitution of ct = cfb into (B.1) yields

1

cfb

(
−b−1,1 −

1

1− β
g

)
≥ 0

which is a contradiction since b−1,1 > 0. Therefore, (B.1) holds as an equality in the

solution to the relaxed problem and the solutions to the relaxed and constrained problems

coincide. Since the left hand side of (B.1) is strictly concave in ct given that b−1,1 > 0

and since the objective (13) is strictly concave, it follows that the solution is unique.

Step 2. We now establish the first two parts of the lemma. Letting µ0 > 0 correspond
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to the Lagrange multiplier on (B.1), the first order condition for c0 is (15). The first order

condition for ct for all t ≥ 1 is

1

ct
− η (ct + g)γ−1 + µ0

(
−ηγ (ct + g)γ−1

)
= 0. (B.2)

Since the left hand side of (B.2) is strictly decreasing in ct, it follows that the solution to

(B.2) is unique with ct = c1 ∀t ≥ 1, where (16) defines c1. It follows from the fact that

the program is strictly concave and constraint set convex that satisfaction of (15)− (17)

is necessary and sufficient for optimality for a given µ0 > 0. We are left to verify that

c0 > c1. Note that the left hand side of (15) is strictly increasing in b−1,1 and strictly

decreasing in c0 for a given µ0 > 0. Therefore, c0 is strictly increasing in b−1,1 for a given

µ0 > 0, where c0 = c1 if b−1,1 = 0. It follows then that since b−1,1 > 0, c0 > c1.

Step 3. We now establish the last part of the lemma. We first show that the solution to

the system in (15)−(17) admits c1 which is strictly decreasing in b−1,1. Let F 0 (c0, µ0, b−1,1)

correspond to the function on the left hand side of (15), let F 1 (c1, µ0) correspond to the

function on the left hand side of (16), and let I (c0, c1, b−1,1) correspond to the function

on the left hand side of (17). Since the solution to this system of equations is unique, we

can apply the Implicit Function Theorem. Implicit differentiation yields

dc1
db−1,1

=
−F 0

c0
Ib−1,1 + F 0

b0
Ic0

F 0
c0
Ic1 +

F 0
µ0
F 1
c1
Ic0

F 1
µ0

. (B.3)

From the second order condition for (15) and (16), F 0
c0
< 0 and F 1

c1
< 0. Moreover, by

inspection, Ic1 < 0 and F 1
µ0
< 0. Finally, note that F 0

µ0
Ic0 = [Ic0 ]

2 > 0. This establishes

that the denominator in (B.3) is positive. To determine the sign of the numerator, let

us expand the numerator by substituting in for the functions. By some algebra, the

numerator is equal to

1

c0

(
− 1

c20
− η (γ − 1) (c0 + g)γ−2

)
+µ0

[
−b−1,1

c40
− 1

c0
ηγ (γ − 1) (c0 + g)γ−2 − 1

c20
ηγ (c0 + g)γ−1

]
< 0.

This establishes that c1 is strictly decreasing in b−1,1.

Step 4. Given step 3, we complete the proof of the last part of the lemma by es-

tablishing that there exists b∗−1,1 ∈ (0, b) for which the solution to (15) − (17) admits

c1 = claffer. We first establish that b∗−1,1 exceeds 0. Note that if b−1,1 = 0 then the so-

lution admits c1 > claffer. This is because (15) − (17) imply that the solution admits
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c0 = c1. Substitution into (17) yields

c1 (1− η (c1 + g)γ)

1− β
= 0. (B.4)

This equation admits two solutions: c1 = 0 and c1 = η−1/γ − g, and the optimal policy

satisfies c1 = η−1/γ − g, since welfare is arbitrarily low otherwise. Given the definition of

claffer in (12) and the strict concavity of the objective in (12), it follows that claffer must

be between 0 and η−1/γ − g, which means that c1 > claffer.

Now let us consider the system of equations (15)−(17) for b−1,1 = b∗−1,1 and c1 = claffer.

To see that this solution exists, note that 1
claffer

−η
(
claffer + g

)γ−1
> 0 since claffer < cfb.

Therefore, a value of µ0 > 0 which satisfies (16) exists. Multiply (15) by c0 and substitute

(17) into (15) to achieve

1−ηc0 (c0 + g)γ−1+µ0

(
1− η (c0 (1 + γ) + g) (c0 + g)γ−1 +

β

1− β
(
1− η

(
claffer + g

)γ))
= 0.

(B.5)

Note that given the value of µ0 > 0 satisfying (16) for c1 = claffer, a solution to (B.5)

which admits c0 > 0 exists. This is because the left hand side of (B.5) goes to

1 + µ0

(
1− ηgγ +

β

1− β
(
1− η

(
claffer + g

)γ))
> 0

as c0 goes to 0, where we have used the fact that g <
(

1
η

)1/γ
. As c0 goes to infinity, the

left hand side of (B.5) becomes arbitrarily negative. Therefore a solution to (B.5) for

c0 > 0 exists. Given that b−1,1 enters linearly in (17), it follows that a value of b−1,1 which

satisfies the system also exists. This establishes the last part of the lemma.�

Proof of Proposition 1

We consider each case separately.

Case 1. Suppose that b−1,1 < b∗−1,1. From Lemma 2, the date 0 solution admits

ct = c1 > claffer ∀t ≥ 1. To show that this solution is time-consistent, suppose that the

date 0 government chooses {b0,k}∞k=1 satisfying

b0,k = c1 (1− η (c1 + g)γ) > 0 ∀k ≥ 1 (B.6)

for c1 defined in (15)− (17). The fact that b0,k > 0 follows from the fact that the highest

value of c1 > claffer is below that associated with b−1,1 = 0 which satisfies (B.4). Now
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consider the solution to (18)− (19). Analogous arguments as those in steps 1 and 2 of the

proof of Lemma 2 imply that the unique solution satisfies (19) and (20) for some µ1 > 0.

Therefore, to check that the date 1 solution admits ct = c1 ∀t ≥ 1 for c1 which satisfies

(16), it is sufficient to check that there exists some µ1 > 0 satisfying (20). Using (B.6) to

substitute in for b0,k in (20), we find that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
> 0, (B.7)

where we have appealed to the fact that c1 < cfb (from (16)) to assign a positive sign

to the numerator in (B.7) and the fact that c1 > claffer to assign a negative sign to the

denominator in (B.7). This establishes that the date 0 solution is time-consistent.

Case 2. Suppose by contradiction that the optimal date 0 policy is time-consistent.

This would require (20) to hold for ct = c1 ∀t ≥ 1 for c1 < claffer which satisfies (16). For

a given µ1, satisfaction of (20) thus requires that b0,k = b0,1 ∀k ≥ 1. Equation (19) thus

implies that (B.6) for b0,k > 0 holds, and substitution of (B.6) into (20) implies that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
< 0, (B.8)

where we have appealed to the fact that c1 < cfb (from (16)) to assign a positive sign to

the numerator and the fact that c1 < claffer to assign a positive sign to the denominator.

However, conditional on {b0,k}∞k=1 for b0,k = b0,1 > 0 ∀k ≥ 1, the solution to (18) − (19)

must admit a positive multiplier µ1 > 0, and this follows by analogous arguments as those

in step 1 in the proof of Lemma 2, which contradicts (B.8). Therefore, the date 1 solution

does not coincide with the date 0 solution.�

Appendix C. Proofs of Section 5

Proof of Lemma 3

Note that if bk = b ∀k, then from Assumption 1, the solution under commitment admits

{ct, nt} = {c∗ (b) , n∗ (b)} ∀t, and this solution can be implemented with b′k = b given (32)−
(33). Since the MPCE satisfies the same constraints of the problem under commitment

plus additional constraints regarding sequential optimality, it follows that

W (B) =
u (c∗ (b) , n∗ (b))

1− β
≥ V (B) (C.9)
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if bk = b ∀k. Now consider optimal policy under the MPCE in (26)− (28) given bk = b ∀k.

A government has the option of choosing c = c∗ (b) and n = n∗ (b) together with b′k = b

∀k. This satisfies the resource constraint (27) and the implementability constraint (28).

Therefore, it follows that

V (B) ≥ u (c∗ (b) , n∗ (b)) + βV (B) . (C.10)

Equations (C.9) and (C.10) imply that

V (B) = W (B) . (C.11)

By Assumption 1, W (B) is uniquely characterized by {ck, nk} = {c∗ (b) , n∗ (b)} ∀k.

Therefore, it follows that any solution to (26) − (28) given bk = b ∀k admits c = c∗ (b)

and n = n∗ (b).�

Proof of Lemma 4

Conditional on B, if a solution admits b′k = bk, then this means that B is an absorbing

state with B = B′ and consumption and labor are constant and equal to some {c, n} from

that period onward. Therefore, hk (B′) = βkuc (c, n) ∀k ≥ 1 for hk (B′) defined in (25).

As such, (28) can be rewritten as

uc (c, n) c+ un (c, n)n− uc (c, n) b1 + uc (c, n)
∞∑
k=1

βk (b′k − bk+1) = 0 (C.12)

which combined with (35) and the fact that b′k = bk implies that

uc (c, n) c+ un (c, n)n = uc (c, n) b̂. (C.13)

Now consider the solution to the following problem given b̂:

max
c,n

u (c, n)

1− β
s.t. c+ g = n and (C.13) . (C.14)

It is necessary that V (B) be weakly below the value of (C.14). This is because the

solution to V (B) also admits a constant consumption and labor (as in the program in

(C.14)) and since the constraint set in (C.14) is slacker, since the program ignores the

role of government debt in changing future policies. Note furthermore that the value of

28



(C.14) equals W ({bk}∞k=1) |bk=b̂ ∀k, where this follows from Assumption 1. Therefore,

V (B) ≤ W ({bk}∞k=1) |bk=b̂ ∀k. (C.15)

Now consider the welfare of the government in the MPCE if, instead of choosing b′k = bk

∀k, it instead chooses b′k = b̂ ∀k with c = c∗(̂b) and n = n∗(̂b). It follows from

Lemma 3 that under this perturbation, hk(B′) = βkuc(c
∗(̂b), n∗(̂b)) ∀k ≥ 1, which im-

plies that the resource constraint (27) and implementability constraint (28) are satisfied

under this deviation. Because the continuation value associated with this deviation is

W ({bk}∞k=1) |bk=b̂ ∀k, it follows that for this deviation to be weakly dominated:

W ({bk}∞k=1) |bk=b̂ ∀k ≤ V (B) . (C.16)

Given (C.15) and (C.16), it follows that W ({bk}∞k=1) |bk=b̂ ∀k = V (B). Therefore, given

B, there exists another solution to (26) − (28) with b′k = b̂ ∀k which achieves the same

welfare.�

Proof of Lemma 5

Before proving this lemma, define claffer analogously as in Section 3:

claffer = arg max
c

{
c+

un(c, c+ g)

uc(c, c+ g)
(c+ g)

}
, (C.17)

and let blaffer correspond to the value of the maximized objective in (C.17). It follows

that a solution to (29)− (31) exists if bk = b ∀k ≥ 1 if b ≤ blaffer.

Given this definition, we can proceed to prove this lemma by contradiction. By Lemma

4,

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c∗(̂b), n∗(̂b))

1− β
(C.18)

for b̂ defined in (35). Now suppose that b1 6= b̂. Given the definition of b̂, this means that

b̂ ∈ (b, b) and that b̂ ≤ blaffer. We consider two cases separately.

Case 1. Suppose that b̂ < blaffer, and suppose that the government locally deviates

to b′k = b̃ 6= b̂ ∀k so that from tomorrow onward, consumption is c∗(̃b) and labor is n∗(̃b),

where this follows from Lemma 3. This means that hk(B̃) = βkuc(c
∗(̃b), n∗(̃b)) under the

deviation. In order to satisfy the resource constraint and implementability condition, let
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the government deviate today to a consumption and labor allocation {c̃, ñ} which satisfies

c̃+ g = ñ (C.19)

and

uc(c̃, ñ)c̃+ un(c̃, ñ)ñ− (uc(c̃, ñ)− uc(c∗(̃b), n∗(̃b)))b1 = (C.20)

uc(c
∗(̃b), n∗(̃b))

(
b̂+

β

1− β
(̂b− b̃)

)

where we have appealed to the definition of b̂ in (35). For such a deviation to be weakly

dominated, it must be that

V (B) ≥ u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k. (C.21)

Clearly, the value of the right hand side of (C.21) equals V (B) if b̃ = b̂. Therefore, it must

be that b̃ = b̂ with {c̃, ñ} = {c∗(̂b), n∗(̂b)} maximizes the right hand side of (C.21) subject

to (C.19), and (C.20). More specifically, we can consider the solution to the following

program

max
c̃,ñ,̃b

u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k s.t. (C.19) and (C.20) . (C.22)

For the deviation to not strictly increase welfare, b̃ = b̂ must be a solution to (C.22). By

Assumption 1, W ({bk}∞k=1) |bk=b̃ ∀k = u(c∗, n∗)/ (1− β) where {c∗, n∗} = {c∗(̃b), n∗(̃b)} are

the unique levels of consumption and labor which maximize welfare given b̃ and are defined

in (32) and (33). Letting µ1 represent the Lagrange multiplier on the implementability

condition for the program defining W ({bk}∞k=1) |bk=b̃ ∀k in (29)− (31), it follows from first

order conditions that

uc(c
∗, n∗) + un(c∗, n∗)+ (C.23)

µ1

(
uc(c

∗, n∗) + un(c∗, n∗)

+ucc(c
∗, b∗)(c∗ − b̃) + ucn(c∗, n∗)(c∗ − b̃+ n∗) + unn(c∗, n∗)n∗

)
= 0.

Since {c∗, n∗} 6= {cfb, nfb} by the statement of the lemma, (C.23) implies that µ1 6= 0.

Using this observation, implicit differentiation of (32) and (33) taking (C.23) into account

implies

c∗′(̃b) = n∗′(̃b) = −µ1
uc(c

∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
. (C.24)
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Finally, by the Envelope condition,

dW ({bk}∞k=1) |bk=b̃ ∀k
db̃

= −µ1
uc (c∗, n∗)

1− β
. (C.25)

Now consider the solution to (C.22). Let µ0 correspond to the Lagrange multiplier on

(C.20). First order conditions with respect to c̃ and ñ imply

uc(c̃, ñ) + un(c̃, ñ)+ (C.26)

µ0

(
uc(c̃, ñ) + un(c̃, ñ)

+ucc(c̃, ñ)(c̃− b1) + ucn(c̃, ñ)(c̃− b1 + ñ) + unn(c̃, ñ)ñ

)
= 0.

Since {c̃, ñ} 6= {cfb, nfb} by the statement of the lemma, (C.26) implies that µ0 6= 0. Since

the solution admits b̃ = b̂ ∈
(
b, b
)
, then we can ignore the bounds on government debt,

and first order conditions with respect to b̃ taking into account (C.24) and (C.25) yields

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)

(
b̂− b1 +

β

1− β
(̂b− b̃)

)
+

β

1− β
(µ0 − µ1) = 0. (C.27)

Note that (C.23) and (C.26) imply that

β

1− β
(µ0 − µ1) =

β

1− β
µ0µ1

ucc(c
∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̃b− b1) (C.28)

Now consider if b̃ = b̂ so that {c̃, ñ} = {c∗, n∗}. In that case, use (C.28) to substitute

into (C.27) to achieve:

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) = 0. (C.29)

If it were the case that b̂ 6= b1, then (C.29) would require that ucc(c
∗, n∗)+ucn(c∗, n∗) = 0,

which contradicts the fact that ucc(c
∗, n∗) + ucn(c∗, n∗) < 0. Therefore, b̂ = b1.

Case 2. Suppose that b̂ = blaffer. In this case, consider an analogous perturbation as

in case 1 which reduces b̂ locally. For such a perturbation to be weakly dominated, the

analog of (C.29) requires

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) ≥ 0 (C.30)

It follows from (C.25) that µ1 > 0 since any reduction in inherited debt can facilitate
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higher consumption and higher welfare. Since ucc(c
∗, n∗) + ucn(c∗, n∗) < 0, satisfaction of

(C.30) requires

µ0(̂b− b1) ≤ 0. (C.31)

Given that {c̃, ñ} = {c∗, n∗} = {claffer, claffer + g}, it can be verified from (C.17) that if

b1 < (>) b̂ = blaffer, then (C.26) implies that µ0 > (<) 0. This follows from the fact that

claffer < cfb and the term in parentheses multiplying µ0 in equation (C.26) is equal to 0

if b1 = blaffer and is increasing in b1. Therefore, (C.31) cannot hold unless b̂ = b1.�

Proof of Lemma 6

Suppose that bl = b̂ ∀l ≤ m. Given B, let B̂(1) represent the portfolio which sets

b̂k = bk+1 so that no retrading takes place. Note that in such a portfolio, b̂1 = b2.

Define B̂(2) analogously as the portfolio involving no retrading at the next date, so that

b̂k = bk+2 under B̂(2), and define B̂(l) ∀l ≤ m analogously. In any MPCE for which

b1 = b̂, a possible deviation sets {c, n} = {c∗(̂b), n∗(̂b)} and b′k = bk+1 so that no retrading

takes place, where this deviation satisfies the resource constraint and implementability

condition given (32)− (33). For such a deviation to be weakly dominated, it is necessary

that:

V (B) ≥ u(c∗(̂b), n∗(̂b)) + βV (B̂(1)). (C.32)

Forward induction on this argument implies that

V (B) ≥
m−1∑
l=0

βlu(c∗(̂b), n∗(̂b)) + βmV (B̂(m)). (C.33)

Combining (C.18) with (C.33), we achieve

V (B) ≥ V (B̂(m)). (C.34)

Now consider optimal policy starting from B̂(m). Note that since bl = b̂ ∀l ≤ m, then

following the same arguments as in the proof of Lemma 4, a feasible strategy starting from

B̂(m) is to issue a flat debt maturity with all bonds equal to b̂. Such a strategy ensures

a constant consumption and labor allocation forever equal to {c∗(̂b), n∗(̂b)}. As such, it

follows that (C.34) holds with equality and that choosing a flat maturity distribution

going forward is optimal.

Now we prove by contradiction that bm+1 = b̂. Suppose it were the case that bm+1 6= b̂.

This means that starting from B̂(m), the immediate debt which is owed by the government
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does not equal b̂. If this is the case, then the same arguments as those in the proof of

Lemma 5 imply that there exists a deviation from the government’s equilibrium strategy

at B̂(m) which can strictly increase the government’s welfare. However, if this is the case,

(C.34) which holds with equality is violated. Therefore, it must be that bm+1 = b̂.�

Proof of Proposition 2 and Corollaries 1 and 2

The proof of Proposition 2 follows directly by induction after appealing to Lemmas 5 and

6.

To prove the first corollary, note that for the statement of Proposition 2 to be false, it

is necessary that {c, n} = {cfb, nfb}. However, if this is the case, then (C.12) implies that

cfb +
un(cfb, nfb)

uc(cfb, nfb)
nfb = −g =

∞∑
k=1

βk−1 (1− β) bk ≥ b (C.35)

which contradicts bk > −g.

To prove the second corollary, note that from Lemma 3, it is necessary that the con-

tinuation equilibrium starting from a flat government debt maturity entail consumption

and labor equal to {c∗(b), n∗(b)} forever. The arguments in the proof of Lemmas 5 and

6 imply that if the government were to choose a non-flat maturity distribution going for-

ward, future governments would not choose {c∗(b), n∗(b)} forever. Therefore, all solutions

to (26)− (28) admit b′k = b ∀k.�

Appendix D. Finite Horizon Analysis

In this section, we explore the transition path of debt maturity in a finite horizon. We

consider a three-period quasilinear economy that we analytically characterize using back-

ward induction. The initial debt maturity distribution is declining in the horizon and

maturities beyond a certain horizon are equal. The proofs for the results of this section

are in the Online Appendix.

Suppose that preferences satisfy (11) and are quasilinear with γ = 1. The horizon is

finite with t = 0, 1, 2. We impose bounds on government debt where bt−1,k ∈
[
−g, cfb

]
∀t, k for cfb = 1/η given by the preference structure.9 In this setup, claffer defined in (12)

9These debt limits are non-binding along the equilibrium path, but they allow us to characterize
continuation equilibria off the equilibrium path.
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satisfies

claffer =
1− ηg

2η
. (D.36)

We consider an economy in which b−1,1 ≥ b−1,2 = b−1,3 ≥ 0. Thus, the initial debt

maturity distribution is declining in the horizon and maturities from date 1 onward are

equal. We observe that in this environment, the solution under commitment admits c1 =

c2, and this follows by analogous logic as in the example of Section 3. Furthermore, using

the same arguments from that section, we can construct examples in which initial debt

{b−1,1, b−1,2, b−1,3} with elements within
[
−g, cfb

]
implies a solution under commitment

with c1 = c2 < claffer.10

We characterize the path of consumption and debt using backward induction. At date

2, the government inherits debt b1,1 and chooses a value of consumption that satisfies the

implementability condition:

c2 (1− η (c2 + g)) = b1,1. (D.37)

Conditional on b1,1, the value of consumption c2 satisfying (D.37) is unique since c2 ≥
claffer, where this follows by analogous logic as in Section 3. A government lacking

commitment at date 2 would never choose a tax rate on the downward sloping portion of

the Laffer curve; a tax rate on the upward sloping portion associated with c2 ∈
(
claffer, cfb

)
raises the same revenue and makes the government strictly better off.

Taking this into account, the government at date 1 maximizes welfare by solving the

following problem, where we have substituted in for labor nt using the resource constraint

(1):

max
c1,c2,b1,1

∑
t=1,2

βt−1 (log ct − ηct) (D.38)

s.t.∑
t=1,2

βt−1
(

1− η (ct + g)− b0,t
ct

)
= 0, (D.39)

c2 (1− η (c2 + g)) = b1,1, (D.40)

b1,1 ∈
[
−g, cfb

]
, and (D.41)

c2 ≥ claffer. (D.42)

Note that analogous arguments to those of Section 3 imply that (D.39) can be written

in relaxed form as a weak inequality constraint. The next lemma characterizes the solution

10For example, if b−1,1 = cfb > b−1,2 = b−1,3 = 0, we can show that c1 = c2 < claffer if the discount
factor β is sufficiently low.
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to this problem by providing conditions on c1 and c2 which must hold given any inherited

debt {b0,1, b0,2} at date 1.

Lemma 7 For any {b0,1, b0,2}, the solution to (D.38)−(D.42) satisfies the following weak

inequality constraints:

c1 + βc2 ≥ claffer + βclaffer, and (D.43)

c2 ≥ claffer. (D.44)

This lemma provides necessary, but not sufficient, conditions to characterize the so-

lution to (D.38) − (D.42). These conditions put a lower bound on the discounted sum

of consumption from date 1 onward. (D.44) is clearly implied by (D.42) and stems from

the lack of commitment at date 2.

Satisfaction of (D.43) stems from the lack of commitment at date 1. More specifically,

(D.43) implies that it is not possible for c1 < claffer and c2 < claffer; all future tax

rates cannot be on the downward sloping portion of the Laffer curve. This is true even

in the relaxed version of (D.38) − (D.42) which ignores (D.42). If it were the case that

c1 < claffer and c2 < claffer, then a deviation to c1 > claffer or c2 > claffer which raises

the same revenue continues to satisfy the (relaxed) implementability condition (D.39) and

strictly increases welfare.11 In addition, note that (D.43) does not impose a clear lower

bound on c1; a solution to (D.38)− (D.42) could in principle admit c1 < claffer, however

this would require c2 > claffer. Intuitively, a government at date 1 could choose a tax

rate on the downward sloping portion of the Laffer curve at date 1 in order to increase

short-term interest rates and buy back its outstanding long-term debt b0,2 at a lower price,

which would allow for a higher value of c2.

Now consider the problem of the government at date 0. Using Lemma 7, we can

11More specifically, if the primary surplus at date 1 is below b0,1, then a deviation to c1 > claffer

relaxes (D.39) by reducing the short-term interest rate. If the primary surplus at date 1 exceeds b0,1,
then a deviation to c2 > claffer relaxes (D.39) by increasing the short-term interest rate.
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consider the relaxed problem of the government at date 0:

max
c0,c1,c2

∑
t=0,1,2

βt (log ct − ηct) (D.45)

s.t.∑
t=0,1,2

βt
(

1− η (ct + g)− b−1,t+1

ct

)
= 0, (D.46)

c1 + βc2 ≥ claffer + βclaffer, and (D.47)

c2 ≥ claffer. (D.48)

This program corresponds to the date 0 program under commitment subject to addi-

tional constraints (D.47) and (D.48). Recall that the program under commitment admits

a solution with c1 = c2. Note that this program which adds constraints (D.47) and

(D.48) ignores the bounds on the date 0 government’s debt issuance and only considers

necessary, as opposed to sufficient, conditions for the values of c1 and c2 to be chosen by

future governments. As such, welfare in the MPCE must be weakly below the solution to

(D.45)−(D.48). In the Online Appendix, we characterize the solution to (D.45)−(D.48),

and we verify that this solution corresponds to the unique MPCE in the three-period econ-

omy. This leads to the following main result of this section.

Proposition 3 (MPCE in finite horizon) The unique MPCE admits a sequence

{c0, c1, c2} that satisfies (D.45) − (D.48) and admits b0,1 = b0,2. If the solution under

commitment admits c1 = c2 < claffer, then the MPCE and commitment solution do not

coincide, and the MPCE admits

b0,1 = b0,2 = claffer
(
1− η

(
claffer + g

))
. (D.49)

This proposition states that the unique MPCE is characterized by the constrained

date 0 problem (D.45)− (D.48) and admits a flat maturity distribution b0,1 = b0,2, where

these values of debt correspond to the natural debt limit characterized by (D.49) if the

solution under commitment admits c1 = c2 < claffer.

In the case where the solution under commitment admits c1 = c2 > claffer —so that

(D.47) and (D.48) do not bind—this result is immediate and follows from the arguments

in Lucas-Stokey. Optimal tax rates under commitment mirror initial maturities, and are

therefore stationary beyond a particular horizon. This eventual stability is guaranteed

with a transition to a flat maturity under no commitment, since otherwise the date 1

government would not choose c1 = c2.
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In the cases where the commitment and no-commitment solutions do not coincide, the

argument is more subtle. The date 0 government clearly desires a stable tax rate from

date 1 onward given its initial maturities. However, if this desired tax rate exceeds the

revenue-maximizing tax rate defining the peak of the Laffer curve, the date 0 government

realizes that it cannot commit the date 1 and date 2 governments to its desired policy.

Facing this binding upper bound on future tax rates captured by (D.47) and (D.48),

the government chooses all future tax rates to equal the revenue-maximizing tax rate.

To achieve this future outcome, it issues a flat maturity distribution associated with the

natural debt limit.

This example suggests that our results from the main text are robust to the consid-

eration of a finite horizon economy. We have also verified through numerical examples

that Proposition 3 continues to hold with preferences that admit γ > 1 in a horizon that

exceeds three periods. Details available upon request.
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Online Appendix

Online Appendix E. Proofs of Appendix D.

Proof of Lemma 7

(D.44) is implied by (D.42). Let us consider a relaxed representation of (D.38)− (D.42)

in which we ignore (D.41) and we replace (D.39) with a weak inequality constraint:

∑
t=1,2

βt−1
(

1− η (ct + g)− b0,t
ct

)
≥ 0. (E.50)

We establish that the solution to the relaxed problem satisfies (D.43) and we verify that

(D.39) and (D.41) are satisfied under this solution.

Step 1. Analogous arguments as in step 1 of Lemma 2 imply that since b0,1 ≥ −g and

b0,2 ≥ −g, (E.50) holds as an equality in the relaxed problem. Note furthermore that if

b0,1 ≥ 0 and b0,2 ≥ 0, the constraint set is convex so that the solution is unique.

Step 2. The choice of c1 is characterized by the following first order condition for

µ1 ≥ 0 which represents the Lagrange multiplier on (E.50):

1

c1
− η = µ1

(
η − b0,1

c21

)
. (E.51)

We can show that

η − b0,1
c21
≥ 0. (E.52)

Suppose that (E.52) does not hold. In that case, b0,1 > 0 > −g, which means that

(E.50) is a binding constraint with µ1 > 0, implying that the right hand side of (E.51)

is negative. For the left hand side of (E.51) to be negative, this requires that c1 > cfb.

Substituting this fact back into the right hand side of (E.51), this means that

b0,1 > ηc21 > cfb,

which is a contradiction since b0,1 ≤ cfb. Therefore, (E.52) is necessary.

Step 3. The choice of c2 is characterized by the following first order condition for
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κ ≥ 0 which represents the Lagrange multiplier on (D.42):

1

c2
− η + κ = µ1

(
η − b0,2

c22

)
. (E.53)

Analogous arguments using this condition as in step 2 imply that

η − b0,2
c22
≥ 0. (E.54)

Combination of (E.52) and (E.54) taking into account the definition of claffer in (D.36)

and (E.50) which binds and implies (D.43).

Step 4. We are left to check that (D.41) is satisfied. There are two cases to consider.

Case 1. Suppose that (D.42) holds as an equality in the solution to the relaxed

problem. In that case, c2 = claffer and (D.40) implies that

b1,1 = claffer
(
1− η

(
claffer + g

))
∈
(
−g, cfb

)
so that (D.41) is satisfied.

Case 2. Suppose that (D.42) holds as a strict inequality in the solution to the relaxed

problem. In this case, the solution is characterized by (E.51) and (E.53) for κ = 0. Given

(E.52) and (E.54), it follows that (E.51) and (E.53) can only be satisfied for c1 ≤ cfb

and c2 ≤ cfb. Since c2 > claffer, (D.40) implies that

b1,1 < claffer
(
1− η

(
claffer + g

))
< cfb.

To check that b1,1 ≥ −g, suppose it were the case that the solution to the relaxed problem

admitted b1,1 < −g. In this case, satisfaction of (D.40) would require that c2 > cfb which

contradicts the fact that c2 < cfb. Therefore, (D.41) is satisfied.�

Proof of Proposition 3

We proceed by characterizing the solution to the relaxed problem in (D.45) − (D.48).

We then complete the proof by showing that the solution to this problem is the unique

MPCE which admits b0,1 = b0,2.

Step 1. Let us consider the relaxed version of (D.45)− (D.48) which ignores (D.48)
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and which replaces (D.46) with a relaxed constraint

∑
t=0,1,2

βt
(

1− η (ct + g)− b−1,t+1

ct

)
≥ 0. (E.55)

Analogous arguments as in step 1 of Lemma 2 imply that since b−1,t ≥ 0 ∀t, (E.55) is

a binding constraint in the relaxed problem and admits a positive Lagrange multiplier

µ0 > 0. Let us consider the solution to this relaxed problem and then verify that constraint

(D.48) is satisfied.

Step 2. Analogous arguments as in step 2 of Lemma 2 imply that since b−1,t ≥ 0, the

constraint set in the relaxed problem is convex, which means that first order conditions

with respect to ct are necessary and sufficient to characterize the unique optimum. Letting

βφ correspond to the Lagrange multiplier on constraint (D.47), first order conditions are:

1

c0
− η = µ0

(
η − b−1,1

c20

)
, and (E.56)

1

ct
− η + φ = µ0

(
η − b−1,t+1

c20

)
for t = 1, 2. (E.57)

(E.56) − (E.57) imply that since b−1,2 = b−1,3, the solution admits c1 = c2. This means

that (D.48) is satisfied, since if φ > 0, then c1 = c2 = claffer, otherwise c1 = c2 ≥ claffer.

Note furthermore that since µ0 > 0, ct < cfb with

η − b−1,t+1

c2t
≥ 0 (E.58)

for t = 0, 1, 2 where this follows from the fact that b−1,t ≤ cfb using analogous arguments

as in step 2 in the proof of Lemma 7.

Step 3. By Lemma 7, an MPCE cannot achieve higher welfare than the solution to

(D.45)−(D.48). We now establish that the solution to (D.45)−(D.48) is supported by an

MPCE with b0,1 = b0,2 ∈
[
0, cfb

]
. Suppose that the date 0 government selects b0,1 = b0,2

which satisfy

b0,1 = c1 (1− η (c1 + g)) (E.59)

where c1 corresponds to the values of consumption satisfying (E.57). Let us assume and

later verify that this choice of debt satisfies

b0,1 ∈
[
0, claffer

(
1− η

(
claffer + g

))]
(E.60)
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so that it is feasible (since claffer
(
1− η

(
claffer + g

))
< cfb). Consider the continuation

equilibrium from date 1 onward characterized by the solution to (D.38) − (D.42) and

analyzed in the proof of Lemma 7. By step 1 in the proof of that lemma, if b0,1 = b0,2 ≥ 0,

the solution is unique and characterized by the date 1 implementability condition (D.39)

and the date 1 first order conditions (E.51) and (E.53) for some positive µ1. c1 = c2

satisfying (E.57) clearly satisfy (D.39). To check that (E.51) and (E.53) are satisfied for

positive µ1 under these values, set κ = 0 (so that c1 = c2 from (E.51) and (E.53)), and

let us verify that the implied µ1 is positive. Substituting (E.59) into (E.51), we achieve

µ1 = − 1− ηc1
1− η (c1 + g)− ηc1

> 0

where we have appealed to the fact that c1 ∈ [claffer, cfb). Therefore, the date 1 govern-

ment selects the same allocation as the date 0 government. We now verify that (E.60)

holds. There are two cases to consider.

Case 1. Suppose that the date 0 solution admits c1 = c2 = claffer. In that case

b0,1 = b0,2 = claffer
(
1− η

(
claffer + g

))
so that debt issuance is feasible.

Case 2. Suppose that the date 0 solution admits c1 = c2 > claffer . Since the right

hand side of (E.59) is strictly below claffer
(
1− η

(
claffer + g

))
< cfb, it follows that

b0,1 = b0,2 < cfb. To verify that b0,1 = b0,2 ≥ 0, note that (D.46) given c1 = c2 and

b−1,2 = b−1,3 can be rewritten as

1− η (c0 + g)− b−1,1
c0

+ β (1 + β)

(
1− η (c1 + g)− b−1,2

c1

)
= 0. (E.61)

From (E.58), the left hand side of (E.61) is decreasing in c0 and c1. Following similar

arguments to step 2 in the proof of Lemma 2, equations (E.56) − (E.57) , imply that

c0 ≥ c1 = c2 since b−1,1 ≥ b−1,2 = b−1,3 ≥ 0. Substituting these inequalities into (E.61),

which is declining in c0 and c1, yields

1− η (c1 + g) ≥ 0. (E.62)

Therefore, b0,1 satisfying (E.59) is weakly positive. Therefore, the solution to (D.45) −
(D.48) represents an MPCE in which the date 0 government issues a flat maturity with

b0,1 = b0,2.

Step 4. We complete the proof by showing that there does not exist an MPCE which

does not achieve the same welfare as (D.45) − (D.48) and that b0,1 = b0,2 is necessary

in the MPCE. If there existed an MPCE which did not provide welfare characterized by
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(D.45) − (D.48), then the MPCE would provide strictly lower welfare than the solution

to (D.45) − (D.48), where this follows from Lemma 7. However, in this situation, the

government at date 0 could deviate to choose b0,1 = b0,2 which satisfy (E.59) for c1 = c2

which correspond to the values of consumption satisfying (E.57). By step 3, this choice

would lead the date 0 government to achieve the same welfare as (D.45)−(D.48) and make

it strictly better off. Therefore, any MPCE coincides with the solution to (D.45)−(D.48).

We complete this step then by proving that b0,1 = b0,2 is necessary to induce the date

1 government to pursue the same policy which satisfies (D.45) − (D.48). There are two

cases to consider analogous to the cases considered in step 3.

Case 1. Suppose that the date 0 solution admits c1 = c2 = claffer. Suppose by

contradiction that some value b0,1 6= b0,2 could induce the date 1 government solving

(D.38)− (D.42) to choose c1 = c2 = claffer, where satisfaction of (D.39) requires

b0,1 + βb0,2 = (1 + β) claffer
(
1− η

(
claffer + g

))
. (E.63)

For (E.51) and (E.53) to be satisfied, this would require κ > 0, since otherwise (E.51) and

(E.53) would imply c1 6= c2 since b0,1 6= b0,2 in the date 1 problem. Analogous arguments

as in step 2 and 3 of the proof of Lemma 7 imply that (E.52) and (E.54) must hold.

However, note that

η − b0,t
c2t

= 0 (E.64)

if ct = claffer and b0,t = claffer
(
1− η

(
claffer + g

))
, where we have appealed to the defini-

tion of claffer in (D.36). Since (E.63) implies that either b0,1 > claffer
(
1− η

(
claffer + g

))
or b0,2 > claffer

(
1− η

(
claffer + g

))
and since the left hand side of (E.64) is strictly de-

creasing in b0,t, it follows that (E.52) and (E.54) cannot simultaneously hold, which is a

contradiction. Therefore, b0,1 = b0,2 uniquely guarantee that c1 = c2 in this case.

Case 2. Suppose that the date 0 solution admits c1 = c2 > claffer. Suppose by

contradiction that some value b0,1 6= b0,2 could induce the date 1 government solving

(D.38) − (D.42) to choose c1 = c2 > claffer. In this case, (E.51) and (E.53) would need

to be satisfied with κ = 0. However, this is not possible since b0,1 6= b0,2 implies c1 6= c2.�
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