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1 Introduction

The relationship between the number of vehicles on the road and the speed at which

they travel is fundamental to transportation and urban economics. To anyone who

has driven in traffic, it is clear that traffic congestion decreases speed. But there is

also a view that as demand for travel goes up, this decreases not only speed but also

the capacity of the road system, a phenomenon known as hypercongestion. Stan-

dard reference texts show a backward-bending speed-flow curve (May, 1990; Lindsey

and Verhoef, 2008; Transportation Review Board, 2016), and a number of economic

analyses have taken hypercongestion as given (see, e.g. Walters, 1961; Johnson, 1964;

Newbery, 1989; Mun, 1999; Fosgerau and Small, 2013; Hall, 2018a,b).

Our paper revisits this idea. We propose two empirical tests of hypercongestion.

Both tests are novel in the literature but correspond closely with how previous studies

have modeled hypercongestion. We apply our tests to three highway bottlenecks in

California. We observe traffic flows and vehicle speeds at several locations before

and after each bottleneck. Although the three sites differ, all have bottlenecks that

generate slowed traffic and queues during afternoon hours.

Our first test uses instrumental variables to measure the effect of queue length on

highway capacity. Though we are unaware of any previous attempt to estimate a

regression of this form, our estimating equation corresponds closely with how previous

studies have modeled hypercongestion (Yang and Huang, 1997; Fosgerau and Small,

2013; Small, 2015). We instrument using time-of-day to empirically isolate the effect

of travel demand and find no evidence that capacity decreases during periods of high
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demand. In short, no matter how long the queue gets, the number of vehicles passing

through the bottleneck per minute remains stable.

Our second test uses an event study analysis to measure changes in traffic flows

at the moment each afternoon when the queue initially forms. Several studies find

what the literature calls “capacity drop”, “flow breakdown”, or the “two capacity

phenomenon” at bottlenecks (Banks, 1990, 1991; Hall and Agyemang-Duah, 1991;

Persaud et al., 1998; Cassidy and Bertini, 1999; Bertini and Malik, 2004; Zhang and

Levinson, 2004; Chung et al., 2007; Oh and Yeo, 2012), referring to a drop in roadway

capacity upon queue formation. In contrast to the vast majority of these studies, we

find no evidence of a decrease in traffic flows at the moment the queue forms. Across

sites, flows are essentially constant throughout the period of queue formation, with

no discernible capacity drop whatsoever.

Thus we find no evidence of hypercongestion with either test. Though the findings

are similar, the two tests are quite different, exploiting independent sources of vari-

ation and relying on distinct identifying assumptions. The results of the two tests

are complementary, with neither test revealing a reduction in highway capacity as

demand increases. This lack of evidence of hypercongestion is not due to a lack of

statistical precision. At each site our data include tens of thousands of five-minute

periods across hundreds of days. Given the modest fluctuations in observed flows

during peak periods, this size of data set yields sufficient statistical power to rule out

even small reductions in highway capacity. Throughout the analysis we report stan-

dard errors and 95% confidence intervals and show that we can reject economically

significant capacity reductions, including those of the magnitudes suggested in the
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existing literature.

These findings have significant policy implications. Hypercongestion has long been

a rationale for highway ramp metering lights and other traffic interventions aimed

at regulating demand (Diakaki et al., 2000; Smaragdis et al., 2004; Cassidy and

Rudjanakanoknad, 2005), but our evidence raises questions about the applicabil-

ity of these interventions. Our results also imply that the marginal damages from

driving are substantially lower than those implied by supply curves exhibiting hy-

percongestion. Nevertheless, as we explain in the paper, the implications for efficient

“Pigouvian” congestion pricing are less clear.

Our paper is germane to a growing empirical literature on the formation of traffic

congestion. Couture et al. (2018) develops an econometric methodology for estimat-

ing city-level supply curves for trip travel, and constructs travel speed indices for

large U.S. cities. Yang et al. (2018) measures the effect of traffic density on speed

in Beijing, using variation in traffic from driving restrictions. Akbar and Duranton

(2017) uses travel surveys and other data from Bogotá, Colombia to estimate the

deadweight loss of traffic congestion. Adler et al. (2017) examines the effects of

public transit strikes in Rome on arterial road congestion and concludes that hyper-

congestion, while rare, accounts for approximately 30 percent of congestion-related

welfare losses.1

1Farther afield, there are also a number of studies by economists that examine the effect of
building highways on traffic congestion, suburbanization, and other outcomes (see, e.g. Baum-
Snow, 2007; Duranton and Turner, 2011). In other related work, Hanna et al. (2017) shows that
elimination of high-occupancy vehicle lanes in Jakarta worsened traffic and Kreindler (2018) uses
data from a smartphone app to study traffic congestion in Bangalore, India, finding at the city-level
an approximately linear relationship between traffic volume and travel time.
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Before proceeding, we note two important caveats. First, our study focuses on high-

ways, not arterial street networks. Highways are a vital component of the road

network, accounting for the majority of vehicle miles traveled (Lomax et al., 2018).

Indeed, all of the transportation engineering papers that we cite above focus on

highways. Highway geometry, however, differs fundamentally from arterial road ge-

ometry because highways lack conflicting cross traffic. Our results do not speak to

whether hypercongestion occurs on a dense street network with conflicting directions

of traffic. Second, our study focuses on standard bottlenecks in which the queue does

not obstruct other upstream routes. Particularly in dense urban networks, a queue

from a bottleneck on one route may sometimes spill over onto a different route that

does not traverse the bottleneck, blocking that route and creating a “triggerneck”

(Vickrey, 1969). Our results do not apply to triggernecks.

2 Conceptual Framework

2.1 Interpretations of the Speed-Flow Curve

Figure 1 shows eight examples of speed-flow curves. The first panel comes from the

Highway Capacity Manual, the standard reference text in transportation engineering

(Transportation Research Board, 2016), and the other panels come from the trans-

portation literature (Drake and Schofer, 1966; Allen et al., 1985; May, 1990; Ni, 2015)

and the economics literature (Keeler and Small, 1977; Newbery, 1989; Mun, 1999).

In all cases, the horizontal axis measures traffic flow and the vertical axis measures
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speed.

The upper part of the speed-flow curve exhibits a negative correlation between speed

and flow. Speeds are high at low flow levels. For example, in the first panel, average

speeds are near 70 miles-per-hour for flow levels below 1,500 vehicles/hour/lane.

In all eight panels speeds are then lower at higher flow levels. In the first panel,

for example, speeds tend to be between 60 and 70 miles-per-hour for flows above

1,500.

The lower part of the curve is more surprising, however. In all eight panels, there

is a lower part of the curve that exhibits a positive correlation between speed and

flow. Particularly striking are the observations with both very low speeds and very

low flows. For example, the first panel from the Highway Capacity Manual includes

observations with speeds below 10 miles-per-hour and flow rates below 1,000 vehi-

cles/hour/lane.

There is a lack of consensus over how to interpret this lower region of the speed-flow

curve. The Highway Capacity Manual explains that this region of the speed-flow

curve exhibits “flow breakdown” and “oversaturated flow”, with severe decreases in

speed as well as decreases in capacity, and flow rates falling well below the observed

maximum. This backward-bending curve is described as one of the “basic relation-

ships” in traffic, with the lower part of the curve often drawn all the way to the

origin, at which point both speed and flow are equal to zero.

Early economic analyses interpreted this speed-flow curve as a causal relationship.

Walters (1961) and Johnson (1964), for example, interpreted the relationship as a
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supply curve for travel, and used parametrized versions to derive efficient congestion

prices. Later economic analyses similarly adopted a causal interpretation. For ex-

ample, Newbery (1989) writes, “there is a sharp discontinuity in the mode of traffic

flow as traffic reaches capacity. A small increase in the traffic flow, typically resulting

from an extra inflow of traffic from a junction, causes a transition from relatively free

flow to congested flow; speed drops sharply, and so does total flow.” (p. 193).

Some later studies took a different, more descriptive interpretation. It is an empirical

fact that low-speed, low-flow observations exist, but more recent economic analyses

have argued that this relationship cannot be interpreted as a supply curve. For

example, Small and Chu (2003) argues that “hypercongestion occurs as a result of

transient demand surges and can be fully analyzed only within a dynamic model.”2

Similarly, Lindsey and Verhoef (2008) explains that these low-speed, low-flow obser-

vations occur “in queues upstream of a bottleneck”.3,4

2This article, titled “Hypercongestion”, notes that the standard “engineering relationship” has
a backward-bending region known as hypercongestion. It then presents a series of dynamic models
for straight uniform highways and dense street networks in which transient demand surges cause
long vehicle queues, resulting in large travel time increases. It stresses the importance of studying
hypercongestion using dynamic models, “Hypercongestion is a real phenomenon, potentially cre-
ating inefficiencies and imposing considerable costs. However, it cannot be understood within a
steady-state analysis because it does not in practice persist as a steady state.” (p. 342).

3While the term “hypercongestion” appears frequently in the literature, there is confusion regard-
ing its exact definition. Mun (1999), for example, notes, “There is no commonly used terminology to
represent [traffic jams] among disciplines. Although traffic engineers use the term ‘congested flow,’
this is not appropriate here because ‘uncongested flow’ in engineering is still regarded as congested
flow in an economic sense. On the other hand, some economists use the term ‘hypercongestion’...”
(p. 323). Small and Chu (2003) defines hypercongestion as the region in the speed-flow diagram “in
which speed increases with flow” and notes that it is “unsuitable as a supply curve for equilibrium
analysis”, (p. 319).

4Low-speed, low-flow observations are common upstream of bottlenecks. For example, Hall
and Agyemang-Duah (1991) documents low-flow observations immediately upstream of a major
highway entrance ramp. Relatedly, Sugiyama et al. (2008) and Tadaki et al. (2013) performed a
pair of remarkable field experiments in which college students drove vehicles around a circle in
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With or without explicit reference to the speed-flow curve, other later studies have

continued to assume that there is a backward-bending part of the supply curve, i.e.

that road capacity decreases at high levels of demand. Mun (1999), for example,

constructs a bottleneck model with hypercongestion to calculate the gains from ef-

ficient congestion pricing.5 Fosgerau and Small (2013) constructs a model in which

road capacity declines with the length of the queue, and then uses this framework to

calculate marginal damages and analyze alternative congestion pricing regimes. Hall

(2018a) uses a hypercongestion model to show how highway pricing can generate a

Pareto improvement when agents are heterogeneous, even before redistributing toll

revenues.

2.2 Two Empirical Tests of Hypercongestion

In this paper we design and implement two empirical tests of whether highway ca-

pacity decreases during periods of high demand. To our knowledge, both tests are

novel to this context, but both tests correspond closely with hypercongestion mod-

els proposed in the existing literature. Our first test uses instrumental variables to

an outdoor area and indoor baseball field, respectively. Varying the number of vehicles driving
in the loop, the researchers demonstrate a pronounced decrease in vehicle flows as vehicle density
increases. While they interpret this as evidence of low-speed, low-flow observations even without a
bottleneck, an alternative interpretation would be that the loop effectively simulates the experience
of being permanently in a queue, as the loop never empties into an uncongested “drain”.

5In bottleneck models drivers face a tradeoff between time delays and trip departure times
(Vickrey, 1969; Small, 1982; Arnott et al., 1990, 1993, 1994). Arnott (2013) argues that a key
weakness of the standard bottleneck model is that it fails to incorporate hypercongestion, “In
assuming that the discharge rate of the bottleneck is independent of the length of the queue behind
it, the model assumes away hypercongestion, which most urban transport economists believe to be
quantitatively important.” (p. 119). Arnott (2013) proposes a “bathtub” model of hypercongestion
for downtown areas in which capacity decreases at high levels of traffic density.
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measure the effect of queue length on highway capacity. Our second test uses an

event study analysis, measuring the change in traffic flows when a queue forms. The

two tests use different sources of identifying variation and have different identifying

assumptions.

Both tests of hypercongestion are designed to be applied in highway settings with

a single bottleneck — locations where some physical feature of the highway serves

to reduce traffic flow during periods of high demand. The most lucid example, and

one that directly evokes the idea of the “neck” of a bottle, is a setting in which

there is a sharp decrease in the number of lanes available for travel. We do not

envision applying these tests to roadways with no spatial variation in capacity, which

tend to have far fewer delays, or to dense urban road networks, which tend to have

multiple sequential bottlenecks and alternative routing opportunities. As we noted

earlier, highways account for a majority of vehicle miles traveled, and there is a large

existing literature on highway bottlenecks, so our setting is an important one for

understanding hypercongestion.

2.2.1 Instrumental Variables

Our first test takes the form of two stage least squares (2SLS) regressions of the

following form,

capacityt = α0 + α1 · queue lengtht + εt. (1)

The dependent variable in these regressions is highway capacity in 5-minute period

t, measured downstream of the bottleneck. The independent variable of interest

8



is queue length. The coefficient of interest is α1, which is the change in capacity

associated with a one-unit increase in queue length. We instrument for queue length

using time-of-day. Thus, the 2SLS regression is estimated using the predictable

time-of-day variation in queue length rather than idiosyncratic day-to-day variation.

This is desirable because the time-of-day variation in queue length is mostly driven

by differences in travel demand, while the day-to-day variation is also affected by

weather, road construction, roadway incidents, and other supply shocks.6

Though we are not aware of any previous attempt to estimate a regression of this

form, its basic structure coincides with several previous efforts to model hypercon-

gestion. Small (2015) explains that hypercongestion can be modeled by “postulating

that bottleneck capacity varies inversely with the length of the queue” (p. 115), cit-

ing several previous papers that have followed this approach. For example, Yang and

Huang (1997) numerically solves a model in which capacity decreases exponentially

with the length of the queue. Another example is Fosgerau and Small (2013). In

their model, a bottleneck operates at full capacity for short queues, then drops dis-

continuously to a medium capacity when queue length exceeds a particular threshold,

and then finally drops to zero capacity for very long queues.

One possible rationale for why queue length would affect capacity comes from the

physics of traffic flow and, in particular, how changes in vehicle speed propagate

6Economists have long used instrumental variables in such settings to econometrically separate
demand and supply (see, e.g., Angrist and Krueger, 2001). An alternative to this instrumental
variables strategy would be to exclude observations affected by supply shocks. This ends up being
impractical, however, because many supply shocks are not observed. For example, the California
Department of Transportation’s Performance Measurement System (PeMS) tracks major incidents
but many smaller incidents are unreported.
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through a queue of vehicles. Since Lighthill and Whitham (1955), transportation

engineers have used “fluid dynamics” and the “method of kinematic waves” to model

the movement of vehicles in a queue. The implication of these models is that longer

queues are associated with lower average speeds, reducing overall capacity relative to

models without the “theory of shock waves” (Mun, 1994, 1999). Our 2SLS regressions

can be viewed as an attempt to measure empirically the quantitative importance of

these physical mechanisms.

When estimating Equation (1) we restrict the sample to include only observations

from periods in which there is a queue. By definition, if there is no queue, then

traffic flows have not reached capacity, and measurements are limited by insufficient

demand rather than maximum capacity. We refer to this condition as “demand

starvation” — the bottleneck could process more vehicles were they available. Thus,

in the regression analyses with queue length as the independent variable we compare

traffic flows between periods with different lengths of non-zero queues, and we refer

to traffic flows during these periods as “capacity”.

2.2.2 Event Study Analyses

Our second test takes the form of a standard event study regression. The event of

interest in our context is the moment in time that the queue forms. These event

study analyses allow us to assess whether there is a sudden drop in highway capacity
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at the onset of a queue. In particular, we estimate regressions of the form:

traffic flowt =
16∑

k=−16

βk1[τt = k]t + ωt. (2)

The dependent variable in these regressions is traffic flow in 5-minute period t, mea-

sured downstream of the bottleneck. The independent variables of interest are a

vector of event-time indicator variables. In particular, we construct a variable τt

defined such that τ = 0 for the exact moment in which the queue forms, τ = −16

for 16 periods (i.e 80 minutes) before the queue forms, τ = 16 for 16 periods (i.e.

80 minutes) after the queue forms, and so on. Our estimates of βk summarize how

traffic flows vary before and after the queue forms. We include no additional control

variables, so although we estimate the regression using least squares, it is equivalent

to taking conditional averages in event time.

This event study approach closely coincides with other models of hypercongestion

that have appeared in the literature. Many studies find evidence of “capacity drop”,

“flow breakdown”, or the “two capacity phenomenon” at bottlenecks.7 This decrease

in capacity could be caused, for example, by vehicles stopping prior to the merge or

failing to efficiently fill gaps in the queue. Many studies take this capacity drop as

given. For example, Hall (2018b) assumes that queues reduce capacity at bottlenecks

by 10%.

7See, e.g., Banks (1990, 1991); Hall and Agyemang-Duah (1991); Persaud et al. (1998); Cassidy
and Bertini (1999); Bertini and Malik (2004); Zhang and Levinson (2004); Chung et al. (2007); Oh
and Yeo (2012). Hall (2018b) reviews this literature carefully, reporting that 16 out of 17 papers
find evidence of a capacity drop, with a median capacity drop of 10%.

11



Unlike the 2SLS regressions, we do not restrict the sample to include only observa-

tions in which there is a queue, as that would omit observations before τ = 0. We

thus refer to the dependent variable in these regressions as traffic flow, rather than

capacity. As we show later, however, the estimates of βk provide some information

about the degree of demand starvation. In our empirical applications we tend not

to see large increases in flow leading up to queue formation, suggesting that flow is

near capacity in the periods leading up to queue formation.

Our two empirical tests are complementary. Whereas the event study analyses focus

on the transition between no queue and queue, the 2SLS regressions compare traffic

flows with different lengths of non-zero queues. Thus the identifying variation used

in the two tests is different, and in fact, completely disjoint. In the former, it is

the mere formation of a queue, not the queue length, that matters for highway

capacity, whereas in the latter, the reduction in capacity comes from the length of

the queue. These are two alternative mechanisms for hypercongestion, but both

imply that as demand for travel goes up, it causes a decrease in the capacity of the

road system.

3 Empirical Application

3.1 Data

Our empirical analyses focus on three study sites. All three sites are in California,

allowing us to use high-quality, comparable data from a single source, the Califor-
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nia Department of Transportation (Caltrans). In particular our data come from

Caltrans’ statewide network of “loop detectors”, which record information on both

traffic flows and average vehicle speed.8

We selected these three sites based on several criteria. Most importantly, we wanted

sites with a single, clearly identified bottleneck. In all three of our study sites there is

a specific location where traffic slows and the queue forms, followed by a downstream

location where traffic generally returns to full speed. We did not want sites with

multiple bottlenecks, as it becomes difficult to assess the impact of any individual

bottleneck. In addition, we wanted sites with good data coverage. Many promising

sites were discarded because there was an insufficient number of well-functioning loop

detectors nearby.

3.1.1 Westbound SR-24

Our first study site is the westbound direction of California State Route 24 (SR-24)

at the Caldecott Tunnel. SR-24 connects suburban Contra Costa County, to the

east, with the cities of Oakland and San Francisco, to the west. This site is a classic

bottleneck, with the number of lanes decreasing as traffic approaches the tunnel.

This is a site where traffic delays are common; indeed, transportation engineers have

repeatedly studied this exact site (Chin and May, 1991; Chung and Cassidy, 2002;

8Loop detectors are small insulated electric circuits installed in the middle of traffic lanes. Loop
detectors measure the rate at which vehicles pass, e.g. vehicles crossing per five-minute period. In
addition, loop detectors measure average vehicle speed by sensing how long it takes each vehicle to
pass over the detector. These loop detectors are maintained by the California Department of Trans-
portation (Caltrans), and data are made publicly available through the Performance Measurement
System (PeMS) at http://pems.dot.ca.gov/.
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Chung et al., 2007). During the study period the tunnel featured two reversible lanes

that operated westbound in the morning and eastbound in the afternoon and evening.

We focus on weekday afternoons and evenings from 2005 to 2010, a period and set of

hours during which the Caldecott Tunnel was operated such that westbound vehicles

merged from four lanes to two as they approached the tunnel.9

Figure 2 shows the study site. Approximately 3,000 feet before the tunnel the number

of lanes merges from four down to two. This is the key feature of our study site and

the location where the vehicle queue typically begins. The figure also indicates using

small circles the locations of loop detectors. We observe a set of two loop detectors

after the merge but before the tunnel, as well as a series of loop detectors upstream of

the merge.10 For westbound travelers there is no reasonable alternative to traversing

the tunnel.11

9Rather than a single wide tunnel, the Caldecott consists of multiple “bores”, each with two
lanes carrying traffic in a single direction. Although the tunnel was expanded to four bores (eight
total lanes) in 2013, we study the period from 2005 to 2010 when the tunnel still had only three
bores and construction had not yet begun on the fourth bore. During this period, the middle bore
operated westward during morning hours, as commuters drove toward Oakland and San Francisco,
and eastward during afternoon and evening hours, as commuters drove toward suburban Contra
Costa County. Afternoon westbound traffic is lighter than eastbound traffic, but with only a
single bore open in the westbound direction, the bottleneck was more than sufficient to generate
significant traffic delays on weekday afternoons. We do not use the eastbound morning bottleneck
in our analysis because it features traffic merging from multiple directions, making it difficult to
measure queue length.

10For the event study analysis, the first upstream detector is approximately 1,000 feet from
the bottleneck. This spacing introduces some delay between the formation of the queue and its
detection. Detectors at other sites — in particular at I-15 — are located closer to their respective
bottlenecks. Reassuringly, the event study analysis generates qualitatively similar findings across
all three sites.

11For visual clarity the figure does not include exits and entrances. One of the significant ad-
vantages of this study site is that there are relatively few exits and entrances nearby. The last
highway entrance prior to the bottleneck is approximately 9,000 feet (1.7 miles) east of the tunnel;
the entrance at Gateway Blvd did not connect to any through roads. Subsequent to our sample
dates, the Gateway Blvd exit was renamed Wilder Rd.
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3.1.2 Southbound I-15

Our second study site is the southbound direction of Interstate 15 (I-15) northeast of

San Diego. I-15 connects suburban San Diego County, to the north, with the city of

San Diego and I-5, to the south. We focus on afternoon hours at the location where

I-15 crosses I-805, another major north-south highway. As Figure 2 illustrates, I-15

southbound has five lanes prior to crossing I-805. However, while crossing I-805,

I-15 reduces to only two lanes, before widening to three lanes. As we show, this

bottleneck results in frequent queuing during afternoon hours. We focus in particular

on afternoon hours between 2015 and 2018, years during which the relevant loop

detectors were online and functioning reliably.

Of our three study sites, I-15 is the most complicated. As the figure suggests, there

are significant flows both to and from I-805. For visual clarity the figure does not

include all entrances and exits, but there are also entrances and exits at Adams

Avenue, El Cajon Boulevard, and University Avenue. We examined loop detector

data from these entrances and exits, as well as changes in net flows on I-15, and

found that these entrances and exits involve flows that are small compared to the

flows coming on and off of I-805. Nevertheless, it is important to corroborate results

from I-15 with results from the other two sites where there is much less scope for

substitution to alternative routes.12

12One advantage of the I-15 site is that the first upstream detector, At I-805, is located only 300
feet from the bottleneck. In the context of the event study analysis this means that any queue is
detected almost immediately, since even emergency braking from freeway speeds requires up to 200
feet to stop.
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3.1.3 Eastbound SR-12

Our third study site is the eastbound direction of California State Route 12 (SR-

12). SR-12 runs through Sonoma, Napa, and Solano Counties, before merging with

Interstate 80 (I-80), at which point drivers continue north toward Sacramento. We

focus on afternoon hours at a location just west of I-80. As Figure 2 illustrates, at

this location SR-12 merges from two lanes down to one lane.13 As we show later, this

merge results in queues that are often very long. This site is a classic bottleneck with

no reasonable alternatives for eastbound drivers. We focus on 2017 and 2018, years

during which the relevant loop detectors were online and functioning reliably.

3.2 Vehicle Flows

Figure 3 plots vehicle flows by hour-of-day for our three study sites. Each data

series describes a different loop detector location. The legend orders detectors in the

direction of traffic flow such that for each site, the last detector in the list corresponds

to the farthest downstream detector (past the bottleneck). The unit of observation

in the underlying data is a five-minute period. Throughout the analysis we average

across lanes at a given detector location. In general, traffic flows and speeds tend to

be highly correlated across lanes, as drivers arbitrage any differences.

Morning and afternoon commuting patterns are visible for all three sites. Total vehi-

cle traffic peaks in the morning at SR-24, but as noted earlier we focus on afternoons

13The first upstream detector, W of Red Top Rd, is located approximately 700 feet from the
bottleneck. This spacing is closer than on SR-24 but further than on I-15.
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when the middle bore of the Caldecott Tunnel was operated in the opposite direction.

In the afternoons vehicles merge from four lanes to two as they approach the tunnel,

resulting in mean vehicle flows per lane that are approximately twice as high at the

downstream location (Fish Ranch Rd) as compared to upstream locations.

At I-15 and SR-12, total vehicle traffic peaks in the afternoon. As with SR-24, the

downstream detectors (S of I-805 and Red Top Rd respectively) register higher flows

per lane as traffic enters the “neck” of the bottle. With SR-12, the downstream flows

per lane (at Red Top Rd) are approximately twice as high as flows at the upstream

location, reflecting the merge from two lanes to one lane.

3.3 Vehicle Speeds

Figure 4 plots vehicle speeds by hour-of-day for our three study sites. During after-

noon hours there are dramatic decreases in average speeds at all three sites. Speeds

tend to decrease the most at detectors just upstream of the bottleneck. For exam-

ple, on SR-24 the detector immediately upstream of the bottleneck (Gateway Blvd)

exhibits average speeds below 40 miles-per-hour between about 3pm and 6pm. With

I-15 all six detectors experience large decreases in speed during afternoon hours.

Finally, SR-12 has the most severe afternoon decreases in speed, with several up-

stream detectors exhibiting average speeds below 30, and even below 20 miles-per-

hour.

Speeds tend to decrease much less at downstream detectors. On SR-24, for example,

average speeds immediately upstream (Gateway) and downstream (Fish Ranch) track
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each other closely throughout most of the day. Between 3pm and 6pm, however,

there is a significant divergence; upstream speeds slow to below 20 miles-per-hour,

while downstream speeds remain above 40 miles-per-hour. Similarly on SR-12, the

upstream locations (W of Red Top and E Miners) slow down to below 20 miles-per-

hour, while the downstream location (Red Top Rd) maintains average speeds above

40 miles-per-hour.

3.4 Speed-Flow Curves

Figure 5 plots vehicle speeds against traffic flows for our three study sites. We

constructed these scatterplots using all five-minute observations from the immediate

upstream detector from each site. For the SR-24 site, we plot data from 1pm to

11:55pm, hours during which the tunnel was operated eastbound; for all other sites

we plot all available data. With several years of data for each site, each scatterplot

includes many observations, so we use colors to reflect the density of observations in

each cell.

The basic pattern is similar to the speed-flow curves in Figure 1. With all three sites

there is a large mass of observations at 60 miles-per-hour or faster. Speeds decrease

modestly with flow rates along the top part of the speed-flow curve. But then, as

with Figure 1, there are also large numbers of low-speed, low-flow observations which

make the curve appear to bend backward.

These low-speed, low-flow observations tend to occur during afternoon hours when

there are vehicle queues. Low-speed, low-flow observations may also reflect transient
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supply shocks, like road construction, lane closures, and stalled vehicles. Speeds

and traffic flows are determined in equilibrium by interactions between demand and

supply. Thus, in general, it does not make sense to interpret this locus of observations

as a supply curve.

3.5 Queue Lengths

We now turn to focus more explicitly on vehicle queues. These patterns of vehicle

speeds and traffic flows imply that there is significant queuing of vehicles occurring

during afternoon hours. With a mild assumption we can use our data to measure

the presence of vehicle queues more directly. In particular, we assume that a queue

is present whenever traffic is moving at under 30 miles-per-hour. This threshold is

arbitrary, but we show later that our results are robust to alternative definitions.

This assumption allows us to both detect when a queue forms each day and to

measure the length of the queue.

An example is helpful. For SR-24, the first upstream detector, Gateway, is 1,690

feet before the bottleneck, and we observe approximately equidistant detectors all

the way to St. Stephens East, which is 15,690 feet (about three miles) away from

the bottleneck. We define a queue as being present if the average speed at Gateway

Blvd is below 30 miles-per-hour. We then measure the length of the queue using

the number of consecutive upstream detectors for which we observe speeds below 30

miles-per-hour.14

14For example, if the measured speed is below 30 miles-per-hour at the first upstream detector
(Gateway), but not at the second (Orinda West), then we conclude that the queue is 1,690 feet in
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Figure 6 plots mean queue lengths by hour-of-day. These are raw means by hour-of-

day, with queue length coded as zero for periods without queues. During morning

hours, there are almost never queues. During afternoon hours, however, long queues

tend to form at all three study sites. Queues reach maximum length at about 6pm for

all three sites. Lengths vary across sites, but queues can be very long; at SR-12, for

example, the average queue between about 5pm and 6pm exceeds one mile.15

3.6 Estimation Sample

In the instrumental variables analyses we restrict the sample to include only periods

in which a queue has formed. By definition, if there is no queue, then traffic flows

have not reached maximum capacity, and measurements are limited by insufficient

demand rather than maximum capacity.

Conditioning the estimation sample on the presence of a queue is an effective ap-

proach for addressing demand starvation. However, this sample selection criterion

can introduce subtle but meaningful bias into our analysis. Consider periods of low

demand. These periods typically have no queues, and if a queue is present it tends

to be short. But if demand is low, why does a queue form? One possibility is a

negative supply shock, such as poor weather or an accident. When conditioning on

a queue existing, negative supply shocks will thus be more common during periods

length. “Broken” queues (e.g. a case in which traffic moves below 30 miles-per-hour at Gateway,
above 30 miles-per-hour at Orinda West, and below 30 miles-per-hour at Camino Pablo West) are
rare in our estimation sample, and our results are robust to their inclusion or exclusion.

15The online appendix includes additional descriptive statistics about queues. In particular,
Appendix Figure A2 presents histograms of queue length by site by year, and Appendix Figure A5
presents histograms of the time-of-day at which the queue begins each day.
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of low demand than during periods of high demand, as supply shocks are necessary

for the formation of queues during low demand periods. Thus, the sample selection

criterion itself can generate a spurious positive relationship between capacity and

queue length even if demand is randomly assigned.

To mitigate this bias we focus on periods when demand tends to be sufficient to

generate a queue even in the absence of a negative supply shock. For all three

sites the frequency of queuing peaks on non-holiday weekdays between 4pm and

7pm (see Appendix Figure A3). Accordingly, in our baseline estimation sample we

restrict observations to these weekday hours.16 We also report results in which we

further narrow the focus to 4:30pm to 6:30pm, when the frequency of queuing is even

higher.

For each study site we also report results restricting the sample to include only

between 4:30pm and 6:30pm during summer months. The only supply shock evident

to us that might correlate with time-of-day is lighting conditions. However, during

summer months, which we define as June to August, the sunset generally occurs

after 8pm, well after the 4:30pm and 6:30pm window. Moreover, traffic is much less

likely during summer months to be impacted by adverse weather.17

There is also a related issue that occurs at our I-15 site only. Downstream of the two-

lane bottleneck, I-15 absorbs inflows from I-805 and then traverses an interchange

16The online appendix presents summary statistics. In particular, Appendix Tables A1 and A2
present summary statistics of the complete data set and the 4pm-7pm sample with a queue present,
respectively.

17For example, at the SR-24 study site, total monthly precipitation during summer months never
exceeds 0.1 inches, and fog is rarely present on summer afternoons. At the SR-12 study site, sunset
is never an issue, since drivers are going east.

21



with another highway, SR-94. On certain days queuing forms at these downstream

locations, and the second bottleneck can back up to our study site, restricting traffic

flow. To avoid potential problems, we exclude observations for which downstream av-

erage vehicle speeds (S of I-805) are below 35 miles-per-hour. At our other two sites,

there is no downstream bottleneck, and we impose no such sample restriction.

Finally, before proceeding we note that our descriptive statistics provide an infor-

mal visual version of our instrumental variables test. Figure 6 revealed that queue

lengths vary substantially between 4pm and 7pm. This is visual evidence of a strong

“first-stage” relationship between queue length and time-of-day. In addition, Figure

3 revealed that vehicle flows downstream of the bottleneck are relatively constant

between 4pm and 7pm, and Appendix Figure A4 confirms that this pattern holds

after conditioning on a queue being present. The juxtaposition of Figures 3 and 6

provides evidence against hypercongestion. While queue length varies substantially

between 4pm and 7pm, mean vehicle flows do not. The relatively flat time profile for

traffic flows thus suggests there is no reduced-form relationship between time-of-day

and highway capacity, implying that the instrumental variables estimate is likely to

be close to zero.
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4 Instrumental Variables

4.1 Baseline Estimates

Table 1 reports our baseline instrumental variables estimates for all three study sites.

As we described earlier with Equation (1), the dependent variable in these regressions

is capacity, measured downstream of the bottleneck in vehicles per five minutes. The

independent variable of interest is queue length, measured in thousands of feet. We

instrument for queue length using a third-order polynomial in time-of-day. Time-of-

day is highly predictive of travel demand, and the instrument F -statistics from the

first-stage regressions are large in all cases, indicating that we do not have a weak

instruments problem.

Across study sites and specifications, there is no evidence of hypercongestion. If

hypercongestion were present, we would expect the estimates of α1 to be negative.

Instead, seven out of nine estimates are positive, and all are nine estimates are

close to zero. For example, for SR-24 in Column (1), each additional 1,000 feet

of queue is associated with a capacity increase of 3.6 vehicles per five minutes per

lane. This is very small compared to the mean capacity per lane (176.2). When

further restricting the sample in Columns (2) and (3), the estimates remain close

to zero. The two negative estimates, both for SR-12, are tiny compared to mean

capacity, in both cases less than 0.5%. Across sites and specifications, the estimates

are sufficiently precise to rule out capacity drops of more than 2% per 1,000 feet of

queue, even at 99% confidence levels.

23



4.2 Additional Specifications

Results are very similar across alternative specifications and robustness checks. When

we estimate the queue length regressions using ordinary least squares, rather than

2SLS, the estimates tend to be negative, but they are extremely close to zero (Ap-

pendix Table A3). This pattern is consistent with queue length being driven by both

demand and supply shocks — supply shocks introduce a spurious negative correlation

between queue length and capacity, which is filtered out in our instrumental vari-

ables analyses. Regardless, the OLS estimates are precise enough to rule out capacity

drops of more than 1% per 1,000 feet of queue across all sites and specifications.

Our results are also robust to using alternative thresholds to define queues. Recall

that in our baseline specification in Table 1 we assume that a queue is present

whenever traffic moves at under 30 miles-per-hour. Appendix Tables A4 and A5

present results using 25 miles-per-hour and 35-miles-per-hour as the threshold for

a queue, respectively. Results with these alternative speed thresholds are nearly

identical to our baseline results. Across study sites and specifications estimates are

always close to zero, and in all cases we can rule out capacity drops of more than

2.5% per 1,000 feet of queue.

Thus across all specifications there is no evidence of hypercongestion. To the con-

trary, longer queues tend to be associated in many cases with slightly higher capacity.

This could be, for example, because the longer queue ensures that there is always

another driver to fill small gaps during the merge or because drivers exert more effort

to merge quickly after waiting in a long queue.
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5 Event Study Analysis

5.1 Visual Evidence

Figure 7 plots the results of our event study analyses. The horizontal axis is time in

minutes relative to the onset of the queue, normalized so that the longest-duration

afternoon queue begins at time zero on each day. As with the instrumental variable

analyses, we define a queue as being present when upstream traffic is moving at under

30 miles-per-hour. For each weekday in our data, we identify the longest continuous

period of queuing, and then take the first five-minute interval within that period to

mark the onset of the queue. To focus on afternoons we exclude queues that do not

start between 2:15pm and 7:00pm.

The event study analyses reveal no evidence of a decrease in capacity. For all three

sites, capacity is essentially flat throughout, with no discontinuous change at the

moment the queue is formed. Figure 7 also includes 95% confidence intervals, and

these intervals are narrow enough to rule out even modest changes in capacity. To

illustrate this, we included a simulated 10% capacity drop at queue onset in each

panel. The 10% drop was chosen arbitrarily, but it is well within the range of

estimates in the existing literature. The discordance between the two series indicates

that we can rule out a capacity drop of this magnitude, or even considerably smaller

magnitude.
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5.2 Estimates and Standard Errors

Table 2 reports corresponding estimates and standard errors. As with Figure 7,

these estimates are based on three separate event study regressions, one for each

site. In Column (1) we report the change in capacity between the five minutes prior

to queue formation and the five minutes after queue formation. That is, we calculate

the difference between the last estimated β before queue formation (β−1) and the

first estimated β after queue formation (β0). Columns (2) and (3) then expand the

comparison to consider 20 and 30 minute symmetric windows, respectively. In these

cases we calculate the difference in the average estimated β coefficients before and

after queue formation, in order to report the implied change in capacity per five

minutes.

Across study sites and specifications the estimates are very close to zero. Consistent

with the visual evidence in Figure 7, Table 2 reveals no evidence of a decrease in

capacity when the queue forms. Positive estimates indicate an increase in capacity.

For example, for SR-24 in Column (1), we find that queue formation is associated

with a capacity increase of 1.2 vehicles per five minutes. This is less than one percent

of mean capacity. Results are similar with alternative windows and for the other sites

— there is a mix of positive and negative estimates, but all are very small relative to

mean capacity. These estimates are less precisely estimated than the instrumental

variables estimates, but for all nine estimates in Table 2 we can rule out a 5% capacity

drop or larger with 99% confidence. If we average the estimates in Column (1) across

the three sites, we can reject a mean capacity drop across sites of 1% or larger.
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This lack of evidence of a capacity drop stands in contrast to the vast majority of

previous studies. For example, Zhang and Levinson (2004) reach a different con-

clusion examining bottlenecks in Minnesota. They find that the onset of the queue

leads capacity to decrease by between 2% and 11% across sites. Like our study, they

measure capacity downstream of the bottleneck, not within the queue. However, in

their analysis they define the start of the queue as following an interval in which

traffic flow exceeds its long-run average, and both upstream and downstream loca-

tions are uncongested. One concern with this approach is mean reversion, as average

flows will tend to drop following an interval conditioned on having abnormally high

flows.

Appendix Table A6 reports results from alternative event study analyses in which we

estimate the specification used in Table 2 using median regressions. These estimates

address the potential concern that our results are driven by large outliers, in either

the positive or negative directions. Consistent with our baseline event study results,

the median regression estimates are again close to zero, providing no evidence of a

drop in capacity when the queue forms. Five of the nine estimates are positive, and

in all cases we can reject a 5% capacity drop or larger.
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6 Discussion

6.1 Effect Size Magnitudes

Neither the instrumental variables regressions nor the event study analyses show a

decrease in highway capacity during periods of high demand. To put these results in

context, Figure 8 plots a histogram of all of our estimates. We include all coefficient

estimates from Tables 1 and 2, as well as from alternative analyses in Appendix

Tables A3, A4, A5, and A6 (54 coefficients in total). These estimates summarize the

results from both of our tests of hypercongestion across three sites and a rich variety

of different specifications.

All of our estimates are clustered tightly around zero. To illustrate this fact we have

included in Figure 8 two vertical lines. The righthand vertical line corresponds to

the average observed capacity across all sites and tables — 154 vehicles per lane per

five minutes. The lefthand vertical line corresponds to a hypothetical 10% decrease

in capacity (15.4 vehicles per lane per five minutes). Even the most negative of our

54 estimates fall well short of this 10% threshold, and the vast majority of estimates

are either positive or represent less than a 1% decrease in average capacity.

6.2 Policy Implications

We consider the policy implications of our results in the context of a rich existing

literature that has examined the implications of hypercongestion using variations of
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the “bottleneck” model. In this model drivers face a tradeoff between time delays

and schedule inflexibility and optimize their departure times accordingly (Vickrey,

1969; Small, 1982; Arnott et al., 1990, 1993, 1994).

Economists have long recognized that traffic congestion represents a negative exter-

nality (Pigou, 1920; Vickrey, 1963, 1969; Newbery, 1990). When a motorist drives

on a congested road, she decreases the average speed of all drivers, imposing an ex-

ternal cost. Our results imply, however, that this externality is not exacerbated by

an additional decrease in capacity. Driving reduces average speeds, but we find no

evidence that the travel supply curve is backward-bending. Thus our results imply

that the marginal damages from driving are lower than would be implied by a supply

curve exhibiting hypercongestion.

It is less clear what our results imply for optimal “Pigouvian” congestion pricing.

Starting from an unregulated equilibrium, marginal damages are clearly lower with-

out hypercongestion. However, at the social optimum there is less driving during

peak times, so marginal damages are lower and typically queueing is avoided al-

together (see, e.g. Mun, 1999; Fosgerau and Small, 2013). Thus whether or not

hypercongestion exists likely has minimal impact on the how taxes are set in the

optimal Pigouvian solution, as there may be no congestion at all.

This intuition is borne out in the existing literature. Arnott et al. (1993), for example,

describes a model with a continuum of identical drivers facing a tradeoff between time

delays and schedule inflexibility. In the optimal Pigouvian solution, drivers pay a

time-varying tax that makes them indifferent between all departure times. This tax
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depends on drivers’ tastes for arriving early or late, but there is no queueing at the

social optimum, so whether or not hypercongestion exists is irrelevant for setting the

tax. With hypercongestion the welfare gains from optimal congestion pricing are

larger, however, as total social costs are higher in the unregulated equilibrium.

Two recent papers by Jonathan Hall find that introducing driver heterogeneity does

not change this basic intuition (Hall, 2018a,b). For example, Hall (2018a) struc-

turally estimates drivers’ preferences and then solves for optimal congestion pricing

outcomes with different levels of hypercongestion. Counterfactual analyses (e.g. Ta-

ble 5) show that gains from congestion pricing are larger when there is more hyper-

congestion, again because total social costs in the unregulated equilibrium increase

with hypercongestion.

7 Conclusion

The concept of hypercongestion has influenced transportation economics models for

over five decades. Our paper proposes two empirical tests of hypercongestion. Both

tests are novel in the literature but correspond closely with how hypercongestion has

been modeled in previous analytical studies. We apply both tests to high-quality

data from three highway bottlenecks in California. Across tests, study sites, and

specifications, we find no evidence of a reduction in highway capacity during periods

of high demand.

How can this be? To anyone who has been stuck in heavy traffic, it certainly feels
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as if the capacity of the roadway is being restricted in these moments. We suspect,

however, that this feeling is largely about speed rather than capacity. There is no

question that as more vehicles crowd onto the road, speed decreases. But speed

and capacity are not equivalent. Speed is readily apparent to drivers, but capacity

requires careful measurement.

On highways the feeling of being trapped in heavy traffic often occurs in a queue,

waiting to pass a bottleneck. By definition the capacity per lane must drop when

approaching a bottleneck as the number of lanes decreases. Nevertheless, we find that

the capacity of the bottleneck itself — the rate at which vehicles pass through the

bottleneck — does not drop when the queue first forms nor when the queue grows

in length. No matter how much travel demand increases, the number of vehicles

passing through the bottleneck remains stable.
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Figure 1: Speed-Flow Curves

Sources: Transportation Research Board (2016), Drake and Schofer (1966), Keeler and Small (1977), Allen et al.
(1985), Newbery (1989), May (1990), Mun (1999), and Ni (2015).



Figure 2: Study Sites
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Detectors ½
 mi W of Red Top Rd

Detectors ¼
 mi E of Miners T

rail Rd

Detectors ⅒
 mi E of Miners T

rail Rd

Spurs T
rail Rd detectors

Solano county line detectors

Detectors ¾
 mi E of Lynch Rd

Detectors ¼
 mi E of Lynch Rd

Detectors ¼
 mi W of Lynch Rd

Detectors ½
 mi W of Kirkland Ranch Rd

Notes: Figures approximately to scale.



Figure 3: Mean Traffic Flow
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Figure 4: Mean Vehicle Speed (in Miles-Per-Hour)
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Figure 5: Observed Speed–Flow Curves
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Notes: The x- and y-axes represent traffic flow and mean vehicle speeds, respectively, averaged across all lanes at the
detector immediately upstream of each bottleneck. We exclude weekends and holidays. Colors represent the number
of observations in each cell, as indicated in the legend.



Figure 6: Queue Length (in Thousands of Feet), Within Day
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Notes: We plot for each study site the mean queue length (in thousands of feet) by 5-minute period. We exclude
weekends and holidays. We define a queue as traffic moving under 30 miles-per-hour. Periods without queues are
coded as having a queue of length zero.



Figure 7: Traffic Flows by Time of Queue Onset
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Notes: These event study figures plot average vehicle flows in the 80 minutes before and after queue formation. Time
is normalized so that the longest-duration afternoon queue begins at time zero on each day. The solid line plots mean
capacity, with the shaded area representing a 95% confidence interval. The dashed line plots what mean capacity
would look like if there were a capacity drop of 10% at queue onset, simulated by a drop from 5% above observed
flows to 5.5% below observed flows at event time zero.
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Table 1: The Effect of Queue Length on Highway Capacity, 2SLS

(1) (2) (3)

Weekdays Weekdays Weekdays
4-7pm 4:30-6:30pm 4:30-6:30pm

June-Aug

A. Westbound SR-24

Queue Length 3.581 2.017 2.557
(0.365) (0.403) (0.545)

Total Observations 26,159 19,024 5,285
Number of Days 952 944 268
Dependent Variable Mean 176.2 177.1 177.8
Queue Length Mean 3.20 3.38 2.97
K-P F-stat 84.6 72.7 25.2

B. Southbound I-15

Queue Length 2.009 2.467 0.163
(0.569) (0.558) (0.503)

Total Observations 7,718 6,414 1,616
Number of Days 687 660 160
Dependent Variable Mean 149.2 149.5 153.6
Queue Length Mean 3.96 3.99 3.67
K-P F-stat 30.5 25.4 7.31

C. Eastbound SR-12

Queue Length 0.102 -0.156 -0.681
(0.188) (0.275) (0.573)

Total Observations 9,750 6,803 1,335
Number of Days 297 295 58
Dependent Variable Mean 139.2 139.6 139.8
Queue Length Mean 6.77 7.27 6.60
K-P F-stat 117.0 75.1 33.0

Notes: This table reports estimates and standard errors from nine separate regressions, all estimated
using two-stage least squares (2SLS) with a third-order polynomial in time-of-day as the instruments.
The dependent variable in all regressions is highway capacity, measured in vehicles per five minutes per
lane, downstream of the bottleneck. Queue length is measured in thousands of feet. The sample includes
all five-minute periods with a queue. Standard errors are clustered by day-of-sample.



Table 2: Estimated Change in Highway Capacity at Queue Formation

(1) (2) (3)
Ten Minute Twenty Minute Thirty Minute

Window Window Window

A. Westbound SR-24
1.232 1.167 1.240

(0.357) (0.353) (0.366)
In-window mean 168.5 168.8 169.1
Number of days 706 706 706

B. Southbound I-15
0.759 0.345 -1.680

(0.433) (0.404) (0.386)
In-window mean 142.0 142.9 144.2
Number of days 694 694 694

C. Eastbound SR-12
-1.879 -2.417 -2.679
(1.090) (0.865) (0.720)

In-window mean 133.7 133.8 134.4
Number of days 247 247 247

Notes: This table reports nine estimates of the change in highway capacity at queue formation.
These estimates are based on coefficients from three separate event study regressions, one for each
site. The dependent variable in all regressions is traffic flow (in vehicles per five minutes per lane),
which we refer to as capacity because we focus on periods of queue formation when these bottlenecks
operate at close to capacity. In Column (1) we report the change in capacity between the five minutes
before queue formation and the five minutes after queue formation. Columns (2) and (3) expand the
comparison to consider 20 and 30 minute symmetric windows (10 and 15 minutes in each direction),
respectively. Standard errors are clustered by day-of-sample.
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Figure A1: Detector Health by Month-of-Sample
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detector. The y-axis measures the fraction of intervals in the month, including weekends and holidays, for which the
detector reported speed for all lanes. At each site, detector names are ordered from upstream to downstream.
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Figure A2: Queue Length (in Thousands of Feet), Histogram
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Notes: These histograms plot the distribution of queue lengths, for all observations when a queue is present, across
the date ranges at each site (all available days from 1 June 2005 to 30 June 2010 for SR-24, 1 January 2015 to 31
March 2019 for I-15, and 1 January 2017 to 31 March 2019 for SR-12). Queue lengths are measured in thousands of
feet. In each five-minute interval, queue length is calculated by totaling up the distances from each detector reporting
speed less than 30 miles-per-hour to the next downstream detector. Detectors missing speed for more than one lane
do not contribute to queue length.
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Figure A3: Percentage of Hours With a Queue Present
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Notes: We exclude weekends and holidays. We define a queue as traffic moving under 30 miles-per-hour.
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Figure A4: Mean Vehicle Flow on Weekdays When a Queue is Present
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Figure A5: Time-of-Day that the Queue Begins Each Day, Histogram
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Notes: For each day, we select the longest continuous period of time with a queue, and then we define the start of
the queue as the beginning of that period.
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Table A3: The Effect of Queue Length on Highway Capacity, OLS

(1) (2) (3)

Weekdays Weekdays Weekdays
4-7pm 4:30-6:30pm 4:30-6:30pm

June-Aug

A. Westbound SR-24

Queue Length -0.251 -0.250 0.529
(0.153) (0.145) (0.139)

Total Observations 26,159 19,024 5,285
Number of Days 952 944 268
Dependent Variable Mean 176.2 177.1 177.8
Queue Length Mean 3.20 3.38 2.97

B. Southbound I-15

Queue Length -0.431 -0.385 -0.081
(0.115) (0.110) (0.160)

Total Observations 7,718 6,414 1,616
Number of Days 687 660 160
Dependent Variable Mean 149.2 149.5 153.6
Queue Length Mean 3.96 3.99 3.67

C. Eastbound SR-12

Queue Length -0.105 -0.060 0.017
(0.115) (0.130) (0.439)

Total Observations 9,750 6,803 1,335
Number of Days 297 295 58
Dependent Variable Mean 139.2 139.6 139.8
Queue Length Mean 6.77 7.27 6.60

Notes: This table reports estimates and standard errors from nine separate regressions, all estimated
using ordinary least squares (OLS). The dependent variable in all regressions is highway capacity, mea-
sured in vehicles per five minutes per lane, downstream of the bottleneck. Queue length is measured
in thousands of feet. The sample includes all five-minute periods with a queue. Standard errors are
clustered by day.
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Table A4: Alternative Specification with 25-Mile-Per-Hour Threshold, 2SLS

(1) (2) (3)

Weekdays Weekdays Weekdays
4-7pm 4:30-6:30pm 4:30-6:30pm

June-Aug

A. Westbound SR-24

Queue Length 3.636 2.027 2.236
(0.387) (0.411) (0.488)

Total Observations 25,075 18,340 5,035
Number of Days 934 924 261
Dependent Variable Mean 176.4 177.2 178.2
Queue Length Mean 3.18 3.35 2.95
K-P F-stat 78.1 68.7 24.5

B. Southbound I-15

Queue Length 3.356 4.137 0.822
(1.018) (1.117) (0.754)

Total Observations 6,802 5,681 1,454
Number of Days 653 625 152
Dependent Variable Mean 149.1 149.4 153.6
Queue Length Mean 3.37 3.39 3.21
K-P F-stat 18.5 12.0 4.41

C. Eastbound SR-12

Queue Length 0.073 -0.179 -0.695
(0.195) (0.292) (0.628)

Total Observations 9,700 6,783 1,330
Number of Days 297 295 58
Dependent Variable Mean 139.2 139.6 139.8
Queue Length Mean 6.66 7.14 6.51
K-P F-stat 114.1 71.1 31.1

Notes: This table reports results from an alternative specification in which everything is identical to the
specification used for our baseline results in Table 1, except we assume that a queue is present whenever
traffic is moving at under 25 miles-per-hour (rather than 30 miles-per-hour).
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Table A5: Alternative Specification with 35-Mile-Per-Hour Threshold, 2SLS

(1) (2) (3)

Weekdays Weekdays Weekdays
4-7pm 4:30-6:30pm 4:30-6:30pm

June-Aug

A. Westbound SR-24

Queue Length 3.492 1.921 2.501
(0.341) (0.384) (0.499)

Total Observations 27,054 19,592 5,455
Number of Days 973 965 276
Dependent Variable Mean 176.1 176.9 177.7
Queue Length Mean 3.23 3.42 3.00
K-P F-stat 91.4 78.2 27.5

B. Southbound I-15

Queue Length 1.831 2.184 -0.142
(0.465) (0.490) (0.395)

Total Observations 8,379 6,932 1,729
Number of Days 717 690 164
Dependent Variable Mean 149.3 149.6 153.6
Queue Length Mean 4.59 4.63 4.30
K-P F-stat 35.4 25.8 10.1

C. Eastbound SR-12

Queue Length 0.112 -0.149 -0.758
(0.185) (0.265) (0.601)

Total Observations 9,796 6,826 1,341
Number of Days 297 295 58
Dependent Variable Mean 139.1 139.6 139.8
Queue Length Mean 6.90 7.40 6.72
K-P F-stat 119.7 75.9 27.6

Notes: This table reports results from an alternative specification in which everything is identical to the
specification used for our baseline results in Table 1, except we assume that a queue is present whenever
traffic is moving at under 35 miles-per-hour (rather than 30 miles-per-hour).
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Table A6: Alternative Event Study Analyses, Median Regressions

(1) (2) (3)
Ten Minute Twenty Minute Thirty Minute

Window Window Window

A. Westbound SR-24
1.500 1.750 2.000

(0.333) (0.287) (0.243)
In-window median 171 171.5 171.5
Number of days 706 706 706

B. Southbound I-15
1.333 1.500 -0.333

(0.545) (0.475) (0.408)
In-window median 146 146.3 147.3
Number of days 694 694 694

C. Eastbound SR-12
-2.000 -2.500 -2.667
(1.233) (0.838) (0.704)

In-window median 136 136 136
Number of days 247 247 247

Notes: This table reports results from alternative event study analyses in which everything is identical
to the specification used in Table 2, except we use median regressions.




