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1 Introduction

Two hundred years ago, Ricardo (1817) proposed the idea that cross-country dif-

ferences in production technologies can lead to gains from trade. Ricardo’s work,

which extended Smith (1776)’s idea on specialization to international trade, led to

the following insight: Two countries gain more from trade when they have dissim-

ilar production possibilities. Recent evidence suggests that similarity in technol-

ogy relates to country characteristics—for instance, to the proximity of countries

(Keller, 2002; Bottazzi and Peri, 2003; Comin et al., 2013; Keller and Yeaple, 2013).

If so, correlation in productivity may lead to heterogeneity in the gains from trade.

The Ricardian trade model in Eaton and Kortum (2002, henceforth, EK)—which

gave rise to a rich theoretical and quantitative literature—does not account for

correlation. They assume that productivity is independently distributed Fréchet

across countries. This assumption leads to tractability via a max-stability prop-

erty: the maximum is also Fréchet and its scale is the sum of the underlying scale

parameters,

P[max{A1, . . . , AN} ≤ a] = exp

[
−

(
N∑
o=1

To

)
a−θ

]
.

The symmetry of this additive structure, a consequence of independence, implies

that all trading partners are indistinguishable. As a result, the EK model cannot

capture how similarities across countries shape the gains from trade—which may

be important to understand why countries choose certain trading partners and not

others.

In this paper, we develop a Ricardian theory of trade that allows for arbitrary pat-

terns of correlation in technology, yet preserves the max-stability property central

to the EK model. Specifically, we drop independence and assume a max-stable

multivariate Fréchet distribution for productivity. The distribution of the maxi-

mum is then

P[max{A1, . . . , AN} ≤ a] = exp
[
−G(T1, . . . , TN)a−θ

]
,

for some correlation function G.1 Countries can now have different weight on the

1A correlation function, often referred as a tail dependence function or a extremal index function in
probability and statistics, gives a way of representing a max-stable copula.
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scale of the maximum. In this way, our framework generalizes EK, maintains its

tractability, and allows us to extend the results of Arkolakis et al. (2012) (hence-

forth, ACR) to incorporate how similarity between countries influences the gains

from trade.

The assumption of a max-stable multivariate Fréchet productivity distribution im-

plies a factor demand system with expenditure shares that match choice probabili-

ties in generalized extreme value (GEV) discrete choice models (McFadden, 1978).

As a result, any trade model that generates a GEV factor demand system is ob-

servationally equivalent to a model in our framework for some specification of

the correlation function. In fact, our framework captures general Ricardian the-

ory due to an approximation result: The GEV class approximates any Ricardian

model—without the need to restrict to Fréchet productivity distributions. Hence,

any factor demand system generated by the Ricardian trade model can be approx-

imated using a multivariate Fréchet distribution of productivity. Put simply, our

framework captures the full aggregate implications of Ricardian trade theory.2

Despite this generality, our theory leads to intuitive and tractable counterfactual

analysis. We show that within the class of GEV factor demand systems, we can

calculate the gains from trade as a simple adjustment to the case of a constant-

elasticity-of-substitution (CES) demand system. Specifically, we show that the re-

sults of ACR generalize, after a simple correction, to the class of models whose

demand systems fit into the GEV form. In the Ricardian context, this correction

adjusts a country’s self-trade share to account for correlation in technology with

the rest of the world, formalizing Ricardo’s insight that more dissimilar countries

have higher gains from trade. Additionally, for any given pattern of correlation

across countries, the adjusted self-trade share is calculated using only data on ex-

penditure shares across countries, preserving the simplicity of ACR.

We can also leverage the max-stability property to get closed-form aggregation,

and to get guidance on how to use micro data to discipline macro factor demand

systems. This result brings existing Ricardian models into a unifying framework.

Specifically, the GEV class accommodates many disaggregate Ricardian models of

trade, such as multi-sector models (Costinot et al., 2012; Costinot and Rodrìguez-

Clare, 2014; Caliendo and Parro, 2015; Ossa, 2015; Levchenko and Zhang, 2016;

French, 2016), multinational production models (Ramondo and Rodríguez-Clare,

2 While in the body of the paper we assume that preferences are CES, in Online Appendix O.2.1,
we relax this assumption.
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2013), global value chain models (Antràs and de Gortari, 2017), and models of

trade with domestic geography (Fajgelbaum and Redding, 2014; Ramondo et al.,

2016; Redding, 2016). In Section 6, we show that all these models, once aggre-

gated at the bilateral level, can be represented by a model in which productivity is

distributed multivariate Fréchet with a correlation function appropriately chosen.

We next assess the empirical relevance of correlation. In our quantitative applica-

tion, we estimate a multi-sector model of trade where correlation in productivity

can depend on the proximity of countries. This spatial correlation model captures

the possibility that nearby countries may share similar technology—and therefore

have correlated productivity draws—by allowing for distance-dependent elastici-

ties of substitution across countries, within sectors.

Our estimates show that correlation follows a spatial pattern: Distant countries

have productivity draws with lower correlation. This empirical result has impor-

tant implications for counterfactuals. Accounting for these spatial correlation pat-

terns translates into gains from trade that can be much higher—and much more

heterogenous—than the gains calculated without accounting for correlation.

This paper relates to several strands of the literature. First, we naturally make con-

tact with the large trade literature using the Ricardian-EK framework in its various

forms (see Eaton and Kortum, 2012, for a survey). More generally, our approach

can be applied to any environment that requires Fréchet tools, with the potential

of changing some of their quantitative conclusions. In particular, it can be applied

to selection models used in the growth literature (such as Hsieh et al., 2013), and

the macro development literature (such as Lagakos and Waugh, 2013; Bryan and

Morten, 2018), as well as to recent trade models used in the urban literature (such

as Ahlfeldt et al., 2015; Monte et al., 2015; Caliendo et al., 2017), reviewed in Red-

ding and Rossi-Hansberg (2017).

Second, we relate to papers in the international trade literature that use non-CES

factor demand systems.3

The early work by Wilson (1980) shows how the Ricardian model in Dornbusch

et al. (1977), extended to an arbitrary number of countries, can be reduced to an-

alyzing the properties of an exchange economy—-countries trade their labor with

3 A related trade literature departs from CES with the goal of analyzing endogenous markups
and their effects on the gains from trade. See DeLoecker et al. (2016), Feenstra and Weinstein (2017),
Bertoletti et al. (2017), and Arkolakis et al. (2017), among others.
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each other. Under some restrictions on the properties of the factor demand sys-

tem (i.e., gross substitutes and homotheticity), some comparative static results are

derived, such as the effect of increasing tariffs from zero uniformly across goods.

Results, however, are only local. Additionally, Scarf and Wilson (2005) present a

Ricardian model with a demand structure that satisfies the gross substitutability

property, and in which productivity follows an arbitrary probability distribution.

They show that, in this case, the competitive equilibrium exists and is unique.

We restrict our attention to the sub-class of GEV factor demand systems—which

includes models used extensively in the trade literature—and show that it can ap-

proximate any demand system generated by the Ricardian model.

Adao et al. (2017), building on the idea in Wilson (1980), show how to calculate

macro counterfactual exercises in neoclassical trade models with invertible factor

demand systems, and provide sufficient conditions for non-parametric identifi-

cation using aggregate trade data. In our paper, we restrict to the GEV class—a

subclass with the invertibility property. Given that restriction, our aggregation re-

sult allows us to relate various micro structures to the macro demand systems that

they study, and, as a result, to use variation in disaggregate data to identify macro

substitution patterns. All in all, our paper provides a bridge between the macro

results of Adao et al. (2017) and estimates, common in the trade literature, based

on micro data.4

In that regard, papers such as Caron et al. (2014), Lashkari and Mestieri (2016),

Brooks and Pujolas (2017), Feenstra et al. (2017), and Bas et al. (2017), among oth-

ers, estimate non-CES demand systems using disaggregate data. Even though they

abandon the class of homothetic demand systems, which we do not, they aim, as

we do, at showing the consequences of abandoning the assumptions that lead to

linear gravity systems, and at incorporating more detailed micro data to estimate

key elasticities. They all notice the failure of aggregate theories to incorporate the

richness of the micro data (e.g., heterogeneous price and income elasticities across

traded goods), and "fix it" by assuming non-CES demand systems.5 By linking var-

4 Our paper shares a common theme with Redding and Weinstein (2017) as they develop a
framework to aggregate from micro trade transactions to macro trade and prices using the class of
nested invertible demand systems.

5 Caron et al. (2014) use a constant-relative-elasticity-of-income utility functions to link charac-
teristics of goods in production to their characteristics in preferences, and in this way explain some
"puzzles" observed in the data on trade patterns. Lashkari and Mestieri (2016) use constant-relative-
elasticity-of-income-and-substitution (CREIS) utility functions that allow for general relationships
between income and price elasticies. Brooks and Pujolas (2017) analyze the expression for gains
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ious micro structures to common primitives of technology, our general framework

provides guidance—given by our aggregation result—on how to incorporate the

micro estimates in this literature into macro counterfactual exercises.

In contrast with this literature, from the supply-side point of view of our frame-

work, substitution patterns come from the degree of technological similarity—i.e.,

correlation—between countries. As a result, we can incorporate destination-origin

elasticities without relying on demand-side factors and non-CES preferences.6

Finally, we relate to the literature on dynamic innovation and knowledge diffusion

processes that generate Fréchet productivity—as in Kortum (1997), Eaton and Ko-

rtum (1999), Eaton and Kortum (2001), and Buera and Oberfield (2016). We make

contact with this literature by introducing a global innovation representation for pro-

ductivity. This representation characterizes multivariate Fréchet productivity as

the consequence of technology adoption, and provides an economic justification

for any choice of the correlation function. In this representation, an (unbounded)

collection of innovations for the production of each good exists. The productiv-

ity of each innovation depends on a global component—common across coun-

tries and capturing the fundamental efficiency of the technology—and a spatial

applicability component—unique to each country pair and capturing bilateral fac-

tors influencing efficiency. For each good the global component follows a Poisson

process, while spatial applicability can have any distribution. We then apply the

spectral representation theorem for max-stable processes (De Haan, 1984; Penrose,

1992; Schlather, 2002) and establish that productivity has this global innovation

representation if and only if it is distributed max-stable multivariate Fréchet. This

result not only provides economic primitives for productivity, but it also gives a

method to compute correlation functions from any underlying assumptions on the

applicability of technology across the globe.

from trade arising from models with unrestricted utility functions (typically non-homothetic) that
generate a non-constant trade elasticity. Feenstra et al. (2017) use a nested CES utility function to es-
timate micro and macro elasticities of substitution in a multi-sector model. Finally, Bas et al. (2017)
break the Pareto assumption in the Melitz model of trade to get country-pair specific aggregate
elasticities, which they estimate using sectoral-level trade data.

6 In Online Appendix O.2, we show extensions of our framework that include comparative ad-
vantage coming from demand-side factors as in the Armington model of trade (Anderson, 1979),
and from entry of heterogenous firms as in the Krugman-Melitz model of trade (Krugman, 1980;
Melitz, 2003). Similarly to ACR, these results make clear which assumptions on economic funda-
mentals lead to equivalence within a large and useful class of models.
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2 Ricardian Model of Trade

Consider a global economy consisting of N countries that produce and trade in a

continuum of product varieties v ∈ [0, 1]. Consumers have identical CES prefer-

ences with elasticity of substitution σ > −1, Cd =
(∫ 1

0
Cd(v)

σ
σ+1 dv

)σ+1
σ

.7 Given total

expenditure ofXd, expenditure on variety v isXd(v) ≡ Pd(v)Cd(v) = (Pd(v)/Pd)
−σXd

where Pd(v) is the price of the variety, and Pd =
(∫ 1

0
Pd(v)−σdv

)− 1
σ

is the price level

in country d.

We assume that the production function for varieties presents constant returns to

scale in labor and depends on both the origin country o where the good gets pro-

duced and the destination market d where it gets delivered. For each v ∈ [0, 1],

output Yod(v) satisfies

Yod(v) = Aod(v)Lod(v), (1)

where Lod(v) is the amount of labor used to produce variety v at origin o for de-

livery to d and Aod(v) is the marginal product of labor—referred to as productivity.

This productivity variable captures both efficiency of production in the origin and

inefficiencies associated with delivery to the destination (i.e., trade costs).

The marginal cost to deliver a particular variety v to destination d from origin o is

cod(v) =
Wo

Aod(v)
, (2)

where Wo is the nominal wage in country o. As in the original EK model, we as-

sume perfect competition so that prices are equal to unit costs, Pod(v) = cod(v).

Good v is provided to country d by the cheapest supplier, so its price in the desti-

nation market is

Pd(v) = min
o=1,...,N

Wo

Aod(v)
. (3)

As in EK, we capture heterogeneity in production possibilities by modeling pro-

ductivity as a random draw. We focus on multivariate random variables which

satisfy a property known as max stability. The EK model, which is built on in-
7 The restriction to CES preferences is not necessary for our main results, which rely only on

expenditure shares matching import probabilities. In Online Appendix O.2.1, we show that if con-
sumer preferences are homothetic and generate demand satisfying a law of large numbers on Borel
subsets of the continuum of varieties, expenditure shares equal import probabilities when produc-
tivity is multivariate θ-Fréchet. We focus on CES preferences for comparability to the standard EK
framework.
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dependent Fréchet random variables, gets its tractability from this property. By

relaxing their independence assumption, we get a flexible, yet tractable, model of

trade that captures Ricardo’s insight that the degree of technological similarity de-

termines the gains from trade. Importantly, by assuming that random productivity

is country-pair specific, we are able to introduce purely Ricardian bilateral motives

for trade.

2.1 Max-Stable Multivariate Fréchet Productivity

We start by providing a brief overview of max-stable multivariate Type II extreme

value (Fréchet) random variables. We first define a multivariate θ-Fréchet random

vector.

Definition 1 (Multivariate θ-Fréchet). A random vector, (A1, . . . , AK), has a multi-

variate θ-Fréchet distribution if for any αk ≥ 0 with k = 1, . . . , K the random vari-

able maxk=1,...,K αkAk has a Fréchet distribution with shape parameter θ. In this case,

the marginal distributions are Fréchet with (common) shape parameter θ and, for each

k = 1, . . . , K, satisfy

P [Ak ≤ a] = exp
[
−Tka−θ

]
, (4)

for some scale parameter Tk.

This definition implies that a multivariate θ-Fréchet distribution is max stable—the

maximum has the same marginal distribution up to scaling. The multivariate θ-

Fréchet distribution includes as special cases the independent multivariate Fréchet

distribution in EK, and the symmetric multivariate Fréchet distribution used in

Ramondo and Rodríguez-Clare (2013). For both special cases, the max-stability

property holds and lends the models their tractability.

By working with the class of multivariate θ-Fréchet random vectors, we can put

minimal restrictions on dependence and maintain the key property of max-stability.

Notice that the restriction to a common shape is necessary for max stability; general

multivariate Fréchet distributions may have marginal distributions with different

shape parameters, in which case the maximum, even with independence, is not

distributed Fréchet.

To make headway without the independence assumption, we characterize the joint

distribution of a multivariate θ-Fréchet random vector by first defining the func-
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tion that summarizes its correlation structure.

Definition 2 (Correlation Function). G : RK
+ → R+ is a correlation function if:

1 (Normalization). G(0, . . . , 0, 1, 0, . . . , 0) = 1;

2 (Homogeneity). G is homogeneous of degree one;

3 (Unboundedness). G(x1, . . . , xK)→∞ as xk →∞ for any k = 1, . . . , K; and

4 (Differentiability). The mixed partial derivatives of G exist and are continuous up

to order K. The k’th partial derivative of G with respect to k distinct arguments is

non-negative if k is odd and non-positive if k is even.

A correlation function is closely related to a max-stable copula and adds a nor-

malization restriction to the definition of a social surplus function in GEV dis-

crete choice models (McFadden, 1978).8 This normalization restriction provides

us with notation to distinguish between absolute advantage—captured by scale

parameters—and comparative advantage—captured by a correlation function. Cor-

relation functions reflect comparative advantage because they measure relative

productivity levels across varieties and across origin countries within the same

destination market.

Next, we characterize the joint distribution of any multivariate θ-Fréchet random

vector in terms of the scale parameters of its marginal distributions and a correla-

tion function.

Lemma 1 (Correlation Function Representation). The random vector (A1, . . . , AK)

is multivariate θ-Fréchet if and only if there exists scale parameters Tk for k = 1, . . . , K

and a correlation function G such that its joint distribution satisfies

P [Ak ≤ ak, k = 1, . . . , K] = exp
[
−G

(
T1a

−θ
1 , . . . , TKa

−θ
K

)]
. (5)

Proof. The result follows closely Theorem 3.1 of Smith (1984). See Appendix B.

This standard result from probability theory allows us to parameterize joint distri-

butions using scale parameters and correlation functions. The restrictions defining

8 A max-stable copula is a copula C : [0, 1]N → [0, 1] satisfying C(u1, . . . , uN )η = C(uη1 , . . . , u
η
N )

for η > 0. The map (u1, . . . , uN ) 7→ e−G(−1/ lnu1,...,−1/ lnuN ) is the max-stable copula associated
with a correlation function G.
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a correlation function ensure that (5) characterizes a valid multivariate Type II ex-

treme value (Fréchet) distribution.

Importantly, using the characterization in Lemma 1 and the homogeneity property

of the correlation function, we get the max-stability property. The maximum of a

multivariate θ-Fréchet random vector is θ-Fréchet,

P
[

max
k=1,...,K

Ak ≤ a

]
= exp

[
−G (T1, . . . , TK) a−θ

]
, (6)

with scale parameter given by G (T1, . . . , TK) and shape parameter given by θ.

Evaluated at the scale parameters of the marginal distributions, the correlation

function acts as an aggregator that returns the scale parameter of the maximum.

Moreover, as in EK, the conditional and unconditional distributions of the maxi-

mum are identical,

P
[

max
k′=1,...,K

Ak′ ≤ a | Ak = max
k′=1,...,N

Ak′

]
= P

[
max

k′=1,...,K
Ak′ ≤ a

]
. (7)

This result is crucial for tractability in EK because it ensures that expenditure

shares simply reflect the probability of importing from an origin country. Because

this property holds for general multivariate θ-Fréchet random vectors, our model

inherits the same tractability. Appendix A formally presents this and other prop-

erties of Fréchet random variables which we use throughout the paper.

To fix ideas, consider the special case of independent productivity—used by EK.

Independence implies that the correlation function is additive,

P[A1d(v) ≤ a1, . . . , Aod(v) ≤ aN ] =
∏

o=1,...,N

P[Aod(v) ≤ ao] = exp

(
−

N∑
o=1

Toda
−θ
o

)
.

The max-stability property holds since

P
[

max
o=1,...,N

Aod(v) ≤ a

]
= exp

[
−

(
N∑
o=1

Tod

)
a−θ

]
.

An additive correlation function imposes a strong assumption, namely, that com-

parative advantages across countries are symmetric. Our framework relaxes inde-

pendence while maintaining the max-stability property. By breaking this symme-

try, our model accommodates heterogeneity in comparative advantage, and, as we
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show in Section 4, allows us to formalize how similarity in technology matters for

the gains from trade.

The next section shows how a correlation function can be constructed from funda-

mentals, and hence, provides an economic justification for any choice of G.

2.2 Global Innovation Representation of Productivity

We present a structure for technology that is necessary and sufficient for productivity

to be distributed multivariate θ-Fréchet. This structure can be interpreted as the re-

sult of adopting technologies—which are a product of global innovations—based

on a country’s ability to apply each innovation. Theorem 1 characterizes multivari-

ate θ-Fréchet distributions as precisely the productivity distributions arising from

global innovation.

The result is based on a technology structure that satisfies three assumptions.

Assumption 1 (Innovation Decomposition). There exists θ > 0 and, for each v ∈
[0, 1], a countable set of global innovations, i = 1, 2, . . . , with global productivity {Zi(v)}i=1,2,...

and spatial applicability {{Aiod(v)}No=1}i=1,2,... satisfying

Aod(v) = max
i=1,2,...

(Zi(v)Aiod(v))1/θ. (8)

Assumption 2 (Independence). {{Aiod(v)}No=1}i=1,2,... is independent of {Zi(v)}i=1,2,...

and i.i.d. over i = 1, 2, . . . and v ∈ [0, 1] with EAiod(v) <∞.

Assumption 3 (Poisson Innovations). The collection {Zi(v)}i=1,2,... consists of the

points of a Poisson process with intensity measure z−2dz, and is i.i.d. over v ∈ [0, 1].

First, Assumption 1 defines a structure for technology that can be interpreted as

arising from global innovation and technology adoption. For each good v, there is

a countable collection of technological innovations i = 1, 2, . . . that influence the

marginal product of labor. These innovations represent physical techniques (i.e.,

blueprints) for producing a good. For a given good v, each innovation i has a global

productivity component, Zi(v), and an origin-destination specific spatial applicability

component, Aiod(v). The global productivity component measures the fundamen-

tal efficiency of technique i. Accordingly, it is identical across all origins and des-

tinations. In turn, the spatial applicability component captures origin-destination

10



specific factors that determine the efficiency of the technique when adopted at ori-

gin o to deliver goods to destination d.

Second, the key aspect of Assumption 2 is that it does not impose independence

of applicability across origin countries; instead, it allows for arbitrary patterns of

correlation. Moreover, the assumption does not impose any particular joint dis-

tribution for applicability; this distribution can belong to any family so long as

its first moments exists. In our examples, we use Fréchet distributions for spatial

applicability only because they lead to closed-form solutions.

Finally, Assumption 3 states that the global productivity component, Zi(v), follows

a non-homogenous Poisson process over i’s, for each v. This assumption implies

that the number of innovations whose global productivity satisfies a < Zi(v) ≤ b

is a Poisson random variable. It also implies that the distribution of Zi(v) over v,

conditional on i, is Pareto with shape parameter i and lower bound (i!)−
1
i .9 Loosely

speaking, better innovations (i.e., with higher global productivity) are less likely to

be observed, but conditional on being observed, later innovations (with higher i)

have a higher lower bound and thinner-tailed (lower-variance) Pareto distribution

across goods v.

One can interpret Assumption 3 as arising from some random discovery process

as in Eaton and Kortum (1999, 2010). In our static framework, we can interpret i as

indexing the collection of all innovations up until the present. Rather than assum-

ing that innovations are country specific, innovations—which represent physical

methods to produce a good—are globally applicable. Origin countries differen-

tially load on global productivity through their individual draw of spatial applica-

bility, Aiod(v), and adopt whichever innovation is most efficient for them.

The following theorem is a consequence of the spectral representation theorem for

max-stable processes (De Haan, 1984; Penrose, 1992; Schlather, 2002).

Theorem 1 (Global Innovation Representation). Productivity, {Aod(v)}No=1, is mul-

tivariate θ-Fréchet if and only if it satisfies Assumptions 1, 2, and 3. In this case, we say

that productivity has a global innovation representation.

Let {Aiod(v)}No=1 denote an underlying spatial applicability process. Then, the joint pro-

9 We have that P[Zi(v) > z] = P[Zi(v)−1 < t] for t = z−1. Then, since {Zi(v)}i=1,2,... are
the points of a non homogenous Poisson process with intensity measure z−2dz, {Zi(v)−1}i=1,2,...

are the points of a homogenous Poisson process, and P[Zi(v)−1 < t] =
∑∞
j=i

tj

j! e
−t = ti

i! = z−i

i! .

Therefore, P[Zi(v) ≤ z] = 1−
(

z
(i!)−1/i

)−i
.
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ductivity distribution is

P [A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = exp
[
−Gd

(
T1da

−θ
1 , . . . , TNda

−θ
N

)]
, (9)

with scale Tod ≡ EAiod(v), for o = 1, . . . , N , and correlation function

Gd(x1, . . . , xN) ≡ E max
o=1,...,N

Aiod(v)

Tod
xo. (10)

Proof. See Appendix C.

This characterization of productivity establishes primitive assumptions on global

technology that are necessary and sufficient for θ-Fréchet-distributed productiv-

ity across origin countries.10 θ-Fréchet productivity can always be interpreted as

arising from the spatial applicability of global technologies. Intuitively, both abso-

lute advantage (the scale parameters) and comparative advantage (the correlation

function) depend on the ability of exporters to adopt innovations to technology.

This result also provides a method to compute scale parameters and correlation

functions: They are simply the moments of spatial applicability and the expected

value of the maximum of applicability after scaling. Put differently, Theorem 1

gives guidance on how to construct max-stable copulas.

Concretely, assume that the spatial applicability of individual technologies is inde-

pendent across o and distributed Fréchet with scale Γ(1 − 1/ϑ)−ϑSod, shape ϑ > 1,

and Γ the gamma function. The constant on the scale ensures that productivity

remains finite as ϑ→ 1.

First, we compute the scale parameters of productivity. Theorem 1 establishes that

the scale parameters equal the first moments of spatial applicability. By Lemma A.1,

Tod = S
1/ϑ
od .

Next, we derive the correlation function—i.e., the expectation in (10). From Lemma A.1,

(Aiod(v)/Tod)xo is ϑ-Fréchet with scale xϑo . Due to independence and max-stability,

the maximum over o is also ϑ-Fréchet and its scale is the sum of the underlying

10 It is worth noting that, contrary to the insight first in Kortum (1997), in which the distribution
of the best idea belongs to the extreme value family in the limit, this result is exact.
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scale parameters. Using Lemma A.1 to compute the expectation in (10) yields

Gd(x1, . . . , xN) =

(
N∑
o=1

x
1

1−ρ
o

)1−ρ

, where ρ ≡ 1− 1

ϑ
. (11)

The implied joint distribution of productivity follows from (9) in Theorem 1.

The correlation function in (11) takes the form of a CES aggregator. The coeffi-

cient ρ measures the degree of correlation, which arises from dispersion in spatial

applicability, controlled by the shape parameter ϑ. As ϑ → 1, dispersion in ap-

plicability is high, and ρ → 0. Intuitively, when applicability becomes very fat

tailed, it dominates the contribution of the common global component of produc-

tivity. In this limiting case, productivity is independent and the correlation func-

tion is additive—as in EK—due to our assumption that applicability is indepen-

dent across countries. In contrast, as ϑ → ∞, dispersion in applicability becomes

negligible and ρ→ 1. In this case, applicability becomes deterministic and hetero-

geneity in productivity is entirely determined by the global component, Zi(v). As

a result, productivity becomes perfectly correlated across countries.

This example provides intuition for how Theorem 1 generates varying degrees of

correlation in productivity from underlying assumptions on the applicability of

technology across the globe. High dispersion in spatial applicability dampens the

importance of the common global component of productivity and reduces correla-

tion. This example is also a useful building block for generating richer correlation

functions when combined with our aggregation result in Section 5.

As another application of Theorem 1, we compute a cross-nested CES (CNCES)

correlation function. This example demonstrates how to build correlation func-

tions from underlying microfoundations for technology adoption.

Consider a latent (within country) technology adoption decision where applicabil-

ity comes from a choice of how to apply each innovation. In particular, firms se-

lect an application m across M alternatives so that Aiod(v) = maxm=1,...,M Aimod(v).

Assume that applicability is independent across m and for each m it is ϑ-Fréchet

across o with scale Γ(1 − 1/ϑ)−ϑTmod and a correlation function as in (11) with

ρm ∈ [0, 1).

First, we compute the scale parameters of the productivity distribution. Due to

independence, the maximum of applicability over m is ϑ-Fréchet with scale Γ(1−
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1/ϑ)−ϑ
∑M

m=1 Tmod. From Lemma A.1, productivity has scale Tod = (
∑M

m=1 Tmod)
1/ϑ.

Next, we compute the correlation function. By Lemma A.2, {Aimod(v)
Tod

xo}No=1 is ϑ-

Fréchet with scale Tmod(xo/Tod)ϑ and CES correlation function with parameter ρm.

Due to max-stability, the maximum over o is also ϑ-Fréchet and it has scale equal to

(
∑N

o=1(Tmod(xo/Tod)
ϑ)

1
1−ρm )1−ρm . Due to independence, the scale of the maximum

over m is simply the sum of these scale parameters. Using Lemma A.1 and focus-

ing on the limiting case of ϑ→ 1, we have Tod =
∑M

m=1 Tmod and

Gd(x1, . . . , xN) =
M∑
m=1

(
N∑
o=1

(ωmodxo)
1

1−ρm

)1−ρm

, (12)

for ωmod ≡ Tmod/Tod. The relative efficiency of application m for origin o when

delivering to destination d determines the weight of application m within the re-

sulting CNCES correlation function. The implied productivity distribution follows

from (9) in Theorem 1.11

Summing up, Theorem 1 allows us to relate alternative specifications for the cor-

relation function to underlying primitive assumptions on the nature of technolog-

ical adoption. When developing models based on Fréchet-distributed productiv-

ity, one can either use a particular specification for applicability—possibly arising

from a model of innovation—and derive the impliedGd using Theorem 1, or, alter-

natively, directly specify a correlation function satisfying the restrictions in Defini-

tion 2. The key contribution of Theorem 1 is to provide an economic justification

for any choice of the correlation function, and to provide a method for computing

correlation functions implied by models of technology adoption.

2.3 Prices and Trade Shares

We now characterize import price distributions and expenditure shares under the

assumption that productivity is multivariate θ-Fréchet. The marginal cost to de-

liver a particular variety v to destination d from origin o is given by (2). The joint

distribution of potential import prices is shown in the next proposition.

Proposition 1 (Potential Import Price Distribution). If productivity has a multivari-

ate θ-Fréchet distribution, then the joint distribution of prices presented to destination
11 In a recent paper, Lashkaripour and Lugovskyy (2017) use a nested Fréchet—with latent fac-

tors representing firm-specific quality—to generalize EK. Their example fits into the productivity
representation in our Theorem 1.

14



market d is given by a multivariate Weibull distribution satisfying12

P[P1d(v) ≥ p1, . . . , PNd(v) ≥ pN ] = exp
[
−Gd

(
T1dW

−θ
1 pθ1, . . . , TNdW

−θ
N pθN

)]
.

Proof. See Appendix D.

The joint distribution of productivity determines the joint distribution of potential

import prices. For each origin o, the marginal distribution of prices, P[Pod(v) ≤
p] = 1 − exp

[
−TodW−θ

o pθ
]
, is a Weibull distribution with scale parameter TodW−θ

o

and shape parameter θ. The correlation function Gd determines the dependence

structure.

Define bilateral import price indices as Pod ≡
(∫ 1

0
Pod(v)−σdv

)− 1
σ

. Proposition 1 to-

gether with Lemma A.1 implies that

Pod = γT
−1/θ
od Wo. (13)

with γ > 0 defined in Proposition 2. Nominal import prices are proportional to the

exporter nominal wage, Wo, and decreasing in the bilateral productivity parame-

ter, Tod. We can interpret the scale parameters of the productivity distribution as

bilateral cost shifters, and map them into into standard variables in the trade liter-

ature: an origin country productivity index, Ao ≡ T
1/θ
oo , and an iceberg trade cost index,

τod ≡ (Too/Tod)
1/θ. The variable Ao measures a country’s ability to produce goods

in their domestic market, while τod measures efficiency losses associated with de-

livering goods to market d—the standard iceberg-type trade costs. Re-writing (13)

using these indices yields Pod = γτodWo/Ao.

Given the distribution of potential import prices, a country imports each variety

from the cheapest source. The max-stability property for the productivity distri-

bution, together with the previous characterization of the potential import price

distribution, leads to closed-form results for trade shares and the price index.

Proposition 2 (Generalized EK). Suppose productivity has a multivariate θ-Fréchet

distribution with θ > σ. Then,
12 A random vector (B1, . . . , BK) is multivariate Weibull if its marginal distributions are Weibull:

P[Bk ≤ b] = 1 − e−Skbθk for some scale Sk > 0 and shape θk > 0 across k = 1, . . . ,K. Note that if
(A1, . . . , Ak) is θ-Fréchet, then the vector (A−11 , . . . , A−1K ) is multivariate Weibull and its marginals
have common shape θk = θ, for each k = 1, . . . ,K.
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1. The share of varieties that destination d imports from o is

πod =
TodW

−θ
o God∑N

o′=1 To′dW
−θ
o Go′d

, (14)

where

God ≡ Gd
o

(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)
and Gd

o (x1, . . . , xN) ≡ ∂Gd (x1, . . . , xN)

∂xo
;

(15)

2. The distribution of prices among goods imported into country d from o is identical

to the distribution of prices in d.

3. Total expenditure by country d on goods from country o is Xod = πodXd; and

4. The price index in country d is

Pd = γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ , (16)

where γ ≡ Γ
(
θ−σ
θ

)− 1
σ and Γ(·) is the gamma function.

Proof. See Appendix E.

First, the formula for the expenditure share, πod, takes the same form as choice

probabilities in GEV discrete choice models (McFadden, 1978), with the quantity

TodW
−θ
o taking the place of choice-specific utility, as we explain in Section 3. Note

that this quantity is monotonically related to the import price index in (13).

Second, using (14) and (16), correlation-adjusted expenditure shares—defined as

π∗od ≡ πod/God—are CES,

π∗od = Tod

(
γ
Wo

Pd

)−θ
. (17)

Hence, they constitute a gravity system as defined by ACR. In fact, together (13)

and (17) imply that correlation-adjusted expenditure shares are sufficient statis-

tics for real import prices: π∗od = (Pod/Pd)
−θ. This interpretation will be particu-

larly useful when we examine counterfactual analysis and compute correlation-

adjusted expenditure shares in Section 4.2.

Third, as in EK, the distribution of prices among goods actually imported into mar-

ket d is identical to the overall distribution of prices in d. As a result, expenditure
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shares are equal to the share of varieties imported into d from o. This result follows

from the property that the conditional distribution of the maximum of a multivari-

ate Fréchet random vector is identical to its unconditional distribution, as shown

in Lemma A.3.

Finally, the price level in each destination market is determined by the correlation

function,Gd. In fact, due to (13) and (16), the price level is determined by aggregat-

ing import price indices using the correlation function: Pd = Gd(P−θ1d , . . . , P
−θ
Nd)

− 1
θ .

In analogy to the discrete choice literature, welfare calculations depend crucially

on the specification of this function.

3 GEV Factor Demand Systems

What macro substitution patterns does this theory generate? To answer this ques-

tion, we first establish, in Corollary 1, that the Ricardian model with multivari-

ate θ-Fréchet productivity implies expenditure shares that match choice proba-

bilities in GEV discrete choice models (McFadden, 1978). We then establish in

Proposition 3 that the demand systems generated by the Ricardian model with θ-

Fréchet-distributed productivity can approximate any demand system generated

by stochastic productivity. That is, our framework allows us to approximate any

factor demand systems consistent with Ricardian trade, under the assumptions of

constant returns to scale in production, competitive markets, and a single factor of

production in each country.13

First, we define a factor demand system for destination d as a collection of expendi-

ture share functions {πod}No=1 such that for each o = 1, . . . , N the function πod :

RN
+ × R+ → [0, 1] is homogenous of degree zero and for any vector of wages

W ≡ (W1, . . . ,WN) ∈ RN
+ and level of expenditure Xd ≥ 0,

∑N
o=1 πod(W, Xd) = 1.

Next, we define the class of GEV factor demand systems.

Definition 3 (GEV Factor Demand System). A generalized extreme value (GEV) fac-

tor demand system for destination d is a factor demand system, {πGEV
od }No=1, such that there

exists a shape parameter θ > σ, scale parameters {Tod}No=1, and a correlation function Gd

satisfying

πGEV
od (W, Xd) =

TodW
−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )∑

o′ To′dW
−θ
o′ G

d
o′(T1dW

−θ
1 , . . . , TNdW

−θ
N )

, (18)

13 As mentioned in Footnote 2, CES preferences are not crucial for our results.
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for all o = 1, . . . , N .

The GEV class is homothetic since expenditure shares do not depend on overall

expenditure. It is closely related, as mentioned above, to the functional form for

choice probabilities in GEV discrete choice models. It differs slightly, however,

because the correlation function is a restricted version of the social surplus function

in GEV models due to our normalization restriction in Definition 2.

An important class of models within the GEV class are CES factor demand sys-

tems, as in ACR. These models are generated by an additive correlation function,

implying expenditure shares of the form

πCES
od (W, Xd) =

TodW
−θ
o∑N

o′=1 To′dW
−θ
o′

. (19)

The CES specification leads to a gravity system and includes most of the workhorse

models of trade, such as Armington, Melitz, and EK (Arkolakis et al., 2012).

The GEV class, however, is much larger than the CES class. For example, consider

the cross-nested CES correlation function derived in (12),

Gd(x1, . . . , xN) =
M∑
m=1

(
N∑
o=1

(ωmodxo)
1/(1−ρm)

)1−ρm

. (20)

The factor demand system implied by this correlation function is

πCNCES
od (W, Xd) =

M∑
m=1

(
Pmod
Pmd

)− θ
1−ρm P−θmd∑M

m′=1 P
−θ
m′d

, (21)

where Pmod ≡ γT
−1/θ
mod Wo, and Pmd ≡ (

∑N
o=1 P

−θ/(1−ρm)
mod )−(1−ρm)/θ. The first fraction

on the right-hand side of (21) represents the probability of importing from country

o given that it chose application m. Due to the correlation in applicability across

countries, for a given m, this conditional probability has an elasticity of substitu-

tion of θ/(1−ρm) over the price index of origin o, relative to the destination market

price index, Pmd, for goods produced with application m. The second fraction on

the right-hand side of (21) represents the probability of importing m-goods into

d. Due to independence in applicability across m’s, the elasticity of substitution

between them is simply θ.

It is clear from comparing (19) with (21) that the GEV class generates a richer pat-
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tern of substitution across exporters than CES. In general, if we compare the elas-

ticity of demand in the GEV and CES models, around any observed expenditure

shares, the difference comes from the correlation function,

∂ lnπGEV
od

∂ lnWo′
=
∂ ln πCES

od

∂ lnWo′
+
∂ lnGod

∂ lnWo′
, (22)

with ∂ lnπCES
od

∂ lnWo′
= −θ (1− πo′d) since ∂ lnPd

∂ lnWo
= πod.

Our next result states that the GEV factor demand system in (18) matches the ex-

penditure shares of the Ricardian model with multivariate θ-Fréchet productivity

in Proposition 2.

Corollary 1 (GEV Equivalence). A trade model generates a GEV factor demand system

if and only if the Ricardian model generates the same factor demand system for some max-

stable multivariate Fréchet distribution for productivity.

A direct implication of Corollary 1 is that the Ricardian model generates factor

demand systems matching many (non-CES) trade models. In particular, many ex-

isting models are in the GEV sub-class of cross-nested CES factor demand systems,

as we show in Section 6.14

We can push the result in Corollary 1 one step further by adapting results from

the discrete choice literature: GEV random utility models are dense in the space

of all random utility models (Dagsvik, 1995). This result for choice probabilities

does not directly apply to our model since we have CES demand at the variety

level. However, an analogous result holds: The set of factor demand systems

generated by any Ricardian model—without restricting to θ-Fréchet productivity

distributions—can be approximated arbitrarily well by the class of GEV factor de-

mand systems.

Proposition 3 (GEV Approximation). Let {Aod(v)}No=1 have any multivariate distri-

bution whose marginals have finite moment of order σ. Denote the factor demand system

implied by the Ricardian model when productivity is distributed the same as {Aod(v)}No=1

by {πod}No=1. Then for any compact K ⊂ RN+1
+ and any ε > 0, there exists a GEV factor

demand system, {πGEV
od }No=1, such that

sup
(W,Xd)∈K

∣∣πod(W, Xd)− πGEV
od (W, Xd)

∣∣ < ε ∀o = 1, . . . , N.

14 It is worth noting that this subclass can approximate any GEV factor demand system (Fosgerau
et al., 2013) and, by extension, any GEV Ricardian model.
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Proof. The proof constructs an approximating GEV factor demand system that con-

verges uniformly to the true demand system. See Appendix F.

The key implication of Proposition 3 is that any factor demand system generated

by the Ricardian trade model can be approximated by a Ricardian trade model

where productivity has a multivariate θ-Fréchet distribution. Put simply, through

this approximation result, our framework encompasses the full macroeconomic

implications of Ricardian trade theory.

4 Macro Counterfactuals

We next show that heterogeneity in correlation leads to heterogeneity in the gains

from trade and that this heterogeneity affects the calculation of any (counterfac-

tual) departure from the current equilibrium. It turns out that calculations using

a GEV demand system are virtually identical, after a correction for correlation, to

the calculations in ACR for trade models with CES factor demand systems. More-

over, the correlation correction only requires data on expenditure shares across

countries, preserving the simplicity of the ACR calculation of the gains from trade.

From (14), the self-trade share is

πdd =
TddW

−θ
d Gdd∑N

o=1 TodW
−θ
o God

. (23)

Using the expression for the price index in (16), we can write the real wage in

country d as
Wd

Pd
= γ−1T

1
θ
dd (π∗dd)

− 1
θ , (24)

where π∗dd ≡ πdd/Gdd is the correlation-adjusted self-trade share.

Let x̂ ≡ x′/x denote the change from x to x′ in an equilibrium outcome due to some

change in the model’s parameters. Using (24), it is straightforward to show that

the change in real wages between two equilibria is given by

Ŵd

P̂d
≡ W ′

d/P
′
d

Wd/Pd
= (π̂∗dd)

− 1
θ . (25)

That is, in any trade model that implies a GEV factor demand system, a (log)

change in equilibrium real wages—triggered by some shock to the model’s parameters—
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is proportional to the (log) change in the correlation-adjusted self-trade share, with

the factor of proportionally given by the parameter, θ.15

4.1 Gains From Trade: Autarky

What are the consequences of correlation in technology for the gains from trade

relative to autarky? Intuitively, if two countries have identical idiosyncratic pro-

ductivity draws across varieties (i.e., the case of perfect correlation), with their

average productivity determining labor costs, they will offer each other identical

prices across varieties, and there would be no scope for trade between them. Our

correlation structure is able to capture this possibility.

In autarky, country d purchases only its own goods so that πdd = 1. Moreover, as

τod → ∞, Tod ≡ (Ao/τod)
θ → 0 for o 6= d. As a result, Gdd = 1 (i.e., correlation with

other countries is irrelevant in autarky). Real wages in autarky are simply

(
Wd

Pd

)Autarky

= γ−1T
1
θ
dd. (26)

Dividing (24) by (26), the gains from trade relative to autarky are

GTd ≡
Wd/Pd

(Wd/Pd)
Autarky =

(
πdd
Gdd

)− 1
θ

. (27)

This expression generalizes the results of ACR to the class of models with GEV

demand systems. With a CES factor demand system, Gdd = 1 and the gains from

trade in (27) simplify to the ones in ACR where two countries with the same self-

trade share have the same gains from trade relative to autarky.

The expression for gains in (27) admits the possibility that if two countries have

the same self trade share, but one country has very similar technology to all other

countries—i.e., high correlation—their gains from trade will be smaller. In con-

trast, if that country has dissimilar technology to other countries—i.e., low correlation—

their gains from trade will be larger. Our general framework captures Ricardo’s

insight on the heterogeneity of gains from trade across countries.

15 In Online Appendix O.1, we define equilibrium formally and show how to apply exact hat-
algebra methods to solve for a change from the current (observed) equilibrium to any counterfac-
tual equilibrium.
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Concretely, consider a three-country world with a correlation function given by

Gd(x1, x2, x3) =
(
x
1/(1−ρ)
1 + x

1/(1−ρ)
2

)1−ρ
+ x3,

which implies that the joint distribution of productivity across countries is

P[A1d(v) ≤ a1, A2d(v) ≤ a2, A3d(v) ≤ a3] = exp

[
−
(

(T1da
−θ
1 )

1
1−ρ + (T2da

−θ
2 )

1
1−ρ

)1−ρ
+ T3da

−θ
3

]
.

Countries 1 and 2 are technological peers, with the parameter ρ measuring the

degree of correlation in their technology. Country 3’s productivity is uncorrelated

with productivity in countries 1 and 2. Then,

God =
(
(T1dW

−θ
1 )1/(1−ρ) + (T2dW

−θ
2 )1/(1−ρ)

)−ρ
(TodW

−θ
o )ρ/(1−ρ) for o = 1, 2 and G3d = 1.

Given that πod = TodW
−θ
o God/G

d(T1dW
−θ
1 , T2dW

−θ
2 , T3dW

−θ
3 ), we can take the ratio

G1d/G2d = (π1d/π2d)
ρ, which implies that

God =

(
πod

π1d + π2d

)ρ
for o = 1, 2.

As a result, the gains from trade are

GTd =
[
π1−ρ
dd (π1d + π2d)

ρ]− 1
θ for d = 1, 2 and GT3 = π

− 1
θ

33 .

The gains from trade for countries 1 and 2 depend on the degree of correlation

in technology, while the gains from trade for country 3 are pinned down by the

country’s self-trade share. The corrected self-trade shares for country 1 and 2 end

up being a Cobb-Douglas combination—with weight given by ρ—between each

country’s expenditure share on its own goods and on the aggregation of its own

goods with its peer’s goods—the latter can be interpreted as the self-trade share

if countries 1 and 2 were combined into a single country. When correlation in

technology is zero (ρ = 0), a correlation correction is unnecessary; for positive

correlation, the correction increases effective self trade and implies lower gains

from trade; and for perfect correlation (ρ = 1), the two countries are effectively a

single country and the gains from trade depend on their combined self trade.
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4.2 Calculating the Correlation Correction

To make the necessary adjustment for correlated technology, we need to know

the correlation structure across countries, which requires estimates of Gd. Given

the correlation function, we can then calculate the gains from trade directly from

expenditure data, generalizing the sufficient-statistic approach in ACR.

Because the demand system is CES after the correlation correction, correlation-

adjusted shares are sufficient statistics for underlying bilateral import prices. The

procedure to compute correlation-adjusted expenditure shares amounts to invert-

ing the demand system, (14).

First, we use (13), (16), and the fact that Gd
o is homogenous of degree zero, to re-

write (14) as

πod =

(
Pod
Pd

)−θ
Gd
o

[(
P1d

Pd

)−θ
, . . . ,

(
PNd
Pd

)−θ]
.

This equation expresses the demand system in terms of real import prices, rather

than bilateral productivity shifters, wages, and price levels.

In fact, due to (13) and (17), the quantities on the right-hand side are exactly equal

to correlation-adjusted expenditure shares.

πod = π∗odG
d
o (π∗1d, . . . , π

∗
Nd) for o = 1, . . . , N. (28)

Because correlation-adjusted expenditure shares are sufficient statistics for real im-

port prices, the correlation correction amounts to inverting the demand system.

That is, given expenditure share data and the correlation function of a single desti-

nation, we have N equations in the N unknown correlation-adjusted expenditure

shares across origins.16 As a result, we only need expenditure share data to calcu-

late the gains from trade.

16 Note that the correlation adjustment is well defined. The mapping from RN+ to RN+ , defined by
the right-hand side of the system in (28), satisfies strict gross substitutability and is homogenous
of degree one. As a result, it is injective (see, for instance, Berry et al., 2013) and there is a unique
solution for {π∗od}No=1, given {πod}No=1.
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5 Aggregation

This section provides an aggregation result that links the aggregate trade model

we have studied so far to trade models with more disaggregated structures—such

as sectors and global value chains.

This aggregation result is important because it allows us to link the macro results

of Adao et al. (2017) and estimates, common in the trade literature, based on mi-

cro data. In their paper, they show how to estimate non-parametrically invertible

demand systems using only aggregate trade data. In practice, however, as they

recognize, they need to proceed parametrically (e.g., mixed CES) and they esti-

mate an invertible factor demand system without taking a stance on any partic-

ular microfoundation. By being less general and restricting to the GEV class of

factor demand systems—a sub-class of invertible demand systems with the gross

substitute property—our aggregation result enables us to identify macro substi-

tution patterns using disaggregate data (e.g., sectoral data). We provide concrete

applications in the next section.

Our aggregation result follows directly from Definition 1: Max-linear combina-

tions of multivariate θ-Fréchet random vectors are multivariate θ-Fréchet. This

property implies that we can aggregate models built on optimizing behavior and

Fréchet productivity to get equivalent macro models where productivity is also

Fréchet. Put differently, one can always think of macro-level scale parameters and

macro-level correlation functions as the result of the underlying micro structure.

The following proposition formalizes this result.

Proposition 4 (Aggregation of the Productivity Process). Consider a model with Mo

micro factors within each origin country o = 1, . . . , N . Let productivity {{Amod(v)}Mo
m=1}No=1

be distributed multivariate θ-Fréchet with θ > σ. Denote the associated scale parameters

by {{Tmod}Mo
m=1}No=1 and correlation function by F d : RM1

+ × · · · × RMN
+ → R+.

Then, aggregate productivity Aod(v) = maxm=1,...,Mo Amod(v) is also distributed multi-

variate θ-Fréchet. The aggregate scale parameters are, for each o = 1, . . . , N , given by

Tod = F d (01, . . . ,0o−1,Tod,0o+1, . . . ,0N) ≡ F od(Tod), (29)

where 0o is the zero vector of length Mo, and Tod ≡ (T1od, . . . , TMood). The aggregate
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correlation function is given by

Gd(x1, . . . , xN) = F d(Ω1dx1, . . . ,ΩNdxN), (30)

where, for each o = 1, . . . , N , Ωod ≡ (ω1od, . . . , ωMood) is a vector of aggregation weights

with elements ωmod ≡ Tmod/Tod for m = 1, . . . ,Mo.

Proof. This result follows from the max-stability property. See Appendix G.

Proposition 4 states that we can relate a given macro model with multivariate θ-

Fréchet productivity to an underlying disaggregate model in which productivity

also has a multivariate θ-Fréchet distribution. The link between the micro and

macro levels comes from maximizing productivity across m’s within an origin

country.

This aggregation result also produces aggregate expenditure shares belonging to

the GEV class.

Corollary 2 (Aggregation of Expenditure Shares). Suppose that the hypotheses and

notation of Proposition 4 hold. Micro expenditure shares are

πmod =
TmodW

−θ
o F d

mo

(
T1dW

−θ
1 , . . . ,TNdW

−θ
N

)
F d
(
T1dW

−θ
1 , . . . ,TNdW

−θ
N

) for m = 1, . . . ,Mo and o = 1, . . . , N,

where Tod ≡ (T1od, . . . , TMood), and F d
mo(X1, . . . ,XN) ≡ ∂

∂xmo
F d(X1, . . . ,XN).

Then, aggregate expenditure shares are

πod ≡
Mo∑
m=1

πmod =
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

for o = 1, . . . , N,

where Tod and Gd are given, respectively, by (29) and (30) in Proposition 4.

This result allows us to pass seamlessly between the micro and macro levels. Its

natural consequence is that we can use disaggregate data (e.g., sectoral data) to

estimate the micro correlation function and infer micro scale parameters. We can

then apply Proposition 4 to derive the macro correlation function and macro scale

parameters, and perform macro counterfactual analysis using the results in Sec-

tion 4. This aggregation result enables us to connect (Ricardian) micro foundations

to macro substitution patterns—as our applications in the next section show.
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Aggregation weights are key for the aggregation procedure. Because correlation-

adjusted expenditure is proportional to the scale parameters of both the micro

and macro models, these weights can be recovered by first computing correlation-

adjusted expenditure from disaggregate expenditure shares.

The logic for computing correlation-adjusted trade shares at the micro level follows

the derivations in Section 4.2. Gravity holds after correcting for correlation at the

micro level,

π∗mod ≡
πmod
Fmod

= Tmod

(
γ
Wo

Pd

)−θ
, (31)

where Fmod ≡ F d
mo

(
T1dW

−θ
1 , . . . ,TNdW

−θ
N

)
. We can then recover micro correlation-

adjusted expenditure by inverting πmod = π∗modF
d
mo (Π∗1d, . . . ,Π

∗
Nd) where Π∗od ≡

(π∗1od, . . . , π
∗
Mood

). Because correlation-adjusted shares are sufficient statistics for la-

tent prices, this step amounts to inverting the demand system.

From these quantities, we can then compute correlation-adjusted expenditure in

the implied macro model. Using (17), (29), the homogeneity of F od, and (31) we

get

π∗od = F od(Π∗od), and ωmod =
π∗mod
π∗od

. (32)

Aggregation weights equal the ratio of micro and macro correlation-adjusted ex-

penditure shares. In addition to being sufficient statistics for real import prices,

these quantities are sufficient statistics for the aggregation weights.

6 Applications

We now present applications in the literature that extend the Ricardian model of

trade in EK to multiple sectors (Caliendo and Parro, 2015), multinational produc-

tion (Ramondo and Rodríguez-Clare, 2013), domestic geography (Ramondo et al.,

2016), global value chains (Antràs and de Gortari, 2017), and intermediate inputs

(Eaton and Kortum, 2002; Alvarez and Lucas, 2007). All of these models deliver

a GEV factor demand system and illustrate the aggregation result of the previous

section. These applications, by belonging to the GEV class, fall into the class of

factor demand systems with the gross substitutes property; as such, complemen-

tarities are precluded.17

17A notable exception—with strong complementarities—is Fally and Sayre (2018). They build a
model of trade in scarce and spatially concentrated commodities which implies an import demand
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6.1 Multiple Sectors

Assume that each country is composed of multiple sectors, s = 1, . . . , S. Caliendo

and Parro (2015) assume that consumers in destination d have Cobb-Douglas pref-

erences with sectoral shares µsd, and that productivity within each sector across

origins is distributed independent Fréchet with shape θs and scale Ãso. Given trade

costs τsod, the share of d’s total expenditure on goods in sector s from origin o is

πsod =

(
τsod

Wo

Aso

)−θs
∑N

o′=1

(
τso′d

Wo′
Aso′

)−θs µsd, (33)

where Aso ≡ Ã
1/θ
so . Due to the Cobb-Douglas assumption, sectoral expenditure

shares are exogenous.

By assuming that productivity is correlated within each sector, we can generate a

similar demand system, but with endogenous sectoral shares. Suppose that pro-

ductivity Asod(v) for good v in sector s is a random vector drawn from a multivari-

ate θ-Fréchet distribution with scale parameter Tsod and cross-nested CES (CNCES)

correlation function,

F (X1, . . . ,XN) =
S∑
s=1

(
N∑
o=1

x1/(1−ρs)so

)1−ρs

, (34)

with Xo ≡ (x1o, . . . , xSo). The parameter ρs measures the degree of correlation

across origin countries in each sector s.

Expenditure shares at the sector level constitute a gravity system given by

πsod =

(
Psod
Psd

)−θ/(1−ρs)(Psd
Pd

)−θ
,

where Psod ≡ γT
1/θ
sodWo, Psd ≡ (

∑N
o=1 P

−θ/(1−ρs)
sod )−

1−ρs
θ , and Pd is the aggregate price

index in country d, Pd =
(∑

s P
−θ
sd

)−1/θ.
This demand system matches (33) for θ/(1 − ρs) = θs, Psod/γ = τsodWo/Aso, and

µsd = (Psd/Pd)
−θ. Sectoral shares now depend on real sectoral prices with elasticity

of substitution θ. As the parameter θ goes to zero, this sectoral CNCES model

system with very low elasticities of substitution. They estimate gains from trade that are much
larger than ACR.
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converges to match the Cobb-Douglas case in Caliendo and Parro (2015).18,19

We can get an equivalent macro model by applying Proposition 4. Aggregate pro-

ductivity Aod(v) is distributed multivariate θ-Fréchet with scale parameters given

by Tod =
∑S

s=1 Tsod and the following CNCES correlation function, as derived in

(12),

Gd(x1, · · · , xN) =
S∑
s=1

(
N∑
o=1

(ωsodxo)
1/(1−ρs)

)1−ρs

, (35)

with ωsod = Tsod/Tod.20 The inner sum indicates that latent sectors induce corre-

lation across origins. The parameter ωsod measures the extent to which sector s

matters for trade flows from o to d—i.e., it reflects sectoral trade costs and compar-

ative advantage.

In turn, aggregate expenditure shares constitute a GEV factor demand system, as

in (21),

πod ≡
∑
s

πsod =
∑
s

(
ωsodTodW

−θ
o

) 1
1−ρs∑

o′

(
ωso′dTo′dW

−θ
o′

) 1
1−ρs

[∑
o′

(
ωso′dTo′dW

−θ
o′

) 1
1−ρs
]1−ρs

∑
s′

[∑
o′

(
ωs′o′dTo′dW

−θ
o′

) 1
1−ρs′

]1−ρs′ .
(36)

The aggregate model with a CNCES correlation function has the same aggregate

implications as the multi-sector model with correlation across origin countries

within each sector.

6.2 Multinational Production

Assume that productivity depends on the home country j of a firm. The micro cor-

relation function is CNCES as in (34), and the implied macro correlation function

is as in (35) with s replaced by j for both functions. The parameter ρj measures

correlation across production locations for firms with home country j.

18 The Cobb-Douglas restriction, however, entails that key cross-price elasticities characterizing
the macro demand system are not identified from between-sector variation, as pointed out by Adao
et al. (2017). With CNCES, both θ and ρs can be identified from between- and within-sector varia-
tion, respectively.

19 French (2016) uses CES expenditure shares across sectors, but he restricts the elasticities of
substitution for each sector to be the same, ρs = ρ.

20 As the number of underlying micro factors—the M dimension in (12) and the S dimension
here—gets large, the CNCES specification can arbitrarily approximate the mixed-CES factor de-
mand system used in Adao et al. (2017). In this way, their empirical application can be interpreted
as arising from some latent disaggregate Ricardian model.
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The expenditure share on goods produced in o for d by firms from j is

πjod =

(
Pjod
Pjd

)−θ/(1−ρj)(
γ
Pjd
Pd

)−θ
,

where Pjod ≡ T
−1/θ
jod Wo, and Pjd ≡ (

∑N
o=1 P

−θ/(1−ρj)
jod )−

1−ρj
θ . The expenditure share

on goods produced in o for d follows (36) with j replacing s.

This factor demand system matches the one in Ramondo and Rodríguez-Clare

(2013) for ρj = ρ and T
1/θ
jod = hjoAj . That is, if we assume that the distribution

of productivity Aod(v) has a correlation function given by (35) with j replacing s,

our Ricardian trade model matches, at the bilateral level, a Ricardian trade model

with multinational production.

6.3 Multiple Regions

Assume that each country o is composed of multiple regions, given by the set Ro.

Denote productivity in region r by Arod(v). Productivity across regions and coun-

tries is multivariate θ-Fréchet with scale parameter Trod and correlation function

F d(X1, . . . ,XN) =
∑
o

(∑
r∈Ro

x1/(1−ρo)ro

)1−ρo

, (37)

with Xo ≡ (x1o, . . . , xRoo). The expression in (37) indicates that productivity draws

are independent across countries and correlated within a country, across regions,

with the degree of correlation given by the parameter ρo.

Workers are mobile across regions within a country and the country wage is Wo.

For import price index Prod = γT
−1/θ
rod Wo, the trade share from region r ∈ Ro into

country d is

πrod =

(
Prod
Pod

)− θ
1−ρo P−θod∑

o′ P
−θ
o′d

with Pod =

(∑
r′∈Ro

P
− θ

1−ρo
r′od

)− 1−ρo
θ

. (38)

The first fraction on the right-hand side of (38) is the probability of importing from

region r in country o conditional on importing from some region in country o,

while the second fraction is the probability of importing from country o into d.

Aggregate productivity is multivariate θ-Fréchet with scale Tod =
(∑

r∈Ro T
1/(1−ρo)
rod

)1−ρo
,
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and with an additive correlation function. As a result, the factor demand system is

CES,

πod =
∑
r∈Ro

πrod =
TodW

−θ
o∑

o′ To′dW
−θ
o′

.

By assuming that ρo = 0, for all o = 1, . . . , N , this case matches the one in Ramondo

et al. (2016) .

6.4 Global Value Chains

We now show that the model of global value chains in Antràs and de Gortari (2017)

is equivalent to a model without global value chains, but in which productivity fol-

lows a multivariate Fréchet distribution with an appropriately chosen correlation

function.

Assume that production is carried out inK stages, k = 1, . . . , K, where k = K is the

final stage of production (e.g., assembly), takes the Cobb-Douglas form, and labor

is the only factor of production. Let ` = [`(1), . . . , `(K)] index a path of locations

across production stages.

The unit cost of the input bundle used for goods produced following the produc-

tion path ` is given by

c`(W) = W`(K)

k−1∏
k=1

(
W`(k)

W`(K)

)α`(k)
,

with αk > 0 and
∑K−1

k=1 αk < 1. The unit cost of good v is c`(W)/A`d(v). The variable

A`d(v) denotes the marginal product of the input bundle when good v is produced

along ` and delivered to d. This variable is distributed θ-Fréchet i.i.d. across ` with

scale T`d. The likelihood of a particular production path ` destined to country d is

given by

π`d =
T`dc`(W)−θ∑
`′ T`′dc`′(W)−θ

. (39)

This factor demand share matches the one in Antràs and de Gortari (2017) for T`d =

τ−θ`(K),dT
1−

∑K−1
k=1 αk

`(K)

∏K−1
k=1 (τ`(k),`(k+1))

−θαkTαk`(k) where τij is an iceberg cost of transport-

ing goods from country i to country j, and Ti is a productivity index for country

i. Aggregate trade shares from country o to d are obtained by summing π`d over

production paths with `(K) = o—i.e., with last production stage in country o.

30



A macro model where productivity is multivariate θ-Fréchet with scale T`d and

correlation function given by

Gd(x1, · · · , xN) =
∑
`

x`(K)

K−1∏
k=1

(
x`(k)
x`(K)

)α`(k)
,

implies a factor demand system equivalent to the the one from the model with

global value chains.

6.5 Intermediate Inputs

Suppose that each variety is used to produce an aggregate intermediate input. In

turn, firms produce varieties using a Cobb-Douglas production function in labor

and this good. Hence, the unit cost of the input bundle in country o is

co(W) = BW β
o P

1−β
o ,

where 0 < β ≤ 1 is the share of labor in production, B is a positive constant,

W ≡ [W1, . . . ,WN ], and Po is the price level in o. If productivity is independent

Fréchet with scale Ao and given trade costs of τod, expenditure shares are

πod =
Aoτ

−θ
od co(W)−θ∑

o′ Ao′τ
−θ
o′dco′(W)−θ

. (40)

The price index in country d is defined implicitly by

Pd = γB

(∑
o

Aoτ
−θ
od (W β

o P
1−β
o )−θ

)−1/θ
.

It is easy to see that a model without this input-output loop, but with a multivariate

θ-Fréchet distribution of productivity with scale Tod ≡ (Ao/τod)
θ/β and correlation

functions for each country implicitly defined by the system

Gd(x1, . . . , xN) =
N∑
o=1

xβoG
o(x1, . . . , xN)1−β,

generates the same factor demand system as the model with intermediate inputs.
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7 Quantitative analysis

This section quantifies the gains from trade when productivity is correlated across

space. Our framework, by allowing for origin-destination specific correlation in

productivity, enables us to introduce bilateral heterogeneity into the estimation

of trade elasticities. These substitution patterns are obtained because we do not

impose iceberg trade costs; rather, we allow for the distribution of productivity to

depend on the destination market where goods get delivered.

We consider a sectoral extension of our model. Based exclusively on supply factors—

i.e., productivity—this sectoral model allows for bilateral heterogeneity in trade

elasticities.21

The choice of the multi-sector Ricardian model of trade not only allows us to assess

the importance of correlation in the calculation of the gains from trade and other

counterfactuals, but it also allows us to highlight the importance of using disag-

gregate data to estimate elasticities that are key for macro counterfactuals. Finally,

we choose this model because it includes two benchmark models used throughout

the existing trade literature as special cases: the CES sectoral model, and the cross-

nested CES (CNCES) sectoral model. These cases arise when bilateral factors do

not influence correlation.

7.1 Specification

Denote each sector by s = 1, . . . , S. We assume that sector-level productivity is

multivariate θ-Fréchet with scale Tsod and correlation function given by

F d(X1, · · · ,XN) =
S∑
s=1

Hsd(xs1, · · · , xsN). (41)

21 As we show in Online Appendix O.2.1, one can allow for complementarity or substitutabil-
ity across sectors which comes from preferences. In fact, the sectoral model we present be-
low is isomorphic to a model in which preferences across sectors are CES, u(C1d, . . . , CSd) =(∑S

s=1 C
ε
ε+1

sd

) ε+1
ε

, with Csd an aggregate of sectoral products, and with the parameter ε > −1

the expenditure elasticity of substitution between sectors. Sectoral goods are substitutes as long as
ε > 0 so that ε takes exactly the role of θ below. Sectoral goods are complements if ε < 0, a possibil-
ity only allowed if the model has a preferences interpretation. Our estimates suggest substitution,
not complementarity, across sectors—that is, our estimates of the parameter θ are positive.
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In turn, the function Hsd is a correlation function capturing correlation within sec-

tor s and destination market d, across origin countries. Following Hanoch (1975)

and Sato (1977), this function is defined implicitly by

1 =
N∑
o=1

(
xso

Hsd(xs1, . . . , xsN)

) 1
1−ρsod

. (42)

The parameter ρsod measures correlation across origins within sector s and desti-

nation d. The resulting sectoral expenditure shares are iso-elastic,

πsod =
σsod

(
Psod
Psd

)−σsod
∑N

o′=1 σso′d

(
Pso′d
Psd

)−σso′d µsd, (43)

where σsod ≡ θ
1−ρsod

is the expenditure elasticity of substitution induced by bilateral

correlation, µsd is the share of expenditure by country d on sector s goods, µsd =

(Psd/Pd)
−θ, and the sectoral price index Psd is defined implicitly as

1 =
∑
o

(
Psod
Psd

)−σsod
, (44)

with Psod ≡ γT
−1/θ
sod Wo. When ρsod = 0, so that productivity is independent across

sectors and origins, we get the CES sectoral model since σsod = θ. In this case,

there is a single trade elasticity common to all trade flows. When ρsod = ρs, for all

o, d, we get the sectoral CNCES model without bilateral spatial correlation (as in

Section 6).

Next, we compute correlation-adjusted sectoral expenditure shares and the gains

from trade in closed form. As we explain in Section 5, because correlation-adjusted

shares are sufficient statistics for real sectoral import prices, we can calculate the

correlation correction by inverting the demand system. We first solve for within-

sector relative prices. Dividing (43) by σsod, summing over origins, and using (44)

gives (Psod/Psd)
−σsod . Correlation-adjusted expenditure is related to to real sectoral

import prices, so we can use sectoral shares, µsd, to get

π∗sod =

(
πsod/σsod∑N

o′=1 πso′d/σso′d

)θ/σsod

︸ ︷︷ ︸
(Psod/Psd)−θ

× µsd︸︷︷︸
(Psd/Pd)−θ

. (45)
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Applying our aggregation result, we can use (27) and (32) to compute the gains

from trade. Due to independence across sectors, the function F od is additive, π∗od =∑
s π
∗
sod, and

GTd =

(∑
s

π∗sod

)−1/θ
. (46)

Using sectoral expenditure data, we can compute the gains from autarky once we

have estimates of σsod and θ.

7.2 Estimation

We estimate this multi-sector model using two sequential gravity regressions. The

first step regression uses variation in trade flows and tariffs across origin countries

within each sector to identify geographic correlation in productivity. The second

step regression uses variation across sectors and destination markets to identify θ.

Letting t index years, we impose additional assumptions on the structure of trade

costs and spatial correlation patterns.

First, trade costs depend on gravity covariates, Geood, and on tariffs, tsodt,

ln τsodt = δ′sGeood + ln(1 + tsodt) + ε1sdt + ε2sodt.

We include in Geood variables such as distance and time differences between trad-

ing partners, and dummies indicating whether the two countries share a border,

language, and legal origins. We further allow for sector specific coefficients, δs.

The variable ε1sdt captures unobserved sector-destination-year components of trade

costs, while ε2sodt captures additional unobserved components of trade costs across

origin countries.

Second, we assume that the sectoral elasticity is additively separable into a sector

effect and a spatial effect which we proxy by a non-linear function of geographic

distance between country pairs,

σsod = σ̄s + σ̃1Distod + σ̃2Dist2od. (47)

This assumption is motivated by literature that documents how technology diffu-

sion follows a spatial pattern.22

22 Keller (2002) estimates that a 1,200-kilometer increase in distance leads to a 50 percent drop in
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Using (43), we get our first-step within-sector gravity equation,

lnπsodt = Ssot +Dsdt +Bsod − σ̄s ln(1 + tsodt) + (αsot + βsdt − ln(1 + tsodt)) (σ̃1Distod + σ̃2Dist2od) + usodt,

(48)

where Ssot ≡ σ̄sαsot, Dsdt ≡ σ̄sβsdt − σ̄sε
1
sdt − ln

∑
o′ σso′d (Pso′dt/Psdt)

−σso′d , Bsod ≡
lnσsod − σsodδ

′
sGeood, αsot ≡ lnWot/Asot, βsdt ≡ lnPsdt/γ, and usodt = −σsodε2sodt.

The coefficients from the interaction of distance and distance squared with tariffs

allow us to estimate distance-dependent elasticities of substitution across origin-

destination pairs. Identification follows from including sector-origin-time, sector-

destination-time, and sector-origin-destination effects, as well as both sector-origin-

time and sector-destination-time specific coefficients for bilateral distance. The ex-

clusion restriction for identification is that variation in tariffs across origin coun-

tries is exogenous conditional on these covariates.

To estimate the between-sector elasticity, we use a second step regression that relies

on variation across sectors and a control for inferred within-sector relative prices

from the first step regression. This second step regression comes from the condi-

tion for destination d’s expenditure on sector-s goods, µsd = (Psd/Pd)
−θ. First, note

that

ln
Psd
Pd

= ln
Psd
Psod

+ ln
Psod
Pd

= − ln
Psod
Psd

+ ln
Wo

Aso
− lnPd + ln τsod.

To construct an estimating equation from this result, we need estimates of Psod/Psd
from the first step regression. Specifically, given estimates of σsod, we can combine

(48) with the definition of the sectoral price index in (44) to calculate

P̂sodt
Psdt

=

(
πsodt/σ̂sod∑N

o′=1 πso′dt/σ̂so′d

)− 1
σ̂sod

,

where σ̂sod is our estimate for σsod from the first step.

We estimate the parameter θ from the coefficient on ln(1 + tsodt) in the following

second step regression:

lnµsdt = asot + bdt + θ ln ̂(Psodt/Psdt)− θδ′sGeood − θ ln(1 + tsodt) + vsodt, (49)

technology diffusion. Similarly, Bottazzi and Peri (2003) find a strong geographic decay in technol-
ogy diffusion between European regions. Comin et al. (2013) document that the lower the spatial
distance to another country’s technology, the higher the rate of adoption. Relatedly, Keller and
Yeaple (2013) link the gravity patterns observed in flows of firms across countries (Foreign Direct
Investment) to multinational firms transferring knowledge from their parent firm to their affiliates
abroad—with this transfer being easier to nearby locations.
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where asot ≡ θ ln(Asot/Wot), bdt ≡ θ lnPdt, and vsodt ≡ −θ(ε1sdt + ε2sodt). Identification

in this regression comes from controlling for within-sector relative prices using our

first step estimates. The identification assumption is that the unobserved compo-

nent of trade costs is orthogonal to tariffs conditional on the other covariates.

We estimate (48) and (49) by Ordinary Least Squares (OLS). We use sectoral tariff

data constructed by aggregating underlying 4 digit SITC tariff data, and sectoral

trade flow data from the World Input-Output Database (WIOD). Appendix H de-

scribes the data construction and sample restrictions in detail.

We consider three models. First, we estimate the CES model where productivity is

independent across sectors and origin countries (ρsod = 0). Because σsod = θ, esti-

mation of the first step gives us an estimate of θ. Second, we estimate the CNCES

model where correlation is not bilateral, but, rather, symmetric across origin and

destination countries within each sector—that is, ρsod is common across o and d

within s, so that σsod = σ̄s. Finally, we allow for bilateral spatial correlation and es-

timate our full model with σsod as in (47). Note that the CES model is nested within

the CNCES model and the CNCES model is nested within the spatial model.

Appendix Figure I.1 presents OLS estimates of the elasticity of substitution, σsod,

as a function of geographical distance, while allowing for sectoral heterogeneity.

The spatial pattern that emerges is clear: Substitutability decreases with distance,

indicating that productivity is less correlated between countries that are further

away from each other.23

Appendix Table I.1 presents our OLS estimates of θ. Column 1 shows an estimate

of θ = 5.523 from the CES model based on our first step regression; this value is

in line with values in the literature (see Simonovska and Waugh, 2013). Column

2 shows that θ = 0.607 after we account for symmetric correlation across space

within each sector (CNCES). Finally, column 3 presents the estimate of θ = 0.489

from our second step regression when we allow for distance-dependent sectoral

elasticities.

We next use the estimates of the correlation function and the parameter θ to per-

form various counterfactual exercises.
23 Appendix Figure I.2 shows estimates from our first step regression for the within-sector elas-

ticity of substitution in the CNCES model, σsod = σ̄s.
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Figure 1: Gains from Trade and Self-Trade Share, 2007.
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7.3 The Gains from Trade

Figure 1 shows the gains from trade calculated using the model with no correla-

tion (CES), with within-sector symmetric correlation (cross-nested CES, CNCES),

and with bilateral spatial correlation, respectively.24 The figure shows not only

that differences in (log) levels are large across the three models for all countries,

but, also and more importantly, differences are large across countries with similar

self-trade shares. For instance, Mexico, Germany, and Poland have a similar self-

trade share of around 60 percent. However, once we account for either symmetric

spatial correlation or bilateral spatial correlation, their gains are significantly dif-

ferent. In contrast, the CES model would predict equal gains from trade for these

three countries. In turn, the CNCES model delivers gains from trade that are more

heterogeneous than the ones from CES, but much less heterogenous than the ones

coming from the spatial model.

Perhaps not surprisingly, Figure 2 shows that countries that are on average fur-

ther away from their trading partners have higher gains from trade in the spa-

tial model, while the CNCES model—with sectoral elasticities that are constant

over space—fails to do that. Through the lens of our spatial model, countries fur-

24 Results for years prior to 2007 are relegated to the Online Appendix.

37



Figure 2: Gains from Trade and Distance, 2007. Percent differences from CES.
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ther away from each other have more dissimilar technologies—i.e., lower sectoral

elasticities—and, hence, higher gains from trade. This result captures the idea that

more dissimilar countries have higher gains from trade, as proposed by Ricardo.

7.4 NAFTA, the Rise of Chinese Imports, and U.S. Protectionism

Next, we consider the implications of our spatial model regarding various counter-

factual scenarios, and compare them with the implications from the CNCES model.

We use the procedure outlined in Section 4.

We first consider a scenario in which the United States increases trade costs with

Mexico and Canada simultaneously by x percent, with x ∈ [5, 50]. Figure 3 shows

the implications for real wages for the spatial model and the CNCES model. The

difference between the two models shows the effect of accounting for bilateral cor-

relation in addition to within-sector correlation. Differences in the predicted real

wages can be large, particularly for large changes in trade costs.

Why does correlation matter, and even more for large changes in trade costs? The

gains from trade come from two potentially offsetting effects: a price effect and

a wage effect. The price effect is direct. Increasing trade costs on Mexican goods

increases prices for U.S. consumers. The size of this effect is just the elasticity of

the price in the United States to the price of imports from Mexico, which equals
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the expenditure share,

∂ lnPUSA
∂ ln τMEX,USA

=
∂ lnGUSA(P−θ1,USA, . . . , P

−θ
N,USA)−

1
θ

∂ lnPMEX,USA

=
P−θMEX,USAGMEX,USA

P−θUSA
= πMEX,USA.

In contrast, the wage effect is indirect and operates through general equilibrium

effects. The market clearing condition for the United States is

WUSALUSA =
N∑
d=1

P−θUSA,dG
d
USA(P−θ1d , . . . , P

−θ
Nd)

Gd(P−θ1d , . . . , P
−θ
Nd)

Xd.

If the change in trade costs with Mexico induces U.S. consumers to substitute ex-

penditure away from Mexican goods and towards U.S. goods, the right-hand side

of this condition—that captures labor demand—would increase and U.S. wages

would increase. How rapidly expenditure shifts away from Mexican goods and

towards U.S. goods depends on the correlation in technology. If the United States

and Mexico were very close neighbors (i.e., high correlation), then U.S. and Mex-

ican goods would be substitutable and labor demand in the United States would

be sensitive to trade costs for imports from Mexico. In this case, the wage effect

would be large and would offset the losses coming from increasing prices in the

United States. In contrast, if trade between most parts of Mexico and the United

States occurs over long distances, accounting for spatial correlation would reduce

the substitutability of their goods. As a result, the offsetting wage effect would be

smaller in the spatial model. As we see in Figure 3, accounting for spatial correla-

tion in technology leads to an increase in the losses from increasing U.S. trade costs

with NAFTA partners. Notice, also, that the gap between the models depends on

the size of the increase in trade costs. For small changes in trade costs, the gap

is small because general equilibrium effects on wages are small, while the direct

price effect—with an elasticity equal to the expenditure share—does not change

between the CNCES and spatial models.

Second, we consider the implications of the rise of Chinese manufacturing imports

for the real wage in the United States. To proceed, we compute the change in the

U.S. real wage in each year between the observed outcome (i.e., the real wage im-

plied by each model given the data) and a scenario in which we fix China’s trade

costs at the level of 2003 for the sector "Machinery, Equipment, and Manufacturing

n.e.c.". We choose this sector because expenditure by the United States on manu-

39



Figure 3: Effects of NAFTA Reversal on Real Wages.
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Notes: Effects of an unilateral increase in trade costs for goods from Canada and Mexico into the United
States.

facturing goods from China increased threefold between 2003 and 2007 (Appendix

Figure I.3). Additionally, this sector’s implied trade costs decrease sharply in the

spatial model, but they are relatively stable for the CNCES model, as shown in Fig-

ure 4a. For the remaining sectors, the implied trade costs between the two models

are similar (not shown).25 Figure 4b shows the difference in real wages between

the actual and counterfactual scenario: The sharp decrease in trade costs implied

by the spatial model from 2003 on translates into large increases in the U.S. real

wage. The CNCES model fails to capture both the collapse in trade costs within

this sector, and, as a consequence, suggests lower gains for the United States from

the rise of manufacturing imports from China.

Finally, we consider a series of trade protection exercises where the United States

unilaterally increases trade costs by five percent, one trading partner at the time.

We compute the counterfactual change in real wages for both the case of the spatial

model where we account for bilateral correlation in technology and the case of the

CNCES model. The presence of bilateral correlation changes the rankings of the

countries that provoke the largest change in U.S. real wages. While the CNCES

model implies that real wages in the United States would decrease the most with

increases in trade costs from Canada, the spatial model predicts that China would

25 Trade costs are calculated using the ratio (π∗sodt/π
∗
soot)

−1/θ = τsodtPot/Pdt, for each s and t.
Since we can only uncover within-destination relative prices from our expenditure data, we use
GDP deflators from the Penn World Tables (9.0) to adjust this quantity by country price levels and
recover sectoral trade costs.
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Figure 4: The Rise of Chinese Manufacturing Imports.
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have the largest impact. Another example of a ranking reversal between the two

models occurs with Korea and Great Britain: While the spatial model puts Korea

in seventh place and Great Britain in eighth place, the CNCES model predicts the

opposite. The intuition for these unilateral protectionism exercises is similar to the

other counterfactuals: the direct price effect is measured by observed expenditure

shares, which are constant across models, while the indirect wage effect depends

on substitutability of goods across trading partners and, therefore, depends on

patterns of spatial correlation.

All these counterfactual exercises illustrate that the welfare implications of changes

in trade costs can change substantially once we account for spatial correlation in

productivity. These results reflect Ricardo’s insight that differences in technologi-

cal similarity across trade partners matter for the gains from trade.

8 Conclusions

This paper is motivated by the old Ricardian idea that a country gains from trading

with those countries who are technologically dissimilar. We develop a Ricardian

theory of trade that allows for arbitrary patterns of correlation in technology be-

tween countries. We start from technology primitives that generate multivariate
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Fréchet productivity with a general correlation structure. Even so, we retain all the

tractability of EK-type tools. Importantly, our structure generates the class of GEV

factor demand systems and, as such, approximates any Ricardian model—not only

the one with Fréchet-distributed productivity.

The gains from trade coming from a GEV factor demand system can be written as

a simple correction to self-trade shares. Moreover, the theory, by relating macro

substitutability patterns to underlying micro structures, provides guidance on in-

corporating standard micro estimates into macro counterfactual exercises.

Our quantitative application to a multi-sector model of trade reveals that account-

ing for correlation matters: Gains are much more heterogeneous across countries

than the case of independent productivity. These results suggest that our frame-

work has the potential to change quantitative conclusions in any literature apply-

ing Fréchet tools.
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A Properties of Fréchet Random Variables

Lemma A.1. Let X be distributed Fréchet with location T > 0 and shape α > 0. Then

if α > 1, E[X] = Γ(1 − 1/α)T 1/α. Also, for any S > 0 and β > 0, (S1/αX)β is Fréchet

with location ST and shape α/β.

Proof.

E[X] =

∫ ∞
0

z
∂

∂z
P [X ≤ z] dz =

∫ ∞
0

z
∂

∂z
e−Tz

−α
dz

=

∫ ∞
0

ze−Tz
−α
αTz−α−1dz =

∫ ∞
0

t−1/αe−tdtT 1/α = Γ(1− 1/α)T 1/α,

and

P[(S1/αX)β ≤ z] = P[X ≤ S−1/αz1/β] = e−T (S
−1/αz1/β)−α = e−STz

−α/β
.

Lemma A.2. Let {Xi}i=1,...,N be α-Fréchet with scale parameters {Ti}Ni=1 and correlation

function G : RN
+ → R+. Then, for any Si ≥ 0 i = 1, . . . , N and β > 0, the random vec-

tor {(S1/α
i Xi)

β}Ni=1 is α/β-Fréchet with location parameters of {SiTi}Ni=1 and correlation

function G.

Proof.

P[(S
1/α
i Xi)

β ≤ yi, i = 1, . . . , N ] = P[Xi ≤ Sαi y
1/β
i , i = 1, . . . , N ]

= exp
[
−G(T1S1y

−α/β
1 , . . . , TNSNx

−α/β
N )

]
.

Lemma A.3. Let {Xi}i=1,...,N be θ-Fréchet with scale parameters {Ti}Ni=1 and correlation

function G : RN
+ → R+. Then, the random variable maxi=1,...,N Xi is θ-Fréchet with

location G(T1, . . . , TN). Moreover, let {Ij}Mj=1 be any partition of {1, . . . , N} and define

the random variable {Y1, . . . , YM} as

Yj = max
i∈Ij

Xi.
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Let j : {1, . . . , N} → {1, . . . ,M} be the unique mapping such that j = j(i) if and only if

i ∈ Ij . Define T̃j = G(T11{1 ∈ Ij}, . . . , TN1{N ∈ Ij}) and ωi = Ti
T̃j

1{i ∈ Ij}. Then,

1. {Y1, . . . , YM} is θ-Fréchet with correlation function H : RM
+ → R+ satisfying

H(z1, . . . , zM) = G(ω1zj(1), . . . , ωNzj(N));

2.

P
[
Yj = max

i
Xi

]
=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
,

where Gi(x1, . . . , xN) ≡ ∂G(x1, . . . , xN)/∂xi;

3. For any j = 1, . . . ,M , the distribution of Yj conditional on the event Yj = maxi=1,...,N Xi

is identical to the distribution of maxi=1,...,N Xi,

P
[
Yj ≤ y | Yj = max

i
Xi

]
= e−G(T1,...,TN )y−θ = P

[
max

i=1,...,N
Xi ≤ y

]
.

Proof. We first prove part (1). Let {Ij}Mj=1 be a partition of {1, . . . , N} and define

Yj = maxi∈Ij Xi. Let the function j : {1, . . . , N} → {1, . . . ,M} satisfy i ∈ Ij(i) for

all i = 1, . . . , N . Note that there is a unique function satisfying this condition since

{Ij}Mj=1 is a partition of {1, . . . , N}. Then,

P [Yj ≤ yj,∀j = 1, . . . ,M ] = P [Xi ≤ yj,∀i ∈ Ij,∀j = 1, . . . ,M ]

= e−G(T1y
−θ
j(1)

,...,TNy
−θ
j(N)

).

Therefore {Y1, . . . , YM} is θ-Fréchet. Its scale parameters are

lim
yk→∞,k 6=j

G(T1y
−θ
j(1), . . . , TNy

−θ
j(N)) = G(T11{1 ∈ Ij}, . . . , TN1{N ∈ Ij}) = T̃j,

and its correlation function must then be

G(T1/T̃j(1)zj(1), . . . , TN/T̃j(N)zj(N)) = G(ω1zj(1), . . . , ωNzj(N)) = H(z1, . . . , zM).

Note that if we take M = 1 so that I1 = {1, . . . , N}we get

P
[

max
i=1,...,N

Xi ≤ y

]
= P [Y1 ≤ y] = P [Yj ≤ y,∀j = 1, . . . ,M ]

= e−G(T1y−θ,...,TNy
−θ) = e−G(T1,...,TN )y−θ .
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That is, maxi=1,...,N Xi is a θ-Fréchet random variable with location G(T1, . . . , TN)

and shape θ.

Next we prove part (2). We have

P
[
max
i
Xi ≤ y and Yj = max

i
Xi

]
= P

[
Yj ≤ y and Yj = max

i
Xi

]
= P [Yj ≤ y and Xi ≤ Yj,∀i = 1, . . . , N ] = P [Yj ≤ y and Xi ≤ Yj,∀i /∈ Ij]

=

∫ y

0

P [Xi ≤ t,∀i /∈ Ij | Yj = t]
∂

∂t
P[Yj ≤ t]dt

=

∫ y

0

∂

∂t
P [Xi ≤ z,∀i /∈ Ij, and Xi ≤ t,∀i ∈ Ij]|z=t dt

=

∫ y

0

∑
i∈Ij

∂

∂yi
e−G(T1y

−θ
1 ,...,TNy

−θ
N )
∣∣∣
yi=t,∀i=1,...,N

dt

=

∫ y

0

∑
i∈Ij

e−G(T1y
−θ
1 ,...,TNy

−θ
N )Gi(T1y

−θ
1 , . . . , TNy

−θ
N )Tiθy

−θ−1
i

∣∣∣
yi=t,∀i=1,...,N

dt

=

∫ y

0

e−G(T1,...,TN )t−θ
∑
i∈Ij

TiGi(T1, . . . , TN)θt−θ−1dt

=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)

∫ y

0

e−G(T1,...,TN )t−θG(T1, . . . , TN)θt−θ−1dt

=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
e−G(T1,...,TN )y−θ ,

where Gi(x1, . . . , xN) = ∂G(x1, . . . , xN)/∂xi. Let y →∞ to get

P
[
Yj = max

i
Xi

]
=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
.

Finally, we can prove part (3) using the previous results:

P
[
max
i
Xi ≤ y | Yj = max

i
Xi

]
=

P [maxiXi ≤ y and Yj = maxiXi]

P [Yj = maxiXi]

=

∑
i∈Ij

TiGi(T1,...,TN )

G(T1,...,TN )
e−G(T1,...,TN )z−θ∑

i∈Ij
TiGi(T1,...,TN )

G(T1,...,TN )

= e−G(T1,...,TN )z−θ

= P
[
max
i
Xi ≤ y

]
.
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B Proof of Lemma 1

Proof. First, we show that if productivity is θ-Fréchet, then there must exist a corre-

lation function Gd : RN
+ → R+ such that (5) is the joint distribution of productivity

across origins.

Consider any (x1, . . . , xN) ∈ RN
+ . Then x1/θo ≥ 0 for each o. From the definition of a

multivariate θ-Fréchet random variable, the random variable maxo=1,...,N x
1/θ
o Aod(v)

must be distributed as a θ-Fréchet random variable. That is, there exists some

T > 0 such that

P
[

max
o=1,...,N

x1/θo Aod(v) ≤ a

]
= e−Ta

−θ
.

Let T d : RN
+ → R+ be the map (x1, . . . , xN) 7→ T . We then have that for any

(x1, . . . , xN) ∈ RN
+

P
[

max
o=1,...,N

x1/θo Aod(v) ≤ a

]
= exp

[
−T d(x1, . . . , xN)a−θ

]
.

Note that the joint distribution of productivity can be written as

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = P[A1d(v)/a1 ≤ 1, . . . , ANd(v)/aN ≤ 1]

= P
[

max
o=1,...,N

Aod(v)/ao ≤ 1

]
.

Choosing xo = a−θo and a = 1 we can use the properties of our function T d and get

P
[

max
o=1,...,N

Aod(v)/ao ≤ 1

]
= exp

[
−T d(a−θ1 , . . . , a−θN )

]
.

Therefore, the joint distribution of productivity satisfies

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = e−G
d(T1da

−θ
1 ,...,TNda

−θ
N ),

for the function Gd : RN
+ → R+ defined by (x1, . . . , xN) 7→ T d(x1/T1d, . . . , xN/TNd).

We now show that this Gd is a correlation function. First we show that it must be
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homogenous. Fix (x1, . . . , xN) ∈ RN
+ and let λ > 0. We have

exp
[
−Gd(λx1, . . . , λxN)

]
= P[T1dA1d(v)−θ ≥ λx1, . . . , TNdANd(v)−θ ≥ λxN ]

= P[(x1/T1d)
1/θA1d(v) ≤ λ−1/θ, . . . , (xN/TNd)

−1/θANd(v) ≤ λ−1/θ]

= P[ max
o=1,...,N

(xo/Tod)
−1/θAod(v) ≤ λ−1/θ]

= exp
[
−T d(x1/T1d, . . . , xN/TNd)λ

]
= exp

[
−λGd(x1, . . . , xN)

]
,

so that Gd(λx1, . . . , λxN) = λGd(x1, . . . , xN) as desired.

Now consider the normalization restriction. Fix o. The distribution of Aod(v) is

exp
(
−Toda−θ

)
= P[Aod(v) ≤ a] = P

[
max

n=1,...,N
x1/θn And(v) ≤ a

]
,

for the choice of xn = 0 for n 6= o and xo = 1. But then,

exp
(
−Toda−θ

)
= exp

[
−T d(x1, . . . , xN)a−θ

]
= exp

[
−T d(0, . . . , 0, 1, 0, . . . , 0)a−θ

]
= exp

[
−Gd(0, . . . , 0, Tod, 0, . . . , 0)a−θ

]
= exp

[
−Gd(0, . . . , 0, 1, 0, . . . , 0)Toda

−θ] ,
where the last equality comes from the homogeneity of Gd. We therefore must

have Gd(0, . . . , 0, 1, 0, . . . , 0) = 1 as desired.

The unboundedness restriction follows from the limiting properties of joint distri-

butions. Fix o. Then,

lim
xo→∞

e−G
d(x1,...,xN ) = lim

xo→∞
P[T1dA1d(v)−θ ≥ x1, . . . , ANd(v) ≥ xN ]

= lim
xo→∞

P[T
−1/θ
1d A1d(v) ≤ x1, . . . , T

−1/θ
Nd ANd(v) ≤ xN ] = 0.

Therefore, limxo→∞G
d(x1, . . . , xN) =∞ as desired.

Finally, the differentiability restrictions are necessary because the productivity dis-

tribution is continuous and therefore has a joint density function. Smith (1984)

shows that the differentiability condition is necessary for this joint density to exist.

Therefore, the functionGd must be a correlation function, and we have proven that
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if productivity is θ-Fréchet then there exists a correlation function Gd : RN
+ → R+

such that (5) holds.

We now prove the converse. Let Tod > 0 for each o = 1, . . . , N , and let Gd : RN
+ →

R+ be a correlation function. Suppose that {Aod(v)}No=1 satisfies

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = exp
[
−Gd(Toda

−θ
1 , . . . , TNda

−θ
N )
]
.

We want to show that {Aod(v)}No=1 is θ-Fréchet. Let (x1, . . . , xN) ∈ RN
+ and consider

the distribution of maxo=1,...,N xoAod(v),

P[ max
o=1,...,N

xoAod(v) ≤ a] = P[x1A1d(v) ≤ a, . . . , xNANd(v) ≤ a]

= P[A1d(v) ≤ a/x1, . . . , ANd(v) ≤ a/xN ]

= exp
[
−Gd(Todx

θ
1a
−θ, . . . , TNdx

θ
Na
−θ)
]

= exp
[
−Gd(Todx

θ
1, . . . , TNdx

θ
N)a−θ

]
,

where the last equality uses the homogeneity of Gd. Therefore, maxo=1,...,N xoAod(v)

is a θ-Fréchet random variable with location parameter Gd(Todx
θ
1, . . . , TNdx

θ
N). As a

result, we conclude that {Aod(v)}No=1 is θ-Fréchet.

C Proof of Theorem 1

Proof. The proof follows Theorem 2 of De Haan (1984) and Theorem 3 of Penrose

(1992). First, we prove sufficiency. Using Assumption 1,

P [Aod(v) ≤ ao ∀o = 1, . . . , N ] = P
[

max
i=1,2,...

(Zi(v)Aiod(v))1/θ ≤ ao ∀o = 1, . . . , N

]
= P

[
max
i=1,2,...

Zi(v)Aiod(v) ≤ aθo ∀o = 1, . . . , N

]
= P

[
Zi(v) ≤ min

o=1,...,N

aθo
Aiod(v)

∀i = 1, 2, . . .

]
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Using Assumption 2 and 3, the last expression is equal to

= exp

[
−E

∫ ∞
mino aθo/Aiod(v)

z−2dz
]

= exp

[
−E max

o=1,...,N
Aiod(v)a−θo

]
≡ exp

[
−Gd(T1da

−θ
1 , . . . , TNda

−θ
N )
]
. (?)

Necessity is proved by showing that for any Gd, {Tod}No=1, and θ there exists Aiod(v)

with Tod = EAiod(v) such that (?) holds for some independent Poisson point process

{Zi(v)}i=1,2,... on [0,∞) with intensity measure z−2dz. Theorem 2 of De Haan (1984)

implies that if Ãod(v) is multi-variate 1-Fréchet with unit scale parameters and cor-

relation functionGd, then there exists a random variable Ãiod(v) with EÃiod(v) <∞
and an independent Poisson process {Z̃i(v)}i=1,2,... on [0,∞) with intensity measure

z−2dz such that

P
[

max
i=1,2,...

Z̃i(v)Ãiod(v) ≤ ão

]
= exp

[
Gd(ã−11 , . . . , ã−1N

]
Moreover, we must have EÃiod(v) = 1. As a result, (?) holds after a change of

variables to Aiod(v) = TodÃiod(v), and ao = ã
1/θ
o .

D Proof of Proposition 1

Proof. Perfect competition implies that potential import prices are

Pod(v) =
Wo

Aod(v)
.

Then,

P[P1d(v) ≥ p1, . . . , PNd(v) ≥ pN ] = P[P1d(v)/W1 ≥ p1/W1, . . . , PNd(v)/WN ≥ pN/WN ]

= P[1/A1d(v) ≥ p1/W1, . . . , 1/ANd(v) ≥ pN/WN ]

= P[A1d(v) ≤ W1/p1, . . . , ANd(v) ≤ WN/pN ]

= exp
[
−Gd(T1dW

−θ
1 pθ1, . . . , TNdW

−θ
N pθn)

]
.
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E Proof of Proposition 2

Proof. The proof follows directly from the properties of θ-Fréchet random vari-

ables. The probability that variety v is imported by destination d from origin o

is

πod ≡ P[Pod(v) ≥ Po′d(v) ∀o′ 6= o] =
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

,

by Proposition 1 and Lemma A.3. The distribution of prices among goods im-

ported by destination d from country o satisfies

P
[
Pod(v) ≥ p | Pod(v) = min

o′=1,...,N
Po′d(v)

]
= P

[
min

o′=1,...,N
Po′d(v) ≥ p

]
= e−G(T1dW

−θ
1 ,...,TNdW

−θ
N )pθ ,

by Proposition 1 and Lemma A.3. The price index in destination d is then

Pd =

[∫ 1

0

min
o=1,...,N

Pod(v)−σdv
]− 1

σ

=

[
E
(

min
o=1,...,N

Pod(v)−σ
)]− 1

σ

= γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ ,

where γ = Γ
(
θ−σ
θ

)− 1
σ , Γ(·) is the gamma function, and the last equality follows

from the fact that mino=1,...,N Pod(v)−σ = (maxo=1,...,N 1/Pod(v))σ is a Fréchet random

variable with location Gd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)
and shape θ/σ > 1 due to the

assumption that θ > σ and due to Lemma A.1.

F Proof of Proposition 3

Proof. First, the set of varieties from o imported to d is {v ∈ [0, 1] | Wo/Aod(v) =

mino′Wo′/Ao′d(v)} and for any variety in this set, expenditure is

Xd(v) =

(
Wo/Aod(v)

Pd

)−σ
Xd.

Any v not in this set must get imported from a different origin. The price index is

Pd =

[∫ 1

0

(
min
o′
Wo′/Ao′d(v)

)−σ
dv
]− 1

σ

,
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so that we can write the expenditure share as

πod(W, Xd) ≡
∫ 1

0

Xd(v)

Xd

1
{
Wo/Aod(v) = min

o′
Wo′/Ao′d(v)

}
dv

=

∫ 1

0
(Wo/Aod(v))−σ1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}dv∫ 1

0
(mino′Wo′/Ao′d(v))−σ dv

=
E [(Wo/Aod(v))−σ1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}]

E
[
(mino′Wo′/Ao′d(v))−σ

] .

We need to show that there exists a correlation function that approximates this

factor demand system. The proof is similar to the proof of Theorem 1 in Dagsvik

(1995), differing in the functional form of the demand system to be approximated.

We start by constructing an approximating GEV factor demand system using the

following correlation function, for some θ > σ,

Gd(x1, . . . , xN) =

E(∑
o

Aod(v)θxo/Tod

)σ
θ

 θ
σ

.

This choice of Gd will give the result because it implies a price level,

Pd = Γ

(
θ − σ
θ

)
Gd(T1dW

−θ
1 , . . . , TNdW

−θ
N )−

1
θ ,

that approximates the true price level. In particular,

Pd = Γ

(
θ − σ
θ

)E(∑
o

(Aod(v)/Wo)
θ

)σ
θ

− 1
σ

θ→∞→
[
E
(

max
o
Aod(v)/Wo

)σ]− 1
σ

=

[
E
(

min
o
Wo/Aod(v)

)−σ]− 1
σ

.

That is, the price level implied by this correlation function converges pointwise to

the price level associated with the true productivity distribution.
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The implied GEV factor demand system is

πGEVod (W, Xd; θ) =
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

=
E
[(∑

o′(Ao′d(v)/Wo′)
θ
)σ
θ
−1

(Aod(v)/Wo)
θ
]

E (
∑

o′(Ao′d(v)/Wo′)θ)
σ
θ

θ→∞→ E [(Wo/Aod(v))−σ1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}]
E
[
(mino′Wo′/Ao′d(v))−σ

] = πod(W, Xd).

That is, the implied GEV factor demand system converges pointwise to the true

demand system. To establish uniform convergence across (W, Xd) ∈ K, for K ⊂
RN+1

+ compact, note that if the sequence {πGEVod (W, Xd; θj)}∞j=1 is convergent, there

exists a positive sequence {θk}∞k=1 that diverges such that {πGEVod (W, Xd; θk)}∞k=1

is monotone and converges. Then, since πod(W, Xd) is continuous, we can apply

Theorem 7.13 in Rudin et al. (1964) to establish uniform convergence.

G Proof of Proposition 4

Proof. Micro productivity is distributed multivariate θ-Fréchet, with scale Tmod and

micro correlation function F d(X1, . . . ,XN). Aggregate productivity is Aod(v) ≡
maxm=1,...,Mo Amod(v). Using Lemma A.2 and Lemma A.3, Aod(v) is distributed as a

multivariate θ-Fréchet with scale parameters

Tod = F d (01, . . . ,0o−1,Tod,0o+1, . . . ,0N) ≡ F od (Tod) ,

for Tod ≡ (T1od, . . . , TMood), and correlation function

Gd(x1, . . . , xN) ≡ F d(Ω1dx1, . . . ,ΩNdxN),

for ωmod ≡ Tmod/Tod and Ωod ≡ (ω1od, . . . , ωMood).
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H Data Construction

For our quantitative analysis, we use trade flow data from the World Input-Output

Database (WIOD), tariff data from the United Nations Comtrade Database, and

gravity covariates from Centre D’Études Prospectives et d’Informations Interna-

tionales (CEPII). When calculating the trade costs implied by this data, we use

GDP deflator data from the Penn World Tables (PWT), version 9.0.

H.1 Map from SITC Codes to WIOD Sectors

The WIOD data allows us to compute the total value of trade between a sample of

40 countries across 25 sectors from 1995 through 2011. The sector classification in

this data set comes from aggregating underlying data classified according to the

third revision of the International Standard Industrial Classification (ISIC). The

Comtrade tariff data is classified according to the second revision of the Standard

International Trade Classification (SITC). In order to merge these data sources, we

construct a mapping that assigns SITC codes to WIOD sectors.

First, we match ISIC and SITC definitions using existing correspondences of each

standard to Harmonized System (HS) product definitions. These correspondences

come from the World Bank’s World Integrated Trade Solution (WITS).26 This merge

matches on 5,701 products out of 5,705 total HS products. We drop the four un-

matched products. This creates a HS product dataset with 764 SITC codes and 35

ISIC codes. Note that there are 925 SITC codes in the tariff data to be classified into

WIOD sectors.

Next, we map the ISIC definitions in this merge to the 25 WIOD sectors using the

relation between ISIC codes and the WIOD sectors. This leaves products in the

ISIC code 99 ("Goods not elsewhere classified") without a WIOD sector definition.

At this point, there are two issues we must address: (1) classifying SITC codes that

have products in multiple WIOD sectors; and (2) classifying the SITC codes in the

tariff data that were either matched to ISIC code 99 or were not matched to any

ISIC code. We use a most-common-sector rule and manual classification based on

SITC codes to resolve these two issues and arrive at a mapping from SITC codes to

WIOD sectors.
26 They are available at https://wits.worldbank.org/product_concordance.html.

57

https://wits.worldbank.org/product_concordance.html


We proceed as follows. First, we determine the most common WIOD sector clas-

sification (including "unclassified") at the HS product level of each 4-digit SITC

code within the merge. We re-classify all products within an 4-digit SITC sector as

belonging to the most common WIOD sector, and break ties manually. This step

resolves issue (1) and leaves us with 764 4-digit SITC codes mapped to a unique

WIOD sector, and 161 4-digit SITC codes left unclassified.

Second, we resolve issue (2) by refining the map by using the most common clas-

sification of HS products within each 3-digit SITC code, again breaking ties man-

ually. In this step, we only use the most-common classification at the 3 digit level

to classify previously unclassified 4-digit SITC codes, filling in the map. This step

mostly resolves issue (2), leaving only 12 4-digit SITC codes unclassified. We com-

plete the map by manually classifying ten of these remaining codes, while choos-

ing to leave codes 9110 ("Postal packages not classified according to kind") and

9310 ("Special transactions, commodity not classified according to class") unclassi-

fied.

H.2 Construction of Sectoral Trade Flow and Tariff Data

With this mapping from (all but two) 4-digit SITC codes to WIOD sectors, we next

aggregate the Comtrade tariff data to the WIOD sector level. First, we compute

the average applied tariff and total value of trade within the Comtrade data by

SITC code, exporter, importer, and year. We then compute the average tariff and

total trade value by WIOD sector, exporter, importer, and year, using the value of

total trade in each SITC code and year as weights when calculating averages, and

dropping codes 9110 and 9310.

Next, we merge these data with the WIOD data. The WIOD data give us the

amount of imports by each sector and country across sectors of all other countries.

We first aggregate this input-output data to get total expenditure by each importer

across the sectors of each exporting country. This aggregation gives a balanced bi-

lateral dataset of trade flows across 25 sectors for each exporter-importer pair from

1995 to 2011. The data contains 40 countries and a rest-of-world aggregate (1,681

pairs per sector, including self trade).

We merge this data with our tariff data at the WIOD sector, exporter, importer, and

year level. The two dataset intersect from 1995 through 2007. For each year, we
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drop any observations in the tariff data that are not in the WIOD data. This elim-

inates countries without WIOD bilateral data. We set tariffs for self trade to zero.

Additionally, we have no tariff data for the rest-of-world aggregate and Romania,

and limited data for Taiwan. We drop these three entities leaving us with a sample

of bilateral trade flows and tariffs between 38 countries. Finally, we do not have

tariff data for sectors 15 through 25 (non-traded sectors), so we also drop them

from the data.

The resulting dataset has many trade zeros and missing tariff observations. To ad-

dress this potential issue, we aggregate together WIOD sectors to get the final ten

sector definitions we use in our quantitative analysis. Specifically, we combine the

"Coke, Refined Petroleum and Nuclear Fuel" and "Chemicals, Rubber, and Plastics"

WIOD sectors to form our "Fuel, Chemicals, Rubber, and Plastics" sector. Also, we

combine the "Machinery, n.e.c.," "Electrical and Optical Equipment," "Transport

Equipment," and "Manufacturing, Nec; Recycling" sectors to get our "Machinery,

Equipment, and Manufacturing n.e.c." sector. We compute the aggregate value of

trade within each of our sectors across bilateral pairs and years, and compute aver-

age tariffs for each of our sectors across bilateral pairs and years using total global

trade in each WIOD sector and year as weights.

This aggregation results in a balanced dataset of trade flows and tariffs across 10

sectors and 38 countries (1,444 exporter-importer pairs) from 1995 to 2007. The

share of trade zeros is 1.3 percent, and the share of missing tariff observations is

8.92 percent. Conditional on zero trade, the probability of tariffs being missing is

42.9 percent and conditional on a missing tariff, the probability of a trade zero is

6.3 percent. We finally merge in the CEPII data on geography and other standard

gravity covariates.

I Additional Tables and Figures
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Table I.1: Estimates of the trade elasticity θ, OLS.

CES Cross-nested CES Spatial
Dep variable ln πsodt ln

∑
o πsodt ln

∑
o πsodt

(1) (2) (3)

ln(1 + tsodt) 5.523 0.607 0.489
(0.020)∗∗∗ (0.025)∗∗∗ (0.024)∗∗∗

x̂cncessodt X

x̂spatialsodt X

Sector-Covariate Interactions X X X
Sector-Origin-Year Effects X X X
Sector-Destination-Year Effects X
Destination-Year Effects X X

Observations 174,201 174,201 174,201
R-squared 0.82 0.74 0.73
F-statistic 759.2 1,485.4 427.8

Notes: Results in column (1) are from estimating (48) by OLS, assuming that ρsod = 0 so that σsod =

θ. Results in columns (2) and (3) are from estimating (49) by OLS, with x̂lsodt = ln ̂(Psod/Psd), l =
spatial, cnces, from the first-stage gravity equation in (48). In column (2), (47) collapses to σsod = σ̄s
so that ρsod = ρs, for all o, d. Robust standard errors in parenthesis with levels of significance denoted
by *** p < 0.01, and ** p < 0.05 and * p<0.1.
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Figure I.1: Elasticities of Substitution and Distance, by sector.
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Figure I.2: Elasticity of substitution, by sector. Cross-nested CES estimation.
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Figure I.3: U.S. imports from China in "Machinery, Equipment, & Manuf n.e.c.".
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