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1 Introduction

A recent but sizable literature has pointed to a permanent –or, at least very persistent– decline in the

“natural” rate of interest in advanced economies (Holston et al., 2017, Laubach and Williams, 2016). Various

likely sources of that decline have been discussed, including a lower trend growth rate of productivity

(Gordon, 2015), or an enhanced preference for safe assets (Caballero and Farhi, 2015, Summers, 2014).

A lower steady-state real interest rate matters for monetary policy. Given average inflation, a lower

steady-state real rate will cause the nominal interest rate to hit its zero lower bound (ZLB) more frequently,

hampering the ability of monetary policy to stabilize the economy, bringing about more frequent (and

potentially protracted) episodes of recessions and below-target inflation.

In the face of that risk, and in order to counteract it, several prominent economists have forcefully ar-

gued in favor of raising the inflation target (see, among others, Ball 2014, Blanchard et al. 2010, Williams

2016). Since a lower natural rate of interest is conducive to a higher ZLB incidence, one would expect

a higher inflation target to be desirable in that case. But the answer to the practical question of by how

much should the target be increased is not obvious. Indeed, the benefit of providing a better hedge against

hitting the ZLB, which is an infrequent event, comes at a cost of higher steady-state inflation which in-

duces permanent costs, as recently argued by Bernanke (2016) among others. The answer to this question

thus requires to assess how the tradeoff between the incidence of the ZLB and the welfare cost induced by

steady-state inflation is modified when the natural rate of interest decreases. While the decrease in the nat-

ural rate of interest has been emphasized in the recent literature, this assessment has received surprisingly

little attention.

The present paper contributes to this debate by asking two questions. First, to what extent does a lower

steady-state real interest rate (r?) call for a higher optimal inflation target (π?)? Second, does the source of

decline in r? matter? Our main contribution is to characterize how the optimal inflation target is related

to the steady-state real interest rate, using a structural, empirically estimated, macroeconomic model. Our

main findings can be summarized as follows: (i) The relation between r? and π? is downward sloping, but

not necessarily one-for-one; (ii) in the vicinity of the pre-crisis values for r?, the slope of the (r?, π?) locus is

close to −0.9 ; and (iii) for a plausible range of r? values the relation is largely robust to the underlying

source of variation in r?.

Our results are obtained from extensive simulations of a New Keynesian DSGE model estimated for

both the US and the euro area over a Great Moderation sample. The framework features: (i) price stickiness

and imperfect indexation of prices to non-zero trend inflation, (ii) wage stickiness and imperfect indexation

of wages to both inflation and technical progress, and (iii) a ZLB constraint on the nominal interest rate. The

first two features imply the presence of potentially substantial costs associated with non-zero wage or price

inflation. The third feature warrants a strictly positive inflation rate, in order to mitigate the incidence and
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adverse effects of the ZLB. To our knowledge, these three features have not been jointly taken into account

in previous analyses of optimal inflation.

According to our simulations, the pre-crisis optimal inflation target obtained when the policymaker is

assumed to know the economy’s parameters with certainty (and taken to correspond to the mode of the

posterior distribution) is around 2% for the US and around 1.5% for the euro area (in annual terms). This

result is obtained in an environment with a relatively low probability of hitting the ZLB (6% for the US

and slightly less than 10% for the euro area) , given the small shocks estimated on our Great Moderation

sample.

A further noticeable feature of our approach is that we perform a full-blown Bayesian estimation of the

model, using both US and euro area data. This allows us not only to assess the uncertainty surrounding

π?, but also to derive an optimal inflation target taking into account the parameter uncertainty facing the

policy maker, including uncertainty with regard to the determinants of the steady-state real interest rate.

When that parameter uncertainty is allowed for, those values increase significantly: 2.40% for the US and

2.20% for the euro area The reason why the optimal targets under parameter uncertainty are higher has

to do with the fact that the loss function is asymmetric so that choosing an inflation target that is lower

than the optimal one is more costly than choosing an inflation target that is above. That being said it

remains true that a Bayesian-theoretic optimal inflation target rises by about 90 basis points in response to

a downward shift of the distribution in r? of 100 basis points.

1.1 Related Literature

To our knowledge no paper has systematically investigated the (r?, π?) relation. Coibion et al. (2012) (and

its follow-up Dordal-i-Carreras et al. (2016)) and Kiley and Roberts (2017) are the papers most closely re-

lated to ours, as they study optimal inflation in quantitative set-ups that account for the ZLB. However,

their analyses hold for a constant steady-state natural rate of interest. Relative to both papers, a key differ-

ence is our focus on eliciting the relation between the steady-state real interest rate and optimal inflation.

Other differences are (i) our interest in the euro area, in addition to the US; (ii) we estimate, rather than

calibrate, the model, and (iii) we allow for wage rigidity in the form of infrequent, staggered, wage ad-

justments. A distinctive feature with respect to Kiley and Roberts (2017) is that we use a model-consistent,

micro-founded loss function to compute optimal inflation.

A series of papers assessed the probability of hitting the ZLB for a given inflation target (see, among

others, Chung et al. 2012, Coenen 2003, Coenen et al. 2004). Interestingly, our own assessment of this pre-

crisis ZLB incidence falls broadly in the ballpark of available estimates. A related recent contribution by

Gust et al. (2017) emphasizes that the ZLB was indeed a significant constraint on monetary policy that

exacerbated the recession and inhibited the recovery.1 Lindé et al. (2017) offer a discussion of alternative

1Gust et al. (2017) rely on global solution methods while we resort to the lighter algorithms developed by Bodenstein et al.
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methods to implement the ZLB at the estimation stage.

Other relevant references, albeit ones that put little or no emphasis on the ZLB, are the following.

Ascari et al. (2015) study optimal inflation in a model with nominal rigidities. As we do, they include

wage rigidity, but do not incorporate the ZLB. Khan et al. (2003) was one of the first papers to study

optimal inflation with sticky prices, along with demand for money motives. Schmitt-Grohé and Uribe

(2010) review various determinants of the long-run inflation rate, including some not considered in the

present paper (e.g., transactions frictions, changes in product quality). Amano et al. (2009) show that

optimal inflation might be negative in a model with prices and wages both sticky. Adding search and

matching frictions to the setup, Carlsson and Westermark (2016) show, by contrast, that optimal inflation

can be positive. Bilbiie et al. (2014) find positive optimal inflation can be an outcome in a sticky-price model

with endogenous entry and product variety. Somewhat related, Adam and Weber (2017) show that, even

without any ZLB concern, optimal inflation might be positive in the context of a model with heterogeneous

firms and systematic firm-level productivity trends. Finally, using a perpetual youth model, Lepetit (2017)

shows that optimal inflation can be positive in the presence of heterogeneous discount factor, especially

when the social planner is more patient than agents.

Among the recent papers with ZLB, Blanco (2016) studies optimal inflation in a state-dependent pricing

model, i.e. a “menu cost” model (see also Burstein and Hellwig 2008 for a similar exercise without ZLB,

which leads to negative optimal inflation rate). As a matter of fact, Nakamura et al. (2016) argue that

the presence of state-dependent pricing limits considerably the positive relationship between inflation and

price dispersion, thus limiting the costs of inflation.

2 The Model

We use a relatively standard medium-scale New Keynesian model as a framework of reference. Crucially,

the model features elements that generate a cost to inflation: (1) nominal rigidities, in the form of staggered

price and wage setting; (2) less than perfect price (and wage) indexation to past or trend inflation; and (3)

trend productivity growth along, to which wages are imperfectly indexed.

As is well known, staggered price setting generates a positive relation between deviations from zero

inflation and price dispersion (with the resulting inefficient allocation of resources). Moreover, the lack

of indexation to trend magnifies these costs, as emphasized by Ascari and Sbordone (2014). Also, and

ceteris paribus, price inflation induces (nominal) wage inflation, which in turn triggers inefficient wage

dispersion in the presence of staggered wage setting. Imperfect indexation also magnifies the costs of

non-zero price (or wage) inflation as compared to a set-up where price and wages mechanically catch up

(2009) and Guerrieri and Iacoviello (2015). Given the large set of inflation targets and real interest rates that we need to consider

(and given that these have to be considered for each and every parameter configuration in our simulations), a global solution

would be computationally prohibitive.
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with trend inflation. Finally the lack of a systematic indexation of wages to productivity also induces an

inefficient wage dispersion.

At the same time, there are benefits associated to a positive inflation rate, as interest rates are subject to

a ZLB constraint. In particular, and given the steady-state real interest rate, the incidence of binding ZLB

episodes should decline with the average rate of inflation. Such episodes hamper the stabilization potential

of monetary policy.

Overall, the model we use, and the trade-off between costs and benefits of steady-state inflation, are

close to those considered by Coibion et al. (2012). However we assume sticky wages, in addition to sticky

prices.

2.1 Households

The economy is inhabited by a continuum of measure one of infinitely-lived, identical households. The

representative household is composed of a continuum of workers, each specialized in a particular labor

type indexed by h ∈ [0, 1]. The representative household’s objective is to maximize an intertemporal

welfare function

Et

∞

∑
s=0

βs
{

eζg,t+s log(Ct+s − ηCt+s−1)−
χ

1 + ν

∫ 1

0
Nt+s(h)1+νdh

}
, (1)

where β ≡ e−ρ is the discount factor (ρ being the discount rate), Et{·} is the expectation operator condi-

tional on information available at time t, Ct is consumption and Nt(h) is the supply of labor of type h. The

utility function features habit formation, with degree of habits η. The inverse Frisch elasticity of labor sup-

ply is ν and χ is a scale parameter in the labor disutility. The utility derived from consumption is subject to

a preference shock ζg,t.

The representative household maximizes (1) subject to the sequence of constraints

PtCt + eζq,t QtBt ≤
∫ 1

0
Wt(h)Nt(h)dh + Bt−1 − Tt + Dt (2)

where Pt is the aggregate price level, Wt(h) is the nominal wage rate associated with labor of type h, eζq,t Qt

is the price at t of a one-period nominal bond paying one unit of currency in the next period, where ζq,t is

a “risk-premium” shock, Bt is the quantity of such bonds acquired at t, Tt denotes lump-sum taxes, and Dt

stands for the dividends rebated to the households by monopolistic firms.

2.2 Firms and Price Setting

The final good is produced by perfectly competitive firms according to the Dixit-Stiglitz production func-

tion

Yt =

(∫ 1

0
Yt( f )(θp−1)/θp d f

)θp/(θp−1)

,
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where Yt is the quantity of final good produced at t, Yt( f ) is the input of intermediate good f , and θp the

elasticity of substitution between any two intermediate goods. The zero-profit condition yields the relation

Pt =

(∫ 1

0
Pt( f )1−θp d f

)1/(1−θp)

.

Intermediate goods are produced by monopolistic firms, each specialized in a particular good f ∈ [0, 1].

Firm f has technology

Yt( f ) = ZtLt( f )1/φ.

where Lt( f ) is the input of aggregate labor, 1/φ is the elasticity of production with respect to aggregate

labor, and Zt is an index of aggregate productivity. The latter evolves according to

Zt = Zt−1eµz+ζz,t

where µz is the average growth rate of productivity. Thus, technology is characterized by a unit root in the

model.

Intermediate goods producers are subject to nominal rigidities à la Calvo. Formally, firms face a con-

stant probability αp of not being able to re-optimize prices. In the event that firm f is not drawn to re-

optimize at t, it re-scales its price according to the indexation rule

Pt( f ) = [(Π)1−ιp(Πt−1)
ιp ]γp Pt−1( f )

where Πt ≡ Pt/Pt−1, Π is the associated steady-state value, ιp ∈ [0, 1] and 0 ≤ γp < 1. Thus, in case firm

f is not drawn to re-optimize, it mechanically re-scales its price using a geometric average of steady-state

inflation and past inflation. Importantly, however, we assume that the degree of indexation is less than

perfect since γp < 1.

If drawn to re-optimize in period t, a firms chooses P?
t in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t

Pt+s
Yt,t+s −

Wt+s

Pt+s

(
Yt,t+s

Zt+s

)φ
}

,

where Λt denotes the marginal utility of wealth, τp,t is a sales tax paid by firms and rebated to households

in a lump-sum fashion, and Yt,t+s is the demand function that a monopolist who last revised its price at t

faces at t + s; it obeys

Yt,t+s =

(
Vp

t,t+sP?
t

Pt+s

)−θp

Yt+s

where Vp
t,t+s reflects the compounded effects of price indexation to past inflation

Vp
t,t+s =

t+s−1

∏
j=t

[(Π)1−ιp(Πj)
ιp ]γp .
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We further assume that

1 + τp,t = (1 + τp)e−ζu,t ,

with ζu,t appearing in the system as a cost-push shock. Furthermore, we set τp so as to neutralize the

steady-state distortion induced by price markups.

2.3 Aggregate Labor and Wage Setting

There is a continuum of perfectly competitive labor aggregating firms that mix the specialized labor types

according to the CES technology

Nt =

(∫ 1

0
Nt(h)(θw−1)/θw dh

)θw/(θw−1)

,

where Nt is the quantity of aggregate labor and Nt(h) is the input of labor of type h, and where θw denotes

the elasticity of substitution between any two labor types. Aggregate labor Nt is then used as an input in

the production of intermediate goods. Equilibrium in the labor market thus requires

Nt =
∫ 1

0
Lt( f )d f .

Here, it is important to notice the difference between Lt( f ), the demand for aggregate labor emanating

from firm f , and Nt(h), the supply of labor of type h by the representative household.

The zero-profit condition yields the relation

Wt =

(∫ 1

0
Wt(h)1−θw dh

)1/(1−θw)

,

where Wt is the nominal wage paid to aggregate labor while Wt(h) is the nominal wage paid to labor of

type h.

Mirroring prices, we assume that wages are subject to nominal rigidities, à la Calvo, in the manner of

Erceg et al. (2000). Formally, unions face a constant probability αw of not being able to re-optimize wages.

In the event that union h is not drawn to re-optimize at t, it re-scales its wage according to the indexation

rule

Wt(h) = eγzµz [(Π)1−ιw(Πt−1)
ιw ]γwWt−1(h)

where, as before, wages are indexed to a geometric average of steady-state inflation and past inflation, with

ιw ∈ [0, 1]. However, we assume that the degree of indexation is here too less than perfect by imposing

0 ≤ γw < 1. In addition, nominal wages are also indexed to average productivity growth with indexation

degree 0 ≤ γz < 1.

If drawn to re-optimize in period t, a union chooses W?
t in order to maximize

Et

∞

∑
s=0

(βαw)
s

{
(1 + τw)Λt+s

Vw
t,t+sW

?
t

Pt+s
Nt,t+s −

χ

1 + ν
N1+v

t,t+s

}
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where the demand function at t + s facing a union who last revised its wage at t obeys

Nt,t+s =

(
Vw

t,t+sW
?
t

Wt+s

)−θw

Nt+s

and where Vw
t,t+s reflects the compounded effects of wage indexation to past inflation and average produc-

tivity growth

Vw
t,t+s = eγzµz(t+s)

t+s−1

∏
j=t

[(Π)1−ιw(Πj)
ιw ]γw .

Furthermore, we set τw so as to neutralize the steady-state distortion induced by wage markups.

2.4 Monetary Policy and the ZLB

Monetary policy in "normal times" is assumed to be given by a Taylor-like interest rate rule

ı̂t = ρi ı̂t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t (3)

where it ≡ − log(Qt), with ı̂t denoting the associated deviation from steady state i.e, ı̂t ≡ it − i. Also,

πt ≡ log Πt, π̂t ≡ πt − π is the gap between inflation and its target, and x̂t ≡ log(Yt/Yn
t ) where Yn

t is the

natural level of output, defined as the level of output that would prevail in an economy with flexible prices

and wages and no cost-push shocks. Finally, ζR,t is a monetary policy shock.

Here, π should be interpreted as the central bank target for change in the price index. An annual

inflation target of 2% would thus imply π = 2/400 = 0.005 as the model will be parameterized and

estimated with quarterly data. Note that the inflation target thus defined may differ from average inflation.

Crucially for our purpose, the nominal interest rate it is subject to a ZLB constraint:

it ≥ 0

The steady-state level of the real interest rate is defined by r? ≡ i − π. Given logarithmic utility, it is

related to technology and preference parameter according to r? = ρ + µz. Combining these elements, it is

convenient to write the ZLB constraint in terms the deviation of the nominal interest rate

ı̂t ≥ −(µz + ρ + π) (4)

The rule effectively implemented is given by:

ı̂n
t = ρi ı̂n

t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t

ı̂t = max{ı̂n
t , −(µz + ρ + π)}

This specification allows the nominal interest rate ı̂t to stay lower for longer insofar as the state of the

economy warrants a protracted period of time with a negative notional rate ı̂n
t .
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Before proceeding, a remark is in order. The inflation target, π, is not assumed to be optimal. Note also

that realized inflation might be on average below the target as a consequence of ZLB episodes, i.e. E{πt} <
π. In such instances of ZLB, monetary policy fails to deliver the appropriate degree of accommodation,

resulting in a more severe recession and lower inflation than in an economy in which there would not be a

ZLB constraint.2

As equation (4) makes clear, µz, ρ, π have symmetric roles in the ZLB constraint. Put another way, for

given structural parameters and a given process for ı̂t, the probability of hitting the ZLB would remain

unchanged if productivity growth or the discount rate decline by one percent and the inflation target is

increased by a commensurate amount at the same time. Based on these observations, one may be tempted

to argue that in response to a permanent decline in µz or ρ, the optimal inflation target π∗ will change by

the same amount (with a negative sign).

The previous conjecture is, however, incorrect. The reasons for this are twofold. First, any change

in µz (or ρ) also translates into a change in the coefficients of the equilibrium dynamic system. It turns

out that this effect is non-negligible since, as we show later, after a one percentage point decline in r∗ the

inflation target has to be raised by more than one percent in order to keep the probability of hitting the

ZLB unchanged Second, because there are welfare costs associated with increasing the inflation target, the

policy maker would also have to balance the benefits of keeping the incidence of ZLB episodes constant

with the additional costs in terms of extra price dispersion and inefficient resource allocation. These costs

can be substantial and more than compensate for the benefits of holding the probability of ZLB constant.

Assessing these forces is precisely this paper’s endeavor.

2.5 Solution Method

Because the model has a stochastic trend, we first induce stationarity by dividing trending variables by

Zt. The resulting system is then log-linearized in the neighborhood of its deterministic steady state.3 We

append to the system a set of equations describing the dynamics of the structural shocks, namely

ζk,t = ρkζk,t−1 + σkεk,t, εk,t ∼ N(0, 1)

for k ∈ {R, g, u, q, z}.

Absent the ZLB constraint, the model can be solved and cast into the usual linear transition and obser-

vation equations:

st = T (θ)st−1 +R(θ)εt, xt =M(θ) +H(θ)st,

with st a vector collecting the model’s state variables, xt a vector of observable variables and εt a vector of

innovations to the shock processes εt = (εR,t, εg,t, εu,t, εq,t, εz,t)′. The solution coefficients are regrouped in

2For convenience, Table A.1 in the Appendix summarizes the various notions of optimal inflation and long-run or target

inflation considered in this paper
3See the Technical Appendix for further details.
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the conformable matrices T (θ), R(θ),M(θ), and H(θ) which depend on the vector of structural parame-

ters θ.

The model becomes non-linear when one allows the ZLB constraint to bind. The solution method we

implement follows the approach developed by Bodenstein et al. (2009) and Guerrieri and Iacoviello (2015).

The approach can be described as follows. There are two regimes: the no-ZLB regime k = n and the ZLB

regime k = e and the canonical representation of the system in each regime is

Et{A(k)st+1 + B(k)st + C(k)st−1 +D(k)εt}+ f (k) = 0

where A(k), B(k), C(k), and D(k) are conformable matrices and f (k) is a vector of constants. In the no-ZLB

regime, the vector f (n) is filled with zeros. In the ZLB regime, the row of f (e) associated with it is equal to

µz + ρ + π. Similarly, the rows of the system matrices associated with it in the no-ZLB regime correspond

to the coefficients of the Taylor rule while in the ZLB regime, the coefficient associated with it is equal to 1

and all the other coefficients are set to zero.

In each period t, given an initial state vector st−1 and vector stochastic innovations εt, we simulate

the model under perfect foresight (i.e., assuming that no further shocks hit the economy) over the next N

periods, for N sufficiently large. In case this particular draw is not conducive to a ZLB episode, we find

st using the linear solution stated above. In contrast, if this draw leads to a ZLB episode, we postulate

integers Ne < N and Nx < N such that the ZLB is reached at time t + Ne and left at time t + Nx. In this

case, we solve the model by backward induction. We obtain the time varying solution

st+q = dt+q + Tt+qst+q−1 +Rt+qεt+q

where, for q ∈ {Ne, ..., Nx − 1}

Tt+q = −
(
A(e)Tt+q+1 + B(e)

)−1
C(e), Rt+q = −

(
A(e)Tt+q+1 + B(e)

)−1
D(e),

dt+q = −
(
A(e)Tt+q+1 + B(e)

)−1(
A(e)dt+q+1 + f (e)

)
and, for q ∈ {0, ..., Ne − 1}

Tt+q = −
(
A(n)Tt+q+1 + B(n)

)−1
C(n), Rt+q = −

(
A(n)Tt+q+1 + B(n)

)−1
D(n),

dt+q = −
(
A(n)Tt+q+1 + B(n)

)−1(
A(n)dt+q+1 + f (n)

)
,

using Tt+Nx = T , Rt+Nx = R, and dt+Nx set to a column filled with zeros as initial conditions of the

backward recursion.

We then check that given the obtained solution, the system hits the ZLB at t + Ne and leaves the ZLB at

t + Nx. Otherwise, we shift Ne and/or Nx forward or backward by one period and start all over again until

convergence. Once convergence has been reached, we use the resulting matrices to compute st and repeat

the process for all the simulation periods.
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Our approach is thus similar to the one used by Coibion et al. (2012) in their study of the optimal

inflation target in a New Keynesian setup.4

2.6 Estimation Results

We estimate the model using data for a pre-crisis period over which the ZLB constraint is not binding. This

enables us to use the linear version of the model. The sample of observable variables is XT ≡ {xt}T
t=1 with

xt = [∆ log(GDPt), ∆ log(GDP Deflatort), ∆ log(Wagest), Short Term Interest Ratet]
′

where the short term nominal interest rate is the effective Fed Funds Rate for the US and the Euribor 3

months rate for the Euro-Area.We use a sample of quarterly data covering the period 1985Q2-2009Q4. This

choice is guided by two objectives. First, this sample strikes a balance between size and the concern of

having a homogeneous monetary policy regime over the period considered. In the US case, the sample

covers the Volcker and post-Volcker period, arguably one of relative homogeneity of monetary policy.

For the euro area, the sample starts approximately when the disinflation policies were simultaneously

conducted in the main euro area countries (see Fève et al. 2010) and then covers the single currency period.

Here too, this corresponds to a period of relative monetary policy homogeneity. Second, we use a sample

that coincides more or less with the so-called Great Moderation. Over the latter, as has been argued in

the literature, we expect smaller shocks to hit the economy. In principle, this will lead to a conservative

assessment of the effects of the more stringent ZLB constraint due to lower real interest rates. 5

The parameters φ, θp, θw, ιp, and ιw are calibrated prior to estimation. Given our specification of the

measurement equation, the parameters ιp and γp and, likewise, ιw and γw, are not separately identified. In

effect, they appear in the dynamic system as products γpιp or γwιw. We thus set ιp = ιw = 1 at the calibra-

tion stage. As long as ιw and ιw are not set to zero, the particular value chosen has no other consequence

on the estimation results than a reinterpretation of γw and γp. The parameter φ is set to 1/0.7, resulting in

a steady-state labor share of 70%. The parameter θp is set to 6, resulting in a steady-state markup of 20%.

Similarly, the parameter θw is set to 3, resulting in a wage markup of 50%.

We rely on a full-system Bayesian estimation approach to estimate the other model parameters. After

having cast the dynamic system in the state-space representation for the set of observable variables, we

use the Kalman filter to measure the likelihood of the observed variables. We then form the joint posterior

distribution of the structural parameters by combining the likelihood function p(XT|θ) with a joint density

4In practice we combine the implementation of the Bodenstein et al. (2009) algorithm developed by Coibion et al. (2012) with

the solution algorithm and the parser from Dynare. Our implementation is in the spirit of Guerrieri and Iacoviello (2015), resulting

in a less user-friendly yet faster suite of programs.
5The data are obtained from the Fred database for the US and from the “Area Wide Model” database of Fagan et al. (2001) and

Eurostat national accounts for the Euro Area. In both cases, the GDP is expressed in per capita terms.
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Table 1: Estimation Results - US

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.19 0.05 0.11 0.27

µz Normal 0.44 0.05 0.43 0.04 0.36 0.50

π? Normal 0.61 0.05 0.62 0.05 0.54 0.69

αp Beta 0.66 0.05 0.67 0.03 0.61 0.73

αw Beta 0.66 0.05 0.50 0.05 0.43 0.58

γp Beta 0.50 0.15 0.20 0.07 0.08 0.32

γw Beta 0.50 0.15 0.44 0.16 0.21 0.68

γz Beta 0.50 0.15 0.50 0.18 0.26 0.75

η Beta 0.70 0.15 0.80 0.03 0.75 0.85

ν Gamma 1.00 0.20 0.73 0.15 0.47 0.97

aπ Gamma 2.00 0.15 2.13 0.15 1.89 2.38

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.85 0.02 0.82 0.89

σz Inverse Gamma 0.25 1.00 1.06 0.22 0.74 1.38

σR Inverse Gamma 0.25 1.00 0.10 0.01 0.09 0.11

σq Inverse Gamma 0.25 1.00 0.39 0.11 0.16 0.61

σg Inverse Gamma 0.25 1.00 0.23 0.04 0.16 0.29

σu Inverse Gamma 0.25 1.00 0.24 0.05 0.06 0.46

ρR Beta 0.25 0.10 0.51 0.06 0.41 0.61

ρz Beta 0.25 0.10 0.27 0.13 0.09 0.45

ρg Beta 0.85 0.10 0.98 0.01 0.97 1.00

ρq Beta 0.85 0.10 0.88 0.04 0.80 0.95

ρu Beta 0.80 0.10 0.80 0.10 0.65 0.96

Note: ’std’ stands for Standard Deviation, ’Post.’ stands for Posterior, and ’Low’ and ’High’ denote the bounds of the 90%
probability interval for the posterior distribution.

characterizing some prior beliefs p(θ). The joint posterior distribution thus obeys

p(θ|XT) ∝ p(XT|θ)p(θ),

Given the specification of the model, the joint posterior distribution cannot be recovered analytically

but may be computed numerically, using a Monte-Carlo Markov Chain (MCMC) sampling approach. More

specifically, we rely on the Metropolis-Hastings algorithm to obtain a random draw of size 1,000,000 from

the joint posterior distribution of the parameters.

Tables 1 and 2 present the parameter’s postulated priors (type of distribution, mean, and standard

error) and estimation results, i.e., the posterior mean and standard deviation, together with the bounds of

the 90% probability interval for each parameter.

For the parameters π, µz and ρ, we impose Gaussian prior distributions. The parameters governing

the latter are chosen so as to match the mean values of inflation, GDP growth, and the real interest rate in

our US and euro area samples. Other than for these three parameters, we use the same prior distributions

for the structural parameters in both the US and the euro area. Our choice of priors are standard. In

particular, we use Beta distributions for parameters in [0, 1], Gamma distributions for positive parameters,

and Inverse Gamma distributions for the standard error of the structural shocks.

The estimation results suggest several key differences between the US and the euro area.

First, consistent with the sample period, we find a higher growth rate µz in the euro area than in the US.
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Table 2: Estimation Results - EA

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.21 0.05 0.13 0.29

µz Normal 0.50 0.05 0.47 0.05 0.40 0.55

π? Normal 0.80 0.05 0.79 0.05 0.71 0.86

αp Beta 0.66 0.05 0.62 0.05 0.55 0.68

αw Beta 0.66 0.05 0.59 0.04 0.52 0.65

γp Beta 0.50 0.15 0.12 0.04 0.04 0.19

γw Beta 0.50 0.15 0.34 0.12 0.15 0.53

γz Beta 0.50 0.15 0.51 0.18 0.26 0.76

η Beta 0.70 0.15 0.74 0.04 0.69 0.80

ν Gamma 1.00 0.20 0.96 0.18 0.65 1.25

aπ Gamma 2.00 0.15 2.02 0.14 1.80 2.25

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.87 0.02 0.84 0.90

σz Inverse Gamma 0.25 1.00 0.86 0.16 0.63 1.10

σR Inverse Gamma 0.25 1.00 0.11 0.01 0.10 0.12

σq Inverse Gamma 0.25 1.00 0.23 0.05 0.13 0.32

σg Inverse Gamma 0.25 1.00 0.21 0.04 0.15 0.27

σu Inverse Gamma 0.25 1.00 0.23 0.05 0.06 0.43

ρR Beta 0.25 0.10 0.39 0.07 0.27 0.50

ρz Beta 0.25 0.10 0.24 0.10 0.09 0.39

ρg Beta 0.85 0.10 1.00 0.01 0.99 1.00

ρq Beta 0.85 0.10 0.94 0.03 0.90 0.98

ρu Beta 0.80 0.10 0.79 0.10 0.64 0.96

Note: ’std’ stands for Standard Deviation, ’Post.’ stands for Posterior, and ’Low’ and ’High’ denote the bounds of the 90%
probability interval for the posterior distribution.

Given that both economies have similar discount rates, this will result in a higher steady-state real interest

rate in the euro area than in the US. This difference will play an important role later when we assess (i)

the level of the optimal inflation target and (ii) the effects of a lower steady-state real interest rate. Second,

we find generically higher degrees of indexation to past inflation in the US than in the euro area. This will

translate into a higher tolerance for inflation in the US in our subsequent analysis of the optimal inflation

target. This is because a higher indexation helps to mitigate the distortions induced by a higher inflation

target. Everything else equal, we thus expect a higher optimal inflation target in the US than in the euro

area. Third, we obtain broadly similar parameters for the shocks processes. One exception, though, is the

so-called risk-premium shock. The unconditional variance of the US shock is somewhat higher than its

euro area counterpart.

For the US, most of our estimated parameters are in line with the calibration adopted by Coibion et al.

(2012), with important qualifications. First, we obtain a slightly higher degree of price rigidity than theirs

(0.67 versus 0.55). Second, our specification of monetary policy is different from theirs. In particular, they

allow for two lags of the nominal interest rate in the monetary policy rule while we only have one lag.

However, we can compare the overall degree of interest rate smoothing in the two setups. To this end,

abstracting from the other elements of the rule, we simply focus on the sum of autoregressive coefficients.

It amounts to 0.92 in their calibration while the degree of smoothing in our setup has a mean posterior value

of 0.85. While this might not seem to be a striking difference, it is useful to cast these figures in terms of

half-life of convergence in the context of autoregressive model of order 1. Our value implies twice as small
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a half-life than theirs. Third, our monetary policy shock and our shocks to demand have approximately

twice as small an unconditional standard deviation as theirs.

3 The Optimal Inflation Target

A second-order approximation of the household expected utility derived from the structural model is used

to quantify welfare, in a similar manner as in Woodford (2003).6 Let W (π; θ) denote this welfare crite-

rion. This notation emphasizes that welfare depends on the inflation target π together with the rest of the

structural parameters θ. Two cases are considered concerning the latter. In the baseline case the structural

parameters θ are fixed at reference values and taken to be known with certainty by the policy maker. In

an alternative exercise, the policy maker maximizes welfare while recognizing the uncertainty associated

with the model’s parameters.

3.1 Baseline

The optimal inflation target associated with a given vector of parameters θ, π?(θ) is approximated via

numerical simulations of the model allowing for an occasionally binding ZLB constraint, using the algo-

rithm outlined above. 7 The optimal inflation rate associated to a particular vector of parameters θ is then

obtained as the one maximizing the welfare function, that is:

π?(θ) ≡ arg max
π

W (π; θ).

For illustrative purpose, figures 1a and 1b display the welfare function for the US and the euro area

– expressed as losses relative to the maximum social welfare – associated with three natural benchmarks

for the parameter vector θ: the posterior mean (dark blue line), the median (light blue line), and the mode

(lighter blue line). For convenience, the peak of each welfare function is identified with a dot of the same

color. Also, to facilitate interpretations, the inflation targets are expressed in annualized percentage rates.

As Figure 1a illustrates, the US optimal inflation target is close to 2% and varies between 1.85% and

2.21% depending on which indicator of central tendency (mean, mode, or median) is selected. This range of

values is consistent with the ones of Coibion et al. (2012) even though in the present paper it is derived from

an estimated model over a much shorter sample.8 Importantly, the high degree of interest rate smoothing
6See the Technical Appendix for details.
7More precisely, a sample of size T = 100000 of innovations {εt}T

t=1 is drawn from a Gaussian distribution (we also allow for a

burn in sample of 200 points that we later discard). We use these shocks to simulate the model for given parameter vector θ. The

welfare function W (π; θ) is approximated by replacing expectations with sample averages. The procedure is repeated for each of

K = 51 inflation targets on the grid {π(k)}K
k=1 ranging from π = 0.5/4% to π = 5/4% (expressed in quarterly rates). Importantly,

we use the exact same sequence of shocks {εt}T
t=1 in each and every simulation over the inflation grid.

8Coibion et al. (2012) calibrate their model on a post-WWII, pre-Great Recession US sample. By contrast, we use a Great

Moderation sample.
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Figure 1: Examples of loss functions
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?). In all cases, the welfare functions are normalized so as to peak at 0.

obtained in Coibion et al. (2012) largely compensates for their larger shocks. In the euro area, as figure 1b

reports, the optimal inflation target is close to 1.5% and varies between 1.31% and 1.58%. Altogether, these

numbers seem roughly consistent with the quantitative inflation targets adopted by the Fed and the ECB,

respectively.

To complement on these illustrative results, figures 2a and 2b display the probability of reaching the

ZLB as a function of the annualized inflation target (again, with the parameter vector θ evaluated at the

posterior mean, median, and mode). For convenience, the circles in each curve mark the corresponding

optimal inflation target.

The probabilities of reaching the ZLB are relatively low, at about 6% for the US and about 10% for the

euro area. This result, as anticipated above, is the mere reflection of our choice of a Great Moderation

sample.

3.2 Accounting for Parameter Uncertainty

An interesting feature of the welfare functions reported in figures 1a and 1b is that they are strongly asym-

metric: adopting an inflation target 1 percentage point below the optimal value generates welfare losses

larger than setting it 1 percentage point above. Moreover, as 1a and 1b suggest, the location of the loss

function also depends on the parameter considered. This is important since the exact values of θ and π?(θ)

are subject to uncertainty. As a result, a policy maker that seeks to maximize expected welfare while rec-

ognizing the uncertainty surrounding θ will tend to choose a relatively higher inflation target compared to
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Figure 2: Probability of ZLB
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?).

the case where θ is taken to be known with certainty, as in the baseline analysis above.

Formally, the estimated posterior distribution of parameters p(θ|XT) can be exploited to quantify the

impact of such parameter uncertainty on the optimal inflation target and to compute a "Bayesian-theoretic

optimal inflation target". We define the latter as the inflation target π?? which maximizes the expected

welfare not only over the realizations of shocks but also over the realizations of parameters9

π?? ≡ arg max
π

∫
θ
W (π; θ)p(θ|XT)dθ.

We interpret the spread between the inflation target at the posterior mean θ̄ and the Bayesian inflation target

as a measure of how uncertainty about the parameter value could be conducive to a larger inflation buffer

to hedge against particularly detrimental parameter values (either because they lead to more frequent ZLB

episodes or because they lead to particularly acute inflation distortions). We define

Spr(θ) ≡ π?? − π?(θ)

9This Bayesian inflation target is recovered from simulating the model under a ZLB constraint using the exact same sequence

of shocks {εt}T
t=1 with T = 100000 as in the previous subsection (together with the same burn-in sample) and combining it with

N draws of parameters {θj}N
j=1 from the estimated posterior distribution p(θ|XT), with N = 500. As in the previous section,

the social welfare function W (π; θ) is evaluated for each draw of θ over a grid inflation targets {π(k)}K
k=1. The Bayesian welfare

criterion is then computed as the average welfare across parameter draws. Here, we start with the same inflation grid as before

and then run several passes. In the first pass, we identify the inflation target maximizing the Bayesian welfare criterion. We then

set a finer grid of K = 51 inflation targets around this value. We repeat this process several times with successively finer grids

of inflation targets until the identified optimal inflation target proves insensitive to the grid. In this particular exercise, some

parameter draws for θ lead to convergence failure in the algorithm implementing the ZLB. These draws are discarded.
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and assess below Spr(θ̄).

According to the simulation exercise, π?? = 2.40% for the US and π?? = 2.20% for the euro area.

In both cases, these robust optimal inflation targets are larger than the values obtained with θ set at its

central tendency. As expected, a Bayesian policy maker choose a higher inflation target to hedge against

particularly harmful states of the world (i.e., parameter draws) where the frequency of hitting the ZLB

is high. Noticeably, this inflation cushion is substantially higher in the euro area where Spr(θ̄) = 0.62%,

while in the US, Spr(θ̄) = 0.19%. This occurs in spite of the optimal inflation target being lower in the euro

area than in the US when evaluated at the posterior mean of the parameter vector θ̄.10

4 The Optimal Inflation Target and the Steady State Real Interest Rate

The focus of this section is to investigate how the monetary authority should adjust its optimal inflation

target π? in response to changes in the steady-state real interest rate, r?. Intuitively, with a lower r? the

ZLB is bound to bind more often, so one would expect a higher inflation target should be desirable in

that case. But the answer to the practical question of by how much should the target be increased is not

obvious. Indeed, the benefit of providing a better hedge against hitting the ZLB, which is an infrequent

event, comes at a cost of higher steady-state inflation which induces permanent costs, as argued by, e.g.,

Bernanke (2016).

To start with, we compute the relation linking the optimal inflation target to the steady-state real interest

rate, based on simulations of the model and ignoring parameter uncertainty. We show that the link between

π? and r? depends to some extent on the reason underlying a variation in r?, i.e. a change in the discount

rate ρ or a change in growth rate of technology µz. We also investigate the role of parameter uncertainty

and, in particular, uncertainty about r?, in the determination of the Bayesian-theoretic optimal inflation

target. Finally, we investigate how the relation between the optimal inflation target and the steady-state

real interest rate depends on whether the central bank (i) targets the average of realized inflation rather

than (non-stochastic) steady-state inflation rate, (ii) operates in an economy where the lower bound on the

nominal interest rate is negative or (iii) knows its policy reaction function with certainty.

4.1 The baseline (r?, π?) relation

To characterize the link between r? and π?, the following simulation exercise is conducted. The structural

parameter vector θ is fixed at its posterior mean, θ̄, with the exception of µz and ρ. These two parameters

are varied – each in turn, keeping the other parameter, µz or ρ, fixed at its baseline posterior mean value.

For both µz and ρ, we consider values on a grid ranging from 0.4% to 10% in annualized percentage terms.

10Figures B.1a and B.1b in Appendix show the posterior distribution of π?(θ). It is broadly symmetric in the US and shows

substantial asymmetry in the euro area.
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Figure 3: (r?, π?) locus (at the posterior mean)
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Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

The model is then simulated for each possible values of µz or ρ and various values of inflation targets π

using the procedure as before.11 The optimal value π? associated to each value of r? is obtained as the one

maximizing the welfare criterion W (π; θ).12

We finally obtain two curves. The first one links the optimal inflation target π? to the steady-state real

interest rate r? for various growth rate of technology µz: π?(r?(µz)), where the notation r?(µz) highlights

that the steady-state real interest rate varies as µz varies. The second one links the optimal inflation target

π? to the steady-state real interest rate r? for various discount rates ρ: π?(r?(ρ)). Here, the notation r?(ρ)

highlights that the steady-state real interest rate varies as ρ varies.13

Figures 3a and 3b depict the (r?, π?) relations thus obtained for the US and the euro area, respectively.

The blue dots correspond to the case when the real steady-state interest rate r? varies with µz. The red dots

correspond to the case when the real steady-state interest rate r? varies with ρ. For convenience, both the

real interest rate and the associated optimal inflation target are expressed in annualized percentage rates.

The dashed grey lines indicate the benchmark result corresponding to the optimal inflation target at the

posterior mean of the structural parameter distribution. To complement these results, Figures 4a and 4b

11In particular, we use the same sequence of shocks {εt}T
t=1 as used in the computation implemented in the baseline exercises

of Section 3. Here again, we start from the same grid of inflation targets for all the possible values of µz or ρ. Then, for each value

of µz or ρ, we refine the inflation grid over successive passes until the optimal inflation target associated with a particular value

of µz or ρ proves insensitive to the grid.
12To illustrate the construction of this figure, see Appendix C. There, we show how two particular points of this curve are

derived from the welfare criteria.
13Figures D.1a, D.1b, D.2a, and D.2b report similar results at the posterior mode and at the posterior median.
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Figure 4: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

show the relation between r? and the probability of hitting the ZLB, evaluated at the optimal inflation target,

for the US and the euro area, respectively. As before, the blue dots correspond to the case when the real

steady-state interest rate r? varies with µz. The red dots correspond to the case when the real steady-state

interest rate r? varies with ρ.14

As expected the relations in 3a and 3b are decreasing. However, the slope varies with the value of r?.

For both the US and the euro area, the slope is relatively large in absolute value – although smaller than

one – for moderate values of r? (say below 4 percent). The slope declines in absolute value as r? increases:

Lowering the inflation target to compensate for an increase in r? becomes less and less desirable. This

reflects the fact that, as r? increases, the probability of hitting the ZLB becomes smaller and smaller. For

very large r? values, the probability becomes almost zero, as Figures 4a and 4b show.

At some point, the optimal inflation target becomes insensitive to changes in r? when the latter originate

from changes in the discount rate ρ. In this case, the inflation target stabilizes at a slightly negative value,

in order to lower the nominal wage inflation rate required to support positive productivity growth, given

the imperfect indexation of nominal wages to productivity. At the steady state, the real wage must grow

at a rate of µz. It is optimal to obtain this steady-state growth as the result of a moderate nominal wage

increase and a moderate price decrease, rather than the result of a zero price inflation and a consequently

larger nominal wage inflation. 15

14Figures E.1a and E.1b in Appendix show the relation between r? and the nominal interest rate when the inflation target is set

at its optimal value.
15For very large r?, as a rough approximation, we can ignore the effects of shocks and assume that the ZLB is a zero-mass
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The previous tension is even more apparent when r? varies with µz since, in this case, the effects of

imperfect indexation of wages to productivity are magnified given that a higher µz calls for a higher growth

in the real wage, which is optimally attained through greater price deflation, as well as a higher wage

inflation. Notice however that even in this case, the optimal inflation target becomes little sensitive to

changes in r? for very large values of r?, typically above 6%, both in the US and the euro area.

For low values of r∗, on the other hand, the slope of the curve is steeper. In particular, in the empirically

relevant region, the relation is not far from one-to-one. More precisely, it shows that, starting from the

posterior mean estimate of θ, a 100 basis points decline in r? should lead to a +99 basis points increase in

π? in the US and to a +81 basis points increase in the euro area. Importantly, this increase in the optimal

inflation target is the same no matter the underlying factor causing the change in r?: a drop in potential

growth, µz, or a decrease in the discount factor, ρ. At the same time, the probability of ZLB evaluated at the

optimal inflation rate also increases when the real rate decreases. In the US case, at some point, the speed

at which this probability increases slows down, reflecting that the social planner would choose to increase

the inflation target to almost compensate for the higher incidence of ZLB episodes. By contrast, in the euro

area, the incidence of ZLB seems to increase substantially after a decline in the real interest rate, even at

low values of the latter.

To gain insight into this striking difference, Figures 5a and 5b show how the probability of ZLB changes

as a function of r?, holding the inflation target constant. We first set the inflation target at its optimal

baseline value (i.e., the value computed at the posterior mean, 2.21 for the US and 1.58 for the euro area).

This is reported below as the blue dots. Similarly, we also compute an analog relation assuming this time

that the inflation target is held constant at the optimal value consistent with a steady-state real interest rate

one percentage point lower (thus, inflation is set to 3.20 for the US and 2.39 for the euro area). Here again,

the other parameters are set at their posterior mean. This corresponds to the red dots in the figure.

Consider first the blue line. At the level of the real interest rate prevailing before the permanent decline,

assuming that the Central Bank sets its target to the associated optimal level, the probability of reaching

the ZLB would be slightly below 6% in the US and close to 9% in the euro area. Imagine now that the real

interest rates experiences a decline of 100 basis points. Keeping the inflation target at the same level as

prior to the shock, the probability of reaching the ZLB would now climb up to approximately 11% in the

US and 16% in the euro area. However, the change in the optimal inflation target brings the probability of

reaching the ZLB back to approximately 6% in the US and 11% in the euro area. In the euro area, the social

planner is willing to tolerate a smaller inflation target than the one that would fully neutralize the effects of

event. Assuming also a negligible difference between steady-state and efficient outputs and letting λp and λw denote the weights

attached to price dispersion and wage dispersion, respectively, in the approximated welfare function, the optimal inflation obeys

π? ≈ −λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2]µz. Given the low values of λw resulting from our estimation, it is not

surprising that π? is negative but close to zero. See Amano et al. (2009) for a similar point in the context of a model abstracting

from ZLB issues.

20



Figure 5: Relation between probability of ZLB and r? (at the posterior mean)
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Note: The blue dots correspond to the relation linking r? and the probability of ZLB, holding the optimal inflation target π? at the
baseline value. The red dots correspond the same relation when the optimal inflation target π? is set at the value consistent with
a steady-state real interest rate one percentage point lower.

the natural rate decline on the probability of hitting the ZLB. By way of contrast, the social planner in the

US would almost neutralize this effect. In this sense, the US economy has a greater tolerance for steady-

state inflation than the euro area. This is in part a consequence of the different estimates for the degree of

indexation of prices to past inflation found at the estimation stage.

4.2 Accounting for Parameter Uncertainty

Next we investigate the impact of parameter uncertainty on the relation between the optimal inflation

target and the steady-state real interest rate. Specifically, we want to determine how the Bayesian-theoretic

optimal inflation target π?? reacts to a downward shift in the distribution of the steady-state real interest

rate r?.

Assessing how such a change affects π?? for every value of r? is not possible due to the computational

cost involved. Such a reaction is thus investigated for a particular scenario: it is assumed that the economy

starts from the posterior distribution of parameters p(θ|XT) and that, everything else being constant, the

mean of r? decreases by 100 basis points. Such a 1 percentage point decline is chosen mainly for illustrative

purposes. Yet, it is of a comparable order of magnitude, although relatively smaller in absolute value,

as recent estimates of the drop of the natural rate after the crisis such as Laubach and Williams (2016)

and Holston et al. (2017). The counterfactual exercise considered can therefore be seen as a relatively

conservative characterization of the shift in steady-state real interest rate. Figures 6a and 6b depict the

counterfactual shift in the distribution of r? that is considered for, respectively, the US and the euro area.
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Figure 6: Posterior distributions of r? and counterfactual r?

(a) US
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Note:: Plain curve: PDF of r?; dashed vertical line: mean value of r?.

The Bayesian-theoretic optimal inflation target corresponding to the counterfactual lower distribution

of r? is obtained from a simulation exercise that relies on the same procedure as before.16 Given a draw in

the posterior of parameter vector θ, the value of the steady-state real interest rate is computed using the

expression implied by the postulated structural model r?(θ) = ρ(θ) + µz(θ). From this particular draw,

a counterfactual lower steady-state real interest rate, r?(θ∆), is obtained by shifting the long-run growth

component of the model µz downwards by 1 percentage point (in annualised terms). The welfare function

W (π; θ∆) is then evaluated. Since there are no other changes than this shift in the mean value of µz in the

distribution of the structural parameters, we can characterize the counterfactual distribution p(θ∆|XT) as

a simple transformation of the estimated posterior p(θ|XT). The counterfactual Bayesian-theoretic optimal

inflation target is then obtained as

π??
∆ ≡ arg max

π

∫
θ∆

W (π; θ∆)p(θ∆|XT)dθ∆.

Figures 7a and 7b illustrate the counterfactual change in optimal inflation target obtained when the

steady-state real interest rate declines by 100 basis points and its new value stays uncertain. For the US,

the simulation exercise returns a value of π??
∆ = 3.30% i.e. 90 basis points higher than the optimal value

under uncertainty obtained with the posterior distribution of parameters obtained on a pre-crisis sample

π??
∆ = 2.40%. For the euro area, π??

∆ = 3.10%, also 90 basis points higher than the optimal value π??
∆ =

2.20% obtained with the baseline posterior distribution of parameters.17

16Again, we use the same sequence of shocks and the same parameter draws as in section 3.
17Figures F.1a and F.1b in Appendix show how the posterior distribution of π? is shifted after the permanent decline in the

mean of r?.
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Figure 7: Eθ(W (π, θ)) in baseline and counterfactual
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Note:: Blue curve: Eθ(W (π, θ)); Red curve: Eθ(W (π, θ)) with lower r?

Thus, we see that a monetary authority that is concerned about the uncertainty surrounding the param-

eters driving the costs and benefits of the inflation target raises the optimal inflation target but does not

alter the reaction of this optimal inflation target following a drop in r?: in both cases, a 100 basis points de-

crease in the steady-state real interest rate calls for a roughly 90 basis point increase in the optimal inflation

target in the vicinity of pre-crisis parameter estimates.

4.3 Further Experiments

In the present section we carry out four additional exercises related to the optimal adjustment of the infla-

tion target in response to a change in the steady-state real interest rate. The first three exercises examine

the implications of three alternative assumption regarding monetary policy. The fourth exercise looks at

the case of large shocks.

Average vs Target Inflation As emphasized in recent works (see, notably, Hills et al. 2016, Kiley and

Roberts 2017), when the probability of hitting the ZLB is non-negligible, realized inflation is on average

significantly lower than the inflation rate that the central bank targets in the interest rate rule (and which

would correspond to steady-state inflation in the absence of shocks). This results from the fact that anytime

the ZLB is binding (which happens recurrently) the central bank effectively loses its ability to stabilize

inflation around the target. Knowing this, the central banks may want to define (and communicate) its

target in terms of the effective average realized inflation. In this section, we investigate whether such an

adjustment in the communication policy is warranted when the inflation target is chosen optimally.
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Figure 8: Average realized inflation and optimal inflation
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To this end, the analysis of the (r?, π?) relation of section 4.1 is complemented here with the analysis

of the relation between r? and the average realized inflation rate E{πt} obtained when simulating the

model for various values of r? and the associated optimal inflation target π?. In the interest of brevity, the

calculations are undertaken assuming that changes in average productivity growth µz is the only source of

variation in the natural interest rate.

Figures 8a and 8b illustrate the difference between the (r?, π?) curve (blue dots) and the (r?, E{πt})
curve (red dots) for the US and the euro area. The overall shape of the curve is unchanged. Unsurprisingly,

both curves are identical when r? is high enough. In this case, the ZLB is (almost) not binding and average

realized inflation does not differ much from π?. A spread between the two emerges for very low values of

r?. There, for low values of the natural rate, the ZLB incidence is higher and, as a result, average realized

inflation becomes indeed lower than the optimal inflation target. However, that spread remains limited,

less than 10 basis points. The reason is that the implied optimal inflation target is sufficiently high to

prevent the ZLB from binding too frequently, thus limiting the extent to which average realized inflation

and π? can differ.

Unreported simulation results show that the gap between π? and average realized inflation becomes

more substantial when the inflation target is below its optimal value. For instance, mean inflation is

roughly zero when the central bank adopts a 1% inflation target in an economy where the optimal inflation

target is π? = 2%.

A Negative Effective Lower Bound The recent experience of many advanced economies (including the

euro area) points to an effective lower bound (ELB) for the nominal interest rate below zero. For instance,
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Figure 9: Optimal inflation with negative ELB – EA
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the ECB’s deposit facility rate, which gears the overnight money market rate because of excess liquidity,

was set at a negative value of −10 basis points in June 2014 and has been further lowered down to −40

basis points in March 2016.

We use the estimated euro-area model to evaluate the implications of a negative ELB. More precisely,

we set the lower bound on the nominal rate it so that

it ≥ e

and we set e to −40 basis points (in annual terms) instead of zero. Results are presented in Figure 9. As

expected, the (r?, π?) locus is shifted downwards, though by somewhat less than 40 basis points. Impor-

tantly, its slope remains identical to the baseline case: a 100 basis points downward shift in the distribution

of r? calls for a 90 basis points increase in π?.

A Known Reaction Function Here we study the consequences of the (plausible) assumption that the

central bank actually knows the coefficients of its interest rate rule with certainty. More specifically we

repeat the same simulation exercise as in subsection 4.2 but with parameters aπ, ay and ρi in the reaction

function 3 taken to be known with certainty. In practice we fix these three parameters at their posterior

mean, instead of sampling them from their posterior distribution. This is arguably the relevant approach

from the point of view of the policymaker.18 Note, however, that all the other parameters are subject to

uncertainty from the stand-point of the central bank.

18In practice, long-run inflation targets are seldom reconsidered while the rotation in monetary policy committees happens at a

higher frequency. From this viewpoint, our baseline assumption of uncertainty on all the monetary policy rule parameters is not

necessarily unwarranted.
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Figure 10: Eθ(W (π, θ))
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Note:: Blue curve: Eθ(W (π, θ)); Red curve: Eθ(W (π, θ)) with lower r?. In each case, ρTR, aπ , and ay are frozen at their posterior
mean values.

Figures 10a and 10b present, respectively for the US and the euro area, the Bayesian-theoretic optimal

inflation targets obtained when simulating the model at the initial posteriors and after a -100 basis points

level shift in the posterior distribution of the long-run growth rate µz and, hence, the steady-state real

rate r?. According to these simulations, the inflation target should initially be π?? = 2.24% in the US and

π?? = 2.36% in the euro area. After the counterfactual change in the distribution of r? considered, π??

should be increased to 3.16% in the US and to 3.28% in the euro area, again in the ballpark of a 90 basis

points increase in π? to compensate for the higher probability to hit the ZLB induced by a 100 basis points

downward shift in the distribution of r?.

What if shocks are larger? As argued before, the model is estimated using data from the Great Mod-

eration period. One may legitimately argue that the decline in the real interest rate resulting from the

secular stagnation has come hand in hand with larger shocks, as the Great Recession suggests. To address

this concern, we simulate the model assuming that demand shocks have a 30% larger standard error as

estimated.

We conduct this exercise assuming that changes in average productivity growth µz are the only driver

of changes in the natural rate. Apart from σq and σg, which are re-scaled, all the other parameters are

frozen at their posterior mean. Given this setup, the optimal inflation target is 3.7% in the US and 2.7%

in the euro area, as opposed to 2.21% and 1.58% in the baseline, respectively. Also, under the alternative

shock configuration, the probability of hitting the ZLB is 5.3% in the US and 10.1% in the euro, as opposed

to 5.5% and 9.4% in the baseline, respectively.
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Figure 11: (r?, π?) relation with larger demand shocks
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with σq and σg set to twice their baseline value.

Figures 11a and 11b report the (r?, π?) relation under larger demand shocks (red dots) and compares the

outcome with what obtained in the baseline (blues dots).19 Interestingly, the (r?, π?) locus has essentially

the same slope in the low r? region. Here again, we find a slope close to -0.9. However, the curve is

somewhat steeper in the high r? region and shifted up, compared to the baseline scenario. This reflects that

under larger demand shocks, even at very high levels of the natural rate, a drop in the latter is conducive

to more frequent ZLB episodes. The social planner is then willing to increase the inflation target at a higher

pace than in the baseline scenario and generically sets the inflation target at higher levels to hedge the

economy against ZLB episodes.

5 Summary and conclusion

In this paper, we assessed how changes in the steady-state natural interest rate translate into changes in

the optimal inflation target in a model subject to the ZLB. Our main finding is that, starting from pre-crisis

values, a 1% decline in the natural rate should be accommodated by an increase in the optimal inflation

target of about 0.9%. For convenience, Table 3 recaps our results. Overall, across the different concepts of

optimal inflation considered in this paper, the level of optimal inflation does vary. However it is a very

robust finding that the slope of the (r?, π?) relation is close to -0.9 in the vicinity of the pre-crisis value of

steady-state real interest rates both in the US and in the euro-area.

19We obtain this figure using the same procedure as outlined before. Here again, we run several passes with successively refined

inflation grids.
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Table 3: Effect of a decline in r? under alternative notions of optimal inflation

US EA

Baseline Lower r? Baseline Lower r?

Mean of π? 2.00 3.00 1.79 2.60

Median of π? 1.96 2.90 1.47 2.28

π? at post. mean 2.21 3.20 1.58 2.39

π? at post. median 2.12 3.11 1.49 2.30

π?? 2.40 3.30 2.20 3.10

π??, frozen MP 2.24 3.16 2.36 3.28

π? at post. mean, ELB -40 bp — — 1.31 2.08

Average realized inflation at post. mean 2.20 3.19 1.56 2.36

Average realized inflation at post. mean, ELB -40 bp — — 1.24 1.97

Note: all figures are in annualized percentage rate.

In our analysis, we considered adjusting the inflation target as the only option at the policymaker’s dis-

posal. This is not to say that this is the only option in their choice set. As a matter of fact, recent discussions

revolving around monetary policy in the new normal have suggested that the various non-conventional

measures used in the aftermath of the Great Recession could feature permanently in policy toolbox. In par-

ticular, unconventional monetary policies could represent useful second-best instruments when the ZLB

is reached, as advocated by Reifschneider (2016). An alternative would consist in a change of monetary

policy strategies, e.g., adopting a price-level targeting strategy as recently advocated by Williams (2016).

Beyond monetary policy measures, fiscal policies could also play a significant role, as emphasized by Cor-

reia et al. (2013). As a result, the ZLB might be less stringent a constraint in a practical policy context than

in our analysis. However, the efficacy and the costs of these policies should also be part of the analysis.

The complete comparison of these policy trade-offs goes beyond the scope of the present paper.

We have discussed the impact of higher inflation target, abstracting from the transition to a higher

inflation target. In the current lowflation environment, increasing the inflation target in reaction to a drop

in the steady-state value of the real interest rate might be challenging: because of more frequent ZLB

episodes, the realizations of inflation might be on average below the initial inflation target for some time

and increasing the inflation target therefore would raise some credibility issues.

Finally, our analysis also abstracted from forces identified in the literature as warranting a small, pos-

itive inflation target, irrespective of ZLB issues, as emphasized in Bernanke et al. (1999). The first is

grounded on measurement issues, following the finding from the 1996 Boskin report that the consumer

price index did probably over estimate inflation in the US by over 1 percentage point in the early nineties.
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The second argument is rooted in downward nominal rigidities. In an economy where there are such

downward rigidities (e.g. in nominal wages) a positive inflation rate can help "grease the wheel" of the la-

bor market by facilitating relative price adjustments. Symmetrically, we also abstracted from forces calling

for lower inflation targets. The most obvious is the so-called Friedman (1969) rule, according to which aver-

age inflation should equal to minus the steady state real interest rate, hence be negative, in order to minimize

loss of resources or utility and the distortionary wedge between cash and credit goods (e.g. consumption

and leisure) induced by a non-zero nominal interest rate. We conjecture that adding these elements to our

setup would leave our main conclusions unchanged. A complete assessment is left for future research.
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A Various long-run and optimal inflation rates considered

Table A.1: Various Notions of Long-run and optimal Inflation in the model

π Any inflation target, used to define the “inflation gap” that enters the Taylor rule

E(πt) Average realized inflation, might differ from π due to ZLB

π?(θ) Inflation target that minimizes the loss function given a structural parameters θ

π?(θ̄) π? assuming parameters at post. mean

π?(median(θ)) π? assuming parameters at post. median

π̄? average of π?(θ) over the posterior distribution of θ, i.e.,
∫

θ π?(θ)p(θ|XT)dθ

Median(π?) Median of π?(θ) over the posterior distribution

π?? Inflation target that minimizes the average loss function over the posterior distribution of θ

B The distribution of optimal inflation targets

Figure B.1: Posterior Distribution of π? - EA - Benchmark
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C Impact of a decline in the natural rate on the welfare criterion

Figures C.1a and C.1b below provide a more precise sense of how π? is modified following a decrease of

r?.

Figure C.1: W (π, E(θ))
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D Further illustration of the (r?, π?) relation

D.1 When µz varies

Figure D.1: (r?, π?) locus when µz varies
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Note:: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .

D.2 When ρ varies

Figure D.2: (r?, π?) locus when ρ varies
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Note:: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .
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E Nominal and Real Interest Rates

Figure E.1: (r?, i?) locus (at the posterior mean)
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F Distribution of π? following a downward shift of the distribution of r?

Figure F.1: Counterfactual - US
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G Model Solution

G.1 Households

G.1.1 First Order Conditions

The associated lagrangian of program (1) under constraint (2) is

Lt = Et

∞

∑
s=0

βs
{

eζc,t+s log(Ct+s − η̂Ct+s−1)−
χ

1 + ν

∫ 1

0
eζh,t+s(Nt+s(h))1+νdh

− Λt+s

Pt+s

[
Pt+sCt+s + Qt+sBt+se−ζq,t+s + Pt+staxt+s −

∫ 1

0
Wt+s(h)Nt+s(h)dh− Bt+s−1 − Pt+sdivt+s

]}
,

The associated first order condition with respect to bonds is

∂Lt

∂Bt
= 0⇔ ΛtQte−ζq,t = βEt

{
Λt+1

Πt+1

}
, (G.1)

and the first-order condition with respect to consumption is

∂Lt

∂Ct
= 0⇔ eζc,t

Ct − η̂Ct−1
− βη̂Et

{
eζc,t+1

Ct+1 − ηCt

}
= Λt. (G.2)

where Πt ≡ Pt/Pt−1 represents the (gross) inflation rate, and

We induce stationarity by normalizing trending variables by the level of technical progress. To this end,

we use the subscript z to refer to a normalized variable. For example, we define

Cz,t ≡
Ct

Zt
, Λz,t ≡ ΛtZt,

where it is recalled that

Zt = ezt

with

zt = µz + zt−1 + ζz,t.

We then rewrite the first order condition in terms of the normalized variables. Equation (G.2) thus

rewrites
eζc,t

Cz,t − ηCz,t−1e−ζz,t
− βηEt

{
e−ζz,t+1

eζc,t+1

Cz,t+1 − ηCz,te−ζz,t+1

}
= Λz,t, (G.3)

Similarly, equation (G.1) rewrites

Λz,tQte−ζq,t = βe−µz Et

{
e−ζz,t+1

Λz,t+1

Πt+1

}
, (G.4)

where we defined

η ≡ η̂e−µz .
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Let us define it ≡ − log(Qt) and for any generic variable Xt

xt ≡ log(Xt), x̂t ≡ xt − x

where x is the steady-state value of x. Using these definitions, log-linearizing equation (G.3) yields

ĝt + βηEt{ĉt+1} − (1 + βη2)ĉt + ηĉt−1 − η(ζz,t − βEt {ζz,t+1}) = ϕ−1λ̂t (G.5)

where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}).

Similarly, log-linearizing equation (G.4) yields

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1 − ζz,t+1}+ ζq,t. (G.6)

G.2 Firms

Expressing the demand function in normalized terms yields

Yz,t( f ) =
(

Pt( f )
Pt

)−θp

Yz,t,

In the case of a firm not drawn to re-optimize, this equation specializes to (in log-linear terms)

ŷt,t+s( f )− ŷt+s = θp(π̂t,t+s − δ̂
p
t,t+s − p̂?t ( f )). (G.7)

G.2.1 Cost Minimization

The real cost of producing Yt( f ) units of good of f is

Wt

Pt
Lt( f ) =

Wt

Pt

(
Yt( f )

Zt

)φ

(G.8)

The associated real marginal cost is thus

St( f ) = φ
Wt

PtZt

(
Yt( f )

Zt

)φ−1

(G.9)

It is useful at this stage to restate the production function in log-linearized terms:

ŷz,t( f ) =
1
φ

n̂t( f ) (G.10)
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G.2.2 Price Setting of Intermediate Goods: Optimization

Firm f chooses P?
t ( f ) in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t ( f )
Pt+s

Y?
t,t+s( f )− S (Yt,t+s( f ))

}
, (G.11)

subject to the demand function

Y?
t,t+s( f ) =

(
Vp

t,t+sP?
t ( f )

Pt+s

)−θp

Yt+s.

and the cost schedule (G.8), where Λt is the representative household’s marginal utility of wealth, and

Et{·} is the expectation operator conditional on information available as of time t. That Λt appears in the

above maximization program reflects the fact that the representative household is the ultimate owner of

firm f .

The associated first-order condition is

Et

∞

∑
s=0

(βαp)
sΛt+s


(

Vp
t,TP?

t ( f )
Pt+s

)1−θp

Yt+s −
µp

1 + τp
eζu,t+s

Wt+s

Pt+s
φ

(Vp
t,t+sP?

t ( f )
Pt+s

)−θp
Yt+s

Zt+s

φ = 0,

where

µp ≡
θp

θp − 1
.

This rewrites (
P?

t ( f )
Pt

)1+θp(φ−1)

=
µp

1 + τp

Kp,t

Fp,t

where

Kp,t = Et

∞

∑
s=0

(βαp)
sΛz,t+seζu,t+s

Wz,t+s

Pt+s
φ

( Vp
t,t+s

Πt,t+s

)−θp

Yz,t+s

φ

and

Fp,t = Et

∞

∑
s=0

(βαp)
sΛz,T

(
Vp

t,t+s

Πt,t+s

)1−θp

Yz,t+s,

where Πt,t+s ≡ Pt+s/Pt.

Notice that

Kp,t = φΛz,teζu,t
Wz,t

Pt
(Yz,t)

φ + βαpEt

(
[(Π)1−ιp(Πt)ιp ]γp

Πt+1

)−φθp

Kp,t+1,

and

Fp,t = Λz,tYz,t + βαpEt

(
[(Π)1−ιp(Πt)ιp ]γp

Πt+1

)1−θp

Fp,t+1.

With a slight abuse of notation, we obtain the steady-state relation(
P?

P

)1+θp(φ−1)

=
µp

1 + τp
φ

Wz

P
Yφ−1

z
1− βαp(Π)(1−γp)(θp−1)

1− βαp(Π)φθp(1−γp)
.
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Log-linearizing yields

[1 + θp(φ− 1)](p?t − pt) = k̂p,t − f̂p,t

k̂p,t = (1−ωK,p)[λ̂z,t + ω̂t + φŷz,t + ζu,t] + ωK,pEt{k̂p,t+1 + φθp(π̂t+1 − ιpγpπ̂t)},

and

f̂p,t = (1−ωF,p)(λ̂z,t + ŷz,t) + ωF,pEt{ f̂p,t+1 + (θp − 1)(π̂t+1 − ιpγpπ̂t)}.

where we defined the de-trended real wage

ωt ≡ wz,t − pt

ωK,p ≡ βαp(Π)(1−γp)φθp

and

ωF,p ≡ βαp(Π)(1−γp)(θp−1)

Finally, notice that

P1−θp
t =

∫ 1

0
Pt( f )1−θp d f

= (1− αp)(P?
t )

1−θp + αp

∫ 1

0

[
((Π)1−ιp(Πt−1)

ιp)γp Pt−1( f )
]1−θp

d f

Thus

1 = (1− αp)

(
P?

t
Pt

)1−θp

+ αp

[
((Π)1−ιp(Πt−1)

ιp)γp

Πt

]1−θp

The steady-state relation is (
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp

Log-linearizing this yields

p̂?t =
ωF,p

β−ωF,p
(π̂t − ιpγpπ̂t−1).

G.3 Unions

G.3.1 Wage Setting

Union h sets W?
t (h) so as to maximize

Et

∞

∑
s=0

(βαw)
s
{
(1 + τw)

Λt+s

Pt+s
eγzµzsVw

t,t+sW
?
t (h)Nt,t+s(h)−

χ

1 + ν
eζh,t+s(Nt,t+s(h))1+ν

}
,

where

Nt,t+s(h) =
(

eγzµzsVw
t,t+sW

?
t (h)

Wt+s

)−θw

Nt+s
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The associated first-order condition is

Et

∞

∑
s=0

(βαw)
s

{
ΛT

Wt+s

Pt+s
ht+s

(
eγzµzsVw

t,T

Πw
t,t+s

W?
t (h)

Wt+s

)1−θw

− µw

1 + τw
χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

W?
t (h)

Wt+s

)−(1+ν)θw

N1+ν
t+s

}
= 0

where Πw
t,t+s = Wt+s/Wt.

Rearranging yields (
W?

t (h)
Wt

)1+θwν

=
µw

1 + τw

Kw,t

Fw,t
.

where

Kw,t = Et

∞

∑
s=0

(βαw)
s

χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)−(1+ν)θw

N1+ν
t+s


and

Fw,t = Et

∞

∑
s=0

(βαw)
s

Λt+s
Wt+s

Pt+s
Nt+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)1−θw
 ,

where Πw
t,t+s ≡Wt+s/Wt.

Notice that

Kw,t = χeζh,t N1+ν
t + βαwEt

{(
eγzµz

[(Π)1−ιw(Πt)ιw ]γw

Πw,t+1

)−(1+ν)θw

Kw,t+1

}

and

Fw,t = Λz,t
Wz,t

Pt
Nt + βαwEt

{(
eγzµz

[(Π)1−ιw(Πt)ιw ]γw

Πw,t+1

)1−θw

Fw,t+1

}
.

The associated steady-state relations are(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw

Fw =
Λ Wz

P H
1− βαw[e(1−γz)µz(Π)1−γw ]θw−1

.

Log-linearizing the above equations finally yields

(1 + θwν)(w?
t − wt) = k̂w,t − f̂w,t.

k̂w,t = (1−ωK,w)[(1 + ν)n̂t + ζh,t] + ωK,wEt{k̂w,t+1 + (1 + ν)θw(π̂w,t+1 − ιwγwπ̂t)}
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f̂w,t = (1−ωF,w)(λ̂z,t + ω̂t + n̂t) + ωF,wEt{ f̂w,t+1 + (θw − 1)(π̂w,t+1 − ιwγwπ̂t)},

where we defined

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw

ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1

To complete this section, notice that

1 = (1− αw)

(
W?

t
Wt

)1−θw

+ αw

(
eγzµz

[(Π)1−ιw(Πt−1)
ιw ]γw

Πw,t

)1−θw

and

w?
t − wt =

ωF,w

β−ωF,w
(π̂w,t − ιwγwπ̂t−1).

G.4 Market Clearing

The clearing on the labor market implies

Nt =

(
Yt

Zt

)φ ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f .

Let us define

Ξp,t =

( ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f

)−1/(φθp)

,

so that

Nt = (Yz,tΞ
−θp
p,t )φ.

Hence, expressed in log-linear terms, this equation reads

n̂t = φ(ŷz,t − θp ξ̂p,t).

Notice that

Ξ−φθp
p,t = (1− αp)

(
P?

t
Pt

)−φθp

+ αp

(
[(Π)1−ιp(Πt−1)

ιp ]γp

Πt

)−φθp

Ξ−φθp
p,t−1.

The associated steady-state relation is

Ξ−φθp
p =

(1− αp)

1− αp(Π)(1−γp)φθp

(
P?

P

)−φθp

.

Log-linearizing the price dispersion yields

ξ̂p,t = (1−ωΞ)(p?t − pt) + ωΞ[ξ̂p,t−1 − (π̂t − ιpγpπ̂t−1)]

where we defined

ωΞ = αp(Π)(1−γp)φθp .
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G.5 Natural Rate of Output

The natural rate of output is the level of production that would prevail in an economy without nominal

rigidities, i.e. αp = αw = 0 and without cost-push shocks (i.e., ζu,t = 0). Under such circumstances, the

dynamic system simplifies to

ŵn
z,t + (φ− 1)ŷn

z,t = 0,

νn̂n
t + ζh,t = λ̂n

z,t + ŵn
z,t,

n̂n
t = φŷn

z,t,

ĝt + βηEt{ŷn
z,t+1} − (1 + βη2)ŷn

z,t + ηŷn
z,t−1 − η(ζz,t − βEt{ζz,t+1}) = ϕ−1λ̂n

z,t,

where the superscript n stands for natural.

Combining these equations yields

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt{ŷn

z,t+1} − ϕηŷn
z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

where we defined

ω ≡ νφ + φ− 1,

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

G.6 Working Out the Steady State

The steady state is defined by the following set of equations

1− βη

(1− η)C
= Λz,

e−i = βe−µz Π−1,

(
P?

P

)1+θp(φ−1)

=
µp

1 + τp

Kp

Fp
,

Kp =
φΛz

Wz
P Yφ

z

1− βαp(Π)φθp(1−γp)
,
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Fp =
ΛzYz

1− βαp(Π)(1−γp)(θp−1)
,

(
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
,

(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λz

Wz
P H

1− βαw[e(1−γz)µz(Π)1−γw ]θw−1
,

(
W?

W

)1−θw

=
1− αw[e(1−γz)µz(Π)(1−γw)]θw−1

1− αw
,

Πw = Πeµz

We can solve for i and Πw using

Πw = Πeµz

1 = βe−µz eiΠ−1,

Standard manipulations yield

1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µp

1 + τp
φ

Wz

P
Yφ−1

z ,

where we used

ωK,p = βαp(Π)(1−γp)φθp

ωF,p = βαp(Π)(1−γp)(θp−1)

Similar manipulations yield

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,p

) 1+θwν
θw−1

=
µw

1 + τw

χNν

Λz
Wz
P

,

where we used

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw
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ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1

Combining these conditions yields

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,p

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχNνYφ

z

Now, recall that

(YzΞ−θp
p )φ = N

Then, using

Ξ−φθp
p =

1− αp

1−ωΞ

(
P?

P

)−φθp

,

and (
P?

P

)−φθp

=

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

we end up with

NνYφ
z =

 1− αp

1−ωΞ

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

ν

Y(1+ν)φ
z ,

so that

Ω =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχY(1+ν)φ

z ,

where

Ω =
1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,p

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp [(1+ν)φ−1]
θp−1

(
1−ωΞ

1− αp

)ν

We defined the natural rate of output as the level of production that would prevail in an economy

without nominal rigidities, i.e. αp = αw = 0. Under such circumstances, the steady-state value of the

(normalized) natural rate of output yn obeys

1 =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχ(Yn

z )
φ(1+ν).

It follows that the steady-state distortion due to sticky prices and wages (and less than perfect indexa-

tion) is (
Yz

Yn
z

)φ(1+ν)

= Ω.

H Welfare

Let us define for any generic variable Xt

Xt − X
X

= x̂t +
1
2

x̂2
t +O(||ζ||3)
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Xt − Xn

Xn = x̃t +
1
2

x̃2
t +O(||ζ||3)

Below, we repeatedly use the following two lemmas:

Lemma 1. Let g(·) be a twice differentiable function and let X be a stationary random variable. Then

E{g(X)} = g(E{X}) + 1
2

g′′(E{X})V{X}+O(||X||3).

Lemma 2. Let g(·) be a twice differentiable function and let x be a stationary random variable. Then

V{g(X)} = [g′(E{X})]2V{X}+O(||X||3).

In the rest of this section, we take a second-order approximation of welfare, where we consider the

inflation rate as an expansion parameter. It follows that we consider the welfare effects of non-zero trend

inflation only up to second order.

H.1 Second-Order Approximation of Utility

Consider first the utility derived from consumption. For the sake of notational simplicity, define

U(Cz,t − ηCz,t−1e−ζz,t) = log(Cz,t − ηCz,t−1e−ζz,t)

We thus obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[(
Cz,t − Cn

z
Cn

z

)
− η

(
Cz,t−1 − Cn

z
Cn

z

)

− 1
2

1
(1− η)

(
Cz,t − Cn

z
Cn

z

)2

+
η

(1− η)

(
Cz,t − Cn

z
Cn

z

)(
Cz,t−1 − Cn

z
Cn

z

)
− 1

2
η2

(1− η)

(
Cz,t−1 − Cn

z
Cn

z

)2

+ ζc,t

(
Cz,t − Cn

z
Cn

z

)
− ηζc,t

(
Cz,t−1 − Cn

z
Cn

z

)
− η

(1− η)
ζz,t

(
Cz,t − Cn

z
Cn

z

)
+

η

(1− η)
ζz,t

(
Cz,t−1 − Cn

z
Cn

z

)]
+ t.i.p +O(||ζ||3),

where t.i.p stands for terms independent of policy.

Then, using
Cz,t − Cn

z
Cn

z
= c̃z,t +

1
2

c̃2
z,t +O(||ζ||3)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
c̃z,t − ηc̃z,t−1 +

1
2
(c̃2

z,t − ηc̃2
z,t−1)

− 1
2

1
1− η

c̃2
z,t +

η

1− η
c̃z,t c̃z,t−1 −

1
2

η2 1
1− η

c̃2
z,t−1

+ ζc,t(c̃z,t − ηc̃z,t−1)−
η

1− η
ζz,t(c̃z,t − c̃z,t−1)

]
+ t.i.p +O(||ζ||3),
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Using

ϕ−1 = (1− βη)(1− η)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
ỹz,t − ηỹz,t−1 +

1
2
(ỹ2

z,t − ηỹ2
z,t−1)

− 1
2
(1− βη)ϕỹ2

z,t + η(1− βη)ϕỹz,tỹz,t−1 −
1
2

η2(1− βη)ϕỹ2
z,t−1

+ ζc,t(ỹz,t − ηỹz,t−1)− η(1− βη)ϕζz,t(ỹz,t − ỹz,t−1)

]
+ t.i.p +O(||ζ||3),

where we imposed the equilibrium condition on the goods market.

Similarly, taking a second-order approximation of labor disutility in the neighborhood of the natural

steady-state Nn yields

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
+

1
2

χν(Nn)1+ν

(
Nt(h)− Nn

Nn

)2

+ χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
ζh,t + t.i.p +O(||ζ||3).

Now, using
Nt(h)− Nn

Nn = ñt(h) +
1
2

ñt(h)2 +O(||ζ||3)

we get

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

[
ñt(h) +

1
2
(1 + ν)ñt(h)2 + ñt(h)ζh,t

]
+ t.i.p +O(||ζ||3).

Integrating over the set of labor types, one gets∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1+ ν)Eh{ñt(h)2}+Eh{ñt(h)}ζh,t

]
+ t.i.p+O(||ζ||3).

Now, since

Vh{ñt(h)} = Eh{ñt(h)2} −Eh{ñt(h)}2

the above relation rewrites

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1 + ν)(Vh{ñt(h)}+ Eh{ñt(h)}2)

+ Eh{ñt(h)}ζh,t

]
+ t.i.p +O(||ζ||3).

We need to express Eh{ñt(h)} and Vh{ñt(h)} in terms of the aggregate variables. To this end, we first

establish a series of results, on which we draw later on.
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H.2 Aggregate Labor and Aggregate Output

Notice that
θw − 1

θw
ñt = log

(∫ 1

0

(
Nt(h)

Nn

)(θw−1)/θw

dh

)
.

Then, applying lemma 1, one obtains

ñt = Eh{ñt(h)}+
1
2

θw

θw − 1
Eh

{(
Nt(h)

Nn

) θw−1
θw

}−2

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
+O(||ζ||3).

Then, notice that

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= Vh

{
exp

[
(1− θ−1

w ) log
(

Nt(h)
Nn

)]}
so that, by applying lemma 2, one obtains

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= (1− θ−1

w )2 exp
(
(1− θ−1

w )Eh{ñt(h)}
)2

Vh{ñt(h)}+O(||ζ||3).

Similarly

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= Eh

{
exp

[
(1− θ−1

w )ñt(h)
]}

so that, by applying lemma 1 once more, one obtains

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= exp

[
(1− θ−1

w )Eh{ñt(h)}
] (

1 +
1
2
(1− θ−1

w )2Vh{ñt(h)}
)
+O(||ξ||3).

Then combining the previous results

ñt = Eh{ñt(h)}+
1
2

1
1− θ−1

w

(1− θ−1
w )2Vh{ñt(h)}(

1 + 1
2 (1− θ−1

w )2Vh{ñt(h)}
)2 +O(||ζ||3).

It is convenient to define

∆h,t ≡ Vh{ñt(h)}

so that finally

ñt = Eh{ñt(h)}+ Q0,h +
1− θ−1

w
2

Q1,h(∆h,t − ∆n) +O(||ζ||3).

where we defined

Q0,h =
1−θ−1

w
2 ∆n[

1 + 1
2 (1− θ−1

w )2∆n

]2

and

Q1,h =
1− 1

2 (1− θ−1
w )2∆n[

1 + 1
2 (1− θ−1

w )2∆n

]3
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Applying the same logic on output and defining

∆y,t ≡ V f {ỹt( f )}

one gets

ỹz,t = E f {ỹz,t( f )}+ Q0,y +
1− θ−1

p

2
Q1,y(∆y,t − ∆y) +O(||ζ||3).

where we defined

Q0,y =

1−θ−1
p

2 ∆y[
1 + 1

2 (1− θ−1
p )2∆y

]2

and

Q1,y =
1− 1

2 (1− θ−1
p )2∆y[

1 + 1
2 (1− θ−1

p )2∆y

]3

Then recall from (??) and from the equilibrium on the market for aggregate labor that

Nt =
∫ 1

0
Lt( f )d f =

∫ 1

0
Yz,t( f )φd f

which implies
Nt

Nn =
∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

where we used Nn = (Yn
z )

φ.

This relation rewrites

ñt = log

(∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

)
This expression is of the form

ñt = log

(
E f

{(
Yz,t( f )

Yn
z

)φ
})

.

Using lemmas 1 and 2, we obtain the following three approximations

ñt = E f {φ(ỹz,t( f )− zt)}+
1
2

V f

{(
Yz,t( f )

Yn
z

)φ
}

(
E f

{(
Yz,t( f )

Yn
z

)φ
})2 +O(||ζ||3),

V f

{(
Yz,t( f )

Yn
z

)φ
}

= φ2 [exp [φE{ỹz,t( f )}]]2 V f {ỹz,t( f )}+O(||ζ||3),

E f

{(
yz,t( f )

yn
z

)φ
}

= exp [φE{ỹz,t( f )}]
(

1 +
1
2

φ2V f {ỹz,t( f )}
)
+O(||ζ||3).

Combining these expressions as before yields

ñt = φE f {ỹz,t( f )}+ 1
2

φ2 V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 +O(||ζ||3).
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We finally obtain

ñt = φE f {ỹz,t( f )}+ P0,y +
1
2

φ2P1,y(∆y,t − ∆y) +O(||ζ||3),

where we used

V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 =

∆y(
1 + 1

2 φ2∆y
)2 +

1− 1
2 φ2∆y(

1 + 1
2 φ2∆y

)3 (∆y,t − ∆y) +O(||ζ||3)

and defined

P0,y =
1
2 φ2∆y(

1 + 1
2 φ2∆y

)2

and

P1,y =
1− 1

2 φ2∆y(
1 + 1

2 φ2∆y
)3

H.3 Aggregate Price and Wage Levels

The aggregate price index is

P1−θp
t =

(∫ 1

0
Pt( f )1−θp d f

)
and the aggregate wage index is

W1−θw
t =

(∫ 1

0
Wt(h)1−θw dh

)
.

From lemma 1 and the definitions of Pt and Wt, we obtain

pt = E f {pt( f )}+ 1
2

1
1− θp

V f {Pt( f )1−θp}
E f {Pt( f )1−θp}2

+O(||ζ||3),

and

wt = Eh{wt(h)}+
1
2

1
1− θw

Vh{Wt(h)1−θw}
Eh{Wt(h)1−θw}2 +O(||ζ||3).

Then, from lemma 2, we obtain

V f {Pt( f )1−θp} = V f {exp[(1− θp)pt( f )]}

= (1− θp)
2 exp[(1− θp) p̄t]

2∆p,t +O(||ζ||3),

and

Vh{Wt(h)1−θw} = Vh{exp[(1− θw)wt(h)]}

= (1− θw)
2 exp[(1− θw)w̄t]

2∆w,t +O(||ζ||3),

where we defined

p̄t = E f {pt( f )}, w̄t = Eh{wt(h)},
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∆p,t = V f {pt( f )}, ∆w,t = Vh{wt(h)}.

Applying lemma 1 once again, we obtain

E f {Pt( f )1−θp} = E f {exp[(1− θp)pt( f )]}

= exp[(1− θp) p̄t]

(
1 +

1
2
(1− θp)

2∆p,t

)
and

Eh{Wt(h)1−θw} = Eh{exp[(1− θw)wt(h)]}

= exp[(1− θw)w̄t]

(
1 +

1
2
(1− θw)

2∆w,t

)
Combining these relations, we obtain

pt = p̄t +
1
2

(1− θp)∆p,t[
1 + 1

2 (1− θp)2∆p,t
]2 +O(||ζ||3),

and

wt = w̄t +
1
2

(1− θw)∆w,t[
1 + 1

2 (1− θw)2∆w,t
]2 +O(||ζ||3).

Thus

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

and

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3).

where we defined

Q0,p =

1−θp
2 ∆p[

1 + 1
2 (1− θp)2∆p

]2 , Q0,w =
1−θw

2 ∆w[
1 + 1

2 (1− θw)2∆w
]2

and

Q1,p =
1− 1

2 (1− θp)2∆p[
1 + 1

2 (1− θp)2∆p
]3 , Q1,w =

1− 1
2 (1− θw)2∆w[

1 + 1
2 (1− θw)2∆w

]3

Remark that the constant terms in the second-order approximation of the log-price index can be rewrit-

ten as

Q0,p −
1− θp

2
Q1,p∆p =

1
2

(1− θp)3∆2
p[

1 + 1
2 (1− θp)2∆p

]3 .

Finally, using the demand functions, one obtains

ỹz,t( f ) = −θp[pt( f )− pt] + ỹz,t,
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ñt(h) = −θw[wt(h)− wt] + ñt,

from which we deduce that

∆y,t = θ2
p∆p,t

and

∆h,t = θ2
w∆w,t.

H.4 Price and Wage Dispersions

We now derive the law of motion of price dispersion. Notice that

∆p,t = V f {pt( f )− p̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-prices yield

p̄t − p̄t−1 = αpγp[(1− ιp)π + ιpπt−1] + (1− αp)[p?t − p̄t−1]. (H.1)

Then, the classic variance formula yields

∆p,t = E f {[pt( f )− p̄t−1]
2} − [E f {pt( f )− p̄t−1}]2

Using this, we obtain

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπ̃t−1]
2}+ (1− αp)[p?t − p̄t−1]

2 − [ p̄t − p̄t−1]
2

where we defined

π̃t ≡ π + ιp(πt − π)

Notice that

(1− αp)[p?t − p̄t−1]
2 − [ p̄t − p̄t−1]

2

= (1− αp)

[
1

1− αp
( p̄t − p̄t−1)−

αp

1− αp
γpπ̃t)

]2

− [ p̄t − p̄t−1]
2

=
αp

1− αp
[ p̄t − p̄t−1 − γpπ̃t]

2 − αp[γpπ̃t]
2

Using this in the above equation yields

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπ̃t]
2} − αp[γpπ̃t]

2 +
αp

1− αp
[ p̄t − p̄t−1 − γpπ̃t]

2

Now, notice also that

αpE f {[pt−1( f )− p̄t−1]
2} = αpE f {[pt−1( f )− p̄t−1 + γpπ̃t]

2} − αp[γpπ̃t]
2
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It then follows that

∆p,t = αpE f {[pt−1( f )− p̄t−1]
2}+

αp

1− αp
[ p̄t − p̄t−1 − γpπ̃t]

2

Hence

∆p,t = αp∆p,t−1 +
αp

1− αp
[ p̄t − p̄t−1 − γpπ̃t]

2

which, in turn, implies

∆p,t = αp∆p,t−1 +
αp

1− αp
[ p̄t − p̄t−1 − γp(π + ιp(πt−1 − π))]2.

Using

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

we obtain

p̄t − p̄t−1 = πt −
1− θp

2
Q1,p(∆p,t − ∆p,t−1) +O(||ζ||3).

Hence

∆p,t = αp∆p,t−1 +
αp

1− αp

[
πt −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)− γp(π + ιp(πt−1 − π))

]2

+O(||ζ||3).

The steady-state value of ∆p is thus

∆p =
(1− γp)2αp

(1− αp)2 π2

We obtain finally

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpιpπ̂t−1 −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)

]2
+O(||ζ||3).

Unless π is itself treated as an expansion variable in the above approximation, we cannot claim that

∆p,t is second-order.

We now derive the law of motion of wage dispersion. Following similar steps as for price dispersion,

notice that

∆w,t = Vh{wt(h)− w̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-wages yield

w̄t − w̄t−1 = αw(γzµz + γw[(1− ιw)π + ιwπt−1]) + (1− αw)[w?
t − w̄t−1]. (H.2)

Then, the classic variance formula yields

∆w,t = Eh{[wt(h)− w̄t−1]
2} − [Eh{wt(h)− w̄t−1}]2
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Using this, we obtain

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπ̃t−1]
2}+ (1− αw)[w?

t − w̄t−1]
2 − [w̄t − w̄t−1]

2

where, this time, we defined

π̃t = π + ιw(πt − π)

Notice that

w?
t − w̄t−1 =

1
1− αw

(w̄t − w̄t−1)−
αw

1− αw
[γzµz + γwπ̃t]

so that

(1− αw)[w?
t − w̄t−1]

2 − [w̄t − w̄t−1]
2

= (1− αw)
[ 1

1− αw
(w̄t − w̄t−1)−

αw

1− αw
[γzµz + γwπ̃t]

]2
− [w̄t − w̄t−1]

2

=
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπ̃t]

]2
− αw[γzµz + γwπ̃t]

2

Using this in the above equation yields

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπ̃t]
2}

− αw[γw log(1 + π̃t)]
2 +

αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπ̃t]

]2

Now, notice also that

αwEh{[wt−1(h)− w̄t−1]
2} = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπ̃t]

2} − αw[γzµz + γwπ̃t]
2

It then follows that

∆w,t = αwEh{[wt−1(h)− w̄t−1]
2}+ αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γpπ̃t]

]2

Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπ̃t]

]2

which, in turn, implies

∆w,t = αw∆w,t−1 +
αw

1− αpw
[w̄t − w̄t−1 − γzµz − γw (π + ιw (πt−1 − π))]2 .

Using

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3),

we obtain

w̄t − w̄t−1 = πw,t −
1− θw

2
Q1,w(∆w,t − ∆w,t−1) +O(||ζ||3).
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Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
πw,t −

1− θw

2
Q1,w(∆w,t − ∆w,t−1)

− γzµz − γw (π + ιw (πt−1 − π))

]2

+O(||ζ||3).

The steady-state value of ∆w is thus

∆w =
αw

(1− αw)2 [(1− γz)µz + (1− γw)π]2

We obtain finally

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwιwπ̂t−1

− 1− θw

2
Q1,w(∆w,t − ∆w,t−1)

]2
+O(||ζ||3).

Here, treating π as an expansion parameter will not suffice to ensure that wage dispersion ∆w,t is second

order because an additional constant term linked to average productivity shows up in the above equations.

Henceforth, we will assume that µz is an expansion parameter.

Then, if we treat π as an expansion variable, precisely because the steady-state value of ∆p is of second-

order, many of the expressions previously derived considerably simplify. In particular, we now obtain

pt = p̄t +
1− θp

2
∆p,t +O(||ζ, π||3),

wt = w̄t +
1− θw

2
∆w,t +O(||ζ, π||3), ).

Now, because ∆y and ∆n are proportional to ∆p and ∆w, respectively, and because ∆p and ∆w are both

proportional to π2, we also obtain

ñt = Eh{ñt(h)}+
1− θ−1

w
2

∆h,t +O(||ζ, π||3),

ñt = φ(E f {ỹz,t( f )} − zt) +
1
2

φ2∆y,t +O(||ζ, π||3),

ỹt = E f {ỹt( f )}+
1− θ−1

p

2
∆y,t +O(||ζ, π||3), ).

Thus, for sufficiently small inflation rates, we obtain formulas resembling those derived in Woodford

(2003).
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Finally, price and wage dispersions rewrite

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpιpπ̂t−1

]2
+O(||ζ, π||3), ).

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwιwπ̂t−1

]2
+O(||ζ, π||3), ).

H.5 Combining the Results

Combining the previous results, we obtain

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
ñt +

1
2
(1 + ν)ñ2

t + ñtζh,t

+
1
2
(1 + νθw)θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

In turn, we have

ñt = φỹt +
1
2

φ[(φ− 1)θp + 1]θp∆p,t +O(||ζ, π||3),

so that

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = φχ(Nn)1+ν

[
(ỹt − zt) +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

Then, using

(1−Φ)
1− βη

1− η
= φχ(Nn)1+ν,

where we defined

1−Φ ≡ 1 + τw

µw

1 + τp

µp
,

we obtain

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

(1−Φ)
1− βη

1− η
E0

∞

∑
t=0

βt
[
ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

53



Assuming the distortions are themselves negligible, this simplifies further to

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

1− βη

1− η
E0

∞

∑
t=0

βt
[
(1−Φ)ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

We now deal with the first term in the utility function. To that end, notice that

∞

∑
t=0

βtat−1 = a−1 + β
∞

∑
t=0

βt−1at−1 = a−1 + β
∞

∑
t=0

βtat.

Using this trick, we obtain

E0

∞

∑
t=0

βteζc,t log(Cz,t − ηCz,t−1e−ζz,t) =
1− βη

1− η
E0

∞

∑
t=0

βt

[
ỹz,t −

1
2
[ϕ(1 + βη2)− 1]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ ϕĝtỹz,t − ηϕζ∗z,tỹz,t

]
+ t.i.p +O(||ζ||3),

where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}),

so that

(1− βη)ϕĝt ≡ (ζc,t − βηEt{ζc,t+1}).

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

Combining terms, we obtain

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ (ϕĝt − ζh,t − ϕηζ∗z,t)ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

where, as defined earlier

ω = (1 + ν)φ− 1
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Now, recall that

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt

{
ŷn

z,t+1
}
− ϕηŷn

z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

Using this above yields

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ [ϕ(1 + βη2) + ω]ŷn
z,tỹz,t − ϕβηŷn

z,t+1ỹz,t − ϕηŷn
z,t−1ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ŷn
t ỹt − ϕβηŷn

t+1ỹt − ϕηŷn
t−1ỹt

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ξ, π||3)

To simplify this expression, we seek constant terms δ0, δ and x? such that

E0

∞

∑
t=0

βt

{
− 1

2
δ0[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x?]2

}

= E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ỹtŷn
t − ϕβηỹtŷn

t+1 − ϕηỹtŷn
t−1

]
+ t.i.p

Developing yields

− δ0

2

[
(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗

]2

= −1
2

δ0ỹ2
t + δ0ỹtŷn

t + δ0δỹtỹt−1 − δ0δỹtŷn
t−1 − δ0δỹt−1ŷn

t

− 1
2

δ0δ2ỹ2
t−1 + δ0δ2ỹt−1ŷn

t−1 + δ0(ỹt − δỹt−1)x̂∗ + t.i.p

Thus

E0

∞

∑
t=0

βt

{
− δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

}

= E0

∞

∑
t=0

βt

{
δ0(1− βδ)x̂∗ỹt −

1
2

δ0(1 + βδ2)ỹ2
t + δ0δỹtỹt−1

+ δ0(1 + βδ2)ỹtŷn
t − δ0δỹtŷn

t−1 − δ0δβỹtŷn
t+1

}
+ t.i.p
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Identifying term by term, we obtain

δ0(1− βδ)x∗ = Φ

δ0(1 + βδ2) = [ω + ϕ(1 + βη2)]

δ0δ = ηϕ

Combining these relations, we obtain

ηδ2 − ω + ϕ)(1 + βη2)

βϕ
δ + ηβ−1 = 0,

or equivalently

P(κ) = β−1κ2 − χκ + η2 = 0,

where

κ =
η

δ
,

χ =
ω + ϕ(1 + βη2)

βϕ
> 0.

Notice that

P(0) = η2 > 0,

P(1) = − ω

βϕ
< 0

so that the two roots of P(κ) = 0 obey

0 < κ1 < 1 < κ2.

In the sequel, we focus on the larger root and define

κ = κ2 =
β

2

(
χ +

√
χ2 − 4η2β−1

)
> 1.

Since δ = η/κ, we have

0 ≤ δ ≤ η < 1.

Thus, given the obtained value for κ, we can deduce δ from which we can compute δ0.

We thus obtain

U0 = −1− βη

1− η
E0

∞

∑
t=0

βt

{
δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

}
+ t.i.p +O(||ζ, π||3), )
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The last step consists in expressing price and wage dispersions in terms of squared price and wage

inflations.

Recall that

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpιpπ̂t−1

]2
+O(||ζ, π||3), ).

Iterating backward on this formula yields

∆p,t =
αp

1− αp

t

∑
s=0

αt−s
p [(1− γp)π + π̂s − γpιpπ̂s−1]

2 + t.i.p +O(||ζ, π||3), ).

It follows that

∞

∑
t=0

βt∆p,t =
αp

(1− αp)(1− βαp)

∞

∑
t=0

βt[(1− γp)π + π̂t − γpιpπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).

and by the same line of reasoning

∞

∑
t=0

βt∆w,t =
αw

(1− αw)(1− βαw)

∞

∑
t=0

βt[(1− γz)µz + (1− γw)π + π̂w,t − γwιwπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).

Thus, defining

λy ≡ δ0

λp ≡
αpθp[(φ− 1)θp + 1]
(1− αp)(1− βαp)

λw ≡
αwφ−1θw(1 + νθw)

(1− αw)(1− βαw)

The second order approximations to welfare rewrites

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[xt − δxt−1 + (1− δ)x̄− x∗]2

+ λp[(1− γp)π + π̂t − γpιpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwιwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

where we defined

xt ≡ ŷt − ŷn
t

x̄ ≡ log
(

Yz

Yn
z

)
.
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