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1 Introduction

This paper proposes a solution to the problem of identification and estimation

of treatment effects in parametric regressions when participation is endogenously

misreported. In particular, we provide a two-step estimation procedure that con-

sistently estimates the conditional average treatment effect. Participation in social

programs is substantially misreported in survey data, sometimes with misreport-

ing levels as high as 50% (Meyer, Mok & Sullivan 2009). When a binary regressor

is misreported (or misclassified), the measurement error is necessarily negatively

correlated with the underlying true value of the regressor, thus making the clas-

sical measurement error assumptions implausible.1 While earlier papers (Aigner

1973, Lewbel 2007) show that exogenous misreporting leads to attenuation bias,

we demonstrate that the effects of endogenous misreporting are much more severe.

To our knowledge, this paper is the first attempt to provide point estimates of

treatment effects in the context of endogenous misreporting of a binary treatment

variable.

Misreporting occurs when program participants report not receiving treatment

when they actually did (“false negatives”) or vice versa (“false positives”). One-

sided misreporting (i.e., the occurrence of only one of the two types of misclassifi-

cation errors) is pervasive in practice and in many empirical studies. For example,

Lynch, Marioni & Tavaré (2007) and Meyer & Goerge (2011) report that valida-

tion studies always find high rates of false negatives in the Supplemental Nutrition

Assistance Program (SNAP) ranging from 20% to 50%, depending on the survey

1For empirical papers that discuss non-classical measurement errors with continuous explana-
tory variables, see, e.g., Stephens & Unayama (2015), Haider & Solon (2006) and the references
therein.
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and time period.2 While Meyer & Goerge (2011) finds up to 50% rate of false

negatives in SNAP participation in the CPS Annual Social and Economic Supple-

ment, false positives are typically low with only less than 1.5% of non-recipients

reporting SNAP receipt.

One-sided misreporting is not confined to government programs. For example,

according to Bound (1991), there are a number of reasons to be suspicious of any

survey response to questions concerning self-evaluated health, not only because

respondents are being asked for subjective judgments, but also because responses

may be endogenous to the outcomes we may wish to use them to explain. Bra-

chet (2008) argues that in health-related surveys, self-reported smoking status is

significantly misreported, with false negatives ranging from 3.4% in some stud-

ies to 73% in others. Other instances of one-sided misreporting can be found in

the development literature where a firm’s formality status is often misreported,

with informal firms more likely to falsely report their status (see Gandelman &

Rasteletti 2017), or the education literature where misclassification error is more

likely to arise from overreporting of qualifications (e.g. Battistin & Sianesi 2011).

Recognizing the documented evidence of misclassification errors, a related lit-

erature considers the consequences of measurement errors in a binary regressor in

Monte Carlo studies. For instance, in studying the worst-case bounds of regression

coefficients under arbitrary misclassification of a binary regressor, Kreider (2010)

finds that even with misclassification error rates of less than 2%, the confidence

intervals from the contaminated data that the researcher observes and the true,

error-free data do not overlap. Similarly, Millimet (2011) studies the performance

of several estimators employed in the causal inference literature while introducing

measurement error in the treatment (binary) regressor, outcome variable, and vec-

2Misreporting has also been documented for other government programs; see, e.g., Marquis
& Moore (1990) for an earlier validation study discussing measurement error in the reports of
participation in eight government transfer programs in the 1984 Survey of Income and Program
Participation (SIPP).
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tor of covariates, and cautions researchers to be conscious of the consequences of

not addressing measurement error.

The existing literature has focused on accounting for random (exogenous) mis-

reporting when participation is exogenous. For instance, Aigner (1973) considers

misclassification in exogenous binary regressors, shows that OLS estimates are

biased downwards, and proposes a technique based on knowledge of the misclas-

sification probabilities to consistently estimate the parameters of interest. More

recently, Lewbel (2007) examines the identification and estimation of the treatment

effect of a misclassified binary regressor in nonparametric and semiparametric re-

gressions. Lewbel reaches the same attenuation-bias result that Aigner (1973)

finds and introduces assumptions that identify the conditional average treatment

effect of the misclassified binary regressor. Related works by Bollinger (1996),

Black, Berger & Scott (2000) and van Hasselt & Bollinger (2012) provide partial

identification bounds in the linear regression model, while Chen, Hu & Lewbel

(2008a,b), provide identification in the nonparametric regression model.

Some attempts have been made to address exogenous misreporting when treat-

ment selection (participation) is endogenous. In the education literature, Kane,

Rouse & Staiger (1999) address misreporting when estimating returns to school-

ing by proposing a generalized method of moments (GMM) estimator that re-

lies on the existence of two categorical reports of educational attainment, and so

may have limited applicability. In estimating the effects of maternal smoking on

infant health, Brachet (2008) proposes a two-step GMM estimator, that essen-

tially follows Hausman, Abrevaya & Scott-Morton (1998) and Kane et al. (1999).

An admitted weakness of Brachet’s approach is the assumption that misreport-

ing probabilities are independent of covariates, conditional on treatment status.

Frazis & Loewenstein (2003) and Mahajan (2006) study identification with the

usual IV assumptions under homogenous and heterogenous treatment effects due
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to observables, respectively. More recently, DiTraglia & Garćıa-Jimeno (2017) de-

rive a sharp identified set under standard first-moment assumptions and propose

a Bonferroni-based procedure for identification robust inference. Also, Bollinger

& van Hasselt (2017) use a Bayesian approach while Ura (2017) allows for hetero-

geneous treatment effects due to unobeservables in these models.

Much less is known about the case in which the regressor and the measurement

error are both endogenous. Hu, Shiu & Woutersen (2015, 2016) provide identi-

fication results in a class of nonseparable index models with measurement error

and endogeneity. Kreider, Pepper, Gundersen & Jolliffe (2012) is the most closely

related to our work, in the sense that they allow for both treatment endogeneity

and endogenous measurement error in the case of binary treatment as we do in

this paper. In estimating the effect of SNAP on health outcomes, they use auxil-

iary administrative data on the size of SNAP caseloads to address misreporting by

bounding the average treatment effect under increasingly stronger assumptions.

While this partial identification approach identifies treatment effects with their

tightest bounds, it does not yield point estimates. As such its relevance for policy

making may not be widespread.

This paper has three salient contributions. First, we propose a parametric

model of endogenous misreporting and endogenous participation. We only analyze

the case of one-sided misreporting at this stage, which is the predominant case

of misreporting described in Meyer et al. (2009). Second, we show that when

misreporting is endogenous, OLS and IV estimators are inconsistent and OLS

estimates can be of opposite signs from the true effects (sign reversal), whether

participation is endogenous or not. We provide theoretical expressions for these

biases under the normality assumption as well as Monte Carlo simulation evidence.

Third, we propose an estimator that is root-n consistent and asymptotically normal

and show that it performs remarkably well in small samples.
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We illustrate the use of our approach in an empirical application. Identification

in our framework relies on the existence of both an additional random variable that

is correlated with the unobserved true underlying treatment, but unrelated to the

outcome and the misclassification error (e.g., Frazis & Loewenstein 2003, Mahajan

2006), as well as a random variable that is correlated with the misclassification

error and needs not be excludable from the outcome. In addition, we assume that

the observed treatment probability is a joint (known) function of the treatment and

misclassification probability. This allows us to pin down the marginal distribution

of true participation and thus point-identify the treatment effect.

The rest of the paper is organized as follows. Section 2 presents the model

of endogenous misreporting and shows the inconsistency of OLS and IV estima-

tors. Section 3 develops the proposed estimator. Section 4 provides Monte Carlo

simulations, Section 5 contains an empirical application and Section 6 concludes.

Proofs and other technical material are collected in the appendix.

2 Framework

This section describes the proposed model and associated framework, and presents

our estimation strategy.

2.1 Model with Endogenous Misreporting

Consider the following specification of the usual treatment effects model. The

outcome variable, yi, is related to the k–vector of correctly measured exogenous

covariates, xi, and the (true) participation indicator, δ∗i , by

yi = x′iβ + δ∗i α + εi, (1)
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and we model participation as

δ∗i = 1 (z′iθ + vi ≥ 0) , (2)

where α is a scalar capturing the treatment effect of interest, β and θ are parameter

vectors of sizes k× 1 and q× 1 respectively, zi is a q-vector of exogenous variables

that includes xi as well as additional instruments that are unrelated to εi. In this

model, the (possible) endogeneity of participation is captured by the correlation

between the error terms εi and vi.

However, the researcher does not observe the true participation indicator δ∗i

but only a possibly misclassified surrogate, δi, contaminated by a misreporting

unobserved dummy variable, di, such that δi = δ∗i di. In other words, an individual

correctly reports her treatment status only if di = 1 and reports not receiving

treatment otherwise. We assume that misreporting, di, is related to a p-vector of

observable covariates wi such that

di = 1 (w′iγ + ui ≥ 0) , (3)

where γ is a parameter vector of size p × 1 and ui is the error term. Hence, the

observed participation, δi, can be modeled by

δi = δ∗i di = 1 (z′iθ + vi ≥ 0, w′iγ + ui ≥ 0) . (4)

Our modeling of misreported participation is generally in the spirit of a wider class

of methods that have been developed for incomplete data scenarios and specifi-

cally similar to partial observability models studied in Poirier (1980). Partial

observability models such as Poirier’s have been widely applied in many fields of

study, including Feinstein’s examination of the problem of incomplete detection of
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violations of laws and regulations (Feinstein 1990).

For the estimation, no further restrictions are imposed on xi. However, we

require the covariates zi and wi to be different but possibly overlapping and to

have sufficient variation (e.g., at least one covariate in z and in w is continuous) to

avoid the local identification problems discussed in Poirier (1980). We also make

the following basic assumptions, some of which are standard in the literature.

Assumption 1. The error term εi is independent of the exogenous variables xi,

zi, with variance σ2; and the error terms (ui, vi) are independent of all covariates

xi, zi, wi, and have unit variances. The correlations for the pairs (εi, ui), (εi, vi)

and (ui, vi) are denoted ϕu, ϕv and ρ, respectively.

Assumption 2. The k × k matrix, E(xix
′
i), is nonsingular (and hence finite).

Assumption 3. The joint CDF of (−ui,−vi) is known, and is defined by

Fu,v(u, v, ρ) = Pr[−ui ≤ u, −vi ≤ v], for any −∞ < u, v < +∞.

In particular, we assume that conditional on zi and wi, (−ui,−vi) follows a bi-

variate normal distribution.

Assumption 4. The error terms, (εi, ui, vi), follow a trivariate normal distribu-

tion, conditional on all covariates xi, zi, wi. That is,

(εi, ui, vi)
′ |xi, zi, wi ∼ N (0,Σ) , with Σ =


σ2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

 , (5)

Assumptions 1 and 2 are quite standard. However, it is important to notice

that unlike xi and zi, the exogeneity requirement does not apply to wi, the vec-

tor of covariates associated with misreporting in equation (3). This could be of
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substantial interest in practice where exogenous covariates are often difficult to

find. Assumption 3 is critical to parametrically identify the probability of true

(unobserved) participation. While we assume joint normality of the disturbance

terms in the observed participation equation for simplicity (as in Poirier 1980),

normality is not needed and the following discussion would hold for other abso-

lutely continuous distributions (e.g., the bivariate logistic distributions discussed

in Gumbel 1961). Assumption 4 is only needed to derive closed-form formulas for

the OLS bias (see Section 2.2) and for extensions to binary choice models and full

information maximum likelihood (see Appendix B); but it is not essential for the

rest of our main discussions.

Our estimation strategy relies on observing z and w. We recognize that ex-

clusion restrictions for participation as well as relevant predictors for misreporting

may be difficult to obtain in practice and our suggestion is to rely on different

data sources. For instance, exclusion restrictions for participation may come from

qualification laws (eligibility requirements) for program participation. Relevant

predictors of misreporting, wi, could include peculiar features of the survey in

question and its administration such as survey date, length of survey, interview

mode, etc., and the proportion of questions to which the individual refused to

respond.

2.2 Bias due to Endogenous Misreporting

We first show that a naive OLS estimator of the treatment effect is biased and

may assume a sign opposite to the true effect. Since the true participation status

δ∗i is unobserved and only δi is observed, the model with reported participation

status estimated by the researcher is given by

yi = x′iβ + δiα + εi. (6)
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Given the true outcome equation defined by equation (1), equation (6) implies

that

εi = εi + (δ∗i − δi)α. (7)

For a random sample of size n, equation (6) can be re-written in the matrix

form as follows:

y = Xβ + δα + ε, (8)

where y = [y1, . . . , yn]′, X = [x1, . . . , xn]′, δ = [δ1, . . . , δn]′, and ε = [ε1, . . . , εn]′.3

Denote by α̂LS the OLS estimator obtained by naively estimating equation (6)

using reported participation δi. Then, we have the following result.

Theorem 1. Under Assumptions 1 - 4, the ordinary least squares estimator, α̂LS,

is biased and inconsistent, and the asymptotic bias is given by

plim(α̂LS − α) =
A− αB

C
, (9)

with

A = E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
,

B = E(δix
′
i)E(xix

′
i)
−1E[(δ∗i − δi)xi] and C = E(δi)− E(δix

′
i)E(xix

′
i)
−1E(δixi),

where φ(·) and Φ(·) are respectively the pdf and cdf of the standard normal.

Proof. See Appendix.

3Re-writing the model in matrix notation is not necessary but makes the exposition (especially
the proofs) less cumbersome. The matrix form also gives alternative (simpler) expressions for
the various estimators considered.
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Since the denominator in (9), C, is always positive by the Cauchy-Schwarz

Inequality (see, e.g., Tripathi 1999) the sign of the asymptotic bias only depends

on the numerator of the expression. For example, if B > 0, then plim(α̂LS) < α

for all α > A/B (i.e., there is an attenuation bias) and plim(α̂LS) > α for all

α < A/B (i.e., there is an expansion bias). Also there are many instances in

which plim(α̂LS) and α will have opposite signs. For example, if B − C < 0, then

plim(α̂LS) and α have opposite signs whenever α lays between A/(B − C) and 0

(Figure 1 depicts the regions where bias and sign switching occur in this case).

Note that sign-switching can occur even when participation is exogenous. With-

out loss of generality, consider the case of exogenous participation (i.e ϕv = 0).

The sign-switching result depicted in Figure 1 follows if (i) A > 0, (ii) B −C < 0,

and (iii) A/(B − C) < α < 0. Condition (i) holds if misreporting is endoge-

nous and the disturbance terms in equations (1) and (3) are positively correlated

(ϕu > 0). Thus, the size of the sign-switching region depends on how large the

ratio A/(B − C) is in general. In particular, in our example, the size of the sign-

switching region increases with the rate of false negatives and the variance of the

error term in the outcome equation, and decreases with the rate of true participa-

tion, ceteris paribus. We provide evidence on the sign-switching region and these

relationships in our Monte Carlo study in Section 4.

The above discussion shows that the bias related to misreporting is not merely

an attenuation bias as found in many other studies (e.g., Aigner 1973, Black et al.

2000, Lewbel 2007). Under endogenous misreporting, the estimated treatment

effect can possibly assume an opposite sign, yielding misleading policy prescrip-

tions. This sign reversal phenomenon would generally occur when misreporting

is significant and the direction of its correlation with the outcome is opposite to

the direction of the treatment effect. For example, in the SNAP participation

and obesity relationship, much empirical work have relied on self-reported SNAP
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Figure 1: Illustration of the OLS bias

participation and have found a positive or no effect on obesity. But, if people who

are overweight are also more likely to correctly report SNAP participation (i.e., A

positive) and since, as mentioned above, misreporting in SNAP is very severe in

the data ( i.e., B−C is negative with a small magnitude) then we could observe a

positive relationship between SNAP participation and obesity (i.e. plimα̂LS > 0)

even if the true effect is negative (i.e. α < 0).

In the next section, we provide an estimation strategy that allows consistent

estimation of the treatment effect, α. But first, we examine how well an IV esti-

mation strategy would perform in our framework.

2.3 IV Estimator under Endogenous Misreporting

The misreporting mechanism described above shows that in equation (6), the

regressor δi is correlated with the error term εi as implied by equation (7). Thus,

equation (1) can be seen as a regression with an endogenous binary regressor,

even if true participation is exogenous and only misreporting is endogenous. So it

may be tempting to suppose that if an instrument is present, then a standard IV

estimator will address the issue raised in our framework. Here, we show that this
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is not the case.

Suppose we have access to a valid instrumental variable, zi, such that E[ziεi] =

0 and Cov(zi, δi) 6= 0, and assume, for simplicity, that zi is a scalar so that α is

just identified. Then the (simple) instrumental variable estimator is given by

α̂IV = (z′Mδ)−1z′My,

where M = I − X(X ′X)−1X ′ is the orthogonal projection matrix onto the null

space of X.

We can show using the same reasoning as above that,

plim(α̂IV ) =
E(ziδ

∗
i )− E(zix

′
i)E(xix

′
i)
−1E(xiδ

∗
i )

E(ziδi)− E(zix′i)E(xix′i)
−1E[xiδi]

α. (10)

Thus, the IV estimator of α is inconsistent, and we cannot sign the bias in gen-

eral. However, in the special case where misreporting is uncorrelated with true

participation and the other covariates, it can be shown that,

plim(α̂IV ) =
α

E[di]
=

α

Pr[di = 1]
, so that |plim(α̂IV )| > |α|.

Hence, in this specific scenario, the IV estimator is upwardly biased. This result

is similar to those obtained by Black et al. (2000), (see also Frazis & Loewenstein

2003, Brachet 2008). The finding that the IV estimator is inconsistent is not new,

given the results of the above authors and others. However, Black et al. (2000)

showed that the IV estimator yields an expansion bias, which corresponds to the

special case of exogenous measurement errors. By contrast, as suggested by equa-

tion (10), the sign of the IV bias is not obvious when misreporting is endogenous,

and our simulations show that the ensuing bias can take either direction (i.e.,

expansion or attenuation).
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We now present an estimation procedure that delivers consistent and asymp-

totically normal estimates for the treatment effect, α.

3 The Proposed Estimator

Recall that our objective is to estimate α in the outcome equation (1), where true

(and possibly endogenous) participation status, δ∗i , is unobserved, but only a pos-

sibly misreported (and possibly endogenous) participation status, δi, is observed.

The proposed estimation strategy proceeds in the following two steps.

Step 1: With the joint distribution of ui and vi given by Fu,v(u, v, ρ), use the

partial observability probit model given by equation (4) to estimate the

parameter vectors θ and γ. Then, compute the predicted probability for

person i’s true participation status as δ̂∗i = Φ(z′iθ̂).

Step 2: Estimate equation (1) by substituting δ̂∗i for δ∗i . Assuming correct model

specification and distribution of the error terms, the resulting two-step

estimator of α is consistent. Moreover, with standard regularity assump-

tions, this estimator is asymptotically normal.

3.1 First Step Estimation

Following Poirier (1980), the parameters γ, θ and ρ can be jointly estimated from

the joint distribution of the error terms using the binary choice model defined by

Pr[δi = 1|wi, zi] = Pr [−ui ≤ w′iγ, − vi ≤ z′iθ] = Fu,v (w′iγ, z
′
iθ, ρ) = Pi(γ, θ, ρ).
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The log-likelihood function of this model is given by

Ln(γ, θ, ρ) =
n∑
i=1

δi lnPi(γ, θ, ρ) + (1− δi) ln (1− Pi(γ, θ, ρ)) .

Assuming correct distributions, the maximum likelihood estimator of the vector

of parameters (γ, θ, ρ) is consistent and asymptotically normal, and the covariance

matrix consistently estimated with the inverse of the information matrix. In par-

ticular, for the parameter θ, the MLE θ̂ is consistent and asymptotically normal,

i.e.,

θ̂
p−→ θ and

√
n(θ̂ − θ) d−→N (0, Vθ) ,

where the asymptotic variance of θ̂ is obtained from the information matrix

equality as

Vθ =

{
E
[

1

Pi(1− Pi)
∂Pi
∂θ

∂Pi
∂θ′

]}−1

. (11)

From this expression, a consistent estimator for the variance matrix can be ob-

tained as

V̂θ =

[
1

n

n∑
i=1

1

P̂i(1− P̂i)
∂P̂i
∂θ

∂P̂i
∂θ′

]−1

, (12)

where P̂i = Pi(γ̂, θ̂, ρ̂) = Fu,v

(
w′iγ̂, z

′
iθ̂, ρ̂

)
. For the normal case, the gradient takes

a fairly simple form

∂P̂i
∂θ

= φ(z′iθ̂)Φ

(
w′iγ̂ − ρ̂z′iθ̂√

1− ρ̂2

)
zi.

Since this first-step is a maximum likelihood, parametric identification of (θ, γ, ρ)

can be discussed in terms of non-singularity of the corresponding information ma-

trix (Rothenberg 1971). This means perfect multicollinearity needs to be ruled

out, implying that both wi and zi should satisfy the standard rank conditions as

a basic requirement. In addition, as we explained earlier, a single exclusion re-

striction between wi and zi (i.e., at least one covariate in zi should not be relevant
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in wi, or vice-versa) is sufficient to identify all the first step parameters locally

(Poirier 1980).4 Also, notice that only the (correct) specification of the marginal

distribution of v is necessary for the parametric identification and estimation of

the model in the second step. If the distribution of u or the joint distribution of

(u, v) are unknown, then one may still obtain a consistent estimator of θ in the

first step by using a semiparametric approach such as the series expansion of the

joint PDF of (u, v) proposed by Gallant & Nychka (1987) or the single equation

multiple index model described in Ichimura & Lee (1991).

3.2 Second Step Estimation

In the second step, we compute the predicted values of true unobserved partic-

ipation δ∗i , given by δ̂∗i = Φ(z′iθ̂), which are used in lieu of δ∗i to estimate the

parameters of the new model given by

yi = x′iβ + δ̂∗i α + ηi. (13)

Using the same approach as above, the second step estimator is obtained as

α̂2S = (δ̂∗
′
Mδ̂∗)−1δ̂∗

′
My

=

∑n
i=1 Φ(z′iθ̂)yi −

∑n
i=1 Φ(z′iθ̂)x

′
i[
∑n

i=1 xix
′
i]
−1
∑n

i=1 xiyi∑n
i=1 Φ(z′iθ̂)

2 −
∑n

i=1 Φ(z′iθ̂)x
′
i[
∑n

i=1 xix
′
i]
−1
∑n

i=1 xiΦ(z′iθ̂)

(14)

We have the following consistency result.

Theorem 2. Under Assumptions 1-3, the two-step estimator is consistent for α,

that is, α̂2S
p−→α.

Proof. See Appendix.

4Essentially, identification implies much stronger conditions than the standard rank condition
for linear IV, since it requires that participation and hence the (nonlinear) relationship between
true treatment and instruments be fully parameterized and correctly specified.
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Notice that only the component θ̂ of the parameter vector is used at this second

stage to predict the true unobserved participation status. The other components,

γ̂ and ρ̂ are only used in the computation of the asymptotic variance estimator, as

described below. In this second step, exclusion restriction is not strictly needed for

identification as long as nonlinearity in the marginal distribution of vi is assumed.

We have the following asymptotic normality result.

Theorem 3. Under the model assumptions the two-step estimator is asymptoti-

cally normal, i.e.,
√
n(α̂2S − α)

d−→N(0, σ2
α)

with

σ2
α =

α2E[Λi(θ)φ(z′iθ)z
′
i]V (θ̂)E[ziφ(z′iθ)Λi(θ)]

E[Λ2
i (θ)]

2
+
α2E[Λ2

i (θ)Φ(z′iθ)(1− Φ(z′iθ))]

E[Λ2
i (θ)]

2
+

σ2

E[Λ2
i (θ)]

where

Λi(θ) = Φ(z′iθ)− E [Φ(z′iθ)x
′
i]E[xix

′
i]
−1xi

Proof. See Appendix.

This result is an application of the central limit theorem in the context of two-

step estimators, and is useful for our procedure to be readily usable for parametric

inference. An expression for the variance estimator σ̂2
α of σ2

α is given in the Ap-

pendix. However, this variance is quite involved and can be difficult to estimate.

In practice, a simpler approach to evaluate the precision of α̂2S and make inference

about the treatment effect α is to use a bootstrap.

Summarizing, the outcome equation requires true participation status, δ∗,

which is unobserved to the econometrician. Given the observed participation, δ,

the first step in our estimation procedure amounts to a partial observability probit
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analysis on the indicator variable δ using both z and w, which are respectively

the instrumental variables driving true participation and the covariates related to

misreporting. The result of this analysis is an estimator, θ̂, of θ, the coefficient

of z, which allows constructing a proxy δ̂∗ for truly being a participant. By con-

struction, this proxy is purged from both endogeneity and misreporting, and is

then used in lieu of δ∗ in the outcome equation of interest to derive a consistent

treatment effect estimator. The estimate θ̂ obtained from the first step can then

be used along with the other model estimates to compute a consistent variance

estimator for the treatment effect estimator.

A natural alternative to our two-step procedure is to estimate our model equa-

tions jointly via maximum likelihood (ML). Under appropriate assumptions, the

ML procedures yield more efficient estimators and asymptotically correct esti-

mates of standard errors. Unfortunately, in many situations, due to sample size

and other considerations, the ML estimation can be both computationally complex

and costly to implement, which may limit its use. For example, the correlations

between the outcome equation error and the participation and reporting equations

errors, ϕu and ϕv, might not be strongly identified, resulting in a likelihood func-

tion with ridges or multiple local maxima. In addition, in some applications, the

researcher may be reluctant to hypothesize a specific joint distribution between

the random errors of the observed participation and the outcome as is required by

maximum likelihood. In the Appendix, we briefly discuss the ML estimation of

this model under the assumption of joint (trivariate) normality of the errors. In

the same vein, we also briefly discuss how our method can be extended to the case

of binary outcomes.

While this framework focuses on one-sided misreporting (i.e., only false neg-

atives or false positives) which may be more appealing in certain contexts (e.g.,
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when studying scenarios of participation in risky behavior or activities associated

with stigma), a more general framework should account for misreporting in both

directions (i.e., both false negatives and false positives). In the following section,

we provide Monte Carlo simulations results on the performance of our estima-

tor for both the one-sided case and the case where there is a small amount of

misclassification in the other direction.5

4 Monte Carlo Simulations

This section presents the results of Monte Carlo simulations comparing the pro-

posed two-step estimator (2S) with OLS and IV estimators. Our goal is to con-

sistently estimate α, the (conditional) average treatment effect of participation,

δ∗, on an outcome, y, given by equation (1). However, since true participation

is unobserved, our task reduces to use the proposed method to estimate α from

equation (6) under the assumption that observed (misclassified) participation, δ,

arises according to the process described by equation (4), which focuses on false

negatives. In the simulations, we also consider a slight departure from equation

(4) and allow for small amounts of false positives as described below.

4.1 Simulation setup

The baseline data generating process is simulated as follows. The true treatment

indicator, δ∗i , is given by

δ∗i = 1 (θ0 + θ1zi + vi ≥ 0) , where zi ∼ N(0, 1), θ0 = 0.1, θ1 = 1.

5Extending this framework to the two-sided endogenous misreporting case is not straight-
forward. It would require at least two sets of excluded covariates, that is, w1 and w2, each
associated with one of the misreporting directions, and possibly other additional functional
form/distributional assumptions for identification.
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The outcome equation yi is given by

yi = β0 + xiβ1 + δ∗i α + εi where xi ∼ N(0, 1) β0 = β1 = 1, α = −0.2.

Note that α = −0.2 is the true population treatment effect we seek to estimate.

The econometrician only observes an error-ridden treatment indicator, δi, de-

fined by

δi = δ∗i 1 (γ0 + γ1wi + ui ≥ c) + (1− δ∗i )1 (ζi < b) ,

where wi ∼ N(0, 1), γ0 = 0.01, γ1 = 2, and b ∈ [0, 1).

The parameter c is the threshold that determines the proportion of false neg-

atives in the sample.6 The disturbance term, ζi, is drawn from a uniform (0, 1)

distribution independently from zi and vi so that the parameter b corresponds to

the rate of false positives. For example, when b = 0 (baseline case), the observed

treatment indicator is given by δi = δ∗i 1 (γ0 + γ1wi + ui ≥ c) which only allows

for false negatives as given by equation (4). However, when b > 0, the observed

treatment indicator allows for both false negatives and a (100 × b)% rate of false

positives.

The disturbances εi, ui and vi are drawn from a trivariate distribution given

by

(εi, ui, vi) ∼ IID (0,Σ) , where Σ =


σ2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

 , σ = 1.

The baseline results assume joint normality although we consider non-normal dis-

tributions as well. The values of the parameters ϕv and ϕu, which are the cor-

relations of the outcome equation error term with participation and misreporting

6By appropriately choosing the value of c, one can simulate varying rates of misreporting.
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equation disturbance terms, respectively, are varied in the simulations to examine

how various degrees of the endogeneity of participation and misreporting with re-

spect to the outcome impact the results. We also allow ρ, the correlation between

participation and misreporting to vary. We estimate the treatment effect α and

the associated bias using the naive OLS approach, α̂LS and the proposed two-step

approach, α̂2S. We also estimate the instrumental variable estimators α̂IV 1 and

α̂IV 2 using z and [z, w] as instruments, respectively.

4.2 Simulation Results

We report simulation results averaged over 1000 replications each with sample

size 5000 for different levels of false negatives – 0%, 5%, 10%, 20%, 40% – for ρ ∈

{0, 0.3}, ϕu ∈ {0, 0.2, 0.8} and ϕv ∈ {−0.3, 0, 0.3}. These results are first

presented for b = 0 (i.e., 0% false positives) and, subsequently, also for b ∈

{0.01, 0.05, 0.1} (i.e., 1%, 5% and 10% false positives). Thus, no misreporting

corresponds to the case of 0% false negatives and false positives. The cases of

exogenous participation and exogenous misreporting correspond to ϕu = ϕv = 0.

Table 1 presents the results of the Monte Carlo simulations for OLS, IVs, and the

proposed two-step (2S) estimators when the errors are jointly normal, the false

positive rate is 0%, and ρ = 0.3. We report both the OLS estimates using the true

treatment indicator, δ∗i (OLS-T) and the observed treatment indicator δi (OLS-O).

Although δ∗i is unobserved to the econometrician, the OLS-T estimates provide a

theoretical benchmark for the estimates obtained using the misclassified δi. We

also report both the IV estimates using z as an instrument (IV-1) and those using

[z, w] as instruments (IV-2). The proposed estimator is denoted (2S) in the tables.

The naive OLS estimates using δi (OLS-O) show that, not only is the OLS

estimator inconsistent as asserted in Theorem 1, but also yields the wrong (i.e.,
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Table 1: Monte Carlo Simulations

False ϕu ϕv OLS-T OLS-O IV-1 IV-2 2S
Negatives [x,z] [x,z,w]

0%

0
-0.3 -0.5523 -0.5523 -0.2006 -0.2003 -0.1998

0 -0.1997 -0.1997 -0.2014 -0.2013 -0.2009
0.3 0.1519 0.1519 -0.1951 -0.1954 -0.1963

0.2
-0.3 -0.5524 -0.5524 -0.2036 -0.2033 -0.2030

0 -0.2021 -0.2021 -0.2011 -0.2012 -0.1999
0.3 0.1508 0.1508 -0.1983 -0.1986 -0.1972

0.8
-0.3 -0.5507 -0.5507 -0.1991 -0.1988 -0.1980

0 -0.1994 -0.1994 -0.2003 -0.2003 -0.1993
0.3 0.1523 0.1523 -0.1985 -0.1987 -0.1962

5%

0
-0.3 -0.5499 -0.5066 -0.2041 -0.2152 -0.1997

0 -0.1987 -0.1834 -0.2018 -0.2127 -0.1980
0.3 0.1504 0.1357 -0.2069 -0.2188 -0.2012

0.2
-0.3 -0.5513 -0.4827 -0.2061 -0.2166 -0.2001

0 -0.2008 -0.1611 -0.2063 -0.2168 -0.2009
0.3 0.1513 0.1615 -0.2054 -0.2167 -0.2009

0.8
-0.3 -0.5506 -0.4072 -0.2044 -0.2158 -0.2013

0 -0.1993 -0.0844 -0.2039 -0.2160 -0.2007
0.3 0.1516 0.2371 -0.2036 -0.2146 -0.2003

10%

0
-0.3 -0.5515 -0.4649 -0.1949 -0.2345 -0.2000

0 -0.2013 -0.1715 -0.1936 -0.2319 -0.1991
0.3 0.1524 0.1250 -0.1922 -0.2323 -0.1992

0.2
-0.3 -0.5499 -0.4203 -0.1960 -0.2350 -0.2008

0 -0.1989 -0.1266 -0.1942 -0.2305 -0.1973
0.3 0.1518 0.1677 -0.1952 -0.2339 -0.1995

0.8
-0.3 -0.5513 -0.2916 -0.1953 -0.2340 -0.1998

0 -0.1986 0.0053 -0.1936 -0.2331 -0.1978
0.3 0.1514 0.2987 -0.1937 -0.2350 -0.2005

20%

0
-0.3 -0.5508 -0.4065 -0.1674 -0.2668 -0.1984

0 -0.1990 -0.1496 -0.1681 -0.2666 -0.1989
0.3 0.1501 0.1050 -0.1690 -0.2681 -0.2002

0.2
-0.3 -0.5518 -0.3421 -0.1733 -0.2728 -0.2036

0 -0.2004 -0.0858 -0.1690 -0.2665 -0.1992
0.3 0.1498 0.1693 -0.1730 -0.2743 -0.2026

0.8
-0.5 -0.5511 -0.1443 -0.1690 -0.2679 -0.1988

0 -0.2015 0.1097 -0.1675 -0.2668 -0.1990
0.3 0.1512 0.3680 -0.1709 -0.2728 -0.2034

40%

0
-0.3 -0.5502 -0.3161 -0.1215 -0.3740 -0.1981

0 -0.2008 -0.1198 -0.1219 -0.3814 -0.2027
0.3 0.1506 0.0783 -0.1210 -0.3746 -0.1987

0.2
-0.3 -0.5501 -0.2181 -0.1160 -0.3687 -0.1963

0 -0.2015 -0.0230 -0.1213 -0.3852 -0.2041
0.3 0.1507 0.1743 -0.1191 -0.3788 -0.2003

0.8
-0.3 -0.5509 0.0675 -0.1207 -0.3757 -0.1993

0 -0.2005 0.2646 -0.1189 -0.3789 -0.2016
0.3 0.1514 0.4607 -0.1211 -0.3783 -0.2000

The true treatment effect is α = −0.2. Each calibration in the Monte Carlo Design involved 1000 replications
each of size 5000. We report results for five false negative rates (0%, 5%, 10%, 20%, and 40%) – the proportion of
true participants who misreport their status. ϕv and ϕu are correlations that indicate the extents of endogeneity
of participation and misreporting, respectively. The correlation between participation and misreporting is ρ = 0.3.
Also, the error terms are jointly normally distributed and the false positive rate is 0%.

positive) sign, whether participation is exogenous or endogenous. Sign switching

is observed at all nonzero false negative rates i.e. 5%, 10%, 20% and 40% and is
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more pronounced at higher values of ϕu. These results persist even under the spe-

cial case of exogenous misreporting (ϕu = 0). The IV estimates (IV-1) and (IV-2)

show that the classic IV estimator is also inconsistent and sometimes worse than

the OLS, albeit keeping the correct (negative) sign.7 Interestingly, (IV-1) shows

expansion biases while (IV-2) shows attenuation biases. This confirms, as we ex-

plained in Section 2.3, that we cannot generally sign the bias in the IV estimator

when misreporting is endogenous. In contrast, the proposed two-step estimator

(2S), presented in the last column of Table 1, yields consistent estimates of the

true treatment effect and by comparison, is superior to both the OLS and IV es-

timators under both endogenous and exogenous misreporting or participation. In

addition, the proposed estimator remains accurate and performs remarkably well,

even when the rate of false negatives is substantially high in the data. Moreover,

there is no cost in doing our procedure since the proposed estimator remains as

good as the OLS and the IV when there is 0% false negatives and participation is

exogenous (ϕv = 0). This performance is not sensitive to the choice of parameters

such as the variance of the outcome equation error or the correlation between the

error terms in the participation and misreporting equations (see, e.g., the results

for ρ = 0 in the ‘Baseline’ column of Table 2).

To further assess the robustness of our proposed estimator, we investigate its

sensitivity to misspecification in a number of directions. First, we allow the re-

ported participation to include both false negatives (as before) and a small amount

of false positives. We consider false positive rates of 1%, 5%, and 10%. Second,

we allow for the error terms to be non-normal. We consider both the trivariate

Gamma distribution and the trivariate Chi-squared distribution as alternatives

7This is actually a better set of simulations for IV-2 because the covariate wi can be used as
an additional instrument to improve the IV. Additional simulations with wi being endogenous
yielded worse results for this IV while the proposed estimator (2S) remained consistent.
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to allow more skewness and kurtosis in the distributions of error terms.8 Third,

we allow for the misreporting equation to be misspecified by considering the case

where the predictor is unavailable to the researcher (i.e., only x is included) or

by introducing a quadratic term in w in the data generating process but which

is omitted by the researcher in the estimation. Fourth, we introduce correlation

between the predictors of misreporting w and the error terms in both participation

and outcome equations.

Table 2 summarizes the results where ρ and ϕv are fixed to zero (exogenous

participation) and the focus is on the sensitivity to different degrees of endogeneity

of misreporting ϕu and various rates of false negatives.9 These results show that at

any false positive rate the bias increases with false negative rates. Interestingly, for

small amounts of false positives, the proposed estimator still performs quite well,

although it gets worse with higher rates of false positives. Specifically, when false

positive rates range from 1% to 5%, the median value of the proposed estimator

(2S) ranges between −0.2042 and −0.2180 for all ranges of false negatives in our

setting. The proposed estimator is robust to non-normality of the error terms and

remains consistent when the true error distributions are Gamma or Chi-Squared in

this setting. When the misreporting equation is misspecified by including only the

covariates from the outcome equation (i.e., only x) or when this equation includes

a quadratic term in w that is omitted by the researcher in the estimation, the 2S

estimator still performs well. Finally, the 2S estimator is robust to introducing

correlations between the predictor w and both the outcome and misreporting equa-

tion errors. When w is correlated with the outcome equation or the misreporting

equation errors, the 2S estimator remains consistent. However, the 2S estimator

8These multivariate distributions can be simulated using the Copulas method or the inverse
transformation method as decribed in Gentle (2002)

9Results for other combinations of parameter values are similar and are available upon request.
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Table 2: Sensitivity of the Proposed Estimator to Misspecification

False ϕu Baseline
Types of Misspecification of Baseline

False Positives Distribution of errors

Negatives 1% 5% 10% Γ(3, 1) χ2
(1)

0%
0 -0.2000 -0.2021 -0.2141 -0.2291 -0.2047 -0.2110

0.2 -0.1970 -0.2003 -0.2126 -0.2257 -0.1971 -0.2077
0.8 -0.1981 -0.2008 -0.2129 -0.2266 -0.1967 -0.2090

5%
0 -0.2041 -0.2057 -0.2191 -0.2317 -0.2077 -0.2059

0.2 -0.1974 -0.2074 -0.2208 -0.2312 -0.1935 -0.2094
0.8 -0.1989 -0.2035 -0.2169 -0.2320 -0.1957 -0.2082

10%
0 -0.1987 -0.2029 -0.2169 -0.2323 -0.1972 -0.2051

0.2 -0.2001 -0.2060 -0.2207 -0.2331 -0.2007 -0.2042
0.8 -0.1983 -0.2027 -0.2171 -0.2350 -0.1955 -0.2057

20%
0 -0.2018 -0.2063 -0.2234 -0.2428 -0.2013 -0.2037

0.2 -0.1989 -0.2056 -0.2229 -0.2411 -0.1966 -0.2064
0.8 -0.2003 -0.2036 -0.2210 -0.2377 -0.1970 -0.2073

40%
0 -0.1961 -0.2066 -0.2314 -0.2652 -0.1873 -0.2058

0.2 -0.2000 -0.2085 -0.2333 -0.2628 -0.1977 -0.2107
0.8 -0.2009 -0.2087 -0.2336 -0.2598 -0.2004 -0.2104

Endogeneity of Predictor Omission of Predictor

corr(w, ε) corr(w, u) corr(w, v) omitted omitted∗

= .5 = .5 = .5 w w2

0%
0 -0.2000 -0.1975 -0.1975 -0.1738 -0.1972 -0.2009

0.2 -0.1970 -0.2008 -0.2008 -0.1765 -0.2017 -0.1986
0.8 -0.1981 -0.1995 -0.1995 0.1754 -0.1980 -0.1967

5%
0 -0.2041 -0.1988 -0.1988 -0.1752 -0.1956 -0.2035

0.2 -0.1974 -0.2012 -0.2013 -0.1773 -0.1979 -0.2012
0.8 -0.1989 -0.1985 -0.1984 -0.1743 -0.1981 -0.1981

10%
0 -0.1987 -0.2017 -0.2018 -0.1776 -0.1965 -0.2001

0.2 -0.2001 -0.1972 -0.1973 -0.1741 -0.2008 -0.1990
0.8 -0.1983 -0.1991 -0.1992 -0.1759 -0.2013 -0.2009

20%
0 -0.2018 -0.1954 -0.1954 -0.1712 -0.2004 -0.1981

0.2 -0.1989 -0.2008 -0.2008 -0.1763 -0.1996 -0.1997
0.8 -0.2003 -0.1988 -0.1989 -0.1742 -0.2008 -0.1990

40%
0 -0.1961 -0.2003 -0.2004 -0.1732 -0.2022 -0.2027

0.2 -0.2000 -0.1974 -0.1974 -0.1705 -0.1975 -0.2025
0.8 -0.2009 -0.2004 -0.2000 -0.1732 -0.1969 -0.2037

The true treatment effect is α = −0.2. We fix ρ = ϕv = 0. Each calibration in the Monte Carlo Design involved
1000 replications each of size 5000. We report results for five false negatives rates (0%, 5%, 10%, 20%, and 40%)
and false positive rates of (0%, 1%, 5%, and 10%). The correlation ϕu indicates the extent of endogeneity of
misreporting.
∗ Here, the true misreporting equation includes both w and w2, but the estimation omits w2.

performs poorly, exhibiting an attenuation bias just like the IV-1, when w and the

participation equation error are correlated. Our recommendation is to access w

and z from different data sources to minimize the chances of having w endogenous

to true participation in practice.

There are a few additional facts that are worth mentioning. On the one hand,

it is not surprising that the OLS estimator only works well when there are 0%
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false negatives and participation is exogenous (ϕv = 0). On the other hand, the

IV estimator tends to work well for low levels of false negatives (0% - 5%) but

gets worse for higher false negative rates (10% and higher). As explained earlier,

the sign-reversal regions for the OLS depends on the quantity A/(B − C) (given

in Theorem 1), which varies with ϕv, ϕu, σ, and the extent of misclassification.

Even when participation is exogenous (i.e. ϕv = 0), various degrees of endogeneity

of misreporting (e.g., ϕu ∈ {−0.8, −0.2, 0, 0.2, 0.8, }), various sizes of the error

variance (e.g., σ ∈ {1, 4}), and various rates of false negatives (e.g., 5%, 10%,

40%) yield different sign-switching regions for the OLS, as shown in Table 3.

Table 3: Intervals of α yielding sign-switching in the OLS

False ϕu
Sign-switching region

Negatives σ = 1 σ = 4

5%

-0.8 [0, 0.2307] [0, 0.9227]

-0.2 [0, 0.0577] [0, 0.2309]

0 ∅ ∅
0.2 [−0.0577, 0] [−0.2309, 0]

0.8 [−0.2307, 0] [−0.9227, 0]

10%

-0.8 [0, 0.4054] [0, 1.6216]

-0.2 [0, 0.1033] [0, 0.8368]

0 ∅ ∅
0.2 [-0.1033, 0] [-0.8368, 0]

0.8 [-0.4054, 0] [-1.6216, 0]

40%

-0.8 [0, 1.1347] [0, 5.3786]

-0.2 [0, 0.3399] [0, 1.3597]

0 ∅ ∅
0.2 [-0.3399, 0] [-1.3597, 0]

0.8 [-1.1347, 0] [-5.3786, 0]

Results are reported for three false negatives rates (5%, 10%, and 40%). The correlation
ϕu indicates the extent of endogeneity of misreporting; ϕv and ρ are fixed to 0.

Table 3 shows the ranges of the true treatment effects α for which the OLS

estimator α̂LS would yield the wrong (opposite) signs in our simulation design.

For example, negative correlations between misreporting and outcome errors yield

positive intervals of the treatment effect for which the OLS takes the wrong (neg-

ative) sign, while positive correlations between misreporting and outcome errors

yield negative intervals of the true treatment effect for which the OLS takes the
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wrong (positive) sign. In all cases, higher levels of endogeneity of misreporting,

higher rates of false positives or greater error variance in the outcome equation

yield wider sign-reversal intervals. It is only when misreporting is also exogenous

(ϕu = 0) that the OLS keeps the same sign as the true treatment effect (albeit

still biased), so that the sign-switching set is empty (see Table 3).

Finally, Lewbel (2007)’s estimator also worked well in our setting for the special

cases where both participation and misreporting where exogenous. However, Lew-

bel’s estimator displayed large biases and sign reversals under some endogeneity

cases, which is not surprising since this limitation is clearly emphasized in Lewbel

(2007). These additional results are available from the authors upon request.10

5 Empirical Example

We illustrate our proposed method with an empirical example examining the im-

pact of SNAP on adult body mass index (BMI).11 A major difficulty in estimating

SNAP’s impacts is the high reporting error rates in national surveys, with false

negatives being more prevalent than false positives. For instance, using linked ad-

ministrative and survey data, Meyer, Goerge & Mittag (2015) find that 23%, 35%,

and 50% of true recipients in the 2001 and 2005 panels of the Survey of Income

and Program Participation (SIPP), the 2001 American Community Survey (ACS),

and the 2002-2005 CPS Annual Social and Economic Supplement (March CPS)

did not report receipt, respectively. However, they find that the corresponding

false positive error rates are less than 1.5%.

We consider a simple treatment effects model relating BMI to a binary indicator

10It is easy to slightly modify our set up to include the IV required by Lewbel’s identification
strategy. For that purpose, one can add a binary indicator in the true participation equation,
since, as explained by Lewbel (2007), only two points of support are needed for the instrument
to identify the treatment effect in the case of one-sided misreporting.

11BMI is defined as weight in kilograms divided by height in meters squared.
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of SNAP participation. Since SNAP participation is not randomly assigned and

possibly misreported, OLS and IV estimates are biased and inconsistent for the

average treatment effect.12 We present estimates of SNAP’s effect on BMI using

OLS, IV, and our proposed two-step (2S) estimators using the 1996-2004 waves of

female respondents of the restricted-use National Longitudinal Survey of Youth -

1979 (NLSY79).13

As discussed in Section 3, estimation of our 2S estimator proceeds in two steps.

We first estimate a partial observability probit model described in equation (4) to

obtain the parameters of our true participation and misreporting equations. The

second step uses the predicted probabilities of true participation to estimate the

effect of SNAP on BMI from equation (13).

To implement the 2S estimator, two sets of covariates need to be distinguished:

instruments for participation (zi in equation (2)) and predictors of misreporting

(wi in equation (3)). Regarding zi, the excluded instruments for participation are

whether the respondent’s state uses a biometric identification technology (“Bio-

metric”) and the percentage of SNAP benefits issued by the state via Electronic

Benefit Cards (“EBT Card”) (Meyerhoefer & Pylypchuk 2008). As for wi, we take

the set of regressors in the outcome equation augmented with both the biometric

identification technology mentioned above (“Biometric”) as well as a binary indi-

cator for whether the interview was conducted by telephone or in person (“Phone

Interview”). Intuitively, the latter captures variations in interview mode while the

former could increase stigma, both of which might be correlated with misreport-

12See Gundersen (2015) for a review of the literature on the SNAP-obesity relationship.
13We restrict our analysis sample to females who are within 250% of the federal poverty line.

Determining true SNAP eligibility status is almost impossible with most national surveys due
to the lack of a comprehensible set of variables needed to determine each respondent’s true
eligibility. Thus, we follow the existing literature and use 250% of the federal poverty line to
determine our eligible sample. This type of sample restriction is common in the literature which
also favors thresholds higher than the gross-income eligibility threshold of 130% (Meyerhoefer &
Pylypchuk 2008, Mykerezi & Mills 2010, Almada, McCarthy & Tchernis 2016).
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Table 4: Summary Statistics By SNAP Participation Status

Non-SNAP SNAP
Mean Std Mean Std

Body Mass Index 28.11 (0.25) 29.85 (0.52)
Age 38.96 (0.09) 38.29 (0.21)
Hispanic 0.08 (0.01) 0.11 (0.02)
Black 0.21 (0.03) 0.38 (0.04)
Household (HH) Size 3.45 (0.06) 3.77 (0.09)
WIC 0.06 (0.00) 0.21 (0.02)
SSI 0.06 (0.01) 0.26 (0.02)
AFDC 0.02 (0.00) 0.45 (0.03)
Mother’s Education (High school or higher) 0.52 (0.02) 0.43 (0.04)
Number of children 1.81 (0.05) 2.23 (0.08)
Household with child <5 0.14 (0.01) 0.22 (0.02)
Gross Income SNAP Eligible HH (130% FPL) 0.39 (0.02) 0.86 (0.01)
Biometric 0.16 (0.02) 0.23 (0.04)
EBT card 0.62 (0.02) 0.55 (0.03)
Phone Interview 0.36 (0.01) 0.25 (0.02)
Net Family Income (2004 Thousand Dollars) 22.04 (0.506) 12.644 (0.364)
Observations 4307 1163

Standard deviations in parentheses are adjusted for the complex survey design of the
NLSY79. Based on the 1996-2004 biennial waves of the NLSY79, restricted to females
with income lower than 250% of the federal poverty line.

ing, in addition to personal characteristics.14 Notice that the vectors zi and wi are

different albeit overlapping, as required by the theory.

The summary statistics in Table 4 by SNAP participation status suggest that

participants are largely negatively selected in the program. In Table 5, we report

two sets of regression estimates for the OLS, IV and 2S. The first set of results

uses five covariates (Age, Black, Hispanic, Household size, Family income) and only

Biometric as instrument. The second set uses eleven covariates (adding Number

of children, Mother’s education, participation in WIC, AFDC/TANF and SSI,

Household with child) and Biometric EBT Card as instruments. The estimates

from these methods yield different and sometimes opposite (in sign) results.

The OLS estimator suggests a positive and statistically significant effect of

14We also include in wi a dummy for being eligible for SNAP based on the Gross Income test
(130% of the federal poverty level). We thank an anonymous referee for pointing these issues
out.
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Table 5: The Impact of SNAP on BMI

Dependent Variable: BMI
Variable Set of Covariates OLS IV 2S

SNAP Participation

First Set 0.929** -10.62 -3.093*
(0.379) (12.61) (1.804)

Second Set 1.006** -0.576 -3.187**
(0.432) (7.849) (1.538)

Standard errors in parenthesis and bootstrapped (500 replications) for the 2S estimator.
Results are based on the 1996-2004 biennial waves of the NLSY79, restricted to females
with income lower than 250% of the federal poverty line. For the First Set, regressors
not reported include respondents’ age, race, household size, household income). For the
Second Set, additional regressors are number of children, mothers education, square of
income, time fixed effects, and indicators for receiving WIC benefits, AFDC/TANF, SSI
benefits, and having an infant living in home.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.010.

SNAP participation on BMI of about 0.929 BMI units for the first set and 1.006

BMI units for the second set. The IV estimator which uses Biometric as instrument

suggests a 10.62 decrease in BMI units, while the one that uses Biometric and

EBT Card as instruments shows only a 0.576 decrease in BMI units, although not

statistically significant.15 In contrast, our proposed estimator yields a negative and

statistically significant effect of −3.093 for the First Set and −3.187 for the Second

Set scenarios. These results show that while the OLS and the 2S estimators are

stable, significant and of opposite signs, the IV estimator is unstable and varies

substantially with the instruments as our simulations suggested earlier.16 This

empirical illustration is undoubtedly limited and the results should be interpreted

with caution since they are only suggestive. For instance, even if our proposed

15See Table C2 in Appendix C for the first stage IV results.
16Table C1 in Appendix C presents the results of the first step of the 2S estimator. Panel A of

Table C1 shows both instruments have the expected signs but only “EBT Card” is statistically
significantly correlated with true participation. Also, Panel B of Table C1 suggests that being
interviewed by phone is negatively correlated with the the probability of truthful reporting of
participation.
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method estimates α consistently, it may not represent a causal effect of SNAP on

obesity due to possible confounding by omitted variables in this application.

Subject to these caveats, the empirical example corroborates the simulation

results obtained in Section 4: (i) there is a possible sign reversal between the OLS

and the 2S estimates; (ii) the IV and the 2S estimators have the same sign but the

IV has a smaller or a larger magnitude.17 In addition, the results obtained from

these methods could lead to radically different and possibly contradictory policy

advice.

6 Conclusion

This paper examines the identification and estimation of the conditional average

treatment effect of a binary regressor in the presence of endogenous misreport-

ing and possibly endogenous participation. We derive and prove the consistency

and asymptotic normality of our proposed two-step estimator and show that OLS

and IV estimators are inconsistent and may yield wrong (opposite) signs from the

true effect. We also provide Monte Carlo simulations to this effect, and illustrate

our method with an empirical example examining the impact of SNAP partici-

pation on obesity. Previous studies on misclassified binary regressors are mostly

concerned with exogenous or random misreporting (Aigner 1973, Brachet 2008,

Lewbel 2007, Mahajan 2006, Frazis & Loewenstein 2003), where it is commonly

assumed that misclassification probabilities depend only on the true treatment

status and are thus, independent of measurement errors and other regressors. Our

two-step estimator relaxes this arguably strong assumption and shows that, when

the researcher has access to information related to why individuals misreport, the

17Note that the sign reversal phenomenon obtained in this empirical illustration is neither a
general result nor does its nonoccurrence invalidate the results herein. See Section 2.2 for further
discussions.
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treatment effect can be consistently estimated.

To our knowledge, this paper is the first attempt to provide point estimates of

treatment effect in the context of endogenous misreporting of a binary treatment

variable. This is important because of the prevalence of misreporting in public

programs and survey data (Meyer et al. 2009, Bollinger 1996, Kane & Rouse 1995,

Kane et al. 1999, Brachet 2008). While this paper focused on one-sided endogenous

misreporting when participation is possibly endogenous, future work should allow

for bidirectional misreporting (i.e., false negatives and false positives). It would

also be useful to show the level of dependence of our approach on distributional

and functional form assumptions by considering parametric or semi-parametric

estimation approaches.

Appendix A Proofs

A.1 Proof of Theorem 1

Proof.

Biasedness: By the Frisch-Waugh-Lovell Theorem, see, e.g. Davidson & MacKin-

non (2004, page 68), the regression

My = Mδα + v

yields the same least squares estimate of α as the regression equation of interest

(8). It follows that,

α̂LS = (δ′Mδ)−1δ′My. (15)

This implies that α̂LS − α = (δ′Mδ)−1δ′Mε.

Hence, E[α̂LS − α|X, δ] = (δ′Mδ)−1δ′ME[ε|X, δ] 6= 0, since E[ε|δ,X] 6= 0 by

the correlation of ε and δ through u and v.
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Inconsistency: We can write

α̂LS − α = (δ′Mδ)−1δ′Mε =

(
δ′Mδ

n

)−1
δ′Mε

n

=

(
δ′Mδ

n

)−1(
δ′Mε

n
+
δ′M(δ∗ − δ)α

n

)
by Equation (7) (16)

Notice that,

δ′Mδ

n
=
δ′[I −X(X ′X)−1X ′]δ

n
=
δ′δ

n
− δ′X

n

(
X ′X

n

)−1
X ′δ

n

Hence, by the Weak Law of Large Numbers and the Slutsky’s lemma, we have

δ′Mδ

n

p−→E(δ2
i )− E(δix

′
i)E(xix

′
i)
−1E(δixi)

By a matrix extension of the Cauchy-Schwarz inequality (see Tripathi 1999), we

know that E(δ2
i )−E(δix

′
i)E(xix

′
i)
−1E(δixi) > 0. The Continuous Mapping Theorem

then implies that

(
δ′Mδ

n

)−1
p−→
[
E(δ2

i )− E(δix
′
i)E(xix

′
i)
−1E(δixi)

]−1
. (17)

Likewise, the term
δ′Mε

n
can also be decomposed as

δ′Mε

n
=
δ′[I −X(X ′X)−1X ′]ε

n
=
δ′ε

n
− δ′X

n

(
X ′X

n

)−1
X ′ε

n
.

Then, using the same arguments as above we have

δ′Mε

n

p−→E(δiεi)− E(δix
′
i)E(xix

′
i)
−1E(xiεi) = E(δiεi),
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where the last equality follows from Assumption 1.

Using the expression of δi given by Equation (4) and the trivariate normality

of (εi, ui, vi), it can be shown by integration that

E[δiεi] = E [εi1 (z′iθ + vi ≥ 0, w′iγ + ui ≥ 0)]

= E [Pr[ui ≥ −w′iγ, vi ≥ −z′iθ, ρ]E [εi|ui ≥ −w′iγ, vi ≥ −z′iθ]]

= E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
,

where Φ(·) and φ(·) are the CDF and PDF of the standard normal. It follows that

δ′Mε

n

p−→E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
. (18)

Finally, using the same reasoning as above for the term
δ′M(δ∗ − δ)α

n
, we have

δ′M(δ∗ − δ)α
n

p−→ − αE(δix
′
i)E(xix

′
i)
−1E[(δ∗i − δi)xi]. (19)

The desired result follows by taking (19), (18) and (17) to Equation (16).

A.2 Proof of Theorem 2

Proof. We can write

α̂2S = (δ̂∗
′
Mδ̂∗)−1δ̂∗

′
Mδ∗α + (δ̂∗

′
Mδ̂∗)−1δ̂∗

′
Mε (20)

By the exogeneity of X and Z given by Assumption 1, the consistency of θ̂,
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the continuity of Φ(·) and the law of large numbers, we have

δ̂∗
′
Mε

n

p−→E[Φ(z′iθ)εi] = E [Φ(z′iθ)E[εi|zi]] = 0,

so that the second term on the RHS of Equation (20) goes to zero. We also have,

by Assumption 2, the consistency of θ̂, the continuity of Φ(·) and the the law of

large numbers,

δ̂∗
′
Mδ̂∗

n

p−→E
[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i]E[xix

′
i]
−1E [xiΦ(z′iθ)]

and

δ̂∗
′
Mδ∗

n

p−→ E [Φ(z′iθ)δ
∗
i ]− E [Φ(z′iθ)x

′
i]E[xix

′
i]
−1E [xiδ

∗
i ]

= E [Φ(z′iθ)E[δ∗i |zi]]− E [Φ(z′iθ)x
′
i]E[xix

′
i]
−1E [xiE[δ∗i |zi]]

= E
[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i]E[xix

′
i]
−1E [xiΦ(z′iθ)]

where the last display follows from the fact that E[δ∗i |zi] = Φ(z′iθ), as implied by

Equation (2). Hence,

(δ̂∗
′
Mδ̂∗)−1δ̂∗

′
Mδ∗ =

(
δ̂∗
′
Mδ̂∗

n

)−1
δ̂∗
′
Mδ∗

n

p−→ 1

so that

α̂2S
p−→α
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A.3 Proof of Theorem 3

Proof. We can write

√
n(α̂2S − α) =

(
δ̂∗
′
Mδ̂∗

n

)−1(
δ̂∗
′
M(δ∗ − δ̂∗)√

n

)
α +

(
δ̂∗
′
Mδ̂∗

n

)−1
δ̂∗
′
Mε√
n

=

(
δ̂∗
′
Mδ̂∗

n

)−1(
δ̂∗
′
M(Ψ∗ − δ̂∗)√

n

)
α +

(
δ̂∗
′
Mδ̂∗

n

)−1
δ̂∗
′
M(α(δ∗ −Ψ∗) + ε)√

n

= q−1
n

[√
nV1nα +

√
nV2n

]
(21)

where

qn =
δ̂∗
′
Mδ̂∗

n
, V1n =

δ̂∗
′
M(Ψ∗ − δ̂∗)

n
, and V2n =

δ̂∗
′
M(α(δ∗ −Ψ∗) + ε)

n
,

with Ψ∗ = Ψ∗(θ) = [Φ(z′1θ), . . . ,Φ(z′nθ)]
′.

Denote Λ̂i = δ̂∗i −
(

1

n

∑n
i=1 δ̂

∗
i x
′
i

)(
1

n

∑n
i=1 xix

′
i

)−1

xi and by Λi = Φ(z′iθ) −

E [Φ(z′iθ)x
′
i]E[xix

′
i]
−1xi its probability limit. Notice that qn =

1

n

∑n
i=1 Λ̂2

i . We

know, from the consistency results above that

qn
p−→ q = E

[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i]E[xix

′
i]
−1E [Φ(z′iθ)xi] = E[Λ2

i ]. (22)

Since δ̂∗ = Ψ∗(θ̂), then expanding Ψ∗(θ) in a Taylor series about θ̂, we have

Ψ∗ − δ̂∗ a
= ψ∗(θ̂)(θ − θ̂)

where “
a
=” denotes asymptotic equivalence in probability, and ψ∗(θ) is the vector
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of partial derivatives ∂Ψ∗(θ)/∂θ′ is given by

ψ∗(θ) =
∂Ψ∗(θ)

∂θ′
= [φ(z′1θ)z1, . . . , φ(z′nθ)zn)]′.

Therefore

√
nV1n

a
=
δ̂∗
′
Mψ∗(θ̂)

n

√
n(θ − θ̂) =

1

n

n∑
i=1

Λ̂iφ(z′iθ̂)z
′
i

√
n(θ − θ̂).

A direct application of the central limit theorem then gives,

√
nV1nα

d−→N(0, α2ν2
1), where

ν2
1 = E[Λiφ(z′iθ)z

′
i]V (θ̂)E[ziφ(z′iθ)Λi]. (23)

Likewise,
√
nV2n =

δ̂∗
′
M(α(δ∗ −Ψ∗) + ε)√

n
=

1√
n

n∑
i=1

Λ̂iζi

where ζi = α(δ∗i − Φ(z′iθ)) + εi, with E[ζi|zi] = 0 and Var[ζi|zi] = α2Φ(z′iθ)(1 −

Φ(z′iθ)) + σ2.

Hence, by the central limit theorem,

√
nV2n

d−→N(0, σ2
2), where

σ2
2 = E[Λi

(
α2Φ(z′iθ)(1− Φ(z′iθ)) + σ2

)
Λi] (24)

= α2E[Λ2
iΦ(z′iθ)(1− Φ(z′iθ))] + σ2E[Λ2

i ]

Finally, the asymptotic covariance term between the elements of
√
nV1nα and
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√
nV2n is

σ12 = E[Λiφ(z′iθ)z
′
i]E[(θ − θ̂) (α(δ∗i − Φ(z′iθ)) + εi)]E[Λi]α (25)

= −E[Λiφ(z′iθ)z
′
i]E[θ̂εi]E[Λi]α

It then follows from Slutsky’s Lemma, (21), (22), (23), (24) and (25) that

√
n(α̂2S − α)

d−→N(0, σ2
α), where

σ2
α =

α2ν2
1

q2
+ 2

σ12

q2
+
σ2

2

q2

=
α2E[Λiφ(z′iθ)z

′
i]V (θ̂)E[ziφ(z′iθ)Λi]

E[Λ2
i ]

2
− 2

αE[Λiφ(z′iθ)z
′
i]E[θ̂εi]E[Λi]

E[Λ2
i ]

2

+
α2E[Λ2

iΦ(z′iθ)(1− Φ(z′iθ))]

E[Λ2
i ]

2
+

σ2

E[Λ2
i ]
.

With θ̂ and εi uncorrelated conditionally on zi and wi the covariance term is zero,

and the variance reduces to

σ2
α =

α2E[Λiφ(z′iθ)z
′
i]V (θ̂)E[ziφ(z′iθ)Λi]

E[Λ2
i ]

2
+
α2E[Λ2

iΦ(z′iθ)(1− Φ(z′iθ))]

E[Λ2
i ]

2
+

σ2

E[Λ2
i ]

A consistent estimator for this asymptotic variance can be defined by

σ̂2
α =

α̂2
2S ν̂

2
1

q̂2
+
α̂2

2S ν̂
2
2

q̂2
+
σ̂2

q̂

where

ν̂2
1 =

(
1

n

n∑
i=1

Λ̂iφ(z′iθ̂)z
′
i

)
V̂ (θ̂)

(
1

n

n∑
i=1

ziφ(z′iθ̂)Λ̂i

)
,

ν̂2
2 =

1

n

n∑
i=1

Λ̂2
iΦ(z′iθ̂)

(
1− Φ(z′iθ̂)

)
,
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σ̂2 =
1

n

∑
i

[(
yi − x′iβ̂ − α̂2SΦ(z′iθ̂)

)2

− α̂2
2SΦ(z′iθ̂)

(
1− Φ(z′iθ̂)

)]
,

q̂ =
1

n

n∑
i=1

Λ̂2
i =

1

n

n∑
i=1

Φ(z′iθ̂)
2−

(
1

n

n∑
i=1

Φ(z′iθ̂)x
′
i

)(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiΦ(z′iθ̂)

)
,

and α̂2S is our proposed estimator of α.

Appendix B Extensions

B.1 Maximum Likelihood Estimation

Let Assumptions 1-4 hold and assume that the covariance matrix of the joint

distribution of errors Σ defined in (5) is positive definite. Then our model can be

estimated jointly using full information maximum likelihood. The log-likelihood

function is built from the joint density of yi, δ
∗
i and di, which we write as the

product of the conditional and the marginal densities

f(δ∗i , di, yi) = f(δ∗i , di|yi)f(yi).

To derive the conditional distributions, we use results for the trivariate normal,

and write

vi = ρ1εi/σ + ρ2ui + ηi, with ηi|εi, ui ∼ N(0, κ2)

where ρ1, ρ2 and κ2 are defined in terms of the original parameters ϕv, ϕu and ρ

by:18

ρ1 =
ϕv − ρϕu
1− ϕ2

u

, ρ2 =
ρ− ϕvϕu
1− ϕ2

u

, κ2 = 1− ρ2
1 − ρ2

2 − 2ρ1ρ2ϕu

18The fact that the covariance matrix of the joint distribution of errors is constrained to be
positive definite guarantees that these new parameters are well-defined, namely, 0 < ρ1 < 1,
0 < ρ2 < 1, and κ2 > 0.
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Denote Θ = (θ′, γ′, ρ, ϕu, ϕv, β
′, α, σ2)′ the vector of all the parameters of the

model. Then,

Υ11i(Θ) = f(δ∗i = 1, di = 1|yi) = Φ2

(
z′iθ + ρ1(yi − α− x′iβ)/σ√

ρ2
2 + κ2

, w′iγ,
ρ2√
ρ2

2 + κ2

)

Υ10i(Θ) = f(δ∗i = 1, di = 0|yi) = Φ

(
z′iθ + ρ1(yi − α− x′iβ)/σ√

ρ2
2 + κ2

)
−Υ11i(Θ)

Υ0i(Θ) = f(δ∗i = 0|yi) = 1− Φ

(
z′iθ + ρ1(yi − x′iβ)/σ√

ρ2
2 + κ2

)
= 1−Υ11i(Θ)−Υ10i(Θ)

where Φ2(·, ·, ·) is the CDF of the standard bivariate normal distribution.

The full information log-likelihood function of the model is then defined by

l(Θ) =
n∑
i=1

li(Θ),

with

li(Θ) = δi ln

[
Υ11i(Θ)

1

σ
φ

(
yi − α− x′iβ

σ

)]
+

+ (1− δi) ln

[
Υ10i(Θ)

1

σ
φ

(
yi − α− x′iβ

σ

)
+ Υ0i(Θ)

1

σ
φ

(
yi − x′iβ

σ

)] (26)

Maximizing this function with respect to Θ yields a consistent and asymptotically

efficient estimator of the model parameters.

B.2 Extension to Binary Outcomes

The method discussed in this paper can be extended to the case of binary out-

comes. However, in this case we can not just do the plug-in method described

earlier, because a linear probability model would exhibit serious problems, espe-

cially the fact that it could produce a wrong sign for the treatment effect, even if
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the treatment status is correctly classified (see, e.g., discussion provided by Lew-

bel, Dong & Yang 2012). A more reliable alternative in this case would be the

maximum likelihood estimation. We assume the binary outcome yi is related to

the exogenous covariates xi and to the true treatment indicator δ∗i by

yi = 1 [x′iβ + δ∗i α + εi > 0] . (27)

True participation δ∗i and misreporting di are defined, as before, by equations

(2) and (3), respectively. We maintain Assumptions 1-4 above, except that the

conditional variance of the error εi is now normalized to 1 (as is usually the case

for identification in Probit models). Given the observed participation δi = δ∗i di,

and the outcome yi, the log-likelihood function of the binary choice model (BCM)

is built up from the joint probabilities Pr[yi, δ
∗
i , di] of these dichotomous variables

as follows.

lBCM(Θ) =
n∑
i=1

δi ln Pr[yi, δ
∗
i = 1, di = 1]+

+ (1− δi) ln (Pr[yi, δ
∗
i = 1, di = 0] + Pr[yi, δ

∗
i = 0])

(28)

where

Pr[yi, δ
∗
i = 1, di = 1] = Pr[yi = 1, δ∗i = 1, di = 1]yi Pr[yi = 0, δ∗i = 1, di = 1]1−yi ,

Pr[yi, δ
∗
i = 1, di = 0] = Pr[yi = 1, δ∗i = 1, di = 0]yi Pr[yi = 0, δ∗i = 1, di = 0]1−yi ,

and Pr[yi, δ
∗
i = 0] = Pr[yi = 1, δ∗i = 0]yi Pr[yi = 0, δ∗i = 0]1−yi

The probabilities in these equations can be obtained in terms of model parameters:

Pr[yi = 1, δ∗i = 1, di = 1] = Φ3 (x′iβ + α, z′iθ, w
′
iγ;ϕv, ϕu, ρ)
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Pr[yi = 0, δ∗i = 1, di = 1] = Φ2 (z′iθ, w
′
iγ; ρ)− Pr[yi = 1, δ∗i = 1, di = 1]

Pr[yi = 1, δ∗i = 1, di = 0] = Φ2 (x′iβ + α,w′iγ;ϕv)− Pr[yi = 1, δ∗i = 1, di = 1]

Pr[yi = 0, δ∗i = 1, di = 0] = Φ (z′iθ)− Φ2 (z′iθ, w
′
iγ; ρ)− Pr[yi = 1, δ∗i = 1, di = 0]

Pr[yi = 1, δ∗i = 0] = Φ (x′iβ)− Φ2 (x′iβ, z
′
iθ;ϕv)

Pr[yi = 0, δ∗i = 0] = 1− Φ (z′iθ)− Pr[yi = 1, δ∗i = 0]

where Φ3(·, ·, ·) is the CDF of the standard trivariate normal distribution.
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Appendix C Additional Tables

Table C1: Partial Observability Probit Estimates (First Step of
Proposed Estimator)

SNAP Participation Dummy
First Set Second Set

Coef. S.E. Coef. S.E.
Panel A: Participation Equation
Biometric 0.509* (0.305) -0.078 (0.217)
EBT Card 0.242*** (0.086)
Panel B: Misreporting Equation
Phone Interview -0.270*** (0.066) -0.092* (0.050)
Biometric 0.040 (0.175)
N 5470 5470

This table presents the first step maximum likelihood estimated coefficients of partial
observability model specified in equation (4). Standard errors in parentheses. Results
are based on the 1996-2004 biennial waves of the NLSY79, restricted to females with in-
come lower than 250% of the federal poverty line. For First Set, regressors not reported
include respondentss age, race, household size, household income. For Second Set, ad-
ditional regressors are number of children, mothers education, square of income, time
fixed effects, and indicators for receiving WIC benefits, AFDC/TANF, SSI benefits,
and having an infant living in home.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.010

Table C2: First Stage IV

SNAP Participation Dummy
First Set Second Set

Coef. S.E Coef. S.E.

Biometric 0.0456* (0.026) 0.005 (0.014)
EBT card 0.046*** (0.014)
F-statistics 3.19* 5.27***
Hansen J-statistic 0.147
N 5470 5470

This table reports the first stage estimates of the classic linear IV estimator.
Standard errors in parentheses. Results are based on the 1996-2004 biennial
waves of the NLSY79, restricted to females with income lower than 250% of
the federal poverty line. For First Set, regressors not reported include respon-
dentss age, race, household size, household income. For Second Set, additional
regressors are number of children, mothers education, square of income, time
fixed effects, and indicators for receiving WIC benefits, AFDC/TANF, SSI
benefits, and having an infant living in home.
∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.010
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