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1 Introduction

In 2015, the U.S. Patent and Trademark Office (USPTO) received 589,410

utility patent applications. Matching each application to a qualified examiner

is a fundamental part of the examination process. This matching proceeds in

two steps. First, each application is assigned to an “art unit” comprised of

several examiners who specialize in a particular technology. Then the appli-

cation is assigned to an individual examiner within that art unit. Motivated

by the accounts in Cockburn, Kortum & Stern (2002) and Lemley & Sampat

(2012), several studies have suggested that the second step in this process is

more-or-less random, and then, building on an idea first proposed by Sampat

& Williams (2015), used examiner characteristics as an instrumental variable

for examination outcomes.1

We re-examine the random matching assumption, and find strong evi-

dence of technological specialization by patent examiners within art units.

Examiner specialization is more pronounced in the art units that exam-

ine Biotechnology and Chemistry patent applications, and less so in the

computer-related technology centers. Evidence of specialization becomes

weaker, but does not completely disappear, when we condition on U.S. Patent

Classification System (USPC) sub-classes. However, we find no evidence that

certain examiners specialize in applications that have greater importance or

broader claims. Finally, we show that more specialized examiners have a

lower grant rate and produce a larger narrowing of claim-scope during the

examination process.

These findings have implications for instrumental variables strategies based

on examiner characteristics. Random assignment would suffice to make leave-

one-out grant rates (or any other examiner characteristic) uncorrelated with

potential outcomes. But when examiners specialize, their individual charac-

teristics are likely to be correlated with technology, suggesting an alternative

path through which the instrument could influence outcomes. To see whether

this matters in practice, we estimate “first stage” OLS regressions for two

1Papers adopting variants on this identification strategy include Farre-Mensa, Hegde
& Ljungqvist (2015), Feng & Jaravel (2016), Gaulé (2015), Kuhn (2016), Kuhn, Roin &
Thompson (2016), and Sampat & Williams (2015).
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examination outcomes (patent issuance and first-claim scope) and find that

adding USPC subclass fixed-effects modestly changes our estimates. This

does not necessarily invalidate examiner-based instruments. However, it im-

plies that the IV strategy rests on a stronger assumption than is typically

acknowledged: potential outcomes must be uncorrelated with (unobserved)

technological heterogeneity, despite observed technological sorting.

This is the first paper to systematically test the random matching hypoth-

esis across all of the technology areas examined by the USPTO. Our methods

for detecting specialization are borrowed from the literature on industry ag-

glomeration (Mori, Nishikimi & Smith 2005). Specifically, we compute a pair

of test statistics that ask whether application characteristics (e.g. technology

subclass) are less dispersed across examiners than we would expect under

random assignment.2 Our main tests are performed at the art-unit-year

level, and we examine the entire distribution of p-values for various applica-

tion characteristics, including technology subclass, assignee, and indicators

of patent value (family size) and scope (first independent claim length).

At a substantive level, our findings illustrate how the USPTO manages a

tension between efficiency and fairness (Merges 1999). One way to promote

fairness is through uniform application of patentability criteria, but prior

research suggests that this is difficult. Some examiners are simply tougher

than others (Sampat & Williams 2015, Kuhn et al. 2016), and experienced

examiners are more lenient on average, partly because of time constraints

(Lemley & Sampat 2012, Frakes & Wasserman 2014). Random matching

provides another path to fairness, but forgoes the efficiency benefits of fur-

ther technological specialization. Our analysis shows that the amount of

specialization varies across art units, leading some applicants to get tougher

examiners on average. But we find no evidence that particularly important

applications (with large families) or broad applications (with short first in-

dependent claims) are assigned to specific examiners.

We discuss two plausible explanations for our finding that examiners are

2These methods focus specifically on the null hypothesis of random assignment, unlike
IV falsification tests that ask the slightly different question of whether examiner and
application characteristics are correlated.
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more specialized in Chemistry and Biotechnology than in the computer-

related art units. One possibility is that “generalist examiners” are able

to evaluate computing inventions, while more specialized skills and knowl-

edge are required in chemistry and life sciences. Another possibility is that

the USPC technology classification system works better in chemistry and

biotech, so we fail to observe much of the specialization that takes place

within computer-related art units. Distinguishing between these hypotheses

is a good topic for future research.

Finally, we find a positive correlation between specialization and a more

stringent examination process, suggesting that it is easier for examiners who

specialize to find relevant prior art. Under random matching, these esti-

mates have a causal interpretation. Alternatively, they remain important for

showing how non-random matching is related to examination outcomes.

The paper proceeds as follows. Section 2 describes how the USPTO

assigns applications to examiners. Section 3 explains our methods and data.

Section 4 discusses results and implications, and Section 5 concludes.

2 Patent Examiner Assignment at the USPTO

When a patent application is filed, the Office of Patent Application Pro-

cessing reviews the formality requirements of the application and assigns it

a serial number. A contractor defines the technological classification of the

application using USPC class and subclass codes.3 Each application has at

least one mandatory classification, which is defined as a unique combination

of class and subclass identifiers. The current version of the USPC has roughly

450 classes and more than 150,000 subclasses.

The USPTO has eight Technology Centers (TCs) responsible for exami-

nation of utility patent applications in broad technological areas. Each TC

3The two main purposes of the USPC are to facilitate the retrieval of technical docu-
ments and to ease the allocation of applications to the examining personnel specialized in
a particular technology. For details, see http://www.uspto.gov/sites/default/files/

patents/resources/classification/overview.pdf. Although it was replaced by the
Cooperative Patent Classification (CPC) on January 1, 2013, the USPC is the relevant
classification for the entire period of our study.
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is comprised of several art units, or teams of patent examiners who specialize

in a particular technology. Technological classifications are used to assign

each new patent application to a specific art unit.4

Within each art unit the initial assignment of a new application is handled

by a Supervisory Patent Examiner (SPE). The SPE can refine the techno-

logical classification of a new application if it is incorrect, or request that an

application be transferred to another art unit.5 But in most cases, the SPE

will assign the application to an examiner within her art unit. This is the

step we analyze below.

Previous research documents that SPEs have substantial discretion in

examiner assignment. Some SPEs interviewed by Lemley & Sampat (2012)

mention assigning applications to examiners essentially randomly within sub-

classes. Other SPEs give the oldest unassigned application to an examiner

when she finishes the examination of another application. Although these

practices suggest random matching, some SPEs may encourage technologi-

cal specialization of examiners within their art-unit, and specialization could

also emerge through trading among individual examiners. Cockburn et al.

(2002) suggest that the degree of technological specialization varies across

art units – in some art units an individual examiner is responsible for almost

all applications in a specific technology class, and in others the examiners

are less specialized.

Although the USPTO constantly monitors the performance of art units

and examiners to ensure a certain level of quality of the examination process,

the assignment to a particular art unit and to a specific examiner can have

important consequences for an application. Different practices across art

units and the personal approach of each examiner can affect whether an

application is eventually granted (Sampat & Williams 2015), how quickly a

decision is reached (Farre-Mensa et al. 2015), and the scope and strength of

an issued patent (Kuhn et al. 2016). This variation in standards led Cockburn

4For the current list of classes and subclasses examined by each art unit,
see http://www.uspto.gov/patents-application-process/patent-search/

understanding-patent-classifications/patent-classification.
5The Manual of Patent Examining Procedure sec. 903.08 describes the rules governing

assignment and transfer of applications between art units.
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et al. (2002) to conclude that “there may be as many patent offices as patent

examiners.”

3 Methods and Data

We use two statistical tests originally developed to analyze industry agglom-

eration. In our application, patent examiners are analogous to cities, and

technology subclasses (or other application characteristics) are analogous to

industries. Each test compares observed frequencies to the distribution under

a null of random assignment.

3.1 Agglomeration Test Statistics

3.1.1 Divergence Index

The D-index was developed by Mori et al. (2005), building on Kullback &

Leibler (1951), and is based on the concept of relative entropy.6 Suppose

we have a set of applications characterized by category i ∈ I = {1, ..., I},
assigned to a set of examiners denoted by r ∈ R = {1, ..., R}. In our applica-

tion, the categories i may correspond to USPC subclasses, assignees or any

other predetermined observable characteristic of a patent application. Un-

der random allocation, examiner r’s share of all applications from category i

should equal her share of the overall population.

To formalize that idea, define nir as the number of applications in cat-

egory i assigned to examiner r, and Ni =
∑R

r=1 nir as the total number of

applications in category i. The reference distribution p0 = (p0r : r ∈ R),

where p0r =
∑I

i=1 nir∑I
i=1 Ni

measures examiner r’s share of all applications, is the

share we expect her to be allocated from each category under the null of

random assignment.

Let pir denote the true probability that a randomly sampled application

in category i is assigned to examiner r, so the distribution across examiners

6Statisticians often refer to the D-index as a G test statistic. The main advantage of a
G-test relative to a chi-squared test of independence occurs when some cells in a frequency
table have very small expected counts, which is the case in our application.
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for the category is pi = (pir : r ∈ R). We can measure the divergence

between pi and p0 using the relative entropy of pi with respect to p0, called

the D-index by Mori et al. (2005):

D(pi|p0) =
∑
r∈R

pir ln

(
pir
p0r

)
.

D(pi|p0) is nonnegative, achieves its minimum at pi = p0 and its local maxima

when all applications in category i are assigned to a single examiner.

To estimate the D-index, we use the observed data to estimate the prob-

abilities pir, with p̂ir = nir

Ni
, thus estimating:

D(p̂i|p0) =
∑
r∈R

p̂ir ln

(
p̂ir
p0r

)
. (1)

These probability estimates converge to the true value exponentially fast with

the increase in sample size for a given category Ni.

As shown by Mori et al. (2005) the D-index can be related to the the log

likelihood ratio (λ):

− lnλ

Ni

=
∑
r∈R

nir

Ni

ln

(
p̂ir
p0r

)
= D(p̂i|p0).

Given that −2 lnλ is distributed asymptotically as a chi-square with R−1

degrees of freedom, we can use this relationship to test the null hypothesis

that pi = p0 (see Mori et al. (2005) for details).7 In our application, the

number of tests will equal the number of categories (e.g. one per technology

subclass) and we examine the distribution of p-values from all of these tests

conditional on a given sample-size threshold (e.g. Ni > 20).

3.1.2 Multinomial Test for Agglomeration and Dispersion

MTAD computes multinomial likelihood functions for an allocation of agents

to a set of discrete locations. In our application, the agents are patent ap-

7In practice, we compute 2NiD(p̂i|p0) and use it for a chi-square test with R−1 degrees
of freedom.
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plications and locations correspond to examiners. If the likelihood of the ob-

served data is lower (higher) than the likelihood under random choice, MTAD

indicates that the agents are agglomerated (dispersed). This approach differs

from the D-index because the statistic is computed for an entire art unit, and

because it can detect whether deviations from random assignment are due

to agglomeration or over-dispersion.

To provide a brief formal description of MTAD, we adapt the notation

provided in Rysman & Greenstein (2005). Suppose we have R examiners,

each receiving nr applications, with r = 1, ..., R. The variable nr is bounded

between n = 0 and n = ∞ and distributed according to the discrete distri-

bution f(nr). Each examiner can be assigned applications of c types. The

unconditional probability of being assigned type c is pc for c = 1, ..., C. The

observed number of applications of type c assigned to examiner r is xcr. De-

fine xr as the vector of elements x1
r, ..., x

C
r , p as the vector of probabilities

p1, ..., pC , n as the R×1 vector of applications assigned to each examiner, and

X as the R×C matrix of allocations. If examiners are assigned applications

independently, the likelihood of observing outcome xr for examiner r is the

multinomial pdf

L(xr, nr,p) =

(
nr

x1
r, ..., x

C
r

)
p
x1
r

1 ... p
xC
r

C

and the average log-likelihood for the data is

l(X,n,p) =
1

R

R∑
r=1

ln

(
L(xr, nr,p)

)
.

We want to compare this log-likelihood with the value we would observe

under independent random assignment. Let the random variable l(f,p) be

distributed according to the distribution l(X,n,p) if X was actually drawn

from a multinomial distribution and nr was drawn from f . Then the expected

log-likelihood under random allocation is given by

E[l(f,p)] =
∑
nr

( ∑
z∈Φ(nr)

lnL(z, nr,p)× L(z, nr,p)

)
f(nr)
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where Φ(nr) is the set of all possible allocations of the nr applications. To

compute E[l(f,p)] we treat p as known and take f to be the empirical

distribution of nr. The MTAD test-statistic is

t(X,n,p) = l(X,n,p)− E[l(f,p)]. (2)

A negative (positive) value of t(X,n,p) signals agglomeration (disper-

sion) of patent applications compared to the null of random assignment.

This statistic is distributed asymptotically normal and we use simulation to

generate its confidence intervals.8

3.2 Data

Our main data source is the USPTO Patent Examination Research Dataset

(Graham, Marco & Miller 2015), which is based on information from the Pub-

lic Patent Application Information Retrieval system (Public PAIR). We also

use information from PatentsView (http://www.patentsview.org), PAT-

STAT, the USPTO Patent Assignment Dataset (Marco, Myers, Graham,

D’Agostino & Kucab 2015) and the Patent Claims Research Dataset (Marco,

Sarnoff & deGrazia 2016).

We restrict our analysis to published utility patent applications filed on

or after the enactment of the American Inventor’s Protection Act of 1999

(November 29, 2000) and before January 1st 2013, whose examiner is affili-

ated with one of the eight technology centers responsible for the examination

of utility patent applications. The USPTO Patent Examination Research

Dataset provides information on the examiner of record for each application

as of January 24, 2015. This is the examiner as of that date for pending ap-

plications and the examiner at the time of disposal for disposed applications.

We assign art units based on the examiner of record at the time of the last

office action recorded for an application. Under the AIPA, regular utility

8See Rysman & Greenstein (2005) for details on the test. Timothy Simcoe developed
a software module to easily perform this test in Stata, available at the following link:
https://ideas.repec.org/c/boc/bocode/s457205.html
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patent applications are generally published eighteen months after filing.9

The data have several limitations. First, applications will not appear in

our data if they are abandoned before publication, or if the applicant files

only in the United States and requests that the application not be published.

Previous research suggests that these outcomes are relatively rare.10 A second

limitation is that we do not observe whether applications are transferred from

one examiner to another.

We exclude applications filed after 2012 to avoid problems related to pub-

lication lags and a change in the USPTO technological classification scheme.

We also exclude serialized continuations (continuation applications, contin-

uations in part and divisional applications) because these applications are

usually assigned to the same examiner of the original application, and would

therefore lead us to overstate the extent of agglomeration. Our primary

analysis sample contains 2,717,032 applications examined by 12,338 unique

examiners affiliated with 590 art units. Table 1 shows the distribution of ap-

plications, art units, examiners, classes and subclasses by technology center.

3.3 Variables

We focus on several application characteristics (indexed by i or c above) that

may influence the assignment of applications to individual patent examiners

within an art-unit-year.11 The first of these characteristics is the primary

USPC classification of the application, which is defined by a unique combi-

nation of primary class and primary subclass codes (for brevity, subclass). If

patent examiners specialize in evaluating applications related to particular

technologies, we expect to see agglomeration on this variable.

We use technology classification data from published applications, rather

than granted patents, to avoid measuring any specialization created by the

9As in Graham et al. (2015) and in the Public PAIR data, we use the term “regular
utility patent application” to distinguish nonprovisional utility patent applications from
provisional, PCT, reissue or re-examination applications.

10Graham et al. (2015) show that about 95% of the regular non-provisional utility patent
applications filed between 2001 and 2012 can be found in Public PAIR.

11We typically compute our test statistics within a filing-year-art-unit cell to account for
possible changes in assignment practices over time and turnover in the pool of examiners.
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examination process. In particular, because the USPC classification of an

application is based on its claims, which are usually amended during exami-

nation, the subclass of many applications changes over time.12,13 This could

lead to spurious agglomeration if certain examiners are more likely to reject

claims in particular classes.

Table 1 shows that for patents granted before July 21, 2015, twenty per-

cent of all applications change primary class during the examination process,

and almost seventy percent change primary subclass. There is heterogene-

ity across technology centers, with patents in Biotechnology and Chemicals

changing classification more often than those in other areas.14

The identity of the applicant is a second variable that could influence the

allocation of applications — either directly or due to technological special-

ization. We measure this with the assignee of an application. Specifically,

we retrieve information on the assignment of applications, identify the as-

signments made by the inventors to their employers before the application

is docketed to an examiner, clean and standardize the assignee names and

create clusters of names that are likely to belong to the same organization, to

which we assign a unique identifier.15 After completing this process, we have

missing assignee data for 584,313 applications. To check the robustness of our

assignee measurement, we utilize a second measure of the applicant identity:

the customer number assigned by USPTO to each application. This number

12The data in Public PAIR provide only the most recent classification of an application,
so we utilize the primary classification of applications at publication from PatentsView,
which is more likely to reflect the classification contractor’s original assignment. We thank
Evgeny Klochikhin for access to the PatentsView patent applications database.

13In a previous version of the paper we utilized the class/subclass codes provided by
Public PAIR for our agglomeration analysis. The results were similar to those reported in
the current version of the paper, but showed a greater degree of agglomeration. We thank
Deepak Hegde, Bhaven Sampat, Andrew Toole and Heidi Williams for helpful conversa-
tions that improved our understanding of the classification process.

14Many papers utilize USPC (sub)classes as a control variable, and future research might
usefully consider whether it is better to measure this variation at the time of application
publication or grant.

15We employ an assignee name cleaning and standardization routine that builds
upon Thoma, Torrisi, Gambardella, Guellec, Hall & Harhoff (2010) and the
name standardization routines developed for the NBER Patent Data Project
available at https://sites.google.com/site/patentdataproject/Home/posts/

namestandardizationroutinesuploaded. Details are available upon request.
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identifies the correspondent for application-related matters and is usually ei-

ther the law firm representing the applicant or the legal department of the

firm filing the application.16

We would like to examine whether some examiners are assigned a larger

share of “high value” applications. The size of a patent family is often used

as a proxy for economic value of the invention because increased value leads

patentees to file in more countries (Harhoff, Scherer & Vopel 2003, Putnam

1996). We count the number of applications in the same DOCDB patent

family, with filing dates on or before the focal application date, to construct

an indicator variable that equals one if a focal application is above the 95th

percentile in the family size distribution (within an art-unit and filing-year).

We call this variable “DOCDB Family Size.”17

Finally, we consider whether some examiners are assigned applications

seeking greater scope of protection. Kuhn et al. (2016) show that the length

of the first independent claim in a patent is a good measure of patent scope.

The idea behind this measure is that shorter claims provide broader scope

of patent protection because every word added to the text of the claims

can potentially introduce additional elements or characteristics that must be

present to establish infringement. We create an indicator variable that equals

one if and only if a patent application falls below the 5th percentile of the

word count distribution for the first independent claim in the subsample of

applications with the same filing year examined by the same art unit.18 We

call this variable “Words in 1st Claim.”19

16Results of the customer-number analysis are similar to those for the assignee and are
available upon request.

17We test the robustness of these results using the INPADOC patent families. The
results are similar to those for DOCDB patent families and are available upon request.

18Kuhn et al. (2016) note that this measure of scope is not suitable for the analysis of
patent scope in biotechnology. So we exclude the Biotechnology technology center from
the analysis of this variable. We also check the robustness of results based on the length
of the first independent claim utilizing measures built upon the number of claims and
independent claims. The results are similar and available upon request.

19Summary statistics for all variables used in the analysis are in Table A1.
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4 Results

This section presents evidence of patent examiner specialization, and then

regression results linking specialization to examination outcomes.

4.1 Examiner Specialization

Figure 1 shows that patent examiners handle more applications from a given

USPC subclass or assignee than we would expect under random allocation.

Specifically, each panel shows a histogram of p-values from a sample of hy-

pothesis tests. For the D-index (top row), we run a separate test for each

art-unit-year by subclass or assignee cell containing more than 20 applica-

tions. For MTAD (bottom row) we run a separate test for each art-unit-year

cell containing more than 50 applications.20

Under the null of random assignment, the p-values in Figure 1 should

be uniformly distributed between zero and one. However, in each panel a

large share of the test-statistics fall below the 1 percent statistical signifi-

cance threshold, providing strong evidence of specialization. The two his-

tograms in the left column indicate that about 25 percent of the D-index

and MTAD tests for random USPC assignment have a p-value below 0.01.

The two histograms in the right column show somewhat weaker evidence of

specialization by assignee, with about 10 to 20 percent of the p-values falling

below the 1-percent threshold. The agglomeration by assignee becomes much

weaker if tests are conducted within USPC subclasses (see below), suggest-

ing that these findings are primarily a result of technological specialization

of examiners and applicants. Overall, Figure 1 shows that the allocation of

applications within art units is often far from random, and that SPEs take

into account the technological classification when assigning applications to

an examiner, as described in Lemley & Sampat (2012).

20All of our results are robust to varying the within-cell sample size cutoffs, but going
much below these thresholds leads to large numbers of uninformative tests. Figure A1
shows the distributions of p-values of D-index and MTAD for subclass and assignee with
thresholds equal to, respectively, 10 and 25. Figure A2 uses these lower thresholds to
check the robustness of the analysis in Figure 2.
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Table 2 examines the degree of examiner specialization in different Tech-

nology Centers, and for an additional pair of application characteristics.

Specifically, the table reports the share of D-index or MTAD tests that

reject the null hypothesis of random allocation at a 1-percent significance

level.21 Panel A shows that there is evidence of examiner specialization in

every technology center. However, the “Computer Architecture” and “Com-

puter Networking” areas are less agglomerated than Biotechnology, Chem-

istry, Semiconductors and Mechanical Engineering. The results in Panel B

are similar.

Although our data do not speak to the underlying causes of variation

in examiner specialization across technology centers, there are several pos-

sible explanations for this pattern. First, examiners in the less agglomer-

ated technology centers may be “generalists” who are capable of evaluating

most applications within their art-unit. This would naturally lead SPEs to

adopt a more random allocation process, and might also influence examiners’

application-trading practices. Alternatively, patent examiners in the Com-

puters and Communications technology centers might be just as specialized

as their counterparts, but this is not apparent to us because the USPC clas-

sification system is less representative of actual technological differences in

these fields.

The lower half of Table 2 examines agglomeration for a pair of dichoto-

mous variables: “DOCDB Family Size” and “Words in 1st Claim.” Both

of these variables focus on extreme outcomes because we are interested in

whether SPEs assign unusual applications to a specific set of examiners. The

data suggest that, for the most part, they do not. There is some evidence that

applications from very large families are concentrated among a smaller set

of examiners for Chemicals, Communications, Semiconductors, Mechanical

Engineering and the technology center we labeled as “Miscellaneous”. And

there is some evidence that certain examiners specialize in broader patents

(as measured by length of the first claim) in the Chemical and Materials En-

gineering and Semiconductors technology centers. But these effects are not

21Table A3 in the appendix reports analogous figures with a cutoff at the 5-percent
threshold for statistical significance.
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large, and might easily be caused by the technological specialization observed

in Panel A.

The results presented thus far beg the question of whether examiner spe-

cialization is purely technological. To explore that idea, we test for ag-

glomeration within art-unit-year-USPC-subclasses to see whether condition-

ing on observed technological heterogeneity changes our results. There are

two caveats to keep in mind. First, we cannot condition on unobserved tech-

nological heterogeneity. And second, many USPC subclasses receive only a

few applications per year, so these tests exclude a large amount of data. How-

ever, if examiners seem to be randomly assigned within large sub-classes, we

might be more comfortable that most of the specialization we observe within

art-unit-years is based on technology rather than other patent characteristics.

Figure 2 examines agglomeration by assignee, within art-unit-years, both

within and without conditioning on USPC subclass. Each panel presents a

quantile-quantile plot that compares the distribution of the D-index (top row)

or MTAD statistic (bottom row) for the observed data to the distribution

under simulated random assignment. For the D-index, agglomeration leads

observed values of Di to exceed simulated values of Di, so that scatter points

fall below the 45-degree line. For MTAD, a negative value of t(X,n, p) in-

dicates agglomeration, and a positive test-statistic indicates over-dispersion.

So the scatter points will fall above the 45-degree for t < 0 when there is ag-

glomeration, and below the 45-degree for t > 0 when there is over-dispersion.

The left column in Figure 2 shows that the observed quantiles of the D-

index are higher, and the observed quantiles of MTAD are lower (for t < 0),

than the simulated quantiles under random allocation. In other words, there

is strong evidence of specialization, as we saw above. The righthand column

shows that the evidence for agglomeration is much weaker once we condition

on the USPC subclass, although the MTAD test does appear to detect some

specialization by assignee.22 Note how the sample size falls dramatically as

we move from the left to the right column in this figure.23

22In both columns, we observe a similar distribution of t(X,n, p) when the statistic is
positive, suggesting that any over-dispersion is in fact random.

23The D-index discards any assignee that does not submit more than 20 applications to
a given art-unit in a particular year (and, for the analysis conditional on USPC subclasses,
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Table 3 examines agglomeration within art-unit-application-year-class-

subclass bins, and reports results by technology center.24 For the analysis

in Panel A we retain all the applications with at least one secondary sub-

class (1,311,532 applications) and generate a data set with observations at

the application-secondary-subclass level. The D-index analysis rejects ran-

dom assignment for about 20% of the tests in Biotechnology, suggesting

agglomeration. However, about 13% of the MTAD tests in Biotechnology

and Chemicals reject random assignment in favor of dispersion.

Panel B focuses on the allocation of assignees. For the D-index, we often

have a small number of tests, because it is unusual for a single assignee to file

many applications in a single subclass-year. Nevertheless, the D-index tests

reject random assignment more than 15 percent of the time in the Biotech-

nology technology center and almost 10 percent of the time in the Chemistry

technology center. MTAD rejects random assignment less often, but also

finds more agglomeration in biotechnology and, to a lower extent, chemistry.

Because several technology centers have only a few subclasses large enough

to produce reliable inference, we re-ran this analysis after pooling all years

in our sample, and found very similar results (see Appendix Tables A5 and

A6).

Panels C and D in Table 3 find no evidence that SPEs in any technology

center allocate “outlier applications” (in terms of family size or first indepen-

dent claim scope) to a specific set of examiners after conditioning on observed

technological differences.

Overall, these results show that patent examiners specialize in particu-

lar technologies, even within relatively homogeneous art units. We find no

evidence that certain examiners specialize in “outlier” patent applications.

Moreover, much of the agglomeration by assignee disappears if we condition

on primary USPC subclasses. However, we do find evidence of agglomera-

tion or over-dispersion by secondary USPC subclass and assignee, even within

primary USPC subclasses, for the Biotechnology and Chemistry technology

in a particular subclass). This excludes the large majority of applicants. MTAD retains
more data because it uses all applications filed to an art unit-year-(subclass).

24Table A4 presents the same analysis using a 5% statistical significance threshold.
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centers. This last result suggests that there may be examiner specialization

based on unobserved technological differences in some art units even after

conditioning on the observed USPC subclasses.25

4.2 Implications for Examiner-based Instruments

Examiner specialization undermines a common justification for using exam-

iner characteristics as instrumental variables. Under random matching, ex-

aminer characteristics are uncorrelated with potential outcomes by construc-

tion. But specialization implies that these characteristics can be correlated

with technology, which might lead to a violation of the exclusion restriction.

It is not possible to test the exclusion restriction. However, it is possible

to examine whether observed technologies are correlated with examiner char-

acteristics. We do this by estimating a “first stage” OLS regression with and

without subclass fixed-effects, and testing whether the coefficient on a pro-

posed instrument changes. This exercise can be viewed as an additional test

of the random assignment hypothesis, since random matching implies that

observed (and unobserved) technology is uncorrelated with examiner char-

acteristics. Alternatively, one can take it as a test of the weaker assumption

that the proposed instrument is uncorrelated with subclass effects.

Table 4 presents first stage OLS estimates for two instruments used in

the literature: (1) an examiner’s leave-one-out grant rate on patent issuance,

and (2) an examiner’s leave-one-out “scope change” (i.e. the mean number of

words added to the first independent claim of other applications) on the scope

of a focal patent.26 The sample for this analysis contains all applications in

our primary sample that were either granted or abandoned by the end of

25To complement the analysis describe in this section, we also run a set of Kolmogorov-
Smirnov tests of the equality of distributions of the statistics produced by the D-index and
MTAD analysis and their p-values for the tests on the real allocations and the simulations
of random assignment. The results are consistent with those reported in the paper and
are available upon request.

26Since examiners can change art unit within a given year, we compute both leave-one-
out variables within art-unit-filing-year-examiner. Given the results of our agglomeration
analysis, we would like to compute the two instruments within subclasses. However, this
would exclude more than 90 percent of our data because many subclasses have only a very
small number of applications in a given year.
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the sample period; whose leave-one-out IV is computed with at least 10

applications; and whose art-unit-filing-year-subclass cell in the estimation

sample contains at least two applications. The estimates for the patent scope

models use only granted applications. Each coefficient reported in the table

is based on a separate OLS regression. To ease the interpretation of the

results, we standardize the two instruments, and report the ratio of the two

estimates (with and without subclass effects) in a third column.

The full sample estimate in the first row of Table 4 implies that a one stan-

dard deviation increase in the leave-one-out grant rate is associated with a

16.3% increase in the probability that a focal application is granted. Adding

subclass fixed effects causes this coefficient to fall by 10 percent. The re-

mainder of columns (1) and (2) show that adding subclass effects produces

a decline in the first-stage IV coefficient within every technology center.

The changes are larger in Biotech and Chemistry, where evidence of special-

ization is stronger, and weaker in the computer-related technology centers.

All of these differences are statistically significant at the 5 percent level.27

Columns (3) and (4) in Table 4 present similar findings for the leave-one-out

scope-change instrument. For the latter variable, we find a particularly large

change in coefficient estimates for applications assigned to art-units in the

Chemicals technology center, and no change for applications in computing

technology center 2100.

Based on these results, we can (again) reject the random matching hy-

pothesis, and also the conjecture that observed technology is uncorrelated

with a specific pair of examiner-based instruments. On the other hand, con-

trolling for subclass produces only modest changes in the first-stage esti-

mates, particularly for several of the computing-related technology centers.

We propose the following implications for those who still wish to use ex-

27To test whether differences between the coefficients in columns (1) and (2) are sta-
tistically significant, we demean the leave-one-out variables within art-unit-filing-year and
within art-unit-filing-year-subclass, re-run the models (without the fixed effects, as de-
meaning within groups at the level of the fixed effects produces the same coefficients) and
test the statistical significance of the differences in the coefficients. We also run a battery
of likelihood ratio tests to compare models analogous to those in columns (1)-(2) and (3)-
(4) without clustering the standard errors. All tests are statistically significant at the 1
percent level.
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aminer characteristics as instruments, perhaps because (like us) they see it as

a clear step forward in terms of measuring the causal impacts of intellectual

property. First, it is important to carefully control for any observable differ-

ences in technology. Subclass fixed effects are not a panacea, since there is

almost certainly some residual unobserved technological specialization, but

they are a step in the right direction. Second, instead of claiming that appli-

cations are randomly matched to examiners, authors should clearly explain

the key identification assumption: conditional on observables, examiner char-

acteristics must be uncorrelated with potential outcomes, regardless of any

technological sorting. Finally, the assumption that technology is uncorrelated

with potential outcomes appears most plausible for information technology

art-units, a bit less so for mechanical and miscellaneous technologies, and

potentially problematic for art-units examining chemical and biotechnology

applications.

4.3 Specialization and Examination Outcomes

As a final step in our empirical analysis, we explore the relationship between

examiner specialization and patent prosecution outcomes. We focus on three

outcomes: (i) whether an application is granted, (ii) the change in the number

of words in the first independent claim between the published application

and the granted patent, and (iii) the number of days required to process the

application (the difference between the date an application is docketed to

an examiner for the first time and its disposal date).28 Our sample consists

of all applications belonging to an art-unit by examiner by filing year cell

containing more than 10 applications. To account for truncation, we exclude

pending applications and those filed after year 2009.

Our unit of analysis is the application, and we adopt a measure of special-

ization that varies across both examiners and applications. Specifically, our

main explanatory variable is the share of an examiner’s applications (within

28An application is never ultimately rejected by the USPTO. If an applicant is not
granted a patent, she can file a Request for Continued Examination (RCE), a continua-
tion application or a continuation-in-part. We do not study the implications for RCE or
continuation filings in this paper.
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an art unit-filing year cell) having the same USPC subclass as a focal ap-

plication. To be more precise, define the set kit(j) of all patents (except for

patent i) assigned to examiner j in year t.29 Let njt represent the total num-

ber of patents reviewed by examiner j in year t, and define an indicator 1mn

that equals one if and only if two patents (m and n) have the same USPC

subclass. Our main explanatory variable can be written as:

Shareijt =

∑
m∈kit(j) 1mi

njt − 1
.

Intuitively, Shareijt equals the probability that a random draw from the pool

of applications assigned to examiner j in year t has the same USPC subclass

as the focal application.

Table 5 presents estimates from a series of OLS panel-data regressions

that examine the correlation between Shareijt and prosecution outcomes.

To ease interpretation, we standardize Shareijt and the outcome variables

except the dummy for granted patents.30 Standard errors are clustered at

art-unit-filing-year level in all models.

Columns (1) through (3) report coefficient estimates from a within-examiner

regression with art-unit-examiner-filing-year fixed effects. The coefficients of

Shareijt are all positive but very close to zero. Columns (4) through (6)

report the results from a between-examiner analysis, where we regress the

mean outcome for each art-unit-examiner-filing-year on the mean of Shareijt

(i.e. the probability that two random draws from the pool of patents assigned

to that examiner will belong to the same USPC subclass).

The coefficient in Column (4) indicates that a one standard deviation in-

crease in Shareijt leads to a 4 percentage point drop in the grant rate. This

suggests that specialized examiners are also more stringent. The coefficient

in column (5) also suggests that specialization leads to more stringent ex-

amination. However, the economic magnitude of this result is rather small:

a one standard deviation change in Shareijt produces a 0.08 standard de-

viation change in the number of words added to the first claim. Finally, in

29For this analysis we consider an examiner affiliated with two (or more) different art
units in the same year as two (or more) examiners.

30Table A2 displays summary statistics for all variables used in this part of the analysis.
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column (6) we find a small but statistically significant positive association

between specialization and the time required to process a patent examina-

tion.31

The overall message of this part of the analysis is that examiner spe-

cialization is related to more stringent examination, although the economic

magnitudes are not dramatic. This relationship is driven by differences across

examiners, as showed by the “between” estimators in Table 5, while we do

not find important differences in the relationship between specialization and

examination outcomes “within” examiners. One plausible explanation for

the finding is that it is easier for examiners that are more specialized to find

relevant prior art because they are more familiar with certain fields of tech-

nology, leading to narrower claims and an increased probability of application

abandonment. Under random assignment, these estimates are causal. We

prefer a descriptive interpretation. Nevertheless, these results confirm the

importance of differences across examiners for examination outcomes.

5 Conclusions

We study a key stage of patent prosecution: the assignment of applications

to examiners. The first half of our empirical analysis focuses on charac-

terizing the degree of examiner specialization. Using two statistical tests

designed to study industry agglomeration, we find strong evidence that ex-

aminers specialize in particular technologies, even within relatively homoge-

neous art units. The degree of specialization varies across fields. The USPTO

technology centers associated with Computers and Communications exhibit

relatively little specialization, while examiners in the “Biotechnology and Or-

ganic Chemistry” and “Chemical and Materials Engineering” technology are

relatively more specialized. In the latter technology centers, we find assignee

agglomeration even after conditioning on USPC subclasses.

The second part of our analysis shows that observed technological classi-

fications are correlated with potential instruments based on examiner char-

31Results of the analysis in Table 5 by technology center are available on request.
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acteristics. And our last set of results shows that more specialized examiners

are more stringent on average — they have a lower grant rate, and produce

a larger reduction in the scope of issued patents’ first independent claim.

It may not seem surprising that we can reject the hypothesis of random

matching between applications and examiners. After all, one reason for hav-

ing a patent classification system is to help route applications to appropriate

examiners. However, several studies have argued that more-or-less random

matching (within art-units) provides a justification for using examiner char-

acteristics as an instrument for examination outcomes. While our findings do

not invalidate this identification strategy – patent examiner characteristics

might still satisfy the relevant exclusion restrictions – they do imply that

we cannot rely on random assignment to justify the approach. Our findings

suggest that examiner-based instruments are more plausible in studies that

include subclass fixed effects and focus on computer-related art units.

On a more positive note, our results suggest that the USPTO’s patent

examination process strikes a reasonable balance between efficiency and fair-

ness. Technological specialization is efficient. Fairness can be achieved by

enforcing uniform examination standards, which is difficult, or through ran-

dom assignment, which guarantees all applicants an equal shot at the more

friendly examiners. Conditional on technology, examiner assignment appears

relatively random in the computer-related technology centers. And even

without controlling for technology, there is no evidence that certain examin-

ers within a given art unit handle more patents with large families or broad

claims. We leave to future researchers the question of whether procedural

fairness to applicants is also the best policy in terms of social welfare.
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Tables and Figures

Figure 1: Distribution of P-values from D-index (top) and MTAD (bottom)
for USPC subclass and Assignee
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Distribution of p-values of D-index and MTAD analysis for USPC subclass and Assignee

codes. Tests on subsamples with more than 20 applications for D-index and 50 applications

for MTAD. Vertical red lines are standard thresholds for statistical significance (0.01, 0.05

and 0.10)
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Figure 2: Quantile-Quantile Plots of D-index (top) and MTAD (bottom) by
Art-Unit-Year (left) and Art-Unit-Year-USPC-Subclass (right) for Assignee
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Each panel plots the quantiles of the D-index (top row) or MTAD statistic (bottom row)

for the observed distribution (X-axis) against a simulated distribution under random as-

signment (Y-axis). Tests on subsamples with more than 20 applications for D-index and

50 applications for MTAD. If the observed distribution is random, the quantiles should be

the same and the scatter points will fall along the 45-degree line. We observe large devi-

ations from random assignment at the art-unit-year level, but much less evidence within

art-unit-year-USPC-subclasses.
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Table 2: D-index and MTAD Tests within Art-Unit-Application-Year (share
rejecting random allocation at 1% significance level, by technology center)

Panel A: USPC subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 32.9 906 19.6 0.2 551
Chemical and Materials Engineering 58.6 814 55.8 0.0 721
Computer Architecture, Software, and Security 2.2 1,170 0.7 0.0 723
Computer Networking and Video Distribution 6.5 753 0.8 0.0 628
Communications 17.7 2,268 16.7 0.0 694
Semiconductors, Electrical and Optical Systems 37.4 3,389 39.5 0.0 843
Miscellaneous† 15.4 1,162 21.7 0.1 742
Mechanical Engineering, Manufacturing, Products 38.9 1,536 39.4 0.0 680

All tests 27.5 11,998 25.0 0.0 5,582

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 50.2 225 9.1 0.0 527
Chemical and Materials Engineering 46.1 866 30.9 0.0 699
Computer Architecture, Software, and Security 4.2 970 0.0 0.0 709
Computer Networking and Video Distribution 5.3 509 0.2 0.0 616
Communications 11.0 1,879 6.3 0.0 668
Semiconductors, Electrical and Optical Systems 19.6 3,360 15.0 0.1 824
Miscellaneous† 29.3 818 13.4 0.0 703
Mechanical Engineering, Manufacturing, Products 36.0 1,089 19.1 0.0 659

All tests 21.4 9,716 12.0 0.0 5,405

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.8 772 3.1 0.0 549
Chemical and Materials Engineering 3.7 1,018 5.4 0.0 716
Computer Architecture, Software, and Security 0.5 860 2.1 0.0 723
Computer Networking and Video Distribution 0.3 742 1.1 0.0 627
Communications 2.5 1,011 4.5 0.0 690
Semiconductors, Electrical and Optical Systems 3.8 1,427 6.1 0.0 841
Miscellaneous† 2.4 1,149 4.7 0.0 738
Mechanical Engineering, Manufacturing, Products 3.9 1,089 7.2 0.0 678

All tests 2.5 8,068 4.4 0.0 5,562

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 3.5 1,129 5.1 0.0 721
Computer Architecture, Software, and Security 0.0 895 0.1 0.0 723
Computer Networking and Video Distribution 0.0 755 0.0 0.0 627
Communications 0.2 1,052 0.1 0.0 693
Semiconductors, Electrical and Optical Systems 2.1 1,524 5.1 0.0 843
Miscellaneous† 0.7 1,194 1.8 0.0 741
Mechanical Engineering, Manufacturing, Products 0.8 1,160 0.7 0.0 679

All tests 1.2 7,709 2.0 0.0 5,027

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 1% level. For MTAD, columns labelled “Agg.” (“Disp.”) report the
share of tests that reject the null hypothesis of random allocation at 1% level in favor of agglomeration (dispersion).
All tests are conducted within art-unit-year cells with more than 20 applications for the D-index and more than

50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic Commerce, Agriculture,
National Security and License & Review.”
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Table 3: D-index and MTAD Tests within Art-Unit-Application-Year-
Subclass (1% significance level, by technology center)

Panel A: USPC secondary subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 21.1 720 1.5 13.8 1,613
Chemical and Materials Engineering 3.4 147 0.4 13.4 516
Computer Architecture, Software, and Security 0.0 99 0.0 0.0 143
Computer Networking and Video Distribution 0.0 33 0.0 0.0 35
Communications 0.0 120 0.0 0.0 212
Semiconductors, Electrical and Optical Systems 0.0 104 0.0 0.9 531
Miscellaneous† 3.8 26 0.0 0.7 150
Mechanical Engineering, Manufacturing, Products 0.0 55 0.0 1.2 168

All tests 12.1 1,304 0.8 8.9 3,368

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 16.2 37 8.7 0.0 104
Chemical and Materials Engineering 9.1 33 2.5 1.2 80
Computer Architecture, Software, and Security 0.0 13 0.0 0.0 120
Computer Networking and Video Distribution 0.0 1 0.0 0.0 46
Communications 0.0 84 0.0 0.0 363
Semiconductors, Electrical and Optical Systems 0.0 82 0.3 0.0 392
Miscellaneous† 0.0 10 0.0 0.9 115
Mechanical Engineering, Manufacturing, Products 6.0 50 0.0 0.0 113

All tests 3.9 310 0.9 0.2 1,333

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.0 844 0.0 0.0 151
Chemical and Materials Engineering 0.0 768 3.2 0.0 93
Computer Architecture, Software, and Security 0.0 1,082 0.0 0.0 174
Computer Networking and Video Distribution 0.0 698 0.0 0.0 62
Communications 0.0 2,147 0.2 0.0 429
Semiconductors, Electrical and Optical Systems 0.0 3,184 0.4 0.0 458
Miscellaneous† 0.0 1,097 0.0 0.0 169
Mechanical Engineering, Manufacturing, Products 0.0 1,419 0.7 0.0 144

All tests 0.0 11,239 0.4 0.0 1,680

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 0.0 747 0.0 0.0 99
Computer Architecture, Software, and Security 0.0 1,058 0.0 0.0 191
Computer Networking and Video Distribution 0.0 684 0.0 0.0 64
Communications 0.0 2,109 0.0 0.0 456
Semiconductors, Electrical and Optical Systems 0.0 3,109 0.4 0.0 520
Miscellaneous† 0.0 1,062 0.0 0.0 190
Mechanical Engineering, Manufacturing, Products 0.0 1,409 0.0 0.0 185

All tests 0.0 10,178 0.1 0.0 1,705

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 1% level. For MTAD, columns labelled “Agg.” (“Disp.”) report
the share of tests that reject the null hypothesis of random allocation at 1% level in favor of agglomeration
(dispersion). All tests are conducted within art-unit-year-subclass cells with more than 20 applications for the

D-index and more than 50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic
Commerce, Agriculture, National Security and License & Review.”
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Table 4: IV “First-Stage” With and Without Subclass Effects

Outcome† 1[Granted] Words-in-1st-claim

Potential Instrument
Leave-one-out

grant rate
Leave-one-out
scope change

(1) (2) (1)/(2) (3) (4) (3)/(4)

Full Sample 0.163 0.147 0.90 0.224 0.211 0.94
(0.001) (0.001) (0.003) (0.004)

Art-unit-year FEs X X

Art-unit-year-subclass FEs X X

Biotechnology (1600) 0.149 0.132 0.89
(0.002) (0.003)

Chemicals (1700) 0.174 0.144 0.83 0.146 0.060 0.41
(0.002) (0.003) (0.012) (0.016)

Comp/Comm (2100) 0.143 0.140 0.98 0.207 0.208 1.00
(0.002) (0.002) (0.009) (0.009)

Comp/Comm (2400) 0.121 0.115 0.95 0.226 0.217 0.96
(0.003) (0.004) (0.009) (0.011)

Comp/Comm (2600) 0.163 0.156 0.96 0.236 0.226 0.96
(0.002) (0.002) (0.009) (0.010)

Electrical (2800) 0.170 0.160 0.94 0.247 0.240 0.97
(0.001) (0.002) (0.005) (0.005)

Miscellaneous (3600) 0.161 0.136 0.84 0.218 0.193 0.89
(0.002) (0.002) (0.009) (0.009)

Mechanical (3700) 0.171 0.150 0.88 0.220 0.194 0.88
(0.002) (0.002) (0.008) (0.008)

†Outcome is the endogenous variable in an IV regression.
Each “first-stage” estimate in this table comes from a separate OLS regression of Outcome on Potential In-
strument for applications assigned to a given technology center. Robust standard errors, clustered by art-unit-
filing-year, in parentheses. All estimates are statistically significant at the 1% level. See text for a discussion of
the estimation sample, and variable definitions. We exclude biotechnology patents (Technology Center 1600)
from the second set of estimates because Kuhn et al. (2016) suggest that counting words in the first claim does
not yield a meaningful measure of claim-scope for those applications.
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Table 5: Examiner Specialization and Examination Outcomes.

Model Within Examiner Between Examiner

Outcome Granted Words Days Granted Words Days

(1) (2) (3) (4) (5) (6)

Shareijt 0.00*** 0.00 0.01*** -0.04*** 0.08*** 0.10***
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

Art-unit-year-examiner FEs X X X

Observations 1,750,211 1,069,834 1,749,990 48,973 44,036 48,973
Art-unit-year-examiners 48,973 44,036 48,973

All models estimated with OLS. Unit of observation is a patent application for the within regressions
and an art-unit-year-examiner for the between regressions. Variables Shareiijt, Words and Days are
standardized. The mean of the outcome of the regression in column 1 is 0.65. Between regressions
estimated on the group means. Standard errors clustered by art unit-filing year in parentheses. ***
p<0.01, ** p<0.05, * p<0.10
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A Appendix: Online Publication Only

Figure A1: Distribution of P-values from D-index (top) and MTAD (bottom)
for USPC subclass and Assignee (lower thresholds)
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Distribution of p-values of D-index and MTAD analysis for USPC subclass and Assignee

codes. Tests on subsamples with more than 10 applications for D-index and 25 applications

for MTAD. Vertical red lines are standard thresholds for statistical significance (0.01, 0.05

and 0.10)
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Figure A2: Quantile-Quantile Plots of D-index (top) and MTAD (bottom) by
Art-Unit-Year (left) and Art-Unit-Year-USPC-Subclass (right) for Assignee
(lower thresholds)
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Each panel plots the quantiles of the D-index (top row) or MTAD statistic (bottom row)

for the observed distribution (X-axis) against a simulated distribution under random as-

signment (Y-axis). Tests on subsamples with more than 10 applications for D-index and

25 applications for MTAD. If the observed distribution is random, the quantiles should be

the same and the scatter points will fall along the 45-degree line. We observe large devi-

ations from random assignment at the art-unit-year level, but much less evidence within

art-unit-year-USPC-subclasses.
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Table A1: Summary statistics for sample of applications

Panel A: categorical variables

Variable # of categories Applications per category

Mean Std dev Min
5th

percentile
1st

quartile
Median

3rd

quartile
95th

percentile
Max

Examiners 12,338 220.22 227.54 1 2 48 156 313 714 1,655
Art units 590 4,605.14 3,942.42 3 446 2,007 3,228.50 6,157 13,459 21,905
USPC subclasses 119,448 22.75 106.65 1 1 2 5 14 85 13,836
Assignees 164,195 12.99 301.16 1 1 1 1 3 19 59,998

Panel B: quantitative variables

Variable N Mean Std dev Min
5th

percentile
1st

quartile
Median

3rd

quartile
95th

percentile
Max

DOCDB family size 2,716,195 2.88 5.66 1 1 1 2 3 8 378
Words in 1st claim 2,712,367 124.95 128.00 1 35 70 103 151 269 46,194

The number of applications characterized by a big DOCDB family and a low number of words in the first independent claim are respectively
106,408 and 116,665.

Table A2: Summary statistics for examiners’ specialization and examination
outcomes.

Variable N Mean Std dev Min Median Max

Shareijt 1,750,211 0.04 0.09 0.00 0.00 1.00
Granted 1,750,211 0.65 0.48 0.00 1.00 1.00
Days 1,749,990 918.09 510.19 0.00 826.00 17,835.00
Words 1,069,834 49.16 87.56 -10,351.00 30.00 9,248.00
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Table A3: D-index and MTAD Tests within Art-Unit-Application-Year
(share rejecting random allocation at 5% significance level, by technology
center)

Panel A: USPC subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 43.8 906 28.1 0.2 551
Chemical and Materials Engineering 66.3 814 64.6 0.0 721
Computer Architecture, Software, and Security 7.1 1,170 1.4 0.1 723
Computer Networking and Video Distribution 14.9 753 2.1 0.2 628
Communications 22.5 2,268 20.6 0.0 694
Semiconductors, Electrical and Optical Systems 46.5 3,389 47.1 0.1 843
Miscellaneous† 23.2 1,162 28.8 0.3 742
Mechanical Engineering, Manufacturing, Products 49.0 1,536 49.3 0.0 680

All tests 35.3 11,998 31.0 0.1 5,582

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 65.8 225 13.3 0.0 527
Chemical and Materials Engineering 56.0 866 40.3 0.0 699
Computer Architecture, Software, and Security 11.3 970 0.3 0.0 709
Computer Networking and Video Distribution 15.5 509 0.3 0.0 616
Communications 17.0 1,879 10.0 0.1 668
Semiconductors, Electrical and Optical Systems 31.4 3,360 22.6 0.1 824
Miscellaneous† 40.2 818 21.1 0.0 703
Mechanical Engineering, Manufacturing, Products 51.1 1,089 29.1 0.0 659

All tests 31.7 9,716 17.6 0.0 5,405

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 2.8 772 6.4 0.0 549
Chemical and Materials Engineering 6.9 1,018 9.4 0.0 716
Computer Architecture, Software, and Security 0.8 860 4.4 0.0 723
Computer Networking and Video Distribution 0.7 742 2.6 0.0 627
Communications 4.0 1,011 6.5 0.0 690
Semiconductors, Electrical and Optical Systems 7.6 1,427 10.5 0.0 841
Miscellaneous† 5.3 1,149 8.5 0.0 738
Mechanical Engineering, Manufacturing, Products 8.2 1,089 11.9 0.0 678

All tests 5.0 8,068 7.7 0.0 5,562

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 7.2 1,129 9.7 0.0 721
Computer Architecture, Software, and Security 0.1 895 1.5 0.0 723
Computer Networking and Video Distribution 0.0 755 0.0 0.0 627
Communications 0.5 1,052 0.9 0.0 693
Semiconductors, Electrical and Optical Systems 5.0 1,524 8.8 0.1 843
Miscellaneous† 3.4 1,194 4.2 0.1 741
Mechanical Engineering, Manufacturing, Products 3.2 1,160 4.7 0.1 679

All tests 3.1 7,709 4.5 0.1 5,027

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 5% level. For MTAD, columns labelled “Agg.” (“Disp.”) report the
share of tests that reject the null hypothesis of random allocation at 5% level in favor of agglomeration (dispersion).
All tests are conducted within art-unit-year cells with more than 20 applications for the D-index and more than

50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic Commerce, Agriculture,
National Security and License & Review.”

34



Table A4: D-index and MTAD Tests within Art-Unit-Application-Year-
Class-Subclass (share rejecting random allocation at 5% significance level,
by technology center)

Panel A: USPC secondary subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 24.7 720 2.0 27.3 1,613
Chemical and Materials Engineering 7.5 147 0.8 21.7 516
Computer Architecture, Software, and Security 0.0 99 0.0 0.7 143
Computer Networking and Video Distribution 0.0 33 0.0 0.0 35
Communications 0.8 120 0.0 0.5 212
Semiconductors, Electrical and Optical Systems 0.0 104 0.4 3.0 531
Miscellaneous† 3.8 26 0.0 1.3 150
Mechanical Engineering, Manufacturing, Products 1.8 55 0.0 1.8 168

All tests 14.7 1,304 1.1 17.1 3,368

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 27.0 37 11.5 0.0 104
Chemical and Materials Engineering 24.2 33 3.8 2.5 80
Computer Architecture, Software, and Security 0.0 13 0.0 0.0 120
Computer Networking and Video Distribution 0.0 1 0.0 0.0 46
Communications 0.0 84 0.3 0.0 363
Semiconductors, Electrical and Optical Systems 0.0 82 0.3 0.0 392
Miscellaneous† 0.0 10 0.9 0.9 115
Mechanical Engineering, Manufacturing, Products 10.0 50 1.8 0.0 113

All tests 7.4 310 1.5 0.2 1,333

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.0 844 0.0 0.0 151
Chemical and Materials Engineering 0.0 768 5.4 0.0 93
Computer Architecture, Software, and Security 0.0 1,082 0.0 0.0 174
Computer Networking and Video Distribution 0.0 698 0.0 0.0 62
Communications 0.0 2,147 0.5 0.0 429
Semiconductors, Electrical and Optical Systems 0.0 3,184 0.4 0.0 458
Miscellaneous† 0.0 1,097 3.0 0.0 169
Mechanical Engineering, Manufacturing, Products 0.1 1,419 0.7 0.0 144

All tests 0.0 11,239 0.9 0.0 1,680

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 0.0 747 2.0 0.0 99
Computer Architecture, Software, and Security 0.0 1,058 0.0 0.0 191
Computer Networking and Video Distribution 0.0 684 0.0 0.0 64
Communications 0.0 2,109 0.0 0.0 456
Semiconductors, Electrical and Optical Systems 0.0 3,109 0.6 0.0 520
Miscellaneous† 0.0 1,062 0.0 0.0 190
Mechanical Engineering, Manufacturing, Products 0.0 1,409 0.5 0.0 185

All tests 0.0 10,178 0.4 0.0 1,705

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 5% level. For MTAD, columns labelled “Agg.” (“Disp.”) report
the share of tests that reject the null hypothesis of random allocation at 5% level in favor of agglomeration
(dispersion). All tests are conducted within art-unit-year-subclass cells with more than 20 applications for the

D-index and more than 50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic
Commerce, Agriculture, National Security and License & Review.”
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Table A5: D-index and MTAD Tests within Art-Unit-Class-Subclass (share
rejecting random allocation at 1% significance level, by technology center)

Panel A: USPC secondary subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 15.4 1,425 1.5 8.3 2,132
Chemical and Materials Engineering 6.0 431 0.5 10.6 1,474
Computer Architecture, Software, and Security 0.4 253 0.0 0.0 470
Computer Networking and Video Distribution 1.3 154 0.0 0.0 280
Communications 0.6 362 0.0 0.0 639
Semiconductors, Electrical and Optical Systems 1.6 741 0.1 0.2 1,847
Miscellaneous† 2.7 222 0.0 0.6 464
Mechanical Engineering, Manufacturing, Products 2.5 314 0.6 0.8 893

All tests 7.1 3,902 0.5 4.2 8,199

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 25.9 81 3.1 0.3 355
Chemical and Materials Engineering 13.4 134 1.8 3.3 389
Computer Architecture, Software, and Security 0.4 274 0.0 0.0 569
Computer Networking and Video Distribution 1.2 85 0.0 0.0 475
Communications 0.5 430 0.0 0.0 948
Semiconductors, Electrical and Optical Systems 1.6 880 0.1 0.1 1,819
Miscellaneous† 2.3 219 0.8 0.2 525
Mechanical Engineering, Manufacturing, Products 2.8 396 0.6 0.3 797

All tests 2.9 2,499 0.5 0.3 5,877

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.1 1,590 1.0 0.0 512
Chemical and Materials Engineering 0.0 2,266 0.4 0.0 470
Computer Architecture, Software, and Security 0.0 1,879 0.3 0.0 616
Computer Networking and Video Distribution 0.0 1,605 0.0 0.0 526
Communications 0.0 2,802 0.0 0.0 981
Semiconductors, Electrical and Optical Systems 0.0 5,806 0.2 0.0 1,952
Miscellaneous† 0.1 2,789 0.4 0.0 711
Mechanical Engineering, Manufacturing, Products 0.0 3,759 0.8 0.0 1,126

All tests 0.0 22,496 0.3 0.0 6,894

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 0.0 2,226 0.2 0.0 496
Computer Architecture, Software, and Security 0.0 1,880 0.0 0.0 657
Computer Networking and Video Distribution 0.0 1,588 0.0 0.0 553
Communications 0.0 2,794 0.1 0.0 1,068
Semiconductors, Electrical and Optical Systems 0.0 5,745 0.1 0.0 2,076
Miscellaneous† 0.0 2,791 0.0 0.0 748
Mechanical Engineering, Manufacturing, Products 0.0 3,723 0.0 0.0 1,187

All tests 0.0 20,747 0.1 0.0 6,785

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 1% level. For MTAD, columns labelled “Agg.” (“Disp.”) report the
share of tests that reject the null hypothesis of random allocation at 1% level in favor of agglomeration (dispersion).
All tests are conducted within art-unit-subclass cells with more than 20 applications for the D-index and more than

50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic Commerce, Agriculture,
National Security and License & Review.”
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Table A6: D-index and MTAD Tests within Art-Unit-Class-Subclass (share
rejecting random allocation at 5% significance level, by technology center)

Panel A: USPC secondary subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 23.3 1,425 2.2 16.2 2,132
Chemical and Materials Engineering 10.4 431 0.5 19.3 1,474
Computer Architecture, Software, and Security 1.2 253 0.0 0.0 470
Computer Networking and Video Distribution 4.5 154 0.0 0.7 280
Communications 1.7 362 0.0 0.2 639
Semiconductors, Electrical and Optical Systems 3.4 741 0.1 0.7 1,847
Miscellaneous† 6.3 222 0.2 1.9 464
Mechanical Engineering, Manufacturing, Products 6.4 314 0.8 1.6 893

All tests 11.6 3,902 0.8 8.1 8,199

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 38.3 81 4.5 0.8 355
Chemical and Materials Engineering 20.1 134 2.3 6.9 389
Computer Architecture, Software, and Security 1.5 274 0.0 0.0 569
Computer Networking and Video Distribution 7.1 85 0.0 0.0 475
Communications 1.2 430 0.1 0.0 948
Semiconductors, Electrical and Optical Systems 3.0 880 0.2 0.5 1,819
Miscellaneous† 5.5 219 1.0 0.6 525
Mechanical Engineering, Manufacturing, Products 8.6 396 1.5 0.4 797

All tests 5.8 2,499 0.8 0.8 5,877

Panel C: DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.1 1,590 1.4 0.0 512
Chemical and Materials Engineering 0.0 2,266 1.5 0.0 470
Computer Architecture, Software, and Security 0.1 1,879 0.3 0.0 616
Computer Networking and Video Distribution 0.0 1,605 0.0 0.0 526
Communications 0.0 2,802 0.1 0.0 981
Semiconductors, Electrical and Optical Systems 0.0 5,806 0.5 0.0 1,952
Miscellaneous† 0.2 2,789 0.7 0.0 711
Mechanical Engineering, Manufacturing, Products 0.1 3,759 1.0 0.0 1,126

All tests 0.1 22,496 0.6 0.0 6,894

Panel D: Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 0.0 2,226 1.0 0.0 496
Computer Architecture, Software, and Security 0.0 1,880 0.2 0.0 657
Computer Networking and Video Distribution 0.0 1,588 0.0 0.0 553
Communications 0.0 2,794 0.2 0.0 1,068
Semiconductors, Electrical and Optical Systems 0.1 5,745 0.5 0.0 2,076
Miscellaneous† 0.0 2,791 0.3 0.0 748
Mechanical Engineering, Manufacturing, Products 0.0 3,723 0.5 0.0 1,187

All tests 0.0 20,747 0.4 0.0 6,785

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 5% level. For MTAD, columns labelled “Agg.” (“Disp.”) report the
share of tests that reject the null hypothesis of random allocation at 5% level in favor of agglomeration (dispersion).
All tests are conducted within art-unit-subclass cells with more than 20 applications for the D-index and more than

50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic Commerce, Agriculture,
National Security and License & Review.”
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